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Features of grand unified gauge models relevant to cosmology are discussed . Several SU(5) 
and SO(lO) models are considered in detail. Boltzmann transport equation methods are used to 
calculate the development of baryon asymmetry in the early universe. Comparison with observation 
places constraints on possible grand unified models. 

1. Introduction 

Grand unified gauge models (e.g. [1]) typically attempt to combine quarks and 
leptons (and often also antiquarks and anti leptons) as elements of the same irreduc­
ible representations of some gauge groupt G (which must contain the observed 
low-energy symmetry group GLE = SU(3)c @ SU(2)L @ U(l)y). The gauge 
bosons (which transform under the adjoint representation of G) can induce transi­
tions between any two members of an irreducible fermion representation. Hence 
some of them should mediate baryon (B) and lepton (L) number violating interac­
tions, in which, for example, quarks decay into leptons and antiquarks (e.g., 
uu ~ de +). The limit ~ 1030 years (e.g. [1]) on the lifetime of the proton suggests, 
however, that any baryon-violating vector bosons should have masses ~1014 GeV. 
Direct evidence for such B-violating interactions must presumably come from 
observation of proton decay. However, if any B violation does indeed occur, its 
suppression at accessible energies due to the larg~ masses of the intermediate 
bosons, should have been overcome at the extremely high temperatures which 
presumably existed in the very early universe (e.g. [2]). We shall discuss the 
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constraints on such B-violating processes in the standard hot big bang cosmological 
model necessary to allow the apparent excess of baryons over antibaryons in the 
present universe. Even if the universe initially (say, at the Planck time) had a 
non-zero net baryon number (but no other net conserved quantum number), 
B-violating interactions at very early times should relax the asymmetry away, 
leaving equal numbers of baryons and antibaryons. Then, when the universe cooled 
to a temperature "," 50 MeV, the baryons and antibaryons would have annihilated 
away* and the observed baryon number density nB/ ny = 10- 9 could not be accounted 
for. To reconcile the possibility of rapid B-violating processes at very high tem­
peratures with the apparent non-zero net baryon number of the universe, it is 
presumably necessary that a baryon asymmetry should develop from the sym­
metrical state present after any initial B has been erased. (The possibility of the 
phenomenon was suggested by Sakharov in 1967 [3].) The generation of an 
asymmetry of the required magnitude places severe constraints on B-violating 
interactions, and therefore on grand unified gauge models. The purpose of this 
paper is to provide a detailed and systematic description of these constraints. The 
basic physical phenomena involved in the generation of a baryon excess were 
discussed in a recent paper by two of us [4] (hereafter referred to as I), where 
several simple illustrative models were considered. Here, we treat more realistic 
and complicated gauge models, in which many of the parameters relevant to baryon 
number generation are determined by the basic structure of the models, rather 
than being arbitrary, as in the illustrative models of I. 

The generation of a baryon excess from a B = 0 state requires B violation, CP 
violation and deviations from thermal equilibrium. (Without deviations from equi­
librium, no "direction of time" is distinguished, and CPT invariance renders the 
C, CP and T violations ineffective). 

Sect. 2 discusses B violation, deriving constraints on its form in grand unified 
models. 

In sect. 3 we discuss the form of CP violation in grand unified gauge models, 
and the mechanisms by which it may occur. 

Sect. 4 considers the statistical mechanics of baryon number generation. Subsect. 
4.2 describes departures from thermal equilibrium for a single massive particle 
species in an expanding universe. Subsect. 4.3 shows how such a departure from 
equilibrium may generate asymmetries in quantum number densities associated 
with light particles. In the realistic models to be treated, many particle species are 
present : subsect. 4.4 gives the general Boltzmann equations required. Our treatment 
of statistical mechanics assumes the applicability of the Boltzmann equation. Sub­
sect. 4.5 discusses the limits of validity of this approach, and considers possible 
extensions. Most of our calculations are performed in the context of the simplest 

* Unless they have become spatially separated. This possibility is difficult to implement because of 
the small volume of the universe in causal contact at r ", 50MeV (according to the standard 
cosmological model). 
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cosmological model in which the early universe is taken homogeneous and isotropic. 
Subsect. 4.6 discusses the consequences of relaxing this assumption. 

In most of the models we consider, the basic process responsible for baryon 
number generation is the decay of superheavy bosons. CP-violating effects in these 
decays must arise from one-loop correction diagrams. Subsect. 5.1 derives the 
baryon asymmetry generated through such diagrams from the free decay of super­
heavy bosons. The consequences of these results for CP-violation parameters in 
gauge theories are described in subsect. 5.2. Unless supermassive fermions are 
present, no CP violation may occur from gauge bosons alone. CP violation may 
occur in diagrams with Higgs boson exchange in gauge vector boson decay only 
when several different representations of Higgs bosons coupling to fermions are 
present. 

The simplest grand unified models are those based on the group SUeS), outlined 
in subsect. 6.1. Sect. 6 considers in some detail baryon number generation in several 
simple SUeS) models. In subsect. 6.2, we derive the Boltzmann transport equations 
for the "minimal" SUeS) model, involving 24H and SH Higgs boson multiplets. 
Subsect. 6.3 demonstrates that CP violation in this minimal model can occur only 
at a high order in perturbation theory, and is thus expected to be small. Nevertheless, 
in subsect. 6.4 we present results on the final baryon number generated in the 
minimal model. We find that no acceptable choice of parameters yields an adequate 
baryon asymmetry. Subsect. 6.5 then considers some extensions of the minimal 
model involving additional Higgs multiplets. With suitable choices of parameters, 
these models may account for the observed baryon asymmetry. 

In sect. 7 we consider grand unified models based on SO(10). Subsect. 7.1 gives 
a general discussion of these models, emphasizing features not present in SUeS) 
models. Subsect. 7.2 considers the form of B violation, and the possibility of B - L 
violation not present in SUeS) models. Unbroken S0(10) models exhibit an exact 
C invariance (subsect. 7.3) whose presence would prevent generation of any baryon 
asymmetry. The consequences of two possible S0(10) symmetry breaking schemes 
are considered in subsect. 7.4 and 7.5. With suitable choices of parameters, either 
scheme could be responsible for the observed baryon asymmetry. 

SUeS) and SO(10) models represent simple schemes for grand unification. 
However, it is possible that more complicated models are, in fact, necessary. The 
cosmological constraints on very large models will be considered further in [5]. A 
preliminary discussion was given in the preprint version of this paper. 

2. Baryon number violation 

In this section, we discuss the details of B violation. We consider constraints on 
the possible forms of B-violating couplings, and derive conditions under which B 
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TABLE 1 

The particles and antiparticles in a generic light fermion family, together with their quantum numbers 
[SU(3) multiplicity, SU(2) multiplicity weak hypercharge Y = T3 - Q] 

Particles [SU(3), SU(2), U(1 )] Antiparticles [SU(3), SU(2), U(1 )] 

(~)L [1,2J ] (~:t [1,2, -t] 

ER [1 , 1, 1] E~ [1,1 , -1] 

(~t [3,2 , -t] (~:t [3 , 2, t] 

UR [3 , 1, -~] U~ [3,U] 

DR [3, U ] D~ [3,1 , -t] 

and L are separately violated, but some combination (usually B - L) is conserved. 
The generic constitution of the three known families of quarks (q) and leptons 

(t ) is summarized in table 1. In considering B, L violation at high energies, the 

TABLE 2 

Quantum numbers for possible spin 1 (vector) pairs of quarks and leptons to which 
vector bosons may couple 

[SU(3), SU(2), U(1)] B L B - L 

VI ee, qq [8, 3, 0] 0 0 0 

[8,1 , 1] 

[8,1 , 0] 

[1,3,0] 

[1 , 1, 1] 

[1,1,0] 

V2 qt [3, 3, -~] I -1 4 
3 3 

[3, 1, -~] 

V3 ee [1, 2,~] 0 2 - 2 

V4 eq [3 , 2, ~] I 2 
3 -3 

[3 , 2, -t] 

Vs qq [6, 2, -~] 2 0 £ 
3 3 

[6,2, k] 
[3, 2, -~] 
[3,2 , t] 

Quantum numbers for individual q and e were given in table 1. 
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masses of q, f may be neglected, so that the left- and right-handed components 
of each fermion field may be approximated as independent. Table 1 gives the 
SU(3)c and SU(2)L representations under which each field transforms together with 
the weak hypercharge Y = T3 - Q assignment which specifies the final U(l)y trans­
formation properties. We assume, for now, that neutrinos are described by massless 
Weyl fields. As indicated by present experimental results, we take all qL, fL to 
transform as doublets under SU(2)L and qR, fR to transform as singlets. 

The quarks in table 1 are assigned baryon number B = t the corresponding 
antiquarks are assigned B = -to The leptons are assigned L = + 1, and antileptons 
L = -1. The "baryon" and "lepton" numbers of other particles are determined 
solely by their couplings to these quarks and leptons. These couplings are required 
to satisfy the constraints of SU(3)c ® SU(2k ® U(l)y in variance (at the high 
energies considered, spontaneous breaking of SU(2)L is insignificant) . The couplings 
conserve Band L only in so far as can be arranged by assignments or Band L 
quantum numbers. If all the quark-lepton systems to which a given particle couples 
have the same Band L, then that particle may usefully be assigned a definite B 
and L. However, some particles may couple to several systems with different B 
and L, in which case no single assignment of B, L suffices, and B, L are "violated" 
in the interactions of the particles. 

Tables 2 and 3 give the SU(3)c (8) SU(2)L ® U(l)y quantum numbers for the 
possible quark and lepton systems to which vector and scalar bosons may couple. 
Lorentz invariance requires that renormalizable vector couplings have the form 
If; : (T""lf;b V,," and that renormalizable scalar couplings have the form If; !(T2If;bS, where 
V,," and S are vector and scalar fields respectively, and If;a,b are spin ~ fields (see 
the appendix for notation) . 

The standard Weinberg-Salam model together with QeD involves gauge bosons 
of SU(3)c, SU(2)L, and U(l)y. All these bosons are of the type VI defined in table 
2, Hence, each gauge boson may be assigned definite Band L and no B or L 
violation may occur. The usual Higgs scalar doublet necessary for spontaneous 
breaking of SU(2)L ® U(l)y to U(l)em is of the type Sj defined in table 3 and again 
implies separate Band L conservation. In grand unified gauge theories, it is common 
to include both fermion and antifermion fields in the same representation of the 
gauge group. In these cases, bosons with couplings of types 3, 4 and 5 (S3, V 3, ... ) 
may exist. A boson with couplings of type 3 must be a color singlet: it may therefore 
not participate in couplings 4 and 5, and may thus be assigned a definite B. On 
the other hand, a boson may simultaneously exhibit couplings of types 4 and 5. 
Such a boson therefore couples to systems with B = t and B =~-+ it may therefore 
be assigned no definite B, and mediates B-violating interactions between quarks 
and leptons. However, although the separate Band L for cases 4 and 5 differ, the 
combination B - L is - ~ in both cases. Thus, SU(3)c ® SU(2)L ® U(1) y invariance 
and the restriction to the observed fermion fields prevent couplings of bosons to 
quarks and leptons from violating B - L [7-9]. At least for the purposes of these 
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TABLE 3 

Quantum numbers for possible spin 0 (scalar) pairs of quarks and leptons, to which 
scalar bosons may couple 

[SU(3), SU(2), U(1)] B L B - L 

Sl fe, qq [8,2, ! l 0 0 0 

[1, 2, ~l 

S2 qe [3, 2, -~l 1 -1 4 
3 3 

[3, 2, -~l 

S3 ee [1,3,ll 0 2 -2 

[1,1,2l 

[1, I , ll 

S4 f q [3,3, ! l 1 2 
3 -3 

[3, 1, !l 

[3 , IJl 

Ss qq [6, 1, -}l 2 0 2 
3 3 

[6,1, -!l 

[6, 1, ~l 
[6,3, -tl 

[3 ,3, -tl 

[3, 1, -~l 
[3, 1, -tl 

[3 , 1, ~l 

couplings, such bosons may always be assigned a definite B - L. In what follows 
we will denote the B-violating vector bosons with quantum numbers [3,2, - tJ by 
(X, Y) and with quantum numbers [3, 2, ~J by (X', Y'). The possible B-violating 
scalar bosons will be denoted by S ([3, 1, ~J), Sl ([3, 1, ~J), and Sz ([3, 3, ~J). Fermi 
statistics require that Sl and Sz couple only to pairs of fermions in different families. 

Another possible scheme for B violation involves two bosons [10]: one (say Xz) 

of type 2 and one (say, Xs) of type 5. Since XZ and XS may have the same color 
and electric charges, B-conserving processes such as Xz ~ Xs W or XZ ~ XsH may 
occur, and give rise indirectly to B violation through the different B of the systems 
to which XZ and XS couple. Similarly, O (mw/ m,,) mixing may occur between the 
Xz and Xs states through their interaction with the Higgs condensate. The rate for 
B violation through X exchanges is then O(m ~ / m ~): existing limits on the proton 
lifetime then allow m" as low as = 109 GeV. Note that (Xz, Xs) exchanges conserve 
B + L, and thus violate B - L. 
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All known fermions carry non-zero color, SU(2)L or electric charges. However, 
there may exist massive fermions which carry no absolutely-conserved quantum 
numbers. Such fermions (N) may mix with their aE.tiparticles (charge conjugates) 
through Majorana mass terms (of the form mJf). Clearly, they may not be 
assigned definite B or L. If the coupling X ~ qN is present, then so may X ~ <'iN 
be. Thus N does not carry a definite B - L: production and decay of N will lead 
to violations of B - L conservation. The types of B- and L-violating bosons allowed 
in this case are discussed in subsect. 7 .2 in the context of SO(lO) grand unified 
models., 

3. CP violation 

The generation of a baryon excess from an initially symmetric state requires 
CP-violating interactions. In this section, we describe the possible forms of CP­
violating couplings between particles appearing in grand unified gauge models, and 
some mechanisms through which these couplings may occur. 

We consider first a complex scalar field cp(x, t). It is necessary to distinguish the 
field operator c$ from the "fields" cp obtained as the expectation values of this 
operator in particular states. It is the q-number field operator which appears in the 
canonical quantization procedure, the c-number field appears in the path integral 
formalism. 

The actions of parity (P), charge conjugation (C) and time reversal (T) on a 
complex scalar field are given, up to arbitrary phases, by [11]: 

P: cp(x, t)~cp(-x, t), 

c$(x, t)~c$(-x, t); 

C: cp(x, t) ~ cp*(x, t) , 

c$(x, t)~c$ \x, t); 

T: cp(x, t) ~ cp*(x, -t), 

c$(x, t)~c$(x, -t). 

The transformations P and C are represented by unitary operators, which act on 
c$ just as on cpo T is an anti unitary operator, which reverses the order of factors in 
products of field operators. It thus interchanges the bra and ket states in an 
expectation value, and complex conjugates the field cpo The combined operator of 
CPT on cp(x, t) yields cp(-x, -t) and is equivalent, as usual, to a generalized Lorentz 
transformation. 

The P, C and T transformations above are modified for particles with spin. Their 
action on spin ~ fermions is outlined in the appendix. Note that separate P and C 
transformations interchange chirality states, while the combined CP or T transfor­
mations do not: thus massless particles with only one chirality or helicity state may 
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have definite behavior under CPo We shall consider the transformations of different 
chirality states under CP independently. For spin 1 fields, P and T transformations 
reverse, respectively, the space and time components of the polarization vector: 
they may thus be considered to " raise" or "lower" the Lorentz vector index on 
the vector potential AIL' 

The CP conjugate of a particle which transforms according to a representation 
r of some internal symmetry group is the corresponding particle in the conjugate 
representation r. Any U(1) factors in the internal symmetry group are associated 
with charges which are reversed by the action of CPo If the complete symmety 
group is an abelian product of U(1) factors, each field with non-zero charge must 
be complex. When the symmetry group is non-abelian the U(1) charges are gener­
ated by the Cartan subalgebra of the group. In the absence of explicit U(1) factors, 
the reality or complexity of fields is determined by the representations under which 
they transform. Three basic classes of representation may be distinguished (e.g. 
[12]) : 

Complex: rand r are completely inequivalent. The singlet representation 
appears in the decomposition of r ® r, but not in r ® r. 

Real: A basis exists in which the representation matrices of r are purely real, so 
that rand r are equivalent. The singlet representation appears in the symmetric 
part of r ® r. 

Pseudoreal: r is unitarily equivalent to r, but there is no basis in which the 
representation matrices are purely real. The singlet representation appears in the 
antisymmetric part of r ® r. All pseudoreal representations have even dimension­
ality. 

Real and complex representations appear in many models; pseudoreal rep­
resentations are rare, since they must be used in a "doubled" form to allow 
construction of mass terms for scalar fields . Fermions are usually placed in complex 
representations; this prevents the possibility of group-invariant fermion mass terms 
(allowed by chiral symmetries) and avoids unobserved right-handed fermions cou­
pled to the weak current. In most of the discussion below, complex and pseudoreal 
representations behave similarly: we shall usually mention only complex representa­
tions. 

The adjoint representation in which gauge vector bosons appear is always real. 
Hence in a suitable basis, all gauge vector bosons are eigenstates of CP, but in 
general have different eigenvalues. 

If a set of interactions is to conserve CP invariance, its lagrangian must be 
invariant under CPo The requirement that all CPT invariant lagrangians be her­
mitian places important constraints on possible CP violation. 

Hermiticity requires each term in a lagrangian to have the form L = g0 + (g0) t , 

where g is a coupling constant, and 0 is a product of fields. As discussed above, the 
action of the CP transformation is CP[g0]=g0\ so that CP[L]=g0t +gt 0 . If 
0,c 0 \ CP violation occurs when g,c gt. No CP violation is possible when 0 = 0 t. 
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If the lagrangian is not invariant under phase redefinitions of fields, any CP 
violation may formally be transferred from one term in the lagrangian to another: 
its physical effects nevertheless remain unchanged. 

Since the gauge vector bosons transform under the real adjoint representation, 
cubic and quartic couplings between the gauge bosons yield real e, and can involve 
no CP violation. Similarly, cubic and quartic coupling between Higgs bosons in 
real representations or between those Higgs bosons and the gauge vector bosons 
cannot introduce CP violation. For CP violation to occur, some Higgs fields must 
be complex. This may occur because they appear in complex representations of a 
non-abelian group, or because they exhibit an additional global U(1 ) invariance. 
In the latter case, two fields which may individually be real are combined to form 
a complex field. 

In the bare lagrangian, kinetic energy terms for all fields F have the form FF. 
Couplings of gauge vector bosons obtained by minimal substitution from these 
terms have the form gAFF. Since the gauge vector bosons transform under the 
real adjoint representation, AFF = (AFF) t yielding no CP violation. However, it 
is possible that the fermion mass matrix may contain complex entries. Gauge 
couplings of fermion mass eigenstates may then contain complex mixing angles and 
exhibIt CP violation . Nevertheless, when all fermions are massless, no such mixing 
may occur, and CP violation is again impossible. Even with massive fermions , CP 
violation may not be possible in some gauge couplings. For example, if only the 
left-handed fermion currents which couple to light gauge bosons are considered, 
unitary rotations may be performed to remove CP violation unless at least three 
separate fermion families exist (Kobayashi-Maskawa [13J scheme). CP violation 
may nevertheless occur in the right-handed and B-violating currents which couple 
to superheavy bosons even when only one fermion family exists. 

CP violation associated with couplings of Higgs bosons to fermions or to them­
selves may occur either as a result of explicit complex couplings (" intrinsic CP 
violation") or from a complex vacuum expectation of a Higgs field ("spontaneous 
CP violation" *). For a coupling to exhibit intrinsic CP violation, hermiticity requires 
that at least one of the fields involved must be complex. Spontaneous CP violation 
requires a CP-violating vacuum expectation value, which may be associated either 
with a complex field or with a pseudoscalar real field . Since spontaneous CP violation 
requires the presence of a Higgs condensate, it typically disappears at high tem­
peratures (see, however [14J), while intrinsic CP violation remains unchanged. 
Symmetry restoration usually occurs at a temperature of the same order as the 
vacuum expectation value of the Higgs condensate and the mass of the correspond­
ing Higgs boson [15 , 6]. Spontaneous CP violation associated with SU(2)L breaking 
thus cannot survive at the temperatures of relevance to B violation. In SU(5) 

* In the literature the terms "hard " and "soft" have been used for " intrinsic" and "spontaneous" CP 
violation . We shall reserve " hard" and "soft " to describe lagrangian terms of dimensions four and 
lower, respectively. 
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models, only the real 24H representation attains a sufficiently large vacuum expecta­
tion value to survive at high temperatures, and thus no spontaneous CP violation 
may occur. On the other hand, in S0(10) models, complex 16H or 126H representa­
tions as well as real 45 H or 54H repreentations may attain large vacuum expectation 
values, so that spontaneous CP violation at high temperatures is possible. 
Whenever high-temperature spontaneous CP violation is associated with Higgs 
bosons which couple to fermions, the large vacuum expectation .values necessary 
must give large masses for some of the fermions. In general, the presence of a large 
vacuum expectation value for a Higgs field in a complex representation of the 
gauge group lowers the rank of the effective gauge symmetry by breaking at least 
one of the U(1) invariances associated with the Cartan subalgebra. 

CP violation in couplings of W bosons to fermions may occur through complex 
entries in the fermion mass matrix, as mentioned above. These complex entries 
may arise either from intrinsic complex Yukawa couplings or spontaneously from 
a complex Higgs vacuum expectation value. It is possible that low-energy CP 
violation is a result of CP-violating Higgs boson exchanges [16] rather than of a 
small CP-violating component in W exchange [13]. The best-measured CP-violating 
effects in K decays do not distinguish between these possibilities. The magnitude 
of the ill = ~e' CP-violation parameter in K decays, or other potential CP-violating 
effects in b-quark decays or the neutron electric dipole moment should, however, 
provide evidence on these possibilities. 

Although the QCD lagrangian is CP invariant, it is possible that instanton effects 
in the vacuum state may lead to a CP-violating term ({}/ 327T 2 )TrF,..,i',.. v in the 
effective QCD lagrangian (e.g. [17]). The absence of a measured neutron electric 
dipole moment then requires {}/ 327T 2 ~ 10- 7 . Two simple mechanisms which would 
yield {} = 0 are not viable: the Peccei-Quinn mechanism because a light axion is 
not observed, and the massless u quark because of conflicts with current algebra 
results on quark masses (e.g. [17]). FF terms in the effective QCD lagrangian may 
also arise from chiral rotations used to render the quark mass matrix real and 
diagonal : the coefficient of these terms is proportional to the CP-violating quantity 
arg det Mq, where Mq is the quark mass matrix. This contribution to {} receives 
corrections from higher orders in perturbation theory. If CP violation in the quark 
mass matrix occurs through soft terms with dimension 2 or 3 in the Higgs couplings, 
then the resulting renormalization of {} is finite . If it occurs by hard terms of 
dimension 4, {} may suffer formally infinite renormalization. Any spontaneous CP 
violation can contribute only to soft terms: intrinsic CP violation may yield either 
hard or soft terms. In requiring {} to be small, it is perhaps desirable to avoid cases 
of infinite renormalization, thus favoring CP violation in soft terms. 

We have discussed above CP violation in models containing fundamental Higgs 
scalar fields. Models with dynamical symmetry breaking from composite scalar fields 
may also exhibit CP violation [18]. Since the fundamental couplings in such models 
are gauge couplings, all couplings must be CP invariant. However, the minimum of 
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the effective potential for the composite scalar fields may correspond to complex 
values for the fields, and thus yield spontaneous CP violation. Another possibility 
is that the qq condensate may not be purely scalar, but may contain a CP-violating 
pseudoscalar component (c.f. [19]). 

At sufficiently high temperatures, any spontaneous CP violation will usually be 
restored. When the universe cools below the CP-violating phase transition, the 
expectation values of the Higgs fields, and thus the form of the CP violation, may 
differ between different domains in the universe. In the simplest case, the expecta­
tion value of the Higgs field may be either cP = +CPo or cP = -CPo, leading to production 
of baryon asymmetries with opposite signs [20]. At the temperatures 0(1015 GeV) 
at which CP violation must be present in order for baryon number to be generated, 
no causal effects may yield correlations in fields over volumes containing more than 
about 105 particles. Fig. 1 shows schematically a section through a universe consist­
ing of many uncorrelated cells each carrying a positive or negative Higgs field with 
probabilities ~. Investigations in percolation theory (e.g. [21]) show that in three 

Fig. 1. Schematic section through a universe consisting of a random mixture of equal numbers of + 
and - cells in which CP violation has positive and negative signs. In three dimensions, nearly all the 

cells are members of infinite connected domains. 
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dimensions, infinite connected + and - domains exist with probability one*. 
Numerical simulation suggests that all but about 1 % of the cells lie in connected 
domains. Thus, even without correlations between cells, large + and - domains 
should exist in the early universe. At the edge of, say, a + region, the Higgs field 
must change sign, and therefore exhibits a non-zero derivative leading to a surface 
energy density on the boundary. This surface tension tends to collapse the domains. 
It is, however, possible that the transmission of particles through the domain walls 
may be sufficiently low that contraction of a domain as a result of surface tension 
would be opposed by pressure from the enclosed gas. In this case, large domains 
would tend to become spherical, and survive at least through the period of baryon 
number generation. Details of the domain walls determine the effect of the 
expansion of the universe. Constraints on the present energy density of the universe 
do not allow any domain walls extending over a significant fraction of the universe 
[22]. However, domains which were stabilized by the pressure of enclosed gas would 
collapse when the gas recombined. After this point, gravitational clumping and 
radiation pressure should suffice to hold matter and antimatter domains apart. The 
viability of such a scheme depends crucially on the amount of energy dissipated in 
the destruction of the domain walls, which must be determined by detailed calcu­
lation. 

Invariance under CPT appears to follow from Lorentz in variance in any larangian 
quantum field theory obeying standard axioms. It is nevertheless conceivable that 
these axioms are inadequate, and that CPT violations could occur. With CPT 
invariance, separate violation of CP and T must be accompanied by deviation from 
thermal equilibrium to provide "an arrow for time" and allow baryon asymmetry 
generation. However, with CPT violation, an asymmetry may be generated even 
in thermal equilibrium [23]. For example, the mass of a particle and its antiparticle 
could differ, so that their equilibrium number densities were unequal. Without a 
specific model for CPT violation, no detailed consequences may be deduced. 

4. Statistical mechanics of cosmological baryon number generation 

4.1. INTRODUCTION 

Having outlined above the possible forms of B-, CP-violating interactions, we 
now consider how these may act in the early universe to generate an excess of 
baryons over antibaryons from an initially symmetric state [3, 4, 6, 7, 24-30] (the 
destruction of a possible initial baryon number was described in sect. 4 of I, and 
will not be discussed here). If all particles in the universe remained in thermal 
equilibrium, then no direction for time would be defined, and CPT invariance 

* For a cubic lattice, the fracton of + cells must be ",,0.33 for infinite + domains to exist. Other lattice 
geometries give slightly different percolation thresholds ; all are below 0.5. 
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would render CP violation in the interactions irrelevant, and prevent the appearance 
of any baryon excess [see (1.4.1) and appendix A of IJ. We shall assume 
that the early universe is homogeneous and isotropic (Friedmann model). Deviations 
from thermal equilibrium cannot occur in a homogeneous isotropic universe con­
taining only massless particles: if massive paricles are present, such deviations may 
occur when T = m. 

We shall assume here that all particles obey Maxwell-Boltzmann statistics (the 
negligible corrections from proper use of Fermi-Dirac or Bose-Einstein statistics 
were discussed in subsect. 2.4 of I). In this section, we make the simplification that 
all particles have only one spin/color state; the correct counting of states will be 
included in sects. 6 and 7. In thermal equilibrium, therefore, the density of a species 
of particles (with mass m) in phase space is given by* 

f ( ) - - (E - .... )/ T = _(Jp 2+ m L .... )/ T 
eqp-e -e , (4.1.1) 

where T is the temperature of the species, and J.t is a possible chemical potential. 
Note that, in keeping with the standard and simplest cosmological model, we assume 
throughout that the universe may be treated as homogeneous and isotropic. The 
total number density in equilibrium of the species is given from (4.1.1) by 

d3 T3 2 

neq = f (2~3feq(p) = 21T2 (;) K 2 (m/ T) e .... / T
, (4.1.2) 

where K2 is a modified Bessel function (see appendix C of I). For m « T, (4.1.2) 
becomes 

neq = e .... / T :: [ 1-(2~)2 +0((;)410g (;))l (m « T), (4.1.3) 

while for T « m, 

neq = (~:f!2 e - ( m - .... )/ T[ 1 + ~~ + 0(::) l (m » T) . (4.1.4) 

At early times, most of the energy density of the universe was presumably contained 
in essentially massless particles. Their chemical potentials were probably very small, 
since the universe appears to carry zero or very small net quantum numbers. Hence 
the energy density contributed by each species was 

3T4 

Peq=-2- ; 
1T 

(4.1.5) 

we shall denote such species generically as -y, and take them to be g in number 
(for 102 :<s T :<s 1016 , typical grand unified gauge models imply g = 100). 

* We use throughout units such that Ii = c = k = 1, where k is Boltzmann's constant. Since we do not 
set the gravitational constant 0 = 1, the Planck mass mpl = 0 - 1/ 2 = 1019 GeV appears explicitly. 
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The Robertson-Walker scale factor for a homogeneous universe of total energy 
density p(t) expands at a rate 

! dR == R = (87TP(2t )) 1/2 
R dt R 3m p l 

, (4.1.6) 

where mpl = 1019 GeV is the Planck mass. In this expansion, the momenta of all 
particles are redshifted according to I P 1== P - 1/ R. The phase space distributions for 
massless particles (in thermal equilibrium, and with /.L = 0) remain self-similar under 
this rescaling, with a temperature T -1/ R. Using (4.1.5), eq. (4.1.6) then implies* 

t _ R _ (87TP)I /2 T2 
T - - R - - 3mp l = - mp' 

(4.1.7) 

where g is the number of (Maxwell-Boltzmann) particle species. The equilibrium 
phase-space densities leq(P) = exp( -J p2 + m 2/ T) of massive particles are not, 
however, self-similar in the expansion P -1/ R : their forms change when p - T-
1/ R becomes smaller than -m. Thus the expansion of the universe may cause 
these phase-space densities to deviate from their equilibrium form: collisions with 
light particles will nevertheless restore the equilibrium form, but only after a finite 
relaxation time. During this temporary deviation from equilibrium B-, CP-violating 
processes may generate a baryon asymmetry: under certain conditions this asym­
metry may survive even after the massive particles have disappeared (through 
decays); the time necessary to relax the asymmetry may increase faster than the 
age of the universe. 

The Boltzmann equation will be used below to describe the effect of reactions 
on the densities of particle species or quantum numbers. The validity of this 
approach is discussed in subsect. 4.5. 

4.2. EVOLUTION OF A SINGLE MASSIVE PARTICLE SPECIES 

Consider a particle X of mass m, which decays with a width r into two massless 
particles ('Y'Y). Then the number density n = ny Y of X evolves with time t in the 
early universe according to 

. d Y <){ eq } y==-=-r Y-Y 
dt 

(4.2.1) 

(for the derivation of this result from the complete Boltzmann transport equation 
for the phase-space density Ix( p) see subsect. 2.3 of I). The expansion of the 

* Note that the effective Planck mass mp given here assumes that all particles obey Maxwell-Boltzmann 
statistics. If instead, all were to obey Bose- Einstein statistics, mp would decrease by a factor 0.96, 
and if Fermi- Dirac, increase by a factor of 1.03. 
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universe appears only implicitly in (4.2.1) through the dependence of the tem­
perature T in y eq on the time t: the explicit dependence has been removed by 
consideration of the scaled quantity Y=nx/ny. The first term in (4.2.1) accounts 
for the decays X ~ 1'1', and has the usual radioactive decay form. The second term 
in (4.2.1) accounts for inverse decay processes 1'1' ~ X, which occur when the 
invariant mass of the initial 1'1' system lies within the "X resonance curve." Clearly 
such processes can occur only if T is sufficiently high that the I' energies reach mx: 
when T :<s mx, the inverse processes become exponentially improbable, as exhibited 
by the behavior (4.1.4) of y eq in this region. The time t appearing in (4.2.1) is 
measured in the c.m.s. of the complete universe: in that frame, the lifetimes of X 

are dilated by factors E x/ mx' and hence the effective X width (r) in (4.2.1) must 
be averaged over the relevant X energy spectrum. Typically, in the X rest frame, 
r=a(m/4), where.J-:X is a Xyy coupling constant. We assume, in keeping with the 
simplest big bang cosmology, that at sufficiently early time, all species of particles 
are in thermal equilibrium, so that at t = 0, Y = y eq in eq. (4.2.1). 

Fig. 2 shows numerical solutions to eq. (4.2.1) with equilibrium initial conditions. 
Deviations from equilibrium are initiated by the expansion of the universe. They 
are relaxed at a rate -(r). Their extent depends on the relative magnitude of this 
relaxation rate, and the expansion rate - T2/ mp of the universe, at a temperature 
T = mx. The larger (r)mp/ m; = amp/ mx is, the smaller the maximal deviations 
from thermal equilibrium are. Notice that, in fig. 2, curves with amx adjusted so 
as to give the same r still differ slightly, because the averaging over time-dilation 
factors in (r) depends on mxJ mp. In the high and low temperature limits, eq. (4.2.1) 

101r-----------r----------,----------,---------, 

y_yeq -2 
----yeq- 10 

103 

165L-----------L----------L----------~------~ 

102 101 100 101 102 

X = miT 
Fig. 2. Deviation of massive particle number density from equilibrium as a function of temperature T 
in the early universe, as calculated from eq. (4.2.1) . The particle is taken to have mass m, and decay 
width r = ima. Y = n/ ny is the scaled number density for the particle. The expansion rate of the 
universe is governed by an effective Planck mass mp = 500 II eV. Unless otherwise indicated, m = 

1015 GeV and a = to. 
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admits of simple approximate solutions. Defining x == miT, eq. (4.2.1) becomes 

dY (r) 
-= - mp-x{Y-Y} d 2 eq· 

X m 
(4.2.2) 

For the averaged width (r) we approximate 

(r) = Im)r = 1m) r = K 1(x) r 
\E \E eq K 2(x) 

(4.2.3) 

= x[1 +h2(log(h) + y) .. . ]r (y = 0.5772) (x« 1) 

(4.2.4a) 

=[1-h+·· ·]r (x » 1) . (4.2.4b) 

At high temperatures, therefore, eq. (4.2.2) becomes [using eq. (4.1.3)] 

dY r 2 1 2 4 
-=-mp-2x {Y-(1-4X +O(x logx))} 
dx m 

(x « 1) . (4.2.5) 

The solution to this equation is 

r 5 7 mp a 5 
Y=I-m --x +O(x logx)=I---x 

P20m 2 m 80 ' 
(x « 1) , (4.2.6) 

so that 

(Y - y eq
) = X2(1 + x 2 -a mp X3

) 

yeq 44 m5' 
(x« 1) . (4.2.7) 

It is clear that the parameter mpr; m 2 governs the magnitude of deviations from 
equilibrium. The numerical results of fig. 2 indicate that terms kept in eq. (4.2.7) 
are adequate until close to the maximum in (Y - yeq)1 yeq at x = xm . Keeping only 
these terms suggests that Xm is obtained as the real root of the equation 

or roughly 

2 mp 3 
8+4x -a-x =0, 

m 

m 
xm =4-- . 

amp 

At low temperatures, (4.2.2) becomes [using eq. (4.1.4)] 

d Y r { 1 1/2 3/2 -x( 15 ( 1 ))} dx=-mPm2x Y-(g7T) x e 1+ 8x +O x 2 , 

(4.2.8) 

(4.2.9) 

(x » 1) . 

(4.2.10) 

In the limit T ~ 0 (x ~ 00) the expansion rate of the universe becomes negligible 
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with respect to the rate of X reactions, so that Y -+ Yeq • For large x, (4.2.10) may 
be solved with this boundary condition to give 

Y_(l )1 / 2 3/2 -X{l (m 2 15) 1 O( 1)} - 87T X e + --+- -+ -
mpr 8 x x 2 ' 

(x»l), (4.2.11) 

2 1 1 ) ~r-+o("""2 
mp x x 

m 1 (1) =4-mp-+O """2 , 
a x x 

(x » 1) . (4.2.12) 

Again, fig. 2 shows that this approximation is numerically accurate. Note that the 
presence of inverse decays remains crucial in determining deviations from equilib­
rium even at large times. If the X decayed freely, with no back reactions, then 
the second term in eq. (4.2.2) would be absent, so that at low temperatures 

Yfree = Y(x = 0) e- rt 

r 2) 
= Y(x = 0) exp( -mp m 2 ~ • (4.2.13) 

On the other hand, the rate for inverse decays is proportional to y eq - exp( - x), 

which falls much more slowly than eq. (4.2.13). The behavior of Yfree in (4.2.13) 
as a function of x depends on the expansion rate (4.1.7) of the universe. If the 
temperature of the universe decreased faster than T -l/t, then the equilibrium 
number density -exp( -m/ T) would fall more rapidly than the free decay probabil­
ity -exp(-Ft), and at low temperatures (large times) Y would approach (4.2.13)*. 

4.3 . EVOLUTION OF LIGHT PARTICLE SPECIES 

In the previous section, we have assumed that neither the massive particle X, 

nor its massless decay products 'Y carry any quantum number, so that both are 
charge conjugation eigenstates. This assumption is clearly inappropriate for particles 
which, for example, carry baryon number. The generation of a net baryon number 
relies on the development of a difference between the number densities of a B "i' 0 
particle and its antiparticle. Consider a massless particle species c which carries 
an absolutely conserved quantum number C = + 1. The antiparticle c carries C = -1. 
In a gas of c, c with net C = 0, the equilibrium distribution of c, c in phase space 
is fe(P) = fc(p) = e - piT. However, if the gas has net C"i' 0, then the equilibrium 
distributions will involve a chemical potential f..t, and become 

+ ( ) = - (p - /L )/T 
Ie P e , + ( ) _ - (p+ /L )/T lCP -e . (4.3.1) 

* This discussion has a potential application to thermodynamic models for hadron production in 
high-energy collisions. If the excited hadron material does not expand rapidly enough, the effective 
p lifetime may be increased by copious p production in inverse decay processes, thereby modifying 
correlations between final pions. 
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The chemical potentials of c and c are forced to be opposite by the presence of 
processes such as cc~ yy, where 'Y has C = O. The distributions (4.3.1) lead to a 
net density of the quantum number C 

Yc == nc - no = 2 sinh (/-t) = 2 /-t , 
ny T T 

(4.3.2) 

where the final approximation holds so long as (nc - no)« ny. The characteristic rate 
at which a gas of c, c with an arbitrary initial configuration will relax into th,e 
equilibrium distributions (4.3.1) is governed by the total rate for interactions of 
the c, C. If, however, some rare interactions of c violate the quantum number C, 
then the effective chemical potential /-t may change at a rate governed by the 
rate for these rare interactions. In the absence of external influences (such as the 
expansion of the universe), a gas of c, c in the presence of C-violating interactions 
will eventually relax into a state of " chemical equilibrium" in which /-t = Yc = O. 
However, the rate of this relaxation will be much smaller than the rate at which 
"kinetic equilibrium" [leading to the phase-space distributions (4.3.1 )] will be 
established. It is therefore sufficient to approximate the c, c phase-space distributions 
by (4.3.1) in investigating their approach to " chemical equilibrium." 

Most particles which undergo B-violating interactions also participate in B­
conserving interactions, some of which are mediated by light bosons ('Y, G, W±, Z o) . 

As discussed above, baryon number generation requires deviations from "kinetic 
equilibrium" which occur when the temperature of the universe falls to the masses 
of the heavy particles which mediate B-violating processes. In this period, the rates 
for B-violating reactions should be somewhat smaller than those for B-conserving 
reactions, primarily because of the larger masses of the mediators of B violation 
(another numerically significant effect is that in most models the number of possible 
B-violating reactions is smaller than the number of B-conserving ones by a factor 
between -t and -t2). Hence, for most light particles carrying baryon number, it 
should be adequate to assume distributions (4.3.1 ) in phase space, but with chemical 
potentials /-t which change with time through B-violating processes. If b denotes a 
light particle carrying B = 1 (so that b has B = -1) then, for small YB == nB/ ny, 

If the b, b undergo the B-violating reactions bb ~ bb and bb ~ bb, then 
. 2 2 

YB = 4ny (uv)(- Y b + Y6 ) =-8ny (uv )Y B , (4.3.4) 

where (uv) denotes the cross section multiplied by the relative velocity v (which 
cancels the 1/ v flux factor in exothermic reactions at low incoming relative 
velocities) averaged over the c.m. energies for the collisions. The factor of 4 appears 
because these processes involve I.dBI = 4. Eq. (4.3.4) implies that any baryon excess 
introduced will be relaxed exponentially to zero by B-violating interactions with a 
characteristic time -1/(ny (uv ») of order of the mean free time between B-violating 
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collisions. Note that B-conserving processes, such as yb~ yb or yy~ bh do not 
affect ¥B; they may change the momentum distribution but not the total number 
density of b, h. 

Now consider a massive particle X which decays to two-body final states f = (flo f2) 

containing b, hand y. First, for simplicity, assume CP invariance, so that the rates 
for decays and inverse decays to and from a state f are equal : r(X ~ f) = r(f ~ X). 
Then the X number density evolves [in analogy with eq. (4.2.1)] according to 

¥x = - L (r(X ~ f»{ Yx - y:q Yf t Yf2} 
f 

= - L (r(X ~ f»{ Yx - y:q (1 + Bf YB)} 
f 

= -<r){Yx - y :q}+ L (r(X ~f)Bfy:qYB' (4.3.5) 
f 

where Bf denotes the total baryon number of the state f. If YB = 0, eq. (4.3.5) 
reduces to eq. (4.2.1). The evolution of the X number density may be obtained 
from (4.3.5) by charge conjugation: 

¥x = -(r){ Yx - y:q } - L (r(X ~ f»Bfy :q YB , (4.36) 
f 

where we have used CP in variance to write r(X ~ f) = r(X ~ 1). The equilibrium 
distributions y :q and y~q are equal since they depend only on mx = mx' From 
eqs. (4.3.5) and (4.3.6) one finds 

(4.3.7a) 

(4.3.7b) 

(In later sections, we shall often use the shortened notation X+ = Y ; , X- = Y ; .) If, 
for example, X ~ bb, so that bb ~ X and X ~ hh, but X~ hh, then an excess of b over 
h (Y B > 0) will result in the production of more X than X in inverse decay processes, 
and therefore an increasing YX' If Ie (r(X ~ f»Bf f' 0, then X, X decays may affect 
Y B • Such processes yield 

¥B=YX L Bf(r(X~f»- Yx LBf(r(X~ f»- y:q L B f(l + Bf YB)(r(f~ X» 
f f f 

+ y:q L B f(l- BfyB)(r(f ~ x»+n y L (Bf,- B f)(l + BfYB)(vu(f~f'» 
f f.f' 

-n y L (Bf, - B f)(1 + Bf' YB)(vu(f' ~ f». 
f,f' 

(4.3.8) 
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Assuming for now CP invariance, so that r(X -+ f) = r(X -+ f) = r(f -+ X) = 
r(f -+ x), vu(f -+ f) = vu(f -+ f), this becomes 

YB = 2 Y ; I Bf(r(x -+ f» - 2 y;q YB I [BtJ 2(r(x -+ f) 
f f 

- YBn,), I [Bf - Bf,f(vu(f -+ f'). 
f,t' 

(4.3.9) 

In the cross sections vu(f -+ f') it is necessary to remove the contribution from real 
intermediate X or X (e.g. f -+ X -+ f) since this is already included by iteration of 
the X decay and inverse decay terms (see I, sect. 4). The first term in (4.3.9) 
illustrates that an excess of X over X may lead to a baryon excess when the X, X 
decay. The second two terms in (4.3.9) are manifestly negative, and cause any Y B 

introduced to relax towards zero through B-violating interactions. It is clear from 
(4.3.9) and (4.3.7b) that, if CP invariance holds, any system with Y ; = Y B = 0 
initially can never develop yB.,c O. As mentioned in sect. 1 (and at length in I), 
generation of a baryon excess from an initially symmetric state requires CP violation. 

CPT invariance demands that 

ru -+ j) = r(J -+ i) , (4.3.10) 

where i denotes the CP conjugate of the state i. The unitarity condition requires 

I ru -+ j) = I ru -+ i) . (4.3.11) 
j 

Eqs. (4.3.10) and (4.3.11) then imply 

I r(i -+ j) = I ru -+ i) = I ru -+ i) = I r(i -+ j) (4.3.12) 

(where we have interchanged the dummy labels j, J in the sums over all states). 
The equality of the first and last forms in (4.3.12) demonstrates the equality of the 
total decay widths for a particle and its antiparticle. If CP invariance were assumed, 
then 

. (4.3 .13) 

so that each partial width for decay into a given mode would be equal for particle 
and antiparticle. For baryon number generation to occur, CP invariance must be 
violated, and the equality (4.3.13) must fail. Using only eqs. (4.3.11) and (4.3.12), 
and not assuming CP invariance, eq. (4.3.8) becomes (keeping for consistency only 
terms of first order in both YB and CP-violating differences between rates): 

YB = (Y; - y;q) I Bf(r(X -+ f) - r(X -+ f) + Y; I Bf(r(x -+ f) + r(x -+ f) 
f f 

(4.3.14) 
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The derivation of the - y~q part of the first term here is somewhat subtle [as 
discussed in detail in I, sect. 4, and particularly eq. (2.4.9)]; it arises from a sum 
of contributions from inverse decay processes and from 2 -+ 2 scatterings mediated 
by a nearly on shell s-channel X or X exchange. The first term in (4.3.14) allows 
generation of a baryon asymmetry by CP-, B-violating X, X decays when deviations 
from thermal equilibrium occur, so that Yx.,t. y~q. The last two terms in (4.3.14) 
act to relax any asymmetry produced: the final Ys depends critically on the size 
of these terms. Allowance for CP violations requires no important changes in eqs. 
(4.3 .7) for the development of the X, X number densities. 

If the rate for X interactions is much smaller than the expansion rate of the 
universe around the time of X decays, then large deviations in the X number density 
from its equilibrium value may occur (as illustrated in fig. 2), and the first term in 
eq. (4.3.14) may dominate. In this case, comparison with eq. (4.3.7a) shows that 

(4.3.15) 

hence, the final baryon number density generated from an initially symmetric state 
is simply 

e . (4.3.16) 

This result is exact if the X, X decay freely, with no back reactions. At high 
temperatures, for zero initial baryon number, the first term in (4.3.14) always 
dominates, so that Y s at early times grows like [using eq. (4.2.6)] 

(x « 1) . (4.3.17) 

This baryon asymmetry leads to an asymmetry in the number of X and X, 

(x« 1) : (4.3.18) 

for the single X species considered here, this asymmetry is never important in the 
development of Y s . As the temperature decreases, and Y s increases, the third 
term in eq. (4.3.14) begins to counteract the first term. The ratio of these terms is 
roughly R =(e/ YS)(Yx-y~q)/y~q. For small x, R =(5/x 3 )m;/(m prJ= 
20mx/(ampx 3 ). This ratio falls below one, indicating that the first term in 
(4.3'.14) no longer dominates, at x = 1. In the region x = 1, the first and third terms 
in eq. (4.3.14) are both large, but cancel to give a net Ys=O. As the temperature 
decreases, R decreases rapidly according to eq. (4.2.12), and the third term in 
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(4.3.14) dominates, so that 

(4.3.19) 

dYB _ _ rx 2 eqy 
- mp 2 x Y x B· 

dx mx 

The exponential fall off in y~q at large x for the most part neutralizes the 
superficially exponential relaxation of Y B; in practice Y B decreases roughly as 1/ x. 
At very low t~mperatures, the presence of y~q in the third term of eq. (4.3.14) 
renders it negligible, and only the fourth term, which results from B-violating 2 ~ 2 
scatterings, makes a significant contribution to Y B. At low energies (J;), 2 ~ 2 
scattering of light particles by exchange of X gives a cross section VCT - a 2S/ m~. At 
very low temperatures, eq. (4.3.14) thus becomes 

. T3 2 T2 
Y B ---2 a -4 Y B , 

7T m x 

(x » 1). 

Hence, when 2 ~ 2 scatterings dominate, Y B falls like 

YB - exp [a 2 mp/(mxX 3 )] , 

(4.3.20) 

(4.3.21) 

which tends to a constant non-zero value as x ~ 00. However, if the behavior (4.3.20) 
sets in at comparatively small x, the final Y B will be much diminished from its 
maximum value, attained at x = 1. 

4.4. SEVERAL MASSIVE PARTICLE SPECIES 

Above, we have considered only a single massive particle species: in realistic 
theories, however, there are usually several massive vector bosons, and often huge 
numbers of massive scalar Higgs bosons. In this section, we first discuss a simplified 
case in which massive bosons X decay only to light particles (and not into other 
massive particles), and assume that B is the only quantum number with non-zero 
chemical potential carried by the light particles. Then the number densities of each 
species X evolve according to eq. (4.2.1), while in eq. (4.3.14) for YB a sum must 
be performed over the possible X, yielding roughly 

YB-I(rx){ex(Y; - y~q)+2Y; -2y~qYB}- YBn.y(CTV)tot, 
x 

Y; -(rx){Y; - y~q}, 

Y; --(rx){Y; +2y~qYB}, 

(4.4.1a) 

(4.4.1b) 

(4.4.1c) 

where we have temporarily dropped numerical factors 0 (1) asociated with X decay 
branching ratios. 
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Consider first the case of N identical bosons X. If each X decayed freely, the 
final baryon number generated would be =Nsx. At high temperatures, Y B is indeed 
increased by a factor N; however, when T - mx, the larger Y B generated at higher 
temperatures and the presence of more X bosons renders the back reaction terms 
in (4.4.1) more important, so that the rate of YB destruction is higher. Writing 
YB = YB/N, eq. (4.4.1a) becomes 

(4.4.2) 

the relaxation time for destruction of baryon number in eqs. (4.3.19) and (4.3.20) 
is reduced by a factor N. Fig. 3 shows the factor by which the final baryon number 
is modified by introduction of N identical boson species. When back reactions are 
unimportant, the effects of each boson add; when back reactions are important, 
the increase in the baryon destruction rate with N causes the final baryon number 
to decrease exponentially. In eq. (4.4.2) and fig. 3 we have assumed that in all 
cross sections, the effects of the N bosons are added incoherently: however, if the 
bosons are genuinely identical, their contributions add coherently, contributing a 
factor _N2 instead of N. Eq. (4.4.1c) suggests that if a larger YB is generated at 
high temperatures by decays of N bosons, then a larger Y; for each boson will be 
produced by inverse decay processes. The typical Y; contributing to eq. (4.4.2) 
will therefore be a factor -N larger than in the single boson case. Nevertheless, 
if the N bosons have identical masses, the Y ; term will probably never be important 
in (4.4.2), as in the one-boson case. 
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Fig. 3. Modification in final baryon number density produced by introduction of N identical massive 
boson species x, as described by eq. (4.4.2). Results for various typical choices of parameters are shown. 
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We now consider the case of several bosons X with different masses and couplings. 
At temperatures T» mx, the total baryon number generated by their decays will 
behave as [ct., eq. (4.3.17)] 

(4.4.3) 

where we have taken rx = imxllx. For the minimal case (see sect. 5) of two species 
with e = el = -e2, a = al = a2, eq. (4.4.3) implies 

(4.4.4) 

if ml = m2 then the effects of the two bosons always cancel, and no baryon excess 
may be generated. If ml and m2 are nearly degenerate, then eq. (4.4.4) implies 
that the final YB will be smaller by a factor =[1- (m2/ ml)4] than would result if 
only one of the bosons were present. If (m2/ ml)4 « 1, then at high temperatures, 
Y B should build up just as if the lighter boson X2 were absent. However, when the 
temperature falls, (Y2 - y~q) eventually overtakes (YI - y~q ). When this occurs, 
the two "driving terms" in eq. (4.4.1) cancel. By this temperature, y~q is compara­
tively small, so that the back reaction term - y~q Y B is not dominant; however, 
y~q is still =1, so that the - y~q Y B is very large. This term is uncanceled when 
(Y2 - y~q) compensates (YI - y~q), and causes Y B to relax exponentially to zero. 
Then, as the temperature decreases further, (YI - y~q) becomes much smaller than 
(Y2 - y~q), and baryon number is generated in the decays of the lighter X2 boson. 
If Xl is more than about 20% heavier than X2 [so that 1- (m2/ ml)4 ~ 0.5], then 
the baryon asymmetry generated by its decays is destroyed by inverse decays to 
X2, and the final YB is close to that obtained in the absence of Xl. Some examples 
are given in fig. 4. This result suggests that the final baryon asymmetry depends 
only on the behavior of the lightest B-violating boson species: asymmetries gener­
ated by heavier species are destroyed by inverse decays of lighter species. The 
result is valid, however, only in the unusual simplified case considered here where 
no asymmetries may occur in quantum numbers other than B (ct. sects. 6 and 7). 

Free decays of a given boson species can generate a baryon excess only if they 
violate CP in variance so that ex -# O. However, even if ex = 0, a B-violating boson 
species can destroy Y B through inverse decay processes. If the lightest B-violating 
bosons do not violate CP invariance, then they will often destroy by inverse decays 
the baryon excess generated at higher temperatures by decays of heavier bosons. In 
some cases, however, this destruction is partly avoided by the Y; terms in YB • 

When baryons are absorbed by inverse decays of lighter bosons, baryon excesses 
may result in Y ; = !( Yx - Yx) -# 0, as suggested by eq. (4.4.1c), if the X couples 
unequally to channels with opposite baryon number [see eq. (4.3.7b)]' Then, even 
in the absence of CP violation, the decays of unequal numbers of X and X may 
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coupling constants mb m2 and al, a2' The dotted line is the result that would obtain if the contribution 

of boson 1 were ignored. 

regenerate a baryon excess. In this way, a baryon asymmetry produced at high 
temperatures may be stored as a Y; of CP-conserving X. 

We have assumed above that heavy bosons may decay only to light particles. In 
realistic models, however, heavy bosons may usually decay to other heavy bosons 
as well as to light particles. At temperatures where a given heavy boson is present 
at sufficient density to be significant, most of its possible decay products will still 
be in "kinetic equilibrium" by virtue of their smaller masses. The phase-space 
densities of these lighter bosons may thus be approximated by their equilibrium 
form, but with a chemical potential, fx(p) = e - (E- .... )IT, fx(p) = e -(E+ .... )IT, so that 

Yx = y~q e .... IT = y~q (1 +~Y;/ y~q + O([Y;/ y~q f)), 

y_ = yeq - .... I T = yeq (1_1 y - / yeq + 0([ y - / yeq ]2)) 
X x e x 2x X X x' 

(4.4.5) 

where y~q = n~q/n~q as in eq. (4.1.2), but with I.t = O. Typically, reactions such as 
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"Yx ~ "YX involving X will only occur with sufficient rate to maintain the X in "kinetic 
equilibrium" [and thereby validate eq. (4.4.5)] if T ~ rnx: when y~q « 1, eq. (4.4.5) 
will become inaccurate, but the actual X number densities in this regime will 
probably be so small as to be irrelevant. The inadequacy of eq. (4.4.5) at low 
temperatures is evident from the difference between eqs. (4.3.18) and (4.2.13). We 
shall use eq. (4.4.5) only in estimating the rates for inverse decays to bosons much 
heavier than those whose densities are approximated by eq. (4.4.5). Such rates are 
[d., eq. (4,2.1)] proportional to the equilibrium number density of the heavier 
bosons, and are therefore negligibly small when (4.4.5) becomes inaccurate. 

Using eq. (4.4.5) where appropriate, the general equation for the evolution of 
the number density of a species A becomes 

y ... =t L (Yx - y~q )(N ... )f(r(X ~ f») 
x. f 

-t L y~q (y:/ y:q )(N ... )c(N .. - Nji.Mr(x ~ f}) 
x .... f 

(4.4.6) 

where the sums on X, /I, /I' but not f..t run over both particles and antiparticles of 
each species. In eq. (4.4.6) (NJf denotes the number of particles of type L in the 
state f. The previous results (4.3.5), (4.3.8), etc. may be derived as special cases 
of eq. (4.4.6). By charge conjugation and subtraction, one obtains from (4.4.6) the 
results [assuming, for consistency, (y:/ y:q) « 1] 

y~ =t(y ... - Y.d 

= L (Y; - y~q )(N ... - N,;:Mr(x ~ f) - r(X ~ f») 
x'! 

+ L y~ (N ... - N,;:)r(r(x ~ f) + r(x ~ f») 
x'! 

- L y~q (y:/ y:q )(N ... - N,;:MN .. - Nji.Mr(x ~ f) + r(x ~ f») 
x .... f 

-n y L {IT (y~q /N)f_ IT (y~q)(N"')f}y:/ y:q) 
I-L ,f ,f' v v' 

x[(N ... -N';:)f-(N ... -N,;:)e][(N .. -Nji.)f-(N .. -Nji.)f'](v(T(f~f'»), (4.4.7) 

where now only the sums on /I, /I' run separately over particles and antiparticles 
of each species. 

The evolution of the density of a quantum number Q may be obtained from 
eq (4.4.7) using 

Yo =tL (Q ... -Q,;:)Y~ =L Q ... Y~ . (4.4.8) 
... ... 
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Given a complete set of independent quantum numbers {Qa} all the y~ may be 
written in terms of quantum number densities by inverting the corresponding 
relation (4.4.8) (the inversion will be singular if the Qa are incomplete or interdepen­
dent). In our analysis of specific grand unified models below, it will be convenient 
to perform such an inversion, since several equations (corresponding to different 
flavors, etc.) then become identical, and need not be treated separately. 

In addition to describing the evolution of quantities such as baryon number which 
are violated only in processes involving heavy bosons, eq. (4.4.7) may also in 
principle be used to estimate the development of quantities such as weak isospin 
or flavor, which are violated by light bosons. In these cases the last two terms in 
eq. (4.4.7) usually dominate. The magnitude of the last term is then determined 
by the high temperature behavior of 2 ~ 2 light boson exchange cross sections, 
which are difficult to define or estimate, as discussed above. 

4.5. CORRECfIONS TO THE BOLTZMANN EQUATION 

The Boltzmann transport equations discussed above describe a sequence of 
uncorrelated reactions between "free" (on-mass-shell) particles, whose cross sec­
tions are independent of the presence of other particles. In this section, we consider 
corrections to this picture, and discuss the limits of its validity. While important in 
principle, these considerations will usually be irrelevant in practice. 

The basic condition for the Boltzmann equation to be valid is that the distance 
traveled by a particle between successive interactions should be much larger than 
the range of a single interaction (or than the average separation between particles) 
[31, 32]. This condition is satisfied only for interactions involving exchange of a 
heavy particle, and consequently of short range. Generation of baryon asymmetries 
requires deviations from thermal equilibrium, and thus typically occurs at tem­
peratures of the same order as the masses of B-violating bosons. At such tem­
peratures, the B-violating reactions satisfy the condition. Other reactions involving 
exchanges of light bosons, do not satisfy the condition; their effects on B-violating 
processes may nevertheless usually be approximated by effective "screened" cross 
sections [I]. 

We consider first processes in which one light particle species i is transformed 
into another such species j through interactions with a massive boson V. The lowest 
order contributing process is ii ~ jj with exchange of a single V in the t-channel. 
The range of this interaction is - 1/ m y. The rate of i ~ j transitions may be described 
by a Boltzmann equation representing a sequence of uncorrelated independent 
ii ~ jj scatterings only so long as the range of these interactions is much shorter 
than the distance between interactions. When this condition is violated, the 
" exchanged" V may undergo several interactions between its " emission" and 
"absorption" . 

Several methods may potentially be used to account for this phenomenon. 
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First, one could introduce "higher order corrections" to the process ii ~ jj involv­
ing additional incoming or outgoing particles. For example, to represent processes 
in which the "exchanged" V scatters once from a species k one could include the 
process iik ~ jjk. This approach may be adequate for first-order corrections; 
however, it rapidly becomes impractical (and formally exhibits a plethora of diver­
gences). 

Second, the averaged effects of interactions with the V may be approximated as 
"screening" the V exchange, and may be parametrized by introducing a modified 
V propagator*. In the simplest approximation, the presence of additional particles 
reduces the mean free path for the V, and generates an effective mass of order the 
inverse mean free path aT. This is the approximation conventionally used in 
attempts to apply an effective Boltzmann equation to electron-ion plasmas. It can 
be adequate only if roughly equal numbers of particles with positive and negative 
"V charges" are present. When this is not the case (as in self-gravitating systems), 
genuinely long-range effects must be included, so that the form, as well as effective 
mass, for the V propagator must be modified. In the early universe, one is typically 
concerned with situations in which both positive and negative charges are present, 
so that the screening approximation is expected to be adequate. (The early stages 
of "cold" universes consisting of degenerate gas of baryons constitute an 
exception **). 

A third approach is to consider a sequence of independent interactions involving 
off-mass-shell V. Then the rate for i ~ j transitions would be given by the rate for 
iV ~ j and i ~ jV averaged over all four-momenta for the i, j and V. The "equi­
librium" distribution of particles in four-dimensional phase space then depends 
not .only on their energy but also on their invariant mass; unlike the case of fixed 
invariant mass, the distribution is not determined from the Boltzmann equation 
without explicit assumptions for the interaction cross sections. The resulting distri­
bution should nevertheless qualitatively have a spread in invariant mass of order 
aT around zero, and an average energy of order T. The Wigner function w(k, x)­
Jd4 ye- ik ' Y(q;\x+h)q;(x-h», where q; is a field operator and ( ... ) denotes a 
statistical average, may be used as a formal definition of the phase-space density 
when the mass-shell condition is not satisfied [33]. [The Wigner functions obey the 
relation J d3 k w (k, x) = n (x) = q; t (x)q; (x ).] Extension of the derivation of the stan­
dard Boltzmann equation for on-shell particles from Wigner functions to allow for 
off-shell particles is, however, very difficult because interaction terms in the 
lagrangian cannot be neglected in comparison to kinetic energy terms. 

* Formal approaches based on path integrals periodic in imaginary time are suitable for calculating 
static correlation functions. These may be used to deduce the V propagator, but may not be used 
directly in calculations on the complete time·dependent system. 

** Methods used to treat gravitational clumping are even inadequate in this case; baryon number may 
be modified by gauge interactions involving arbitrarily small mom'entum transfers, so that their 
long-range effects are still more prevalent. 
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The second approach inserts corrections to amplitudes for V propagation; the 
third approach treats only V interaction probabilities. Interference between ampli­
tudes for successive interactions is typically important when the distance between 
interactions is less than the Compton wavelengths of the interacting particles. The 
distance between interactions, as reflected in the average invariant mass of the 
particles, is probably roughly 0(1/(aT»; the Compton wavelength of the particles 
is 0(1/ T), usually giving a sufficiently large ratio that quantum mechanical interfer­
ence effects are small. 

Most effects on say ii ~ jj resulting from the presence of a background gas decrease 
if the coupling to this gas is reduced. "Identical particle" quantum mechanical 
interference effects survive, however, even ·in the limit of zero coupling. Consider 
the amplitude for a particle to propagate from a point A to B. The presence of a 
background gas allows processes in which an on-shell particle received at B comes 
from the background gas, and is not the one emitted at A. (In the usual thermo­
dynamic approximation of weak coupling, all particles in the background gas are 
on their mass shells.) This suggests that the complete propagation amplitude in 
momentum space is given by [32,34] 

Df(P) = 1/(p2 - m 2 + if:) ± i7T"/(Po)8(p2 - m 2) 

=p. 1/(p2-m2)+i1T(1±f(po))8(p2-m2) , (4.5.1) 

where the upper sign is taken for bosons, and the lower for fermions. This form 
may be derived from the periodicity of the path integral in imaginary time when 
f(po) is an equilibrium distribution; (4.5.1) is an obvious generalization to the case 
of an non-equilibrium (e.g. collisionless) background. Note that in the presence of 
spontaneously broken symmetries, the phase-space density of the condensate field 
may be taken as f(p) - 84 (p). 

All lines in a Feynman diagram carryon amplitude of the form (4.5.1). For those 
corresponding to "external particles" a discontinuity ("cut") is taken, and only 
terms proportional to 8 (p2 - m 2) survive. The presence of the background gas thus 
gives a correction factor (1 ± fi(PO)) for each outgoing particle i, regardless of its 
couplings. These factors account as usual (see subsect 2.4.2 of I) for stimulated 
emission and Pauli exclusion effects, and are important only in regions of phase 
space with high densities. The factors are necessary to obtain the correct Fermi­
Dirac and Bose-Einstein equilibrium distributions. Corrections appear not only on 
explicit external lines, but also for any " internal lines" whch may reach their mass 
shells in kinematic integrations. (This situation occurs in the calculation of CP 
violation described in sect. 5). Such factors are essential in maintaining the unitarity 
relation (I.A.22) for reaction rates, and enabling Boltzmann's H theorem to be 
proven even though the effective interaction cross sections depend on the ambient 
particle density. 

When interactions occur in the background gas, "identical particle" effects may 
occur not only for on-shell particles, but for any particles with counterparts in the 
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background gas. When the interactions are rapid, "identical particle" effects become 
indistinguishable from the general scattering processes discussed above. 

It is impossible to give reliable numerical estimates of the corrections to the 
Boltzmann equation outlined above. Several simple cases are, however, amenable 
to treatment. 

"Identical particle" corrections may be calculated in the approximation of a 
weakly interacting background gas (see subsect. 2.4 of I). For example, the Born 
approximation decay rate for a particle of mass m is modified in the presence of 
an equilibrium background gas with temperature T by a factor [1 ± e - m/ 2Tr 2 • The 
correction is small except perhaps for a background Bose gas close to condensation. 

As a next example, we consider the first corrections to the Boltzmann equation 
(4.2.1) for the development of the X number density due to decay and inverse 
decay processes. Eq. (4.2.1) includes only O(a) reactions. At O(a 2 ), reactions such 
as 'Y'Y ~ XX, xx ~ 'Y'Y and 'YX ~ 'YX (and perhaps xx ~ XX) may also occur (we take 
here for simplicity X == xl The processes 'YX ~ 'YX and xx ~ XX serve only to 
redistribute the X in phase space, without changing their total number, and thus 
do not contribute to Y. Including the processes 'Y'Y~ XX and XX~ 'Y'Y, eq. (4.2.1) 
becomes* 

(4.5.2) 

For unstable particles (with, say, r-am), the second term in eq. (4.5.1) is usually 
irrelevant at low temperatures, since its contribution -e - 2 x while the first term 
_e- x • At high temperatures, however, the second term may become large. In a 
formal expansion in powers of a, O'(XX ~ 'Y'Y) in eq. (4.5 .1) should be evaluated for 
free X and 'Y. The high-energy behavior of this "free" cross section depends on 
the spin j of X according roughly to (see I, sect. 3) VO' - (a 2/ s )(s/ m 2)i, where ,j~ 
is the XX c.m.s. energy. (In particular cases, VO' may decrease faster with s: for 
example, if X has spin t and 'Y spin 1, then vO'-(a 2/s) log (s/m 2).) Assuming 
roughly equilibrium phase-space distributions, (s) = 18 T2 for T» m. Using the 
"free" cross section then implies that the second term overwhelms the first at high 
T. However, as discussed above, the "free" cross section is no longer adequate at 
large T: screening effects must be included. Except for spin zero X, these consider­
ably reduce (vO') and suggest an effective cross-section (vO') - a/ T2 rather than 
(vO')_a 2/m 2. Taking r=!mal and (vO')=Aa~/T2, so that ny(vO')=A(a2/7r)2T, 
eq. (4.5.2) becomes 

~~ = _( ~l)( :P)X2{y _ yeq}_ AC::f (:P){y2 -(yeQ)2}, (x « 1) . 

(4.5.3) 

* Note that if X is stable, and can be produced or destroyed only in pairs, then the first term in (4.5.1) 
is absent, and the second term gives the complete Boltzmann equation for the evolution of its 
number density. This is approximately the case for the heavy right-handed neutrino of the SO(lO) 
model, discussed in sect. 7 and in ref. [35]. The solution of eq. (4.5 .1) for stable particles in such a 
case was discussed in ref. [36]. 
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The approximate solution to this equation at high temperatures is 

(4.5.4) 

For x = m/T~ (X2/J(Xb the O(X~) 2~ 2 scattering term overwhelms the O(Xl)1 ~ 
2(2 ~ 1) decay (inverse decay) term. Nevertheless, at such high temperatures, the 
total (Y - yeq)/ yeq _ ex, and is thus presumably small. Baryon number generation 
occurs predominantly when deviations from equilibrium are maximal. A rough 
estimate of this temperature is given by the lowest stationary point of (4.5.3) [d., 
eq. (4.2.8)]: so long as (X~ ~ (Xl the decay (inverse decay) term dominates in this 
region. Note, however, that the coupling constants (Xl. (X2 may have very different 
magnitudes. Any charged particles must undergo 2 ~ 2 scatterings with a characteris­
tic coupling constant (X2;?; (XQED. Coupling constants for decays of gauge vector 
bosons must be of the same order: however, for Higgs bosons or heavy fermions, 
it is conceivable that the effective (Xl « (X2. It appears (see sect. 5) that for Higgs 
bosons, this possibility is probably not realized. Nevertheless, as discussed in ref. 
[35] and mentioned above, it may well occur for weakly interacting heavy fermions. 

4.6. THE BOLTZMANN EQUATION IN NON-STANDARD COSMOLOGIES 

In most of this paper, we approximate the early universe as homogeneous and 
isotropic. However, observation of structures at least up to clusters of galaxies in 
the present universe demonstrates that this Friedmann approximation is not exact. 
Most theories for the origin of galaxies suggest that any density fluctuations should 
nevertheless be small at the times when baryon asymmetry would be generated. 
In this section we discuss consequences of possible corrections to the Friedmann 
approximation at high temperatures. 

We first discuss the form of the Boltzmann transport equation for an arbitrary 
cosmology. The Boltzmann equation may be written schematically in the form 

L[f] = C[f]. (4.6.1) 

The right-hand collision term depends only on the phase space density f at a 
particular space-time point, and is therefore independent of the large-scale proper­
ties of space-time. On the other hand, the left-hand term depends on space-time 
derivatives of the phase space density, and is therefore potentially sensitive to the 
properties of space-time. The general relativistic covariant form of the Liouville 
operator is [41] 

t- ,, _a_+ dp" _a __ r " f3 ,,_a_ 
- Pax" dT apex f3"P Pap" , (4.6.2) 
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where T is the proper time, and the r are the Cristoffel symbols (affine connections) 
which enter the covariant derivative. In a comoving frame, apa / iJT = 0, and the 
Liouville operator is 

A aa ,.,a /3ya 
L=p -a- 1 /3yP p -a' aX ap 

(4.6.3) 

In the simplest approximation of a homogeneous isotropic universe, and setting 
the curvature parameter k = 0, the metric has the Robertson-Walker form, in which 
the rgo = rgi = 0, rt = RRgij where grr = 1, g"" = ,2, gq,q, =,2 sin2 {} and R is the 
Robertson-Walker scale parameter. In addition, the phase space distribution 
t(p, x, t) depends only on the magnitude of p (or equivalently E), and the time t. 
In this case, the Boltzmann equation thus becomes 

(4.6.4) 

In a comoving frame, P = Rip I, so that 

1 at R IPl2 a[ 1 
EL[f(E, t)] = at - R IF aE = E C[f(E, t)]. (4.6.5) 

The total number density is obtained as an integral over momenta n = J [(E, t) d3 P. 
Inserting this into eq. (4.6.3), integrating by parts, and dropping the E = ° and 
E = C() surface terms, one obtains 

(4.6.6) 

This result has the simple physical interpretation that the expansion of the universe 
affects the number density only by increasing the volume containing a fixed number 
of particles. 

The simplest non-standard modification to the Friedmann-Robertson-Walker 
cosmology consists in allowing anisotropy but retaining spatial homogeneity. The 
Bianchi classification [2] gives the possible metrics in such cases. For example, in 
Bianchi I cosmologies ds 2 = dt2 - [ai dx i + a~ dx ~ + a; dX ; ]. (When all the scale 
parameters ai = R, this metric reduces to the k = ° Robertson-Walker metric.) The 
derivation of the Boltzmann equation in this case is analogous to that given above, 
except that the volume expansion term 3R/ R is replaced by V/ V where V = ala2a3. 
It appears in fact that in all homogeneous cosmologies, expansion of the volume 
element is the sole effect of the expansion of the universe on the form of the 
Boltzmann transport equation. The rate of expansion of the volume is given in 
general by {} = Ua ;a, where u a is the fluid velocity in a comoving frame, and the 
semicolon denotes covariant differentiation. In a comoving frame, the complete 
velocity 4-tensor Ua ;/3 at fixed time may be decomposed into a traceless symmetric 
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part (J'a{3 (the shear tensor), an antisymmetric part W a {3 (the vorticity tensor) and a 
trace term {} (the volume expansion rate) . The Einstein equations may be used to 
relate these quantities to the fluid energy density p and the local Ricci curvature 
scalar * R at fixed times (on spacelike hypersurfaces orthogonal to the fluid flow 
with W = 0) [38] 

(4.6.7) 

where (J' = ! ((J'a {3(J' a{3 ) 1/ 2, and A is a possible cosmological constant. With the standard 
assumptions (J' = W = A = 0, this equation reduces to the usual Robertson-Walker 
result {} = 3RjR, and *R = -6kR - 2L - 2, where R is the Robertson-Walker scale 
parameter, and L is the curvature scale inserted to scale the curvature constant 
k = ± 1.0. The fact that this curvature term is negligible in the present universe shows 
that it may be entirely ignored in the early universe. Although the cosmological 
constant is now small, it is possible that restoration of spontaneously-broken 
symmetries in the very early universe could have allowed it to be important then. 
This possibility has been discussed at length elsewhere [43 , 44]. 

Changes in the expansion rate {} which enters the Boltzmann equation may be 
parametrized by modifying the temperature-time relation, and may often be accoun­
ted for simply by changing the effective Planck mass. The consequences of such 
changes were discussed briefly in I and treated in detail in [38]. While they affect 
the rates of baryon number production, the changes cannot lead to deviations from 
thermal equilibrium in situations where such deviations would otherwise not occur. 

In the discussion above, we have made the assumption of homogeneity which 
implies that all phase space densities depend only on p and t and not on x. In the 
generic case, one must allow inhomogeneity. Unless any inhomogeneity initially 
present or generated in the early universe is rapidly damped out, it will evolve into 
a universe far more inhomogeneous than is observed. Nevertheless, for a brief 
period, perhaps around the time of a symmetry-breaking phase transition, 
inhomogeneity may have existed. In such a case, the Boltzmann equation in general 
involves the spatial and momentum derivatives of the phase-space densities. These 
additional terms lead to deviations from thermal equilibrium even for massless 
particle densities. However, in the ideal gas approximation of infinitely rapid 
collisions, the modification to all massless boson and all massless fermion densities 
will be identical. For baryon number generation to occur, it is necessary not only 
that there should be deviations from equilibrium phase space densities, but also 
that these deviations should be different for different species of particles. It is 
possible that the deviations may be different for massless bosons and fermions , so 
that baryon number production may occur as a result of interactions involving both 
bosons and fermions . 
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5. Basic parameters for baryon number generation 

5.1. GENERAL RESULTS 

In this section we describe the calculation of the parameters which govern the 
generation of a baryon asymmetry from the basic couplings in a grand unified gauge 
model. 

The basic parameter which enters the Boltzmann transport equations of sect. 4 
is the average baryon number produced in the free decays of an equal mixture of 
particles X and their antiparticles X: 

(5.1.1) 

Here, as in sect. 4, r(X ~ f) denotes the partial width for decay of X to the final 
state f, r x is the total X decay width and Bf is the baryon number of the state f 
(so that Bf = - B;} 

In treating the statistical mechanics of baryon number production it is convenient 
to choose a basis so that the X are mass eigenstates. We assume that the X are not 
CP eigenstates (which is assured if X and X have distinct conserved quantum 
numbers*). Hence the decay process itself must exhibit CP violation in order for 
Rx to be non-zero. As discussed below (and proved in general in appendix B of 
I), this requires interference between the Born amplitude for the decay and a one 
loop correction with an absorptive part [6]. In addition, the couplings of the particles 
participating in the decay must be relatively complex. 

We consider first the simplest non-trivial case-: two massive bosons, X and Y, 
coupled to four fermion species i h i 2 , i3 and i4, through the vertices of fig. 5 and 
their CP conjugates**. In the Born approximation, these vertices lead to the decay 
processes X ~ t 1 i 2 , X ~ t3i4' Y ~ t3ih Y ~ t 4i 2 and the corresponding CP conju­
gated processes. We denote the coupling in, for example, the vertex fig. Sa by 
(i2IXli1) so that the CP-conjugate coupling becomes (i2 IXli 1)* = (i1Ixt li2). The 
quantity X here may be considered as a matrix of couplings in the space of possible 
fermion states ij • Note that the set of vertices in fig. 5 is invariant under the combined 
transformations X ~ Yand i 1 ~ i4 • This invariance will be used below to obtain 
results for Y(Y) decays from those for X(X) decays. The couplings (ijIXlik ) do not 
include Lorentz structure which determines, for example, which helicity states of 
the fermions ij may contribute. 

* This is the case whenever X decays into several light fermion states with different baryon numbers, 
as discussed in sect. 2 . 

.... These vertices may be represented schematically by the interaction lagrangian 

L - iixi, + i!Xi3 + ii Yi3 + ij Yi4 + h.c. , 

where all Lorentz structure has been suppressed. 
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X 

(0) 12 ( b) 14 

13 14 

Y Y 

(e) II (d) 12 

Fig. 5. Couplings of bosons X and Y to fermion species ii in the simplest case for which B generation 
is possible. These couplings correspond to possible decays of X and Y in the Born approximation. 

Born approximations to the X and Y decay rates may be obtained directly from 
the vertices of fig. 5. For example 

r(X ~ iz [1)Born = I~zl(izIXli1)lz 

==I~z(izIXli1)(i1Ixtliz). (5.1.2) 

Here I~z accounts for the kinematic structure of the process X ~ iz [1; it gives the 
complete result if all couplings are set to one. From eq. (5.1.2) it is evident that 
r(X ~ iz [1)Born = reX ~ [zi1)Born, and hence Rx vanishes in this approximation. 
To obtain a non-zero result for R x , one must include corrections arising from 
interference of the one-loop contributions shown in fig. 6 with the Born amplitudes 
of fig. 5. Consider, for example, the interference of the diagrams of fig. 5b and fig. 
6a. The resulting terms in the squared amplitude is shown as fig. 7a. There the 
dotted line is a "unitarity cut"; each cut line represents a physical on-mass-shell 
particle. The amplitude for the diagram fig. 7a is then given by 

IW4 [(i31 y t li1)(i4IXli3)(izl Yli4)][ (izIXli1)]* 

(5.1.3) 

where the kinematic factor I~V4 accounts for integration over the final-state phase 
space of iz and [1 and over the momenta of the internal i4 and [3. The complex 
conjugate diagram, fig. 7b, has the complex conjugate amplitude 

(IW4 )*[(i31 ytli1)(i4IXli3)(izl Yli4)]*(izIXli1) 

(5.1.4) 

Introducing notations for quadratic and quartic combinations of the couplings of 
fig. 5, 

Eik = (Eid t == I(ik IXlijW = (h IXlij)(ijlx t lik ) , 

fJ1234 = (i31 y tli1)(i1Ixtliz)(izl Yli4)(i4IXli3) , (5.1.5) 
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x 

(0 ) 

(e) (d) 

Fig. 6. One-loop corrections to the decay amplitudes for the bosons X and Y. The couplings of X and 
Y to the fermions i j are shown in fig. 5. 

one may write the one loop approximation to the X ~ i2 11 decay rate obtained 
by adding the results (5.1.2), (5.1.3) and (5.1.4) as 

(5.1.6) 

In the Born approximation, the kinematic factors Ix are always real. However, 
the kinematic factors Ixy for loop diagrams may have an imaginary part whenever 
any internal lines have sufficiently small masses that they may propagate on their 
mass shells in the intermediate state (and thereby sample the 1/ is piece of the 

(a) 14 ( b) 12 14 

1 . 
3: 13 

V;tvv.. 
X 

(c) 12 i4 : 
(d) 14 12 

Fig. 7. Squared amplitudes for one-loop corrections to X and Y decays, obtained as interference terms 
between the diagrams of figs . 5 and 6. The dotted " unitarity cut" specifies the physical final state fermions . 
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propagator 1/(p2-m2+it:)). In the one-loop diagrams of fig. 7, this occurs when 
the threshold conditions 

(5.1.7) 

(5.1.8) 

are satisfied. With light intermediate fermions, Ixy thus always exhibits an imaginary 
part. 

We now consider the CP-conjugate decay X~ i 2 i 1 • To obtain the CP-conjugate 
amplitude all couplings must be complex conjugated. The kinematic factors 1 are, 
however, unaffected by the CP conjugation (this is manifest in the fact that reversal 
of the direction of fermion lines in a closed loop does not affect the associated 
Dirac trace). Thus, to one-loop order, the complete result for rex ~ i 2 i 1) becomes 

(5.1.9) 

The diagrams for the decays X ~ i4i3 and X ~ i4i3 are shown in figs. 7c and 
d, respectively. The loop diagrams differ from those for the decays X ~ i2 i1 and 
X ~ i2i1 only in that the unitary cut is taken through the i3 and i4 rather than the 
i1 and i2 lines. In analogy with eqs. (5.1.8) and (5.1.9), we thus obtain 

reX~ i4i3) =1~4E34 + 1~~2flt234 + (1~~2)*fl1234' 

reX ~ i4i3) = 1~4 E34 + 1~~2 fl1234 + (I~~2 fl 1234) * . 

(5.1.10) 

(5.1.11) 

Using the results of eqs. (5.1.7) and (5.1.11) together with eq. (5.1.1) we can 
compute the average baryon number produced in the free decays of an equal 
number of X's and X's. The one-loop contribution to this asymmetry from the 
i J2 and i1i2 final states is given by 

12_( _ )[reX~i2i1)-rex~i2i1)] 
Rx - B;2 B;I [reX ..) rex .. )] ~ 1211 + ~ 1413 

[ 1234 n ( 1234 n )* 1234 n* (1234)* n ] _ (B _ B ) 1 xy J.&1234 + 1 XY J.&1234 - 1 Xy J.& 1234 - 1 XY J.&1234 

- ;2 ;1 [1~2E~2+1~4E~4] 

_ 4(B;2- B;J I [11234]1 [n ] -- rx m Xy mJ.&1234· (5.1.12) 

The analogous result for the 34 final state is 

R 34 _ 4 (B;4- B ;3) I [13412 ]1 [n* ] 
x - - rx m xy m J.&1234 

_4(B;4- B ;3) I [13412]1 [n ] - rx m xy m J.&1234 • (5.1.13) 

The kinematic factors 1m [IW4] and 1m [I~~2 ] are obtained from diagrams 
involving two unitarity cuts (as in fig. 8): one through the i1 and i2 lines and the 
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x 

Fig. 8. "Double-cut" diagram representing the CP-violating combination of amplitudes for X decay. 
The dotted lines denote " unitarity cuts". 

other through the i3 and i4 lines. The resulting quantities are invariant under the 
combined interchanges i1 ~ i3 and iz ~ i4 and consequently are equal: 

(5.1.14) 

Hence R5t / R~4 = (Bit - B i2)/(Bi4 - B i3), as expected. Notice that, if all intermediate 
fermions have zero mass, then the I~z~4 are completely independent of their upper 
indices; corrections from fermion mass differences are of order (mr/mx)z. 

Upon adding the contributions (5.1.12) and (5.1.13) we obtain the final result 

(5.1.15) 

The conditions for the kinematic factor 1m [I~Z~4] to be non-vanishing were given 
in eqs. (5.1.5) and (5.1.6). A further condition for Rx to be nonvanishing is that 
both X and Y interactions violate baryon number. If X couplings were 
B-conserving, the two possible final states in X decay would have the same baryon 
number, so that 

(5.1.16) 

and Rx would vanish. Similarly, if Y couplings were B-conserving, 

(5.1.17) 

and Rx would again vanish. Thus both X and Y couplings must be B-violating to 
obtain a non-vanishing Rx. This is as implied by the general theorem given in 
appendix B of I. Notice that for (5.1.15) to be nonvanishing, at least two of the ij 

must be distinct. 
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The asymmetry R y produced in Y and Y decays may be obtained from (5.1.15) 
by the transformation X ~ Y, i3 ~ i4, yielding 

and so 

= - ;y 1m [fl l234 ] 1m [I~\t2 ][Bj4 - B j3 - (B j2 - BjJ] , 

(5.1.18) 

(5.1.19) 

It follows that the average baryon number produced in the free decay of an equal 
number of X, X, Y and Y is 

(5.1.20) 

Even if the Rx and R y are non-vanishing on their own, for the total to be non-zero 
the terms in the brace must not cancel. This requires that the particles X and Y 
be distinct either in mass or in the Lorentz structure of their couplings (e.g. one 
vector and one scalar) and that r x ~ r y. The brace typically vanishes if X and Y 
are in the same irreducible representation of an unbroken symmetry group. 

If more than the minimal set of four fermion species are present, the result 
(5.1.20) must be summed over all possible contributing {ij}. It must also be summed 
over all possible (X, Y) pairs. Whenever particles have equal masses on the scale 
of mx, the corresponding kinematic factors may be factored out of the summation. 

Fig. 9. A diagram involving three-boson coupling potentially contributing to CP-violating X decays. 
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The individual baryon asymmetry parameters Rx for X decays enter the complete 
Boltzmann transport equations discussed in sect. 4. These parameters alone deter­
mine the final baryon asymmetry only if back reactions (inverse decays) and 2 -+ 2 
scatterings are ignored. The total contribution to the baryon asymmetry from decays 
of two species X and Y of bosons is thus not in general a simple sum of their 
corresponding parameters R x and R y : if X and Y have different masses, the extent 
of back reactions is different in the two cases. If, however, X and Yare degenerate 
in mass, the sum given in eq. (5 .1.20) represents their total contribution. 

In the derivation of eq. (5.1.15) the particles ij were assumed to be light fermions 
of definite baryon number. The result nevertheless remains approximately valid 
for any particles ij so long as their masses are much smaller than mx. Some of the 
ij may for example be bosons, which enter through a three-boson coupling vertex, 
as illustrated in fig. 9. The B j in eq. (5 .1.15) should usually be replaced by the 
average baryon numbers generated in the decays of the corresponding ij • 

The discussion above concerns the one-loop contibutions to baryon asymmetry. 
In the generic case, an asymmetry occurs at this order if it is to occur at any order. 
However, in some simple models (such as the minimal SUeS) model treated in 
subsect. 6.2) the one-loop contribution vanishes, but there are higher loop contribu­
tions which are non-zero: in such cases the detailed analysis given above must be 
suitably generalized by summing over all possible unitarity cuts through the inter­
mediate lines. 

5.2. CONSEQUENCES FOR GAUGE MODELS 

In this section, we give some general results on the value of the CP-violating 
parameter 1m en] defined by eq. (5.1.12) in gauge models. 

As demonstrated in sect. 3, the couplings of gauge vector bosons to fermions 
may always be taken real and diagonal. Couplings of Higgs bosons to fermions and 
to each other may, however, be complex and induce mixing. After spontaneous 
symmetry breaking, these couplings may give rise to CP violation and mixing in 
the fermion and Higgs boson mass matrices. If fermion masses are neglected, 
diagrams involving only fermions and gauge vector bosons (fig. 10) can therefore 
yield no CP violation. For CP violation to occur in the decays of superheavy bosons, 
it is thus necessary for either explicit Higgs bosons or super heavy fermions with 
complex mixing angles to be present. 

Some CP-violating effects involving Higgs bosons may be investigated before 
spontaneous symmetry breakdown. If a particular set of Higgs bosons allows CP 
violation in the unbroken theory, this CP violation will remain possible in the 
broken theory. 

Consider first the case of scalar boson (S) exchange in vector boson (V) decay, 
as illustrated in fig. 11. The diagonal nature of the gauge couplings requires that 
the fermions it and i2 lie in the same irreducible representation ft of the gauge 
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v v v 

Fig. 10. Diagram for vector (gauge) boson 
exchange in vector boson decay. 

Fig. 11. Diagram for scalar (Higgs) boson 
exchange in vector (gauge) boson decay. 

group (and i3 and i4 in f2)' Scalar bosons contributing to fig. 11 must lie in irreducible 
representations Sa such that 

(5.2.1) 

In the absence of mixing between scalar bosons the exchanged S propagator is 
diagonal. Hence in the notation of subsect. 5.1, the coupling (i2ISli4) at one end 
of the exchanged S line is simply the hermitian conjugate of the coupling (i3ISt li1) 
at the other end: the product of these couplings is thus real, and no CP violation 
may occur. 

CP violation may be introduced into fig. 11 through mixing terms in the S 
propagator arising from mixing which then causes the exchanged mass eigenstate 
scalar boson S to become in general a linear combination of several components 
with the same conserved charges. These components may occur within the same 
irreducible representation of the gauge group, or in different irreducible representa­
tions Sa . [Examples of both kinds appear in the illustrative SO(10) models considered 
in sect. 7.] If a model contains only a single B-violating Higgs boson no such mixing 
is possible, and CP violation cannot occur at the one-loop level through scalar 
boson exchange in vector boson decay. This is the case for the minimal SU(5) 
model discussed in subsect. 6.3. In the general case, we decompose the mass 
eigenstate field S into its unbroken group eigenstate components according to: 

(5.2.2) 

We shall assume for now that just two components are present; the generalization 
to an arbitary number will be immediate. In this case, 

1m [fl 1234] = 1m [Tr [(i3IS t li1)(i2ISli4)]] 

= 1m [Tr [(a t (i3lsi li1)+ a! (i3IS; IiI») 

X (al (i2IS1Ii4) + a2(i2IS2Ii4) )]] , (5.2.3) 



I . A. Harvey et al. / Cosmological baryon asymmetry 57 

where we have dropped the real factor corresponding to the gauge boson couplings, 
and the trace represents a sum over all fermion representations (usually " families"). 
Since il> i2 c fl and i3, i4 c f2' the couplings (i2IS" li4 ) and (illS" li3) are related by a 
real Clebsch-Gordan coefficient : 

(5.2.4) 

Hence 

1m [12] = 1m [Tr [(a! (i3ISllil)af (i3lSi li l)( Clal (i l ISl li3) + C2a2(ilIS2Ii3) )]] 

= 1m [Tr [( C2a! a2(i3lS i li l)(i l IS2Ii3) + Clala f (i3IS; li l)(il ISI!i3)]] 

(5.2.5) 

Thus, if Cl = C2 , 1m [12] vanishes. This effect occurs when all Higgs bosons coupling 
to fermions have identical group charges, and are distinguished only by a "family" 
index. This is inevitable if all relevant Higgs bosons lie in replications of the same 
irreducible representation of the gauge group, and if this representation contains 
only one B-violating component. Examples of cases in which Cl,e C2 are the SU(5) 
model with a 5H and a 45H (case B in subsect. 6.4) and the SO(10) model with a 
10H and a 120H or a 126H . In these models, CP violation may occur at the one-loop 
level from scalar boson exchange in vector boson decay. Notice that since in the 
absence of spontaneous symmetry breakdown, only one of the aj is non-zero, the 
result (5.2.5) yields no CP violation in this case. 

The case of vector boson exchange in scalar boson decay (illustrated in fig. 12) 
is exactly analogous to the case of scalar exchange in vector decay discussed above. 
When fig. 12 contributes, it is often important by virtue of large value of the vector 
couplings relative to the scalar ones. 

We now consider CP violation arising from scalar boson (S') exchange in scalar 
(S) boson decay, as illustrated in fig. 13. If only one B-violating Higgs boson is 
present, then the decaying and exchanged boson must be identical, and the results 
of subsect. 5.1 show that fig. 13 can give no CP violation. This is the case for the 

-->­
S 

-7-­
S 

Fig. 12. Diagram for vector (gauge) boson 
exchange in scalar (Higgs) boson decay. 

--r­
S 

--r­
S 

Fig. 13. Diagram for scalar (Higgs) boson 
exchange in scalar boson decay. 
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minimal SUeS) model. (However, as described in subsect. 6.3, CP violation may 
occur in higher order diagrams.) We consider for now the case in which all fermions 
are effectively massless. Then, in analogy with (5.2.1), the contributing scalar bosons 
must appear in representations Sa such that 

(5.2.6) 

If all the left-handed fermions lie in the same complex irreducible representation, 
f, (or sequence of such identical representations) , then fl = f2 = f3 = f4 and these 
constraints become 

f ® f::::> Sa, s ~, Sa, S ~ . (5.2.7) 

For low-dimensionality representations, this requires Sa and s~ to be real representa­
tions. hence in SO(10) models where all fermions lie in the 16 representation, only 
10H or 120H may contribute to fig. 13; the 126H which appears in 16f® 16f is 
complex. [For high-dimensional fermion representations, some complex Higgs 
representations may satisfy (5.2.7): an example is the 126H occurring in the sym­
metric product 144f ® 144f of SO(10).] After spontaneous symmetry breakdown, 
mixing between scalar bosons may occur, and the constraints (5.2.6) are no longer 
applicable. Thus in both SUeS) models with several Higgs representations coupling 
to fermions, and in SO(10) models, fig. 13 can yield CP violation. 

The discussion above has assumed that all relevant fermion species are effectively 
massless. With gauge groups such as SO(10) or E(6), it is common for fermions 
with SU(2) singlet and thus potentially large mass terms to exist. The effect of such 
fermions in intermediate states of figs . 10 through 13 is always suppressed by 
O(ml/m~). If only a single massive fermion exists [as in SO(10) models], then it 
can introduce no CP-violating effects into fig. 10; a single massive fermion is, 
however, sufficient to generate CP violation in figs . 11 and 12 even when (5.2.5) 
vanishes. 

6. SU(5) models* 

6.1. INTRODUcnON 

SUeS) [42] is the simplest group (and the only one of rank 4) which contains as 
a subgroup the observed low-energy symmetry group SU(3)c ® SU(2k ® U(l)y. 
The gauge vector bosons transform according to the adjoint representation 24v. 
Fermions come in families, each consisting of 15 left-handed fields, transforming 
under the reducible representation S + 10. Each family has the generic form 

Sf = {D~, lIL' Ed 

10f = {UL " DL , U~, ED . (6.1.1) 

* Some of the results of this section are summarized in ref. [41]. 
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where the vector (bold face) indicates transformation as an SU(3) triplet. The 
superfix c denotes charge conjugation (see the appendix). 

The SUeS) symmetry is spontaneously broken to SU(3)c @ SU(2)L @ U(l) y by a 
24H representation of Higgs bosons. The SU(3)c@SU(2)L@U(1)y singlet members 
of this representation are postulated to attain a large vacuum expectation value 
_1015 GeV, and all surviving members of the representation receive large masses. 

Lorentz and SUeS) invariance constrain the possible Higgs representations which 
may couple to fermions to be those appearing in the decompositions [d. (S.2.1)] 

5 (8) 5=10+lS, 

5 (8) 10 = S +4S , (6.1.2) 

10 @ 10 = (5 + SO)s + (4S)A . 

With the quantum number assignments (6.1.1) only the S, lS, and 4S representations 
contain a neutral member which could receive a vacuum expectation value and 
hence contribute to fermion masses. The decompositions (6.1.2) show that SH and 
4SH Higgs repesentations lead to Dirac masses for the charged fermions. The 
presence of a lS H would generate a Majorana mass for ilL which cannot "naturally" 
be kept small: the lSH is thus usually excluded. The minimal set of Higgs representa­
tions for an SUeS) model is thus 24H together with SH or 4SH. Additional SH and 
4SH may be added as required to obtain a suitable fit to the observed fermion masses. 

The reducibility of the fermion representation implies that even with a single SH 
Higgs representation two independent Yukawa couplings exist: one to 5r@ lOr, 
giving D and E masses (equal at unification energies for the case of a single SH), 
and one to 10r @ lOr, giving the U mass. The complete lagrangian for couplings to 
fermions may be written for the minimal model in the form 

L=.J~g24v· [(5r)i' (Sr)i+(10r)i' (lOr);] 
'T --

+(hU)ij' (lOr); . (10r)j . SH+ (hO)ij . (Sf)i . (10r)j . SH, (6.1.3) 

where g is the SUeS) gauge coupling consant, hu and ho are the two Higgs Yukawa 
couplings, and i and j are fermion family indices. The couplings embodied in this 
lagrangian are illustrated in fig. 14. 

lOt lOt 

~ I ~ 
lOt ... ~t 

Fig. 14. Couplings of fermions (f) to gauge (V) and Higgs lH) bosons in the minimal SU(5) model. 
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The SU(S) representations discussed here may be decomposed according to the 
embedding SU(S)::J SU(3)c @ SU(2)L @ U(1)y as 

S = [3,1,1]+[1,2, -!], 

10 = [3, 2, -~]+[3, 1, ~]+[1, 1, -1], 

IS = [6, 1, ~]+[3, 2, -~]+[1, 3, -1], 

24 = [8,1,0]+[3, 2, -~]+[3, 2, ~]+[1, 1,0]+[1,3,0], 
(6.1.4) 

4S = [1, 2, -!] + [8,2, -!] + [6, 1,1] + [3, 1, -~] + [3, 1,1] + [3,3,1]+ [3, 2J], 

SO = [6,3, -1] + [8, 2,!] + [3, 2, -~] + [6, 1, ~]+ [3, 1, -1] + [1, 1, -2], 

where, in [i, j, k], i denotes the SU(3) representation, j the SU(2) representation, 
and k the U(I) charge Y, given by Y = T3 - Q [where Q is the electric charge and 
T3 is the diagonal generator of SU(2) normalized so that Tr[T3f =! in the S 
representation of SU(S)]. 

In subsect. 6.2 we use the quantum number assignments (6.1.4) to determine 
the minimal set of independent number densities; we then derive the Boltzmann 
transport equations which these satisfy. In subsect. 6.3 we consider CP violation 
in the minimal SU(S) model; subsect. 6.4 gives results for baryon number generation 
in this model. CP violation in SU(S) models with additional Higgs representations 
is analyzed in subsect. 6.S, and results for baryon number generation in some 
sample models are given. 

6.2. BOLTZMANN EQUATIONS FOR THE MINIMAL SU(5) MODEL 

Given the rates for all reactions in an SU(S) model, one could in principle use 
the general Boltzmann equations (4.4.6) to determine separately the evolution of 
the number densities of each of the hundred or so particle species which appear. 
However, in realistic models where there are conserved or partially conserved 
global symmetries (see below), or in models where there are cancellations in the 
contributions to the baryon number from various species as would be the case in 
C symmetric models, it is unnecessary and difficult to calculate numerically the 
asymmetry in each fermion field and add them together to find the baryon number. 
For instance in C symmetric theories there may be large O(a) asymmetries in 
individual fermion fields that must exactly cancel to give zero baryon number. If 
the asymmetry in the individual fermion fields were calculated numerically, a 
numerical accuracy of one part in 108 would be necessary to deduce that the final 
baryon number was less than 10- 10. Therefore, we incorporate the conservation 
laws and calculate directly only combinations of independent asymmetries. Since 
many of these number densities are, however, related through conservation laws, 
in the minimal model it is eventually necessary to trace only seven independent 
combinations of number densities. Note that here, as below, we use the shortened 
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TABLE 4 

Quantum number densities corresponding to asymmetries in particle species of the minimal SU(5) model 

[SU(3), SU(2), U(I )l Q h II B L B - L 

U_ =UL-U~ [3,2, - kl 2 3 0 0 2 

U"... =U~ - UR [3,I J l -2 0 0 - 1 0 -1 

D _=DL - D~ [3 , 2, -~l - 1 -~ 0 0 

D "... =D~ -DR [3, 1, -tl 0 - 3 - 1 0 - 1 

E _=EL - E~ [1,2, ! l - 1 1 - 1 0 -1 -2 

E"... =E~ -ER [1,1, -ll 1 0 0 0 -1 
_ c 

[1 , 2, ! l 0 1 - 1 0 -1 1l_ =lIL -lIR 2 

X _=X - X [3, 2, -~l 4 3 0 2 2 

L=Y - Y [3, 2, -~l -~ 0 2 

5_=5-5 [3,1, -tl 1 0 2 

The field name represents the reduced number density of the field (summed over color): e.g. 
UL=nuJny. 

notation (T ± = Y! = (no- ± nO' ) / ny for number densities of particle species, and 
similarly denote the reduced density of a quantum number by the name of that 
quantum number. For massless fermions , it is sufficient to consider (T _ ; (T + is always 
close to one, and has no effect on the baryon asymmetry we discuss. Table 4 gives 
quantum number densities corresponding to asymmetries in each particle species. 
In this table, asymmetries of colored species have been summed over color. (The 
asymmetries are, however, not summed over the spin states of the vector bosons.) 
The quantum number II is taken to be 1 for fermions laying in the 5 representation 
of SU(5), and zero otherwise [43]. 

At the temperatures of concern in baryon number generation, SU(3)c@ 
SU(2k@ U(1 )y may be taken as an exact gauged symmetry. In the standard cos­
mology, the net value of any quantum number associated with a long-range gauge 
interaction must always vanish. Thus the total electric charge of the universe should 
be zero. The universe should not only be a color singlet, but also have zero 
eigenvalues of the commuting generators 1'3 and 1'8 of SU(3)c. SiI!1ilarly, the universe 
should have T3 = O. In addition to SU(3)c @ SU(2)L @ U(l) y invariance, the SU(5) 
model exhibits a further global U(l ) invariance corresponding to B - L conserva­
tion. There is no necessity for the total B - L of the universe to vanish, but we 
shall usually take it to do so for simplicity. (In some of the SO(10) models discussed 
in sect. 7, B - L is violated, and a non-zero net B - L density may develop. ) We 
shall further assume below that Band L separately are initially zero. The consequen­
ces of large initial Band L are considered in ref. [55]. 

As mentioned in sect. 4, the rate for exchanges of light bosons ()" W, gluons) 
should be much larger than the rate for B-violating reactions induced by exchanges 
of heavy bosons. Processes such as uti ~ )'* ~ dd or ud ~ W* ~ cs serve to 
maintain all species in equilibrium distributions (kinetic equilibrium), but cannot 



62 I. A. Harvey et al. / Cosmological baryon asymmetry 

affect asymmetries between particles and their antiparticles. However, other 
SU(3)c @ SU(2k @ U(1) y reactions are relevant in that they quickly share asym­
metries generated in one species among a set of species. For example, if an 
asymmetry developed in " red" u quarks, it would immediately be shared among 
all colors of u quarks by transitions from the " red" ones by gluon interactions. The 
asymmetry in the three color components may thus always be taken equal. Similar 
effects occur through W interactions, and serve to share asymmetries equally 
between all weak fermion isodoublets*, so that 

(6 .2.1) 

For quarks, W interactions connect not only members of a single isodoublet, but 
also, through Cabibbo mixing, different families. An asymmetry generated in one 
quark species is thus shared with all other quarks, regardless of their weak isospin 
or family. As discussed below, the rates for reactions depend on Yukawa couplings 
of Higgs to fermions, which differ between the families. The heaviest family has 
the largest coupling, so that the fastest changes occur in this family. These changes 
are nevertheless immediately shared equally among all families. Thus, to a good 
approximation, one may effectively account for all families by considering only the 
heaviest one. Finally it is convenient to use any partially conserved quantum number 
as an independent asymmetry. The partially conserved quantum numbers may be 
found by finding the zero eigenmodes associated with exchanges of a particular 
boson X [43]. Let F be a set of fermion and boson asymmetries, and let Q be a 
set of independent quantum number densities B, L , etc. related to F by Q = HF. 
The thermalization of a quantum number Q; through reactions of a particular boson 
X is given from eq. (4.3.14) by 

0; = I X:qMijQ j , 
x 

where 

M ij = I L1Q;(x ~ fkfl)(r(x ~ fkf l) (H'k/ + H [j l ) 
k .1 

and L1Q;(x ~ fkfl ) represents the change in the value of Q ; through the reaction 
X ~ fk{ Boltzmann's H theorem requires that the eigenvalues of M X are all real 
and non-positive. Any zero eigenvalues reveal additional symmetries; the corres­
ponding eigenvector of number densities is then conserved in X reactions [e.g. II 
in vector boson exchanges in SU(5)]. If this eigenvector is conserved in the reactions 
of all X species, then it represents a globally conserved quantum number [e.g. B - L 
in SU(5)] and results in a further reduction in the number of independent Q ;. 

* Assuming that no families with vanishing mixing angles exist. 
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Using the constraints discussed above, the asymmetries listed in table 4 may be 
written in terms of the independent set 

as 

u_ =D_ =~(B - II -v_+X_-S_) , 

U".... =~(-B-II+2X_ -2S_), 

D".... =~(-II -2v_), 

E".... =(-B+2v_-4X_-2S_) , 

L=X_ . 

(6.2.2) 

The time development of number densities in SU(S) models may be obtained 
by substituting explicit decay branching ratios and scattering cross sections into the 
coupled Boltzmann equations (4.4.6) and (4.4.7). Table 5 gives the branching ratios 

TABLE 5 

B-violating boson decays in the minimal SU(5) model 

Boson Decay mode Partial width B 

Ei',.D~ (v 1 
- 3 

x URUL 2(v 2 
3 

Di',.E~ (v 1 
3 

Srp + 
KX(V 

Ui',.E~ (v 1 
- 3 

URDL 2(v 2 
3 

vi',.DL (v 1 
-3 

Y 

Srp 0 
KX(v 

Ui',.Ei',. h~( 1 
3 

Di',.vi',. h~( 1 
3 

URDR 2h~( :1. 
3 

U~E~ ht( 1 
-3 S 

ULDL 2ht( 2 
3 

Xrp + aKs(/2 

Yrp 0 aKs(/ 2 

(=[(4h~ +3ht)+aKsr1, (v=[4+Kxr 1• 

II 

o 
o 
o 
o 

o 
o 
o 
o 

1 

o 
o 
o 
o 

All final states have B - L =~. The Yukawa coupling constants are 
such that hu = .J!gmu/ mw, hD = .J!gmD/ mw. The parameters KX 
and KS are roughly given by KX = 1J(mx - ms), KS = 1J(ms - mx). 
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for B-violating boson decays in SUeS) models, averaged over the boson and 
anti boson in each case .. CP violation appears in the differences 

R (X ~ f) = reX ~ f) - reX ~ f) 
rx (6.2.3) 

between boson and anti boson partial decay widths, whose magnitudes are discussed 
in subsect. 6.3. If they are energetically possible, the decays X ~ S~ or S ~ X~ 
proceed at a rate proportional to the SUeS) gauge coupling constant g. Their rates 
are parametrized by 

(6.2.4) 

(6.2.S) 

Decays of X to fermions are also proportional to g, but for S they involve Yukawa 
couplings, and are O(hu, hD)' If mx » ms, nearly all X, Y decays are to fermions. 
If ms » mx, however, then only a fraction -(4ht+3hiJ)/a of S decays are to 
fermions. Taking m t - 2S Ge V suggests a branching ratio -~ for S decays to 
fermions. Since inclusion of C v modifies the branching ratio to fermions by only 
20%, we shall assume for simplicity below that Kx = 0 and hence C v = t 

Inserting the branching ratios of table S together with relations (6.2.2) into 
eqs. (4.4.6) and (4.4.7) give the complete Boltzmann transport equations for the 
evolution of number densities in the minimal SUeS) model: 

X+ = -(rx)(x+ - X~Q), 

x_ = -(r x)[X- - ~X~Q (SX_ + s _)] , 

s + = -(rs)(s+ - S~Q) , 

s _ = -(rs)[S- -CS~Q[ht(I1 +S_ - X _)+ h~(~v_ -~I1-2S_ - X -m, 

iJ = (rx)[(x+ -X~Q )(-R(X~ E~DD+2R(X~ URUL)-R(X~D~E~) 

-R(Y ~ u~ED+2R(Y ~ URDd-R(Y ~ v~DD) 

-X~Q(2B- v_ +~X_ +~S_)+2X_] 

-16nb(v(T~)(2B - v_ +Hx- +±s_) 

-Ws)[(S+ -S:Q)(R(S~ U~E~) + R(S~ D~v~) -2R(S~ URDR) 

-2R(S~ ULDL) + R(S~ U~E~))+S-C(4ht +6h~) 

+2S:QC(ht(2v- + B + I1 +S_ - X _) + h~ (-~v_ +2B -~I1 +3X_))] (6.2.6) 

-2nb(V(T~)[B(4ht + llhth~ +6hri) + v_(8ht -4hth~ - 8hri) 
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+II(2h0 -3hth~ -hri)+S- (2h0 +4hth~ +6hri) 

+X_(-2h0 + 14hth~ -l2hri)] , 

v_ = -(rx)[3(X+ - x~q )R(Y ~ v~DC)+ x~q i(5v- + II)+~X_] 

-4nb(va~)[5v- + II-JfX- -is- ]-(rs)[3(S+ -S~q)R(S~ D~v~) 

+6htS- ( - htS~q(-2v- - B + II +S_ - X)]- nb(va~)[v-(8hth~ + 8h0) 

+ B(3hth~ +4h0) + II(-8hth~ +2h0) + X_(-3hth~ -2h0) 

+S_(-15hth~ +2h0)]-nb(va<p)(3v- -B) , 

iI = (rs)[3(S+ -S~q)(R(S~ U~E~) + R(S~ D~v~) + R(S~ URDR)) 

+24htS+-6ht(S~q(II +S_-X_)] 

- nb(va~)hth~(38II-8v- + 6X_ + 66S_)-4(va<p)nbil , 

where 

rx=~amx, 

rs = ms/161T( , 

, 2[ S 1 s(s-m~)2 2 1 
Ivlax = 1Ta 2 2 +- 2 2 2 2 2+-+-2 

mx(s+mx) 3 [(s-mx) +mxrx] s mx 

-2C ~~~) log C :~~) ] ' 
2 4 2 1 3( 2)2 

I I ' a [ 2 m 2 (s + ms) s s - ms ] 
vas =1T 2s2 s+ms (s+m~) 2mslog m~ +2[(s-m~?+m~r~f' 

65 

(6.2.7) 

I I 3a 2 
V a<p = 4s hu, 

a =g2/41T, 

hu = ,j!gmu/ mw , 

hD = 4gmD/ mw , 

where g is the SU(5) gauge coupling constant, and mU.D are effective masses for 
the quarks in the heaviest family (evaluated at an energy scale -mx). With 
m-r= 1.8 GeV and mt =25 GeV, hu=O.l and hD=O.Ol. In the cross sections a' 
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given above, .J~ is the c.m. energy, taken to be averaged over thermal equlibrium 
distributions for the incoming particles. The cross sections given ignore the presence 
of background gas: its effects were discussed in subsect. 4.5 , and will be mentioned 
in subsect. 6.4 below. The r x and rs decay widths are also averaged over equilibrium 
energy distributions. 

In the absence of Higgs interactions iI = O. Ignoring these interactions, and 
setting J[ = 0, eq. (6.2.6) simplifies significantly to become 

X+ = -(rx)(x+ - x~q), 

iJ = (rx)[(x+ - x~q )SB - x~q (2B - v_)]-16nb(v(T~)(2B - v), 

v_ = (rx)[(X+ - x~q )sv-ix~qv_]-20nb(V(T~)V- , 

(6.2.8) 

where SB and S v are the relevant CP-violation parameters corresponding 
to eq. (6.2.6). 

6.3 . CP VIOLATION IN THE MINIMAL SUeS) MODEL 

In this section, we discuss the magnitude of the CP-violation parameters appearing 
in the Boltzmann transport equations (6.2.8) for the minimal SU(5) model. We 
shall show that CP violation can occur only in high-order diagrams, and is thus 
suppressed [26, 44, 45]. 

As discussed in subsect. 5.1, CP-violating decay amplitudes must result from 
interference of higher order corre-ctions to decays. The lowest order such interfer­
ence diagrams for the minimal SU(5) model are shown in fig . 15. As discussed in 
sect. 5, corrections to gauge vector boson decays involving only vector bosons 
cannot give rise to CP violation at any order if all fermions are massless. According 

(al) (a2 ) 

( bl) (b2) 

( e l) (e2) 

-·-0·--
(d) 

Fig. 15 . First-order corrections to boson decay amplitudes in the minimal SUeS) model. None of the 
diagrams can give rise to the CP-violation required for baryon number generation . 
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to the minimal SU(S) model, a single SH Higgs scalar boson couples to fermions. 
This representation contains just one B-violating component. The result (S.2.S) 
then shows that no CP violation may occur in one-loop diagrams of the form 
illustrated in fig. 11 involving scalar boson exchange in vector boson decay or vector 
exchange in scalar decay. Application of eq. (S.1.20) shows that no CP violation 
may arise to one-loop order from scalar boson exchange in scalar boson decay (as 
illustrated in fig. 12). Another potential source of CP violation at lowest. order is 
from diagrams involving three-boson couplings. Since the 24H is a real representa­
tion, its vacuum expectation value must be real; in addition, any phase in the 
vacuum expectation value of SH may be arranged not to appear in couplings of the 
B-violating component of SH. Hence, three-boson couplings cannot exhibit CP 
violation in the minimal SU(S) model. These results demonstrate that no CP 
violation occurs in the one-loop approximation for the minimal SU(S) model. 

We now discuss the possibility of CP violation in higher order diagrams for the 
minimal SU(S) model. Since the couplings of gauge vector bosons to fermions and 
bosons are purely real, addition of further such couplings to the diagrams of fig. 
lS cannot yield CP violation. Similarly, addition of three- or four-boson couplings 
cannot introduce CP violation. Any CP violation must thus occur first in diagrams 
involving only fermions and SH Higgs bosons coupling to them. Such CP violation 
requires complex phases in the Higgs Yukawa coupling matrices defined in eq. 
(6.1.3). In terms of these couplings, the CP violation parameter fl of (S .1.S) arising 
from the lowest order diagram fig. lSd may be written as Tr [(ho) t (hD)(hu)\hu)], 
where the trace is taken over the fermion family indices implicitly carried by the 
Yukawa couplings hi. As mentioned above, this quantity is real, so that no CP 
violation may result from the diagram of fig. lSd. At the next (three-loop) order, 
investigation of possible diagrams shows that all yield purely real fl, and thus cannot 
introduce CP violation. For example, the diagram of fig. 16 gives 

Tr [hbh uhbhoh0ho] , (6.3.1) 

Fig. 16. Example of a second-order correction to scalar boson decay in the minimal SU(5) model. No 
diagrams at this order can introduce CP violation in the minimal SU(5) model. 
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Fig. 17. Examples of a class of third-order corrections to scalar boson decay in the minimal SU(5) 
model which may potentially give rise to the CP violation necessary for baryon number production . 

which is manifestly real. However, in the next order, traces such as 

Tr [h6huh"0huh6hoh "0ho] (6.3.2) 

corresponding to the class of diagrams illustrated in fig. 17 need not be real, and 
may give rise to CP violation. These diagrams may give rise to small but non-zero 
values for the CP-violation parameters R (S ~ ij) appearing in the Boltzmann 
equations (6.2.11 ). The result for these parameters may be written as 

6 

R = $ 1m [1][ ~ (hUi + ho) ] e, (6.3 .3) 

where e is a CP-violation parameter with lei ~ 1. Approximating the Higgs 
Yukawa couplings by their value for the heaviest fermion family, and taking for 
the momentum-space factor I the volume of available phase space, one obtains 
the rough estimate 

(6.3.4) 

With the usual mechanism for spontaneous symmetry breakdown, h ~ 1 so that 
R ~ 10- 6 • In the next section we shall show that unless this inequality is saturated, 
the baryon asymmetry which may be generated in the minimal SU(5) model is 
entirely inadequate to explain observational results. 
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6.4. BARYON NUMBER GENERATION IN THE MINIMAL SU(5) MODEL 

In this section, we discuss the generation of a baryon asymmetry in the minimal 
SU(S) model, using the Boltzmann equations derived in subsect. 6.2, and the 
CP-violation parameters discussed in subsect. 6.3. Three basic parameters appear 
in these calculations: the mass of the gauge vector boson mx, the mass of the SH 
Higgs bosons ms, and the CP-violation parameter R in the Higgs decays. For the 
latter parameter, we use the rough estimate (6.3.3) and consider the following cases: 

h = 1.2, 

h = 0.4, 

The X boson mass is taken as 

R = 3 X 10- 6£, 

R =4 x 10- 9 £ . 

mx = S x 1014 GeV = O.STIeV, 

(6.4.1a) 

(6.4.1b) 

(6.4.2) 

in keeping with theoretical and phenomenological estimates. The stability of spon­
taneous symmetry breakdown in the SU(S) model appears to require 

10 ;?; ms/mx;?; 0.1 . (6.4.3) 

Fig. 18 shows results for the final baryon number density produced in the minimal 
SU(S) as a function of ms/mx for the cases (6.4.1a) and (6.4.1b). Explanation of 
the observed baryon asymmetry would require production of IBI;?; 10- 8 at this 
epoch: fig. 18 shows that such a result is possible in the minimal SU(S) model only 
if h » 1 which would invalidate perturbative methods. (The naive expectation that 
h increases at low energy scales may be invalid if h > g, since the renormalization 
group equation for h then receives both positive and negative contributions of 
roughly equal size.) Thus one may conclude that the minimal SU(S) model is unable 
to account for the observed baryon asymmetry. It is nevertheless instructive to 
consider the origins of the complicated behavior seen in fig. 18 . 

10-6 

10-7 

-B/IEI -8 
10 

10-9 

lOla 

............. 
....... , .......... 

h = 1.2 ""'" 

'. 
" 

-lOll 

1 6121~'-::-'I_---''-:-----''-,-----'-:----'''-----J 
v- 102 101 100 10-1 

mS/mx 

Fig. 18. Final baryon number generated in the minimal SU(5) model. 
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Fig. 19. Time development of quantum number densities in the minimal SU(5) model. The dashed 
curve in (a) shows results with a modified form for the high-energy 2 ~ 2 scattering cross-section. The 

dotted curves in (b) show results if light Higgs boson exchange reactions are ignored. 

We first consider the case ms/ mx = 10. The time development of quantum 
number densities for this case with h = 0.4 and h = 1.2 are shown in fig. 19. At 
high temperatures, S decays generate asymmetries in II, 11 _ and B as described by 
eq. (6.2.8). The primary effect which reduces these asymmetries at lower tem­
peratures is 2 ~ 2 scattering. At high temperatures, the effective magnitude of 2 ~ 2 
scattering cross-sections are uncertain (as discussed in subsect. 4.5). The two 
extreme cases (T - a 2/ m ~ and (T - a 2/ T2 are shown as solid and dashed lines for 
B in fig. 19a. Although different at high temperatures, they yield identical final 
results. By virtue of their larger couplings, vector boson exchanges are usually more 
important than scalar boson exchanges in 2 ~ 2 scattering cross sections. However, 
in SU(5) models, vector boson exchanges conserve II. Hence only Higgs boson 
exchanges can reduce a non-zero II density (IIo) generated through S decays 
at high temperatures. If only vector boson exchanges are considered, then from 
eq. (6.2.8) 

which implies a final equilibrium state with non-zero baryon number 

B = -fe,JIo, 

(6.4.4) 

(6.4.5) 
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The dotted lines in fig. 19b show results in this case. Changes in B require exchange 
of heavy vector or scalar bosons; however, changes in II may occur through light 
as well as heavy boson exchanges. Typically, vector boson exchanges enforce the 
relations (6.4.4) during the period when IIo is reduced through heavy Higgs 
exchanges. At very low temperatures, heavy vector boson exchanges become 
ineffective, so that B remains constant, 'while light Higgs boson exchanges continue 
to reduce II and 11 _ . The final value of B is essentially determined through the 
relation (6.4.4) by the value of II at the temperature whiere heavy vector boson 

" exchanges become rare. Note that the 1arger Higgs Yukawa couplings in the case 
of fig. 19b cause a much more rapid decrease in II than in fig. 19a. 

The discussion of the previous paragraph applies to the case ms > mx, in which 
asymmetries are initially generated in S decays, and subsequently thermalized by 
X exchanges. If ms < mx, then the S decays responsible for generation of the 
asymmetries occur at a sufficiently low temperature that X exchange cannot provide 
significant thermalization. The presence of the X is thus essentially irrelevant, and 
the final baryon density behaves as it would with only one particle [I]. The dotted 
curve in fig. 18 shows the final B density if all X exchanges are artificially set to 
zero. The enhancement around msl mx = 1 is a transition phenomenon: X exchanges 
are sufficiently unimportant that B is no longer constrained to be proportional to 
II, and thus does not suffer the destruction experienced by II as a result of light 
Higgs exchanges. Since mx is held fixed , the decrease in B for small msl mx simply 
reflects the increasing importance of back reactions when ms is reduced. The similar 
conclusions of ref. [46] were based on a calculation which ignored non-thermalizing 
modes and took the final baryon number to have a simple power law dependence 
on hi ms. Figs. 18 and 19 illustrate the inapplicability of these assumptions. 

6.5. BARYON NUMBER GENERATION IN EXTENDED SU(5) MODELS 

The results of sect. 6.4 demonstrate that no viable choice of parameters allows 
adequate baryon number generation in the minimal SU(S) model. In this section, 
we consider two simple extensions of the minimal SU(S) model, which can account 
for the observed baryon asymmetry with suitable choices for parameters. 

In the minimal SU(S) model, a single SH Higgs representation is taken to couple 
to fermions. This representation contains a single B-violating Higgs boson (denoted 
Sl) with SU(3)c ® SU(2)L ® U(l )y quantum numbers [3, 1 ,~]. We consider two 
extensions of this minimal model: in model A [12], a second SH is introduced, and 
in model B a 4SH is added. In both cases we denote the [3, 1, t] component of the 
additional Higgs representation by S2. For the 4SH, further B violating bosons 
occur; we shall however assume that S2 can be arranged to include their effects. 
The bosons Sl and S2 may in general mix ; we denote the resulting mass eigenstate 
mixtures by Sand S', where ms· ~ ms. Similarly, we take the light Higgs boson 
mass eigenstates as rp and rp '. We write the Yukawa couplings of Sand S' (or rp 
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and q/) as hu, ho and h'u, hi:>, respectively. These Yukawa couplings satisfy 

hu+h'u =~¥gmulmw, 

ho+hi:> =~¥gmo/mw, 
(6.S.1) 

but are not individually determined. For simplicity we shall, however, take hu = h'u, 

ho=hi:>. 
The absence of mixing forbids decays of the form S' ~ SV, where V is a gauge 

vector boson. However, in analogy to the case of the minimal SU(S) model discussed 
in subsect. 6.2, the decays S' ~ Xcp' and S ~ Xcp may occur if they are energetically 
possible. These decays dilute any CP violation arising from decays to fermions. 

We consider first model A. As discussed in subsect. S.2, this model allows no 
CP violation at first order in gauge vector boson decays; CP violation may, however, 
appear in Sand S' decays through S' and S exchanges respectively. The magnitude 
of CP violation in S' decays is then given in terms of the parameter es (such that 
lesl < 1) by 

R(S' ~ U~E~) =R(S' ~D~v~) = -R(S' ~ U~E~) = -!R(S' ~ ULDL) 

= 32Chtht 1m [Is's]es 

2 2 

= ;hthtC[ 1-(::) log ( 1 + (::) )] es 

2 2 2 
=- huhoCes, 

1T" 
m~ » mS' 

Results for S decays are obtained by exchanging Sand S', hj and hi 
es' = es. For ms « ms, one then obtains 

( ee l 2 2 ~ms)2 Rs=R S~URER)=-huho - es, 
1T" mS' 

ms « mS', 

(6.S.2) 

and taking 

(6.S.3) 

which goes to zero as expected when ms' goes to infinity. CP violation may occur 
in S' decays not only through S exchanges, but also through exchanges of light 
Higgs cpo As discussed in subsect. S.l , CP violation in boson decays may yield an 
asymmetry in a particular quantum number density only if that quantum number 
is violated by the exchanged boson in fig. 8. Thus cp exchanges cannot lead to 
asymmetries in B; they can, however, contribute to lJ _ and II asymmetries . The -. 
magnitude of these contributions is given approximately by 

R<p = R(S' ~ U~E~) =R(S' ~D~v~) =~R(S' ~ URDR) 

= 16Chthtes 1m [I<ps' ] 

1 2 2 
=- huhoCes. 

1T" 
(6.S.4) 
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Fig. 20. Final baryon number generated in an extension of the minimal SU(5) model containing an 
additional 5H multiplet of Higgs bosons (model A). Sand S' are the two mass eigenstate B-violating 

Higgs bosons. 

Combining eqs. (6.5.3) and (6.5.4) yields complete quantum number densities 
generated by free S' decays 

8s = LBfR(S'~f) = -Rs , 
f 

8n = L IItR (S' ~f) = 3Rs+3R"" (6.5.5) 
f 

8v_ = L (V- )fR(S' ~ f) = -Rs - R", . 
f 

(Results for S decays are obtained by the interchanges S ~ S', qJ ~ qJ', hj ~ h j.) The 
Boltzmann transport equations for model A are now obtained by replacing every 
occurrence of S in (6.2.10) with a suitable sum of Sand S', and inserting the 
parameters (6.5.5). Equations for 5' analogous to those for 5 must also be added. 
Finally, the 2 ~ 2 scattering cross-section from S exchange must be supplemented 
with an analogous term for S' exchange and with an SS' interference term. 

Fig. 20 shows the final baryon number density generated in model A. Note that 
when ms = ms· our assumption hj = h j implies that Rs = R s': the ensuing cancellation 
allows no baryon number generation, as expected from eq. (4.4.4). Fig. 21 shows 
the time development of quantum number densities in model A for various choices 
of ms and ms,. 

We consider first the region ms'/ mx » 1, ms'/ m x > ms/ mx ~ 0.1 illustrated in fig . 
21a. The contributions of various terms in the Boltzmann equation (6.2.8) for this 
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Fig. 21. Time development of quantum number densities in extended SU(5) model A. 

case are shown in fig. 22a. By virtue of eq. (6.5.3), R s« R s', so that asymmetries 
generated in S decay are negligible compared to those generated in S' 4ecay. In 
addition, no asymmetries may be generated by X decays in model A. S' decays at 
high temperatures generate asymmetries in B, II and v _. 2 ~ 2 reactions involving 
X exchange then " thermalize" these number densities to the values (6.4.5); S 
exchange is unimportant since S is both more massive than X and has smaller 
couplings. The second region of parameters for model A is ms, / mx » 1; ms' / m x ~ 
0.1. The time development of quantum number densities for this region is shown 
in fig. 21b; contributions to the Boltzmann equation for this case are given in fig . 
22b. The initial production of quantum numbers and their thermalization through 
2 ~ 2 X exchange reactions here is as in the case discussed above. At low tem­
peratures, however, reactions involving S become important, and determine the 
final values of the quantum number asymmetries. Notice that the sign of B changes 
at low temperatures in fig. 21b. This is a consequence of the fact that terms 
proportional to S in the Boltzmann transport equation involve combinations of II, 
v _ and B in which B may appear with a negative sign. The dominant term governing 
the time evolution of B for T - ms is B - s:Q(r s)(14v- - 12B + 7 II ) with similar 
equations for v_ and fL. Since II > 0, II > v _ and II > B, this term tends to drive 
B positive. In general there are three linear combinations of B, v_ and II which 
decrease as pure exponentials until cut off at temperatures below m s. B is a linear 
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Fig. 22. Contributions to iJ in extended SU(5) model A from various terms in the Boltzmann transport 
equation (6.2.10). Positive contributions are shown as solid lines; negative ones as dashed lines. The 
terms of sufficient magnitude to appear are : 2: 2-+2 X exchange ; 3: (S~-S,:q); 6: S!q term; 7: S_ 
term. The effect of the expansion of the universe included in the left,hand side of the Boltzmann 

equation is shown as BRI R. 

combination of these three exponentials, and its final value depends sensitively on 
the initial values of II, v _ and B . For this reason it is not adequate to assume that 
B is produced and damped in successive independent stages as in simple models 
which treat only one quantum number. For both ms, < mx and ms < mx inverse 
decays into S are no longer able to change the sign of the negative B produced 
through S' decays and hence the final B is negative. The results of fig. 21 are for 
large values of ms'. Most qualitative features remain unchanged when ms' is reduced. 
However, since S' decays then occur at lower temperature, back reactions are more 
important, and the final asymmetries generated tend to be reduced. 

Fig. 20 demonstrates that with suitable choices for undetermined parameters, 
extended SU(S) model A can account for the observed baryon asymmetry. The 
sign of the final baryon asymmetry cannot, however, be related directly to the sign 
of the CP-violation parameter e without detailed knowledge of other parameters. 

We now consider model B. The couplings of the SH and 4SH to fermions 
are {EL(Uda + vdDL)a + (D~h(U~)ceabc }(5H)a and {Ed Uda + vL(DL)a­

(D~h(UUceabc}(4SHh, respectively. The difference in Clebsch-Gordan coefficients 
between these couplings implies that the CP violation parameter for scalar-vector 
diagrams may be non-zero [d. eq. (S.2.S)]. Hence in this model, asymmetries may 
be generated through vector boson exchange in scalar boson decay, and in vector 
boson decay through scalar boson exchange, as well as through scalar boson 
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exchange in scalar boson decay. The relevant CP-violation parameters in this model 
are then given by 

R(S~ U~E~) = R(S~ D~v~) = 32~l21Tah~ 1m [Iys] + hth~ 1m [Is's]]e, 

R(S~ URDR) = 32([ -41Tah~ 1m [Iys] + hth~ 1m [Is's ]]t:, 

R(S~ U~E~) = 32([41Taht 1m [Iys]- hth~ 1m [Is's]]e, 

R(S~ ULDd = 32([ -41Taht[Iys]-2hth~[Is's]]e, 

R(X~ E~DD = R(Y ~ v~D~) = 4h~[lm [Isy]- 1m [Is'y]]t:, 

R(X~E~D~) = R(Y ~ E~U~) = 4ht[lm [Isy]-Im [Is'y]]t:, 

R(X~ URUd = R(Y ~ URDd = -4(ht + h~)[lm [ISY]- 1m [Is'y]]t:. 

(6.5.6) 

Terms accounting for light Higgs (() exchange must be added as before. Inserting 
these parameters into the Boltzmann transport equations, we obtain the results 
shown in fig. 23 for the final baryon asymmetry. The possibility of CP violation in 
processes involving vector bosons renders these results still more complicated than 
for model A. In discussing fig . 23, we consider first the region ms, > ms > mx. CP 
violation in X decays is suppressed here, since it involves exchange of scalar bosons 
heavier than X. After asymmetries are initially generated in Sand S' decays, they 
are thermalized by 2 ~ 2 X exchange reactions to the values (6.4.5). The resulting 
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Fig. 23 . Final baryon number generated in an extension of the minimal SU(5) model involving a 45H 

as well as a 5H Higgs multiplet (model B). Sand S' are the two mass eigenstate B-violating Higgs 
bosons considered. 
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B is then proportional to the original II generated. Although the B generated by 
free Sand S' decays would be large since it receives contributions from vector 
boson exchange, only scalar exchanges can contribute to II. Hence the final value 
of B is similar to that obtained in model A. We now consider the region ms' > mx > 
ms. In this region, the final B is dominated by asymmetries generated in S decays; 
any B generated in X or S' decays is destroyed by processes involving S. B generated 
in S decays is damped by inverse S decay processes; the final B obtained varies 
roughly as ms3 : a factor ms2 from the CP-violation parameter (6.5.6), and msl 
from the effects of inverse reactions. In the region ms < ms' < mx several sources 
of baryon number contribute with roughly equal weight, and no simple qualitative 
explanation of the final results is possible. Fig. 24 gives some examples of the 
development of the quantum numbers for this model. 
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Fig. 24. Time development of quantum number densities in some sample cases of extended SU(5) 
model B. 
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7. SO(10) models* 

7.1. INTRODUCTION 

Although SU(5) grand unified models contain the fewest fundamental fields, they 
exhibit a number of seemingly undesirable features which may be avoided in models 
based on larger gauge groups. The first of these features is the assignment of 
fermions to a reducible representation of SU(5). This has the consequence that 
particles belong to different irreducible representations from their antiparticles. In 
addition, axial anomalies cancel only between different irreducible fermion rep­
resentations, in a seemingly accidental manner. A further feature is the presence 
of a global conserved B - L quantum number which has no basis in a local gauge 
invariance. In this section, we consider models based on SO(10) [49], in which 
these features are removed. 

SO(10) symmetry is ultimately broken down to the low-energy SU(3)c (8) 

SU(2k @ U(1)y symmetry. This breaking may occur through a sequence of stages 
at different mass scales. Baryon number generation may occur at an intermediate 
stage in this sequence, when the effective symmetry is larger than 
SU(3)c @ SU(2)L @ U(1)y. Typical subgroups of SO(10) which may represent 
intermediate effective symmetries are: 

SO(10)::::; SU(4) @ SU(2)L (8) SU(2)R , 

SO(10)::::; SU(4) (8) SU(2)L @ U(1)R , 

SO(10)::::; SU(3)c @ SU(2)L (8) U(1)y. 

(7.1.1a) 

(7.1.1b) 

(7.1.1c) 

Table 6 lists decompositions of relevant representations of SO(10) in terms of these 
subgroups. Transformation properties under these decompositions will be denoted 
as follows. (m, nL, nR) will denote representations of SU(4), SU(2)L, and SU(2)R, 
respectively. (m, nL, OR) will denote representation of SU(4), SU(2)L and U(1)R 
respectively. OR is the U(1)R charge operator T3R , defined to be ±1 when acting 
on an SU(2)R doublet. Finally, as in previous sections, [m, nL, Oy] will denote 
representations of SU(3k, SU(2)L and U(1) y [12, 50]. The hypercharge Y is defined 
so that Y = T3L - 0 = -!(B - L) - T 3R , where 0 is the electric charge operator. 

Unbroken SO(10) symmetry exhibits a local gauge in variance associated with 
B - L (containing the global B - L invariance of SU(5) models as a subgroup). 
When this invariance is destroyed by spontaneous symmetry breakdown, B - L 
violating processes may occur. With effective symmetries smaller than SO(10), 
B - L invariance is preserved whenever a U(1)R in variance exists. B - L violation 
may thus occur when the effective symmetry is that of (7.1.1c), but not those of 
(7.1.1a) or (7.1.1b). 

* Many of the results in this section are also presented in refs . [47 . 48]. 



J. A. Harvey et al. / Cosmological baryon asymmetry 

TABLE 6 

Decompositions of some representations of SO(10) in terms of the subgroups SU(5) @ U(1) and 
SU(4) @ SU(2)L @ SU(2)R 

SO(10) 

10 
16 
45 
54 

120 

126 

SU(5) @ U(1) 

5(2)+5(-2) 
1(-5)+ 5(3) + 10( -1) 
1(0) + 10(4)+ 10(-4)+ 24(0) 
15(4)+ 15(-4)+ 24(0) 
5(2) + 5(-2) + 10(-6) 

+ 10(6) +45(2)+45(-2) 
1(-10) + 5( -2) + 10(-6) 

+ 15(6) + 45(2) + 50( - 2) 

SU(4) @SU(2)L @SU(2)R 

(6,1,1) + (1,2,2) 
(4,2,1) + (4,1,2) 
(6,2,2)+(15,1,1)+(1,3,1)+(1,1,3) 
(6,2,2) + (20',1,1) + (1,3,3) + (1,1,1) 
(15,2,2) + (6,3, 1) + (6, 1,3) 

+(10,1,1) + (10,1,1) + (1, 2, 2) 
(15,2,2)+(10,1,3)+(10,3,1) 

+(6,1,1) 

In the first case, the U(1) charge is given in parentheses, and carries an arbitrary normalization 
factor. Decompositions of SU(5) representations in terms of SU(3lc @ SU(2)L @ U(l)y are given 
in subsect. 6.1. 
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The gauge vector bosons in SO(10) models are taken to transform according to 
the adjoint 45 v representation. This representation contains the [3, 2, ~] B-violating 
bosons (X, Y) of SU(5) models, together with an additional [3, 2, -~] pair of 
B-violating bosons (X', Y'). It also contains a further B-conserving [3, 1, ~] multiplet 
denoted V and the B-conserving gauge bosons of SU(2)R, [1, 1, -1], [1, 1,0], and 
[1,1,1], which we will denote by W, Wo, and W respectively. 

In S0(10) models each family of left-handed fermions is assigned to the 16-
dimensional complex spinor representation, while the corresponding right-handed 
CP conjugate fields are assigned to 16. With this assignment of fermions, no axial 
anomalies appear*. 

The 16 representation may be decomposed in terms of SU(5) representations as 
(see table 6) 

16=10+5+1, (7.1.2) 

and thus contains the usual SU(5) fermion fields, together with an additional SU(5) 
singlet field denoted N~. The N~ field may be taken as a charge conjugate partner 
for the ilL' This pairing allows definition of a charge conjugation operator C; no 
such operator may be defined in SU(5) models because ilL has no suitable partner. 

.' Charge conjugation invariance is in general spontaneously broken. It remains 
unbroken only with the effective symmetry of (7.1.1a), or with the SU(3) ® 
SU(2)L ® SU(2)R ® U(1) subgroup of (7.1.1a) in which case C interchanges SU(2)L 
and SU(2)R and conjugates representations in SU(4). 

* This is a consequence of the fact that the symmetric product of the adjoint representation with itself 
does not contain the adjoint, and thus that the d coefficients to which anomalies would be propor­
tional, must vanish. 
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The pairing of N~ with PL provides the possibility of a ilIw =! Dirac mass for 
the PL. To avoid this disastrous phenomenon, one must introduce a large (ilIw = 0) 
Majorana mass mN for the Nt, so that the neutral lepton mass matrix takes the form 

(7.1.3) 

where mq is of the order of quark masses [Sl]. For mN » mq one eigenvalue of this 
matrix is O(mN) and represents the physical N, and the other is O(m~/ mN) and 
represents a neutrino with small but finite mass. This neutrino mass and the resulting 
neutrino oscillations are an important prediction of SO(10) models. The Majorana 
mass term for the N~ has ilL = 2, ilB = 0; it is thus permitted only if B - L is 
violated. Hence the N~ must remain massless until the effective symmetry is 
reduced to (7.1.1c) . 

The Higgs content of S0(10) models is dictated by the need to break SO(10) 
down to SU(3)c (8) U(l)em and by the desire to obtain the observed masses and 
mixing angles of the fermions. Higgs fields which couple to fermions must appear 
in the product 

16 ® 16 = (10 + 126)s + (120)A , (7.1.4 ) 

where S (A) indicate the symmetric (antisymmetric) product. The 10 contains the 
usual light SU(2)L doublet cp, together with a [3, 1, ~] B-violating boson denoted S. 
It also includes the antiparticles iP and S. With a 10H alone, one obtains the tree 
approximation mass relations 

(7 .1.S) 

at a mass scale O(mx) for each family. Attempts to fit the observed mass spectrum 
more accurately generally lead to models with a rather baroque Higgs sector [S2 , 
S3]. Inclusion of 120H and 126H will be discussed in subsects. 7.2 and 7.3. Since 
the Higgs structure of SO(10) models is considerably more complicated than 
in SUeS) models, we shall below analyze only a few specific cases. Other choices 
for Higgs structure are expected to yield qualitatively similar results. 

As in SUeS) models, Higgs representations which do not couple to fermions must 
also appear in order to achieve the desired symmetry breakdown. Representations 
commonly used for this purpose are 4SH or a S4H • 

In SUeS) models, there are no particles with masses between the 0 (300 GeV) 
scale of SU(2)L breaking and the 0 (1015 GeV) scale of SUeS) breaking. In SO(10) 
models, intermediate mass scales are possible, associated with the intermediate 
symmetries of eq. (7 .1.1). If SO(10) breaks first to SU(4) (8) SU(2)L ® SU(2)R or to 
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SU(4) ® SU(2k ® U(l)R before breaking to SU(3)e ® SU(2)L ® U(l)y, then fits to 
the weak mixing angle suggest that mass scales as low as 1010 GeV may exist. Take 
My and Ms to be the masses of typical B-violating vectors and scalars respectively, 
and MR and Me the scales at which SU(2)R and SU(4) break to U(l)R and 
SU(3)c ® U(l), respectively. Then non-observation of proton decay requires that 
My;:?; 4 x 1014 GeV and Ms;:?;2 x 1012 GeV. Experimental constraints on MR and 
Me are much less stringent: non-observation of muon and electron number 
violating decays such as KO ~ IJ.. - e + gives a lower bound of about 104 Ge V for Me 
while limits on the strength of right-handed weak currents require only that 
MR;:?; 200-300 Ge V. Theoretical fits to as and the weak mixing angle give a 
minimum value for M e of about 1010 GeV with typical values being 1012 GeV 
for SO(10) broken first to SU(4) ® SU(2)L @ U(10)R' If S0(10) breaks first 
to SU(4) ® SU(2)L ® SU(2)R then typical values are M e _1012 GeV and 
MR _1010 GeV. 

The presence of these intermediate mass scales for spontaneous symmetry break­
down could allow an unbroken gauge symmetry larger SU(3)c ® SU(2)L ® 
U(l)y to exist even at the temperatures of relevance to B production. In the 
following sections we discuss the production of baryon number for models in which 
the effective symmetries of (7.1.1a), (7.1.1b) and (7.1.1c) are present. 

7.2. BAND B - L VIOLATION IN SO(lO) MODELS 

In SO(10) models, the SUeS) singlet [1, 1,0] fermion N~ is present. If the effective 
symmetry still contains an unbroken B - L invariance, then the N~ may be assigned 
a definite conserved B - L = 1, and no new boson couplings are possible. However, 
when the effective symmetry is that of eq. (7.1.1c), B - L is broken and the N~ 
may acquite a Majorana mass. The additional classes of boson couplings introduced 
by the presence of N in this case are listed in table 7. No new 
SU(3)c ® SU(2k ® U(1)y assignments for B-violating bosons appear in this list. 
However, comparison of table 7 with tables 2 and 3 shows that several bosons may 
violate B - L through couplings to N. Two such B - L violating bosons are the S 
and X' discussed above. There are in addition B - L violating vector bosons which 
transform as [3, 1, - ~] and [1 , 1,1] and which represent gauge bosons for the SU(4) 
and SU(2)R subgroups of SO(10) . There are also several further B - L violating 
scalar bosons. These appear in SO(10) representations capable of coupling to 
fermions as follows: 

[1,2, !]c 10, 120, 126, 

[3, 2, -~]c 126, 

[1, 1, 1] c 120, 126. 

(7.2.1) 
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TABLE 7 

Quantum numbers for possible vector and scalar pairs of singlet fermions Nand 
quarks q or leptons t 

[SU(3), SU(2), U(1)] B L B-L 

V6, S6 qN [3,2, -i] 1 0 1 
3 3 

[3, 1, -~] 
[3, 1, t] 

V7, S7 eN [1,2, !] 0 -1 

[1, 1, 1] 

VB, SB NN [1,1,0] 0 0 0 

We will also consider baryon number generation when the effective symmetry 
is that of eq. (7.1.1b). Then, in analogy to the discussion of subsect 6.2, the unbroken 
SU(4) ® SU(2)L ® U(1)R symmetry enforces relations between fermions number 
density asymmetries: 

UL - = /lL- = E L - = D L - == (noL - no~)! ny ', 

E~_ =D~_ ==(nof., -noR)/ny, 

N~_ = U~_ == (nu f., - nUR)/ ny, 

(7.2.2) 

with ni the number density per color of species i. Although SU(2)L symmetry implies 
UL - = D L - we retain the two separately to exhibit the role of the charge conjugation 
invariance discussed in subsect. 7.3. In terms of the asymmetries (7.2.2), the baryon 
number density becomes 

(7.2.3) 

It is also convenient to introduce a quantum number 0, defined as the total 
asymmetry in (left-handed) fermion fields: 

(7.2.4) 

Because of their chiral structure, all gauge vector boson interactions conserve 0. 
It may nevertheless be violated by Higgs scalar interactions. [In this respect it is 
analogous to the II quantum number introduced for SU(5) models in sect. 6.] 

Tables 2, 3 and 7 give possible classes of couplings which respect 
SU(3)c ® SU(2)L ® U(1)y invariance. If the effective symmetry is larger than 
SU(3)c ® SU(2)L ® U(1)y, then relations may exist between some of these coup­
lings.1t turns out that with an effective symmetry SU(4) @ SU(2k ® U(1)R, the only 
couplings affected in our considerations are those of the (10,3,1) component of 
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126H , which are prevented from exhibiting B-violating couplings with this effective 
symmetry. 

7.3. C AND CP VIOLATION IN SO(lO) MODELS 

The generation of a net baryon number from syminetric initial conditions requires 
the presence of both C and CP violation. In SU(2)L ® U(l)y weak interaction 
models and SU(5) grand unified models no C operator may be defined since there 
is no left-handed antineutrino to form the charge conjugate partner of the left­
handed neutrino. In larger models, such as SO(10) or E(6), each fermion has a 
potential charge-conjugate partner or is an eigenstate of C and a C operation may 
be defined which is a symmetry of the unbroken theory [51]. The production of a 
C-odd quantum number (such as B or L) in these models therefore depends on 
the interplay between the sources of C violation and the processes which violate 
the quantum number under consideration. 

The lack of B production in a C-symmetric theory may be seen by considering 
the decays of B-violating bosons X and their antiparticles X as well as the decays 
of their charge conjugate partners XC and Xc. The B produced by the decays of 
an equal mixture of X and X into the specific final state i 1i2 and the charge conjugate 
decays of XC and XC into the state i~i~ is proportional to the quantity [see eq. 
(5.1.12)] 

R ~2 + (R ~2 t = 1m [I] 1m [n](Bi2 - BiJ + 1m [r] 1m [nC](B i~ - B i~) . (7.3.1) 

I represents an integral over the intermediate momenta and final state phase space 
for the decay and n is a product of the relevant couplings. The lowest order 
contributions to I and n are discussed in sect. 5. rand nc are the corresponding 
quantities for the charge conjugate reaction. In a C-symmetric theory, 1= rand 
n = n c, while since B is C-odd, Bi2 = - Bi~ and Bi, = - Bi~ causing R ~2 + (R ~2 t to 
vanish. 

As discussed in subsect. 7.1, with the intermediate effective symmetry 
SU(4) ® SU(2)L ® SU(2)R, or the SU(3) ® SU(2)L ® SU(2)R ® U(l) subgroup of 
this symmetry, charge conjugation invariance remains unbroken. While this sym­
metry exists, no baryon number generation may thus occur. Although B production 
requires C violation, production of quantum numbers such as II, v _ or 19which 
are not odd under C, may occur even when C invariance is unbroken. These 
asymmetries may then be converted into B asymmetries at lower temperatures 
by C and B violating reactions. For a final non-zero B to result, the second 
stage must occur at sufficiently high temperatures (;;:,1012 GeV) that the effects 
of B-violating bosons are still important. Thus if SO(10) symmetry breaking 
occurs through S0(10) ~ SU(4) ® SU(2)L ® SU(2)R or SO(10) ~ SU(3) ® SU(2)L ® 
SU(2)R ® U(1), the intermediate symmetry may not persist to temperatures below 
-1012 GeV if an adequate B is to be produced [54]. 
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C invariance may be broken either by the presence of different masses for the 
ilL and Nt, or through mass splittings between bosons and their charge conjugate 
antibosons. A non-zero mN can occur only with the effective symmetry (7.1.1c). 
In this case, any of the diagrams in figs. 9-11 may yield C and CP violating 
contributions proportional to m ~/ m;. 

Under the effective symmetry SU(4) ® SU(2)L (8) SU(2)R the 45v adjoint rep­
resentation of gauge vector bosons has the decomposition given in table 6. The 
color triplet SU(2)L doublet B-violating bosons (X, Y) and (X', Y') and their antipar­
ticles combine to form the (6, 2, 2) representation. With our conventions the (X, Y) 
have electric charge (-t -~) an~the (X', Y') have electric charge (-t ~). Charge 
conjugation takes X~X, Y~X', X'~Y, and Y'~Y' . B production through 
vector boson reactions therefore requires a mass splitting between the (X, Y) and 
(X', Y') doublets. This will in general be present if SO(10) is broken to SU(3)c ® 
SU(2)L (8) U(l)y. However, if SO(10) is broken only to SU(4) ® SU(2)L (8) U(l)y, 
then the (6, 2, 2) splits into (6, 2, ~) and the CP conjugate state (6, 2, -~) and as a 
result there is no mass splitting. The B-violating vector bosons will therefore be 
unable to produce a net B in their decays or to convert an asymmetry in e into 
an asymmetry in B. 

The SU(4) (8) SU(2)L ® SU(2)R content of the lOH, 120H and 126H Higgs rep­
resentations coupling to fermions are given in table 6. When SU(2)R is broken to 
U(l)R some of these bosons may acquire C-violating mass splittings. The usual 
B-violating color triplet S appears along with its antiparticle in (6, 1, 1), and is thus 
an eigenstate of C. The 126H contains (10,3, 1) and (10,3, 1). However, as 
discussed in subsect. 7.1, these bosons may violate B only when the effective 
symmetry is SU(3)c ® SU(2)L ® U(l)y rather than SU(4) ® SU(2)L ® U(l)R' The 
(6,3,1) and (6, 1,3) appearing in the i20H may nevertheless both violate Band 
acquire masses which differ between particles and their corresponding antiparticles, 
and thus violate C. After the breaking SU(2)R ~ U(l)R, these representations 
may be decomposed as (6,1, ±1) (denoted Sl ), (6,1,0) (denoted S) and (6,3,0) 
(denoted SC). The requirement of C violation therefore requires the presence of 
a 120H in order for B to be produced with effective symmetry SU(4) ® SU(2)L ® 
U(l)R' If the effective symmetry is SU(3)c ® SU(2k ® U(l)y, then since the usual 
B-violating color triplet scalar boson S is transformed into its antiparticle under C 
and hence may not have any C-violating mass splitting, B production through S 
decays must be proportional to the C-violating mass splitting between ilL and Nt 
so that ., 

(7.3.2) 

as can be seen by expanding the relevant phase-space integrals in powers of mN/mS 

[54]. In the sequel we shall assume that this contribution to B production is 
negligible compared to the contribution from conversion of other asymmetries 
whose production is not restricted by C invariance. Note that more than one family 
must be present to allow the antisymmetric coupling of the 120H to 16{ ® 16{. 



.' 

J. A . Harvey et al. / Cosmological baryon asymmetry 

7.4. B GENERATION FOR S0(10) MODELS WITH SU(3)@ SU(2)L @ U(1)y 

EFFECTIVE SYMMETRY 
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In this section we describe the calculation of baryon number generation in SO(lO) 
models where SU(3)c ® SU(2)L ® U(l)y is the effective gauge symmetry at tem­
peratures relevant to baryon number production. We shall assume that all B 
production occurs in this phase; the equations derived may nevertheless also be 
used with suitable initial conditions to describe the development in the 
SU(3)c ® SU(2)L ® U(l)y phase of a B generated at temperatures where a larger 
effective symmetry exists. If SO(10) breaks first to SU(5) and then to 
SU(3)c ® SU(2)L ® U(l)y, then fits to the weak mixing angle suggest that mx == 
0.5 IIeV but do not constrain the values of mx', mw or my. Below we shall usually 
choose the values mw = my = mx' = 10 IIeV. 

N decays are potentially an important source of Band L asymmetries in SO(10) 
models. The N have two distinct types of decay modes. The first are two body decays 

N ~eq;, eij;, (7.4.1) 

with e = (~), q; = (:~) where q; is the usual SU(2k @ U(l)y weak doublet. The width 
for this decay mode is 

(7.4.2) 

where mq is the mass of the relevant charge ~ quark and mw is the mass of the 
usual weak boson. The N may also undergo three body decays 

N~qqq, qqf , ... , (7.4.3) 

mediated by exchange of a supermassive gauge boson E coupling to the N (and 
thus not contained in the 24v of SU(5)). These decays have typical widths given 
in analogy to f..t decay by 

(7.4.4) 

When mN ~ ms, two-body decays dominate. These decays violate lepton number, 
but do not violate baryon number. They may therefore give rise to an asymmetry 
in L but not in B. In models where (7.4.3) dominates (as in the unusual case 
mN ~ ms), N decays may violate baryon number. However, in this case, stringent 
lower bounds on mN exist to ensure that N decays should not generate excessive 
entropy to dilute any B produced [35]. We shall not consider N decays below. 

We shall consider a specific but presumably typical SO(10) model, in which two 
1 OH couple to fermions. The mass eigenstate B-violating Higgs bosons will be denoted 
by Sand S' . We shall include CP violation only for exchanges of S in S' decay and 
vice-versa. In analogy to the case of SU(5) models discussed in subsect. 6.2, we 
consider the development of the independent combinations of quantum number 
densities B, B - L, II and 11 _ . Table 8 gives the values of these quantum numbers 
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TABLE 8 

Quantum numbers for particles contributing to baryon number production in 
S0(10) models with SU(3)e @ SU(2)L @ U(1)y effective symmetry 

Particle SU(3) @ SU(2)L @ U(1) y B B-L II 11 _ 

U~ [3, 1,1] 1 1 0 0 -3 -3 

D L, UL [3, 2, -~] 1 1 0 0 3 3 

D~ [3,2, -t] 1 1 -1 0 -3 -3 

EL, ilL [1,2, !] 0 -1 -1 1 

N~ [1,1,0] 0 0 0 0 

X,Y [3, 2, ~] f. 0 3 

X',Y' [3, 2, -~] 
V [3, 1, -1] 1 

3 

W [1,1, -1] 0 0 

S [3, 1, t] 
rp [1,2, -i) 0 

TABLE 9 

Quantum numbers and partial widths for supermassive boson decay modes in SO(10) 
models with SU(3lc @ SU(2)L @ U(I) y effective symmetry 

Boson Decay mode Partial width B B-L II 11 _ 

ELD R,IILDR 
1 2 0 3 -3 

X,Y U~U~, U~D~ 
2 2 0 0 3 3 

DLER, ULER 
1 2 0 0 3 3 

ELUR,IILUR 
1 2 -1 1 3 3 

X',Y' DLNR, ULNR 
1 1 0 0 3 3 

D~U~,D~D~ 
2 2 -1 0 3 3 

DRE~ 
1 4 0 3 3 

V II~UL' E~DL 
1 4 1 - 1 3 3 

URN~ 
1 1 0 0 3 3 

W URD~ 0 0 -1 0 

NRE~ 0 0 0 

DL"L, ULEL 
1 2 -1 3 -3 

ERUR 
1 2 0 0 3 -3 

S U~D~ 
2 2 0 0 -3 3 

U~D~ 
2 2 -1 0 -3 -3 

DRNR 
1 1 0 3 3 
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for the various fields under consideration, Note that since the X, Y and X', Y' form 
SU(2)L doublets, the asymmetries X~) = Y~), Using the decay rates for the X, X', 
W, V, S, and S' bosons given in table 9 one may derive the following set of 
Boltzmann equations for the evolution of the independent number densities 

X+ = -(r x)(X+ - x~q ) , (7.4,5) 

X_ = -(rx)[x- -kx~q (X' _-5X_+ W_+2 V_-S_-S'...) ] , 

X~ = -(r x')(X~ - X ,:q) , 

X'... = -(rx·)[x'- -kx ,:q (-X '... +X_- W_-2 V_+S_+S'... -(B - L))], 

v + = -(ry)(v+ - v~q), 

v _ = -(ry)[V_ -kv~q (4X_ + (B - L))] , 

W+= -(rw)(w+- w~q), 

w_ = -(rw)[w- -kw~q (-2X'... +6X_-2 W_- .4 V_+2S_+2S'... -(B -L))] , 

s + = -(rs)(s+ - s~q) , 

s _ = -(rs)[S- -kS~q(-2X_ -~(B - L))] , 

s '... = -(rs') [s '... -ks,:q (-2X _ - ~(B - L))], 

B = (rx)[(x+-x~q )R~ -2X_ 

+ ~x~q (X'... +3X_+ W_+6 V_- S_- S '... + v_+2(B - L)-4B)] 

-~X,:q (X'... -X_-S_-S'... + W_+ v_+(B - L)+2B)] 

+ (rs)[(S+ - S~q)R: -S_ +kS~q(4X_ +6 V_ + (B - L) -6B)] 

+ (rs') [ (S ~ - S ,:q)R: -S'... + kS ,:q(4X- +6 V_ + (B - L) -6B)] 

+4nb(v(],~)[X '... + llX_+ W_+ lOV_-S_-S'... +2v_+4(B -L)-8B] 

-4nb(v(]'~' )[X'... -X_- S_ - S '... + W_-2 V_+2v_+(B - L)+4B] 

+ 12h4nb(v(]'~+s') [ 4X_ + 4 V_ + (B - L) -4B] , 

(B - L) = (rx')[(X~ + X ,:q )R~.-L - 5X'... 

-~X,:q (3X'... - 3X_ -3S_ - 3S'... +3 W_ + 5 V _ -II - ~v_ + 3(B - L) + B)] 



88 I . A. Harvey et al. / Cosmological baryon asymmetry 

-:lv~q (2X~ + 14X_+2 W_+5 V_ -2S_ -2S~ - II +6(B -L)- B)] 

+(rx)[(w+- w~q)R~-L +!W- -:lw~q (4X_+ V_+ v_+(B - L)- B)] 

+ (rs)[(S+ -s~q)R:-L -S_ + 3S~q (4X_ +6 V_ + (B - L) -6B)] 

+(rs')[(S~ -S,:q)R~-L -S~ + 3S,:q (4X_ +6 V_ + (B - L)-6B)] 

+7W_+ 10V_-4II -2v_+7(B - L)+4B] 

-nb(vO'z.,)[8X~ +4X_+8W_+20V_ 

-8S_-8S~ -4II + l1(B - L)-4B] 

-2nb(vO'~)[2X~ +10X_+2W_+8V_ 

-2S_ -2S~ +4v_+5(B -L)-4B] 

- nbh4(vO's+s' )[12X_ + 8II + 8v_ + 3(B - L)]+ nbh2(vO'cp)v_ , 

/1_ = (rx)[(x+ - x~q )R;'c- + 3X_ -:lx~q (2II + 5v_)] 

+(rx')[(X~ -X~eq)R;'c, +3X~ +!X,:q(2X~ -2X_ -2S_ -2S~ 

+2 W _ + 5 V_ - II -~v_ +2(B - L) - B)] 

+(rv)[(v+- V~q)Rv +~V_ 

+!V~q(X~ -X_ -S_ -S~ + W_+ V_-II -2v_+(B-L)+B)] 

+(rs)[(s+-S~q)Rs +~S_ 

-:ls~q(X~ -X_ -S_- S~ + W _+ V_-II + v_+(B - L)-B)] 

+(rs')[(S~ -S~eq)Rsl +~S~ 

-:ls~q(X~ -X_ -S_ -S~ + W _+ V_- II + v_+(B -L)+ B)] 

+2nb(vO'~)[3X~ -15X_ + 3 W_ +6 V _ - 3S_ - 3S~ -4II -10v_] 

+ 2nb(vO'~' )[5X~ - 5X_ - 5S_ - 5S~ 

+5 W_+ 14 V _-4II -6v_+5(B -L)-4B] 

+2nb(vO'z.,)[4X~ -4X_-4S_ -4S~ 

+4 W _+7V_-4II -5v_+4(B -L)+ B] 

-2nbh4(vO's+s, )[8X~ +4X_+8V_ 
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-8S_ - 8S~ -8II +8/1_ + 11(B - L) +8B] 

- 2nbh2(v(T<p)[ 4/1_ + (B - L) - B] , 

fI = (rx)[(X~ -x~q )Rst -9X~ -!X~q (4X~ -4X_ -4S_-4S~ 

+4 W_-7V_- II -!/I_+4(B - L)+ B)] 

+5 V_ -2S_- 2S~ - II +5(B -L)- B)] 

+ (rw)[(w+- W:q )Ra. -tw- -!W:q (2X~ -2X_-2S_ 

-2S~+2 W_+5 V_+ /I _+2(B -L)- B)] 

+ (rs)[(s+-S:q)Rr -~S_+lS:q(6X~ 

-6X_ -6S_-6S~ +6 W _+ 12 V_-7II - /I _+6(B - L))] 

+ 6 W_ + 12 V_ -7II - /1 _ +6(B - L))] 

-2nb(V(T~')[7X~ -7X_- 7S_-7S'-

+7W_+ 10V_-4II -2/1_+7(B -L)+4B] 

- nb(V(T~ )[8X'- + 4X_ + 8 W_ + 20 V_ - 8S_ 

- 8S~ -4II + l1(B - L) -4B] 

-2nb(V(T~)[2X~ +10X_+2W_+8V_ 

-2S_ -2S~ +4/1_+ 5(B - L)-4B] 

+ nbh4(v(Ts+s' )[32X~ 4X_ + 32 W_ + 80 V_ 

-32S_ -32S~ -40II+4(B-L)-16B] 

-4nbh2(v(T<p)[II - (B - L) -!/I_]. 
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The averaged widths and cross sections appearing in these equations are given in 
subsects. 6.2 and 6.6. The effective CP-violation parameters, R~, are given by a 
sum of the decay modes for each x, weighted by the value of Q created in the 
decay and multiplied by an overall factor corresponding to the multiplicity of the 
decaying boson: 

R~ =2R(X~ELDR)-4R(X~ UtD~)+2R(X~DLER)' 

R~' = 2R (X' ~ ELUR) -4R (X' ~ DtD~) + 2R (X' ~ DLNR) , 

R: =2R(S~DL/lL)+R(S~ERUR) 
- 2R (S ~ U~D~) - 2R (S ~ UtDt) + R (S ~ DRNR) , 
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R~,-L = -4R(X' ~ ELUR)+2R(X' ~ D LNR)-4R(X' ~ D~D~), 

Re- L =4R(V~DRED+4R(V ~E~Dd+R(V~ URN~), 

R~-L = R(W ~ NRED, 

R:- L = -4R(S~DL/ld-2R(S~ ERUR) 

- 2R (S ~ U~D~) - 2R (S ~ U~D~) + R (S ~ DRNR) , 

R'k =6R(X~ELDR)' 

R~T = 6R(X' ~ ELUR) , 

R~- = -3R(V~E~DL), 

Rs- =6R(S~DL/ld, 

R;[, = -6R(X'~ELUR)-6R(X' ~D~D~) , 

R!J = 3R (V ~ DRE~) + 3R (V ~ E~Dd , 

Rf£ = -R(W ~ URDD, 

Rf = -6R(S~DL/lL)-3R(S~ U~D~)+3R(S~DRNR) ' 

(7.4.6) 

We take all the R x , R x ', R w , and Rv to be zero. Neglecting mN compared to ms, 
we obtain 

R(S~ ERUR) =R(S~DRNR) = tR(S~ U~D~) 

= -tR(S~ U~D~) = -R(S~DL/ld, (7.4.7) 

so that as expected R: and R:' vanish in this approximation. Eq. (7.4.7) then yields 

R:- L = -3R(S~DL/ld, 

R; =6R(S~DL/ld, 

Rf = -15R(S~DL/ld, 

(7.4.8) 

with corresponding relations for S'. In terms of the single CP-violation parameter 
e these may be written 

(7.4.9) 

R (S' ~ DL/ld = -hra( :::J e 1m Is's, 

where as in sect. 6 a - to is the gauge coupling constant, mw - 80 Ge V is the mass 
of the weak gauge boson and mf is the effective mass of the heaviest family at the 
unification scale. We take mr/ mw = to. 
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Fig. 25 . Final quantum number densities (scaled by the CP-violation parameter E) generated in an 
SO(10) model with no intermediate effective symmetry larger than SU(3lc @SU(2k @ U(1 ) y . Results 
for n and v_ are obtained neglecting effects of light Higgs boson exchange at low temperatures. Sand 

S' are mass eigenstate 10H Higgs bosons. 

In subsect. 7.3 we showed that the SO(10) model discussed here can generate 
directly only asymmetries in B - L, 1/_ and II; asymmetries in B may arise only 
indirectly through conversion of these quantum numbers by inverse decay and 2 ~ 2 
scattering processes. Fig. 25 shows the final baryon number and B - L generated 
in this model, together with the values of 1/_ and II obtained ignoring low tem­
perature light Higgs boson exchanges. The results assume ms, = 1 TI e V. For ms> 
ms', B - L, II, and E are produced dominantly through the CP-violating decays of 
the S with their signs and magnitudes determined by the relations (7.4.8). When 
ms = ms' the contributions from S decay and Sf decay exactly cancel and no 
asymmetries are produced. For 0.1 TI e V :!S ms :!S ms' , S' decays dominate and since 
R (S ~ DLEL) is opposite in sign to R (S' ~ DLEd the values of the quantum numbers 
produced differ in sign from the case ms > ms'. For ms < O.l TIeV, inverse decays 
into S tend to damp the asymmetries produced through S' decay. The final values 
of the quantum numbers in this case depend sensitively on the values initially 
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produced through S' decay. A similar phenomenon was noted in subsect. 6.4. For 
ms ~ 5 II e V B production in fig. 25 is dominated by inverse decay and 2 ~ 2 
scattering processes mediated by X'. Inspection of the X' inverse decay terms in 
(7.4.5) (or of the decay modes given in table 9) reveals that the combination of 
quantum numbers (B - L) - B + 1/_ is conserved in these processes. Hence if only 
X' exchange occurred, the final equilibrium values of quantum numbers would be 
non-zero and given by 

E = - !IIo, (B-L)=O, (7.4.10) 

where IIo is the initial value of II generated through S decays. Since IIo < 0, the 
X' processes tend to produce a negative B. For 0.2 IIeV < ms < 5 IIeV, asymmetries 
are produced through Sand S' decays at temperatures below the X' mass where 
X' reactions are negligible. In this case B is dominantly produced through processes 
involving the X boson. Conservation of II in X reactions leads to the equilibrium 
values [d. eq. (6.4.5)] 

B = --loIIo+h B - L )o . (7.4.11 ) 

Since Rq = 5R~-L the contributions to B tend to cancel and the resulting B is 
small. The fact that the X and X' tend to produce B of opposite sign is a 
consequence of charge conjugation symmetry. As discussed in subsect. 7.3, 
unbroken C invariance would yield m x = m X' and would cause the contributions 
of X and X' to B production to cancel. For ms < 0.2 II e V, B production is dominated 
by inverse decays into S. When ms is sufficiently small, all asymmetries are reduced 
to zero. 

If both the Sand S' are sufficiently light then B may also be produced directly 
since in this case the cancellation due to the charge conjugation symmetry is less 
effective. 

The results of fig. 25 demonstrate that for ms sufficiently light, the model 
considered in this section can generate sufficient B to accord with present observa­
tions, even though no B is produced directly through CP-violating decays. The 
magnitude and sign of the resulting baryon number depend sensitively, however, 
on the Higgs structure and the masses of the B-violating bosons. If mN is comparable 
to ms, then the B given in fig . 25 is an underestimate since then B production 
through CP-violating S decays may not be neglected. 

7.5. B GENERATION IN SO(10) MODELS WITH SU(4) @SU(2k @ U(1)R 

EFFECTIVE SYMMETRY 

As described in subsect. 7.3, the production of baryon number in SO(10) models 
with SU(4) ® SU(2)L ® U(l)R effective symmetry requires the presence of a 120H 

with a C-violating mass splitting between two of its B-violating components. Since 
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the 120H cannot on its own account for observed fermion masses*, we include also 
a 10H • We shall consider only those components in 120H which may attain a 
C-violating mass splitting, and may thus contribute directly to B production. 

The equations presented here may also be used to track the evolution of asym­
metries produced in earlier stages. In particular, with effective SU(4) @SU(2)L@ 
SU(2)R symmetry no B may be produced due to the unbroken charge conjugation 
symmetry. This restriction does not apply to asy,mmetries in e. The equation used 
here may also be used to treat the subsequent conversion of e to B _when C is 
broken. With effective SU(4) @ SU(2)L @ U(l)R symmetry, B may be produced 
directly through decays of Sand SC. C symmetry implies that S decays may produce 
no net B (since S ~ S under C), while the B produced through S decays must be 
opposite in sign to that produced in SC decays. To illustrate the conversion of e 
to B we will suppose that no B is produced directly through boson decays. This 
would be the case if asymmetries are produced dominantly through S decays but 
thermalized by the Sand SC bosons. 

The quantum number assignments for the various fields are given in table 10. 
In this table a field stands for the asymmetry per member of an irreducible multiplet 
of SU(4) @SU(2)L. We will assume that the total charge associated with U(l)R 
is zero. 

Using the decay modes for X, WR, S, S, Sb and SC listed in table 11, we obtain 
the following Boltzmann equations for the development of the independent 

TABLE 10 

Quantum numbers for particles contributing to baryon number 
production in SO(10) models with SU(4) @ SU(2)L @ U(1)R 

effective symmetry 

Particle SU(4) @ SU(2)L @ U(l)R B e 

DL, UL (4,2,0) 1 1 
4 4 

D~ (4, 1,~) 1 1 
-4 4 

U~ (4, 1, ~) 1 1 
-4 4 

X (6, 2, -~) 0 
W (1,1,1) 0 0 

S (6,1,0) 

S, (6,1,1) 

S (6, 1,0) 
SC (6,3,0) 

II' (1,2, !> o 

* Since the 120H couples antisymmetrically to fermions, it must yield an antisymmetric fermion mass 
matrix with a zero eigenvalue for at least one out of three families. 
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TABLE 11 

Quantum numbers and partial widths for supermassive boson decay 
modes in SO(lO) models with SU(4) @ SU(2)L@U(1)R effective 

symmetry 

Boson Decay mode Partial width B e 

X D~U~ 
1 1 0 2 -2 

DRUL 
1 1 0 2 2 

W D~UR 0 0 

D LU L 
1 1 1 
;( 2 2 

S D~U~ 
1 1 1 
;( - 2 2 

D~U~ 1 1 I 
4 -2 -2 

DRUR 1 I I 
4 2 -2 

SI D~D~ 
I 1 1 
2 -2 2 

URUR 
I 1 1 
2 2 2 

S D~U~ 1 -~ I 
2 2 

DRUR 
1 I I 
2 2 -2 

DLDL 
I 1 1 
(; 2 2 

ULUL 
I 1 1 
(; 2 2 

S C D LUL 
I 1 1 
(; 2 2 

D~D~ 
1 I I 
(; -2 -2 

U~U~ 1 I I 
6 -2 -2 

D~U~ 
1 I I 
(; -'2 -'2 

quantum number densities Band 0: 

x + = -(rx)(x+-X:q), 

s+ = -(rs)(s+ - S:q) , 

.;. ... "'eq 
S+=-(Ts)(S+-S+ ), 

S~ = -(Tsc)(S~ _s~eq), 

B = - 3(r x)X:qB - i(rs)S:qB - ~(Tsc)S~eq (0 + B) 

+ [i(Ts+)st~ +i(Tso)S:q](0 - B) -12nb(vCT~))B 

-12nb(vCT~)B + 6[nb(vCT§,)+ nb(vCT§)](0 - B) -12nb(vCT§c )(0 + B), 

:: 

. 

(7.5 .1) 
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e = (rs)(S+ -S~q)R~ + (Fs+)(Sl+ -S~'!-)R~ + (Fs)(S+ -S~q)R~o 

+(Fsc)(S~ -s~eq)Rfc -~(rs)S~qe 

-~(Fsc)S~eq(e + B) -[~(rs)S~,!- +~(rs)s+](e - B) 

-12nb(vO'~)e - 6[nb(vO'§,) + nb(vO'§)](e - B) 

-12nb(vO'§c )(e - B) -4nb(VO'cp)e. 
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Note that since all bosons are equally likely to decay to states with opposite values 
of Band e, the asymmetries x _ in the boson fields do not enter into these equations. 
The W bosons conserve both Band e and thus also do not contribute to the 
development of B or e. 

The total widths and cross sections appearing in these equations are given in 
subsect. 6.5. The effective CP-violation parameters are 

R~ = 3R(S~DLUd+3R(S~D~U~)-3R(S~D~U~)-3R(S~DRUR)' 

R~ = 3R(S~D~U~)-3R(S~ DRUR) , 

R~, = 3R(Sl ~ D~D~)-3R(Sl ~ URUR) , 

Rfc = 3R(SC~ DLDd + 3R(SC ~ ULUL) + 3R(SC ~ DLUd 

- 3R (SC ~ D~D~) - 3R (SC ~ U~ U~) - 3R (SC ~ D~ U~) , 

which may be written using the partial widths from table 8 as 

R~ = 12R(S~DLUL)' 

R~= 6R(S~D~U~), 

R~ = 6R(Sl ~ D~U~), 

Rfc = 12R(SC~D~D~). 

(7.5.2) 

(7.5.3) 

Since light Higgs ({J exchange violates e, it presumably dominates these CP-violation 
parameters. Taking the Yukawa couplings of the lOH and 120H to be equal in 
magnitude and given by W!gmr/ mw, we then obtain 

mf 
R(S~DLUd=7TO:-S 1m Iscp , 

mw . 

R(S~C DC DC) 2 mf ~ R R =-'j7TO:-S ImIsocp. 
mw 

(7.5.4) 
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We will take S1 to be degenerate in mass with S in what follows. Since B is 
determined by the mass splitting between S and So, this choice should have little 
effect on the final results. 

Fig. 26a shows the final baryon number generated in this model, for a variety 
of values of ms, ms and msc. Figs. 26b, c show the development of Band e in 
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Fig. 26. Quantum number densities (scaled by the CP-violation parameter to) generated in an SO(10) 
model with an SU(4) @ SU(2)L @ U(l)R intermediate effective symmetry. Sand SC are rriass eigenstate 
Higgs bosons occurring in 120H , while S is a Higgs boson from 10H . (a) shows the final baryon number 
generated for a range of S, Sand SC masses. (b) and (c) show the development of the independent 

quantum number densities e and B for two characteristic cases. 

d 
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Fig. 26 (cont'd.) 

two characteristic cases, and indicate the dominant processes in each temperature 
range. An asymmetry in e is produced by S, Sand SC decays. Asymmetry in B 
must then be generated by conversion of this asymmetry. Only Sand SC interactions 
violate C and thus may contribute to B. 

In fig. 26b, ms > msc > ms, so that SC inverse decays first convert positive e 
produced in S decay into a negative B. As the temperature falls below the S mass, 
inverse decays into S dominate and B is driven positive. When e is driven negative 
by Sand SC decays the S inverse decays drive B negative again yielding a negative 
final baryon number. For msc< ms, the roles of Sand SC are reversed and the final 
baryon number is positive. 

Fig. 26c shows the development of e and B when ms > ms = msc. The final B 
produced is positive since msc < ms. B produced in SC inverse decays is reduced by 
S inverse deca:ys. For msc < ms, B is produced after the effects of S inverse decays 
are important and as a result the final B is larger than in the previous case. 

Appendix 

NOTATION FOR FERMION FIELDS 

We describe spin-! fermions by two-component fields of definite chirality: left­
handed fields are denoted !/JL and right-handed fields !/JR. For massless fermions, 
chirality and helicity are equivalent and the two chirality states are independent. 
Only one of the states need therefore be present (for massless neutrinos I'R is absent). 



98 1. A. Harvey et al. / Cosmological baryon asymmetry 

For the two-component fields, I/I~ denotes the left-handed antiparticle of I/IR, 
while I/I~ denotes the right-handed antiparticle of I/IL' For fields in which both 
helicity states are present, parity (P) serves to interchange Land R components, 
while charge conjugation (C) interchanges particles with antiparticles, according to 

P: 

C: I/IL ~ I/I~ = U21/1tt, I/IR ~ I/I~ = -U21/1~, 

CP: I/IL ~ -U21/1~ , I/IR ~ U21/1tt , 

where U2 is the Pauli matrix. These transformations are summarized in fig. 27. 
Note the important feature that while the separate operations of C and P inter­
change Land R components, the combined CP transformation does not modify 
the he Ii city state. Hence while the definition of individual C and P transformation 
properties require the presence of both Land R states, CP transformation properties 
may be defined for massless particles with only a single helicity state. 

The two-component fermion fields may be collected iQto a four-component Dirac 
spinor describing a fermion of arbitrary helicity: 1Jt = (~~). It is convenient to take 
the Dirac gamma matrices which act on this spinor in the Weyl representation : 

o (0 1) 
" = 1 ° ' . (0 

,,' = u i 

with u i (i = 1, 2, 3) the usual Pauli matrices. (This representation differs from the 
more usual Dirac representation simply by the interchange ,,0 ~,,5.) 

The kinetic energy term in the fermion lagrangian is given by 

p iJ1Jt = I/I~u" O"I/IL + I/I~u" O"I/IR , 

with u" = (1, u i ), u" = (1, _u i ). 

Fermion fields for which both helicity states are present may give a Dirac mass 
term 

P 
~L~E------------~) ~R 

C I Cp I c 

'-¥:c .. < _______ .,.~ '-¥:C 
L P R 

Fig. 27 . Action of C and P transformations on two-component fermion fields. 
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If only one helicity is present, say l/IL, no Dirac mass term may be constructed, but 
a Majorana mass term is still possible: 

Here the charge-conjugate four-component spinor pc is given by 

For a fermion field with only a single helicity state, it is sometimes convenient 
to define a four-component Majorana spinor 

P _ ( l/IL ) 
M - -0'2 l/1 ~ 

in terms of which the Majorana mass term becomes !m PM PM. 
Note that fields with Majorana mass terms may not carry any U(l)o charges 

since the mass term is not invariant under gauge transformations l/IL ~ eiaol/lL. 
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