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ABSTRACT
!ﬂﬁ

Thie paper is the first in a sgrif! which discusses the use of algebraile
computer programe as an aid to the caleculation of Feynmean diagrams in high-
energy physics, I first give a general discussion on the nature of the Fevoman
diagrams to be evaluated and outline the many aspects of their calculatlon
which may conveniently be handled by computer. Then 1 describe in some detail
the program GﬂHﬁLG‘(written in the LISP-hased symbolic manipulation language
HﬁCSYHﬁ} which performs algebraic manipulations on Dirac gamma matrices {in
n dimensions)}. GAMALG 1s avallable for general use, and I give many exanples
of its application., In addition, I discuss sewveral useful results cn gamma
matrices which do not appear to be widely known., The next two in this serdes
of papers (written with A. E. Terrans) address the evaluation of the momcntum
space integrals resuvlting from Feynman diagrams. We shall describe a program
to perform sutomatically any Feynman parameterization, yielding & form suit-
able for numerical evaluatlon, together with a prosram whicli performs analvt-
ically sume integrals in terms of beta functions. For dizgrams involving ;:g;j
massless particles up to three loops (and with few external lines), the remain-
ing intepgrals may usually be done analytically by a Chebyshef expansion method,

as we shall describe., At the one-loop level, 211 Feynman integrals may be

*lork supported in part by the U.5. Department of Hnergy under Contrack Wo.
DE-AC-03--7CERD068, and by a Feynman Fellowship.
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evaluated completely in terms of dilogarithm functions, and we shall present

Cikend B el

a program which does this. Finally, we '.nﬁifm the automatic generation

of diagrams and of renormalization counterterms.

[Some parts of thie paper are based on 'MACSYMA Tools for Feynman Diagram
Caleculations,' in the proceedings of the 1979 MACSYMA Users' Conference,
June 1975].
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1. Introduction

The evaluation of Feynman diagrams is essentially the only known method
for extracting physical predictions from the relativistic quantized field
theories which are believed to descrlbe the interactions of elementary par-
ticles. The computation of complicated diagrams is necessary both to allow
more precise comparisons with experimental results, and to elucidate the basic
structure of the theories investigated. The purpose of this series of papers
is to describe in detail programs which have been written by A. E. Terrano

C myseMd-
andjzifgﬁ the algebraic manipulation language MACSYMA to automate most common
features of diagram calculations. In Section 2 of this paper, I discuss briefly
the classes of Feynman diagrams which have been evaluated to date and delin=-
eate those which are likely to be of relevance in the immediate future, and
in whose caleulation our prograws are intended to assist. This paper does
not describe the basiec aspeects of Feyoman diagrams; for these we refer the
reader to Refs., [1.1] or [1.2]*. In Section %}I discuss the algorithms and
construction of the MACSYMA program GAMALG which handles the gamma matrix
algebra aspects of Feynman diagram evaluation, and give examples of its use.

For those unfamiliar with it, a few words should be said concerning MACSYMA.
MACETMA 1s undoubtedly the wost powerful algebraic manipulation computer lan-
guaze avallable. It was developed by the MATHLAE group of the M.I.T. Labora-
tory for Computer Science, and is presently generally available only on their
KL-10 computer, which may be accessed directly by telephone, or, for example,

through the ARPA network. MACSYMA is written in LISP. It manipulates

* In any branch of theoretical physics where perturbation theory 1s used,
diagrammatic techniques abound. The diagrammatic wethods encountered in
studies of many-body systems (atoms, nuclei, solids, spin systems, turbulent
fluids, ...} are qualitatively simlilar to those used in high energy physics,
although they are usually more amenable to approximation. We shall, however,
discuss only eeswdaa Feynman disgraws here,

®lativackic.
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algebraic expressions, and performs symbolic differentiation, integration

(of any form whose integral contains only elementary functions, and in some
cases, dilogarithm or Spence functions), factoring and so on. The REDUCE,
SCHOONSHIT and ASHMEDAI systems often used for high-energy physics calculations
perform some gamma matrix algebra efficiently but do not offer such sophisti-
cated ancillary algebraic manipulation capabilities as those available in
MACSYMA, The main limitation of MACSYMA at present Is its inability to handle
more than a few thousand terms; this deficiency should, however, be in part
overcomz when it is implemented on other computers. For mere details of MACSYMA
see Ref. [1.3], which may be obtained from the MATHLAE group at M.I.T. Note
that in this paper there occasionally appear r&férences to disk files; these
are on the th\I‘;MC KL-10 computer. To use GAMALG (and the programs to be
described in later installments of this series), it 18 not necessary to have

a sophisticated knowledge of MACSYMA. In fact, for simple purposes one need
only know how to enter MACSYMA. Then GAMALG (and our other programs) may be
loaded and used by imitation of the examples given below or those available
on-linz on the computer, or by following the reference manuals available on
the computer.

This series of papers igc addressed primarily to those concerned with
physice, rather than with computers, However, at least some of the discusediomn,
especially on the purpose of the programs described, is intended to be acces-
sible to all. A more detailed description of ::: computer programming aspects

of our work will be presented elsewhere.
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2. Applications of Feynman Diapgrams

2.1 Introduction

In order to assess what computational tools for Feynman diagram evalu-
ation are necessary or desirable, one must consider the nature of the diagrams
to be evaluated and the form of the results required. This consideration is
addressed in the present section. After some general comments, I describe
the diagrams which have been calculated so far in the various theories pres-
ently under widespread investigation and speculate on those which will be
of interest in the near future. These speculations will suggest some definite
directions for the computer evaluation of Feynman diagrams which I, at least,
intend to follow. In this section I eewdd have given many referencesp~danstead

The computation of interaction probabilities in realistic quantized field
theories can, at present, be done only as a "perturbation' expansion in powers
of the coupling constant (a parameter which specifies the strength of the
interaction) for the theory. The terms in the perturbation expansion may be
represented by Feynman diagrams. At the kth order in the expansion, each
diagram will typically contain k vertices and up to k/2 loops. (Hote that,
in estimating the complexity of diagrams, final state phase space integrations
ghould be treated on an equal footing with internal loop integrations.) A
total of about 30 sets of diagrams for distinct physical processes have been
evaluated at the first (lowest) order; about half of these have been extended
to the next order. About four processes have been caleulated to third ﬁrder

21] 5 N n[’z.f] - - %
(g—%: BQED UQCD(E e HF deep inelastic scattering Dpeﬁ;tcr anomalous dimensiujix:ﬂ—:>
ﬁ‘fLS}J
and a couple of somevhat derivative and less relevant Gneiz. The anomalous

magnetic moment of the electron is being calculated numerically to fourth

order {D{u&), 4 loops) and involves some 891 diﬂgrams[ﬁ,gqi

D)
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The complexity of Feynman diagrams grows drastically with order. Typi-
cally, at the kth order, k! diagrams contribute and the number of terms in
the momentum space integrand for each diagram also grows roughly like k!, while
the dimensionality of the final integrals to be evaluated grows as k. The
precise number of terms generated depends importantly on the algorithm used,
but it is reasonably clear that beyond fifth order, no existing computer memory
can be expected to hold the required amount of information. Before this ob-
struction is met, however, the time required for evaluation of the diagrams
by existing computers becomes quite prohibitive. There is no known method
for complete systematic analytical ewvaluation of all the integrals generated
in high-order diagram calculations. One must, therefore, resort at least in
part to numerical means; the high Aimensinnﬂlity of the integrals required
essentially dictates the use of a Monte Carlo method, and huge cancellations
require very meny sample points. One may estimate that the time required
for numerical diagram evaluation on the fastest existing computers grows with
order at least like {kl)S, typically crossing one year at k = 4. It is clear
that a better method than the diagram expansion is called for, but there has
so far been no indication that such a method exists. In fact, the vigor with
which a new method is sought has dulled somewhat in the thirty vears since
the invention of Feynman diagrams. The need for a new method of calculation
is perhaps the most convincing justification for attempts at analytical,
rather than numerical, evaluation of high order diagrams. From analytical
results, one may hope to discern patterns and identify the fmportant classes
of terms, and thereby be able to guess or even prove the behavior of higher
orders. Certainly the comparative simplicity of the analytic forms of many
higher-arder results encourases rthis hope. (For example, there are indications

that the numerically most important parts of non=logarithmic terms in diagrams
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involving only masslebﬁhparticles are preportional to {wzj[jfz] (from changing
sheets in log terms), j!@(j) (from end-point singularities in parametric in-
tegrals), and sometimes $(j_l}{n}, where n is a parameter (e.g., moment number)
and ] =k, In addition, the fact that all analytical results for diagrams
have reduced to polylogarithm functions may be significant.)

Of course, it is not entirely evident that wery high order results are
relevant. The perturbation expansion is presumably at best an asymptotic
series, and if the expansion parameter (presumably effectively the coupling
constant) is not sufficiently small that only wvery low orders need be consid-
ered, then the effects of the eventual divergence of the series are prohahly
devastating even if high order terms can be calculated, It appears that no
interesting field theory (probably including QED} pives a Borel re=summable

perturbati ries (i.e., the series are like EkImk rather than Eihl}kk!ak -

In the case of QED, the expansion parameter (o ~ 1/137) is
suf ficiently small that very high order difficulties are plausibly irrelevant.
However, the extreme accuracy of experimental investigations of QED (e.g.,
. eladvon [2-9]
one part in 107 for the anomalous magnetic moment of the Wﬁ necessitates
rather high order calculations to allow theoretical comparisons. (In fact,
beyond U(ah} even the electron anomalous magnetic moment receives suffieciently
important contributions from strong and weak interaction effects to render
a pure QED calculation inadequate.) In QCD, it 1s less clear that the effec-
tive coupling constant is small enough (at accessible energies) to justify
the many perturbative calculations which have been done. Among other diffi-
culties, the effective expansion parameter for QCI! perturbation series appears
(e9.[211)

to be @, Or perhaps even m LA rather than the w/n typically found in QED.

In the next three sections, T summarize very briefly most of the Feynman

diagram calculaticns which have heen done in field theories of apparent rel-

evance to the real world., In additieon, I mention some of the more obvious
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calculations which remain to be done. With these in mind, Section 2.5 dis-
cusses the computer programs for diagram evaluation which are required. The
purpose of this series of papers is to describe several computer programs
which have been written to serve the majority of these needs,

I shall not mention below the many calculations which have been done
in, for example, ¢3 and ¢ﬂ field theories (in wvarious numbers of spacetime
dimension often not close to four). Since such theories are presently not
believed to be direetly relevant in practice (except perhape for the Higgs'
sector of weak interaction theories), calculations on them are usuwally in
the nature of numerical experiments to investigate the behavior of the pertur-
bation series and are usually simpler than the corresponding ones for more
realistic field theories. The foremost of these is probably a recent analyt—EiJ£}
ical ecaleculation of the beta function for ¢i to fifth order {D{lg}; four luﬂgjé.
This is the highest order to which any complete diagram calculation has been
carried. It was performed using methods which we have now implemented in
the computer programs to be described in the second and third installments
of this series {lomp—by*lmop extraction of (Euler) heta funetlons and confdig=

{="ea & L ey fllﬂ
-wratlen space—Chebyahef expansiaﬂ?. The results were used in an estimate

of the prescription-independent quantity ﬁ‘(l*}, E{l*} = 0, to all ordexs

in A using Borel resummation mEthDi%!t{hmmher scalar field thecry in which
several calculaticons have been done is ¢z {¢3 in 6 spacetime dimensions).
These are intended as simple model calculations for QCD {¢§ is asymptotically

free), but are probably irrelevant, not least because ¢g does not exhibit the

doubly-leogarithmic infrared singularity structure of massless (ED and (CD.

2.2 Quantum Electrodynamics (QED)

QED 1= the relativistic quantized fleld theory for the interactions of

electrong (and muoms) with photons. It was for the investigation of this
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[2-13)

theory that Feynman diagrams were originally developgﬁé and until guite re-
cently {~ 1973) it was the only theory in which higher-order calculations
appeared to be meaningful. Many complicated QED processes have been evaluated,
and In all cases where non-electromagnetic effects are negligible, they have
been in precise agreement with experiment; any practical failings of pertur-
bative QED have yet to be uncovered. By now, most 0QED diagram calculations
which are relevant for comparisons with ewisting and forthcowming experiments
have been done, and in recent years there have been few new calculations,

In most cases, higher order effects are smaller than (e.g., hadronic) effects

not directly calculable from QED.
v . Q Ca- “H-,I ﬁ_.u'l l_-?_-lﬁ.} 2. J'}]
Df the basic QED processes, u‘i, E-EK e+e:4.and E*fr{ scattering (including
(2197
é+e * YY(Taé have been evaluated to szecond order (D{é'}; one loop) while vyy
f2-m]

scattering is known only to lowest order {ﬂ(uz) in amplitude; one loop]& For

#*
¥ =+ anything (or equivalently, the QED beta function), there are third-order

[2-2]
results (D(E‘); two loops) in the high-energy limiﬁl (Contributions from

diagrams with the maximal number of internal fermion loops, which numerically

dominate the ﬂ{u‘} result, are known analytically through G{u]‘).} The photon
2
propagator (vacuum polarization) is known completely to second order {ﬁ{a*}
[ .20)
two loope); for massless electrons (i.e., high-energy limit) the three-lcop
N . ’LL]
contribution has also been calculatedf (the parametric form for a complete
: (eu)
calculation to this order has recently been giveqf?"‘%he complete electron
5 [2-22)
propagator is known to second order (0(x"); two luupsa'as iz the eye vertex
C223]
{D(Eﬁz}i two Joopsaﬂ The JHV projection of this vertex, which gives the

]
anomalous magnetic mowment, has been calculated to third order (O(ea™); three
}1-17 (2.¢]
loops Lanﬂ a fourth-order calculation is in progreai. A1l of these resultis,
except parts of the third-order anomalous magnetic moment, are analytical,

In most cases rhere was not even a prellminary numerical calculation made.
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In many cases, however, some part or limit of the answer was known before

.45

the complete calculation, often by non-diagramma techniques (e.g., time-
2.2¢] ([2.2
ordered perturbation theory/, effective Lagranglans/or renormalization group

(2.
methndji e second class of calculations in QED is of radiative corrections
to decay processes, For strongly-interacting initial or final particles,

such calculations cannot be made precise within the context of QED, although

(z.27]

the relevant diagrams have been computed to one-loop (first) DrdEjé For u

dec?y,Ifcmplete analytical calculations exist to first order in a (0(a); one
2:2

looag, while some features of higher order terms (exponentiation) are kncwq' fili}

(e 30)
+ -
(p+ evve e 15 alse koown numeric&lJJP. For other than V + A muon-like

decays, the effects of higher-order weak interactions must be included; the
(23]
calculations are complete to the one-loop level/, The second-crder corrections

(2.31)

to the leptonic decays of Hi have also been calculateiﬁ Corrections to radi-
ative decays (in which, to lowest order, a single photon is emitted) may be
related to the photon propagator and given (for wvanishing electron mass) to
[z.5]
third ardeEKFD(uB]; three loops), although they are probably not useful,
& third class of QED calculations involves the bound states positronium
(e+é-), muoniom Lu+e-} and hydrogen (pe ). The second-order corrections to
[2.33] [2.34) .
)

the decay rates of ortho ( Sl} and para ( SD](pnsitrnnium are known (0o

and D(us}, respectively; one loop), for the 35 case only numerically. For

1
positronium and muonium, the energy levels have been calculated analytically
(23]
to third order [D{mzlagu{u Ryj}jE and an analytical ecalculation of the nexnt
[23¢,17)

order is in progress, with some parts completed. The energy levels of the

hydrogen atom, and in particular the Lamb splitting, are dominantly determined
fﬂt]l

by QED effects and have been calculated as for muoniunkt n mest higher-order

bound state calculations, it is necessary to use sophisticated techniques

to treat the multiple interactions which bind the particles into the bound
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state, but do not contribute directly to the effect (e.g., decay rate or level
splitting) calculated. Typically these methods involve the use of non-plane-
wave incoming particle states or aﬁgﬁéﬁation of complicataed projections on
diagrams to remove iterated effectﬁ£_ The programs we describe do not address
these manipulations.

A further group of QED calculations give corrections to the scattering
of an electron from an external potential. Many of these calculations border
on atomic physics and are done numerically. Nevertheless, analytical results
exist for Bremsstrahlumng (eV + e(y)) to second order {U{uz}; one 1nopggkﬂLe

+ - A = 3

Eeth;;ﬁj%tler process (yV + e e (y) or u u (¥)) to second order (0O(a™); one (E;;;ia\
1uop¥, and for Delbriick scattering (yVV + ¥) to lowest order {D{uﬁ}; one lnopaﬁuq_”
It is dinteresting to mote that of all the diagram structures in 0QED, the box
{which is responsible for yy + yy and hence Delbriick scattering) Lls probably
the least studied, despite its numerically dominant contribution to the differ-
ence between the electron and muon anomalous magnetic mements to ﬂ{mE) (by
virtue of an unusual infrared log {mifmi} term not arising from rencrmalization

5 s [2.2¢)
and therefore not really 1ﬁg(muf{m + u 1!&.

e

There are several further classes of QED calculations. One involves the
interactions of polarized electrons and photons, which have typically only

[2.49)

been studied to lowest ordery., However, most QED calculations relevant for
direct comparison with existing or forthcoming experimental results have been
carried to the highest order at which effects of other (e.g., strong) inter-
actions (which cannor usually be calculated accurately) may be neglected,
There is, therefore, little experimental Incentive for further QED calculations
in the immediate future. Moreover, It is unlikely that any meaningful inves-

tigation of the structure of the perturbation series for QED could be made

by evaluating high-order diagrams using foreseeable computational tools. T,
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therefore, do not anticipate many new calculations in QED in the near future,

except as trivial by-products of QCD calculatlions,

2.3 Quantum Chromodynamics (QCD)

QCD is the primary candidate for a field theory of strong interactions.
It describes the interactions of quarks and gluons. Alwost by definition,
strong interactions have coupling constants so larpe that perturbation theory
is wsually useless. However, QCD has the remarkable property (which is sup=-

ported by experimental results) of "asymptotie freedom,' which leads to small

effective coupling constants for processes involving large momentum transfers
({shorc distanca£§;u#}his constraint on the region of appllcability of QCD
perturbation theory (at least should) determines what gquantitiesz are computed
in QCD using Feynman diagrams.

The first class of caleculations in QCD determines the bshavior of the
(suitably defined) effective coupling constant at high momentum transfers by
evaluating the terms logarithmic in energy resulting from loop corrections
to the qqf or GGG vertices, usually by finding the 0(l/e = 1/(4-n)) divergent
pleces of the diagrams. Second-order ([}{EB) {52 e fmms}; one lnmp}‘ caleulations
of the beta function, which determine the effective coupling, revealed the
property of asymptotic freedom. The analytical result for the beta function

5}[‘2-“&

is known to third order (0(g I: Of course, one cannot cxpect to reveal much
about the behavior of QCL at small momentum transfers, where the effective
coupling is large, by a perturbation expansion in the strength of the interac-
tion (for example, terms of order eﬁp{*lfﬁz}, which have zero asymptotlc ex-
pansion 1n powers of g will inevitably be missed). It is, therefore, not
entirely clear that a calculation of B(g) to higher orders is worthwhile,

although such results would presumably help in attempts to find A(g) to all

orders in g. It would also be amising to know if the fixed-point condition
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B(ES = ) can be satisfied for g*¥ 0 to higher orders. In the mode%ﬂQED without
internal fermion loops necessary to study such sigenvalue conditinn:.wit is
known explicitly to D(e?} that B{e) has no zeros away frafée =0 and it is
proved that if a zero exists, it must be of infinite o % r;hrin QCh, B(g) can
have a zerofto ﬂ{gﬁ} only if the number of quark flaunrﬁFis larger than 8.

(It is amusing to note that the D{g3) term changes sign when F = 16.5, while
the D(gE} term becomes positive when F 2 8.05. One wonders whether this in-
crease in the importance of fermlon loop terms continues in higher orders.)
One unfortunate feature of the D(g?} and higher contributions to R{g) is their
dependence on the renormalization prescription used. (This occcurs also in

the QED beta function, which is known to G{E?), when diagrams containing extra
fermion loops, which give ﬂ{lfaz} as well as 0(1/e) terms, are included,)

This impedes the physical interpretation of such contributions, since cross-
sections must also be computed to third order to provide a prescription-
independent measure of g. It appears that the programs described in this
series of papers should be capable of at least a numerical and probably an
analytical ealculation of B(g) to U{g?}. Most calculations of B(g) assume
massleszs quérks; the results for B(g) with massive quarks are known to 0{53},
where they are already prescription-dependent.

A class of caleulations similar to those yielding B(g) derives the 'anom-—
alous dimensions' which give the dependence of the effective (~ current) mass
of a quark on the acceleration used to meassure it (QE}. Analytical results
here have been obtained to second order {L‘r(gi}}; two loops) {."14}31,

The first (and probably theoretically best-founded) class of QCD calcu-
lations which allowed direct comparison with experiment made use of the oper-
ator product expansion. 1In this method, the diagrams computed involve 'oper-

ator vertices' which are added to the Feynman rules as a formal device to keep
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track of the wvarious terms with specific dependences on rthe external momentum.
The process best investigated by these techniques is deep=-inelastic scattering
for which analytical results to third order [D(uzn}; two loops, for anomalous
dimensions, one loop for coefficient funr.:timf%{:{igt, although at third order
they are extremely complicated and have yet.tu be properly used. The second
order (B(uga}} results (for anomalous dimensions) have, however, been used
extenasively as the basis for leading log approximations to many prucesses[l-Tﬂ_
Another use of the operator product expansion method is im calculating QCD
corrections to weak decays. These calculations are characterized by the appear-
ance of complicated operator vertices containing Ygi they have been completed
(250
(though not to the satisfaction of all) to the one loop levei{which is quite
sufficient in view of the ad hoc nature of the medels used to relate results
for quarks and gluons to those for hadrons. (Nevertheless, two-loop caleula-
tions are apparently being made.)

In the last year or so, there has been a considerable amount of effort
devoted to direct caleulations cf higher-order cross-sections in QCD pertur-
bation theory. These divide basically into two classes: those for which the
initial state contains colored particles (i.e., quarks and/or gluons} and those
whose initial states consist only of photons (or Wi,;gf}. The latter class
of calculations has the advantage that when the cross-sections for the produc-
tion of all possible final states accessible from the given initial state are
added together, the result is free from infrared divergences. For processes
involving Initial colored particles, infrared divergences remain but are uni-
versal to all processes and may therefore be factorized out (c.f., the discus-
gion of divergences In Section 4.1 of the forthcoming installment) in compar=

isona between processes. In a2 given process, the change in the divergent

pleces with energy is given by the wvery same "anomalous dimensions' as describe
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the energy dependence of the deep inelastic scattering cross—-section calculated
using the operator product expansion. (In fact, beyond lowest order, it is

not known whether the anomalous dimensions associated with parton + hadron

are the same as those calculated for hadron + parton; an explicit diagram
calculation to Investigate this would be very interesting.)

Probably the most directly relevant process involviug no initial color
which has been calculated is the total cross-section for electron-positren
annihilation to hadrons, given in perturbation theory by the processes e+éF + qq,
qqG, 996G, gqq'q’, ..... This is obtained as the imaginary part of the photon
propagator. Calculations of the photon propagator at deep Buclidean momenta
{qz + =w)} are at a similar level of rigor to those on deep inelastic scattering
of virtual photons (with qz + ==) from hadrons. (An operator product expansion
is, of course, unnecessary for the photon propagator, since at leading twisc,
there is only one contributing operator.) The photon propagator 1o QCD has
been calculated analytically to szecond order [D{uus}; two loops In fact,
to this order, QCD results differ from the corresponding QED only by an overall
factor. However, the ﬂ(uﬂgj finite part of the photon propagator depends on
the renormalization prescription used to calculate it, and the original QED
calculations had been done for massive electrons using the usual (QED renormal-
ization preserip on (momentum space subtraction at q2 = 0} rather than the
dimensionally repularized minimal subtraction method usuvally used for QCD.

The relevant analytical caleulation is, in fact, given in the secend of this
series of papers as an 1llustration of the use of our programs. Since QCD
perturbation theory is only sensible at energies much higher than the effective
masses of quarks 'produced' in ete” annihilation, it is presumably sensible

and extremely convenient to neglect their masses in calculations. Unless

specified otherwise, all results discussed in the remainder of this section
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are for massless quarks. To obtain the imaginary part of the photon propagator,
it is only necessary to evaluate 0(1/e) and mo¥e divergent terms in the real “—
part at the order required (the anomalous dimension of the photon field in
QCD). The analytical calculation of the necessary terme has recently been
completed to third order (D(uug}; three loops). (It was for this calculation
that the programs described below were developed. Two other groups have also
done the caleulation, one numerically and the other analyticallézéflln addition
to caleculations of the total cross-section for e+e- annihilation, there have
also been several studies of the energy distributions of the final states

VB
produceéfL T;LEE typically use the G{aas} differential eross-section and in-
tegrate over final state configurations with some weight function other than
the uniform one which would give the total craasnsecticqf The form of the
weight function determines the analytical form of the Integrals; typically
integrals with reasonable welght functions can be done in terms of dilogarithm
functions at D{uas}. A further class of calculations compute the energy spec-
trum of one or more particles produced in e+e" annihilation., The results are
not infrared finite, but thelr divergences may be factorized out. Most cal-
culations in E+EF annihilation (as elsewhere) have bheen done for zero mass
quarks. The introduction of small quark masses appears, however, to reveal
some interesting results (e.g., ﬂ{mzfs} corrections to cru;:—sections but
o{#ﬁﬁ;;} corrections to final state energy distributiméég; ]

Another color singlet initial state process computed In QCD is +yy - hadrons.
Sema, 9 9
ﬁﬂei%ffgﬁi calculations on this have been done to third order (O(o as]; two
lmupﬁi: A further process in this class is H* =+ hadrons (where the virtual
W comes from T heavy lepton decay 1 - W*uf). Calculations on this give essen-—

b
tially the imaginary part of the W propagator (or 'axial vector spectral func=-

tion') in QCD and have been performed analytically to second order (G(Eiﬂtﬁi
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(2.58)
two loops in real part of prmpagatﬁﬁé. They are rendered difficult by the
presence of Tj‘

The simplest QCD process involving colored partons in the initial state
is probably deep inelastic scattering, This[?ag]heen analyzed to third order
{ﬂ{nmi}) by operator product expansion methQjSﬁ The correspondence with direct
calculations is reasonably elear, but a further direct diagrammatic evaluation
of deep inelastic scattering at third order would serve as a useful check on
existing results. At lowest order, deep inelastic scattering involwvas only
y*q + q. In the next order y*q - qG and y*G + gqq (and prnsumTEE?jgrcessas

&2
thus far not calculated involwing extra initial state p&rticlfjé contribute,
Using the 'anomalous dimensions' derived from the operator product expansicn
analysis, or other methods, one may extract the term in y%gq -+ gG proportional
to 1og{q2fu2} which appears when the gluen is collinear to one of the gquarks
and sum the tower of such terms arising from multiple independent gluon emls-
sions to all orders in L The next tower of terms is built on the complete
result for y*q -+ qG (including the 'constant' part not containing logarithmic

1

factors) and iterates contributinns from the ﬂ(miﬂ} anomalous dimensions'.

Another process studled directly in QCD perturbation theory is lepton
pair (e.g., u+u-] production im hadron-hadron collisions (the 'Drell-Yan pro-
cess'), At lowest-order, this arises from qgq -+ vy*(+ up). The next order
corrections due to qE + y%G and Gq + y*q (together with loop correctlons Lo
the qq + y* vertex) have finally (after several incorrect attempts) been eval-

(2:5¢) : : 2,
uated analyticallﬁt- One still higher order correcticn {D{umﬂj} due Lo qg +{%EE:]
has now been computed analytically after a numerical result had hLeen Dbtninciﬁ

The hypothetical alert reader may perceive that the three processes just
discussed all involve simple crossings of loop corrections to the gqay® vertex
[a} .

and to processes involving q, » ¥* and G variously in the initial and final
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state. The loop diagrams may be crossed directly at this order (up to ﬂz terms
resulting from reversing the sign of the arguments of lag2 terms), but the
phase space integration for the tree diagraws differs for the various initial
states, and it is not presently known how to relate the 'crossed' processes
directly. Clearly the next set of QCD processes involve q, (E), v, T(*) and
G. In this class lie ¥y —+ hadrons, y*hadron + ¥¥, hadron hadron + yyX and
fpacn )

several others of less immediate experimental relevance, Only yy + hadrons
has been ecaleculated beyond lowest order, but the others should be quite acces-
sible using, for example, the programs discussed below.

I have thus far discussed only QCD processes involving a photon in the
initial or final state, QCD perturbation theory cennot describe in detail
the formation or structure of hadrons. Whenever the momentum of a quark or
gluon produced in & process must be determined, there is always an Intrinsic
error or smwearing introduced because of its fragmentation to the hadrens which
are observed., If only photon momenta need be considered, none of these dif-
ficulties exists. Nevertheless, processes involving only hadrons and with
sufficiently large momentum transfers that use of perturbative QCD is reasonable

are more easily accessible experimentally, and it is, therefore, useful to

} f}
iﬂ“\

» and recently

make QCD caleulations on them. The lowest-order results fur.?
(2

Gg + qG, GG +-qq and GG + GG were obtained about three years ag
there have been several attempts to calculate to the next or ét
tree graphs (2 -+ 3, e.g., qq -+ qqG) contributions have been obtained for all
the necessary procssses (which involve well over 100 diagrame). It will b=
interesting to check these results and to include one-loop contributions.
The lowest-order ealculations have been done for magsive as well as massless

[2-60)
quarks and may be relevant to the production of heavy flavuriE
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5till another (and perhaps the least justified) class of QCD calculations
involves the decays of bound states of heavy quark pairs. At lowest order,
these calculations are equivalent to those for positronium. Higher-order
corrections, however, depend on the non-Abelian (trilinear gluon) couplings
in QCD. They have been evaluated analytically to second order (D(ma}; ong
loop) for the case of QQ annihilation at rest to GG, GGG and GCgqq (me—restrie=
vtk resbicked i be in @« @inQ R
—tiemromr—the—gquantum-nunbere—ef the initial Q) state/was—made)¥. The corrections
here were found to be surprisingly large. It would be interesting to see
whether the large corrections to the total decay rate are also manifest in
a large spreading of the lowest-order 2Z-jet final state energy dietrlbutLen
m262] and G ctlhdaid it Aie. indiad  sp

by three-particle praduttin-lé In view of the mounting Experlmeutal evidence,

it would be of considerable interest to compute the higher-order corractions

to the three-jet final states expected at lowest order From the (QQ) + GGG
) li(o. o WRa g w (2. L!‘.])
decays of Sl QQ bound etateﬁi The number of dlagrams invelved iz, however,

quite large, and the presence of massive quarks leads to grave difficulties
for analytical techniques. Moreover, a proper calculation would have to make
use of the bound state techniques mentionad asbove [or QED, which may be dif-
ficult to apply precisely to QCD,

In doing QCD perturbation thecry, one usuczlly assumes that the various
fields have appreximately zero value in the vacuum and considers small flue-
tuations in the fields. However, it is konown that, in Fuclidean spacetime,
the QCD vacuum can exhibit a classical non-vanishing value for the gluon po-

[ong weed
tential {an insranﬁufn solution to the classical pure Yang-Mills field equa-
tions). In calculating the percucrbations from this vacuum state, one must
use complicated propagators for the guarks and gluons in this background field
{gimilar in conception, and some details, Lo those encountered in calculations

of atomic properties, where electrons propagace in the background electromagneilic
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field of the nucleus). Such calculations are rather different in character
from usual Feynman diagram calculations and are distinguished for the need
to work in configuration space and consequently the appearance of Begiel
[z &)

functions

From the above discussion, it is clear that there exists a rather large
number of interesting calculations in QCD perturbation theory which should
yield to computer evaluation in the near future. In many cases, numerical
results will be quite sufficient for the phencmenological purposes intended,
but in cases involving only a single kirematie invariant (e.g., B(g) or the
e+e- total cross-section), where results will be essentially single numbers,

it is clearly desirable to have exact analytiecal forms, which may help to

reveal detailed patterns.

2.4 Quantum Flavordynamics {(QFD)

OFD is the name for a class of theories for weak interactions. The sim-
plest and most successful of these is the Welnberg-Salam model. The expansion
parameter in the perturbation series for these theories Is typically of order
lﬂ_5 at the energies of present experiments so that calculations beyond the
lowest order are rarely necessary. OQFD calculations are made difficult by
two features: 1) The necessity of treating Ys and 2) of retaining many par-
ticle masses. The T couplings are difficult because regularization tends
to spoil essential invariances of these couplings (anomalies) while the masses
are awkward because they lead to more difficult integrals. Calculations beyond

lcwest—Efder in QFD at prE?ﬁﬂt energles are few: some rare decays {e.g.,
.45 2-

o

KE -r uﬁ{ifnd mass ﬁplittingsi{e.g., KL

- KE) have been calculated to one-loop
order because they vanish at the tree level, In addition, there have been

several calculations of higher order effects of eventual relevance to neutrinn
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scattering. The D{gﬁu} electromagnetic radiative corrections to neutrino
[2.¢7)
scattering from a guark have been evaluated numericall}kmm

ifgl and v the weak charge ra (Weak effects give a

Jjust measurable contribution to g - 2 at one-loop order, which has been cal-

[z
culated in many weak interaction mnde]s‘[}* Weak and nhialk ewedion b
g-ar ek b g ¢hh?ﬂa haanre Laﬁiﬁuf

Recently, there has been a number of 1nveatigatiﬂns of the hehavinr of ‘\x
15 {bma

QFD at very high energies (~ 107" GeV, etc.), intended to study the possibility T~—
of a unification between QED, OFD and QCD at these energies. This would be
revealed by the effective couplings from the three theories attaining the same
walue at very high energies. The necessary caleulations (done by considering
the momentum dependence of three-point functions or vertices) have been EQNE’
Ti
pleted to third order (ﬂ(g }: two loope), including massive quarks and ’uﬂsun% -j
Another application for QFD diagram caleulations is to estimates of baryon

36

number generation in the very early universe (kT h-lﬂl GeV, t ~ 10 sec),

which is proporticnal to the CP (or time reversal) wvieclation in the decays
sealar vekor a1

of superheavy wveedsx (or, perhaps, seadas) bosons to baryaﬁjif In some of these
calculations, it 1s necessary to go to two—loop order, since one-loop effects
vanish (by their group theoretic weights). However, these calculations should
properly (although they have neot, so far) be done with finite-temperature
propagators, thereby taking them out of the realm of 'canonical diagrams' which,
for example, the programs described in this series of papers could handle
directly.

One sector of QFD theories which will undoubtedivy receive much attention
in the future is the '"Higgs sector'., While direct experimental investigation

of this is perhaps remote, it iz Important in determining the structure of

the theory., Since Higgs bosons heve spln zero, interactions involving only
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these require no gamma matrices: the integrals to be done may be written down
directly from diagrams. However, the most relevant quantity associated with

the Higgs sector is probably the 'effective potential' which is most conveniently
computed without the aid of Feynman diagrams, but still in some cases requires

Bal
similar integrals., It has been calculated completely to one-loop nrd%ﬂ?ﬁiﬁg

-?_I.-T‘
the two-loop contributions from internal Higgs scalar loops are kﬁDWﬁE‘lJ

Finally, I mention quantum gravity. No direct experimental investigation
of quantized gravity is likely to be performed in the foreseeable future.
However, by investigating the structure of quantum gravity theories, it may
be possible to constrain the forms of other theories which are amenable to
direct experimentation. Feynman diagram calculations in quantum gravity are
characterized by the appearances of very large tensors, usually associated
with the propagators for particles with high spin (e.g., 3/2 or 2). In most
cases, the particles may be taken massless, thus simplifying integrations.
Severa]t one loop and a few two-loop calculations have bheen done in quantum

<1
gravi.ty£ :'l'la interesting calculation which could probably be done by the
programs described in this serial is of the three-loop beta function for a

[27¢]
class of supersymmetric theories in which B(g) = 0 to O(g 3[.-

E“J} If_j
2.5 Comments and Preview of the Seriafh ~-?

The last three secticons were intended to give some Indlication of the
Feynman diagrams which have been evaluated, and, by dint of the uses to which
they have been put, those whose calculation is likely to be of interest in
the near future. One feature which should be emphasized is that often a single
Feynman diagram appears in many different applications, usually with different
interprecations for the participating particles and often with some slight
generalization or limit taken., An example of this is the decay of orthopos-

itronium to yyy; the same diagrams also give directly the structure expected
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for the decay of a 331 heavy quark bound state to three gluons. There are
many examples of the recycling of QED Feynman diagrams in low=order QCD appli-
cations, where the contributing diagrams do not vet involve trilinear gluon
couplings., However, it is often rather difficult to locate in the literature
a suitable caleulation, and even once located, the paper in which it is con-
tained iz quite often incomprehensible or at least not in the form or notation
close to that desired, and sometimes its results are inecorrect. For these
reasons, it is common for very similar or even identical ecalculations to be
redone many times. The books on QED (with the notable exception of Landau
and Lifshitz) secem almost never to present results for diagram caleculations
in a useful form. It, therefore, appears that a compilation of Feynman diagram
caleculations in a reasonably standard form would bhe of walue. We have attempted
to carry out such a compilation, and, in fact, the last three sections are
in some respects a summary of it. Unfortunately, we found that the results
to be found in the literature were very rarely in a useful form (often they
had been left as multi-page formulae, and no limits had been considered, or
variables appearing in the answer were not defined, and even in some cases
the diagrams supposedly evaluated were not drawn}. It seems clear that to
make a genuinely useful compilation, one must reevaluate all the diagrams Lo
be included. This should in most cases be possible using the programs to be
described in this series of papers. {j@g::@:)

Presumably, it would be desirable to evaluate diagrams analytically in
as much generalicy as possible. Then, each particular result desired would
require only taking limits in the generz)l expression. .EF keeping the general
results in a computer, one would, of course, be able to take such limits au-
tomatieally and without error. The value of a compilation of rather general

diapram results where limits must be taken to obtain useful forms must he
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weighed against a system which would evaluate directly the simpler diagrams.
From several points of view, the latter alternative seems desirable, but its
desirability depends essentially on the time necessary to obtain each result,
Perhaps the most satisfactory compromise would be a compilation (probably not
in a computer) of many simpler Feynman diagram results, which would often
include the limits (or whatever) required im a particular case. Other results
could then be obtained by direct use of the computer programs which generated
the results in the compilation.

Feyuman diagram evaluation probably represents the major computational
burden im medern theoretical high-energy physies. To expect that all aspects
of it could be handled by computer is perhaps unjustifiably optimistic. How-
ever, it does seem that a major portiom of the diagram calculations mentioned
in the previous sections could be carried out by the computer programs to be
deseribed in this series of papers. The caleulations will, nevertheless,
probably stretch the programs and the computers on which they are executed
to their limit, and it will, therefore, be desirable to simplify the calecula-
tions wherever possible. In addition, many special classes of calculations
{(e.g., those involving bound states) must be treated manuvally or by further
computer programs to cast them into the form required. Clearly, there is a
great diversity in the types of Feynwan diagrams to be evaluated and in the
uses to which they are put. To attempt to write & single computer program
which systematically 'evaluates' any Feynman diagram would, therefore, be quite
impossible. Rather, it is prudent to develop programs which handle the com—
moner manipulations required, while allowing the basic organization and method
to be determined by the particulars of each calculation. This more flexible
approach is the one which we have adopted; the present series of papers describes

the programs which we have developed Lo perform the various manipulations
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usually encountered in Feynman diagram calculations, by a selection of methods
intended to suit the differing types of results required.

Typically, a caleulation starts from a diagram, as represented by a matrix
element containing integrals over loop momenta with integrands involving traces
of products of gamma matrices arising from fermion lines. The first step is
clearly to perform the necessary traces, yielding en integrand which involves
only dot products of the various internal and external momenta (or, in some
rare cases, totally antisymmetric products of momenta). This simple part of
the calculation may always be carried out by GAMALG without difficulty. It

ie in the evaluation of the momentum space integrals that the main difficulties

‘of Feynman diagram calculations usually lie. Depending on the complication

of the diagram consideved, and the form of the vesults required, a number of
different approaches to the integration can be taken. It turns out that any
one=loop diagram (Lor which there is bubt one momentum integration) car be
integrated exactly in terms of at most 192 dilogarithm or Spence functions
{Liz(x} = fﬂ lEEél:El dt; see Table 2.1) with distinct arguments. The method
works by r:ducing all integrals to those which appear in the calculation of
the general box diagram (and in some cases, the triangle diagram, which requires
only 12 dilogarithms), using the fact that at most four vectors can be inde-
pendent in four dimensions. The-program CYCLOPS, which will be described in
the-ﬁn?;F@ fraralIment of thisseries, should;—therefore, & able to give a
complete analytical result for any ene=loop-diagram. The forms-—ebtained-will,
in general, be very complicated, but easily amenable to numerical evaluation,
or to analytiecal simplification in limicving-esses. MNote that while the ampli-
tude obtained by Integration over the single loop momentum for a one=loop
diagram may be expressed in terms of dilogarithm functions, integration over

the phase space available for outgoing momenta will almost inevitably introduce
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more complicated functions. A simple empirical rule is that each outgoing
momentum integration increases the mazimum complexity of the functions which
appear by incrementing the maximum subscript of the polylogarithm functions

by one. Typically, when the high energy limit is taken for the diagrams, so
that all masses may be neglected, the polylogarithm functions usually degen-
erate into Linfil} and, therefore, zeta functions (see Table 2,1). If dimen-
sional regularization 1s used for the outgoing phase space Integrations, and
all particle masses are taken to be zero from the outset, then the relevant
zeta functions will often appear directly in the expansions of gamma or beta
functions. Non-uniform weightings of the final state phase space (as uvsed,

for example, in the computation of shape parameters) can give rise to functions
more complicated than polylogarithms. J&-should benﬁﬁ&ﬁfed—ﬁutrEh&t{Eertain {
cases of dilogarithm functions weré}gztently Incorporated into the Risch al-

gorithm for indefinite algebralc integratlon which is implemented in HﬁGSYM@;

the systematie dneclusion of higher-order polylogarithms apparently presents

vonsiderable difficulties, however. For diagrams beyond one loop, I know of
no systematic algorithm for complete analytical evaluation of the necessary
Feynman integrals. WNevertheless, every ordinary Feynman diagram which has
ever yielded an analytical result has been expressible in terms of polyloga-
rithm functions (and polynomials). One might suspect that this is simply
because no other form could have been found, but it may also be that for some
yet unknown reason, all Feynman integrals may be reduced to polylogarithm
functions, Az mentioned above, this may he proved at the cns-loop level by
raeduction to box diagram integrals, but analogous methods fail for more com-—
plicated dAlfagrams. Typically, while dilogs appear in one-loop diagrams, two-
loop diapgrams give trilogs. However, when all dimensionful parameters in

results are removed by taking the limit that all masses go to zero (or



Unfinished in 1979
=, P

equivalently, energies go to infinity), the polylog functions always appear
to degenerate into zeta functions. (Low-energy limits sometimes introduce
Ltuf%} as well as Lin{il}, whose analytiecal form is not known except when
n=2,3 (see Table 2.1).)

Most of the methods for obtaining analytical results beyond the one loop
level are entirely useless for diagrams containing massive particle propagators;
they rely on the comparative simplicity of Feynman integrals containing only
massless propagators which cccur when dimensional regularization is used.

The methods alsc typically fail when the number of external momenta exceeds

two or three. In the absence of analytical methods, one must resort to numer-=
ical means. In the cases where this is obligatory, it is probably not parctic-
ularly damaging: the number of Independent parameters (internal masses, dot
products of external momenta, etc.,) Is typlcally sufficiently large that any
analytical form would have been too complicated to provide much illuminacion.
One method for numerical evaluation of Feynman integrals which has apparently
not been tried 1s direct numerical (probably Monte Carlo) integration over

the various cowponents of the loop momenta. This approach is presumably in-
appropriate when dimensional regularization is used, since the random vectors
to be generated must then have n # 4 components. However, other regularization
schemes, such as analytie regularization (in which n is taken to be 4, but

the l,f'p2 in propagators is replaced by lfpznﬁ} or Pauli-Villars regularization
{in whieh l,l’p2 ig replaced by ].n"p2 - lf(pz-hz}} should vield Feymman integrals
which can be done numerically in a direet manner. One disadvantage of the
method is that it is intrinsically not Lorentz covariant: one integrates
explicitly over each component of the loop momenta. However, for the otherwise
numerical caleculations in which such an evaluation would probably be imbedded,

this might be quite satisfactory. Of course, once Lorentz covariance is no
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object, it is entirely unnecessary to evaluate gamma matrix traces algebralc-
ally (as discussed in Section 3); one may just as well choose a particular
representation for the gamma matrices and perform traces by numerical evalu-
ation of matrix products., The major failing of the direct numerical method

is nevertheless its inapplicability to dimensional regularization. The majority
of the higher-order calculations mentioned in the previous sections (especially
in QCD) gives results which depend on the remormalization prescription used

to derive them. It is only comparisons between results which are prescription-
independent and have a physical meaning. Thus, for a set of higher-order
calculations to be useful, all must be done using the same renormalization
prescription., Dimensional regularization with minimal subtraction (or a sub-
traction scheme, such as truncated minimal subtraction ﬁﬁﬁ, derived from this)
appears to gilve the eclesnest results and to provide the greatest potential

for analytical evaluation. Higher-order amalytical calculations done by this
method would, however, be useless if other numeriecal caleulations were performed
using other renormalization schemes,

4 more conventional method for numerical evaluation of Feynman integrals,
which can be used with dimensional regularization, is by Feynman parameteriza-
tion. In this approach, extra scalar integration wvariasblesz (Feynman parvameters)
are introduced into the original momentum space intepgrals, which may then be
simplified to the extent that the loop momentum integrations may be performed,
leaving only the integrations over the Feynman parameters (a few less in number
than the propagators in the diagram) to be done. These multidimensicnal scalar
integrals (over simplicial (i.e., hyper-tetrahedral) regions) are usually very
complicated. In some cases (see below and the next installment) judicious
treatment of the original momentum space form, and of Intermediate stages in

the Feynman parameterization can yield a complete analytical result, but this
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method fails when massive propagators or meny external momenta are present.

In the general case, little can usually be done with the Feynman parameter
integrals except by numerical means. The program VIPER (described in part

two of this serial) takes any momentum space integral, introduces Feynman
parameters, performs all necessary loop momentum integrations and can output
the results in the form of a series of FORTEAN statements suitable for dinput
to a numerical integration program. VIPER can, in principle, perform integrals
over an arbitrary number of loop momenta; in its present implementation, it
easily handles three-=loop integrals (so long as the input forms do not consist
of too large a sum of terms). This is achieved by extensive introduction of
symbolic names for subexpressions, whose values are assigned only in the output
FORTRAN statements.

A sipgnificant fraction (often all or all but one or two) of the integrals
which result from massless diagrams with one or two Independent external mo-
menta can be done directly entirely in terms of beta functions. Theée are
carried out by COBRA, as described in part two of this serial. The hasie
mathod is first to use the identity Py-Py = %—(pi + p% - (pl - pz}z} in numer-
ator terma to cancel factors in the denominator of the integrand. Then, each
loop integration is performed in turn, and if at each stage exactly two denom-
inator factors depend on the particular loop momentum (if only one does, the
integral vanishes), then the integral can be performed immediately in terms
of beta functions. The final expression is a product of many gamma and beta
functions, which are then Taylor expanded about the point n = 4, often reveal-
ing ultraviolet or infrared divergences in the form of poles at n = 4,

For diagrams with a simple (roughly iterative) topological structure,
COBRA can usually give complete results. However, in more complicated diagrams,

a limited number of integrals remaina. Many diagrams leave the same, often
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finite, integrals after the application of COBRA. A table of such residual
integrals, suitably manipulated by a program to account for rerouting or re-
labeling of internal momentum may then often suffice. The integrals may usu-
ally be derived (either for use in a table, or in the course of calculation)

(o & & andad st
by the_ﬂhahQEheu expansion method, which yields analytical (or at least precise
numerical) results. This method, together with the programs CHEBP and CHEBX
which implement it, will be described in part three of this serial. The basis
of the Chebyshef expansion method is the expansion of & massless propagator
as an infinite ('multipole') series in terms of the ggﬂ{; n-dimensional angular

(=r€s Lo gma v

functions (Chebehef polynomials). These functions are orthogonal when inte-
grated over the surface of acb=-er n-dimensional sphere. If only finite in-
tegrals are considered, then all manipulations may be performed in n = 4 di-
mensions. In this case (handled by CHEBP), the expansion is done directly in
the momentum space form of the integral, and the final result is an infinite
sum over the index in the Chebshef expansion, which may usually be dulne simply
in terms of zeta functions (when many momenta appear in a diagram, the result-
ing sums may not be possible in closed form, but a very precise numerical
result is then easy to obtaln). The 4-dimensional Chebyshef polynomials are
suitable for the expansion of the form lf(p-p'}z, while n-dimensional Chebyshel
polymonials (sometimes known as Gegenbausr polynomials) are the relevant ex-
pansion functions for lf[p-p')n-z. However, for divergent integrals, all
manipulations must be done in n # 4 dimensions, and so the n-dimenslonal
Chebyshef polynomials muast be used. Nevertheless, the momentum space propa-
pator usually remaine (except in counterterm diagrﬂﬁs)_ﬂe If{p—p*)z. 1 did
not succeed in finding a simple expansicn of such propagﬁtors in terms of
n-dimensional Chebyshef polynomials. However, it was recently-pointed out

by Chetyrkin and Tkachov that if a Fourier transform is applied to“the momentum
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Qﬁnge form of a diagram, thereby casting it into configuration space, the
s
R
propaﬁapur for a massless particle becomes lf(x—x'}n-z, just as required for

"
an n—diméhﬁinnal Chebshef polynomial expansion. (It is clear that such a
multipule-lika expansion must be possible in configuration space.} In addition
to lf{xux']npz.faﬂturs, the amplitude for a Feynman diagram in configuration
space will typicali?ucantain terms of the form eikx, where k is some combina-
tion of external mumeﬁta. The origir in configuration space must be chosen

to minimize the number of such factors, but when necessary, they may be expanded
in terms of n-dimensional Ghﬁbshef polynomials and spherical Bessel functions
(the procedure ie a simple generalization of the partial wave expansion of

a plane wave in terms of Legendre polynomials (3=dimenszional Chebyshef poly=-
nomials) and spherical Bessel functions familiar im three dimsnsions)}. After
the expansions have been performed, angular integrations serve to remove the
Chebyshef polynomials, leaving simple radial integrations which may be done

in terms of gamma functions, yielding infinite sums. These may usually then

be done analytically, at least for the warious separate terms at each order

in the expansion in powers of (n - 4). The momentum space Chebshef expansion
method suitable for finite integrals is implemented in the program CHEEP.

For divergent integrals, CHERBY first converts the integf&L to conflpuration
space (at present with some assistance from the user)}, and.then applies the
procedure outlined above. In this way, it appears that massless diagrams with
two or less independent external momenta and up to three iuternﬁy loops should
yield to complete analytical evaluation, The simplest caleulatiu&h_after the
U{uui} corrections teo the photon propagator for which the methoeds w;}QHdESLgned,
appears to be of the ﬂ{g?} centribution te B{g) in QCD.

Another method for diagram evaluation which may perhaps be treated in a

later installment of this serial uses generalized hypergecmetric functions
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(otherwise known as Meijer G functions). This technique starts with the
Feynman parametrie representation of a diagram and performs a formal expansion
of the Feynman parametric integrand as a nested power series in the various
Feynman parameters. This expanded form may then be integrated term-by-term,
and the result written as a generalized hypergeometric function. The necessary
infinite sums may often be performed numerically much more easily than would
the corresponding complete integral. In addition, the third definition of
the pelylogarithm functions given in Table 2,1 may allow the generalized hyper-
geometric functions to be written in terms of polylogs by application of sult-
able reduction formulae, although the result seems unlikely to be useful,
Wote that the 192 dilogarithm functions which appear in the general scalar
(one-loop) box diagram may be collected into just one generalized hypergeometric
function.' In many cases the results of diagram calculaticns will depend on
so many parameters (external momentum, masses, forms of couplings, etc.) that
any 'analytical' result would almost inevitably be extremely complicated.
Such results are presimably of little value in the search for patterns in
perturbation series, Nevertheless, there iz still some motivation to obtain
an 'analytical' (albeit probably complicated and perhaps in terms only of
specially=-designed functions), rather than a purely numerical result, since
such a result is more readily portable and may be reused with less effort than
would a purely numerical result or a program designed to obtain it. In this
respect, the semianalytical forms cbtained in terms of generalized hypergen-
metric funetions may be of value,

Many of the integrals arising from diagrams and computed by any of the
mzthods outlined above will, of course, diverge as £ = & = n + 0. These di-
vergences must be canceled by the addition of renormalization counterterms

{and possibly some form of infrared 'counterterms' arising in the factorization
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of infrared divergences). The necessary counterterms are most sasily deter-
mined from the structure of the original diagram from which the integrals were
derived (by shrinking loops to points, ete.), rather than directly from the
integrals themselves. In the methods of intepgration discussed above, the
fundamental objects treated are the momentum space Integrals rather than the
original diagrams. This appreoach is clearly more flexible, since it allows
for manipulation of the amplitudes before integration, and for the possibility
of , say, operator vertices in the original diagram. Moreover, some integrands
may cancel between wvarious diagrams, if suitable internal momentum asslgnments
are made. However, if one is to treat only canonical diagrams, as would be
invelved in about half the calculations outlined in previous sections, then
it may be advantageous to consider the diagrams as such, rather than only the
integrals which arise from them. With this intention, a later installment of
ee Vs whendad to vl
this serist will describe the program DIGEN, whic%meratet the (unevaluated)
matrix elements for all diagrams contributing at a certain order to the tram-
gsition from a specified initial to final state and the program RENOR which
subtracts the necessary counterterms, Almost any Hamiltonian may be used in
DIGEN, which operates by direct application of Wick's theorem to the relevant
terms In the expansion of the time-ordered exponentizl of the Hamiltonian.
The fields in DIGEN may be asslgned any propagators and may carry internal
indices. For various types of group indices, DIGEN will perform the necessary
group traces associated with closed loops. In addition, DIGEN discards dis-
connected diagram=, and attempts to ldentify equivalent diagrams, and therehy
agssigns combinatoric weights, - Hbsea : - . s
bycomparing—the—characteristic pelynomials of thedr—dnedidence patrices—and
the_alphebetized—liote of clemente in—their lncidence—metriees— Yor most

calculations, the use of a computer to genevate the contributing diagrams will
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be entirely unnecessary and probably unwisldy. However, even for some tree
graph calculations (such as the process GG + GGG contributing to large - p
hadron production at G{u:} in QCD), there can be many diagrams, and it is clear
that automatic generation of the diagrams, topether with their combinatoric
and group-theoretic weights, and (when necessary) renormalization counterterms,

will be very useful.
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Table 2.1: Simple Properties of the Polvlogarithm Functions. (Note that
Lin{x) has a branch point at x = 1, and is usually taken to have

an imaginary part for x > 1.)
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3. Gamma Matrix Manipulation and GAMALG

3.1 Introduction and Basic Manipulations

In this section I discuss what is probably the most mundane feature of
Feynman diagram evaluations: the manipulation of Dirac gamma matrices, and
I describe in some detail the package GAMALG that A. E. Terrano and I have
written in MACSYMA to perform these manipulations. Many examples are given,
and the discussion is intended to be sufficiently detailed to provide the
information necessary to make use of most features of GAMALG. The hasie no-
tations, functions and flags in GAMALG ars suommerized in Tables 3.1, 3.2 and
3.3, which also Indicate its basic capabilities. MNote that Sectiom 3.7 gives
a compariszon between CAMALG and some other gamma matrix manipulators available.

It ghould be peointed out that this section contains a number of results on
are

m&-ﬁjn amma matrix wmanipulation that ihhgpparently not well known. Even those who

+ s U]

dm not use computers may, therefore, find some assistance in their manual
calculations below. Most of the particularly powerful results are valid only
in n = 4 dimensions and are summarized dn Table 3.4,

GAMALG presently resides in the MIT-MC computer. Some Infermation on
its use there is given In the Appendix to this section.

The Feyuman amplitude corresponding to fermion lines in a diagram consists
of a product of gamma matrices (represented by G{ ) in GAMAILG). For each
internsl segmznt of the fermion line, aleong which a fermion with mass m carries

2y

momentum p, there is associated a '"propagator factor' 1/(f-m) = {ﬁ+m}ﬁ(p2—m

[= ZD(p,m) in GAMALG notation], where thz 'slashed vecitor' ¢ = T p K and Y,

i

is a vector of Dirac gamma matrices. The emission of a vector boson {e.g.,

a photen) from a fermioa line (represented by a three-node in the graph) gives

a facter ¢, where £ is the polarization vector of the emitied boson. Typically
*

one sums ovel the polarization states of the boson, using E EUEU = Tuu, wlhere
pols
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Tuv is a tensor usually determined by the gauge chosen, and depending on the
metric tensor By the momentum (say, ku} of the boson and sometimes (in axial
gauges) a further vector (say, nu}. In Feynman gauge Tw = Euv (where I have
removed a spurinﬁa (-1) factor from the more usual definition). The gamma
matrices which appeared in the ¢ factors for the emission and absorption of
the boson in this case are constrained to have the same spacetime index, which
must be summed over, so that the relevant gamma matrices may both be written
just as, say, Tm [= AL, in GAMALG notation]. This possibility often results
in great computational simplifications. It is usually necessary to sum over
the polarization states of fermlons appearing in Feynman diagrams=; this oper-
ation corresponds to taking the trace (sometimes called 'spur' and represented
by TE( ) or GT( ) in GAMALG) of the product of gamma matrices representing
the fermion line, with respect to the internal indices of the gamma matrices,

For tree diagram calculations in which no infrared divergences appear,
it ig always entirely sufficient to consider gamma matrices in four spacetime
dimensions (so that the spacetime index p which labels the Tu runs from 0 to
3). This was the case treated by existing gamma matrix manipulators (see
Section 3.7). However, in calculations of loop graphs or of infrared divergent
tree graphs, it ig usually exceedingly convenient to uge the maethod of dimen-
gional regularization (to be discussed further in Section 4.1 of the next
installment), for which one must use pgamms matrices generalized to n spacetime
dimensiong (so that essentially the index p on TP now runs from 0 to n-1).

The algebra of gamma matrices in n spacetime dimensions may be defined

by

{Tu’Tu} = 2 g”u {3.1.1a)
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oo

gu n {3tl .lb)

Tr[l] = 4 {3.1.1c)

Trly. v weey. 1 =0 (k odd). {3.1.1d)
L L Y

One might expect that Tr[l] should be generalized to be some function of n.

A suitable generalization might be Tr[l] = EnHZ

s which is the dimensionality
of the spinor representation of the Lorentz group in n dimensions. (This is
the extrapolation based, as it presumably should be, on the group S0(2d): the
50(2d+1) groups have a somewhat different structure and would give Tr[l] =
2[&-1}}2‘} However, all nonvanishing traces may be reduced by éuc:essive
application of (3.1.1a) and (3.1.1b) to Tr[l] multiplied by some combination
of ascalar (dot) products of vectors. If the gamma matrix trace arose from
an average over the polarization states of an incoming or outgoing fermion

in a diagram, then the average is presumably obtained by dividing the trace
by Tr[l], so that any generalization of Tr[l] should cancel out. However,
when the trace is associated with the sum over polarizations in an internal
fermion loop, Tr[l] will appear in the final result. 1/(n-4) terms arising
from loop momentum integrations can reveal (0(n-4) terms in Tr[l]. Hence, the
results for higher-order Feynman diagrams can depend on the generalization

of Tr[1l]. Often such generalizations are constrained by the preservation of
invariances or by self-conslstency requirements, but this does not appear to
be so for Tr[l]. Therefore, Tr[l] must be fixed by convention; results for
single processes will depend on its walue, but suitable physical comparisons

will be independent of the choice, as mentioned in Section 2.3. GAMALG always

takes Tr[l] = 4.
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A further possible ambiguity in the generalization of the gamma matrices
to n # 4 dimensions concerns traces of products of odd numbers of gamma matri-
ces, which vanish when n = 4, One may be concerned that, for example, when
n = 3, the gamma matrices become the Pauli v mwatrices, and the trace of a
product of three o matrices does not vanish but is rather proporticnal to a
three-dimensional epsilon symbol., In fact, in any odd number of dimensions,
such epsilon symbols appear in traces. Theyv are a direct indication of the
different nature of the rotation groups in even and odd numbers of dimensions
(e.p., "YS" is not distinguished from the identity in S0(2d41)). There are,
therefore, two distinct extrapolations of the gamma matrices, associated with
even and odd numbers of dimensions (the extrapolations coincide for vectors
but differ for spinors). Since we are concerned with extrapolation away from
n =4, we may plausibly choose the "S0(2Zd4d) extrapolation" for which eq. (3.1.1d)
is walid. HNote that the behavior of fermions would be somewhat different in
odd numbers of dimensions (and in the "S0(2d+1) extrapolation"), and for ex-
ample, the Dirac Lagrangisn would apparently not be CPT invariant in the usual
sense [3.1]. GAMALG always sets the trace of an odd number of gamma matrices
to zero.

The traces of products of pamma matrices which appear in diagram caleu-
lations usually contain three basic classes of terms. First, there are 'slashed
vectors', such as P = TUPP. In seme cases it is convenient to perform the
contraction of indices between a gamma matrix and a vector only after the trace
is performed. A typlical case in which this is useful is when the vector in
question is the polarizacion wector for a wvector boson, The second class of
terms is gamma matrices which appesar in a trace uncontracted with a vector
(termed 'uncontracted indices'). These may usually be treated just like slashed

vectors. However, if the eventual contraction is to be done with a gamma
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matrix in another trace, then, at least when n = 4, it is convenient to use
the contraction to combine the traces in which the identical pgamma matrices
appear. For example, Tr[vuﬁ]Tr[Tuﬁ'd?u} can be reduced to E(Tr[ﬁﬁ'dTu] +
Tr[ﬁTuqﬁ']] if n = 4. The third basic class of terms which oeceur in traces
are 'contracted indices'. These are pairs of gamma matrices in a single trace
whose indices are contracted (e.g., the TH in Tr[ﬁTuﬂTu]}' The presence of
contracted indices coming from internal wvector boseon lines in most traces
arising from Feynman diagrams allows considerable simplification in practiecal
gamma matrix manipulations. O0f course, this third class may be considered

as a special case of the second c¢lassg, in which the two contracted indices
appear in the same trace.

In GAMALG, traces are denoted by TR(ﬂls B,y -+4 &

21 k}!

whete in the aii -
slashed vectors are represented by the names of the vectors and gamma matrices

are represented by their indices. For example, Tr[g¢y ﬂvuvudTu] is represented

as TR(p,mu,q,nu,al,q,al). Indices which are contracted must be declared using

CIND to distinguish them from slashed vectors which appear twice in the trace,

Hence the & above must be declared by CIND(al). HNo harm will be done by also
declaring p and v as indices: CIND{mu,nu); they will be treated just like

slashed vectors in the trace, since they appear only once. A product of gamma
matrices whose trace is not taken 1s dencted in GAMALG by G{ul, By wees ak}

where the a, are as for traces. Note that 'list brackets' (i.e., [ and ])

appearing around some of the a; in G or TR will be ignored, so that, for ex-

.Elll'aPJ.E, TR([]J,UIU,EI]: [nuqu“_t_j_'gﬁ_l}' Eiqu]’_vél?l:‘.nt to 'j_"R{].J.l]-n_-l_-l__l1:.[11-_'_1_1_1 _Iq“-ﬁ}'

It may be convenlent to place some of the iy in lists, sinz

be given names and manipulated using standard MACSYMA functions., For example,



Unfinished in 1979
-H‘IE‘-

The output for traces from GAMALG is in the form of dot products of vec-
tors (e.g., p*q, represented by D(p,q)), components of vectors (e.g., L
represented by D(p,mu)) and metric tensors (e.g., guv’ represented by D{mu,nu)).
In all cases one may consider that the 'pseudofunction' D(a,b) represents the
dot product of the two wvectors a and b, since, if either ﬁﬂl‘ b is an '"index', _—
it may be considered to be the basis vector along the direction specified by
the 'index'. The commutativity of dot products is essential for the simpli-
fication of expressions involving them. It is, however, comvenient not to
use this commutativity directly, but rather siwmply to adopt a standard form
for dot products. We choose to standardize all det products by writing the
vectors appearing in the pseudofunction D in the alphabetical order of the
symbols which represent them. Hence, unless the flag DOF : FALSE, the argu-
ments of all D's will be alphabetized when they are generated, so that, for
example, both D(p.q) and D{a,p) will become D{(p,q). In addition, sums of
vectors, such as p + k/2 or x?\E 4+ q may appear as arguments c¢f D's. Scalars e
such as x in this example must be declared as such using SCALS{xl,xz,...xk}
so that they are not confused with vectors., (The scalar property may be re-
moved from a set of variables by doing HNSCALS(xl,xz,...xj}.) Dot products
involving sums of vectors will be expanded out automaticslly when, for example,
a trace is performed, unless the flag DEF : FALSE. An expression containing
dot products of sums of vectors may in any case be expanded by doing DFLX(exp).

For example
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(C2) DiALtAZrAIHA4)
(D) ODCAZ 4+ ALy A4 4 AS)D
(G3) DFTIXCEYG
(03 D{AZy A4) 4+ DOAZy A3 + DOALe, A4 + DALy AT

(C4) EXPID(PHR/2 G-KA2042/0%DCP QP IRD(K QB0 7

2 D(Ky @) DIFs Q + P} K K
(D43 - - == 4+ DP + - O - =)
5 2 2
(C5) DFIXCEXP)}
DKy K)
DEKy @) = =meemm-
2 D(Ks Q) (D(PFs G) + D(Ps F)) 2 MKy P
(D) === e e e t D(Fy Q) + ————mmmmmmmmmm——e = e
g 2 u
(Cé) SCALS(X1sX2)4
(Ié) CX1r X231

(C7) EXP2IDIOHXINP XOkP-K/2) ¥

K
(o7 D + X1 Pr X2 P = =}
2

(CB) DFIX(E)E

DeKs PO DUKr @)
(D8) X2 D{Ps O) + X1 (X2 DEPs P) = —=vmmmw ) = e

2 2

The number of terms generated directly at intermediate stages in performing,

for example, a trace, will be smaller if the dot products sre not expanded

out until the end of the calculation. This procedure is applied if BTR, rather

than TR, is used for a trace. MNote that the D representation of dot products

i also weed—im-VEPER—(rer—Strtionia by B pogems i he reot 4 his  serie,
It is often convenient to replace dot products in a result by scalar

(perhaps Mandelstam) variables, for example, D{p,q) <+ sf2. Such substitutions

are defined by doing, e.g., KINDEF(D{p,q) = s/2, D(p,pp) = t/2-mA2,...). In

this case {unless the flag DSIM : FALSE)}, whenever D{p.q) is generated, it
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will be replaced by s/2. 1If certain dot products are defined by KINDEF to

be zero, then the number of intermediate terms fn the celculation of, for
example, a trace, may be smaller, since various dot products will disappear
when they are expanded. Replacements for dot products may be removed by doing
UNKINDEF (dotpl,....dotpk). For example, UNKINDEF(D(p,q)) will remove any
substitutions for D(p,q) previously declared. KINS is the list of substitu-

tions declared by KINDEF. An example of the use of KINDEF is

(C2) KINDEF(D(FsQ)=8/2¢0C(FeFI=M"2)F

g 2
(n2) CE(Py B) = =5 DCPs BY = § 3
2
(C3) EXPID(Py@)XD(FyF)=D(0s0)"3/D(Fs0) 5
3
D (@ Q)
(D3) D{Ps P} D(Fy Q) = mmmmm———
DiEr Q)
(C4) DFIX(X)3
2 3
M § 2D (Qr @
(n4) e =
2 5
(C5) TR(PrQ)#
(n5) 2 8

Further examples may be found in the calculations given in Section 3.8,

In most Feynman diagram calculations, it is convenient to consider only
complete, covariant vectors rather than thelr componenis. However, GAMALG
does include a facility for assigning particular components to vectors. The

command CDMPDEF(veclm[veciu,vncl ,VPE]H,HEEIE], indl=val, vec=...., vecl=....,

1
.-.-) gsgigns components to the vectors vecl, ete., and gives definite values
to indices (e.g., ¢ set to 3). HNONCOV(exp) simplifies an expression exp in

terms of dot produets using, where possible, the components defined by COMFDEF.

The component assignments defined by COMFDEF are in the list COMPS; they may
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be removed using UNCOMPDEF. An example of the use of COMPDEF and NONCOV is

LCLY COMPDEF(Q=LCEsQrQr Qs P=LXRE/ 2 0 QrXEE/ 2o HUSOrHU=T ) 5

_ £ X E X
(D2) R = CEv O Os Oy P = [===y Oy Oy ===1y MU = Oy NU = 31
2 2
(C3) NONCOVIDCPsPI4DIPyG) )6
2
E X
(D3) ————
2
(C4) CINDCHMUpNU)#
(D4 EHUs #UZ

LO5) TROFrMUrQeNUD §
(D5 - 4 DOHUr HUY DOPy Q) 4+ 4 DOHUy PY DUNUr, O + 4 DoMUr QY DONUS P

(L&Y NONCOVOE)
(D&) 2 E X

Hote that the metric is usually assumed to have slgnature (+---=), but may be
changed by altering METLIS. Of course, all manipulations performed by HONCOV
are valid only when n = 4,

When n = 4 (and to some extent when n # &), GAMALG can perform traces
involving Vs (G5), as discussed in Section 3.5. These often result in anci=-
symmetric products er epsilon symbols (sometimes known as Levi-Civita symbols
or alternating tensors) of four vectors, which are represented in GAMALG by

My Mg M3 Wy
EPS[pl,pz,pB,pa} = Euluzuguﬁpl P, Py P, . Unless the flag EPSOF : FALSE, all
epsilon symbols penerated by GAMALG will be put into the standard form in which
their arguments appear in alphabetical order. This operation introduces a
factor of the signature of the permutatlon required to pget from the initial
to the final ordering of the arguments. If two or more arpguments of an epsilon
sumbol generated are identical then it will automatically be set to zero, as
required by the antisymmetry of the epsilon symbol, If the arguments of an

epsilon symbol generated are sums of vectors, then (unless EPSEF : FALSE) it

will be expanded out as a sum of epsllon symbols. This expansion may be performed
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on the epsilon symbols in an expression by doing EPSFIY(exp). For example,

(C2) EPS(AZ2rALlrA3rASD S

{02y EFS{az2y Alr A3r A4)

(C3) EFSFIXC(X)

{03 - EPS{Aaly AZs AZr A4)
(C4) EFPS(PHR+sQ+R/29FFsGF-F)#

(D4) EPS(Q + P+ O + zi PPy QF - P}

(CS5) EPSFIX(X)s
EFS{Kes FFr Ur QF) - EFS{(Kr Fr FFr Q)
(D5) = EFS(Fy PPr Or OPF) § = e

an untraced product of gamma matrices is represented in GAMALG by G{al,
az,....ak}. Of course, this product is not simply commutative, and the problem
of converting it to a canonical form is non-trivial. Some partial solutions
are discussed in Section 3.4. If a term in the product (i.e., an argument

of the G) consists of a sum of slashed vectors, then it may be expanded out

using GFIX. For example,

(C2) EXPIGIFHRA 2y MU (I-RA4c P+ F
K R

(D2 GCF + ~» Mlir G - =» @ + P
2 4

(C3) GFIX(X)#
G{LCFy MUy Rr QA1) GI(CFy HU» Rr FI}
(D) = s s = + GICPr KUy Gy Q1) 4+ G(LPy HUs G» P21

G(LKr MUy Ry D) BILKy MU, Re FI) G{CKy MUy Qs G GI{LEr HUs Qs P31}
e e S S S ek, S e B S ey ey 1y B .|. ..................... ..|. o e e S e O 2 . 55 i =
g a 2 2
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Clearly the GFIX expansion of a G product of any complexity will generate a

very large number of terms. GFIX should, thersfore, be used sparingly.
Another expansion performed internally by GAMALC on some pccasionsz is

of p + m or 1/(f-m) terms (represented by ZN(p,m) and ZD(p,m), respectively)

in gamma matrix products or traces. The command ZFIX(exp) will expand all

such terms in exp, setting to zero traces (represented by GT'zs) of odd numbers

of gamma matrices.

3.2 Contracting Tensors and Combining Traces

GAMALG can manipulate tensors and performs contractions of indices in
n # 4 dimensions. The representation of tensors in GAMALG was described ahove.
For example, qzquu - quqv is represented by D(g,q)* D(mu,nu) - ?{q,mu} * D{g,nu).
The function CON(exp) contracts out any free pairs of indices Iin exp which

were declared using CIND. For example,

(C2) CINDC(MUsNUrALDF

(o) CAL» MUr MUD
(C3) A1ID(R-QIRDMUyNUI-DORrMUYED G » MU D #
(03 DeMlly HUY DOQe G — DOOr MUY DGy HUD
(CA} CONCALTZ2)F
2 2
(I ) M D Qe @) = 0 (Or O)

(CS) AZIDCHU»AL YERD{P4R AL FD{MUrP=K) #
s DiMUr ALY DOP + Kr ALY + DiMEr F — K}

(&) COMOALRAZ)F
(DAY DiNUy P 4+ K) DOQy G + DONUy P - K DORe GF ~ D(HUs G) DOP + Ky O

= Di{MUs Q) D(F = K» )

CON will al: wwiorm contractions on expressicns inwvolving untraced products

of pamma matrices (represented hy G(ul,a?,....,ak}), as in
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(C7) GLIGEP s MUSGeNUY$
{07y GiPy MUy O, MU
(CHY COM{ALRGL)Y;
(ned GOPr My B¢ HU) DiBs ©) - B(P, Br Or Q)

In four dimensions (n = 4), there 1s a particularly useful set of rela-
tions which allows products of gamma matrix traces to be combined Iato single
traces., I shall denote an arbltrary product (string) of gamma matrices by &
and products of even and odd numbers of gamma matrices {(not cnuntin;nzﬁ} by
E and 0, respectively. Then two traces containing indices contracted between

them (as from part or all of a vector boson polarization sum)} can be combined

into a single trace by using the identity [3.2, 3.3]

Tr[Tuﬂl]Tr[Tuﬂz] 2 Tr[[ﬂl+(Dl}R}DE]

Z{Triﬂlﬂz] + Tr[cul}RDE]}l (3.2.1)

2 Tr[0, (0,+(0,) Y,

where {S}R iz the reversal of the string & (product of factors io reverse order).
The result (3.1) is proved by the methods used to derive the Chisholm Identl-
ties described in Section 3.4 and ia not readily generalizable to n # 4 diman-
glons. Of course, if the odd strings in (3.2.1) were instead even strings,

then the traces would wanish. Results when more than one index is contracted
between the traces may bhe obtained easily as corollaries to (3.2.1). The
relation (3.2.1) is applied to expressions containing products cof G's by doing

COTRE(exp). For example,
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(C2) NSET(4)4
DIHENSIONS = 4
(02) 4

(C3) CINDOMULNUYG
(D3} CHUy HUI

(C4) GIMUP+R e NUsQIRGIHUSRY §
(D4 GiMUr P + Kr MUy GY B(HU, R

(C5) COTR{X)§
(03 2 (BT(Qv NUs P + Ke R} + BT(P + Kr HU: Gr R

The GT's, rather than G's in the result signify that the simplifications hold
only for traces. Note that any G's or GT's in an expression are converted
to TR's and evaluated by doing CGT(exp).
In traces, there often appear terms of the form ¢ + m (where m is implic-
itly multiplied by the 4 x 4 identity matrix, rather than by gamms matrices),
usually arising from massive spinh;H%-fermion propagators, and reprasented bailst
in GAMALG by ZN(p,m}. Usually, the $# and m must be treated separately, and
the trace in which they occur decomposed into a sum of other traces, in which
only one of the § or m appears. Such expansions are carried out by ZFIX,
However, in n = 4 dimensions, there are several manipulations for which terms

of the form ¢ + m may be treated as a unit. For example, if Qi denotes a

product of gamma matrices containing ¢ + m terms, then [2.4]
Te[y,0,1rly 0,1 = Tr((Q;+(0,) ) (@451, (3.2.2)

where 0, denotes the product 0, with the sign of each in term reversed (so

i
that ¢ + m + ¢ - m).

i

The relations (3.2.1) and (3,2.2) are particularly couvenient because
they aveid the necessity for explicit contraction of indices in the (usvally

langthy) expressions in terms of dot products which result from performing
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each trace individually. Another set of relations also exists for combining

traces in n = 4 dimensions containing just one identical slashed vector [3.3]:
LI
Te[$0, ]Te[£0,] = Tr[(0;+(0;) ) (p70,+80,¢) 1. (3.2.3)

This may be proved trivially using the result (3.3.4a). The relation (3.2.1)
may be considered a special case of (3.2.3), obtained by taking p to be a unit
vector lying successively along each of the four coordinate axes, and summing
= =20

the contributions (using the result (3.3.6a) TuD The identity

2" 2

(3.2.3) as such does not, however, appear to be particularly useful and has

not been implemented in GAMALG., In most cases, its application would serve

&dmply Co complicate results. ) N
The identity (3.2.1) is for a product of two traces sharing a contracted

index. A similar relation holds in n = 4 dimensions for the product of a trace

and a string of untraced gamma matrices [3.5]:
H -
¥ SlTr[TuEZI = 2(E,+(E,) )8, . (3.2.4)

Multiple applications of this result may be performed by an algorithm [3.5]
analogous to the one devised by Kahane [3.6] for simplifying entirely untraced
products of gamma matrices. I have, however, not had occasicn to use eq. (3.2.4),
and it has presently not been implemented in GAMALG.

When n = 4, the function COMN will also perform contractions involving

epsilon symbola. An example of this is
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(C2) MBET(4)%
DIMENSIONS = 4
(C3) CINDOMUL»MUZyHUZ HU4) T
(D3} CHLYG Yy KO3, HUZ2y MULD
(C4y D(HUM +MU2IREPS(PLMUL+ P2, U2 §
(D4} DOHULs MU2)Y EPS(FP1y HUL: P2: HU2)
(CS5) CONCXEY R
(N 0
(CHD EPS{FLrMULsF2yMUZ) 2EPS(PI HU2 s HU1L P4 )}
(D& EPS(F1y MULes P2y MU2) EPS(PZs MUZ2» MULs P4
(C7) CONCEZ)rFACTORG
(O7) = 2 (D{Fly F3) DiF2y P4) - D(Ply P4) DIP2, F3ry
(Ca) EPEEHUIsHUErHHErHU4]#EFS(HU1rHUEsHUE-HU#}i
(Dl EPS(MULY MU2y MUZ» MU4) EPSCHULs MUZ, MUD, (D)
(CF) COMIRDG
(nw) 24

Contractions involving epsilon symbols are performed by first comnverting them

to traces using

£ a a ——-T (4.4 ], (3.2.5)
MUl 1 92 f3 8 1 2 3

where the ai may be hasis vectors or 'indices', and then combining the traces
containing contracted indices by application of the identity (3.2). The final
answer is obtained by performing the resulting traces. In Minkowski spacetime,
the elements of the raised and lowered-index epsilon symbols differ by a factor
(-1) (the product of the diagonal elements of the metric tensor; sce e.g.,
[3.7]). Unless the flag EUCLID : TRUE, GAMALG will, therefore, automatically
insert a factor (-1) for each contracted pair of epsilon symbolz. The question
of whether any remaining epsilon symbol is upper or lower is left to the users'
interpretation.

L]

Products of traces in n = 4 dimensions which contailn Yo MAY be combined

by using the relation [3.3]
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Tr[TEEl]Tr[YEEE] = 2 Tr[EE{EI+(E1}R}] - Tr{El]Tr[Eg], (3.2.6)

which is alsc applied by COTE and may be proved from the result [3,3, 3.5]
1
E + ER 2 {Tr[E] + TSTr[TSE]}' (3.2.7)

If El and E2 do not share contracted indices, then the traces on the left-hand
gide of (3.2.6) cannot be combined using (3.2.1), and each will invelve epsilon
symbols, However, the product of any two epsilon symbols can alwavs be reduced
to dot products, since the product of two pseudotensors must be expressible
in terms of ordinary tensors (and hence the metric tensor). Thg necessary
reduction of epsilon symbol products is carried out by CON using the special
case of (3.2.6)4 éggfe, as always, the Minkowski space sign):

‘iJll-IEII3I-!E} VoV VLY

1727374
(Euluzuauﬁal a, az.a, J(e {b1)u1(hE}uzihﬂ)v3(bﬁ}ua]

n

1
T Tr[T5d1i2d3é&]Tr[?5H1E2H3Ha]

1
= - Tz (2 Tr[¥, 666, (4 4 d 4, +4, 4 4,4.)]

- Tr(# d A d, 1T (8 6,68, 1) (3.2.8)

-- Det{ai.hj}.
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3,3 Evaluation of Traces

From the definitions (3.1.1), one may formally write down a recursion

relation for the trace of k gamma matrices (e.g., [3.8, 3.9])

k
Tr[&lﬁz...ﬁk] = E

Jea .
1 (1)~ (a; aj}Tr[iz...dj_ldj+l...ﬁk] (k even)

=0 (k odd). (3.3.1)
The recursion may be carried out, to obtain

Trid, d,...4.1]

(3.3.2)
= E E. . . (a, »a_)(a, *a, )...(a va.)
pairs izrf B Ty iy i, feer t
where €y i ig the rank-k totally antisymmetric tensor., This form 1z sim-
1" "7k
ilar to a determinant and is known as a Pfaffian [3.10]. When no cancellations

(k-1)
oceur, eqs, (3.3.1) and (3.3.2) yield &!! terms for the trace of a product of

k gamma matrices

L —

f'

If all the wvectors a, are distinct, then there

dimensionality of spacetine i

iz no choice but to use (3.3.1) or (3.3.2). However, if some of the vectors

a; are identical, then use of the result #4 = a+a = 5 will simplify traces,
particularly if a-a is specified to vanish by KINDEF. One could scan a trace
for ddentical vectors and then tailer the recursion (3.3.1) so that they would
meet. However, it turns out to be more efficient in GAMALG to use the standard

form (3.3.1) bat to check at each level of recursion for adjacent identical

vectors im the traces and to remove them If present, yielding traces shorter
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by two gamma matrices. It is possible (using the properties of Ffaffians)

to derive a formula anzlegous te eq. {3.3.1) but which makes use of any iden-
tical vectors in the trace [3.10]. HNevertheless, the simple recursive method
appears to be better in practice. (Note that in GAMALG, setting the flag
PLATU : TRUE will cause templates to he used for the evaluation of all traces
up to length 8. Since with this method, no simplifications occur with iden-
tical vectors, it is generally less efficient than the recursive method.)

For traces of length less than & containing no contracted indices, GAMALG uses
the special cases of (3.3.2)

Tr[#IJE] = 4(a )

1792
Tr[#lizigjq] = h!{al-aEJ(aB'an ) (3.3.3)
- (al-aajfaz'a&) + (al'aﬁ}{az*aS}].

In n = 4 dimensions, there exist reduction formulae which allow identical

vectors in a trace to be eliminated (as in Section 3.2, E and 0 denote products

an adk
of even and odd nuwbers of gamma matrices‘[not counting [¥ [y Tespectively) [3.3,

3.11]:
$0p = -p%0, + & BITrIPO,] + vgTrly p051) (3.3.4a)
BEP = “‘PET’-R + ;— v T ldy Bl (3.3.4b)

where (again as in Section 3.2}, &, is the reversal of the stxing 5. The

R

results (3.3.4) are proved by methcds analogous to those used in deriving the
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Chisholm identities discussed below (and which are in some forms special cases
of (3.3.4)) and cannot be generalized readily toe n # 4 dimensions. In trace
calculations, eq, (3.3,4) is rarely helpful, although in some cases, GAMALG
may inveke (3.3.4b).

In most traces encountered in praclice, some fraction of the elements
of the trace are pairs of gamma matrices whose indices are contracted together.
The presence of such elements allows traces to be evaluated with far less terms

=y }

than thékhil of eqs. (3.3.1) and (3.3.2). 1In four dimensions (n = 4) there
exist many elegant methods for making optimal use of contracted indices, Awaw
from four dimensions, such methods fail, terms proliferate and one must appar-
ently resort to less elegant algorithms.

The basic strategy for evaluwating traces with contracted indices is to

eliminate the indices by using relations of the form
i
THST = f(5), (3.3.5)

where S represents a product of gamma matrices, and £(S) is some sum of reor-
derings of 5. In four dimensions, contracted indices may be reduced ocut using

the "Chishelm" identities [3.2, 3.3, 3.10, 3.11, 3.12]

TPUT“ =-20 (3.3.6a)

.I'] il .,
v B = Tr[B] - ygTrly k]

(3.3.6b)

2{Tr[E] - E - EH}

T“{GTE}T” = 2{(y 0) + (Opv )}, (3.3.6¢c)
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where, as always, 0 denotes an odd and E an even string of gamma matrices,
and R signifies reversal. 1In addition, as for previous similar relations,
Y, may appear amy number of times in any of the products and without affecting
the counting of their length. {75 may be written as the product of four dis-
tinet gamma matrices and, therefore, behaves as an even string.) The enly
exception to this rule is when the string consists solely of s in which case
the form (3.3.6b), rather than (3.3.6c) must be used., GAMALG reduces even
strings according to the third form (3.3.6c) of the even string Chisholm iden-
tity. The relations (3.3.6a) and (3.3.6c), and some corollaries to them, are
summarized in the Kahane algorithm [3.6]. This algorithm is used by the CRUNCH
function (see Section 3.4) in GAMALG whenever possible, However, the Kahane
algorithm is designed for products of gawma matrices, not their traces. It,
therefore, does not make use of the cyclic property of traces {Tr[iléz...ﬁk] -
Trliz...ikil]}. For this reason (unless WAHAF : TRUE) GAMALG simply uses
directly the Chisholm identities (3.3.6a) and (3.3.6c) for traces in four
dimensions.

The proof of the Chisholm identities is interesting and reveals the reason
that no such similar identities hold in n # 4 dimensions. The methods used
may also be employed in the derivation of most of the other four-dimensicnal
gamma matrix relations summarized in Table 3.,1. I know of Lhree proofs b f}r
the Chisholm identities [(3.2, 3.12), 3.3, 3.10]; all are ultimately equivalent
but are superficially rather different. Here I follow the method given in
Refs. [3.2, 3.6, 3.12]). The other two proofs are in terms of Pfaffians [3.10]
and by decomposition of the gamma matrices to Pauli spin matrices [3.31. The
firat form of (3.3.6b) is also proved In [3.13] as an exanple of the reduction
of a "V product”™. The relation (3.3.6c) for even strings may be derived triv-

ially by use of the anticommutation relations (3.1.1a) and the result (3.3.6a)
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for odd strings. I shall, therefore, discuss only the proof of (3.3.6a).
The basis for the proof I shall discuss [3.1, 3.4, 3.8] is the representation
of any product 5 of gamma matrices in n dimensions in terms of the elements
of the Clifford algebra with 2t components {(strictly for the "SD(ZJJ extrapo- —
lation") in n classes given by [3.9, 3.10]
i

r= T[u]T -

(3.3.7)
My “1]=

where [ ] symbolizes antisvmmetrization. In four dimensions=, these classes

of elements are gimply

r=1{1, Ty» a }. : (3.3.8)

po? Y5¥y2 Yg

Any string S may then be expanded in the form (Ha I are orth n the wme tha
T[rip :&Jﬁ)

i
s=1xT, (3.3.9)
where the sum runs over all 2" elements of the Clifford algekra, but by Lorentz
invariance, all the elements in each class may Le treated ddeatfczlly in our
later manipulations, and sc ocne may consider the index i to label the n classes

of elements rather than the individual 2" elements of the Clifford algebra.

We wish to consider
u N i u .
= AY T . 3.3.10
TpST X Tl Y ( )

Elementary combinatorics suffice fo show that
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v, o0 = et = (nteeanr?,
go that in n = & dimensions

a, = {4, -2, 0, 2, -4},

Unfinished in 1979

(3.3.11)

(3.3.12)

as usual., The expansion of any odd string will involve only the I'" with i

odd, and we, therefore, need consider only these.

charge conjugation)
-1 T
B E
BTP {Tu} ’

where T denotes transpose, one sees that

it = +0ht = ()T
it - -0hT e,
where
BspL = (SR}T,
so that
0, = a?r] ) h§i+1r21+1,

Defining (analogous to

(3.3.13)

(3.3.14)

(3.3.13)

(3.3.16)
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where the li are the expansion coefficlents for the odd string 0. It is now
clear that in n = 4 dimensions, Yuﬂv” can be written in terms of GH’ ag in
(3.3.6a). However, in n # 4 dimensions, it does not appear possible to obtain
relations analogous to the Chisholm identicy (3.3.6a) which expresses TMDYD

as a sum of rearrangements of 0 whose number does not increase as the length

of 0 increases. Thie is true even in 4 dimensions for products of the form

o se"Y (For which the a

o { in eq. (3.3.12) become {12, 0, -4, 0, 12}). The

Chisholm identity (3.3.6a), therefore, appears to be a fortultous accident,
In general, THSTH could be a sum of k rearrangements of &, where k iz the
length of 5, although, in faet, it 1s easy to show that only k-1 rearrangements

need appear, GAMALG uses the relations (e.g., [3.14])
o
YY =n

Tmﬁlvq n {E—H}il

o

¥ ﬁliZT {n“z}dlaz + Eézﬁl

o
= 4{&1*32} + (n—%}ﬁléz
(3.3.17)

0
Yolhodsy = ~2dqd,dy - (n-4)d dd,
e L i
Yok Eohad Aoy = 20k d 8, 4y ~ A4 dadode - 4

4 A4 A d

= fn—ﬁ]élﬁzﬂ3ﬁaﬂ5.
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Note that we have no proof that the reductions given here are the shortest
possible. When n ¢ 4, GAMALG first performs the reductions (3.3.17) with
respect to the closest pailr of the coantracted indices in the trace and then
repeats the procedure for each of the resulting sum of shorter traces. If
a pair of contracted indices is separated by more than five slashed vectors,
then when n # 4 GAMALG simply treats the indices as slashed vectors and then
uses eq. (3.3.1), until the indices become sufficiently close to apply eq.
(3.3.17).

We now give some examples of trace evaluations in CAMALG., First we de-

clare the indices u,v to be contracted

(C2) CIMND(HUsMNU»&L s BEYSR
2y CEEr Alr MUr MU

We bepin with some sgimple traces (any list brackets in TR arguments are ignored}):

(C3) TRIP«Q)F
(D32 4 LOFy @)

(Ca4) TRIMU«FerMU2QIF
{rq) (8 - 4 Ny D(Pr @)

(C5) TRICHMUsPIeMULQ)5
(D5 (8 = 4 N} NPy @)

(LAY TR(MUsNUsFrQeNUsRetlUeF) s
2
(D&) (=4 KN 4 24 N - 32 DiPy P} Dd{Ge RY + (32 - 14 Ny D{Prs @) D{(P+ R}

(C7)Y TROHUsFrGrALyPeMUyGrALrQeFerliridlid §
3 2
(n7) (=4 N + 24 N - 48 N + 32 I{Py PY TiPy GY N(Os 0}

(CE) TROMU» NUyAL yMU» BE p NUs ALy BE) §

4 3 @
- 4N 4+ 40 H - PEN f 64N

L0}
Recall that W is the dimensionality of spacetime assumed., HNote that even
indices declared by CIND will not be coatracted if they are unpaired. B8o,

for example:
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{C?) TROMU«FrOQsnNU#

(09) 4 D(HUy NU) DCPs @) + 4 DCMUs P) DONUr O) - 4 DCHUs Q) DUNUy P)

This can be contracted with the metric tensor by deoing

(CLO)y COM(E&D(HUWNHUY )3
(niod 4 W DOPy @)

How we let the wector p be equal to k 4+ L:

EV(XP=RK+LI§
4 DEL + Ky Q) N

and then expand the dot products

(C12) DFIXCEDF
(niz) 4 (D(L» @) + D(Ks @23 H

The last four steps could have been done directly as follows:

(C13) TROMUrK+LyQeMLiY§
(R13) (4 DiLy @) + 4 BiKe Q)2 W

Just for illustration, we now do a long trace:

(014 TROMUrALrPLeP2eNU MU P2yPEsALsPI HUsPIF1sP2) 5
= 3 2
(D14) ((—~ 4 N + B0 H -~ 41& W ¥+ &72) DiPly FP1) TiPLs P2Y D(FZ2y P2

2 3
+ (- 32N 4 254 M - 512 D (1. P21) DIPIy P3)

2 2
- 32 M + 2556 N - S12) D(PIs P1) D(P1ly P2} D (PZ: PI)

3 2
F -8B N + 112 N = 4146 M + 448y Di{F1, P1) D(PLy PI) DOF2s P2)

2 2
F (A M - 512 W + 1024) D (P1s P2) D(PLe PE)) DEP2y PI}

2 2 2
+ (16 M - 224 N + 895 W - 1152) D(PL, P2y D (F1ls P3) DIPZy F2)

The examples above were all done in n-dimensional space, If instead,

one requires only traces in four dimenslons, GAMALE can he restructured slightly
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g0 as to be more efficient for these by doing

(C2)y WSETC(a)®
DIHEMSIONG = 4

First, we redo a trace gilven above in n dimensions.

(CE) TROMUsHUsP O rNUsReHUSFI &
(D3I - 32 D(Fs Q) DIFr R

Az an illustration of the internal workings of GAMALG, we now repeat another

trace done above in n dimensions but now set the flag BORED : TRUE:

(CS) TROMUsALyFIsP2oNUyHUsPEyPIsALsFLyNUYFPErPLFP2) 5

ENTERING TRO WITH [HUr ALe Pir F2s NUr MUy P2¢ FP3e Ale Pls MUy FP3s Pile P2
EHTERING TR WHTH - LtP2r—Pir Al Mibr #2v F3v &Ly PLeNUy B3 Fis F21
ENTERING TRO WITH L[F3» P2y MUy Fle MUr Fir Pils Py Fdr FiL1

ENTERING TRO WITH C[Ply P3r Plr F2r P2r Fle F3r F231

ENTERING TRO WITH CP1s P3s Pls Fls. P3:, P21

EXITING TRO WITH 1 TERMS. 39 FLOCKS CORE FREE. TIME = BS0 MEEL
EXITING TRO WITH 1 TERME. 2% BLOCKS CORE FREE. TIME = BB1 MSED
EXITING TRO WITH 1 TERME. 39 BLOCKS CORE FREE. TIME = 914 MGSEC

ENTERING TRO WITH LNUr ALs Piv P2y P2y FP3r ALy Pls NUr P3r PLs P21
ENTERIMG TRO WITH CP2r Pis P3r &Ly Pls F2: P3s P3s ALs P13
ENTERING TRO WITH C[P2y P2s Plr F3s Fls F2y Plr P31

ENTERING TRO WITH CFly P3» FPilr F2¢ Fls P31

EXITING TRO WITH 2 TERWE., 39 BLOCKS CORE FREE. TIME = 2183 MSED
EXITING TRO WITH 1 TERME. 39 BLOCKS CORE FREE. TIME = 23244 HMSEC
EXITING TRO WITH 1 TERMS. 39 BLOCKS CORE FREE. TIME = 2314 MSEC
EXITING TRO WITH 1 TERME., 39 BLOCKE CORE FREE. TIHE = 2301 MBEC
EXITIMNG TR® WITH 2 TERMS. 39 BLOCKS CORE FREE. TIME = Z4H3 MSEC
EXITING TRO WITH 3 TERMS., 2% BLOCKE CORE FREE. TIME = 2519 MSEC
EXITING TRO WITH 3 TERMS. 39 BLOCKS CORE FREE. TIME = 2551 MSEC

EMTERING TRO WITH CP3y Ply P2y P2y Fly F2y Fle P3]
ENTERIHG TRO WITH [P3Is Ply Pis F2y FPls P33

EYITIMG TRO WITH 1 TERMS. 29 BLOCKS CORE FREE. TIME
EXITIMNG TEO WITH 1 TERMS. 3% BLOCKRS CUORE FREE. TIHE
(DS) 32 D{P1y PL) DIPL1y P2) DUOPYy P2) DEPIe PI)

2771 MWBEC
2805 MGEC

]

+ &4 Di{Fly P1} DIPles P3) DIFP2y F2) Di{FZy F3)

2
- 128 D{FPlr F2) D {(Pir P3) DiP2s P

(CAY TINE (X)i

TIKE or CTOTALTIMHE, GETIHE] in meecs.:
(s ) LL292%y SBE1]

- . .
Note that the times gquoted include garbage collection and can vary considerably

according to the lecad on the computer, and dt#dﬂﬂ“ﬂilj b2 “*ffﬁkﬁaiﬂj ftﬂfif
ba ey dnelopmgnks  in he  GAMALG  Gile,

®ile tu perislic anbomatic cement q did  USP feees stome
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Several shortened versions for combinations of gamma matrices commonly
appearing in diagram calculations may be used in GAMALG (for G and GT as well

as TR). Fermion propagators may be written as
IN(p,m) = p + m
2 2
ZD(p,m) = 1/(f-m) = (f+m)/(p"-m),

where, 1f the mass m is omitted, it will be assumed to be zerna. (If in all
cases, m is to be assumed zero, then ZERM : TRUE will make GAMALG more effi-
cient.) Some examples of the use of ZN and ZD are (note that TR RATSIMPs

but does not FACTOR the expression it returns)

(C2) CIMDCHMUsMNUD P
(D) CHUr HLII

(03 TROZECP M) pZDCReMPY ) #
4 DiPe O + 4 H MP

(03) et e e i e e e

2 2 2 2

(O{Pr PY = W ) D{Gy Q) = HP LiPr P} + H HP

(C4) FACTOR (X)¥
4 (D(Pr Q) + H HP)

(D4) e e
(DCPs PY = ¥ ) (I(@s @) = WP )

(CS) TREZNGF M) s MU ZNCOr MY s NUs ZNCPP o ) 1 MUY ZNCRS M) 1 NUD §

(D5} (4 Ha ~ 40 N + &4) D(Pr PP) - 4 HE HE + 24 Hz N - 16 Hz} p(ar @)

2 2 2 2 2
+ 4i- 8N + 48 N - &4 DiPr Q) + B H N - 32H N+ 32 H ) DPPr G

2 2 2 2 2 2 2 2
+ (B H W =32 H M+ 32H)DPy B £ (=44 N + 24 H N- 16 H ) D{FPr FPP)

4 2 4
-4 ¥ N 4+ BM N
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In general, GAMALG computes a trace involving g + m factore by first expanding
it out into a sum of traces in which such objects have been broken up. This
procedure often gemerates more terms than are necessary, especially if the
various p + m factors are similar. In four dimensions, it is in some cases
possible to treat § + m as a single unit until the very end of the caleulatien
of a trace and, thereby, generate few intermediate terms. In particular, the
Chisholm identities (3.3.6) may be extended to allow p + m terms to be treated

as single factors. In the notation defined for eq. (3.2.2) [3.4]:

B y =
YHQT = E{TEIYSQ]TS -0} -0+0
{3.3.18)

Ho_ oafy _ _R-F
ngy 2{Tr[E] ER} E - E.

It is clear that these results reduce to eq. (3.3.6) when all the m, = 0 (sc
that 0 = 0 =0, E = E = E), The relations (3.3.18) are proved by appending
the 4 x 4 identity matrix to the set of gamms matrices. They are, of course,
not easily generalized to n # 4 dimensions. Even after contracted indices

have been removed, there may remain many ¢ + m factors in a trace. In suitable

cases, GAMALG uses the result [3.15]
Tr[{ﬁl+m1)51{#2+m2152 - (ﬁk+mk)sk] = Tr[ﬂlslﬂzsz o ﬁksk],

(k + 1ength{51} even)

(3.3.19)

- - Ll g ‘é

bes
- = L - in -4
g5 * 9y = Py Py + (~1) mm, ,
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ij
trace. The trace in terms of the ﬂi may be treated just as if the 9y wWeTe

where 1 is the number of gamma matrices between ﬂi and ﬁj in the original

ordinary 4-component vectors. The formula (3.3.19) is very convenient when

it applies, because it provides results where terms from the numerators of
propagators can easily be canceled with those from their denominators. There
exist several further algorithms for use with ¢ + m terms. When there are

more than 6 independent such factors in a trace, an efficient reduction formula

is given in Ref. [3.4].

3.4 Simplification of Gamma Matrix Products

It is sometimes uwseful to manipulate and simplify products of gamma ma-
trices whose trace is not taken. In GAMALG, the function CRUNCH simplifies
the gamma matrix products (represented by G's) in an expression by reducing
out pairs of contracted indices (and pairs of adjacent identical wectors).
One problem here is that there often exist many equivalent forms for the re-
sults. In four dimensions, the Kahane algorithm [3.6] (which iz used in this
case) purports to yield one of the shortest forms. In n # 4 dimensions, I do
not know an algorithm which definitely does this. If the flag COF : FALSE (its
default walue) then CAMALC attempts te return the shortest result from CRUNCH,
However, two forms returned in this way may appear different although they
are, in faet, equal. To overcome this difficulty, when COF : TRUE CRUNCH
alphabetizes 211 wectors appearing in products of gamma matrices by anticom—
muting them. This procedure is somewhat inelegant but does yield a standard
form, For example, with COF : FALSE, one has, declaring p and v to be contracted

indices:
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(C2) CIND(HMUrALYS
(D2) CAL» MUl

(C3) EXPIGIRsMUrQsPsMUI42%G(HUsPraALs MU, O+ R raLYS
(D3> G(Rr MUr Gy Fr MU} + 2 G(HUs Py ALy MUr O Re ALY

(C4) CRUNCHOX)F
(D4) (N - 4 G(Ry Gr FP) + 4 D{Py @) GIR) + 8 G(Qr Ry F)

2
+ (B N - 32) G(P) DGy R) + €2 N - 16 N + 32) G(Py Qs B)

while if COF : TRUE, then

(CSy COF:TRUES

(CaY CRUMCH{EXF) ¥
(D&Y (2 W ~ 200 DOPy @) GIRY + (10 N - 40) G(F) D{dr R)

2
# (24 = 2 N) D(Py R) GE(Q) + (2 N = 17 N + 44} G(Fy Qr R)

This was done in n dimensions. In four dimensions, CRUNCH uses the Kahane

algorithm, With COF ; FALSE, for example, one then finds

(C7) COFiFALSES

(CB) MSET(4)s
DIHENSIONS = 4

(CY) CRUNCHC(EXPD)§
(D9 4 DCFy Q) GCRY + B G(Qr Ry F)

(C10) CIND(NUsBEDY#
(D1a) CEEr HU» ALr MUJ

(C11) EXP2IG(ALyF1ryBEsP2rMUsFIsNUrALyFAr MUy NUPSYBESFADY #
(D11 Ginales Fle BEs P2r MUr F3r NUr ALr P4r HUr NUr FSe BEr P&}

(C12) CRUNCHIX) ¥
(D12 = 1& GI(PSs Pls Par FP3Ir P2y P&Y - 14 GIFly PS5y PAy P3Is P2e P&)

(C13) COFITRUES

(C14) CRUMCHC(EXPZ)F
(D14} - &4 D(F1ry PS) DCP2y F3) G(P4r F&) + 64 DIPLly PS)Y D(FZs P4) GIF3r Fa)

= &4 DIPLly FSY GIP2y P&) DOP3r P4) + 32 DOF1le PS) GAPZy PIs Pé&y PED
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In n = 4 dimensions, the identities (3.3.4) allow some reduction of gamma
matrix products by making use of identical pairs of vectors but often at the
cost of generating 0 and epsilon symbols. 1f the flag ALCRU : TRUE then these

relations will be applied, together with the first form in (3.3.6b) and the

relation

Y Y. Y. =Y B -y 8
My Hg Mg HyTHoMg  THg M Mg
(3.4.1)

N Tuaguluz o EuluzuauTsTu‘
This result apparently plays a central role in the algorithms used by SCHOONSHIP
[3.11].
In some cases, one considers an untraced product of gamma matrices sand-
wiched between on-shell Dirac spinors. Then it may be convenient to reorder
the gamma matrices by anticommutation in such a way that the Dirac equation
may be used to remove those adjacent to the spinors. If suitable names are
chosen for the gamma matrices, this order will be the alphabetical one gener-
ated by CRUNCH when COF : TRUE. Some algorithms for treating products of gamma
matrices sandwiched between spinors have been devised {e.g., [3.25]).
JE,I L{ GAMALG w{é_:ﬁ;"resent_,ﬁtraan SIG(mu,nu) = IJLW = %iu ETu’Tu] only by
expanding it out and does not yet directly allow, for example, the projection

of the Euu part from a product of gamma matrices, as would be required in

calculations of an anomalous magnetic moment.

3.5 Bquaring Amplitudes

In addition to performing traces, GAMALG can also form the square of an
amplitude consisting of a sum of products of pamma matrices sandwiched between

gpinors. The amplitude associated with a particular fermion line is represented
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by SQ(spnl,amp,spn2?), where spnl is the incoming spinor and spn2 the outgoing
one. amp is an expression consisting of a sum of G's representing the sum

of products of gamma matrices to be sandwiched between the spinors. A fermion
gpinor is denoted by UV(p,m). All spinors are assumed to be for fermions,
rather than antifermions, so that if the latter are required, the signs of
momenta or masses (depending on the user's conventions) must be changed. SQ
performs the sum over fermion polarization states using the standard complete-

ness relation (this defines our spinor normalization)

L ulp,mu(p,m) = (F+m), (3.5.1)
pols

denoted by ZN(p,m) in GAMALG. If one does not require a sum over the polariza-
tion states of the incoming or outgoing fermion, then it is, as usual, most
convenient simply to imsert the projection operator {l-l-"rSEG;" Eirl t.he sum
{3.5.1). In GAMALG, a polarized spinor is represented by UVS(p,m,s). For
both UV and UVS, if the mass is omitted, then it will be assumed to be =zero.
If only zero mass fermions are to be cnnsidefﬁd, setting the flag ZERM : TRUE
will make GAMALG more efficient for this case.

If the flag NTR : TRUE, then 5Q will generate GT's rather than producing
TR's which are then performﬂd} ﬂﬂ&ﬁgﬁﬁ%,g&}jﬂaﬂ@gﬁg§fpigm{$§5§§§é§§§y and,
for example, (recall Hat oM brockehy ([ and HIT-J W Gt e

are  entirely wreleamad s Ho are inaperked W & S8 e
Shenin e € byr Ex w2k | {Eﬂj
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(C2) NTRITRUE®

(C3) SBA(UNPIsMIdrGlALrAZ)sUVIPFyMF))§
(D3> GTCEIN(FIy MI)r LAl A21e ZN(PFr MF)» CAZr ALT)

(Ca4) SQATUNIPL MID2¥G(AL-A2)4G(AT-ATI4G(AA) sUVIPF+MF) ) §
(Ray GTCENCFLy HMI)e CA41r ZINCFFs HMF3» LA4AD)D

+ 2 GTU(IN(FI» HI)r CAly A3]y IN(FFs MF)s CA41)

+ GTCZINC(PL, MI)» CAl, AZ]s ZN(PF: MF}» CAZr ALD)
+ 4 GTUEN(FIy HI), CALl. A2y ZN(PFs HF)» CA41)

+ 4 GIOZN(FIy HI2» CAlr A2y IN(FFr HF)r CA3r ALD)
+ 4 GICINCFIy MI)» CALlr A2y ZN(PFe HFYr CAZ2s ALD)

(CS) SQIUVIP) yGLZDIQ=-P) b K)sUVIPP) )
(D5) GTI(Fy [ZDME - FP)r KIr PPy LKy ZDLG - P) 1)

That GT's, rather than G's, are returned, signifies that the traces of the
gamma matrix products are to be taken. Note that for an amplitude consisting
of j terms, 5Q will return j(j+1)/2 traces. The reduction from j2 traces
assumes charge conjugation invariance. Note that SQAM(spnl,ampl,spnl,amp2)

" e mx}
will form the ampl(ampEE{LEEEéhe square of an amplitude.

The G's which apéear in amplitudes to be squared will typically have
coefficients which represent combinatoric weights (and sometimes residual signs
from the implementation of Fermi antisymmetrization). Especially in non-
Abelian gauge theories, such weights are often not commutative so that one
may not simply multiply each term {diagram) in the amplitude by some number.
Rather, one must, for example, assign a weight wi to the :I.th diagram and then
set wf:ﬁj (perhaps using RATSUEST) to the combinatoric factor for the term
in the amplitude sguared consisting of the ith term (diagram) in the amplitude

th

and the j term in the conjugate of the amplitude., The automatic computation

of combinatoric and group=theoretic weights for diagrams is—diseussed—in Sae~

tion-Swd. wAll be hisomted in & (ader ﬂdhhﬂithhi' ﬂggsﬁﬂiﬁ- iy
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When a vector boson line connects twe points on the same fermion line,
one may perform a Feynman gauge polarization sum for it simply by inserting
a pair of identical indices at the relevant two positions in the G's represent-
ing the amplitude in SQ. For other gauges, it is usually better to perform
the polarization sum before, rather than after the traces are taken.

External vector boson lines may be treated in two ways by 5Q. If an index
that has been declared contracted by CIND appears only once in an amplitude,
then in the conjugate of the amplitude, it will be replaced by the concatena-
tion of its name with 'PRIME' unless the index appears in the list NPIND,

In the latter case, the index in the conjugate amplitude will be the same as
in the amplitude, and when traces are done a contraction will be performed
between the two appearances of the index. This gives a Feynman gauge polar=-
ization sum for the corresponding external vector boson. THtsaay—be-—done

puill ke treaded i thic meanes if
£me A11 indices which appearfhy—:at;ing.HDP : TRUE. For example,

{Cé&) CIND{HUsNUY®
(E7) SQOUVLFT )« GOMUeMUY s USCPFD D

(o) GTCPI» CMUs HUJZs PFr CNUPRIME, HUPRIMEI)
(C8) MWPIMDILMUIE
{C9) SOCUVCFIY s GORUNUY rUVEPED 2

{ne) GTCFIs CHUr NUJs PFs CNUPRIME. HMUD)
(C10) MOPITRUES

(011 SEIUVIPI) »GOMU MUY s UVCPF Y 35

(D11} GT(FIy CHUr NUJr PFs LNUr MUD)

When two fermion lines appear in an amplitude, they are usually connected
by one or more bosons. If these are vector bosons, and Feynman gauge 1s used,
then the two traces corresponding to the two fermion lines will contain Epa o

pairs of indices which are contracted between the traces. If n = 4, then by
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applying COTR to the corresponding product of GT's, one may usually comhine
the traces using the relations (3.2.1) and (3.2.2). Some examples of this

convenient procedure are given in Section 3.8,

3.6 Ii

In many caleulations it is convenient to introduce the pseudoscalar gamma
matrix s (denoted G5 in GAMALG). This appears in expressions for wvertices
which violate parity (as in weak interactions) or in conjunction with spin
axial vectors (as in the fermion spin projection operator). In four dimensions,

the treatment of Ys is simple. It may be defined as (e.g., [3.8])

-1
Ts = %1 T[ulTuzTugTu&]
(3.6.1)

i 0123
TYTTY »

where in the second form the explicit components of TH are used (equivalently,
these could be obtained by dotting Yu into unit vectors along the wvarious axes).

It is clear from eq. (3.6.1) that

{TH;TS} =
{3.6.2)

g’ = 1,

&AJ vo; that the trace of a product of less than four gamme matrices and Tj wvanlshes.

The gimplest non=vanishing trace involving a single vy, iz, therefore,

]

Ul Hz Uj ¥

Tr{ilﬁzijd&Tsl = 4 ie a,"a,"a,"a, {(3.6.,3)

“1":;;“ 311&
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The totally antisymmetric product of four vectors appearing here is represented
as EPS(al,a2,a3,a%) in GAMALG. The symbols in an EPS are usually alphabetized
for simplification, as described in Section 3.2. The trace of a product of

more than four gamma matrices with TS may be reduced by the relation (e.g.,

[3.4, 3.13])

11+12+ij+1ﬁ

Trld A ) (-1)
11{12{13{1¢

1ot k?jl

B

Tr(d, 4, &, 4, v.ITc[d, ....4, ]
1,71,71571,75 £, i

Uy, H, H, U
€14 i (€ ailaizaiaaia}
{11} 1727 WMMala¥g M1 T2 3 Ny

4

-ay ) (k even)

= (k odd). (3.6.4)

Some simple examples of traces involving Ye done using GAMALG are (RHP =

(1 + y.)/2, LHE = (1 - YE}IE}=
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(C2) NSET(4)%
(C3) CIND(MUsNU)$
(C4) TR(P1/65:P2,P3+P4)3 %
(D4) - 4 XI EPS(P1s P2; P3r P4)

{C3) TR{RHF:P3:P4rP2rF13¥#

(03) 2 D(F1ly P2) D(P3sr P4) + 2 DI(Pis PI) D(P2y PAY - 2 D(PLls P4) DiP2s P3)

=~ 2 KI EPS(FLir F2y P3Iy FP4)
{C&) TRIPL+HU NUsP2+GSsPI+MUsP4NUI P

(ha) =~ 14 XI EFS(P1lys P2r F3r F4)
(C7) TRIP1+FP2+F2sP4sPSsF5+B5) 5

(D7) 4 %I EPS{P1s P2+ P3s P4) DIPSr P&) - 4 RI EPS(Fir P2+ P3r P5) D(P4y F&)
+ 4 X1 EFS(P1s» F2y P3r P&) DIPAr P5) + 4 XI EPS(PLls P2+ P4r PS) DIPI, P&)

- 4 X1 EFS(F1s P2y P4y P&) D(P3r PS) + 4 XI D(PLy P2) EPS(P3s P4, PS5, P&)

+ 4 XI EPE(P1s P2y PSs P&) DIP3r P4) - 4 XI EFB(PLls P3: P4r PS) DI(F2s P&)

+ 4 XI EPS(P1s P3s P4y P&) D(P2r P3) - 4 XI D(FPLls F3) EPS(P2s Pd4r PSr P&)

- 4 XI EFS{(F1y F3y PSr F&) D(P2r P4) + 4 XI DIPLly P4) EPS(P2y F3r P5: P4&)

= 4 XI D(Fls F3) EPS(P2r P3r P4s P&) + 4 XI DUIPLl, P&) EPS(P2, P3r P4s P5)

+ 4 %I EPS{P1, P4r PS5 P&) D(P2s P3)

The generalization of s to n # 4 dimensions is not as straightforward
as for the usual gamma matrices. Many prescriptions for the generalization

of v_ exist, and great care must be taken to ensure that physical results

5
obtained in the limit n + &4 are independent of the one chosen. (Recently,
geveral results on chiral symmetry breaking in QCD deduced from the behavior

of the axial vector spectral function have suffered from difficulties associated
with the generalization of Tj‘) One of the major advantages of dimensional
regularization is that it preserves invariances in theories (most importantly,
gauge invariqnce). However, it is believed that the chiral invariances of

4
the Lagrangian which lead to axial vector Ward identities are ghruinely vio-

lated in perturbation theory (leading to 'anomalies'), and that there is mo
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method of regularization which leaves them intact. Different choices for the

generalization of y. make the violations apparent in different places. It

5
is thought that only theories for which the 'anomalous' violations of the axial

Ward identities appearing in perturbation theory cancel (usually between sets
of fermions with suitable charge assignments) may be made renormalizable, so

that higher order calculations are meaningful. Thus, the generalization of

n
Ys should be arranged so that the ca;cellatinns are most easily achieved.

Several prescriptions for the construction of 75 in n dimensions hawve been
proposed; the more common are

1. Take {Yﬁ,Yu} =0 for p=10, 1, 2, 3 and [?S,Tu] =0 for U =4, ...,
n-1[3.16].

2. Take Y5 = r = (e.f. eq. (3.3.7)) [3.17].

Yp,, Y Y
Eul Hoeos un]
?[ul?quuavu&] {covariant form of (1)) [3.17].
4. Take {TE’?H} = 0 for all y and set TrETE?UlTHEYH3YHﬁ] to the four-
dimensional epsilon symbol plus arbitrary terms of order (n-4) which should
¢
canflel in calculations [3.18]. —

3. Take

I
=
I

5. Perform gamma matrix algebra associated with Ys in n = 4§ but let
most loop momenta, as usual, have n components (may not work) [3.19].

6. Treat separately the left- and right-handed componants of fields
{which in n = & are %—{1—?5)¢ and %‘(l+15}¢, respectively), so that Y5 never
appears explicitly. (Mot convenient for calculation.)

All of these preseriptions, of course, reduce to the usual definition (3.22)
when n = 4, but 1/{(n-4) terms from loop integrations can reveal their small
differences when n # 4. Any of thE;;, if applied with sufficient care, appar-
ently give correct results at the one-loop level. Alternative (4) is probably
the most convenient and gives most directly the required cancellations, espe-

cially for traces involving an even number of Yy It is not clear how the
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various alternatives will fare at the two-loop level. At present, GAMALG uses
the prescription (4) (after printing a warning message) for treating Ys in

n # 4 dimensions. A program to implement (2) or (3) will probably socon be
included in GAMALG (and will be invoked by setting the flag NG5 : CGN or CG4,

respectively [3.2&9. 3%

3.7 Comparison of Gamma Matrix Manipulators

*
As an example of the various gamma matrix manipulators available , we

give their input and output for the trace

Tr[ (4 m) v, (FHtm) Y, )y () Y]

which corresponds to the square of the s-channel pole diagram for ye scattering.

GAMALG

This is MACSYMA 281

FIX281 18 DSK MACSYM being loaded
Loading done

{C1) loadfile {(gamalsr>rshare}s

GAMALG 24 DSK SHARE beinz loaded
Loading done

{C2) cind({murnul®

(C3) nsetia)s (abike k)

DIMENSIONS = 4 -
il

(C4) trizni(rrrmlrmurznlPicrm) rrnurznirrm) snurznirtiorm) rmud i :

2 .
(DAY (14 D(Ps PY - 4B W =~ 14 D(Ky K)) D(PFy PP) 4+ 32 DKy PPY D(Fr F) + 64 H

2
+ (= &4 DKy PPY 4 &4 D(Kr P) + &4 D(Ky KD M+ 32 D{Ke F) DOKs PP

2] am grateful to D. Ross and J. Babecock for providing the SCHOOMSHIP and
ASHMEDATI outputs, respectively. The REDUCE example was run on the Caltech
POP-10.
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SCHOONSHIP [3.11] (usually run in a batch mode and written in CDC assemy

R
' bler) (? j

SCraLNElmIR, WERSION nF JasudR] 1, 1972
TI™E «e EECOLDS

v PR PR
T Mugsigd
-l
IR IR T A L R R LG T A LA P T P LS PR A AR A D LTI A A LA TR LY
snaB I (I Vo0 T NGl PIaGI T, KV e e GRELS) JoGL )y~ u)
L2 IDy TRICK y TRACE s S

w END
SYRROLE Inly ™,
JHUICES iy MUy J,
VECTORSE PR, P, K.
FUMCTIUNS b, ESFeI, Gml, G1, GSml,; GoeC, GT, UGED, UdGy NOWUs Uby GTa

Damu,; D%, Dx, DP, DFey,
RUNNING YIME 02 BEC,
WUMBER OF TERws 19
EguaL TExwg ®
CANCELLATTONS 1 INPUT BPRCE NE, OF EXPR, Ik, FEG, FusmG, REG, BULY, JUTPUT gPagE
RECORDE ] 497 [ 2nsl) 32 (200) 4 (500) &l (759) ¥Te Hose [ 953}
Tk &

- A8 aMesQaPPDP = gl sMes2upPUN ¢ sl eMeeZsPON + ol wMeedeNOK ¢ E oMetd ¢ b, #PROFSPOP o« L& aPFDPERDR

+ 32.4PppueppP & 12 epPOM&PDE &0,

END OF Rus, TI™E 12 BECONDS
—
REDUCE [3.21] (usually run in an interactive mode and written in LISPl}{ﬁEnv{E
dividern M reaulby ;;:T frote s by f-]-;\

REDUCE 2 (NOW=30=73) ...
RVECTOR PPsE+-P%
EINDEX MUsNUS
XOFERATOR I
X¥FOR ALL P LET Z(P)=G(LsP)i+Me
EZ(PPYRGILyHUYRZ(PHRIRGIL oMU SZ(PIRG(Ly NUYXZ (P RG(Ly MUY §
F 4 p 2
A% = A2PP.KEH 4+ 24PP.KEPGE & 2EPPLGRRPF + 4%M 4 A%H #P.K + 4%H %

Z
K:il — 3%M RP.PP ~ K.KEP.PP + P.FEP.PP)
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ASHMEDAI [3.22] (usually run in a batch mode and written in FORTRAN)

S P A E LI AP LIRS LE L i FERF ELF e i L il i L] A
A7 4dg 11 I TA"fdulv"dadnis+ FELEFPYPES RN MY R AEF T £
IR ERFEEFFR LY Ph LI F RS LL ) L S ELF P khnﬁf LELY ST
13" Hm«u4 +uaﬂn FELE "0 'R S
L bl L L L LIFLFUL LI T LT RN LS Sl P R L MU C T e LI
N ELS N L MR IR e EL PR ERS Ll

FEREFAS LA LS Ch

LS =L LS B

I3=43%-44" uwlm¢ P SED | Lavaca

m;-lhu mulph [3%71:

LA L

P .nth i |

13 uu.uq uuﬂq; I3*0  I9*9T=33"49% 44 13%[a 1341 %" ﬂw.u+mﬂ JA*13°[ 3¢ ﬂl H*Im " Lu®h=
wulhmlﬁu|mujmeuLw.LL;HL.rumhh huumwurwuw||huuuuwpu|wm:hu|hL¢mwun.hm
T L T L P LA e Er A i L SR L LT RS T FE L L PE LRI LR LS A L L L N

(G0ORELSBE ) x:TJ T .ﬁr:ﬂn 1bE L4073
. . . - *gLely uud fodgmdz E T L 1 g1 b ‘n33up & Slefs OC@ _ "g12732 109 4174
ﬁnm.Jeﬁfrw uupuqcu - [ Was N3
(UiT9449L92 @ 223 T gswlf Ea2 Thd" 3
- . . _ o . ) ) ~ GrT2ITLR
(FABELELNSTY JSAng @ EunTk E/7 Tea" 3
- - — 197 43797 8% _J[AgowEne * CewTl EAZ 453
EERFELY A LI S AP E S = L P P SR Lk B
S e TOPL. 3 der e L PP I -l O B ) L T-P Rt LAl L PR E L3 PR L L L -||hwnhpuhh|MLluhhﬂn g1 A%9T=

AT ¥ [T gg¥agtad¥ g 1A%+

adrSdu gz 473 vt ydeee S Sdw 3  JI4TI T IR Fae Jd" JRFI 4 [IRA S R e vANRa Tk

E.T:._.:._.n.t:u.:;f?ﬂ?.t 43% 3471
T47 1% g  43vp e qle 44" 41%1

H hiH'

kl.-

kL Id hutk+
¢¥Nlt4tml

13 Hu!mulmml—h muthtlttniw*lma!uut nfh;|u¢¢rt1.riqruLlh*meimuqﬁL-qutmlihlnq+ L‘-imlin Tl y* I 3gdupnnde 3+ umiHu IEFF L L;«nitnrrr

[JI2REELZEL y <D0yt T EnnlL EEA ceD”
S A |1 T ¥ | W | L SRR . 'gunil AT g17y) 22 fp33ul @ ‘zongv 23T 3113950 maﬁ.uhu»
(LETShApSe JTLI0I b2 [ ~ad ¥3
(03T3h9%:%2 3 L3762 T 2wl &22 EEL"S
(25TSTERKE ) 9 T LewTL 22 EEC™]
= T e T T T T T T T TdNESee2e9n) dawAL § TewlE sE2  LEdT a4
N 4037 13107 pA0 3Iwey ¥ Jua2e 113 mmm-u
[l 3 52 T AAF 43
(2SheT2EwE ) LianI T GUOZE bST 2E0"3
(el /ol /Tl ye/Tale /1A%l b /et %/ 300l 4410 ulige 1M T % Jungf 9l TEQ™
3 % Gun2f b3l TECTa
——— - e iien = e e RSN KT TP SR e LHSPEMTIRA 3 ENIM d2 T =iE H]
S5{E9TThLT
R S S S S T I e e e e e e IS LS L I ﬁmu:mrma:wﬁu _mm:m @  ouihaf 5T agn*a
8 [W*J3244"47 T Ld"dw=da 0% 241%'1odng * ;;:mﬁ EY GED* 2
— —_— s _— = e L2719 T 3 O EMIW 47 T «AR 43
CTLTRT T
— (88nELELAST) l3png 2  SON2C §ET  0£074
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For a discussion of other gamma matrix manipulaters, see Ref. [3.23]. To
give CPU times for each of the examples would be quite meaningless, since
each was run on a different computer. WNevertheless, in the implementations
available to me, SCHOONSHIP ran about a hundred times quicker than the other
three, which all took a few seconds for the trace.

REDUCE is probably the most widely used gamma matrix manipulator. Its
main merit appears to be portability. It is only able to handle pure traces -
it cannot, for example, square amplitudes directly. SCHOONSHIP's primary
advantage is speed. The fact that it is written in assembler means that it
can compute traces often two orders of magnitude faster than REDUCE or GAMALG,
SCHOONSHIF can square amplitudes. ASHMEDAT is in many respects similar to
SCHOONSHIF, although it is not as fast. For SCHOONSHIP, REDUCE and ASHMEDAI,
a large fraction of the programming effort and code was devoted to providing
facilities comparable to the simpler functions of MACSYMA. Since GAMALG was
written in MACSYMA, we were able to start at a much higher level and to im-
plement very easily many complicated algorithms., The primary motivation for
the construction of GAMALG was the necessity of computing traces in n # 4
dimensions. As discussed at length in Section 3, algorithms developed for
n =4 fail when n # &, It turns out that a gimple set of tricks (which was
discovered empirically) suffices to allow SCHOONSHIP to evaluate traces of
up to B gamma matrices in n # 4 dimensions. However, these fail for larger
traces, and, to our knowledge, GAMALG iz the only program pregsently available
for their EValuatinnzhf Qﬁfgﬁ

One important limiting factor in a gamms matrix manipulater is the length
of intermediate expressions which it can handle. As on many other counts,
SCHOONSHIPF wins herej it is reputed never to have been stopped by too many

intermediate terms in any sensible calculzation and appears to have successfully
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dealt with in excess of 1G5 terms., On the other hand, REDUCE (at least in
the implementation awvailable to me) cannot manipulate more than a few hundred
terms. GAMALG has successfully handled slightly larger intermediates. In
both cases, the main limitation appears to come from the fact that most pres-
ent implementations of LISP cannot address sufficient memuryrfcr very large
expressions to be handled. Forthcoming implementations (e.g., [3.24]) should
allow much larger intermediates (perhaps 2 105 terms) but probably at the

cost of a considerable reduction in speed.

3.8 Examples of the use of GAMALG

3.8.1ee >y

The diagram considered here is

(€)” 92 P2\(z)

The calculation is to be done in four dimensions, so do

(C2)y WNSETC(4)F
DIMENSIONS = 4
(D) 4

We first specify some kinematics by doing

(L3 B2i0-014

(033 o - a1

(Lay F2IG-P13§

(Dha) o - P1

05y KINDEF(D(Q,Q)=5,D0(0,P1)=5/2yD{Qy01)=5/2+sD{PL1,PL)=HHUTZ2yD{Q1 Q1 }=MMHE"2) ¢
(D5 CLi{Gr Q) = Sy DiGs P1) = ;: DG, Q1) = zr O{Fir Fl1) = HHUzr

-

Digir @1 = KE 1

f‘ﬁg?;f-uuﬂ « coNS all is 1R kg qﬂﬁw..:,\f ~ 1% 4950k a} Mgy to b clleagey
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We declare the indices p and v to be contracted when possible:

(CaHY CINDOMUYNLD G
the)d CHUr HUJ

We shall do this simple calculation by several methods, to illustrate various

features of GAMALG.

First, we construct the initial lepton tensor directly by doing a trace

(C7) LEPI!TR{MU»ZN(QLME) + U ZN(O2sMED D §
(7Y = 2 DiKMUs NUY § + (4 DOMUy GQ) — B D(MUs Q1)) D{NU» G1)

2
+ 4 DCMUs Q1) DONUr Q) + 8 ME DoHUr NUD

and similarly for the final lepton tensor

(LB} LEPFITRIMU»ZNCF1« MHLU ) ¢ NU s ZNIP25HMUD b &
(D) - 2 DiMUs HUY 5 + 4 DOHMUs F1) DONUr Q)

2
+ (4 DiHUs Q) — 8 D{HUr P1)) DU{NU, P1) + 8 MHU DIMU. HNU)

Then we contract indices

{CP) COMC(LEPI®LEFPF) »FACTOR #
2 2 P 2 2 2

(D7) B (S5 - 4 DiPLy B1) 5 - 2 MMU 8 - 2 ME S + 8 D (Ply Q1) + 14 HE HMHU )

The traces above could have been constructed by squaring amplitudes. For

example

(C10) LEPIISQIUVIOL »HE) »GIOMUY y UV (B2 MED 3 2
(D10) - 2 DOHUy MUFRIME) & + (4 D(MUs Q) = 8 DC(MUs O1)) DCMUPRIME, G1)

2
+ 4 D{MUr Q1) DCHMUPRIMEs Q) + 8 ME D(MUs MUPRIME)

Note the generation of the new index muprime. The weight of the amplitude

here was taken as 1, To see the form which was passed to TR by 5Q, do
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(C11) NTRITRUES

(C12) SRUY(OLME) rGUMUY » UV Q2 e HED ) F
(012) GT{ZN{OLly ME}r CMUIy ZW(@ - O1r HE}» [MUPRIMED)

The G's could be turned in TR's and donme by doing CCT(X).

A slightly more efficient way to do the calculation is as follows:

(C13) NTRITRUES

(C14) SHCUVARI»yMEI s GOHUDY 2 UV CQZ e MEY YRSACUVCPL e MMU DY ¢ GIMUDY » UV P2, MMU ) 3 5
(D14) BT{ZN(F1y MHUD» CHUJr ZN(Q - Plr HMMU)» [HUPRIME])

GT{ZN(QLs HE)s CHUJs ZN(G - O1s ME)s CHUPRIMEI)

(C15) COTR(X)Ys
(D15F 2 (GTCCZNGR — Flr HMU)» MUFRIMEs ZNC(Fls MMU)y ZN(OD = Gls ME)s MUPRIME

IN(O1y MEDT) 4 GT(CEINIF1ly MMU)» MUPRIME, ZM(R - P1, MHU}, ZN{(Q - 0is HME) s
HUFRIME. ZM(Q1s HEY1))
(C1&) COTCX) vFACTORF

2 a 2 2
(D16 B (8 - 4 DiPLs O1Y & - 2 MHU S 4+ 2 ME MMU S - 2 ME S 4+ B D (Pi, G1)

2 &
+ 14 ME HMMU

In order to reproduce a familiar result, let us set the lepton mass to zero

+-
and define some more kinematics., CT is the y e c.m.s, angle,

(C17} EU(IiHElO:HHU:ﬂ:D{Pl:GIJ=S?4IIIEETirFﬁE£BR}i
D1z} 4 (CT 4+ 1) 8

To obtain the final answer, this result must be multiplied by a flux factor, and ij
e ¥ popertee.
3.8.2 y* + qqG

We consider the diagrams

@
P
56,

(7

Pe (q)
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and will sum over the wirtual photon and gluon polarizationfusing Feynman

gauge, We, therefore, set

(C2) NOP:TRUE#

(D2 i

so that no primed indices are generated by 50 and declare indices:

(C3) CIND(MUsAL?S .
{03) CALy MUI

Once again, we work in four dimensions:

(C4) NSETC(4)#
DIMENSIONS = 4
(D4) 4

We take the q and G masses to be zero and, therefore, write

(CS) ZERMITRUE#

(D5} TRUE
(Cé&r KINDEF(D{(ArQ)=5+D(PLsPL)=0,D(F2,P2I=0:,D(PIPI)=0)}
(D&} CDO(@s QY = Sy D(PLy P1) = Oy NP2y P2) = Oy D(F3s PI) = D]

So as to see the expression before traces are taken, set

(C7) NTR:ITRUE#
(D7) TRUE

Then, to generate the squared amplitude,

{CB) BRCUVIPL) »G(MUrZD(R-P2) rAL)-GlALr ZDME-P1) s HU) s UV IF2) 37
(DB) BT(F1le C[HUs ZDCQ - P2)r ALy P2y CAL, ZD{A - P2)r HUD)D

+ GT{P1r CALs ZD(A - PLrr MUIr P2y CHUr ZD(R - P1Je ALDD
= 2 GTI(PLly CALy ZDC@ = Pl)r MUdy P2y [ALy ZD(Q - P2)s HUD)

The traces are done using CGT:
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{C?) ANSICGTC(X)#
16 MPLy P2) § = 32 D(PLs Q) DIFP2y )
(DP) = =g e S
2 2
§ -4 P2y @) S + 4 D (P2y @)

+ 2 (32 D(PLly P2) § - 32 D(PL, P2) D(P2, O) = 32 D(Pls F2) D{F1s Q)

2 2
+ 32 D (Pl P2))/A(S 4+ (= 2 DIP2y @) = 2 D(F1sy O)) B + &4 D(F1y Q) D(F2y Q)

14 D(Ply P2y § - 32 D(P1l, Q) D{P2y @)

- [— A i e e S S A

2 2
S — 4 DiPLs G 5 + 4 D (PLr Q)

We may write this result in a wore digestible form by making some good kine-

matic substitutions (and using DFIX to apply them):

(C10) KRINDEF(D(QsF1)=X1%5/2yD{(QsrP2)=X285/ 2y D(P1+F2)=8R(1-X3)/2)}
(DiQ) CDCQr Q) = Sy DI(PLir P1) = Or D(P2r P2) = Qr D{(P3r PI} = Oy

5 X1 8 X2 § (X2 + X1 - 1)
D{Qr P1} = =———y D{Qr P2} = =—==3 D{Fls P2} = —= -
2 2 2

]

{Ci1) FACTOR (EV(DFIX{ANS)r XI=2-X1-X2) )i
- 2
B (x2 + X1
¢pizy  eemmmece————————
[ (X1 - 1) (X2 - 1)

3.8.3 y*q » qG

We consider the diagrams

(q)

At first, we will not sum over the virtual photon polarization states, so
ags to obtain the “hadron tensor' corresponding to these diagrams. We perform

a Feynmwan gauge polarization sum for the gluon,

o
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(C3) HSET{4)#
DIHENSIONS = 4
{D3) 4
(C4) ZERMITRUE?
(D4) TRUE
{CS5) CIND(MUrALIF
(D5) CAL» MUI
{Cé&) NPINDICALIY
(D&) CAL]
(C7) KINDEFAKD{P,P} = 0rDEI(R) = QZrDS(KY = 0rD{QrPY = {5-02)/2,D(ArK} = (R2-T) 2
¢ D(F
rK) = =U/2)F
£ - 02
(D7) CDCFy P} = Oy D(Or QY = @2 D(Kr K) = 0r D{Qr P) & ======y
s
a2z - T u
Didr K} = —=——- = DiPr K} = - -1
2 2

{(CB) PPIQ+P-KF

(D8

)

(CT) Ti-5-U+Q2#

(ny

3

(C10) NTRITRUES

@ +PF-K

= U=-84+ 02

(C11) ANSISQUUVIP) »CGAMUrZD(RHP ) rALIHGCALy ZDIP-K) MUY 1 UVLPP ) ) 4§

{D11) GTLF»

CHUys Z0KG + Pl

ALl

+ GT{(Fs CALy ZD{(F - K}y MUI» @

r O & P - Kr CAL, ZD(EG + P)» MUPRIMEI)
+ P - K¢ CHUPRIMEs ZD(F - K)+ ALI)

4+ 2 GT(Py LALy ZD(F = K)y MUDy G + F = Ky [ALs ZD(Q 4+ P)r MUPRIMED)

(C12) TEWICGT(X)$

(C13) FACTOR (EVC(TENI}}

(D12) - 4 (D(HMU» HMUPRIME) U

+

-

A

4

[ 5]

EY

2

= 2 D(HUy MUFRIHME) Q2 U

DiMUs &) D(MUPRIMEs Q) L %

DKy MUY DOHUPRIME

Di{Kes MUPRIME} D(MUr

DiKs MUY D{MUFRIME~r

DiKy MU} DIMUFPRIMEs

DiKy HMUFRIME) D{HUy
Di(MU» P DIMUPRIME
iUy P D(MUPRIMES
D(Ky MUPRIMEY} D{HUr

Qi

P3
Q)

F)

F
ol

F

Fi

U =

S %
G2

2

i

& DiMU» PY DOMUPRIME. &) U
2 DiKs MUY D(MUPRIME. P) U

2
D{MU» WUPRIME) 8§ - 2 D(MUr MUPRIME) Q2 &

4 D(MUr Q) DIMUPRIME: P} 8
Z2 DiKr HUPRIME) D(MUr G) §

2
Z DiHU» MUPRIME) Q2

+ 4 D(Ml: Q) D{HUPRIME: P) Q2
= 4 DdKe MUPRIME) DOMUy Q) Q2

+ 4 D(Kr KUY DOKy MUPRIME) Q2Z)/(5 W)
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Now we check gauge invariance (. INFEVAL flay o Bu BV ig mere o
fuaruakes thak mriwnh Gth  ay (C1) cwe tarried b W% N !'ir\ﬂ'u Lint )

(C14) FACTOR (EV( CON(D(@sMUIAD(QsMUFRIME)XTEN) +INFEVAL )) 4
(D14) 0

and then project out two components of the tensor TEN (the first is roughly

the transverse component, and the second is the longitudinal component):

(Ci5» FACTOR (EV( CON(D(HUsHUPRIHE)XTEN) »INFEVAL ))i

2 2 2
B(U -202U+48 -20625+2062)
(D15) P i e
s U
(C16) FACTOR (EV( GCONCD(PyHUIRD(PHUPRINEIXTEN) »INFEVAL 1)}
{DLé) -4 (U + 8- 02)

5.3 4 Muon DE;@EE

Here we calculate the differential ecross=section for muon decayﬂt?ith
massless.prnduet particles and a ﬁlﬁ coupling). XNE, in terms ‘of whicE ;he
answer is most simply expressed, is the fractional energy of the outgoing

W e
e
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Appendix: Using GAMALG on the MIT-MC Computer

GAMALG may be loaded into a MACSYMA job on the MIT-MC computer by doing
LOADFILE (GAMALG,>,SHARE) ;
This will a;:éss the latest version of GAMALG, which may differ in some re-
spects from that discussed z&:;:;. A1l the operations described abowve should,
however, work; it is merely possible that GAMALG will be developed further
in the future. An updated version of a manual for GAMALG may be printed from
the MIT-MC computer by doing (outside MACSYMA)
tPR SHARE ;GAM USAGE
and this should contain all the latest information. Examples of GAMALG may

be run in a MACSYMA by doing

BATCH(GAM ,DEMO,SHARE) ;

b e ualiboly envend Hhad |

iﬁﬂ%ﬁﬂﬁLﬂ misbehaves, a message should be sent teo Terrano and me using (out-

sid= MACSYMA)
:MAIL SWOLF ,TREX
complaint

control C

Any suggestions for improvements or modifications will also be welcome.



N
D(al,a2)

s (al)
EPS(al,a2,a3,a%)

G(al,a2,....,ak)
GT(al,a2,....,ak)
G5

LHP

EHP

SIG({mu,nu}
UV(p,m)
UvVs(p,m,s)
ZN(p,m)

ZD(p,m)
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Table 3.1

Basic GAMALG Notations

Dimensionality of spacetime

Dot product of al and a2 (which may be 'indices' or 'basis
T

Sl al) e e ha spare § Ko for vekor al

Totally antisymmetric product of 4-vectors al, a2, a3

and a4 (which may be 'indices' or 'basis wectors')

Product of gamma matrices represented by al, ..., ak

Undone trace of ganma matrices represented by al, ...., ak

Y5 (in n = &)

Left-hand projection operator {1'T5]f2

Right-hand projection operator {1+75}32

u].l'd

Fermion spinor with momentum p and mass m

Polarized fermion spinor with spin s

Humerator of fermion propagator ¢ + m

Fermion propagator 1/ (f-m) = {ﬁ+m}f(pz-m2)
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Table 3.2

Summary of Basic GAMALG Functicns

CIND(mul,...,muk) adds mul through muk to the list of contracted indices
(L]

CGT(exp) converts G's/to TR's and does them

EﬂMPDEF{vecl=listl,vec2=1iat2,ind1=vall,ind2=Va12,vEt3=...} defines lists
as the components of vectors and values for indices, for use by NONCOV

CON(exp) contracts all free indices in exp (including epsilon symbols)

COTR(exp) reduces (in n=4) products of traces with contracted indices or
containing Y to single traces

CRUNCH(exp) simplifies untraced products of gamma matrices in exp
DFIX(exp) expands all dot products in exp

EPSFIX{(exp) expands all epsilon symbols in exp

FLAGS() displays the values of flags and information lists

GFIX(exp) expands sums of vectors appearing in untraced products of gamma
matiices in exp

GLUEB{Il,lE,fJ) gives the tensor corresponding to the three-gluon vertex
represented by its arguments

D11, pr2) P, 12) Dirn,em)= py. p12 =
KINDEF (detpi=repl ,detpl=rep2,...) defines kinematics substitutions dotpds
repl,...

NONCOV({(exp) substitutes the non-covariant components specified by COMPDEF
for vectors and indices in dot products in exp

NSET(dim) sets the dimensionality of spacetime to dim
SCALS(x1,..,xk) adds x1 through xk to the list of scalars

S0(spnl,amp,spn?) squares the amplitude amp sandwiched between the spinors
gpnl and spn?

TR(al,a2,...) takes the trace of gamma matrices represented by its argument

UNCIND {mul,...,muk) removes mul through muk from the list of contracted
indices

UNCOMPDEF {(vecl,indl ,vec2,vec3,...) removes the components defined for its
arguments

0, prz)
UREINDEF (deatid , ..)lﬂﬁaﬂ& removes simplifications defined for dot products

dotpl—through-dotplk D, ﬂng
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Table 3.2 (continued)

UNSCALS(x1,...,xk) removes x1 through xk from the list of acalars

ZFIX(exp) expands all § + m terms appearing in G's and GI's in exp
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Table 3,3

Basic GAMALG Flags (Default Values in Brackets) and Information Lists (Ini-

tially Empty)

C
ALGRU[FALSE] 1if TRUE uses further relations for G reductior in n = 4 —
BORED[FALSE] if TRUE prints intermediate stages in calculations
COF[FALSE] 1f TRUE alphabetizes CRUNCH outputs by anticommutation

DEF[TRUE] 4if FALSE will prevent the expansion of dot products as they are
generated

EPSEF[TRUE] if FALSE will prevent expansion of epsilon symbols as they are
generated

KAHAF[FALSE] if TRUE will cause the Kahane algorithm to be used on traces
with many contracted indices in n = 4

NOP[FALSE] 4if TRUE causes SQ to generate no primed indices (does Feynman
gauge polarization sums)

NTR[FALSE] 41f TRUE causes SQ to generate G's rather than TR's
VIRED[FALSE] if TRUE generates VIPER-compatible output (see next installment)

ZEEM[FALSE] if TRUE assumes all particle masses to be zero

COMPS 1is the list of components defined by COMPDEF

IND 1is the list of contracted indiceg (which will be uncontracted if unpaired)
KINS 1is the list of kinematic substitutions defined by KINDEF

NPIND is the list of indices automatieally summed over by 3Q (or SQAM)

SCALARS is the list of scalars
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Table 3.4
{Tplsn"l'uz} =2 Euluz
& = n
Tr[l] = 4
Tr[.ﬁliz...ik] = (k odd)
LI
Tr[ildquiik] b jiz{"l} (ﬂl'aj}Tf[izrrrdj_léj_l_l-||dk1
= 3 {a, *a, Y(a, *a., J...(& 3.}
00 3 b T, Bk TR R B gy *
(k em}
Tr[9] = Tr(sg]
Inn = 4 dimensicns:
{y »vgl =0
(157 =1
= - ty, 8 v

RS ELE WY - ¥, B ‘p By, ¥ € ¥
Hy Wy By Uy Walyg By Uyl g Hylo HiUgHq0 3
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Table 3.4 (continued)

i.+4 . +1i. +1

17273 74
)} (-1)
11':12{13{1-&

Tr[#l.....ikTE] =

]

TrEiildizdijdiﬁYj]Triiij....iik]

aulauzﬂujﬂua
i 1, 4514,

=47 )

E (
{1j} 1450001

K Vil
x (a (k even)
TUDT” = -2 0,
TUETU = Tr[E] - v Tr(ygE]
= 2{Tr[E] - E - B}
¥, YY" = 2{(v 0) + Oy}
$0p = -p20, + = P{Tr[$0,] + v, Tr[y460, 1}
pEP = —PzER +'%'TqﬁTr[ﬂquR].

LI _ 2 A

'u L : 2 i - -
TuET = 2{Tr[E] ER} E - E.

Unfinished in 1979
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Table 3.4 (continued)
v, 5, Tl E,] = 2{E,+(E,)) )5, .
Trly 0,1Tr(y 0,] = 2{Tr[(0,+(0,);)0,]1}.
Tr[?SEI]Tr[TsEE] = 2 Tr[Ez[E1+[E1}R]1 - Tr[El]Tr[Ezl.

Te($0, 1T [$0,] = Te[(0,+(0,) ) (p0,+50,$) 1.

Trly 0, 1Trly 0y] = Tr((0,+(0))5) (0,40,) 1.

Some Gamma Matrix Identities used by GAMALG. § denotes any product (or 'string')
of gamma matrices. 0 and E represent products of gamma matrices which contain
an odd and even number of factors (not counting TS}, respectively. 8 denotes

a product in which some of the factors can be of the form ¢ + m, while in B

all such factors are replaced by ¢ - m.
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IV. Feynman Integrals: VIFER and COBRA

4.1 Introduction

Whenever a closed loop appears in a Feynman diagram, the corresponding amp-
litude contains an integral over the undetermined momenta of the wirtual particles
in the loop. The evaluation of these integrals is the major task in Feynman diagram
calculations. To prepare the momentum space integrals for numerical evaluation or
for Some types of further algebraic mainpulation, it is usually mnecessary to con-
vert them to Feynman parametric form (see sec. 4.4, however, for a discussion of
a direct method which does not use this representation). In this form, auxilliary
scalar integration variables called Feynman parameters are introduced, one for
each propagator or internal line in the diagram, so that the actual momentum inte-
grals may be performed easily, leaving the integrations over the Feynman param-
eters. The program VIFPER described in sec 4.3 below cuﬁ:érts any momentum space
integral to Feynman parametric form, performing the necessary momentum space
integrations usingdimensional regularization. The remaining Feynman parameter
integrals are often not amenable to analytical evaluation, and must therefore be
caluculated numerically, typically using a Monte Carle method. If required, VIPER
can generate a file contaioning the FORTEAN form of the Feynman-parameterized
integral, suitable for direct insertionm into a numerical integratiom program., For
diagrams with a simple topological structure and in which all the internal part-
icles are massless, it is possible to perform the Feynman prarmetric integrations
analytically in terms of beta functioms. The program COBRA descibed im sec 4.4
below will give complete analytical results for most momentum Iintegrals which can
be evaluated in terms of beta functionms,

VIPER and COBRA introduce Feynman parameters sequentially for each loop
integration momentum. In practice, they will easily handle integrals over up to
three or more momenta, so long as the integrals doe not contain too may terms.

Larger ones. may often be treated by multiple applications of VIPER or COBRA.
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4.2 Dimensional Regularization and Feynman Farametrization

The basic form of the integrals arisinf from a Feynman diagram is

L 4.2.1)
l f[(.ﬂ i'EP} t gt‘a ‘;) H:]ﬂ

where X is the number of closed loops in the diagram. A convenient method for

Séu‘ .J“ N(kt Ir“&'l.?t "'1?9?’4\)

regularizing the divergences in these integrals is to perform the loop momentum (F&}
integrations in (4.2.1) in a spacetime with arbitrary dimensionality n (rather than
4) as indicated by dnpl. In (4.2.1) the numerator function N of the momenta
typically comes directly from performing the gamma matrix traces in a diagram, also
in n dimensions. The kiappearing in it are the momenta of extermal (incoming or
outgoing) particles in the diagram. The denominator factors come from the prop-
agators of particles appearing in the diagram. The 11J and}fij are matrices depen-
ding on the routing and labelling of the momentum variables in the diagram.

The fundamental result for dimensionally regularized integrals is

A e NMee) o
S&“P mﬂ = L(~m) '—*(‘1—{;? vf {4.2.2)

o V=0

where we have assumed a Minkowski metric with signature (+,-,-,-). The vanishing

1]

= RN &

of the integral if V=0 must be assumed for all values of n and @, ;If is known

to be consistent when O is an integer and believed always to be satisfactory.
Terms linear in FF(e.g. k*p) may easily be included in the denominator of (4.4.2)
by translating P, as is always permissable in dimensionally-regularized integrals,

and for example

" p! - . b 2™
34 P azpr ) (ot B 3/;) vy g
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3

The possibility of shifting the variable of integration without altering the
value of the integral (which runs over all possible k) will be used extensively
below. Any numerator term odd under k=7 =k introduced inte (4.2.2) clearly

gives zero upon integration. For numerator terms containing an even number of k's

the generalization of (4.2.2) is found easily (e.g. by induction)

o (Pt +V)*
< Wyl pol2) e
2% T‘{u)
- O uz \} = O

The tensor T in (4.2.4) does not depend on p. but may contain By ﬂE factors, thus
i
2
forming any p terms in the numerator of the integrand. The restriction to distinct

g [ZACY Wy e iy

(4.2.4)

setrs nf:hi in (4.2.4) forbids terms which differ only by the irrelevant interchange
of indices on the individual metric tensors. Some ﬁaders may be amused by the
simiagrity of the sum in (4.2.4) to the Pfaffian form (3.3.2) obtained for the
trace of a product of gamma matrices. The form (4.2.4) is symmetric, while (3.3.2)
is antisymmetric under transpositions of thejﬁi.

To cast the integrand of (4.2.1) into a form ;5 which (4.2.2) can directly
be applied, iﬁ is first necessary to combine the denominator factors inm (4.2.1).
The wost common and in nearly all cases most convenilent method for deing this is

to introduce auxiﬁlliarf Feynaman parameter integrals using the Feynmgi identity

R —— ax - (4.2.5)

Dy Tr T'(o) o o

For each of the loop momenta kiin turn, the resulting combined denominator may

pt V(@ %) S \‘ &(-2¢ )T o
e e Ay Ve E

be written in the form ﬁ=h]
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T}\ {’?E*-Z-Gl'?t, +\JS]0{ (4.2.6)

where g and V depend on the other Pﬁ#i but not on Pi' Then, by making the change
of wariahbles Pi -*.Fi'—- Pi+q, the denominator form (4.2.6) becomes
D=9t T
so that the linear term in k is thus removed. At this stage, the integration over
the loop momentum Pi may be performed by direct application of (4.2.2). The
reuslt of this integration mayv then be integrated succesively over each further
Pj in (4.2.1) by repeated application of the same proceedure. This iterative
technique is usually termed 'loop-by-loop' Feynman parametrization; it is the
method used by VIPER and COBRA as described in some detail below.

There are, in fact, several algorithms for performing the Feynman parametri-
zation and integration described above. All must ultimately give equivalent
results although the complexity of intermediate expressions generated differs.

An alternative algorithm does not proceed iteratively through each loop, but
treats all together. The algorithm begins by combining all of the factors inm the
denominator according to (4.2.5), and writing the result in the form
SCL“P' . ‘A" __._‘___.,E\Ekﬁm? ‘>
PC BT 12RTK 4 V)" (4.2.8)
where B is a vector consisting of the & loop momenta ?1, and U is an &xf matrix
of Feynman parameters. Completing the square in the denominator of (4.2.8) and

diagonalizing with respect to U, the integral becomes

M s N, RN/ = (W)
[Jaﬁ(lhﬂ SA‘P.--APL LALLFRLIASLT) LIS
($*+W) ookl
3 3
where R is the orthogonal matrix that diagonalizes U (i.e. R.U.R: = UD, RT.R = I),

and Ai is the 1th eigenvalue of U ((UD}ii}. The form (4.2.%) may be evaluated by

successive direct applications of (4.2.4). One advantage of this method is that

TR =R KR

v Mg =P R P
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since the denominator in (4.2.9) is even under Fiﬂa _fﬁ’ all terms in the numerator
of (4,2.9) which are odd under Paf—?-‘h may immediately be discarded, since they
will vanish upon integration. However, the method leading to (4.2.9) appears to
have many disadvantages compared to the simpler loop-by-loop method described
above. The foremost of these is that the algebraic functions of the Feynman para-
meters rei%lting from the diagonalization of U are typically extremely complicated
for multii;np diagrams (involving many radicals). Mostly as a consequence of this,
the final analytical form of the Feynman-parametrized integral is in gemeral much
more complicated, thereby hindering further analytical or numerical treatment.

In addition, the method by which simple parametric integrals are evaluated analy-
tically in terms of beta functions by COBRA (described in sec. 4.4) relies on
loop=-by=loop parametrization.

VIFPEE and COBRA take the momentum space form for a diagram (generated, for
example, by GAMALG) and then perform the momentum integrations by introducing
Feynman parameters. It is also possible to construct the parametric represen-
tation for a diagram directly, without considering the momentum space form. We did
not use this wmethod in VIPER because it is rather inflexible; it must udergo
fundamental modifications to treat any changes in the momentum space forms of
vertices in diagrams. In addition, is usually simpler to perform renormalizations
in the momentum space representation. The most sophisticated algorithm for ob-
taining the Feynman parametric form of a diagram directly was constructed by
Cvitanovic and Kinoshita, which requires only the specification of the diagram in
terms of graph-thoeretical matrices (corresponding essentially tu'ﬁ_and_glin (4.2.1)).
0f course this method is ultimately equivalent to the more straightforward one used
by VIPER and COBRA and it certainly generates no fewer terms. The most difficult
aspect of the method is the application of parametric differentiation operators to

the results of momentum space integrals with numerators equal to 1, as in deriving

(4.2.4). The Cvitanovic-Kinoshita algorithm was implemented by Cwvitanovic in and
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elegant TECO/SCHOONSCHIF program and was used in their calculation of the D{ujl
contribution to the muon anomaleous magnetic moment. Cvitanovic and Kinoshita have
also dé&sed an alogorithm for performing the renormalizations necessary im any
ordinary QED graph directly in Feynman parameter space.

The integration region for Feynman parameters in (4.2.5) is an m-simplex
(m=dimensional generalization of a tetrahedron). For numerical evaluation, it is
convenient to implement the Eifunctiun condition zi=1, and to change variables so
that the integration region is transformed into an (m-1) dé%nsional hypercube, and
the modified (m-1) Feynman parameters all run from 0 to 1. A suitable transformation

are the x., defined by

Z, = (-%)

Te =W (\=%2)
T o O-%2)

ij

11
; i
QZ_SIiLh %A )
\::“l
Zw * th'_ Ko,

(4.2.10a)

This transformation has Jacobian
)
J=T % = Twm
= (4.2.10b)
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4.3 VIPER

The function VIPER (exp,[pl,R2,...]) Feynman parametrizes the momnetum space
integrand exp, and integrates it with respect to the loop momenta Pl,PE,,. . in the
order given. The expression exp, which is often generated by using GAMALG, must be
written in terms of dot products of momenta (e.g. p-kl, represented by D(p,kl) as
in GAMALG), massive propagators (writtem as ZDEN(p,m} = pz-mz], and numerical
constants such as the dimensionality of spacetime M. If constants other than N
appear, they must be declared using SCALS as in GAMALG. Note that N has the default
value 4-1E; it may be reset to any expression exp (e.g. 4-E) by NSET(exp), also as
in GAMALG).

Az a first example of the use of VIPER we consider the one loop correction to

the photon propagator im QED:

v

.«"':?"\ &H Y

e v w et S R
LR R IR B

FLRVTN v e
L4 quga
‘?-«'H-«

(4.3.1)

The trace has been performed using GAMALG; the result is called inp. In the fol=-

lowing output, inp is first printed as D1, and then Feynamn parametrized by VIFER.
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When an integral is fed to VIPER, is is simplified by collecting together all
terms with the same denominator. Each term in the resulting sum is processed sep-
erately; if the flag INTP:TRUE, VIPER wil print each integrand with a distinct
denominator (2) along with the loop momentum over which it is being integrated.

VIPER begins by finding all the terms in the integrand wh'ril;:iih depend on the
integration momentum p. Those occuring in the denominator are combined using the
Feynman identity (4.2.5) and the coefficient }_nf pz is extracted. The translation
of the loop momentum necessary to complete the square in the denominator is found.
Details of this operations are printed if the flag DENF:TRUE (3). The Feynman
parameters introduced are named 21 3 wher i numbers the loop and j labels the par-
ameters for a given loop; for each loop i the parameters are constained by ]% =].
The first entry in the output list is the parametrized denominator, the second gives

its exponent, and the third gives the remaining factor in (4.2.5). Thus the Fhfegtand

™
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integrand is FACTOR
(numerator)

- [ -DENOM]FOWER (4.3.2)

Finally the Feynman parameters which have been introduced are listed. The trans-
lation wvector OQVEC is given, specifying the shift of wariables p— pHIVEC in the

F
loop integration. WNext, VIPER constructs this shifted iﬂggrand. In the denomin-
ator, the % function in (4.2.2) is usef to simplifiy any occurences of the sum
of all of the Feynman parameters introduced for a given loop to one. After tﬁe
numerator terms are shifted, those containing an odd number of p'siare dropped,
gince they vanish wpon integration according te (4.2.4). If the flag WUMF:TRUE
then the result of shifting each term in the numerator will be printed (3). Next,
the formula (4.2.4) is applied to give the integral of each term. Squares of the
loop momentum are first written as guukukvetc. (Note that if a method of regu-
larization other than the dimensional one is required, only this (rathé small)
part of the proceedure need be changed.) Adding together the results for each termf
the integration over the loop momentum p is completed and in this one loop example
the answer is returned (4). Since VIPER works loop-by-loop, its operation for

each loop in a multiloop case is analogous to this example: the result after inte-
grating over the first loop momentum becomes the input for the next integration.

In general, the ouput from VIPER should not be factored-- the MACSYMA func-
tion FACTOR will usually complicate large expressions rather than simplify them.
Here however, the result is simple and by factoring it we see that it is propor-
tional to By ~ kukvsz as is required by gauge invariance. In the answer,
CAMMA(x) is the gamma function of x, %I = V-1 , and PI = v , If the flag PIFAC
is set to FALSE, a factor (—ﬁw}{_nfz} will be omitted for each loop and the final
answer will be free of PI and {-&}E .

VIPER applies the recursion relation furi‘ functions, zl'(z) = T(z+1l), until
the argument of each one is of the form 1+f(N) with £(4)=0. This operation may be

prevented by setting GAMSIM:FALSE, but usually leads to important simplifications.

Hinglly -we Mote that-the pirametyic-—tategral dn _this-case -can-be_peffarmed
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™
Finally we note that in thsi case the parametric integral can be performed

analytically in terms of hypergeometric functions, yielding the result
L
;..‘.“."‘1 "E';;;'t- n‘f e 1[: L& L Aa'-lw« )(k%"“’ -k \"‘*‘j
(4.3.3)
Alternatively, it may first be Taylor expanded around == 0. The result to 0{4)
is sufficiently simple for the MACSYMA function INTEGRATE to perform the final
parametric integral over Z11.

As a second example, we consider the integral

SCLE 4% -p
D" W P (p- (p9Y (3-LY¥q2

(4.3.4)
which occurs in the two loop contribution to the photon propagator in massless

QED. Forj;hst integrals over more than one loop momentum, the expressions

which re;slt from the application of egn. 4.2.2 can be quite cumbersome, and often
exceed the maximum expression size which MACSYMA can handle. In addition, most
FORTRAN compilers have a limit on the length of individual arithmetic input exp-
ressions. For these reasons it is essential to introduce dummy symbolic names for
the many repeated subexpressions which are generated during Feynman parametrization.
Doing this minimizes the number of computations required in the numerical evaluation

'r:k‘_', rh«_,'h" ;

of the integral} If DUMMY:TRUE then dummy names will be introduced using the

following notation:
DCi 1is the coefficient of the square of the 1th1ntegration variable in the
denominator of the {i-l]th integration. The walues of the DCi are given as
a set of equations in the list DCL.
SCij 1is the coefficient of the jthmumentum in the translation vector QVEC
for the ith integration. If a coefficient is sufficiently simple, the

correspnding 5Cii will be left unassiened. The values of the assigned S5Ci4
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are given in the list SCL.
NCi is the coefficient of the 1th term generated in the shifted numer-
ator. Again, some NCi mav be left unassigned. The values of those used
are givﬁe in the 1ist NCL.
FID dis the final denominator. Its wvalue is givﬂg as an equation in the
list FIDL.
When saving a result in a disk file, all of the lgits above and the list ZL of
Feynman parameters as well as the final answer must be saved. The function
EGG (NAME, ANS,fnl,fn2,dir) will save all required expressions in the disk file
[fnl,fn2,dir], assigning the answer ANS to the wariable NAME,
The Feynman parametrization of the integral (4.3.4) (whose integrand is

denoted by inp) is performed as follows:

(C&) ined :

DiKr F}

(DE)  mmmmem e e e e o
DCFs FY DIF - Ko F - K} DIF - Qr F - 0) DCGr G) DO - Ke O = K2

(C7) ansZivirer{ines[rralli

T INTEGRATING
D(Kr P}
--------------------------------------------------------------- OVER P
DtPy P) DIP = K+ P = K} D(F - @y P = @) DGy G ICR - K1 B - K)
\ [DEMOM» POWER, FACTOR s PARAMETERS ] !
{*:\ €213 (D(As @ - 2 D(Ps @) + D(Py P} + ZI2 (D(Ks K} - 2 D(K» F)}s 3, 2, 211,

Zi2y Z131
GQVEC= - Z13 @ - ZI12 K

TRANSLATED HUHERATOR Z13 DKy Q) + DIEs P) + Z12 DIKr K)

.rTNTEﬁRnTING
-IE - 14 -E-1
ncz Z13 GAMHALE + 1) FID D(K, 0)
______________________________________________ OVER @
DiGy Q) DIG = Ke O - K
LE\ CDENOHs FOWER s FACTOR s FARAMETERS]
r 2
Z23 ({212 = 712 ) DiKs K) — 2 212 213 DIKs. Q)
IHiN: QY 4 vmrsmm==e= B e e
nc2
E

+ 222 (DiKs K)Y = 2 DiKs G)dr E 4 3¢ (E + 1) (E & 2) Z23 221y 222y Z231

{212 713 223 + DC2 722) K
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LH} TRANSLATED HUMERATOR DiKs @) - SC21 D{Kr K)
INTEGRATING

-E-1 -E~-1
DC2 £12 GAMHALE + 1) FID DKy K)

De@e Q) DIQ = Kre @ = K

CDEHOM FOUER fFACTOR FARAMETERSI S

2
723 ((Z12 - 712 ) DK, K) - 2 212 713 DK, G)}
[D(Ry 0) # =——memmmee e —————————————

E
+ 722 (D(Ks K} = 2 D(Ks Q)Y+ E +# Z» (E 4 1) (E & 2) 223 » I21y I22y Z231]

{212 Z13 223 + DC2 2220 K

BVECE - === e
nc2
TRANSLATED HUMERATOR Dik: K}
-E =1 E = 2 FE =1
oey pC2 SC21 Z13 Z23 GAMMA(2Z E 4 1) FID iKe K1)
“ -E-1 E - 2E -1
~ = LC2 212 723 GAMMAL2 E + 1) FID Dike KD

The integration (1) éver the first loop proceeds as in the previous example. The

dummy variables make their appearance in the second loop integration. The coeffi-
cient of Qz in the denominaotr factor reiélting from the f%?st loop integration
(over P) is extracted and called DC? in the input to the second loop Integration
(over Q). The exact expression for QVEC is printed (3), however the dummy SC21

has been substituted for the coefficient of K in the tramslated numerator (4).

The values for the dummy wariables can be found in the lists specified ahove:

(D7) deli
oy [DC2 = = 2 (Z13 = 1) Z13]
(C10) secli

Zi2 Z13 723 + DC2 222
(D10 [E021 ® = =——————mmm=—mo————=—= 3

(C11) fidli , ' \

2
712 713 723 D(Ks K) 212 (2 713 222 + Z12 - 1) 223 D(Kr K)
(DL} CFID = = m—mmm e o oo e e e e e
2 DC2
. pc2 :

= (222 = 1)y Z22 DI(Kr KI1
Even for this relatively simple case, the use of the dummies simplifies the answer

considerably. The values of the dummies may be substituted into the final answer

ANS by using the function UNDUM(ANS).
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where EXPT(A,B) is MACSYMA's print representation for AB when A is more than a
single line long.

Once the parametric form of the integrand has been found, the parametric
integrations must be uncoupled. Since the Feynman parameters were introduced in-
dependently for each loop integration, the transformation 4.2.10 must be applied
to each set seperately. The function CUBIFY({exp,flag) will transform exp, a
function of the Zij inte a function of wvariables Xi all of which are to be inte-
grated from 0 to 1, If flag=J then the result will be multiplied by the Jacobian
of the transformations; if flag is omitted, the Jacobians will be omitted as well.

The funciton MONTE(NAME,exp,fnl,fn2,dir,flag) prepares a FORTRAN input file
suitable for immediate insertion intoc a numerical integration program. The
VIPER ouput exp is given the name NAME, and a file with the name fnl,fn2 in
directory dir is created containing the result of applying the transformation
4.2,10 to the value lists and exp. If necessary, additional dummy variables are
defined so that each arithmetic statement is less than ten lines long, as required
by most FORTRAN compilere. If the final argument to MONTE is W a new file will
be created; if it is A, the results will be appended to the existing file with the
given name, Note that anything typed by the user also is written into the file.

The integral we have been considering in the second example is finite, so we may
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set £ = 0 before proceeding.

(C13) ansZievians2re=0)j§
O BC21 I13 DiKy KD 212 DEKr KD

(014) _ e ————  ———

DC2 FID DC2 FID

(C15) montel{ansfrans2rvirerrtestrtrexewli

FORTRAN

DC2 = =2XMIXXTR(CXI¥NI=1)

SC21 = —(XI*ETR(L-N2VEXNDEXARUTHDOI¥ A% (1-X52 1 /DC2

FID = =[N K EX1kkdd (=X 0k X 28k 2k XAl 22X SRk 2/ D02 2=D(Kp K XX 1 2 (
1 1=X2 12X A% (2Rl X2 X401 - X0+ X1 (1-X2 )= 1 G/ DC2=-DiReKIRXGE (4% (
2 1-X5)-1)%(1-X¥5)

EX1 = SC2IAD(KsRI Y X1 EX 28X 28X 28 X4 XS/ (DC2RFID)

EX2 = ~-DUK RIk¥1ex2k{ 1-H2 ) kN2EX 42 XS/ (DC2KFID)

ANSF = ELZ+EXL '

CVIFERs TEST: DSKs TREX] o

The contents of the file begins with the line following the word FORTRAN, and ends
with the line ANSF = ... . The final line gives the name of the file into which

the preceeding lines have been written.
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4.4 COBRA

When a Feynman diagram involves only massless internal particles, many of
the integrals involved may be performed anmalytically. The function m{ﬁp’mk
COBRA(exp, [pl,p2,...,pn]) attempts to integrate the expression exp, typically out-
put from GAMALG, over the loop momenta Pl,PE,...,rn. The order in which the Pi
are given is unimportant. The integrand will in geneeral be a sum of terms, each
with a different product of dot products in the denominator. These factors in the
denominator must not be expanded (i.e. DFIXed), for exﬁample, D{p-q,p=-q) cannot be
written as D(p,p)-2D(p,q)+D(q,q). If the flag VIRED:TRUE, all output from GAMALG
will be compatible with COBRA.

The algorithm of COBRA is based on the formula

3 Amb = Uqﬁ""- EEE“ f::.}*'j Hﬂf‘f“‘l) rm‘q‘) JL—HF

(p- k3™ (p-v )™ TEOMIY) ~ Tlamw-ad) Gy ?ﬂ‘}" 'l*};"""'i""‘

In diagrammatic terms this states thath the result of integrating a subdiagram of

the form -——O—— is a propagator raised to a non-integer power

multiplied by a constant factor (usually a product of gamma functions). GSince
eqn 4.4.1 holds for arbitrary '}1 anddz, it can be applied iteratively. As an

example, consider the (useless) diagram

corresponding to the integral:
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ey j_- d’*? Ah' ‘lfr'l ‘:lk"‘ Iu I'.--."I i lht P ———
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N ) (P G Gt e o) 12 (oo B 2 (b (-1 O

(4.4.2)

If the integrations are done in the order rl,rz.q,s,t,p then this integral can be

evaluated completely using eqn 4.4.1. Denoting the integrand of (4.4.2) by inp,

the integral (4.4.2) is performed by COBRA as follows:

(c1y ines  PIFAC | CAPS
2 2 3
(D1) 1/(D (P - Kr P - K) (I~ T+ P - K+ = T 4P - K) D (P» P} D (B, @)

DiF = G P - B} Di(R1s R1) D{G - Rir @ - R1) D{R2» RZ2} DI(O - R2, O - R2)

D(Ss ) D(T - S2 T — 8N y— ovden,

(C2) cobratinrrlserlrrrarr2et])i

= 2 2 3

SENDING 1/¢D (Fr F) D P - Ky FP = K} DIP - Qr P - G} D (Qr Q)

(0 D(@ - R1» @ - R1) D(R1s K1} D(@ - R2r @ - R2) D(R2r R2) D(S» S)

Di-=- T+ P =-Kr =T+ F =K} DIT=5¢ T = 5)) TO EULER CRir R2y Q¢ Sr Tr FI
2 2 I

I-.“]fM"FEﬁﬁtul'qTIi'ﬂﬂii 1/{D (FPy FY D (P = Ky F =K} DIF = Q¢ P =-8)D (Qr @

pDiR = Rls @ - R1) D(R1s R1) DI(Q@ = R2r @ - R2) D(R2s R2) DI(Ss S)

D= T 4+ P =Kr =T+ P =K) DIT =5 T = 5)) OVER F1

[ 2 -E-=3

I) INTEGREATIMNG GAMHA {1 - EY GAMMACE) D(Qs Q)

2 2
FIGAMNA(2 - 2 E) D (Fy P) D (F - Kr F - K} D(P - Q¢ P - @) D@ - RZr @ - RI}

D(RZy R2) D(Se S) Di- T + P - Ky - T+ F - K DET = S5+ T = S} OVER Rz
—— 4 2 -2 E -3
INTEGRATING GAakMA (1 - E» GAMHA (E) DIQr Q)

2 2 2
ALGAMMA (2 - 2 EY D (P PY D (P - Kr P - K} DIP - Qs P - Q) D{(Ss 5}

Bi- T+ F -FKr =T+ F =K D(T - S T - 51) OVEn a
5 2

INTEGRATING GaMMA(- 3 E - 1) GAMMA (1 - E) GAMMA (E) GAMKMA(3 E + 2)

-3E - 4 2
DiFr P) /(GAMMA (2 - 2 E) GAMMAC- 4 E) GAMMA(2 E + 3)
() 2
D (P - Kr P =K) D(Ss S) DE~ T 4 P -Ks =T 4P =K) DIT = S+ T = 8))
OVER S
7 3
INTEGRATING  GAMHA(- 3 E - 1) GAMMA (1 - E) GAMMA (E) GAMNA(I E + 2)
-3 E =4 3
DPr P) /(GAMMA (2 - 2 E) GAMMA(- 4 E) GAMMA(2 E + 3)
2 : E

L‘ DI(F -Ke P=-K)DI- T+ P =Ky ~THF =K})D (Tr T)) OVER T

15
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p— 8 2
INTEGRATING GAMMAL- 3 E - 1) GAMHA (1 - E} GAMHA (E} BAMMAI2 E - 1)

1-2E -3 E -4
GAMMA(IZ E + 2) D(K = P+ K = F) DiFr F)

[H) | 2 ’ 2

J(GAMHALS - 3 E) GAHHA (2 - 2 E} GANMHAC(- 4 E) GAMMACZ E + 3) D (P - Kr F - K)}

OVER F
) ) 2
h_(Dii ~ BAMMA(= I E - 1) GAMHACL = 3 E) GAMMA (1 - E) GAMMA (E) GAMHACZ E - 12
-&E -3
GaMMALS E + 2) GAMMA(A E - 2) GAMMALE E + 3) DiKs K
2

JIGAMMAL- 7 E - 1) GAHMA(3Z - 3 E) CAMMA (2 - 2 E) GAMMA(S E) GAFMAIZ E + 1)

GAMMALZ E + 3) GAMMALI E + 4))

Here the dimensionality of spacetiéﬁ has been taken to be N = 4 -2E but may be re-
assigned to any expression by NSET(exp). Also a factor [-ﬁt}('ﬂfz} has been
suppressed (by setting PIFAC:FALSE as in VIFER). COBRA begins by searching for an
order in which the integrations may be performed using egn. 4.4.1. If it succeeds
and the flag SENP:TRUE then it will display the integrand and the order of inte-
gration (1), saving thath the integrand had been sent to EULER == in this case

the parametric integrals are just beta functions (i.e. Euler integrals of the
first type)/ 1If no ordering suffices, then the integrand is displayed as sent to
GEGENBAUER, in which case a table of results obtained using Gegenbauer expansiens
is searched (see below). If the required result does not appear in the table,
then COBRA simply returns the integrand, (When the input is a sum of terms, the
final output will consist of the results of those whé}h can be integrated analy-
tically added to any intractable integrands). 1In the example (4.4.2) there are

6! = 720 possible orderings of the integrations. These orderings are searched by

first permuting the last two momenta in the input 1ist, then the last three, and

80 on. The time spent in seraching for an acceptible ordering can be significantly

reduced by specifving the loop momenta in a usable order. -In—additien—the—tise
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For integrals involving more than four loops, the integration will be attempted in

the order given in the input ldist; the permutations will be -ganera:é only if this

fails.

In the example (4.4.2) the integratiomns over r, and r, are performed first (2).

[5

Denoting (Kz}._{b by ———m———— if (1 # 1 the result may be indicated schematically by

[ — 5

Next the integrations over q,s,t are performed (3):

Finally, the p integration is performed (4).

32e

-14+2e

Eqn 4.4.1 only guarantees complete evaluation of diagrams with a rather

simple topological structure. Nevertheless, a large fraction of the integrals

arising in massless QED and QCD from diagrams with a more complicated topological

structure can £till be evaluated using only eqm 4.4.1.

The basic proceedure is to

expand numerator factors involwing the loop momenta as sums of terms which will

cancel factors in the denominator using the algebraic identity

P Lt d - G-

For example the integral

(4.4.3)

L

' JAERY I\
?i?.ﬁ'\‘:) K_\J""."IL__} (q‘_@ '\q_ll

e —

which occurs in evaluation of the diagram W@M‘-
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wmld he written as:

| \

| :k e e et b . e —————————— .-‘-

\ (e ii---_.'. L) ?Ii'iﬁ. POAE ~e) (oo e

L0 I T T

#

COBRA first implements the identity (4.4.3) for each possible dot product, expanding

the result. It then combines those terms which have the same denominator. 1In a
few cases, it may fail to make a possible substitution and as a result be unahle
to integrate a particular term. The user may define the required expansion with
the function NUMEV(epx,replacement) whers replacement is exp written as a sum of

squares.

As an example of the use of COBEA, we consider the evaluation of the one=loop

correction to the vacuum pelarization in massless QED. (The calculation of the
massive one loop vacuum polarization was discussed as an example of VIPER above.)
The integrand is obtained from GAMALG and called inpl.

(C1) Pifacifalses

cAPY
(C2) ineli 0
(D2) (8 D(MU: PY DONU PY — 4 DK, MUY DOHU, PY — 4 DOKs MUY Di(MU: P)

4 DMLy MU
+ 4 DiKr F) DOMU» RUYIACD(Fy FY DMP = Ky F - K}) = ————==--=—>—=
D{P - Kr P - K}

(€3} cobralinFrlsCrrmlddi
INTEGRATING (8 DCHUs PY DIMUs P) = 4 DCKy HU)Y DIMU» P2

{\‘ = 4 DOKsy HU) Di{MUs P) + 4 DMKs P) D(HU» HUYDS(D(Ps F) D(P = Ky P = K})
QUER [
[ODENOMIMNATORPOWER FACTORGQYEC]IE
(:f} CD(Py P} + Z11 Z12 DKy K)r 2¢ 1» - 211 KJ
h‘TRﬂNELﬁTEﬂ NUMERATOR DirU» P) DINUy P) + Z11 DAKe MUY DINUr P}
2

+ Z1i1 D(K, HUY DOHUs F) 4+ Z11 D(K,» MUY DOKs HUD

li} TRANSLATED NUMERATOR DiKs, MUY D(MUs P) + Z11 D(Ks, MU} DK, HU)

TRANSLATED NUMERATOR DiKs NUY DiHUr F} + Z11 D{Ks MU} DIK, HU}

TRANSLATED NUMERATOR DiKe P} DiHU:, NUY 4 Z11 DiKe KY Dol HUD
g 2
(D3 - 4 XI (E - 1) GAMMA (1 - E) GAMMALE + 1)

(D{Ke K) DiHU, HU) - D(Ky MUY D{Kr NUD}

E
JIE (2 E - 3) (2 E - 1) GAMHMACL - 2 EY D {Kr K}
If the flag INTP:TRUE then each term being integrated over each momentum will be

printed (1). COBRA works on each term in turn and begins by identifying the denom-

b5

[
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-
e

inator factors which involve the first 1§§gration momentum. If the denominator
contains only one such factor, then the integral vanishes according to eqn 4.4.1.

If there are more than two factors, the integral cannot be performed using eqn 4.4.1
and the integrand is returned as intractable. If there are jgﬁt two factors in

the dﬁeaminatur, then the fact;% are combined by introducing two Feynman parameters
and the translation of the origin required to complete the square in the resulting

denominator is found. If the flag DENF:TRUE, a list of details of the denominator's

treatment is printed (2), as in VIPER. The integrand is given in terms of the
FACTOR !

o [DENGH]PWER
duced for the i~ loop inetgration are denoted by Zij where j = 1 or 2: ZiZ = 1-Zil,

elements of this list by numeratoé. The Feynamn parameters intro-
The translation vector is called QVEC. The loop momentum is translated by p-» pHIVEC
in the numerater: the resulting numerator terms are printed if the flag NUMP:TRUE
(3). Terms containing an odd number of factors of the loop momentum are dropped
since they vanish upon integration; the remaining terms are then integrated over p
using eqn 4.2,4. The necessary parametric integrations are performed by application

of

L]
S 7, 25 S0t -2 R deie = (e, Leon)
o

where B(x,v) is the Euler beta function. In results from COBRA, GAMMA(x) and ZI
denuterﬂ{x} and qu respectively,

The proceedure for evaluating multiloop integrals differs form that in the
one loop case only at the beginning and end. Those integrals which will not yield
to repeated applications of eqn 4.4.1 are singled out and sent to a seperate set of
routines called GEGENBAUER (see below). And those amenable to eqn 4.4.1 must be
passed iteratively to COBRA for each successive loop integration. Note finally that
as in VIPER the rezértence relation for gamma funcitons is used fo write the
argument of each gamma function as 1 + f(N) with f(4)=0. This simplification may be
prevented by setting GAMSTIM:FALSE.

Some massless integrals not tractable with egn 4.4.1 may be evaluated by
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expanding each propgator in a seies of n (=2;+2) dimensional hyperspheical harmonics

¢ {Gegenbauer pulynomialg)

———————ris

L) 70 Tlap) g NP Frpo 0nivdenisT 2.3
Ll - LA q ) - + f o5
GIRY T(6) i, Tl () s BE ey )

where T(p,q) = min{ﬁug}. Some prnpertIES of the hyperspherical polynomials are given

in table 4.1. The orthogonality relations for the hyperspherical harmonics allow
the angular part of the loop momentum integrations to be done easily. The remaining
radial integrals become trivial when the hypergeometriec funcitons are replaced by

their power series expansions:

Flais veoNs P =48 Yornrtay 4
T RN Ky ‘. TV . -
h “7 vawte T yigee - B (4.4:5)

Ocaisionally the resulting series may be summed exactly in terms of known functionms.
Usually, however, the series must first be expanded around € = 0. The coefficients of
each power of = will then be a series which,in relatively simple diagrams can be summed.

As an Ex;;#le of these methods, consider the integral:
At a""ﬁ A —
FYGS G @Y

Particular cases of this arise in the calculation of vaccum polarization at three loops

in QE2. This integral is evaluated by COBRA as follows:
(C1) ine} Cep

RHO SIG
D P F} D (P - Ke P=-K) DIP - Q» P - Q) D{Qy @) DO - K» O = K}

{C2) scelsirhorsig)s

{C3r cobralinPrlrralll
SEMDING

D (Fr FI D (P -—Kr P=-K)DIP - 0Qr P - @ DIQr Q) MR - K» @ - K2

TO SHEBYSHEF G EGLMBAER
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INTEGRATING

D (Fr P} D (F - Kr FP - K} D{F - @y F - @) D(Qy @) DG - Kr @ - K2
[Fy Q2

2 E 2 E 2
(D) = (=~ 4) FI GAMHA (1 - E) GAMMACE)

(GaMHA(- SIG - RHO - 2 E 4 3) (GAMMA(= RHOD - 2 E + 2) GAMMA(RHO}
GAMMA(- SIC - E + 1. GAMBALSIG + £} + GAHMAL- RHO - E 4+ 1) GAMMAIRRD + E)

GAaMMAL(- SIG - 2 E + 2) GAMMAISIG)) GAMMALSIG + RHO 4+ 2 E = Z)

+ GAMHAL- RHD - E + 1) GAHMMACRHD + E) GAMMA(- SIG - E + 1)
GAMMA(- SIG - RHD - 3 E + 3) CGAMHA(SIG + E) GAMMA(EIC 4 RHD + E = 1)}

- 8IG -RHO - 2 E + 1 2
DiKrs K} {254 PI2 GAMMA(=- 2 (E = 1)) GAMMACEHD)

GAMMA(RHD + E) GAMMA(- BIG - RHO --3 E + 3)-GAMMA(— SIG - RHD - 2 E + I}

GAHMACSIG) GAMMALSIG + E))

When COBRA finds that the required integrations cannot be performed using eqn 4.4.1,
it prints that the integrand (1) has been sent to GEGENBAUER; the printout may be
prevented by setting SENF:FALSE. 1If IE&P:TRDE then GEGENBAUER itself will print each
integrand (2) it receives and list the momenta being integrated.

The GEGENBAUEER rﬂptinEE do not evaluate integrals by an algorithm; thev merely
use the table of results given in table 4.2, Note that some of the table entries
are just the first few te%ﬁs in the Laurent expansion around N = 4, and not the

exact answer for arbitrary N. For example, consider the integral:

" i
dhd™q F GO G g

which arises from the diagram:

and is multiplied by a factor of " (£) resulting from the integration over the internal

fermion line (see the first example in this section above). The relevant integral may

be evaluated by COBRA as follows.
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(C1) inelj

S S o
Di(Fs F) DMF = Ko P = K} D{Qy Q@) DCG = Ke G = K}

{C2) cobralinelslmsaldi
-E -1
Di{F = Oy P = @)
SENDINE #~——===——————— s e s s ————————
DiFPs P) DIP = Ky P = K} D(Qs @) DIQ - Ky @ = K}

TO CHEBYSHEF

-E -1
DiP - Gy P = Q@)
INTEGRATING  —==—mmssses s scssssss s s oo oo o — s s mm—————— OVER LCFr QI
DiPy P} DCP - Ky P - K} DiQs Q) D(Q - Ky @ - K}
2 E 2 E 2

b2y = (= 4) FI (4 E DUML + 2 E (- B ZETA(4) 4 (& - & XCAMMA) ZETAL3)
2 -3E-1 2
+ 5 ZETA (2)) + & ZETA(3)) D(K» KI £(2386 FI2 )

Thus to get the correct finite part for the entire diapram, the result for the final
two loops must be known to O(€). Similarly when a eounterterm diagram is being calcu-
lated, the integral also will be multiplied by factéﬁ containing poles. If the ex-
pansion in the table is to D{tj; ang the factor contains kth order poles, their pro-
duct will be correct only to U{dj-k}. To avoid mistakes, each expanded answer has
added to it a term DUM1¢J+1. the expansion of the final answer is then correct to the
highest order in € whose coefficient contains no DUMi.

We have not attempted to write a cnmpete_Fystematiﬁ program impelmenting the
hyperspherical expansion technique. In the first place, MACSYMA has onlvy a very
primative facility for performing summations, which is quite inadequate for those
required. In addition, the terms in the final sum which contribute to a given order
in £ may be identified manually without difficulty; a systematic program to find them
would be quite complex. HNevertheless, we have written several programs which per-
form some of the required expanﬁsinns. As an example we consider the one loop scalar

) P q

vertex d_’L;B-gram.
3 *q

b
The required integral is

-
Yo% PR RA R

The function GEGER{EKP:[?E,---]} makes the expansions 4.4.4 and 4.4.5 for each propa-
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gator which depends upon one of the integration wvariables Pi.

(Cl) ineilsdsihk}/dsik-p)/dsik-alF

[ 1 1 e ittt

(C2) ansigegint(inrsLkl1lrrallri

2 i
(D2) (M1 - E + 1) (M2 - E + 1) GAMHA (1 = E) GANNA(JL + E) GAMMA(J2 + E)
' 2¢1-E) -3 M1 + 2 J1 +1
GAMHACHI + J1 + 1) GANHA(H2 + J2 + 1) K TtKs P)
M2 + 2 42+ 1
CHI(Ks Ps M1) T(K, Q) CHIKs Os M2)

2
FIGAMHA (E) CAMBACIL + 1) GAMMACJIZ + 1) GAMMACHL + J1 - E + 22

GAMHMAIM2 + J2 = E 4+ 27 P @)
Here N = 4-2E 50%= 1-E, En?i[p‘q] is denoted by CH(F,Q,M1), and P = pz ete. A sum=
"y

mation variahle 1:11l running from 0 to infinity is introduced for each propagator. Add-

itionally, each hypergeometric function is expanded in its power series (4.4.5), in-
troducing a further variable ji each also running from 0 to infinity. Note that the

answer is proportional to T‘(j1+€ﬂﬁ(j2+t]fP2[£J. This factor is DE&E) if j,and j,

1
are both greater than 0, O(&) if either wvanishes, and 0(1) if both de. The final ssedtT

radial integration may introduce poles for particular values of jl and jZ‘ The
isolation of the coefficient each power of € is left to the user.
The function CHINT(exp,var) performs the angular integration of exp over var.

For example
{(CI) chintichikrrrmidkchikrarm2 ek ¥
2=-E
2 FI CHI(Py Gr M1}
(b3 e
(Ml - E + 1) GaAMMALLl - E) WY ;
. , o - v {
wnmhra%ﬂf“ﬂ-ﬂrWa%mnidBﬂumhmm ) wlekie 4.
¢ prmvuwg i e

scalan_ ) ,
(C4) chintlans:sk)id ol l“"? m.#w dm.n!hm}

2 - .
(D4) 2 PI (M1 - E + 1) GAMMACL - E) GANMACJL + E) GANMA(JZ + E)
. 2(1-€) -3
GAMMA(ML + J1 + 1) GAMMACHI + J2 + 1) K feke py T oAl
ML+ 2 02 41 2
TiKs @)

CH{Ps G+ H1)/(GAHHA (E) GAMMA(JL + 1) GAMMACIZ + 1)

GaMMA(ML 4+ J1 - E1+ 2} GAMHAIHL + J2 - E + 2) F @)

If more than two of the Cm depend on var, CHINT simply returns the input. There is
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ne known way to perform the integral of three E:“s with different arguments. If two
of the arguments are the same, eqn.3 in table 4.2 may be used.
Finally the function RADINT(exp,[kl,...,kr],[pl,....ps]) will perform the radial
Ickﬁ? integrations over the ki; the p; are the external momenta. ERADINT uses a table of

results which at present contains the value of the integral for the cases r=1,2,3,s=1.
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