
±
c

Unfinished in 1983

OiWf
^>L

Unfinished in 1983

I

An informal repor t on SMP

S t e p h e n Wolfram
The Institute for Advanced Study, Princeton NJ 08540.

(January 1983)

ABSTRACT

An informal report on the present status of SMP is given.
Some aspects of the usage and internal construction of SMP are
discussed.

Paper for presentation at the European Computer Algebra Conference EUROCAL '83, in Lon
don, England, on March 28-31, 19B3.

Unfinished in 1983

SMP is a general purpose symbolic manipulation language developed by me
and several coworkers* starting in 1980, mostly at Caltech. A full description of
SMP is given in the SMP Handbook [l] . The architecture of SMP was briefly out
lined in [2], This paper gives an informal discussion of the present status of
SMP, its use and internal construction.

A test site version of SMP has existed for nearly a year, but its widespread
distribution was delayed by administrative problems at Caltech [3], About ten
test versions have been running at various sites for about six months. Distribu
tion to well over a hundred academic organizations is now imminent. In addition,
sales of SMP to commercial organizations have recently been started. Only a
small amount of new code has been added in the past six months, but availability
of commercial funds promises to allow more extensive development to be
started in the near future.

SMP was originally developed on a VAX running the UNIX operating system.
It nows runs on a variety of VAX 11/780 and 11/750 systems under various
Berkeley and Bell versions of UNIX. It was at first ported to run under the VMS
operating system on the VAX using the EUNICE UNIX emulator; however, distri
bution and technical problems forced an alternative approach. An essentially
complete version of SMP has now been created using the Whitesmith's C com
piler under VMS. One may anticipate that a version of SMP will soon exist for the
SUN Microsystems MC68000-based workstation running UNIX (and possibly for
other MC68000-based systems). The current limitation on this system to 2
megabytes of memory per process (making very large SMP calculations impossi
ble) will apparently be lifted, by mid-1983.

The text of SMP is about 1.2 megabytes in size (corresponding to 100000
lines of C source code). A typical SMP job requires about 0.5 to 1 megabyte of
working data memory. It has been found that a VAX with more than about 1.5
megabytes of physical memory, and a demand paging operating system, can
accomodate several simultaneous SMP jobs.

With a few exceptions (discussed below) the current version of SMP contains
a full implementation of all the features described in the SMP manual. The inter
nal code is modular and mostly well-commented, so that maintainence has been
comparatively easy. Bugs are by now rather rare; nearly all user problems result
from incorrect usage of the SMP language, rather than internal problems. About
250 external files, written in the top-level SMP language, and implementing addi
tional features, are now available, and span a broad area in mathematics,
applied mathematics, and physics. A recent innovation is a scheme for labelled
comments in the SMP-readable files, which allows the text of the files to be
typeset in an easily-assimilable form, and permits features and keywords in the
files to be accessed by the SMP database system. So far most external files have
been written by system developers; users often create rather general programs
but are reluctant to perfect them and format them for general distribution.
Commercial incentives should however change this attitude.

Considerable effort has been expended to provide good documentation for
SMP. The SMP Handbook is divided into three sections: a summary, giving a
short description of all facilities; a reference manual, containing the same text
as the summary, but with extensive examples; and a primer, giving a pedagogi
cal introduction to SMP. This format has been very well-received. Most users
start by reading the primer; once proficient in SMP, they use the summary and

* SMP was mostly designed by me. C.Cole, J.Greif, T.Shaw and A.Terrano made important con
tributions in its implementation.

Unfinished in 1983

£ T Z

reference manual for reference. (Some prefer the shorter form of the summary;
others look immediately at the examples in the reference manual.) A rather
complete, hand-generated, keyword index was included in the manual, though in
the first edition it was given only with the reference manual, and not with the
summary, and was largely unused.

The SMP language is sufficiently simple that new users are able to perform
meaningful calculations after only a few minutes of reading the primer and
experimentation with SMP. Perhaps because the SMP language is different in
structure from most computer languages, new users with no previous computing
experience seem to be at little disadvantage. Users almost always start by using
only built-in functions, and sometimes also functions in external files (which
they usually learn about from experienced users). Only later do they begin to
define their own functions.

The SMP language is strongly based on pat tern matching, and allows many
definitions to be given in close to their mathematical form. Users with no com
puting experience seem to understand this approach intuitively, and very
quickly define complicated systems based on pat tern matching. Users with
experience in more conventional languages such as FORTRAN or MACSYMA often
try to define conventional functions, using conditionals and other standard pro
gramming constructs, and find it more difficult to adapt to the pat tern matching
approach. The simple specification of the operation of the SMP pattern matcher
is crucial in allowing users to apply it effectively. Complications or heuristics
would confuse users. Once users have understood pat tern matching, they often
use it almost to the complete exclusion of many built-in functions. For example,
users often make pattern-matching definitions to perform transformations on
expression which could more easily and more efficiently have been made using
existing built-in functions.

When SMP is given an expression which it considers undefined, it simply
returns the expression unevaluated. It almost never prints an "error message".
Users are very rarely confused by this, and often appreciate the succint output
they receive. When SMP encounters a syntax error on input, it immediately
reports this and places the user in a simple line editor, indicating the prob
lematic token. Users find it very easy to recognize the appropriate corrections,
and respond well to the absence of derogatory verbeage. The most common
non-trivial confusion in SMP usage occurs when circular pattern definitions have
been given, and the complete processing of an input line would take an infinite
time. Such problems are usually recognized by frequent status interrupts, which
print the top of the stack of SMP projections being evaluated, and reveal the cir
cular behaviour. It should be noted that the infinite evaluation scheme which
makes infinite loops possible is crucial to the basic operation of SMP, and usually
behaves exactly as users require.

SMP has almost no system-defined global variables (except the lists of input
and output expressions, and the preprocessor and postprocessor templates).
The lack of global variables and switches has avoided innumerable user prob
lems.

Most of the internal code of SMP is by now very efficient. Much of this
efficiency can be traced directly to the low-level nature of some of the code and
the presence special purpose internal data structures, made possible by the use
of a low-level language such as C, rather than a higher-level language such as
LISP. Absolutely crucial to the efficiency of SMP are internal counters and
pointers which ensure that an expression, once simplified, is almost never re-
simplified unless new definitions may have been given for some of its parts. Also
crucial are a number of related mechanisms for sharing common

Unfinished in 1983

V T Z

subexpressions, and representing different occurrences of the same expression
by a single structure in memory. The basic SMP internal data structure uses
arrays rather than linked lists. Thus insertion of new elements in lists requires a
complete copy; however, this can be achieved by a single machine instruction on
the VAX, and is therefore very quick. Any additional overhead is by far offset by
the proximity of list elements in memory; in a linked list, different list elements
may be in different pages of virtual memory, and their retreival may be very
time-consuming. The array nature of the SMP internal data structures, together
with sharing of common subexpressions, typically causes SMP expressions to be
stored rather compactly in memory. This tendency is enhanced by a compacting
garbage collector; the garbage collector in some cases in fact constructs a hash
table and explicitly shares common subexpressions in memory. SMP calcula
tions have been performed with over 10 megabytes of intermediate data; the
compactness of expressions leads to good paging behaviour, with page faults
typically generated in sharp bursts, separated by lengthy in-core computations.
The use of many special-purpose internal data structures makes asynchronous
compacting garbage collection at arbitrary times impossible in SMP. Several
crucial routines exist in two versions: one less efficient one in which all data
structures are maintained in a form which allows garbage collection, and a more
efficient one which does not permit intermediate garbage collection.

The internal processing of an expression proceeds in four basic steps:
1. Input, lexical analysis and parsing
2. Evaluation of system-defined functions
3. Pattern matching to apply user definitions
4. Printing of output.
The lexical analyser and parser are based on the UNIX utilities lex and yacc
respectively. Extreme care was taken in defining the precedence and associa
tivity of operators, and it is believed that, unlike almost all other languages, the
SMP grammar corresponds correctly with common mathematical usage. In
keeping with common notation, the parser does not require an explicit star
between expressions to represent multiplication. A macro preprocessor is avail
able in SMP, and acts before the lexical analyzer. This preprocessor is particu
larly valuable in overcoming problems with special and escape characters. Syn
tax extensions are also initiated in the macro preprocessor, thereby allow
operators which would usually be considered part of a single lexical token to be
identified. The parser is very efficient, and in fact it has turned out that when
SMP expressions are to be stored and re-input from disk files, they are better
stored in top level form and reparsed, than stored in a representation of inter
nal form, and relocated on input.

The first action of the simplifier on an expression is to test a counter to
determine whether new assignments which might affect the expression have
been made since it was last simplified; if they have not, the simplifier replaces
the expression by the last simplified value to which it points. If they have, or if
the expression is newly input, the simplifier processes each part of the expres
sion in turn. All values and properties of all symbols are stored in a symbol
table (dynamically allocated and indexed by hashing). When symbols represent
system-defined functions, the symbol table contains a pointer to a C text routine
which evaluates the function. There are about a hundred basic system-defined
functions, together with several hundred mathematical functions. Simp lifters for
Mult and Plus are probably the most commonly called; great care was therefore
taken to use optimal sorting algorithms. Both system and user-defined functions
can carry properties such as Hat or Trace. At the user level, these properties

Unfinished in 1983

9 1.2

5

are stored in a property list. Internally, at the time of assignment, bits are set in
a special bit field in each symbol table entry to allow rapid testing.

The final stage of simplification consists in applying user-defined rules to
expressions by pattern matching. Despite its comparatively simple specification,
the code of the pat tern matcher is long and complicated, mainly because of
numerous optimizations. The lists which represent values for projections con
tain hash codes for their indices to allow faster comparisons and searches.

The printing form of symbols (and thus projections or functions) are
specified by pointers from the symbol table to text routines or user-defined SMP
expressions. The primary difficulty of two-dimensional printing is associated with
breaking long expressions into several lines. SMP constructs a sequence of rec
tangular boxes to represent parts of expressions; each box is assigned a break
ing factor, and the final boxes are shaped and placed so as to minimize the total
breaking factor. User-defined printing forms are usually implemented through
the two-dimensional format statement function Pta.t, which specifies relative
positions of expression boxes.

The functions Graph and Plot yield graphics output. On standard terminals,
the output is given using ordinary characters; this is usually quite adequate to
obtain a qualitative picture. Special code was included to provide genuine
graphics output on several devices; in practice, almost all graphics terminals
seem to support Tektronix 401X codes. Rather complete code now exists in SMP
for two-dimensional graphics. Contour plots are now available, but complete
hidden-surface three-dimensional plots are still not available. The primary rea
son for this is that, while a line in two dimensions may be represented by a list of
points, it is not clear how to make an efficient top-level SMP representation of a
three-dimensional surface.

A recent addition to SMP were the functions L and At, which allow semantic
display editing of expressions within SMP. The functions read terminal control
codes at initialization time.

It is sometimes thought that the bulk of a symbolic manipulation program
consists of programs implementing mathematical algorithms, such as those for
symbolic integration. In fact, most of the internal code of SMP implements the
very many other functions and operations required to t reat expression structur
ally. Nevertheless, SMP contains an increasingly complete set of mathematical
algorithms. Expansion of polynomials (and other distributivity operations) is
one of the most important functions. A crucial feature in the implementation of
expansion is intermediate simplification of partially expanded results; in this
way, whenever cancellations occur, many fewer terms are generated, and an
otherwise exponential intermediate expression swell is avoided. Polynomial fac
torization in SMP is performed using a version of Berlekamp's algorithm. Fast
multivariate polynomial factorization, using Zippel's algorithm, is largely imple
mented, but is not included in the main version of SMP. An implementation (by
Terrano) of Risch's algorithm for symbolic integration has recently been com
pleted. Taylor-Laurent, Pade and continued fraction series expansions are
implemented by a recursive scheme which ensures that irrelevant terms are
never generated.

An important decision made in the implementation of SMP was the internal
(but not external) representation of numbers in a double-precision floating point
form. The rationale for this was that in practical calculations numbers requiring
more than 10 of the 16 available decimal digits are rare, and arithmetic opera
tions on machine floating point numbers are orders of magnitude faster than if
implemented in software for a direct representation of, say, rational numbers.
The lack of fast floating point hardware for existing MC6B000-based computers

Unfinished in 1983

9 1 2

6

slightly decreases the speed advantage in this case. Arbitrary precision
numbers in SMP are represented as functions containing a sequence of ordinary
numbers. It appears that in most calculations, it is quite clear at the outset
whether arbitrary precision numbers will be required or not, so that the calcula
tion may be set up appropriately, and the presence of different number types is
not unduly inconvenient.

Operations on objects such as big numbers are performed in SMP through a
type extension mechanism. The actual operation of, for example, a Plus projec
tion is determined by the types of its arguments. An unsatisfactory (but hitherto
often taken) approach consists in including tests and dispatching code in the
standard Plus function. Since in SMP special data types are always manifest,
being represented by specific projections, special expressions may be identified
and tagged by bits in the internal representation. The main simplifier then tests
these bits (in parallel with several other tests), and if necessary searches the
property lists of the special data types (using hashing) to find an alternative
function by which the standard Plus should be replaced in the particular case.
This approach is satisfactory for unary functions, but for multinary functions
with several different special types as arguments, it is inadequate. A good gen
eral approach yet to be implemented in this case would be to define a network of
coercion transformations, each with an associated cost, and then to find a
minimum cost routing in the network to transform all the special data types to a
common ancestor, on which the unary function approach can be used. The main
difficulty in implementing such a scheme is to find a convenient representation
of the network in top-level SMP. The network mechanism could also be used to
control application of, for example, trigonometric transformations.

SMP is essentially an interpreter. However, the function Cons (recently
unbundled into the functions Prog, Code and Load) allows definitions and pro
grams written in top-level SMP to be translated into C, on the assumption that
all variables have only numerical values. Cons translates not only expressions,
but also control structures and even some simple pattern-matching processes.
The C code it generates can be compiled, then linked into a running SMP job.
The code is read into the data space of the job, then accessed through tables
inserted in the text space; this mechanism can be used under most operating
systems. The compiled code typically runs at least ten and often many more
times faster than top-level interpreted code. The ability to generate and test
code in the high-level SMP language, then automatically translate it to efficient
low-level C, provides the essential elements of automatic programming so much
discussed in other contexts. Translation of SMP code into FORTRAN is straight
forward given the existing Cons function, and will soon be implemented.

The SMP language was essentially designed to be used on a simple line-at-a-
time display terminal. SMP commands are therefore input in a direct linear
form. Availability of computers such as the SUN workstation, which allow for
high-speed high-resolution full-screen input and output, suggest many enhance
ments. The first of these, now largely implemented, is an interactive front-end
for a database management system containing information on system and exter
nal file functions, indexed by keywords and key phrases. An important element
of the system is an algorithm for taking an English phrase, and stripping its
structure and words to canonical roots which may be retreived by hashing from
the database. In this way, natural language queries may be responded to in an
interactive fashion. A further enhancement along the same lines would be to
allow for interactive menu input of all SMP commands. Such a menu can be con
trolled by the same codes in documentary text as are required for the query
system. Use of windows, mice, and other display-oriented mechanisms would
provide more complete interactive input and output.

Unfinished in 1983

LIZ

7

It is now about three years since SMP was started, and I have altogether
spent about a year working on SMP and managing the project. All in all, I at least
am quite satisfied with the progress of SMP in that time. If I were to start the
project again, almost all the things I would do differently are of an administra
tive, rather than of a technical nature. For the last year or so, I have used SMP
extensively to solve problems in theoretical physics (the purpose for which it
was originally created). I suspect it will not be too long before SMP has saved me
more time than it took to build it, and the project will therefore have been at
least a partial success. S

Unfinished in 1983

