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INTRODUCTION: 

The understanding of the flow of fluids in porous media is one of the most challenging 

problems in continuum mechanics. Superficially, it is a very complicated problem 

becuase it seems that the details of fluid flow could well depend critically on the 

microscopic details of the medium in which flow is taking place. Thus, for example, 

sandstones and limestones might be expected to behave qualitatively differently. 

However, the known experimental data shows there is a universality in the type of 

behavior actually seen. One well known example of practical interest is the residual 

saturation of oil in a rock that as been flooded with water. A graph of the saturation 

versus the capillary number always shows the same qualitative behavior. (Figure 1). 

We would like to speculate that there is indeed some kind of universal behavior, of 

the kind found in equilibrium statistical mechanics, which is applicable to the issue of 

two-phase flow in porous media. If this conjecture is true, then drastically simplified 

models of two-phase flow will be able to make reasonable predictions when applied ot 

real rocks. These notes are devoted to the detailing of a specific type of model which 

we believe to be computationally tractable. In our model, the fundamental aim to 

describe two-phase flow in terms of the dynamics of blobs of oil immersed in a porous 

medium. Much work needs to be done, both experimental and theoretical, to deter

mine whether this model is sensible. We believe the outlook to bj promising. 

Unfinished in 1982



•-

Singie-PIiase Flow: 

Single-phase flow in a porous medium is reasonably well understood^. In 1856, 

Darcy observed that the flow velocity was proportional to the pressure gradient in 

such a system. This is a natural extension of Poiseuille's law, except that there is no 

calculation of the coefficient of proportionality. There are three basic routes to finding 

that coefficient. The first is an analytic approach in which one models the porous 

medium by a collection of closely packed regular objects. In such systems, the 

Navier-Stokes equations can sometimes be solved. This approach can be criticized on 

the grounds that such a network for a porous medium is far too regular. Another 

approach is to model the porous medium by a series of spherical cavities (pores) 

joined together by cylindrical links (throats). In principle, the sizes of the pores and 

throats are completely adjustable (although pores are usually assumed to be about a 

hundred times larger than throats). Also, the way in which the pores and throats are 

linked together is, in principle, arbitrary. In practical computations, however, a regu

lar lattice structure is usually used, although the dimensions of the pores and throats 

can be adjusted to any specified distribution. One then solves the Navier-Stokes equa

tions in each pore and throat, and then patches together a global solution by appropri

ate adjustment of boundary conditions. Computational schemes based on the method 

described above are very difficult. However, in many situations, there is this system 

reduces to a simpler one related to electrical network theory(2\ In the simplest exam

ples, pores are much bigger than throats, so they provide very little hydrodynamic 

resistance compared to throats. Throats are thus henceforth ignored. If Poiseuille's 

law applies in the throats, then the electrical analog is to substitute pores for nodes, 

Unfinished in 1982



3-

voltage for pressure, current for flow velocity, and for a throat of radius r, length 1, a 

7T r 4 

resistor of value R = — — - (77 = viscosity). Networks of random resistors are very 
8 ijl 

well understood, and reproduce the observed behavior of single-phase flow in rocks 

reasonably well, in both two and three dimensions. 

Two-Pisase Flow: 

The techniques used for one-phase flow should equally well apply for two-phase flow. 

In practice, however, they turn out to be much more intractible. The reason is basi

cally the two-component nature of the system. Oil in rock will exist initially as one 

large reservoir. If, however, water is forced into the region occupied by the oil, the 

oil-water interface will become very irregular. It will tend to split to give disjointed 

blobs of oil surrounded by water. These blobs may move, or fission, or collide and 

fuse with other blobs. The blobs are often observed to be very irregular. These 

effects tend to make a quantitative description extremely complex, unless one focuses 

only on the statistical properties of the system in question. If one follows the pro

cedures developed for single-phase flow, one immediately discovers that analytic 

results, even for regular systems, simply do not exist. Simulations based on pores and 

throats are certainly possible, but complicated because of surface tension forces 

between the two phases, and because the interface can move around the network. 

Simulations of this in two-dimensions for lattices of size ~ 20 x 20 are now done/3) 

but are very time consuming. They can be extended to three dimensions provided 

some improvements are made. There is an electrical analog, however, the oil-water 

interface now must be simulated by a non-linear device, whose position in a given cir-
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cuit is time-dependent. For these reasons, we regard approaches based on detailed 

microscopic models of flow somewhat discouraging. 

One model which does provide some useful information is the "percolation" model(4). 

This applies in the limit of infinitesimal flow rates because then capillary pressure at 

the oil-water interface in the throats dominates over the externally applied pressure. 

In this limit, water will tend to move along the smallest throat in the oil-water inter

face until it finds a conductive path from one end of the sample to the other. In regu

lar porous media, the interface thus turns out to uniformly advance through the sys

tem, whereas in random porous media, the interface becomes irregular, and leads to 

long finger-like trapped blobs of oil. This model has the advantages of being simple 

computationally. It shows scaling behavior which allows large numbers of pores and 

throats to be treated simultaneously. Furthermore, the model does show a degree of 

universality. One should, however, make the cautionary point that experiments are 

not yet sufficiently well-refined to either confirm or refute the predictions of this 

model. 

What is required, therefore, is a simplified model, with which it is possible to do big 

simulations, and which will enable us to develop simple empirical laws which are valid 

in practical simulations. In our new model, we seek to achieve this by concentrating 

on how blobs of oil actually behave in a porous medium. Again, we should be some

what concerned about the experimental situation. Whilst experimental studies have 

been done, it seems that it is still not clear how to describe two-phase flow and what 

the precise variables in the problem should be. Thus, it is not known whether or not 

the character of flow depends only on a small number of average properties of pores 
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and throats or on the microscopic details of the medium in question. 

In particular, for our model, it is necessary to attempt to get data on various possible 

elementary processes that a blob can undergo. It can, of course, flow with the water. 

If it does so, we do not know what shape it will take up. Biobs can clearly get stuck if 

they encounter a small throat, since then the capillary pressure at the interface is max

imized. Having gotten stuck, is it possible for a blob to be liberated by a fluctuation 

in the pressure field? When do blobs fission or fuse? There seems to be little experi

mental data on these processes, we would like to encourage further work in this area 

to elucidate these phenomena. 

We begin a description of our model then by finding when the "percolation" model is 

valid. If we consider a trapped blob surrounded by water, the percolation model can 

only be valid if the hydrostatic pressure across an average blob is much less than the 

capillary pressure trapping the blob. Consider a lattice of pores and throats of radii R 

and r respectively. The capillary pressure drop across a pore due to oil trapped in the 

throats Apc is given by 

A p c - ^ 
r 

where y is the surface tension. There will also be a Poisenuille pressure drop of Ap, 

in each throat given by 

A P „ ~ ^ 5 : 
r2 

where r\ is the viscosity of water, and v is the flow velocity in the throats, v can be 

related to the mean flow velocity of water in the sample u, by 
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v ~ (A)2U 

r 

Thus, the "percolation" model is valid provided that Apc » App or 

*± « (~-)3 
y R 

The dimensionless quantity C — ij/u./y is called the capillary number. For a typical 

rock, y/R — 10 -2 so that the "percolation" model is certainly not valid for 

C > Ccrit — 10-6. 7}ctlt seems to correspond to the shoulder seen in Figure 1. Physi

cally, one would expect that the "percolation" model fails once blobs of oil are mobil

ized by the flow of water. Again, qualitatively this does seem to correspond to the 

behavior shown in Figure one. 

Our interest is in the prediction of the properties of two-phase flow for C>CC[iv For 

the reasons outlined above, we will now concentrate on the blobs themselves. Our 

aim is to first of all write down a master equation for the transport of blobs*6^. Our 

first question then is how to describe the blobs. Blobs are observed to appear in many 

different shapes, some rather fingered, some spherical. We will, at least temporarily, 

ignore this problem and classify blobs by their volume p; p should be regarded as a 

discrete variable corresponding to the number of pores filled by a given blob, and a 

velocity relative to the medium v at time t. The Baltzmann equation now reads 

i 

i l +V-Vf-Q 
8t v 

A represents the gains or losses to fp as a result of interaction with the medium. One 

immediate difficulty is that, unlike a free particle, a blob will not move at a constant 

velocity. Thus, to proceed with this model, we must compute the forces exerted by 
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water on a blob. 

One way of calculating this is to recall the electrical analog of a porous medium. We 

can model a fixed blob in a porous medium filled with flowing water by a resistor net

work, exactly as in the single-phase case. The oil blob is represented by deleting these 

resistors corresponding to the location of the oil blob. This amounts to saying that 

there is no flow of water in the region occupied by oil. Since voltage is the analog of 

pressure, it is straightforward to compute the force acting on the blob. One should 

note that the lattice will destroy Galilean invariance, and so we do not necessarily 

know the force acting on a moving blob. 

We have been able to obtain some data for the case of blobs, in two dimensions, 

which are thin rectangles, for regular lattices. The long side of the rectangle is per

pendicular to the flow direction. (These were obtained by modification of a program 

to calculate single-phase flow. The nature of the program presented the calculation 

working for blobs of more interesting shapes, at least pro tern). On a 40 x 40 lattice of 

1 H resistors, we deleted n resistors between the 2dlh and 21-" rows. The voltage drop 

across the discontinuity is a measure of pressure. Hence, we can determine the force 

on the bar by summing up the voltage differences between the top and bottom of the 

bar. Table 1 summarizes our results. Figure 2 shows a graph offeree vs. length. Fig

ure 3 shows a graph of the pressure profile for the data in Table 1. 

The best fit for the data is that the force is given by 

Fa (length)1-92484 

This method suggests a further approximation which seems to be valid when blobs are 
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large compared to the pore separations. In this case, the discrete nature of the 

medium can be ignored and replaced by a conductivity sheet of conductivity <x. a- can 

be chosen to reproduce the average behavior of pores and throats. Thus, a could be 

chosen to be constant to reproduce the behavior of the previous simulation, or chosen 

to be a stochastic variable so as to reproduce the behavior of real rocks. Thus, in the 

case of finding a force on an object, we simply solve Maxwell's equations with 

n- E = O at the surface of the blob, and a constant electric field at infinity or radius R. 

We will solve this problem explicitly for a circular blob (see Figure 4). The situation 

is time-independent so 

div B = div E = 0 

curl B = cr E 

curl E - O 

Thus, there exists a scalar potential 4> such that E = - V < ? , V2<!> = 0 everywhere, 

and n-V$ = 0 on the circle. Expanding <!> in circular harmonics, and choosing 

<*> = 0 at 9 = w/2 

R2 

<S> = E(r + —)cos9 
r 

where E is the value of the electric field at infinity, and (r,0) are polar coordinates 

whose origin is the center of the circle. The pressure field in the real problem is 

i i v , , R2^ 
p ;—(r + —)cos9 

k r 

where k is the permeability, and v is the Sow velocity of the fluid at infinity. 
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Darcy's law should now be applied to find the flow velocity of this single-phase fluid in 

an effective porous medium. Since 

u — Vp 
V 

the velocity field has component u(| parallel to the flow, and u^ perpendicular to the 

flow 

u. 
R2 

1 --cos20 
r2 

R2 

u, = - v—— sin20 
r2 

Since the stress-energy tensor for a fluid is 

CTy - - pSjj + TjtVjUj + VjUj) 

the force on the sphere in the direction parallel to the flow is 

»/2 

-w/2 

mil 
4vi? 

-nil 

X>2 
±^-cos29 + (4cos20 - 2) | dS 

2TTVT?R2 

k 

This result is qualitatively distinct from that obtained in Stokes' flow. In three dimen

sions, it would show that the force on a sphere in a porous medium was proportional 

to the volume or the sphere, whereas if the medium were absent, the force would be 
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proportional to the radius of the sphere. This result is the same as would be obtained 

by the use of the Brinkmann equation. This result is also in qualitative agreement 

with our numerical simulation. This approach can also be used to calculate results for 

objects with different shapes. The reader must be cautioned that we have used a con

tinuum description of the medium right up to the boundary of the blob. This is a lit

tle suspect, but future simulations using resistor networks will also allow us to deter

mine the validity of that approximation. 

One must also consider as part of Q various other elementary processes. 

Fission: 

In experiments, blobs are observed to fragment. It is not yet clear whether this is 

principally a property of the blob or the medium. In the continuum case, there are a 

number of interesting examples (rain). The fragmentation of blobs of water in air is 

poorly understood; the behavior of blobs of aniline in water (a popular executive toy) 

show extremely complex behavior; and the behavior of oil drops in vinegar is equally 

intriguing. For fluids in a porous medium, the situation is more complex. For exam

ple, the presence of ions in a rock will influence the behavior of a drop of ionic fluid. 

We feel that there are two basic ways a drop will fragment in a porous medium. One 

is that a blob can extend through a narrow throat. If there is a pressure gradient 

transverse to the throat, the blob will be ripped apart. If the blob is moving, it will be 

squeezed in two. Another is that a blob moving through a medium will leave a low 

pressure trail behind it (like an aeroplane). This will have the effect of making the 

near end of a blob tend to fall off. (This phenomenon was responsible for the spectac-
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ular demise of the prototype Tu-144 at the Paris air show). There are probably other 

processes which are important to fission. Clearer experiments will probably help to 

find the most important. 

F&siois: 

At first sight, one might think that biobs will coalesce if they collide. Thus, collision 

cross-sections are optical. However, this presumes there are no forces between blobs. 

The electrical analogy seems to suggest that there is a blob-blob repulsion, which is 

reasonably straightforward to compute. This computation should be done. 

Sticking and Mobilization: 

Blobs frequently seem to get stuck, due to capillary forces in small throats. Perhaps 

this means that stuck blobs should be treated separately in the transport equation, 

and, thus, distinguished from mobile blobs. This would seem to be reasonable given 

that a stuck blob needs a large viscous pressure gradient across it before it will become 

mobile. This also suggests that hysteresis effects will be quite important at moderate 

capillary numbers. This makes the problem rather messy. 

Our aim is thus to clarify these effects, attempt to quantify them (perhaps only very 

approximately), incorporate them into the Q term in the Boltzmann equation, and 

design a statistical mechanics of blobs from that. This is an admittedly rather ambi

tious scheme, but, if universality applies to this class of problems, it is not a hopeless 

line of attack. 

Prospects: We feel that there are two types of experimental input into this model. 
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The first is actual simulations of pores and throats in glass that enable flow to be 

explored. Many experiments have been done in the "percolation" regime, however, 

we feel that more experiments should be done at higher capillary numbers. We car

ried out two such experiments with Jing-Den Chen and believe that these support our 

idea that blobs should be treated as fundamental objects. However, films were then 

made of these experiments and their more leisurely viewing will probably help to 

refine some of the ideas presented here. Perhaps also future experiments could be 

performed starting with a single blob in the matrix, in an attempt to see if the single-

blob equations are roughly correct. Another type of experimental input is from large-

scale numerical simulations of the type mentioned earlier. These can be analyzed in 

great detail which enables one to find realistic forms for Q. Unfortunately, these 

simulations seem doomed in three dimensions with the present techniques. It is 

hoped that future developments will make such schemes practicable. 

Finally, further calculations with our model are needed to see whether indeed the 

ideas presented here can in fact be turned into a tractable, simple mathematical 

scheme. 
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Table I. Estimated force on a Blob as the Number 

of Deleted Resistors Changes 

Force 

0.348 

1.308 

2.876 

5.040 

7.760 

11.024 

14.796 

19.06 

23.768 

28.906 

Number of 

Resistors Deleted 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 
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FIGURE CAPTIONS 

1. A plot of residual saturation of oil in a typical rock against log10 C. A shoulder 

always occurs at C~10~6 = Ccrit. For C<Ccr i t the "percolation" model seems to 

be valid. 

2. A plot of the logarithm of the of the force across the bar F against the logarithm 

of the length of the bar. 

3. A graph of the pressure profile across the bar. 

4. A sketch of electric field lines (solid) and equipotentials (dashed) for a conducting 

plate with a hole cut in it, representing a static blob in a porous medium with a 

fluid flowing past it. 
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