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PART ONE 

Pritnary Papers 



Statistical Mechanics 
of Cellular Automata 

1983 

Cellular automata are used as simple mathematical models to investigate self
organization in statistical mechanics. A detailed analysis is given of "elementary" 
cellular automata consisting of a sequence of sites with values 0 or 1 on a line, 
with each site evolving deterministically in discrete time steps according to definite 
rules involving the values of its nearest neighbors. With simple initial configurations, 
the cellular automata either tend to homogeneous states or generate self-similar 
patterns withfractal dimensions =::.1.59 or =::.1.69. With "random" initial configura
tions, the irreversible character of the cellular automaton evolution leads to several 
self-organization phenomena. Statistical properties of the structures generated are 
found to lie in two universality classes, independent of the details of the initial state 
or the cellular automaton rules. More complicated cellular automata are briefly 
considered, and connections with dynamical systems theory and the formal theory of 
computation are discussed. 

1. Introduction 

The second law of thermodynamics implies that isolated microscopically reversible 
physical systems tend with time to states of maximal entropy and maximal "disor
der." However, "dissipative" systems involving microscopic irreversibility, or those 
open to interactions with their environment, may evolve from "disordered" to more 
"ordered" states. The states attained often exhibit a complicated structure. Examples 
are outlines of snowflakes, patterns of flow in turbulent fluids, and biological systems. 
The purpose of this paper is to begin the investigation of cell ular automata (introduced 
in Sec. 2) as a class of mathematical models for such behavior. Cellular automata are 
sufficiently simple to allow detailed mathematical analysis, yet sufficiently complex 
to exhibit a wide variety of complicated phenomena. Cellular automata are also of 

Originally published in Reviews a/Modern Physics, volume 55, pages 601-644 (July 1983). 
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sufficient generality to provide simple models for a very wide variety of physical, 
chemical, biological, and other systems. The ultimate goal is to abstract from a 
study of cellular automata general features of "self-organizing" behavior and per
haps to devise universal laws analogous to the laws of thermodynamics. This paper 
concentrates on the mathematical features of the simplest cellular automata, leaving 
for future study more complicated cellular automata and details of applications to 
specific systems. The paper is largely intended as an original contribution, rather 
than a review. It is presented in this journal in the hope that it may thereby reach a 
wider audience than would otherwise be possible. An outline of some of its results 
is given in Wolfram (I982a). 

Investigations of simple "self-organization" phenomena in physical and chemical 
systems (Turing, 1952; Haken, 1975, 1978, 1979, 1981; Nicolis and Prigogine, 1977; 
Landauer, 1979; Prigogine, 1980; Nicolis et aI. , 1981) have often been based on the 
Boltzmann transport differential equations (e.g., Lifshitz and Pitaevskii, 1981) (or 
its analogs) for the time development of macroscopic quantities. The equations are 
obtained by averaging over an ensemble of microscopic states and assuming that 
successive collisions between molecules are statistically uncon·elated. For closed 
systems (with reversible or at least unitary microscopic interactions) the equations 
lead to Boltzmann's H theorem, which implies monotonic evolution towards the 
macroscopic state of maximum entropy. The equations also imply that weakly dis
sipative systems (such as fluids with small temperature gradients imposed) should 
tend to the unique condition of minimum entropy production. However, in strongly 
dissipative systems, several final states may be possible, corresponding to the vari
ous solutions of the polynomial equations obtained from the large time limit of the 
Boltzmann equations. Details or "fluctuations" in the initial state determine which of 
several possible final states are attained, just as in a system with multiple coexisting 
phases. Continuous changes in parameters such as external concentrations or temper
ature gradients may lead to discontinuous changes in the final states when the number 
of real roots in the polynomial equations changes, as described by catastrophe theory 
(Thom, 1975). In this way, "structures" with discrete boundaries may be formed 
from continuous models. However, such approaches become impractical for systems 
with very many degrees of freedom, and therefore cannot address the formation of 
genuinely complex structures. 

More general investigations of self-organization and "chaos" in dynamical sys
tems have typically used simple mathematical models. One approach (e.g., Ott, 
1981) considers dissipative nonlinear differential equations (typically derived as ide
alizations of Navier-Stokes hydrodynamic equations). The time evolution given 
particular initial conditions is represented by a trajectory in the space of variables 
described by the differential equations. In the simplest cases (such as those typical 
for chemical concentrations described by the Boltzmann transport equations), all 
trajectories tend at large times to a small number of isolated limit points, or approach 
simple periodic limit cycle orbits. In other cases, the trajectories may instead concen-
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trate on complicated and apparently chaotic surfaces ("strange attractors"). Nearly 
linear systems typically exhibit simple limit points or cycles. When nonlinearity is 
increased by variation of external parameters, the number of limit points or cycles 
may increase without bound, eventually building up a strange attractor (typically 
exhibiting a statistically self-similar structure in phase space). A simpler approach 
(e.g., Ott, 1981) involves discrete time steps, and considers the evolution of num
bers on an interval of the real line under iterated mappings. As the nonlinearity is 
increased, greater numbers of limit points and cycles appear, followed by essentially 
chaotic behavior. Quantitative features of this approach to chaos are found to be 
universal to wide classes of mappings. Notice that for both differential equations and 
iterated mappings, initial conditions are specified by real numbers with a potentially 
infinite number of significant digits. Complicated or seemingly chaotic behavior is a 
reflection of sensitive dependence on high-order digits in the decimal expansions of 
the numbers. 

Models based on cellular automata provide an alternative approach, involving 
discrete coordinates and variables as well as discrete time steps. They exhibit 
complicated behavior analogous to that found with differential equations or iterated 
mappings, but by virtue of their simpler construction are potentially amenable to a 
more detailed and complete analysis. 

Section 2 of this paper defines and introduces cellular automata and describes the 
qualitative behavior of elementary cellular automata. Several phenomena character
istic of self-organization are found. Section 3 gives a quantitative statistical analysis 
of the states generated in the time evolution of cellular automata, revealing several 
quantitative universal features . Section 4 describes the global analysis of cellular 
automata and discusses the results in the context of dynamical systems theory and 
the formal theory of computation. Section 5 considers briefly extensions to more 
complicated cellular automata. Finally, Sec. 6 gives some tentative conclusions. 

2. Introduction to Cellular Automata 

Cellular automata are mathematical idealizations of physical systems in which space 
and time are discrete, and physical quantities take on a finite set of discrete values. A 
cellular automaton consists of a regular uniform lattice (or "array") , usually infinite 
in extent, with a discrete variable at each site ("cell"). The state of a cellular 
automaton is completely specified by the values of the variables at each site. A 
cellular automaton evolves in discrete time steps, with the value of the variable at 
one site being affected by the values of variables at sites in its "neighborhood" on the 
previous time step. The neighborhood of a site is typically taken to be the site itself and 
all immediately adjacent sites. The variables at each site are updated simultaneously 
("synchronously"), based on the values of the variables in their neighborhood at the 
preceding time step, and according to a definite set of "local rules." 
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Cellular automata were originally introduced by von Neumann and Ulam (un
der the name of "cellular spaces") as a possible idealization of biological systems 
(von Neumann, 1963, 1966), with the particular purpose of modelling biological 
self-reproduction. They have been applied and reintroduced for a wide variety of 
purposes, and referred to by a variety of names, including "tessellation automata," 
"homogeneous structures," "cellular structures," "tessellation structures," and "iter
ative arrays." 

Physical systems containing many discrete elements with local interactions are 
often conveniently modelled as cellular automata. Any physical system satisfying 
differential equations may be approximated as a cellular automaton by introducing 
finite differences and discrete variables. I Nontrivial cellular automata are obtained 
whenever the dependence on the values at each site is nonlinear, as when the system 
exhibits some form of "growth inhibition." A very wide variety of examples may 
be considered; only a few are sketched here. In the most direct cases, the cellular 
automaton lattice is in position space. At a microscopic level, the sites may represent 
points in a crystal lattice, with values given by some quantized observable (such as 
spin component) or corresponding to the types of atoms or units. The dynamical 
Ising model (with kinetic energy terms included) and other lattice spin systems are 
simple cellular automata, made nondeterministic by "noise" in the local rules at finite 
temperature. At a more macroscopic level, each site in a cellular automaton may 
represent a region containing many molecules (with a scale size perhaps given by 
an appropriate correlation length), and its value may label one of several discrete 
possible phases or compositions. In this way, cellular automata may be used as 
discrete models for nonlinear chemical systems involving a network of reactions 
coupled with spatial diffusion (Greenberg et aI., 1978). They have also been used 
in a (controversial) model for the evolution of spiral galaxies (Gerola and Seiden, 
1978; Schewe, 1981). Similarly, they may provide models for kinetic aspects of 
phase transitions (e.g. , Harvey et aI., 1982). For example, it is possible that growth 
of dendritic crystals (Langer, 1980) may be described by aggregation of discrete 
"packets" with a local growth inhibition effect associated with local releases of latent 
heat, and thereby treated as a cellular automaton [Witten and Sander (1981) discuss 
a probabilistic model of this kind, but there are indications that the probabilistic 
elements are inessential] . The spatial structure of turbulent fluids may perhaps be 
modelled using cellular automata by approximating the velocity field as a lattice 
of cells, each containing one or no eddies, with interactions between neighboring 
cells. Physical systems may also potentially be described by cellular automata in 
wave-vector or momentum space, with site values representing excitations in the 
corresponding modes. 

Many biological systems have been modelled by cellular automata (Lindenmayer, 
1968; Herman, 1969; Ulam, 1974; Kitagawa, 1974; Baer and Martinez, 1974; 

1 The discussion here concentrates on systems first order in time; a more general case is mentioned briefly in Sec. 4. 
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Rosen, 1981) (cf. Barricelli, 1972). The development of structure and patterns in 
the growth of organisms often appears to be governed by very simple local rules 
(Thompson, 1961; Stevens, 1974) and is therefore potentially well described by 
a cellular automaton model. The discrete values at each site typically label types 
of living cells, approximated as growing on a regular spatial lattice. Short-range 
or contact interactions may lead to expression of different genetic characteristics, 
and determine the cell type. Simple nonlinear rules may lead to the formation of 
complex patterns, as evident in many plants and animals. Examples include leaf and 
branch arrangements (e.g., Stevens, 1974) and forms of radiolarian skeletons (e.g., 
Thompson, 1961). Simple behavior and functioning of organisms may be modelled 
by cellular automata with site values representing states of living cells or groups of 
cells [Burks (1973) and Flanigan (1965) discuss an example in heart fibrillation]. 
The precise mathematical formulation of such models allows the behavior possible 
in organisms or systems with particular construction or complexity to be investigated 
and characterized (e.g., von Neumann, 1966). Cellular automata may also describe 
popUlations of nonmobile organisms (such as plants), with site values corresponding 
to the presence or absence of individuals (perhaps of various types) at each lattice 
point, with local ecological interactions. 

Cellular automata have also been used to study problems in number theory and 
their applications to tapestry design (Miller, 1970, 1980; ApSimon, 1970a, 1970b; 
Sutton, 1981). In a typical case, successive differences in a sequence of numbers 
(such as primes) reduced with a small modulus are taken, and the geometry of zero 
regions is investigated. 

As will be discussed in Sec. 4, cellular automata may be considered as parallel 
processing computers (cf. Manning, 1977; Preston et aI. , 1979). As such, they have 
been used, for example, as highly parallel multipliers (Atrubin, 1965; Cole, 1969), 
sorters (Nishio, 1981), and prime number sieves (Fischer, 1965). Particularly in 
two dimensions, cellular automata have been used extensively for image processing 
and visual pattern recognition (Deutsch, 1972; Sternberg, 1980; Rosenfeld, 1979). 
The computational capabilities of cellular automata have been studied extensively 
(Codd, 1968; Burks, 1970; Banks, 1971; Aladyev, 1974, 1976; Kosaraju , 1974; 
Toffoli, 1977b), and it has been shown that some cellular automata could be used 
as general purpose computers, and may therefore be used as general paradigms for 
parallel computation. Their locality and simplicity might ultimately permit their 
implementation at a molecular level. 

The notorious solitaire computer game "Life" (Conway, 1970; Gardner, 1971, 
1972; Wainwright, 1971-1973; Wainwright, 1974; Buckingham, 1978; BerJekamp 
et aI., 1982; R. W. Gosper, private communications) (qualitatively similar in some 
respects to the game of "Go") is an example of a two-dimensional cellular automaton, 
to be discussed briefly in Sec. 5. 

Until Sec. 5, we shall consider exclusively one-dimensional cellular automata 
with two possible values of the variables at each site ("base 2") and in which the 
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neighborhood of a given site is simply the site itself and the sites immediately adjacent 
to it on the left and right. We shall call such cellular automata elementary. Figure I 
specifies one particular set of local rules for an elementary cellular automaton. On 
the top row, all 23 = 8 possible values of the three variables in the neighborhood 
are given, and below each one is given the value achieved by the central site on the 
next time step according to a particular local rule. Figure 2 shows the evolution of a 
particular state of the cellular automaton through one time step according to the local 
rule given in Fig. 1. 

The local rules for a one-dimensional neighborhood-three cellular automaton are 
described by an eight-digit binary number, as in the example of Fig. 1. (In specifying 
cellular automata, we use this binary number interchangeably with its decimal equiv
alent.) Since any eight-digit binary number specifies a cellular automaton, there are 
28 = 256 possible distinct cellular automaton rules in one dimension with a three-site 
neighborhood. Two inessential restrictions will usually be imposed on these rules. 
First, a cellular automaton rule will be considered "illegal" unless a "null" or "quies
cent" initial state consisting solely of a remains unchanged. This forbids rules whose 
binary specification ends with a 1 (and removes symmetry in the treatment of a and 1 
sites). Second, the rules must be reflection symmetric, so that 100 and 001 (and 110 
and all) yield identical values. These restrictions2 leave 32 possible "legal" cellular 

automaton rules of the form a l a2a3a4a2aSa40. 

The local rules for a cellular automaton may be considered as a Boolean function 
of the sites within the neighborhood. Let sn(m) be the value of site m at time step 

III 110 101 100 011 010 001 000 o I 0 --1- --1- --0- --1- --0-

Figure 1. Example of a set of local rules for the time evolution of a one-dimensional elementary cellular 

automaton. The variables at each site may take values 0 or I. The eight possible states of three adjacent 

sites are given on the upper line. The lower line then specifies a rule for the time evolution of the cellular 

automaton by giving the value to be taken by the central site of the three on the next time step. The time 

evolution of the complete cellular automaton is obtained by simultaneous application of these rules at each 

site for each time step. The rule given is the modulo-two rule: the value of a site at a particular time step 

is simply the sum modulo two of the values of its two neighbors at the previous time step. Any possible 

sequence of eight binary digits specifies a cellular automaton. 

010110110101011100010 
0011011000001011010 

Figure 2. Evolution of a configuration in one-dimensional cellular automaton for one time step according 

to the modulo-two rule given in Fig. I. The values of the two end sites after the time step depend on the 

values of sites not shown here. 

2 The quiescence condition is required in many applications to forbid " instantaneous propagation" of value-one sites. 
The reflection symmetry condition guarantees isotropy as well as homogeneity in cellular automaton evolution. 
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n. As a first example consider the "modulo-two" rule 90 (also used as the example 
for Fig. 1). According to this rule, the value of a particular site is simply the sum 
modulo two of the values of its two neighboring sites on the previous time step. The 
Boolean equivalent of this rule is therefore 

(2.1) 

or schematically s+ = s- ffi s+, where ffi denotes addition modulo two ("exclusive 
disjunction" or "inequality"). Similarly, rule 18 is equivalent to s+ = s v (s - ffi s+) 

[where s denotes sn(m»), rule 22 to s+ = s v (s- /\ s+), rule 54 to s+ = s ffi (s- V s+), 

rule 150 to s+ = s- ffi s ffi s+, and so on. Designations s- and s+ always enter 
symmetrically in legal cellular automaton rules by virtue of reflection symmetry. 
The Boolean function representation of cellular automaton rules is convenient for 
practical implementation on standard serial processing digital computers.3 

Some cellular automaton rules exhibit the important simplifying feature of "ad
ditive superposition" or "additivity." Evolution according to such rules satisfies the 
superposition principle 

(2.2) 

which implies that the configurations obtained by evolution from any initial config
uration are given by appropriate combinations of those found in Fig. 3 for evolution 
from a single nonzero site. Notice that such additivity does not imply linearity in the 
real number sense of Sec. 1, since the addition is over a finite field. Cellular automata 
satisfy additive superposition only if their rule is of the form ala20a3a2ala30 with 
a3 = a l ffi a2. Only rules 0, 90, 150, and 204 are of this form. Rules 0 and 204 are 
trivial ; 0 erases any initial configuration, and 204 maintains any initial configuration 
unchanged (performing the identity transformation at each time step). Rule 90 is the 
modulo-two rule discussed above, and takes a particular site to be the sum modulo 
two of the values of its two neighbors at the previous time step, as in Eq. (2.1). Rule 
150 is similar. It takes a particular site to be the sum modulo two of the values of its 
two neighbors and its own value at the previous time step (s+ = s- ffi s ffi s+) . 

The additive superposition principle of Eq. (2.2) combines values at different 
sites by addition modulo two (exclusive disjunction) . Combining values instead by 
conjunction (Boolean multiplication) yields a superposition principle for rules 0, 4, 
50, and 254. Combining values by (inclusive) disjunction (Boolean addition) yields 
a corresponding principle for rules 0, 204, 250, and 254. It is found that no other 

3 The values of a sequence of (typically 32) sites are represented by bits in a single computer word. Copies of this word 
shifted one bit to the left and one bit to the right are obtained. Then the cellular automaton rule may be applied in 
parallel to all bits in the words using single machine instructions for each word-wise Boolean operation. An analogous 
procedure is convenient in simulation of two-dimensional cellular automata on computer systems with memory
mapped displays, for which application of identical Boolean operations to each display pixel is usually implemented in 
hardware or firmware. 
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Figure 3. Evolution of one-dimensional elementary cellular automata according to the 32 possible legal 

sets of rules, starting from a state containing a single site with value I. Sites with value I are represented 

by stars, and those with value 0 by blanks. The configurations of the cellular automata at successive time 

steps are shown on successive lines. The time evolution is shown up to the point where the system is 

legal cellular automaton rules satisfy superposition principles with any combining 
function. 

The Boolean representation of cellular automaton rules reveals that some rules 
are "peripheral" in the sense that the value of a particular site depends on the values 
of its two neighbors at the previous time step, but not on its own previous value. 
Rules 0, 90, 160, and 250 are of the fonn ala2ala2a20a20 and exhibit this property. 
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detected to cycle (visiting a particular configuration for the second time), or for at most 20 ti me steps. The 

process is analogous to the growth of a crystal from a microscope seed. A considerable variety of behavior 

is evident. The cellular automata which do not tend to a uniform state yield asymptotically self-simi lar 

fractal config urations. 

Having discussed features of possible local rules we now outline their conse
quences for the evolution of elementary cellular automata. Sections 3 and 4 present 
more detailed quantitative analysis. 

Figure 3 shows the evolution of all 32 possible legal cellular automata from an 
initial configuration containing a single site with value I (analogous to the growth 
of a "crystal" from a microscopic "seed"). The evolution is shown until a par-
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ticular configuration appears for the second time (a "cycle" is detected), or for at 
most 20 time steps. Several classes of behavior are evident. In one class, the initial 
1 is immediately erased (as in rules 0 and 160), or is maintained unchanged forever 
(as in rules 4 and 36). Rules of this class are distinguished by the presence of the 
local rules 100 ~ 0 and 001 ~ 0, which prevent any propagation of the initial 1. A 
second class of rules (exemplified by 50 or 122) copies the 1 to generate a uniform 
structure which expands by one site in each direction on each time step. These two 
classes of rules will be termed "simple." A third class of rules, termed "complex," 
and exemplified by rules 18, 22, and 90, yields nontrivial patterns. 

As a consequence of their locality, cellular automaton rules define no intrinsic 
length scale other than the size of a single site (or of a neighborhood of three sites) 
and no intrinsic time scale other than the duration of a single time step. The initial 
state consisting of a single site with value 1 used in Fig. 3 also exhibits no intrinsic 
scale. The cellular automaton configurations obtained in Fig. 3 should therefore 
also exhibit no intrinsic scale, at least in the infinite time limit. Simple rules yield 
a uniform final state, which is manifestly scale invariant. The scale invariance of 
the configurations generated by complex rules is nontrivial. In the infinite time 
limit, the configurations are "self-similar" in that views of the configuration with 
different "magnifications" (but with the same "resolution") are indistinguishable. 
The configurations thus exhibit the same structure on all scales. 

Consider as an example the modulo-two rule 90 (also used as the example for 
Fig. 1 and in the discussion above). This rule takes each site to be the sum modulo 
two of its two nearest neighbors on the previous time step. Starting from an initial 
state containing a single site with value I, the configuration it yields on successive 
time steps is thus simply the lines of Pascal's triangle modulo two, as illustrated in 
Fig. 4 (cf. Wolfram, 1982b). The values of the sites are hence the values of binomial 
coefficients [or equivalently, coefficients of Xi in the expansion of (I + x)n] modulo 
two. In the large time limit, the pattern of sites with value 1 may be obtained by the 
recursive geometrical construction (cf. Sierpinski, 1916; Abelson and diSessa, 1981 , 
Sec. 2.4) shown in Fig. 5. This geometrical construction manifests the self-similarity 

1 1 
1 2 1 

1 3 3 1 
1 4 6 4 1 

15101051 
1 6 15 20 15 6 1 

1 7 21 35 35 21 7 1 

- * 
* * 

* * 
* * * * 

* * * * * * 
* * * * * * * * * * "* * 

Figure 4. An algebraic construction for the configurations of a cellular automaton starting from a state 

containing a single site with value I and evolving according to the modulo-two rule 90. The rule is 

illustrated in Fig. I, and takes the value of a particular site to be the sum modulo two of the values of its 

two neighboring sites at the previous time step. The value of a site at a given time step is then just the 

value modulo two of the corresponding binomial coefficient in Pascal 's triangle. 
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Figure 5. Sequence of steps in a geometrical construction forthe large time behavior of a cellular automaton 

evolving according to the modulo-two rule 90. The final pattern is the limit of the sequence shown here. 

It is a self-similar figure with fractal dimension log2 3. 

(Mandelbrot, 1977, 1982; Geffen et a\., 1981) or "scale invariance" of the resulting 
curve. Figure 3 shows that evolution of other complex cellular automata from a 
single nonzero site yields essentially identical self-similar patterns. An exception is 
rule 150, for whjch the value of each site is determined by the sum modulo two of 
its own value and the values of its two neighbors on the previous time step. The 
sequence of binary digits obtained by evolution from a single-site initial state for 
n time steps with this rule is thus simply the coefficients of Xi in the expansion of 
(x2 + X + I)" modulo two. A geometrical construction for the pattern obtained is 
given in Fig. 6. 

Figure 7 shows examples oftime evolution for some cellular automata with illegal 
local rules (defined above) which were omitted from Fig. 3. When the quiescence 
condition is violated, successive time steps involve alternation of 0 and 1 at infinity. 
When reflection symmetry is violated, the configurations tend to undergo uniform 
shifting. The self-similar patterns seen in Fig. 3 are also found in cases such as rule 
225, but are sheared by the overall shifting. It appears that consideration of illegal 
as well as "legal" cellular automaton rules introduces no qualitatively new features. 

Figure 3 shows the growth of patterns by cellular automaton evolution from a very 
simple initial state containing a single nonzero site (seed). Figure 8 now illustrates 
time evolution from a disordered or "random" initial state according to each of the 
32 legal cellular automaton rules. A specific "typical" initial configuration was 
taken, with the value of each site chosen independently, with equal probabilities 
for values 0 and 1.4 Just as in Fig. 3, several classes of behavior are evident. 

Figure 6. Sequence of steps in a geometrical construction for the large time behavior of a cellular automaton 

evolving according to the modulo-two rule 150. The final pattern is the limit of the sequence shown here. 

It is a self-similar figure with fractal dimension log2 2rp :>< 1.69 [where rp = (I + -/5)/ 2 is the golden ratio]. 

An analogous construction for rule 90 was given in Fig. 5. 

4 Here and elsewhere a standard linear congruential pseudorandom number generator with recurrence relation Xn+1 = 
(I 1035 I 5245xn + 12345) mod 231 was used. Results were also obtained using other pseudorandom number generation 
procedures and using random numbers derived from real-time properties of a time-shared computer system. 
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Figure 7. Evolution of a selection of one-dimensional elementary cellular automata obeying illegal rules. 

Rules are considered illegal if they violate reflection symmetry, which requires identical rules for 100 and 

001 and for 110 and OIl, or if they violate the quiescence condition which requires that an initial state 

containing only 0 sites should remain unchanged. For example, rule 2 violates reflection symmetry, and 

thus yields a unifonnly shifting pattern, while rule I violates the quiescence condition and yields a pattern 

which "flashes" from all 0 to all 1 in successive time steps. 
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The simple rules exhibit trivial behavior, either yielding a uniform final state or 
essentially preserving the form of the initial state. Complex rules once again yield 
nontrivial behavior. Figure 8 illustrates the remarkable fact that time evolution 
according to these rules destroys the independence of the initial sites, and generates 
correlations between values at separated sites. This phenomenon is the essence of 
self-organization in cellular automata. An initially random state evolves to a state 
containing long-range correlations and structure. The bases of the "triangles" visible 
in Fig. 8 are fluctuations in which a sequence of many adjacent cells have the same 
value. The length of these correlated sequences is reduced by one site per time 
step, yielding the distinctive triangular structure. Figure 8 suggests that triangles of 
all sizes are generated. Section 3 confirms this impression through a quantitative 
analysis and discusses universal features of the structures obtained. 

The behavior of the cellular automata shown in Fig. 8 may be characterized in 
analogy with the behavior of dynamical systems (e.g. , Ott, 1981): simple rules exhibit 
simple limit points or limit cycles, while complex rules exhibit phenomena analogous 
to strange attractors. 

The cellular automata shown in Fig. 8 were all assumed to satisfy periodic bound
ary conditions. Instead of treating a genuinely infinite line of sites, the first and last 
sites are identified, as if they lay on a circle of finite radius. Cellular automata can also 
be rendered finite by imposing null boundary conditions, under which sites beyond 
each end are modified to maintain value zero, rather than evolving according to the 
local rules. Figure 9 compares results obtained with these two boundary conditions 
in a simple case; no important qualitative differences are apparent. 

Finite one-dimensional cellular automata are similar to a class of feedback shift 
registers (e.g. , Golomb, 1967; Berlekamp, 1968).5 A feedback shift register consists 
of a sequence of sites ("tubes") carrying values aU). At each time step, the site values 
evolve by a shift aU ) = aU -1) and feedback a(O) = F[a(jl)' a(j2)' ... ] where j; give 
the positions of "taps" on the shift register. An elementary cellular automaton of 
length N corresponds to a feedback shift register of length N with site values 0 and 1 
and taps at positions N - 2, N - 1, and N . The Boolean function F defines the cellular 
automaton rule. [The additive rules 90 and 150 correspond to linear feedback shift 
registers in which F is addition modulo two (exclusive disjunction).] At each shift 
register time step, the value of one site is updated according to the cellular automaton 
rule. After N time steps, all N sites have been updated, and one cellular automaton 
time step is complete. All interior sites are treated exactly as in a cellular automaton, 
but the two end sites evolve differently (their values depend on the two preceding 
time steps). 

S This similari ty may be used as the basis for a simple hardware implementation of one·dimensional cellular automata 
(Pearson et aI. , 198 1; Hoogland et aI., 1982; Toffoli , 1983). 
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~ Figure 8. Evolution of a disordered (random) initial state in each of the 32 possible legal one-dimensional 

elementary cellular automata. The value of each site is initially uncorrelated, and is taken to be 0 or I 

with probability ~. Evolution is shown until a particular configuration appears for the second time, or 

for at most 30 time steps. Just as in Fig. 3, several classes of behavior are evident. In one class, time 

evolution generates long-range correlations and fluctuations, yielding distinctive "triangular" structures, 

and exhibiting a simple form of self-organization. All the cellular automata shown are taken to satisfy 

periodic boundary conditions, so that their sites are effectively arranged on a circle. 
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(b) 

Figure 9. Time evolution of a simple 

initial state according to the modulo

two rule 90, on a line of sites satisfy

ing (a) periodic boundary conditions 

(so that first and last sites are iden

tified, and the sites are effectively 

arranged on a circle), and (b) null 

boundary conditions (so that sites not 

shown are assumed always to have 

value 0). Changes in boundary con

ditions apparently have no significant 

qualitative effect. 

3. Local Properties of Elementary Cellular Automata 

We shall examine now the statistical analysis of configurations generated by time 
evolution of "elementary" cellular automata, as illustrated in Figs. 3 and 8. This 
section considers statistical properties of individual such configurations; Sec. 4 dis
cusses the ensemble of all possible configurations. The primary purpose is to obtain 
a quantitative characterization of the "self-organization" pictorially evident in Fig. 8. 

A configuration may be considered disordered (or essentially random) if values 
at different sites are statistically uncorrelated (and thus behave as "independent 
random variables"). Such configurations represent a discrete form of "white noise." 
Deviations of statistical measures for cellular automaton configurations from their 
values for corresponding disordered configurations indicate order, and signal the 
presence of correlations between values at different sites. An (infinite) disordered 
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Figure 10. Examples of sets of disordered configurations in which each site is chosen to have value 

1 with independent probability (a) 0.25, (b) 0.5, and (c) 0.75. Successive lines are independent. The 

configurations are to be compared with those generated by cellular automaton evolution as shown in Fig. 8. 

configuration is specified by a single parameter, the independent probability p for 
each site to have value I. The description of an ordered configuration requires more 
parameters. 

Figure 10 shows a set of examples of disordered configurations with probabilities 
p = 0.25, 0.5, and 0.75. Such disordered configurations were used as the initial 
configurations for the cellular automaton evolution shown in Fig. 8. Qualitative 
comparison of the configurations obtained by this evolution with the disordered 
configurations of Fig. 10 strongly suggests that cellular automata indeed generate 
more ordered configurations, and exhibit a simple form of self-organization. 

The simplest statistical quantity with which to characterize a cellular automaton 
configuration is the average fraction (density) of sites with value 1, denoted by p. 

For a disordered configuration, p is given simply by the independent probability p 

for each site to have value 1. 
We consider first the density PI obtained from a disordered configuration by 

cellular automaton evolution for one time step. When p = P = ~ (as in Fig. 8), a 
disordered configuration contains all eight possible three-site neighborhoods (illus
trated in Fig. 1) with equal probability. Applying a cellular automaton rule (specified, 
say, by a binary sequence R, as in Fig. 1) to this initial state for one time step (T = 1) 
yields a configuration in which the fraction of sites with value 1 is given simply 
by the fraction of the eight possible neighborhoods which yield 1 according to the 
cellular automaton rule. This fraction is given by 

(3.1) 

where # deS) denotes the number of occurrences of the digit d in the binary represen
tation of S. Hence, for example, #1 (10110110) = #1 (182) = 5 and #0(10110110) = 
#0(182) = 3. With cellular automaton rule 182, therefore, the density p after the 
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first time step shown in Fig. 8 is i if an infinite number of sites is included. The 

result (3.1) may be generalized to initial states with p "* ! by using the probabilities 
p(CT) = p#l(CT) (1 - p)#O(CT), for each of the eight possible three-site neighborhoods CT 

(such as 110) shown in Fig. I, and adding the probabilities for those CT which yield 1 

on application of the cellular automaton rule. 

The function #1 (n) will appear several times in the analysis given below. A graph 

of it for small n is given in Fig. 11, and is seen to be highly irregular. For any n, 
#1 (n)+#o(n) is the total number of digits (r log2 n 1) in the binary representation of n , 

so that#l(n) slog2n. Furthermore, #1(2kn) = #1(n) and for n < 2k, #1(n +2k) = 

#1 (n) + 1. Finally, one finds that 

#1(n)=n- l:)n/iJ . 
;=1 

References to further results are given in McIlroy (1974) and Stolarsky (1977). 

We now consider the behavior of the density P
T 

obtained after T time steps 

in the limit of large T. When T > I , correlations induced by cellular automaton 

evolution invalidate the approach used in Eq. (3.1), although a similar approach may 

nevertheless be used in deriving statistical approximations, as discussed below. 

8,---------,---------,-----, 

O~O---------L--------~----~128 

Figure 11. The number of occurrences #1 (n) of 

the binary digit I in the binary representation of 

the integer n [#1(1) = I, #1(2) = I, #1(3) = 2, 

#1(4) = I, and so on]. The function is defined 

only for integer n: values obtained for succes

sive integer n have nevertheless been joined by 

straight lines. 

Figure 8 suggests that with some simple rules (such as 0, 32, or 72), any initial 

configuration evolves ultimately to the null state P = 0, although the length of 

transient varies. For rule 0, it is clear that P = 0 for all T > O. Similarly, for rule 

72, P = 0 for T > 1. For rule 32, infinite transients may occur, but the probability 

that a nonzero value survives at a particular site for T time steps assuming an initial 
disordered state with P = ! is 2-3(2T+1). Rule 254 yields Poo = I, with a probability 

(1 - POfT+1 for a transient of length ~T. Rule 204 is the " identity rule," which 

propagates any initial configuration unchanged and yields Poo = po. The "disjunctive 

superposition" principle for rule 250 discussed in Sec. 2 implies Poo = I. For rule 50, 

the "conjunctive superposition" principle yields Poo = !. 
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Other simple rules serve as "filters" for specific initial sequences, yielding final 
densities proportional to the initial density of the sequences to be selected. For 

rule 4, the final density is equal to the initial density of 101 sequences, so that 

Poo = p~(1 - Po)· For rule 36, Poo is determined by the density of initial 00100 and 
.. . 1010101 . . . sequences and is approximately i6 for Po = !. 

Exact results for the behavior of P
T 

with the modulo-two rule 90 may be derived 

using the additive superposition property discussed in Sec. 2. 
Consider first the number of sites N~ I ) with value 1 obtained by evolution accord

ing to rule 90 from an initial state containing a single site with value 1, as illustrated 

in Fig. 3. Geometrical considerations based on Fig. 5 yield the result6 

(3 .2) 

where the function #1 (T) gives the number of occurrences of the digit I in the bi

nary representation of the integer T, as defined above, and is illustrated in Fig. 11. 
Equation (3 .2) may be derived as follows. Consider the figure generated by r log2 Tl 

(the number of digits in the binary representation of T) steps in the construction of 

Fig. 5. The configuration obtained after T time steps of cellular automaton evolution 
corresponds to a slice through this figure , with a 1 at each point crossed by a line of 

the figure, and 0 elsewhere. By construction, the slice must lie in the lower half of 
the figure . Successive digits in the binary representation of T determine whether the 

slice crosses the upper (0) or lower (1 ) halves of successively smaller triangles. The 
number of lines of the figure crossed is multiplied by a factor each time the lower 

half is chosen. The total number of sites with value I encountered is then given by a 
product of the factors of two associated with each I digit in the binary representation 
of T . Inspection of Fig. 5 also yields a formu la for the positions of all sites with value 

1. With the original site at position 0, the positions of sites with value I after T time 
steps are given by ±(2j l ± (2h ± . . . )), where all possible combinations of signs are 

to be taken, and the i; correspond to the positions at which the digit 1 appears in the 
binary representation of T, defined so that T = 2j , + 2h + ... and i l > i2 > . . . . 

Equation (3 .2) shows that the density averaged over the region of nonzero sites 

(" light cone") in the rule 90 evolution of Fig. 3 is given by P
T 

= N~I) 1(2T + 1) and 
does not tend to a definite limit for large T. Nevertheless , the time-average density 

T=T 

PT = (l I T) I >T 
T=O 

tends to zero (as expected from the geometrical construction of Fig. 5) like T log2 3-2 -

T-{J.42.7 Results for initial states containing a finite number of sites with value 1 may 

be obtained by additive superposition. If the initial configuration is one which would 

6 This result has also been derived by somewhat lengthy algebraic means in Glaisher (1 899), Fine (1 947), Roberts 
( 1957), Kimball et al. (1 958), and Honsberger (1976). 

7 This form is strictly correct only for T = 2'. For T = 2*(1 + 8), there is a correction factor '" (I + 8'082 3)/( I + 8)'082 3, 

which lies between 0.86 and I, with a broad minimum around 8 = 0.3. 
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be reached by evolution from a single site after, say, TO time steps, then the resulting 
density is given by Eq. (3.2) with the replacement T ~ T - TO' Only a very small 
fraction of initial configurations may be treated in this way, since evolution from a 
single site generates only one of the 2k possible configurations in which the maximum 
separation between nonzero sites is k. For small or highly regular initial configura
tions, results analogous to (3.2) may nevertheless be derived. Statistical results for 
evolution from disordered initial states may also be derived. Equation (3.2) implies 
that after exactly T = 2j time steps, an initial state containing a single nonzero site 
evolves to a configuration with only two nonzero sites. At this point, the value of a 
particular site at position n is simply the sum modulo two of the initial values of sites 
at positions n - T and n + T. If we start from a disordered initial configuration, the 
density at such time steps is thus given by PT=2j = 2po( 1 - po). In general, the value 
of a site at time step T is a sum modulo two of the initial values of N~') = 2#,(T) sites, 

which each have value 1 with probability Po' If each of a set of k sites has value 1 

with probability p, then the probability that the sum of the values at the sites will be 
odd (equal to 1 modulo two) is 

L (~) piO- p)k-i = 4[1- (1- 2p)k]. 
i odd 1 

Thus the density of sites with value 1 obtained by evolution for T time steps from an 
initial state with density Po according to cellular automaton rule 90 is given by 

(3.3) 

This result is shown as a function of T for the case Po = 0.2 in Fig. 12. For large T, 

#, (T) = o (log2 T), except at a set of points of measure zero, and Eq. (3.3) implies 
that PT ~ 4 as T ~ 00 for almost all T (so long as Po "* 0). 

Cellular automaton rule 150 shares with rule 90 the property of additive superpo
sition. Inspection of the results for rule 150 given in Fig. 3 indicates that the value of a 
particular site depends on the values of at least three initial sites (this minimum again 
being achieved when T = 2k), so that Ip

T 
- 41 s 11 - 2Po1

3
• Between the exceptional 

time steps T = 2k, the P
T 

for rule 150 tends to be much flatter than that for rule 90 
(illustrated in Fig. 12). An exact result may be obtained, but is more complicated 
than in the case of rule 90. The geometrical construction of Fig. 6 shows that for 
rule 150, N~') is a product of factorsx(J) associated with each sequence of jones 
(delimited by zeroes) in the binary representation of T. The function X(J) is given 
by the recurrence relationx(J) = (2j ± l)X(J - 1) where the upper (lower) sign is 
taken for j odd (even), and x(l) = 3 [so that x (2) = 5, X (3) = 11 and so on]. [N;') 
thus measures "sequence correlations" in T.] The density is then given in analogy 

• , N ( I) 

With Eq. (3.3) by P
T 

= 2[1- (1- 2po) , ]. 
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0.75 rule 182 

0~0----~IO~--~20~--~3~0----~4~0--~50 
T 

Figure 12. Average density PT of sites with value I obtained by time evolution according to various cellular 

automaton rules starting from a disordered initial state with Po = 0.2. The additivity of the modulo-two 

rule 90 may be used to derive the exact result (3.2) for PT. The irregularities appear for time steps at which 

the value of each site depends on the values of only a few initial sites. For the nonadditive complex rules 

exemplified by 18 and 182, the values of sites at time step T depend on the values of O(T) initial sites, and 

PT tends smoothly to a definite limit. This limit is independent of the density of the initial disordered state. 

Some aspects of the large-time behavior of nonadditive complex cellular au
tomata may be found using a correspondence between nonadditive and additive 
rules (Grassberger, 1982). Special classes of configurations in nonadditive cellular 
automata effectively evolve according to additive rules. For example, with the non
additive complex rule 18, a configuration in which, say, all even-numbered sites have 
value zero evolves after one time step to a configuration with all odd-numbered sites 
zero, and with the values of even-numbered sites given by the sums modulo two of 
their odd-numbered neighbors on the previous time step, just as for the additive rule 
90. An arbitrary initial configuration may always be decomposed into a sequence 
of (perhaps small) "domains," in each of which either all even-numbered sites or all 
odd-numbered sites have value zero. These domains are then separated by "domain 
walls" or "kinks." The kinks move in the cellular automaton evolution and may 
annihilate in pairs. The motion of the kinks is determined by the initial configura
tion; with a disordered initial configuration, the kinks initially follow approximately 
a random walk, so that their mean displacement increases with time according to 
(x 2

) = t (Grassberger, 1982), and the paths of the kinks are fractal curves. This 
implies that the average kink density decreases through annihilation as if by diffusion 
processes according to the formula (Pkink) ~ (4mr1/ 2 (Grassberger, 1982). Thus 
after a sufficiently long time all kinks (at least from any finite initial configuration) 
must annihilate, leaving a configuration whose alternate sites evolve according to the 
additive cellular automaton rule 90. Each point on the "front" formed by the kink 
paths yields a pattern analogous to Fig. 5. The superposition of such patterns, each 
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diluted by the insertion of alternate zero sites, yields configurations with an average 
density ~ (Grassberger, 1982). The large number of sites on the "front" suppresses the 
fluctuations found for complete evolution according to additive rule 90. Starting with 
a disordered configuration of any nonzero density, evolution according to cellular 
automaton rule 18 therefore yields an asymptotic density~. The existence of a 
universal Poo ' independent of initial density Po' is characteristic of complex cellular 
automaton rules. 

Straightforward transformations on the case of rule 18 above then yield asymptotic 
densities Poo = ~ for the complex nonadditive rules 146, 122, and 126, and an 
asymptotic density * for rule 182, again all independent of the initial density Po 
(Grassberger, 1982). No simple domain structure appears with rule 22, and the 
approach fails. Simulations yield a numerical estimate Poo = 0.35 ±0.02 for evolution 
from disordered configurations with any nonzero Po' 

Figure 12 shows the behavior of P
T 

for the complex nonadditive cellular automata 
18 and 182 with Po = 0.2, and suggests that the final constant values Poo = 0.25 and 
Poo = 0.75 are approached roughly exponentially with time. 

One may compare exact results for limiting densities of cellular automata with 
approximations obtained from a statistical approach (akin to "mean-field theory"). 
As discussed above, cellular automaton evolution generates correlations between 
values at different sites. Nevertheless, as a simple approximation, one may ignore 
these correlations, and parametrize all configurations by their average density p, or, 
equivalently, by the probabilities p and q = 1 - p, assumed independent, for each 
site to have value 1 and 0, respectively. With this approximation, the time evolution 
of the density is given by a master equation 

6p 
- = reo -+ 1) - ro -+ 0), 
Or 
reO -+ 1) = p . (00110011 A R), 

r(1 -+ 0) = p . (11001100 A ~R), 

P = {p3, p2q, p2q , pq2, p2q, pq2, pq2, q3). 

(3.4) 

The term reo -+ 1) represents the average fraction of sites whose values change from 
o to 1 in each time step, and re 1 -+ 0) the fraction changing from 1 to O. R is the 
binary specification of a cellular automaton rule, and the binary number with which it 
is "masked" (digitwise conjunction) selects local rules for three-site neighborhoods 
with appropriate values at the center site. P is the vector of probabilities for the 
possible three-site neighborhoods, assuming each site independently to have value 1 
with probability p = p , and to have value 0 with probability q = 1 - P = 1 - p. The 
dot indicates that each element of this vector is to be multiplied by the corresponding 
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digit of the binary sequence, and the results are to be added together. The equilibrium 
density Poo is achieved when 

6p =0. 
6T 

This condition yields a polynomial equation for p and thus Poo for each of the legal 
cellular automaton rules. For rule 90, the equation is pq2_ p3 = p_2p2 = p(l-2p) = 
0, which has solutions p = 0 (null state for all time) and p = ~ . Rule 18 yields the 
equation pq2 - 2p2q - p3 = p(l - 4p + 2p2) = 0, which has the solutions p = 0 
and p = 1 - 1/ ../2 "'" 0.293, together with the irrelevant solution p = 1 + 1/ ../2 > 1. 
Rule 182 yields 2pq2 - p2q = p(2 - 3p)(1 - p) = 0, giving p = 0, 1, ~. For rules 
90 and 18, these approximate results are close to the exact results 0.5 and 0.25. For 
rule 182, there is a significant discrepancy from the exact value 0.75. Nevertheless, 
for all complex cellular automaton rules, it-appears that the master equation (3.4) 
yields equilibrium densities within 10-20% of the exact values. The discrepancies 
are a reflection of the violation of the Markovian approximation required to derive 
Eq. (3.4) and thus of the presence of correlations induced by cellular automaton 
evolution. 

In the discussion above, a definite value for the density P
T 

at each time step was 
found by averaging over all sites of an infinite cellular automaton. If instead the 
density is estimated by averaging over blocks containing a finite number of sites b, a 
distribution of density values is obtained. In a disordered state, the central limit the
orem ensures that for large b, these density estimates follow a Gaussian distribution 
with standard deviation"", 1 / ./b. Evolution according to any of the complex cellu
lar automaton rules appears accurately to maintain this Gaussian distribution, while 
shifting its mean as illustrated in Fig. 12. Density in cellular automaton configura
tions thus obeys the "law of large numbers." Instead of taking many blocks of sites 
at a single time step, one might estimate the density at "equilibrium" by averaging 
results for a single block over many time steps. For nonadditive complex cellular 
automaton rules , it appears that these two procedures yield the same limiting results. 
However, the large fluctuations in average density visible in Fig. 12 at particular time 
steps for additive rules (90 and 150) would be lost in a time average. 

Cellular automaton evolution is supposed to generate correlations between values 
at different sites. The very simplest measure of these correlations is the two-point 
correlation function C(2) (r) = (S(m)S(m + r) - ( S(m)(S(m + r), where the aver
age is taken over all possible positions m in the cellular automaton at a fixed time, 
and S(k) takes on values -1 and +1 when the site at position k has values 0 and 
1, respectively. A disordered configuration involves no correlations between values 
at different sites and thus gives C (2)(r) = 0 for r > 0 [C (2) (0) = 1 - (2p - 1)2] . 

With the single-site initial state of Fig. 3, evolution of complex cellular automata 
yields configurations with definite periodicities. These periodicities give rise to 
peaks in C (2) (r) . At time step T , the largest peaks occur when r = 2k and the 
digit corresponding to 2k appears in the binary decomposition of T; smaller peaks 

24 



Statistical Mechanics of Cellular Automata (1983) 

occur when r = 2kl ± 2k2, and so on. For the additive cellular automaton rules 90 
and 150, a convolution of this result with the correlation function for any initial state 
gives the form of C(2)(r) after evolution for T time steps. With these rules, the cor
relation function obtained by evolution from a disordered initial configuration thus 
always remains zero. For nonadditive rules, nonzero short-range correlations may 
nevertheless be generated from disordered initial configurations. The form of C(2)(r) 

for rule 18 at large times is shown in Fig. 13, and is seen to fall roughly exponentially 
with a correlation length -2. The existence of a nonzero correlation length in this 
case is our first indication of the generation of order by cellular automaton evolution. 

0.8,----...,-----,---,-------, 

0 .6 

0 .4 

d21( r ) 

0.2 

-0.2 
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hl\A 
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15 20 

Figure 13. Two-point correlation function C(2) (r) for 

configurations generated at large times by evolution 

according to cellular automaton rule 18 from any dis

ordered initial configuration. C (2) (r) is defined as 

(S(m)S(m + r» - (S(m» (S(m + r», where the aver

age is taken over all sites m of the cellular automaton, 

and S(k) = ±I when site k has values I and 0, respec

tively. No correlations are present in a disordered 

configuration, so that C (2) (r) = 0 for r > O. Evolu

tion according to certain complex cellular automaton 

rules, such as 18, yield nonzero but exponentially 

damped correlations. 

Figures 3 and 8 show that the evolution of complex cellular automata generates 
complicated patterns with a distinctive structure. The average density and the two
point correlation function are too coarse as statistical measures to be sensitive to this 
structure. Individual configurations appear to contain long sequences of correlated 
sites, punctuated by disordered regions. The two-dimensional picture formed by 
the succession of configurations in time is characteristically peppered with triangle 
structures. These triangles are formed when a long sequence of sites which suddenly 
all attain the same value, as if by a fluctuation, is progressively reduced in length by 
"ambient noise." Let 1(i) (n) denote the density oftriangles (in position and time) with 
base length n and filled with sites of value i. It is convenient to begin by considering 
the behavior of this density and then to discuss its consequences for the properties 
of individual configurations, whose long sequences typically correspond to sections 
through the triangles. 

Consider first evolution from a simple initial state containing a single site with 
value 1. Figure 3 shows that in this case, all complex cellular automata (except rule 
150) generate a qualitatively similar pattern, containing many congruent triangles 
whose bases have lengths 2k. A geometrical construction for the limiting pattern 
obtained at large times was given in Fig. 5. At each successive stage in the construc
tion, the linear dimensions (base lengths) of the triangles added are halved, and their 
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number is multiplied by a factor 3. In the limit, therefore, T (n / 2) - 3T(n), (with 
n = 2k) , and hence 

(3.5) 

[requiring exactly one triangle of size T / 2 at time step T fixes the normalization as 
T(n) = (2n / Trlog23 ] . The result (3 .5) demonstrates that the patterns obtained from 
complex cellular automata in Fig. 3 not only contain structure on all scales (in the form 
of triangles of all sizes) , but also exhibit a scale invariance or self similarity which 
implies the same structure on all scales (cf. Mandelbrot, 1982; Willson, 1982). The 
power law form of the triangle density (3.5) is independent of the absolute scale of n. 

Self-similar figures on, for example, a plane may in general be characterized as 
follows . Find the minimum number N(a) of squares with side a necessary to cover 
all parts of the figure (all sites with nonzero values in the cellular automaton case). 
The figure is self-similar or scale invariant if rescaling a changes N (a) by a constant 
factor independent of the absolute size of a. In this case, N(a) - a-D , where D 

is defined to be the Hausdorff-Besicovitch or fractal dimension (Mandelbrot, 1977, 
1982) of the figure. A figure filling the plane would give D = 2, while a line 
would give D = 1. Intermediate values of D indicate clustering or intermittency. 
According to this definition, the cellular automaton pattern of Fig. 5 has fractal 
dimension D = log2 3 "" 1.59. 

Figure 6 gives the construction analogous to Fig. 5 for the pattern generated by 
rule 150 in Fig. 3. In this case, the triangle density satisfies the two-term recurrence 
relation T(n = 2k) = 2T(2k+l) +4T(2k+2 ) with, say, T(l) = 0 and T (2) = 2. For large 
k, this yields (in analogy with the Fibonacci series)8 

(3.6) 

where <p = (l + .J5)/2 "" 1.618 is the "golden ratio" which solves the equation 
x 2 = x + 1. The limiting fractal dimension of the pattern in Fig. 6 generated by 
cellular automaton rule 150 is thus log2(2<p) = 1 + log2(<p) "" 1.69. 

The self similarity of the patterns generated by time evolution with complex 
cellular automaton rules in Fig. 3 is shared by almost all the configurations appearing 
at particular time steps and corresponding to lines through the patterns. If the 
fractal dimension of the two-dimensional patterns is D, then the fractal dimension 
of almost all the individual configurations is D - 1. The configurations obtained 
at, for example, time steps T of the form 2k are members of an exceptional set of 
measure zero, for which no fractal dimension is defined. Almost all configurations 
generated from a single initial site by complex cellular automaton rules are thus 

8 For small k. the triangle density in thi s case does not behave as a pure power of 2' . Whereas the solution to any 
one·term recurrence relation. of the type found for cellular automaton rule 90, is a pure power, the solution to a p-term 
recurrence relation is in general a sum of p powers, with each exponent given by a root of the characteristic polynomial 
equation. In the high-order limit, the solut ions are dominated by the term with the highest exponent (corresponding to 
the largest root of the equation). Complex roots yield oscillatory behav ior [as in [(k) = - [(k - I) + [(k - 2); [(0) = 0, 
[(I) = I]. 

26 



., ., 
" 
" . , . , ., 
" 
" " 
" .. 
" " " .. .. 
u 
n .. 
, . . , 
. , 
I I : 

" n . 

I' : 
11 : 
I I : 
I ' : 
2' : 
l l : 
U . 
n ... 

. , 
" 'I : 

'.' , l : 

I ! : .. . 
" .. 
" I II : 
21 : 
~~ : 
~l : 
z. : 

RULE 01011010 (901 

• .... 0 .. . 

•• 0 ............. . 

. ...... . ... ....... ... . 

. . .. ... .. . .. ... . . ......... ....... ....... ... . 

.. .. .... ... ........... 

Statistical Mechanics of Cellular Automata (19831 

RULE 01111110 (126) 

............ .0 ••••••••••• 
................ ................. ...... ........... ..... . .. .. 

........ .... .. .......... .. .. 
................ .................... ........ 

.0 •••• •••• ........................ 
............. , ..... . .................. 

RULE 11011010 (21 B) 

.. .......... .. . .............. .. 

. ................ . .................... .. .......................... .. .............................. .. ........................ .......................... ............................ .................................. .................................... .............................................. 
.. ............................... -................ . 


.' ::::::::::::::::::::: ::: :::::::::::::::::::::::::'. ....................................................... 

Figure 14. Twenty-five time steps in the evolution of several simple initial configurations according to 

cellular automaton rules 90, 126, and 218. Configurations generated by rule 90 obey additive superposition 

(under addition modulo two). The first initial state taken is exceptional for rules 90 and 218, since it occurs 

in evolution from a single initial site, as shown in Fig. 3, so that the final pattern is a shifted form of 

that found in Fig. 3. For other initial states, the patterns obtained deviate substantially from those of 

Fig. 3. However, features with sizes much larger than the extent of the initial state remain unchanged. 

For complex cellular automaton rules such as 90 and 126, such features share the self-similarity found in 

Fig. 3. 

self-similar, and (except for rule 150) are characterized by a fractal dimension D = 
log23 - 1 = log2 ( ~) "" 0.59. The second fonn may be deduced directly from the 
geometrical construction of Fig. 5. For rule 150, the configurations have fractal 
dimension D = log2 tp. 

Figure 14 shows patterns generated by evolution with a selection of complex 
cellular automaton rules from initial states containing a few sites with value 1, 
extending over a region of size no' Comparison with Fig. 3 demonstrates that in most 
cases the patterns obtained even after many time steps differ from those generated 
with a single initial site. A few exceptional initial configurations (such as the one 
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used for the first rule 90 example in Fig. 14) coincide with configurations reached by 
evolution from a single initial site and therefore yield a similar pattern, appropriately 
shifted in time. In the general case, Fig. 14 suggests that the form of the initial 
state determines the number of triangles with size n :s no' but does not affect the 
density of triangles with n »no. As a simple example consider the modulo-two 
rule 90, whose additive superposition property implies that the final pattern obtained 
from an arbitrary initial state is simply a superposition ofthe patterns which would be 
generated from each of the nonzero initial sites in isolation. These latter patterns were 
shown in Fig. 5, and involve the generation of a triangle of size 2k at time step 2k. The 
superposition of such patterns yields at time step 2k a triangle of size at least 2k - 2no. 
This conclusion apparently holds also for nonadditive complex cellular automata, so 
that, in general, for n » no' the density of triangles follows the form (3.5), as for 
a single site initial state. The patterns thus exhibit self-similarity for features large 
compared to the intrinsic scale defined by the "size" of the initial state. One therefore 
concludes that patterns which "grow" from any simple initial state according to any 
of the "complex" cellular automaton rules (except 150) share the universal feature of 
self similarity, characterized by a fractal dimension log2 3. On this basis, one may 
then conjecture that given suitable geometry (perhaps in more than one dimension, 
and possibly with more than three sites in a neighborhood), many of the wide variety 
of systems found to exhibit self-similar structure (Mandelbrot, 1977, 1982) attain 
this structure through local processes which follow cellular automaton rules. 

Having considered the case of simple initial configurations, we now tum to the 
case of evolution from disordered initial configurations, illustrated in Fig. 8. Figure 15 
shows the first 300 time steps in the evolution of cellular automaton 126, starting 
from a disordered initial state with density p = 0.5. Triangles of all sizes appear 
to be generated (the largest appearing in the figure has n = 27). Figure 16 shows 
the density of triangles T(n) obtained at large times by evolution according to rule 
126 and all of the other complex cellular automaton rules. The figure reveals the 
remarkable fact that for large n, all nonadditive rules yield the same T(n), distinct 
from that for the additive rules (90 and 150). All the results are well fit by the form 

(3.7) 

For nonadditive rules A - ~ , while for the additive rules A - 2. The same results 
are obtained at large times regardless of the density of the initial state. Thus the 
spectrum of triangles generated by complex cellular automaton evolution is universal, 
independent both of the details ofthe initial state, and ofthe precise cellular automaton 
rule used. 

The behavior (3.8) of the triangle density with disordered initial states is to be 
contrasted with that of (3 .5) for simple initial states. The precise form of an initial state 
of finite extent no affects the pattern generated only at length scales :sno: at larger 
length scales the pattern takes on a universal self-similar character. A disordered 
initial state of infinite extent affects the pattern generated at all length scales and for 
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Figure 15. Configurations obtained by evolu

tion for 300 time steps from an initial disordered 

configuration with p = 0.5 according to cellular 

automaton rule 126. The fluctuations visible in 

the form of triangles and apparent at small scales 

in Fig. 8 are seen here to occur on all scales. The 

largest triangle in this sample has a base length 

of 27 sites. 

all times. Triangles of all sizes are nevertheless obtained, so that structure is generated 
on all scales, as suggested by Fig. 15. However, the pattern is not self-similar, but 
depends on the absolute scale defined by the spacing between sites. 

Disordered configurations are defined to involve no statistical correlations between 
values at different sites. They thus correspond to a discrete form of white noise and 
yield a flat spatial frequency spectrum. One may also consider "pseudodisordered" 
configurations in which the value of each individual site is chosen randomly, but 
according to a distribution which yields statistical correlations between different sites, 
and a nontrivial spatial Fourier spectrum. For example, a Brownian configuration 
(with spatial frequency spectrum 1/ k2) is obtained by assigning a value to each site in 
succession, with a certain probability for the value to differ from one site to the next 
(as in a random walle). The patterns generated by cellular automaton from such initial 
configurations may differ from those obtained with disordered (white noise) initial 
configurations. Complex nonadditive cellular automata evolving from a Brownian 
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initial state yield patterns whose triangle density T(n) decreases less rapidly at large 
n than for disordered initial configurations: the "long-range order" of the initial 
state leads to the generation of longer-range fluctuations. In the extreme limit of a 
homogeneous initial state (such as ... 11111. .. or ... 10101. .. ), cellular automaton 
evolution preserves the homogeneity, and no finite structures are generated. 

0.1,-----,-----.---,----, 

30 40 

n 

Figure 16. Density T(n) of triangle structures generated in the evolution of all the possible complex 

cellular automata from disordered initial configurations with density Po = 0.5. Triangles are evident 

in Figs. 8 and 16. They are formed when a sequence of sites suddenly attain the same value, but the 

length of the sequence is progressively reduced on subsequent time steps, unti l the apex of the triangle 

is reached. The appearance of triangles is a simple indication of self-organization. The triangle density 

T(n) is defined only at integer values of n, but these points have been joined in the figure. For large n, 

the triangle densities for all complex cellular automata are seen to tend towards one of two limiting forms. 

The group tending to the upper curve are the nonadditve complex cellular automata 18,22, 122, 126, 146, 

and 182. The additive rules 90 and 150 follow the lower curve. In both cases, T(n) falls off exponentially 

with n, in contrast to the power law form found for the self-similar patterns of Figs. 3,5, and 14. 

The appearance of triangles over a series of time steps in the evolution of com
plex cellular automata from disordered initial states reflects the generation of long 
sequences of correlated sites in individual cellular automaton configurations. This 
effect is measured by the "sequence density" Q(i)(n), defined as the density of se
quences of exactly n adjacent sites with the same value i (bordered by sites with a 
different value). Thus, for example, Q(O)(4) gives the density of 100001 sequences. 
Q(O)(n) clearly satisfies the sum rule 

LnQ(o)(n) = I-p. 
n=l 

In a disordered configuration with density p 
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Any sequence longer than two sites in a complex cellular automaton must yield a 
triangle, leading to the sum rule 

Q(n) '" 2)2T(i)/ i]. 
i=n 

Thus the Q(n) obtained at large times by evolution from a disordered initial state 
should follow the same exponential form (3.8) as T(n). 

Figure 17 shows the sequence density Q(O)(n) obtained at various time steps in 
the evolution of rule 126 from a disordered initial state, as illustrated in Fig. 15. At 
each time step, the Q(O)(n) for a disordered configuration (illustrated in Fig. 10) with 
the same average density has been subtracted. The resulting difference vanishes by 
definition at T = 0, but Fig. 17 shows that for T ~ I, the cellular automaton evolution 
yields a nonzero difference. After a few time steps, the cellular automaton tends to 
an equilibrium state containing an excess of long sequences of sites with value 0, 
and a deficit of short ones. This final equilibrium Q(O)(n) does not depend on the 
density of the initial disordered configuration. Starting from any disordered initial 
state (random noise), repeated application of the local cellular automaton rules is thus 
seen to generate ordered configurations whose statistical properties, as measured by 

16'.--------.,..----,---------, 

10 20 30 
n 

Figure 17. Density Q(O)(n) of sequences of exactly n successive sites with value 0 (delimited by sites 

with value 1) in configurations generated by T steps in time evolution according to cellular automaton rule 

126, starting from an initial disordered state with density p = 0.5. [The function Q(o)(n) is defined only 

for integer n: points are joined for ease of identification.] At each time step, the density of sequences 

in a disordered configuration with the same average total density has been subtracted. This difference 

vanishes for T = 0 by definition. The nonzero value shown in the figure for T ~ I is a manifestation 

of self-organization in the cellular automaton, suggested qualitatively by comparison of Figs. 8 and 10. 

For large T, an equlibrium state is reached, which exhibits an excess of long sequences and a deficit of 

short ones. 
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Figure 18. Configurations generated from a disordered initial state (with Po = 0.5) by the evolution of 

the complex nonadditive cellular automaton 126, in the presence of noise which causes values obtained at 

each site to be reversed with probability K at every time step. (a) is for K = 0 (no "noise"), (b) for K = 0.1, 

(c) for K = 0.2, and (d) for K = 0.5. As K increases, the structure generated is progress ively destroyed. No 

discontinuity in behavior as a function of K is found. 

sequence densities, differ from those of corresponding disordered configurations. 
The impression of self-organization in individual configurations given by Fig. 8 is 
thus quantitatively confirmed. 

As suggested by the sum rule, the Q(O)(n) for complex cellular automata with 
disordered initial states follow the exponential behavior (3.7) found for the T(n). 

Again, the parameter A has a universal value - ~ for all nonadditive cellular automaton 
rules and -2 for additive ones. If all configurations of the cellular automata were 
disordered, then the sequence density would behave at large n as (l-pt and depend 
on total average density p for the configurations. The form (3.5) yields sequence 
correlations with the same exponential behavior, but with a fixed A, universal to 
all the nonadditive complex cellular automaton rules, and irrespective of the final 
densities to which they lead. (The universal form may be viewed as corresponding 
to an "effective density" :>: 0.25.) 

Cellular.automata are usually defined to evolve according to definite deterministic 
local rules. In modelling physical or biological systems it is. however, sometimes 
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convenient to consider cellular automata whose local rules involve probabilistic 
elements or noise (cf. Griffeath, 1970; Schulman and Seiden, 1978; Gach et aI., 
1978). the simplest procedure is to prescribe that at each time step the value 
obtained by application of the deterministic rule at each site is to be reversed with a 
probability K (and with each site treated independently). (If an energy is associated 
with the reversal of a site, K gives the Boltzmann factor corresponding to a finite 
temperature heat bath.) Figure 18 shows the effects of introducing such noise in the 
evolution of cellular automaton rule 126. The structures generated are progressively 
destroyed as K increases. Investigation of densities and correlation functions indicates 
that the transition to disorder is a continuous one, and no phenomenon analogous to 
a "phase transition" is found. 

4. Global Properties of Elementary Cellular Automata 

Section 3 analyzed the behavior of cellular automata by considering the statistical 
properties of the set of values of sites in individual cellular automaton configurations. 
The alternative approach taken in this section considers the statistical properties 
of the set (ensemble) comprising all possible complete configurations of a cellular 
automaton (in analogy with the f-space approach to classical statistical mechanics). 
Such an approach provides connections with dynamical systems theory (Ott, 1981) 
and the formal theory of computation (Minsky, 1967; Arbib, 1969; Manna, 1974; 
Hopcroft and Ullman, 1979; Beckman, 1980), and yields a view of self-organization 
phenomena complementary to that developed in Sec. 3. Cellular automaton rules 
may be considered as a form of "symbolic dynamics" (e.g., Alekseev and Yakobson, 
1981), in which the degrees of freedom in the system are genuinely discrete, rather 
than being continuous but assigned to discrete "bins." 

As in Sec. 3, we examine here only elementary cellular automata. Some results on 
global properties of more complicated cellular automata will be mentioned in Sec. 5. 

For most of this section, it will be convenient to consider "finite" cellular automata, 
containing only a finite number of sites N. There are a total of 2N possible configu
rations for such a cellular automaton. Each configuration is uniquely specified by a 
length N binary integer whose digits give the values of the corresponding sites.9 (A 
configuration of an infinite cellular automaton would correspond to a binary real num
ber.) The evolution of a finite cellular automaton depends on the boundary conditions 
applied. We shall usually assume periodic boundary conditions, in which the first and 
last sites are identified, as if the sites lay on a circle of circumference N. One could 
alternatively take an infinite sequence of sites, but assume that all those outside the 
region of length N have value O. Results obtained with these two choices were com
pared in Fig. 9, and no important qualitative differences were found. Most of the re-

9 An altemative specification would take each configuration to correspond to one of the 2N venices of an N ·dimensional 

hypercube. labeled by coordinates corresponding to the values of the N sites. Points corresponding to configurations 
differing by values at a single si te are then separated by a unit distance in N-dimensional space. 
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suits derived in this section are also insensitive to the form of boundary conditions as
sumed. However, several of the later ones depend sensitively on the value of N taken. 

Cellular automaton rules define a transformation from one sequence ' of binary 
digits to another. The rules thus provide a mapping from the set of binary numbers 
of length N onto itself. For the trivial case of rule 0, all binary numbers are mapped 
to zero. Figure 19 shows the mappings corresponding to evolution for one and 
five time steps according to cellular automaton rule 90 with N = 9. The mapping 
corresponding to one time step is seen to maintain some nearby sets of configurations. 
After five time steps, however, the evolution is seen to map configurations roughly 

'.\ 

400 400 

i. 

','" 
200 200 

I," 

o 200 400 o 200 400 
T = I T=5 

Figure 19. Mapping in the set of 512 possible configurations of a length nine finite cellular automaton 

corresponding to evolution for T time steps according to the modulo-two rule 90. Each possible configu

ration is represented by the decimal equivalent of the binary number whose digits give the values at each 

of its sites. The horizontal axis gives the number specifying the initial configuration; the vertical axes that 

for the final configuration. Each initial configuration is mapped to a unique final configuration. 

uniformly, so that the final configurations obtained from nearby initial configurations 
are essentially uncorrelated. 

A convenient measure of distance in the space of cellular automaton configurations 
is the "Hamming distance" H(s" S2) [familiar from the theory of error-correcting 
codes (Peterson and Weldon, 1972)], defined as the number of digits (bits) which 
differ between the binary sequences s, and s2. [Thus in Boolean form, H (s, ' S2) = 
#, (s, ffis2).] Particular configurations correspond to points in the space of all possible 
configurations. Under cellular automaton evolution, each initial configuration traces 
out a trajectory in time. If cellular automaton evolution is "stochastic," then the 
trajectories of nearby points (configurations) must diverge (exponentially) with time. 
Consider first the case of two initial configurations (say, S, and S2) which differ by 
a change in the value at one site (and are thus separated by unit Hamming distance). 
After T time steps of cellular automaton evolution, this initial difference may affect the 
values of at most 2T sites (so that H !> 2T). However, for simple cellular automaton 
rules, the difference remains localized to a few sites, and the total Hamming distance 
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tends rapidly to a small constant value. The behavior for complex cellular automaton 
rules differs radically between additive rules (such as 90 and 150) and nonadditive 
ones. For additive rules, the difference obtained after T time steps is given simply by 
the evolution of the initial difference (in this case a single nonzero site) for T time 
steps. The Hamming distance at time step T is thus given by the number of nonzero 
sites in the configuration obtained by evolution from a single site, and for rule 90 has 
the form HT = 2#,(T), as illustrated in Fig. 20(a). The average Hamming distance, 
smoothed over many time steps, behaves as HT = T1og2 3-1 ~ TO.59 . For nonadditive 
rules, the difference between configurations obtained through cellular automaton 
evolution no longer depends only on the difference between the initial configurations. 
Figure 20(c) shows the difference between configurations obtained by evolution 
according to the nonadditive cellular automaton rule 126. The lack of symmetry in 
the pattern is a reflection of the dependence on the values of multiple initial sites . 
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Figure 20. Divergence in behavior of disort red configurations intially differing by a change in the value of 

a single site under cellular automaton evolution. The Hamming distance H between two configurations is 

defined as the number of bits (site values) which differ between the configurations. (a) shows the evolution 

of the Hamming distance between two configurations of the additive cellular automaton 90 (modulo-two 

rule) ; (b) shows the corresponding Hamming distance for the nonadditive cellular automaton 126; and (c) 

gives the actual difference (modulo two) between the configurations of cellular automaton 126 for the first 

few time steps. For nonadditive rules [case (b)], HT - T , while for additive rules [case (a)], after time 

averaging, HT _ TO.59 . 

Figure 20(b) shows the Hamming distance corresponding to this difference. Apart 
from small fluctuations, it is seen to increase linearly with T, tending at large T 
to the form HT "" To This Hamming distance is the same as would be obtained 
by comparing sequences of 2T sites in two disordered configurations with density 
0.5. Thus a change in the value of a small number of initial sites is amplified by 
the evolution of a nonadditive cellular automaton, and leads to configurations with 
a linearly increasing number of essentially uncorrelated sites. (Changes in single 
sites may sometimes be eradicated after a single time step; this exceptional behavior 
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occurs for cellular automaton rule 18, but is always absent if more than one adjacent 
site is reversed.) A bundle of initial trajectories therefore diverges with time into an 
exponentially increasing volume. 

One may specify a statistical ensemble of states for a finite cellular automaton 
by giving the probability for each of the 2N possible configurations. In a collection 
of many disordered states with density p = 1, each possible cellular automaton 
configuration is asymptotically populated with equal probability. Such a collection of 
states will be termed an "equiprobable ensemble," and may be considered "completely 
disorganized." Cellular automaton evolution modifies the probabilities for states in an 
ensemble, thereby generating "organization." Figure 21 shows the probabilities for 
the 1024 possible configurations of a finite cellular automaton with N = 10 obtained 
after evolution for ten time steps according to rule 126 from an initial equiprobable 

0.15 r--------.--------, 

0.10 

P(S) 

0.05 

1024 

s 

Figure 21. Probabilities for each of the 1024 possible configurations in a finite (circular) cellular automaton 

with length N = 10 obtained by evolution according to rule 126 for ten time steps from an initial ensemble 

containing each possible configuration with equal probability. On the horizontal axis, each configuration 

S is labeled by a ten-digit binary integer (marked in decimal form) whose digits give the values of the 

corresponding sites. The null configuration (with value zero at all sites) is labeled by the integer 0, and 

occurs with the largest probability "'0.13. The inequality of the probabilities for initially equiprobable 

configurations is a retlection for self-organization. 

ensemble. Figure 22 shows the evolution of these probabilities over ten time steps 
for several complex cellular automata. At each time step, dots are placed in positions 
corresponding to configurations occurring with nonzero probabilities. At T = 0, all 
configurations are taken to be equally probable. Cellular automaton evolution modi
fies the probabilities for different configurations, reducing the probabilities for some 
to zero, and leading to "gaps" in Fig. 22. In the initial ensemble, all configurations 
were assigned equal a priori probabilities. After evolution (or "processing") for a few 
time steps, an equilibrium ensemble is attained in which different configurations carry 
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RULE 00010010 ( 18 ) 

RULE 0 10 11 0 10 ( 90) 

RULE 0 111111 0 (126 ) 

Figure 22. Time evolution of the probabilities for each of the 1024 possible configurations of several 

length 10 cellular automata starting from an initial ensemble containing all 1024 configurations with equal 

probabilities. The configurations are specified by binary integers whose digits form the sequence of values 

at the sites of the cellular automaton. The history of a particular configuration is given on successive 

lines in a vertical column: a dot appears at a particular time step if the configuration occurs with 

nonzero probability at that time step. In the initial ensemble, all configurations occur with equal nonzero 

probabilities, and dots appear in all positions. Cellular automaton evolution modifies the probabilities for 

the configurations, making some occur with zero probability, yielding gaps in which no dots appear. The 

probabilities obtained by evolution for ten time steps according to cellular automaton rule 126 were given 

in Fig. 21: dots appear in the tenth line of the rule 126 part of this figure at the positions corresponding to 

configurations with nonzero probabilities. 
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different probabilities, according to a definite distribution. Properties of the more 
probable configurations dominate statistical averages over the ensemble, giving rise to 
the distinctive average local features of equilibrium configurations described in Sec. 3. 

In the limit N ~ 00, a cellular automaton configuration may be specified by real 
number in the interval 0 to 1 whose binary decomposition consists of a sequence 
of digits corresponding to the values of the cellular automaton sites. Then the 
equilibrium ensemble of cellular automaton configurations analogous to those of 
Fig. 22 corresponds to a set of points on the real line. The unequal probabilities for 
appearance of 0 and 1 digits, together with higher-order correlations, implies that the 
points form a Cantor set (Farmer, 1982a, 1982b). The fractal dimensionality of the 
Cantor set is given by the negative of the entropy discussed below, associated with 
the ensemble of cellular automaton configurations (and hence real-number binary 
digit sequences) (Farmer, 1982a, 1982b). For rule 126 the fractal dimension of the 
Cantor set is then 0.5. 

An important feature of the elementary cellular automata considered here and 
in Sec. 3 is their "local irreversibility." Cellular automaton rules may transform 
several different initial configurations into the same final configuration. A particular 
configuration thus has unique descendents, but does not necessarily have unique 
ancestors (predecessors) . Hence the trajectories traced out by the time evolution 
of several cellular automaton configurations may coalesce, but may never split. A 
trivial example is provided by cellular automaton rule 0, under which all possible 
initial configurations evolve after one time step to the unique null configuration. In 
a reversible system, each state has a unique descendent and a unique ancestor, so 
that trajectories representing time evolution of different states may never intersect 
or meet. Thus in a reversible system, the total number of possible configurations 
must remain constant with time (Liouville's theorem). However, in an irreversible 
system, the number of possible configurations may decrease with time. This effect 
is responsible for the "thinning" phenomenon visible in Fig. 22. The trajectories 
corresponding to the evolution of cellular automaton configurations are found to 
become concentrated in limited regions, and do not asymptotically fill the available 
volume densely and uniformly. This behavior makes self-organization possible, by 
allowing some configurations to occur with larger probabilities than others even in 
the large-time equilibrium limit. 

One consequence of local irreversibility evident from Fig. 22 is that some cellular 
automaton configurations may appear as initial conditions but may never be reached 
as descendents of other configurations through cellular automaton time evolution. IO 

Such configurations carry zero weight in the ensemble obtained by cellular automa
ton evolution. In the trivial case of cellular automaton rule 0, only the null state 

10 The existence of unreachable or "garden·of·Eden" configurations in cellular automata is discussed in Moore (1 962) 
and Aggarwal (1973), where criteria (equivalent to irreversibility) for their occurrence are given. 
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with all sites zero may be reached by time evolution; all other configurations are 
unreachable. Rule 4 generates only those configurations in which no two adjacent 
sites have the same value. The fraction of the 2N possible configurations which 
satisfy this criterion tends to zero as N tends to infinity, so that in this limit, a 
vanishingly small fraction of the configurations are reached. Cellular automaton rule 
204 is an identity transformation, and is unique among cellular automaton rules in 
allowing all configurations to be reached. (The rule is trivially reversible.) Assuming 
periodic boundary conditions, one finds that with N odd, the complex additive rule 
90 generates only configurations in which an even number of sites have value one, 
and thus allows exactly half of the 2N possible configurations to be reached. For 
even N, i of the possible configurations may be reached. A finite fraction of all the 
configurations are thus reached in the limit N ~ 00. For the complex nonadditive rule 
126, inspection of Fig. 8 shows that only configurations in which nonzero sites appear 
in pairs may be reached. Figure 23 shows the fraction of unreachable configuration 
for this cellular automaton rule as a function of N . The fraction tends steadily to one 
as N ~ 00. A complete characterization of the unreachable configurations for this 
case is given in Martin et al. (1983); these configurations are enumerated there, and 
their fraction is shown to behave as 1 - AN for large N, where A '" 0.88 is determined 
as the root of a cubic equation. Similar behavior is found for other nonadditive rules. 

Irreversible behavior in cellular automata may be analyzed by considering the 
behavior of their "entropy" S or "information content" -So Entropy is defined as 
usual as the logarithm (here taken to base two) of the average number of possible 
states of a system, or 

S = LPi log2 Pi (4.1) 

where Pi is the probability for state i. The entropy may equivalently be considered 

OL-____ -L ______ L-____ -L ____ ~ 

4 6 8 

N 

10 12 

Figure 23. Fraction of the 2N possible config

urations of a length N cellular automaton (with 

periodic boundary conditions) not reached by 

evolution from an arbitrary initial configura

tion according to cellular automaton rule 126. 

The existence of unreachable configurations is 

a consequence of the irreversibility of cellular 

automaton evolution. The fraction of such con

figurations is seen to increase steadily towards 

one as N increases. 
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Figure 24. Time evolution of average entropy 

per site for an ensemble of finite cellular au

tomata with N = 10 evolving according to 

rule 126 from an initial equiprobable ensem

ble. The entropy gives the logarithm of the 

average number of possible configurations. 

Its decrease with time is a reflection of the 

local irreversibility of the cellular automaton. 

as the average number of binary bits necessary to specify one state in an ensemble 
of possible states. The total entropy of a system is the sum of the entropies of sta
tistically independent subsystems. Entropy is typically maximized when a system is 
completely disorganized, and the maximum number of subsystems act independently. 
The entropy of a cellular automaton takes on its maximal value of one bit per site 
for an equiprobable ensemble. For reversible systems, time evolution almost always 
leads to an increase in entropy. However, for irreversible systems, such as cellular 
automata, the entropy may decrease with time. Figure 24 shows the time dependence 
of the entropy for a finite cellular automaton with N = 10, evolving according to rule 
126, starting from an initial equiprobable ensemble. The entropy is seen to decrease 
with time, eventually reaching a constant equilibrium value. The decrease is a direct 
signal of irreversibility. 

The entropy for a finite cellular automaton given in Fig. 24 is obtained directly 
from Eq. (4.1) by evaluating the probabilities for each of the finite set of2N possible 
configurations. For infinite cellular automata, enumeration of all configurations is 
no longer possible. However, so long as values of sufficiently separated sites are 
statistically independent, the average entropy per site may nevertheless be estimated 
by a limiting procedure. Define a "block entropy" [or "Renyi entropy" (Renyi, 1970; 
Farmer, 1982a, 1982b)] 

where pib
) denotes the probability for a sequence i of b values in an infinite cellular 

automaton configuration. The limit Sb .... oo gives the average total entropy per site. 
This limit is approached rapidly for almost all cellular automaton configurations, 
reflecting the exponential decrease of correlations with distance discussed in Sec. 3. 
[Similar results are obtained in estimating the entropy of printed English from single 
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letter, digram, trigram and so on frequencies (Shannon 1951). Typical results (for 

example, forthe text ofthis paper) are SI "'" 4.70, S2 "'" 4.15, S3 "'" 3.57, and S"" - 2.3.] 
Irreversibility is not a necessary feature of cellular automata. In the case of the ele

mentary cellular automata considered here, the irreversibility results from the assump
tion that a configuration Sn at a particular time step n depends only on its immediate 
predecessor so that its evolution may be represented schematically by Sn = F[Sn_d. 
Except in the trivial case of the identity transformation (rule 204), F is not invertible. 
The cellular automata are discrete analogs of systems governed by partial differential 
equations of first order in time (such as the diffusion equation), and exhibit the same 
local irreversibility. One may construct reversible one-dimensional cellular automata 
(Fredkin, 1982; Margolus, 1982)" by allowing a particular configuration to depend 
on the previous two configurations, in analogy with reversible second-order differen
tial equations such as the wave equation. The evolution ofthese cellular automata may 
be represented schematically by Sn = F[Sn_1 ]ffiSn_2. The invertibility of modulo-two 
addition allows Sn-2 to be obtained uniquely from Sn and Sn_I' so that all pairs of 
successive configurations have unique descendants and unique ancestors. For infinite 
reversible cellular automata, the entropy (4.1) (evaluated for the appropriate succes
sive pairs of configurations) almost always increases with time. Finite reversible 
cellular automata may exhibit globally irreversible behavior when dissipative bound
ary conditions are imposed. Such boundary conditions are obtained if sites beyond 
the boundary take on random values at each time step. If all sites beyond the boundary 
have a fixed or predictable value as a function of time, the system remains effectively 
reversible. With simple initial configurations, reversible cellular automata generate 
self-similar patterns analogous to those found for irreversible ones. 12 A striking 
difference is that reversible rules yield diamond-shaped structures symmetrical in 
time, rather than the asymmetrical triangle structures found with irreversible rules. 

Since a finite cellular automaton has a total of only 2N possible configurations, 
the sequence of configurations reached by evolution from any initial configuration 
must become periodic after at most 2N time steps (the "Poincare recurrence time"). 
After an initial transient, the cellular automaton must enter a cycle in which a set of 
configurations is generated repeatedly, as illustrated in Fig. 25. Figure 8 suggests 
that simple cellular automata yield short cycles containing only a few configurations, 
while complex cellular automata may yield much longer cycles. Simple rules such 
as 0 or 72 evolve after a fixed small number of time steps from any configuration to 
the stationary null configuration, corresponding to a trivial length-one cycle. Other 
simple cellular automaton rules, such as 36, 76, or 104 evolve after :sN time steps to 

11 Reversible cellular automata may be constructed in two (or more) dimensions by allowing arbitrary evolution along 

a line. but generating a sequence of copies ("history") in the onhogonal direction of the configurations on the line at 
each time step (Toffoli, 1977a, 1980). 

12 For example. evolution from a pair of successive configurations comaining zero and one nonzero sites according to 
the reversible analog of rule 150 yields a self-similar pattern with fractal dimension log2[4 j( JT7 - 3)1'" 1.84. 

41 



Wolfram on Cellular Automato and Complexity 

Figure 25. Evolution of typical initial configurations 

in a finite cellular automaton with N = 8 (and periodic 

boundary conditions) according to rule 126. Evolu

tion from a particular initial state could generate up 

to 28 = 256 distinct configurations before entering a 

cycle and returning to a configuration already visited. 

Much shorter cycles, however, are seen to occur in 

practice. 
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nontrivial stationary configurations (with cycle length one). Rules such as 94 or 108 
yield (after a transient of ~N steps) a state consisting of a set of small independent 
regions, each of which independently follows a short cycle (usually of length one 
or two and at most of length 2b, where b is the number of sites in the region). In 
general, simple cellular automata evolve to cycles whose length remains constant as 
N increases. On the other hand, complex cellular automata may yield cycles whose 
length increases without bound as N increases. Figure 26 shows the distribution in 
the number of time steps before evolution from each possible initial configuration 
according to the complex rule 126 leads to repetition of a configuration. Only a small 
fraction of the 2N possible configurations is seen to be reached in evolution from 
a particular initial configuration. For example, in the case N = 8, a maximum of 
eight distinct configurations (out of 256) are generated by evolution from any specific 
initial state. After a transient of at most two time steps, the cellular automaton enters 
a cycle, which repeats after at most six further time steps. Apart from the trivial 
one-cycle corresponding to the null configuration, six distinct cycles (containing 
non intersecting sets of configurations) occur. Four have length six, and two have 
length two. A total of 29 distinct "final" configurations appear in these cycles. The 
number of configurations reached by evolution from a particular initial state increases 
with N as shown in Fig. 26. For N = 10, the maximum is 38 states, while for N = 32, 
it is at least 1547. Similar behavior is found for most other complex nonadditive 
rules. 

Analytical results for transient and cycle lengths may be given for finite cellular 
automata (with periodic boundary conditions) evolving according to the additive 
rules 90 and 150 (Martin et al. 1983). A complete and general derivation may be 

obtained using algebraic methods and is given in Martin et al. (1983). The additive 
superposition principle implies that the evolution of any initial configuration is a 
superposition of evolution from single nonzero sites (in each of the N cyclically 
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Figure 26. Distribution in the number of time steps required for finite cellular automata of length N 

(with periodic boundary conditions) evolving according to rule 126 to reach a particular configuration 

for the second time, signaling the presence of a cycle. The cycle times found are much smaller than the 

value 2N obtained if evolution from a particular initial configuration eventually visited all 2N possible 

configurations. The results for N = B and N = 10 include all 256 and 1024 possible initial configurations; 

those for N = 32 and N = 64 are obtained by uniform Monte Carlo sampling from the space of possible 

initial configurations. In all cases, the number of configurations visited in transients before entering a 

cycle is very much smaller than the number of configurations in the cycle. 

equivalent possible positions). The period of any cycle must therefore divide the 
period ITN obtained by evolution from a single nonzero site. Similarly, the length 
of any transient must divide the length Y N obtained with a single nonzero initial 
site. It is found that ITN is identical for rules 90 and 150, but Y N in general differs. 
The first few values of ITN for rules 90 and 150 (for N = 3 through N = 30) are 
1, 1,3,2,7, 1,7,6,31,4,63, 14, 15, 1, 15, 14,511, 12,63,62,2047,8, 1023, 
126, 511, 28, 16383, and 30. Consider rule 90; derivations for rule 150 are similar. 
Whenever N is of the form 2u , the cellular automaton ultimately evolves from any 
initial configuration to the null configuration, so that ITN = 1 in this case. When 
N is odd, it is found that the first configuration in the cycle always consists of 
two nonzero sites, separated by a single zero site. The nonzero sites may be taken 
at positions ±1 modulo N. Equation (3.2) implies that configurations obtained by 
evolution for 2 j time steps again contain exactly two nonzero sites, at positions ±2j 

modulo N. A cycle occurs when 2j == ±1 mod N. ITN then divides IT~ given by 
2sordN(2) - 1 where sordN(k) is defined as the minimum j for which 2 j = ±l mod N, 

and sordN(k) = ordN(k)/2 or sordN(k) = ordN(k). The multiplicative order function 
ordN(k) (e.g., MacWilliams and Sloane, 1977) is defined as the minimum j for 
which 2j = 1 mod N. It is found in fact that ITN = IT~ for most N; the first 
exception occurs for N = 37, in which case IT37 = IT)7/3. For N = kU 

- 1, 
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ordN(k) = a, so that when N = 2a - 1, IT;:" = N. Similarly, when N = ka + 1, 
ka == -1 mod N so that k2a == +1 mod N and ordN(k) = 2a, yielding IT;:" = N - 2 
for N = 2a + I . In general, if N = p~' p~2 ... , where the Pi are primes not equal to 
k, ordN(k) = lcm[ord QI (k), ord Q2, " . ]. ordN(k) divides the Euler totient function 

P, P2 

'P(N) , defined as the number of integers less than N which are relatively prime to 
N (e.g. , Apostol, 1976; Hardy and Wright, 1979, Sec. 5.5). ['P(N) is even for all 
N > 1.] 'P(N) satisfies the Euler-Fermat relation k'P(N) == 1 mod N. It is clear that 
rr(n) :5 'P(n) :5 n - 1, where rr(n) denotes the number of primes less than n , and the 
upper bound is saturated when n is prime. If ordN(k) is even, then ordN(k) :5 'P(N), 
while for ordN(k) odd, ordN(k):5 'P(N)/2. Thus ITN :5 2(N-I )/2 -1, where the bound 

is saturated for some prime N . Such a ITN is the maximum possible cycle length 
for configurations with reflection symmetry, but is approximately the square root of 
the maximum possible length 2N - 1 for an arbitrary system with N binary sites. 13 

When N is even, ITN = 2ITN/2. Notice that ITN is an irregular function of N : its 
value depends not only on the magnitude of N, but also on its number theoretical 
properties. 

When ITN is prime, all possible cycles must have a period of one or exactly ITN" 

When ITN is composite, any of its divisors may occur as a cycle period. Thus, for 
example, with N = 10, ITN = 6, and in evolution from the 210 - I possible non-null 
initial configurations, forty distinct cycles of length 6 appear, and five of length 3. 
In general it appears that for large N , an overwhelming fraction of cycles have the 
maximal length ITN • 

As mentioned above, for the additive rules 90 and 150, the length of the transients 
before a cycle is entered in evolution from an arbitrary initial configuration must 
divide Y N ' the length of transient with a single nonzero initial site. For rule 90, 
Y N = 1 for N odd, and Y N = D2(N)/2 otherwise, where D2(n) is the largest 2j 

which divides n. For rule 150, Y N = ° if N is not a multiple of three, Y N = 1 if N 
is odd, and Y N = D 2(N) otherwise. Since, as discussed above, evolution from all 
2N possible initial configurations according to rule 90 visits 2N- I configurations for 
odd N , the result Y N = 1 implies that in this case, exactly half of the 2N possible 
configurations appear on cycles. 

Configurations in cellular automata may be divided into essentially three classes 
according to the circumstances under which they may be generated. One class 
discussed above consists of configurations which can appear only as initial states, but 
can never be generated in the course of cellular automaton evolution. A second class 
contains configurations which cannot arise except within the first, say T, time steps. 
For T = 2, such configurations have "parents" but no "grandparents." The third class 
of configurations is those which appear in cycles, and may be visited repeatedly. 

13 The result is therefore to be contrasted with the behavior of linear feedback shift registers. analogous to cellular 
automata except for end effects. in which cycles (de Bruijn sequences) of period 2N - I may occur (e.g .• Golomb. 
1967; Berlekarnp. 1968). 
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Such configurations may be generated at any time step (for example, by choosing 
an initial configuration at the appropriate point in the cycle, and then allowing the 
necessary number of cycle steps to occur). The second class of configurations appears 
as transients leading to cycles. The cycles may be c"onsidered as attractors eventually 
attained in evolution from any initial configuration. The 2N possible configurations 
of a finite cellular automaton may be represented as nodes in a graph, joined by arcs 
representing transitions corresponding to cellular automaton evolution. Cycles in the 
graph correspond to cycles in cellular automaton evolution. As shown in Martin et 
al. (1983), the transient configurations for the additive rules 90 and 150 appear on 
balanced quaternary trees, rooted on the cycles. The leaves of the trees correspond 
to unreachable configurations. The height of the trees is given by Y N. The balanced 
structure of the trees implies that the number of configurations which may appear 
after T time steps decreases as 4-T

; 4-Y 
N configurations appear on cycles and may 

therefore be generated at arbitrarily large times. 
The algebraic techniques of Martin et al. (1983) apply only to additive rules. For 

nonadditive cellular automaton rules, the periods of arbitrary cycles do not necessarily 
divide the periods fIN of cycles generated by evolution from configurations with one 
nonzero site. Empirical investigations nevertheless reveal many regularities. 

Cyclic behavior is inevitable for finite cellular automata which allow only a 
finite number of possible states. Infinite cellular automata exhibit finite cycles only 
under exceptional circumstances. For a wide class of initial states, simple cellular 
automaton rules can yield nontrivial cyclic behavior. Cycles occur in complex 
cellular automata only with exceptional initial conditions. Any initial configuration 
with a finite number of nonzero sites either evolves ultimately to the null state, or 
yields a pattern whose size increases progressively with time. Most infinite initial 
configurations do not lead to cyclic behavior. However, if the values of the initial 
sites form an infinite periodic sequence (cf. Miller, 1970, 1980), with period k, then 
the evolution of the infinite cellular automaton will be identical to that of a finite 
cellular automaton with k = N, and cycles with length «2k will be found. 

The transformation of a finite cellular automaton configuration according to cel
lular automaton rules defines a mapping in the set of 2N binary integers representing 
the cellular automaton configurations. An example of such a mapping was given 
in Fig. 19. Repeated applications of the mapping yield successive time steps in 
the evolution of the cellular automaton. One may compare the results with those 
obtained for a system which evolves by iteration of a random mapping among the 
2N integers (cf. Kauffman, 1969). Random mappings of K elements are obtained 
by choosing one of the K possible images independently for each integer and with 
equal probabilities. The mapping is permitted to take an element to itself. In this 
way, all K K possible mappings are generated with equal probability. The probability 
of a particular element's having no preimage (predecessor) under a random mapping 
between K elements is (K - I)K / KK = (l - 1/ K)K. In the limit K -+ 00 this 
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implies that a fraction lie"" 0.37 of the possible states are not reached in evolution 
by iteration of a random mapping. For complex nonadditive cellular automata, it 
appears that as N ~ 00, almost all configurations become unreachable, indicating that 
cellular automaton evolution is "more irreversible" than iteration of a rand pm map
ping would imply. A system evolving according to a random mapping exhibits cyoles 
analogous to those found in actual cellular automata. The probability of a length r 
cycle's occurring by iteration of a mapping between K elements is found to be 

K (K - I)! 

L (K -i)!Ki 
l=r 

(Harris, 1960; Knuth, 1981, Sec. 3.1, Ex. 6, 11-16; Levy, 1982). Cycles of the 
maximum length K occur with finite probability. In the large K limit, the average 
cycle length becomes ""~ "" 0.63.JK, while the standard deviation of the cycle 
length distribution is ""J(2/ 3 -7f 18)K "" 0.52.JK. The length of transients follows 
exactly the same distribution. The number of distinct cycles -J7f/ 2Iog K. If we take 
K = 256 for comparison with an N = 8 cellular automaton, this implies an average cy
cle length::. 10, an average transient length ::.10, ::. 94 unreachable configurations, and 
::.7 distinct cycles. Cellular automaton rule 126 yields in this case an average cycle 
length ::.3.2, an average transient length::. 2.5, 190 unreachable configurations, and 7 
distinct cycles. Any agreement with results for random mappings appears to be largely 
fortuitous: even for large N cellular automata do not behave like random mappings. 

This section has thus far considered cellular automata which evolve according to 
definite deterministic local rules. However, as discussed in Sec. 3, one may introduce 
probabilistic elements or noise into cellular automata rules-for example, by revers
ing the value of a site at each time step with probability K. Section 3 showed that the 
local properties of cellular automata change continuously as K is increased from zero. 
Global properties may, however, change discontinuously when a nonzero K is intro
duced. An example of such behavior is shown in Fig. 27, which gives the fraction 
of configurations visited as a function of time for a cellular automaton evolving 

800 
T 

46 

1000 

Figure 27. Fraction of configurations visited after 

T time steps in a finite cellular automaton (with 

N = 7) evolving from a single typical initial state 

according to rule 126 in the presence of noise which 

randomly reverses the values of sites at each time 

step with probability K. When K = 0, the cellu

lar automaton enters a cycle after visiting only six 

distinct configurations. When K * 0, the cellular 

automaton eventually visits all 128 possible con

figurations . 
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according to rule 126 with various values of K, starting from a single typical initial 
configuration. When K = 0, only six distinct configurations are generated before the 
cellular automaton enters a cycle. When K * 0, the cellular automaton ultimately 
visits every possible configuration (cf. Gach et aI., 1978). For K "" 0.5, one may 
approximate each configuration as being chosen from the 2N possible configurations 
with equal probabilities: in this case, the average number of configurations visited 
after T time steps is found to be 1 - ([1 - 2-N f N y /2N "" 1 _ e-r / 2N . 

Cellular automata may be viewed as simple idealizations of physical systems. 
They may also be interpreted as "computers" (von Neumann, 1966; Baer and Mar
tinez, 1974; Burks, 1970; Aladyev, 1974, 1976; Toffoli, 1977b) and analyzed using 
methods from the formal theory of computation (Minsky, 1967; Arbib, 1969; Manna, 
1974; Hopcroft and Ullman, 1979; Beckman, 1980). With this interpretation, the 
initial configuration of a cellular automaton represents a "program" and "initial data," 
processed by cellular automaton time evolution to give a configuration correspond
ing to the "output" or "result" of the "computation." The cellular automaton rules 
represent the basic mechanism of the computer; different programs may be "run" 
(or different "functions evaluated") by giving different initial or "input" configura
tions. This process is analogous to the "evolution" of the sequence of symbols on 
the tape of a Turing machine (Turing, 1936). However, instead of considering a 
single "head" which modifies one square of the tape at each time step, the cellular 
automaton evolution simultaneously affects all sites at each time step. As discussed 
in Sec. 5, there exist "universal" cellular automata analogous to universal Turing 
machines, for which changes in the initial configuration alone allow any computable 
(or "recursive") function to be evaluated. A universal Turing machine may simu
late any other Turing machine using an "interpreter program" which describes the 
machine to be simulated. Each "instruction" of the simulated machine is simulated 
by running the appropriate part of the interpreter program on the universal machine. 
Universal cellular automata may similarly simulate any other cellular automata. The 
interpreter consists of an encoding of the configurations for the cellular automaton 
to be simulated on the universal automaton. A crucial point is that so long as the 
encoding defined by the interpreter is sufficiently simple, the statistical characteristics 
of the evolution of configurations in the universal cellular automaton will be shared 
by the cellular automaton being simulated. This fact potentially forms the basis for 
universality in the statistical properties of complicated cellular automata. 

The simplest encodings which allow one cellular automaton to represent or simu
late others are pure substitution or "linear" ones, under which the value of a single site 
is represented by a definite sequence of site values. (Such encodings are analogous to 
the correspondences between complex cellular automaton rules mentioned in Sec. 3.) 
For example, a cellular automaton A evolving according to rule 22 may be used to 
simulate another cellular automaton B evolving according to rule 146. For every ° 
in the initial configuration of B, a sequence 00 is taken in the initial configuration of 
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A, and for every 1 in B, 01 is taken in A. Then after 2T time steps, the configuration 

of A under this encoding is identical to that obtained by evolution of B for T time 

steps. If cellular automaton B instead evolved according to rule 182,01 (or 10) in A 

would correspond to 0 inB, and 00 to 1. The simplicity of the interpreter necessary to 

represent rules 146 and 182 under rule 22 is presumably responsible for the similarities 

in their statistical behavior found in Sec. 3. Figure 28 gives a network which describes 

126 

Figure 28. Network describing simulation capabilities of complex elementary cellular automata with 

length 2 pure substitution or linear encodings. Cellular automata evolving according to the destination 

rule are simulated by giving an encoded intitial configuration in a cellular automaton evolving according 

to the source rule. Representability of one cellular automaton by another under a simple encoding implies 

similar statistical properties for the two cellular automata, and forms potentially the basis for universality 

in statistical properties of cellular automata. 

the simulation capabilities of the complex elementary cellular automaton rules using 

length two linear encodings and with the simulated rule running at half the speed of 

the simulator. Many of these complex rules may also simulate simple rules under 

such an encoding. Simulations possible with longer linear encodings appear to be 

described by indirection through the network. Not all complex cellular automaton 

rules are thus related by linear encodings of any length. 

As discussed in Sec. 5, the elementary cellular automata considered here and in 

Secs. 2 and 3 are not of sufficient complexity to be capable of universal computation. 

However, some of the more complicated cellular automata described in Sec. 5 are 

"universal," and may therefore in principle represent any other cellular automata. 

The necessary encoding must be of finite length, but may be very long. The shorter 

or simpler the encoding, the closer will be the statistical properties of the simulating 

and simulated cellular automata. 

5. Extensions 

The results of Secs. 2-4 have for the most part been restricted to elementary cellular 

automata consisting of a sequence of sites in one dimension with each site taking 

48 



Stati stical Mechanics of Cellular Automata (19831 

on two possible values, and evolving at each time step according to the values of 

its two nearest neighbors. This section gives a brief discussion of the behavior of 

more complicated cellular automata. Fuller development will be given in future 

publications. 

We consider first cellular automata in which the number of possible values k at 

each site is increased from two, but whose sites are still taken to lie on a line in one 

dimension. The evolution of each site at each time step is for now assumed to depend 

on its own value and on the values of its two nearest neighbors. In this case, the total 
number of possible sets of local rules is k (k

J
). Imposition of the reflection symmetry 

and quiescence "legality conditions" discussed in Sec. 2 introduces !k2(k - I) + 1 

constraints, yielding k[k
2
(l+k)- t] /2 " legal" sets of rules . For k = 2, this implies 25 = 32 

legal rules, as considered in Sec. 2. The number of possible legal rules increases 

rapidly with k. For k = 3, there are 3 t7 = 129,140, 163", 1.3 x 108 rules, for k = 4, 

'" 3 X 1024 , and for k = 10, 10549. 
As a very simple example of cellular automata with k > 2, consider the family 

of "modulo-k" rules in which at each time step, the value of a site is taken to be the 

sum modulo k of the values of its two neighbors on the previous time step. This 

is a generalization of the modulo-two rule (90) discussed on several occasions in 

Secs. 2-4. Figure 29 shows the evolution of initial states containing a single site with 

value one according to several modulo-k rules. In all cases, the pattern of nonzero 

sites is seen to tend to a self-similar fractal figure in the large time limit. The pattern 

in general depends on the value of the nonzero initial site, but in all cases yields an 

asymptotically self-similar figure . When k is prime, independent of the value of the 

initial nonzero site, a very regular pattern is generated, in which the density T(n) 

of "triangle structures" is found to satisfy a one-term recurrence relation yielding a 

fractal dimension 

k (k+ 1) Dk = logk L i = I + logk -- , 
~ l 2 

so that D3 = 1 + log3 2 '" 1.631 , D5 '" 1.683, and so on. When k is a composite 
number, the pattern generated depends on the value s of the initial nonzero site. If 

the greatest common divisor (s, k) of k and s is greater than one (so that sand k share 
nontrivial prime factors) , then the pattern is identical to that obtained by evolution 

from an initial site with value one according to a modulo-kl (s , k) rule. In general , 

the density of triangles satisfies a multiple-term recurrence relation. In all cases, the 

fractal dimension for large k behaves as D - 2 - II log2 k [assuming (s , k) « k]. 
When k ~ 00 , the values of sites become ordinary integers, all with nonzero values 

by virtue of the nonvanishing values of binomial coefficients, yielding a figure of 

dimension two. 

All modulo-k rules obey the additive superposition principle discussed for the 

modulo two in Secs. 2 and 3. The number of sites with value r after evolution for T 

steps from a initial state containing a single site with value one is found [on analogy 
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Figure 29. Patterns generated by evolution of one-dimensional cellular automata with k states per site 

according to a modulo-k rule, starting from an initial configuration containing a single nonzero site with 

value one. At each time step, the value of a site is the sum of the values of its two nearest neighbors at the 

previous time step. Configurations obtained at successive time steps are shown on successive lines. Sites 

with value zero are indicated as blanks; " +, and - represent, respectively, values one, two, and three, and 

in the lower two patterns, p represents any nonzero value. In the large time limit, all the patterns tend to a 

self-similar form, with definite fractal dimensions. 
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to Eq. (3.2)] to be N+') = 2#~kJ(T), where the function #~kl(T) gives the number of 

occurrences of the digit r in the base-k decomposition of the integer T and generalizes 
the function #,(T) introduced in Sec. 3. 

Figure 30 shows typical examples of the behavior of some cellular automata with 
k = 3. Considerable diversity is evident. However, with simple initial states, self
similar patterns are obtained at asymptotically large times, just as in the k = 2 case 
of Sec. 3. (Notice that the length and time scales before self-similarity becomes 
evident are typically longer than those found for k = 2: in the limit k ~ 00 where 
each site takes on an arbitrary integer value, self-similarity may not be apparent at 
any finite time.) Evolution of disordered initial states also again appears to generate 
nontrivial structure, though several novel phenomena are present. First, alternation 
of value-one and value-two sites on successive time steps can lead to "half-speed 
propagation" as in rule 

000000000000001002001010020. 

Second, rules such as 

000000000000001011002010010 

lead to a set of finite regions containing only sites with values zero and one, separated 
by "impermeable membranes" of value-two sites. The evolution within each region 
is independent, with the membranes enforcing boundary conditions, and leading to 
cycles after a finite number of time steps. Third, even for legal rules such as 

000000121022002210021020100 

and 

211000122121012200112021200, 

illustrated in Fig. 30, there exist patterns which display a uniform shifting motion. 
For example, with rule 

211000122121012200112021200 

an isolated 12 shifts to the right by one site every time step, while an isolated 21 
shifts to the left; when 21 and 12 meet, they cross without interference. Uniform 
shifting motion is impossible with legal rules when k = 2, since sequences of zero 
and one sites cannot define suitable directions (evolution of 1101 and 1011 always 
yield a pattern spreading in both directions). 

An important feature of some cellular automata with more than two states per 
site is the possibility for the formation of a membrane which "protects" sites within 
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Figure 30. Examples of the evolution of several typical cellular automata with three states per site. Sites 

with value zero are shown as blanks, while values one and two are indicated by • and . ,respectively. The 

value of a site at each time step is determined in analogy with Fig. I by the digit in the ternary specification 

of the rule corresponding to the values of the site and its two nearest neighbors at the previous time 

step. The evolution is shown until a configuration is reached for the second time (signaling a cycle) or 

for at most thirty time steps. The initial configurations in the lower two rows are typical of disordered 

configurations in which each site is statistically independent and takes on its three possible values with 

equal probabilities. 
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it from the effects of noise outside. In this way, there may exist seeds from which 
very regular patterns may grow, shielded by membranes from external noise typical 
in a disordered configuration. Examples of such behavior are to be found in Fig. 30. 
Only when two protective membranes meet is the structure they enclose potentially 
destroyed. The size of the region affected by a particular seed may grow linearly with 
time. Even if seeds occur with very low probability, any sufficiently long disordered 
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Figure 30 (continued). 
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configuration will contain at least one, and the large time behavior of the cellular 
automaton will be radically affected by its presence. 

In addition to increasing the number of states per site, the cellular automata 
discussed above may be generalized by increasing the number of sites whose values 
affect the evolution of a particular site at each time step. For example, one may take 
the neighborhood of each site to contain the site itself, its nearest neighbors, and 
its next-nearest neighbors. With two states per site, the number of possible sets of 
legal local rules for such cellular automata is 226 "" 7 X 107 (for k = 3, this number 
increases to 3174 "" 1083 ). Figure 31 shows patterns generated by these cellular 
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Figure 30 (continued). 
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automata for two typical sets of local rules. With simple initial states, self-similar 
patterns are obtained at large times. With disordered initial states, less structure is 
apparent than in the three-site neighborhood cellular automata discussed above. The 
patterns obtained with such cellular automata are again qualitatively similar to those 
shown in Sec. 2. 

The cellular automata discussed so far have all involved a line of sites in one 
dimension. One may also consider cellular automata in which the sites lie on a regular 
square or (hyper)cubic lattice in two or more space dimensions. As usual, the value 
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of each site is detennined by the values of a neighborhood of sites at the previous time 
step. In the simplest case, the neighborhood includes a site and its nearest neighbors. 
However, in d > 1 dimensions two possible identifications of nearest neighbors can 
be made. First, sites may be considered neighbors if one of their coordinates differ 
by one unit, and all others are equal, so that the sites are "orthogonally" adjacent. 
In this case, a "type-I" cellular automaton neighborhood containing 2d + 1 sites is 
obtained. Second, sites may be considered neighbors if none of their coordinates 
differ by more than one unit, so that the sites are "orthogonally" or "diagonally" 
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Figure 30 (continued). 
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adjacent. This case yields a "type-II" cellular automaton neighborhood containing 
3d sites. When d = 1, type-I and -II neighborhoods are identical and each contains 
three sites. For d = 2, the type-I neighborhood contains five sites, while the type-II 
neighborhood contains nine sites. 14 Cellular automaton rules may be considered 
legal if they satisfy the quiescence condition and are invariant under the rotation and 
reflection symmetries of the lattice. For d = 2, the number of possible legal type-I 

14 In the case d = 2. neighborhoods of types I and 11 are known as von Neumann and Moore neighborhoods. respectively. 
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Figure 30 (continued). 
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rules with k states per site is found to be k(k'+k 3+2k2
-4) / 4, yielding 211 = 2048 rules 

for k = 2 and 371 "" 8 X 1033 for k = 3. The number of type-II rules with k = 2 in 
two dimensions is found to be 2 59 "" 6 x 1017 (or 271 if reflection symmetries are not 
imposed). 

Figure 32 shows the evolution of an initial configuration containing a single 
nonzero site according to two-dimensional (type-I) modulo-two rules. In case (a) the 
value of a site is taken to be the sum modulo two of the values of its four neighbors on 
the previous time step, in analogy with one-dimensional cellular automaton rule 90. 
In case (b), the previous value of the site itself is included in the sum (and the com ple-
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Figure 31. Evolution of two typical one-dimensional cellular automata with two states per site in which 

the value of a site at a particular time step is detennined by the preceding values of a neighborhood of five 

sites containing the site, its nearest neighbors, and its next-nearest neighbors. The initial configurations in 

the lower row are typical of disordered configurations, in which each site has value one with probability 4. 

ment is taken) , in analogy with rule 150. The sequence of patterns obtained at succes
sive time steps may be "stacked" to form pyramidal structures in three-dimensional 
space. These structures become self-similar at large times: in case (a) they exhibit a 
fractal dimension log2 5"" 2.32, and in case (b) a dimension 1 + log2(l +.J3) "" 2.45. 
The patterns found on vertical slices containing the original nonzero site through the 
pyramids (along one of the two lattice directions) are the same as those generated 
by the one-dimensional modulo-two rules discussed in Secs. 2 and 3. The patterns 
obtained at each time step in Fig. 31 are almost always self-similar in the large time 
limit. For case (a), the number of sites with value one generated after T time steps 
in Fig. 31 is found to be 4 #,(r), where #,(T) gives the number of occurrences of 
the digit one in the binary decomposition of the integer T , as discussed in Sec. 3 
(cf. Butler and Ntafos, 1977). The type-I modulo-two rules may be generalized to 
d-dimensional cellular automata. In case (a) the patterns obtained by evolution from 
a single nonzero initial site have fractal dimension log2(2d + 1) and give (2d)#,(r) 

nonzero sites at time step T. In case (b), the asymptotic fractal dimension is found to 
be log2[d(JI + 4/d + 1)]. Once again, simple initial states always yield self-similar 
structures in the large time limit. 

A particular type-II two-dimensional cellular automaton whose evolution has 
been studied extensively is the game of "Life" (Conway, 1970; Gardner, 1971 , 1972; 
Wainwright, 1971- 1973; Wainwright, 1974; Buckingham, 1978; Berlekamp et aI. , 
1982, Chap. 25; R. W. Gosper, private communications). The local rules take a site 
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0: I : 

4 : 5: 

8: 9 : 

12 : 13 : 

(a) 

2: 3 : 0 : I: 2: 3 : 

6: 7: 4: 5 : 6 : 7 : 

10 : II : 8: 9: 10: II: 

14 : 15: 12: 13 : 14: 15 : 

-:. -: . . :. . . .. ... .. . . . . . . . . . . . . . . . . . . . .......... ... . ... ... .. .. ..... . .:. .:. .:. :. 
.: . . : . . :. ..... ::: .. : .... : : : : 

(b) 

Figure 32. Evolution of an initial state containing a single nonzero site in a two-dimensional cellular 

automaton satisfying type-I modulo-two rules. In case (a) the value of each site is taken to be the sum 

modulo two of the values of its four (orthogonally adjacent) neighbors at the previous time step, while in 

case (b) the previous value of the site itself is included in the sum, and the complement is taken. Case (a) 

is the two-dimensional analog of a one-dimensional cellular automaton evolving according to local rule 

90, and case (b) of one evolving according to rule 150. The pyramidal structure obtained in each case by 

stacking the patterns generated at successive time steps is self-similar in the large time limit. 

to "die" (attain value zero) unless two or three of its neighbors are "alive" (have 
value one). If two neighbors are alive, the value of the site is left unchanged; if three 
are alive, the site always takes on the value one. Many configurations exhibiting 
particular properties have been found. The simplest isolated configurations invariant 
under time evolution are the "square" (or "block") consisting of four adjacent live 
sites, and the "hexagon" (or "beehive") containing six live sites. "Oscillator" con
figurations which cycle through a sequence of states are also known. The simplest is 
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the "blinker" consisting of a line of three live sites, which cycles with a period 
of two time steps. Oscillators with periods 3, 5, and 7 are also known; other 
periods may be obtained by composition. So long as they are separated by four or 
more unfilled sites, many of these structures may exist without interference in the 
configurations of a cellular automaton, and their effects are localized. There also 
exist configurations which "move" uniformly across the lattice, executing a cycle 
of a few internal states. The simplest example is the "glider" which contains five 
live sites and undergoes a cycle of length two. The number of filled sites in all the 
configurations mentioned so far is bounded as a function of time. However, "glider 
gun" configurations have been found which generate infinite streams of gliders, 
yielding a continually increasing number of live sites. The simplest known glider 
gun configuration evolves from a configuration containing 26 live cells. Monte Carlo 
simulation suggests that a disordered state of N 2 cells usually evolves to a steady 
state within about N 2 time steps (and typically an order of magnitude quicker); very 
few of the 2N2 possible configurations are visited. Complicated structures such as 
glider guns are very rarely produced. Rough empirical investigation suggests that 
the density of structures containing L live sites generated from a disordered initial 
state (cf. Buckingham, 1981) decreases like e-L/L, where L_ is the size of the 
minimal distinct configuration which evolves to the required structure in one time 
step. Just as for the one-dimensional cellular automata discussed in Sec. 4, the 
irreversibility of "Life" leads to configurations which cannot be reached by evolution 
from any other configurations, and can appear only as initial states. However, the 
simplest known "unreachable" configuration contains around 300 sites (Wainwright, 
1971-1973; Hardouin-Duparc, 1974; Beriekamp et aI., 1982, Chap. 25). 

The game of "Life" is an example of a special class of "totalistic" cellular automata, 
in which the value of a site depends only on the sum of the values of its neighbors 
at the previous time step, and not on their individual values. Such cellular automata 
may arise as models of systems involving additive local quantities, such as chemical 
concentrations. In one dimension with k = 2 (and three sites in each neighborhood) 
all cellular automaton rules are totalistic. In general, the number of totalistic (legal) 
sets of rules for cellular automata with v neighbors for each site is k(k-I)(vk+ I ). In one 
dimension with k = 3, ",,5 X 106 of the"" 108 possible rules are therefore totalistic. 
Only 243 of the totalistic rules are also peripheral in the sense defined in Sec. 2. With 
k = 2 in two dimensions, 29 of the 211 possible rules in a type-I neighborhood are 
totalistic (and 32 are also peripheral), and 217 of the 259 in a type-II neighborhood. 

A potentially important feature of cellular automata is the capability for "self- · 
reproduction" through which the evolution of a configuration yields several separated 
identical copies of the configuration. Figure 33 illustrates a very simple form of self
reproduction with the elementary one-dimensional modulo-two rule (see Waksman, 
1969; Amoroso and Cooper, 1971; Fredkin, 1981). With a single nonzero site in 
the initial state, a configuration containing exactly two nonzero sites is obtained 
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Figure 33. Evolution of a simple pattern according to 

the modulo-two cellular automaton rule (number 90), 

exhibiting a simple self-reproduction phenomenon. 

The additive superposi tion property of the cellular au

tomaton leads to the generation of two exact copies 

of the initial IO II pattern at time steps 8, 16, 32, 

.... "Geometrical overcrowding" prevents exponen

tial increase in the number of copies produced. 
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after 2j time steps 15 as indicated by Eq. (3.2). The additive superposition property 
of the modulo-two rule implies that results for more complicated initial states are 
obtained by superposition of those for single-site initial states. Thus after T = 2j 

time steps, for sufficiently large j, the cellular automaton generates two exact copies 
of any initial sequence of site values. After a further 2 j - 1 time steps, four copies 
are obtained. However, after another 2 j - 1 time steps, the innennost pair of these 
copies meet again, and annihilate, leaving only two copies when T = 2 j + l . Purely 
geometrical "overcrowding" thus prevents exponential multiplication of copies by 
self-reproduction in this case. An exactly analogous phenomenon occurs with the 
two-dimensional modulo-two rule illustrated in Fig. 32, and its higher-dimensional 
analogs. In general , the number of sites in a d-dimensional cellular automaton 
configuration grows with time at most as fast as (2Tl, which is asymptotically 
slower than the number> (2d)aT required for an exponentially increasing number 
of copies to be generated. Exponential self-reproduction can thus occur only if the 
copies generated are not precisely identical, but exhibit variabili ty, and for example 
execute a random walk motion in response to external noise or contain a "counter" 
which causes later generations to "live" longer before reproducing. 

Section 4 mentioned the view of cellular automata as computers. An important 
class of computers is those with the property of "computational universality," for 
which changes in input alone allow any "computable function" to be evaluated, 

J5 An analogous result holds for all modulo-k rules wi th k prime by virtue of the relation (~j) mod k = 0, 0 < i < kJ valid 
for all primes k. The relation is a special case of the general result (Knuth, 1973, Sec. 1.2.6, Ex. 10) 

( j ) = ( ljl kJ )( jmodk )mod k. 
i li l kJ i modk 
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without any change in internal construction. Universal computers can simulate the 
operation of any other computer if their input is suitably encoded. Many Turing 
machines have been shown to be computationally universal. The simplest has seven 
internal states, and allows four possible "symbols" in each square of its tape. One 
method for demonstrating computational universality of cellular automata shows 
correspondence with a universal Turing machine. The head of the Turing machine is 
typically represented by a phononlike structure which propagates along the cellular 
automaton. It may be shown (Smith, 1971) that an eighteen-state one-dimensional 
cellular automaton with a three-site neighborhood can simulate the seven-state four
symbol Turing machine in this way, and is therefore computationally universal. 
Simpler computationally universal cellular automata must be found by other methods. 
The most straightforward method is to show correspondence with a standard digital 
computer or electronic circuit by identifying cellular automaton structures which act 
like "wires," carrying signals without dissipation and crossing without interference, 
and structures representing NAND gates at intersections between wires. "Memories" 
which maintain the same state for all time are also required. In the Life-game cellular 
automaton discussed above, streams of gliders generated by glider guns may be used 
as wires, with bits in the signal represented by the presence or absence of gliders. 
At the points where "glider streams" meet, other structures determine whether the 
corresponding wires cross or interact through a "NAND gate." The Life-game 
cellular automaton is thus computationally universal. "Circuits" such as binary 
adders (Buckingham, 1978) may be constructed from Life configurations. It appears 
that such circuits run at a speed slower than the digital computers to which they 
correspond only by a constant multiplicative factor. The "Life game" is a type-II 
two-dimensional cellular automaton with two states per site. A computationally 
universal type-I two-dimensional cellular automaton has been constructed with three 
states per site (Banks, 1971); only two states are required if the initial configuration 
is permitted to contain an infinite "background" of nonzero sites (Toffoli, 1977a). 
In one dimension, with a neighborhood of three sites, there are some preliminary 
indications that a universal cellular automaton may be constructed with five states 
per site. The details and implications of this cellular automaton will be described in 
a future publication. 

6 . Discussion 

This paper represents a first step in the investigation of cellular automata as mathe
matical models for self-organizing statistical systems. The bulk of the paper consisted 
in a detailed analysis of elementary cellular automata involving a sequence of sites 
on a line, with a binary variable at each site evolving in discrete time steps according 
to the values of its nearest neighbors. Despite the simplicity of their construction, 
these systems were found to exhibit very complicated behavior. 
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The 32 possible (legal) elementary cellular automata were found to fall into two 
broad classes. The first class consisted of simple cellular automata whose time 
evolution led eventually to simple, usually homogeneous, final states. The second 
class contained complex cellular automata capable of generating quite complicated 
structures even from simple initial states. Figure 3 showed the patterns of growth 
obtained with the very simplest initial state in which only one site had a nonzero 
value. The complex rules were found to yield self-similar fractal patterns. For all but 
one of the rules, the patterns exhibited the same fractal dimension log2 3 :>< 1.59 (the 
remaining rule gave a fractal dimension log22ip :>< 1.69). With more complicated 
initial states, the patterns obtained after evolution for many time steps remained 
self-similar-at least on scales larger than the region of nonzero initial sites. The 
generation of self-similar patterns was thus found to be a generic feature of complex 
cellular automata evolving from simple initial states. This result may provide some 
explanation for the widespread occurrence of self-similarity in natural systems. 

Section 3 discussed the evolution of cellular automata from general initial states, 
in which a finite fraction of the infinite number of initial sites carried value one. 
Regardless of the initial density of nonzero sites, definite densities were found in 
the large time limit. Markovian master equation approximations to the density 
development were found inadequate because of the importance of "feedback" in 
the cellular automaton evolution. Even with disordered or random initial states, 
in which the values of different sites are statistically uncorrelated, the evolution of 
complex cellular automata was found to lead to the formation of definite structures, 
as suggested by Figs. 8 and 15. One characteristic of this self-organization was the 
generation of long sequences of correlated sites. The spectrum of these sequences 
was found to reach an equilibrium form after only a few time steps, extending to 
arbitrarily large scales, but with an exponential damping. The exponents were again 
found to be universal for all initial states and almost all complex cellular automata 
(with the exception of two special additive cellular automata). 

Any initial cellular automaton state was found to lead at large times to configura
tions with the same statistical structures. However, in complex cellular automata, the 
trajectories of almost all specific nearby initial configurations (differing by changes 
in the values at a few sites) were found to diverge exponentially with time in the 
phase space of possible configurations. After a few time steps, the mapping from 
initial to final configurations becomes apparently random (although there are quan
titative deviations from a uniform random mapping). Cellular automaton rules may 
map several initial configurations into the same final configuration, and thus lead to 
microscopically irreversible time evolution in which trajectories of different states 
may merge. In the limit of an infinite number of sites, a negligible fraction of all 
the possible cellular automaton configurations are reached by evolution from any of 
the possible initial states after a few time steps. Starting even from an ensemble 
in which each possible configuration appears with equal probability, the cellular au
tomaton evolution concentrates the probabilities for particular configurations, thereby 
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reducing entropy. This phenomenon allows for the possibility of self-organization by 
enhancing the probabilities of organized configurations and suppressing disorganized 
configurations. 

Many of the qualitative features found for elementary cellular automata appear to 
survive in more complicated cellular automata (considered briefly in Sec. 5), although 
several novel phenomena may appear. For example, in one-dimensional cellular 
automata with three or more possible values at each site, protective membranes may 
be generated which shield finite regions from the effects of external noise, and allow 
very regular patterns to grow from small seeds. 

Cellular automata may be viewed as computers, with initial configurations con
sidered as input programs and data processed by cellular automaton time evolution. 
Sufficiently complicated cellular automata are known to be universal computers, ca
pable of computing any computable function given appropriate input. Such cellular 
automata may be considered as capable of the most complicated behavior conceiv
able and are presumably capable of simulating any physical system given a suitable 
input encoding and a sufficiently long running time. In addition, they may be used 
to simulate the evolution of any other cellular automaton. If the necessary encoding 
is sufficiently simple, the statistical properties of the simulated cellular automaton 
should follow those of the universal cellular automaton. Although not capable of 
universal simulation, simpler cellular automata may often simulate each other. This 
capability may well form a basis for the universality found in the statistical properties 
of various cellular automata. 

Cellular automata have been developed in this paper as general mathematical 
models. One may anticipate their application as simple models for a wide variety 
of natural processes. Their nontrivial features are typically evident only when some 
form of growth inhibition is present. Examples are found in aggregation processes 
in which aggregation at a particular point prevents further aggregation at the same 
point on the next time step. 
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Algebraic Properties 
of Cellular Automata 

1984 

Cellular automata are discrete dynamical systems, of simple construction but complex 
and varied behaviour. Algebraic techniques are used to give an extensive analysis of 
the global properties of a class of finite cellular automata. The complete structure 
of state transition diagrams is derived in terms of algebraic and number theoretical 
quantities. The systems are usually irreversible, and are found to evolve through 
transients to attractors consisting of cycles sometimes containing a large number of 
configurations. 

1. Introduction 

In the simplest case, a cellular automaton consists of a line of sites with each site 
carrying a value a or 1. The site values evolve synchronously in discrete time 
steps according to the values of their nearest neighbours. For example, the rule for 
evolution could take the value of a site at a particular time step to be the sum modulo 
two of the values of its two nearest neighbours on the previous time step. Figure 1 
shows the pattern of nonzero sites generated by evolution with this rule from an initial 
state containing a single nonzero site. The pattern is found to be self-similar, and is 
characterized by a fractal dimension log2 3. Even with an initial state consisting of a 
random sequence of a and 1 sites (say each with probability!), the evolution of such 
a cellular automaton leads to correlations between separated sites and the appearance 
of structure. This behaviour contradicts the second law of thermodynamics for 
systems with reversible dynamics, and is made possible by the irreversible nature 

Coauthored with Olivier Manin and Andrew M. Odlyzko. Originally published in Communications in Mathematical 
Physics, volume 93, pages 219-258 (March 1984). 
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Figure 1. Example of evolution of a one-dimensional cellular automaton with two possible values at each 

site. Configurations at successive time steps are shown as successive lines. Sites with value one are black; 

those with value zero are left white. The cellular automaton rule illustrated here takes the value of a site at 

a particular time step to be the sum modulo two of the values of its two nearest neighbours on the previous 

time step. This rule is represented by the polynomial T(x) = x + X - I, and is discussed in detail in Sect. 3. 

of the cellular automaton evolution. Starting from a maximum entropy ensemble 
in which all possible configurations appear with equal probability, the evolution 
increases the probabilities of some configurations at the expense of others. The 
configurations into which this concentration occurs then dominate ensemble averages 
and the system is "organized" into having the properties of these configurations. A 
finite cellular automaton with N sites (arranged for example around a circle so 
as to give periodic boundary conditions) has 2N possible distinct configurations. 
The global evolution of such a cellular automaton may be described by a state 
transition graph. Figure 2 gives the state transition graph corresponding to the 
cellular automaton described above, for the cases N = 11 and N = 12. Configurations 
corresponding to nodes on the periphery of the graph are seen to be depopulated by 
transitions; all initial configurations ultimately evolve to configurations on one of the 
cycles in the graph. Any finite cellular automaton ultimately enters a cycle in which 
a sequence of configurations are visited repeatedly. This behaviour is illustrated in 
Fig. 3. 

Cellular automata may be used as simple models for a wide variety of phys
ical, biological and computational systems. Analysis of general features of their 
behaviour may therefore yield general results on the behaviour of many com
plex systems, and may perhaps ultimately suggest generalizations of the laws of 
thermodynamics appropriate for systems with irreversible dynamics. Several as
pects of cellular automata were recently discussed in [1], where extensive refer
ences were given. This paper details and extends the discussion of global proper-
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Figure 2. Global state transition diagrams for finite cellular automata with size N and periodic boundary 

conditions evolving according to the rule T(x) = x + x- I, as used in Fig. I, and discussed extensively 

in Sect. 3. Each node in the graphs represents one of the 2N possible configurations of the N sites. 

The directed edges of the graphs indicate transitions between these configurations associated with single 

time steps of cellular automaton evolution. Each cycle in the graph represents an "attractor" for the 

configurations corresponding to the nodes in trees rooted on it. 

ties of cellular automata given in [I]. These global properties may be described 
in terms of properties of the state transition graphs corresponding to the cellular 
automata. 

This paper concentrates on a class of cellular automata which exhibit the simpli
fying feature of "additivity". The configurations of such cellular automata satisfy 
an "additive superposition" principle, which allows a natural representation of the 
configurations by characteristic polynomials. The time evolution of the configura
tions is represented by iterated multiplication of their characteristic polynomials by 
fixed polynomials. Global properties of cellular automata are then determined by 
algebraic properties of these polynomials, by methods analogous to those used in 
the analysis of linear feedback shift registers [2, 3]. Despite their amenability to 
algebraic analysis, additive cellular automata exhibit many of the complex features 
of general cellular automata. 
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N=71 

Figure 3. Evolution of cellular automata with N sites arranged in a circle (periodic boundary conditions) 

according to the rule T(x) = x + [I (as used in Fig. I and discussed in Sect. 3). Finite cellular automata 

such as these ultimately enter cycles in which a sequence of configurations are visited repeatedly. This 

behaviour is evident here for N = 12, 63, and 192. For N = 71, the cycle has length 235 - I. 

Having introduced notation in Sect. 2, Sect. 3 develops algebraic techniques for 
the analysis of cellular automata in the context of the simple cellular automaton 
illustrated in Fig. 1. Some necessary mathematical results are reviewed in the 
appendices. Section 4 then derives general results for all additive cellular automata. 
The results allow more than two possible values per site, but are most complete 
when the number of possible values is prime. They also allow influence on the 
evolution of a site from sites more distant than its nearest neighbours. The results 
are extended in Sect. 4D to allow cellular automata in which the sites are arranged 
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in a square or cubic lattice in two, three or more dimensions, rather than just on a 
line. Section 4E then discusses generalizations in which the cellular automaton time 
evolution rule involves several preceding time steps. Section 4F considers alternative 
boundary conditions. In all cases, a characterization of the global structure of the 
state transition diagram is found in terms of algebraic properties of the polynomials 
representing the cellular automaton time evolution rule. 

Section 5 discusses non-additive cellular automata, for which the algebraic tech
niques of Sects. 3 and 4 are inapplicable. Combinatorial methods are nevertheless 
used to derive some results for a particular example. 

Section 6 gives a discussion of the results obtained, comparing them with those 
for other systems. 

2. Formalism 

We consider first the formulation for one-dimensional cellular automata in which 
the evolution of a particular site depends on its own value and those of its nearest 
neighbours. Section 4 generalizes the formalism to several dimensions and more 
neighbours. 

We take the cellular automaton to consist of N sites arranged around a circle (so 
as to give periodic boundary conditions). The values of the sites at time step t are 
denoted agl , ... , a~~ l ' The possible site values are taken to be elements of a finite 
commutative ring IRk with k elements. Much of the discussion below concerns the 
case IRk = Zk' in which site values are conveniently represented as integers modulo k. 

In the example considered in Sect. 3, IRk = Z 2' and each site takes on a value 0 or I. 
The complete configuration of a cellular automaton is specified by the values of its 

N sites, and may be represented by a characteristic polynomial (generating function) 
(cf. [2, 3]) 

N-l 

A (fl (x) = I:>i'lx', (2.1) 
,=0 

where the value of site i is the coefficient of x' , and all coefficients are elements of the 
ring IRk' We shall often refer to configurations by their corresponding characteristic 
polynomials. 

It is often convenient to consider generalized polynomials containing both positive 
and negative powers of x : such objects will be termed "dipolynomials". In general, 
H (x ) is a dipolynomial if there exists some integer m such that x m H (x ) is an ordinary 
polynomial in x. As discussed in Appendix A, dipolynomials possess divisibility 
and congruence properties analogous to those of ordinary polynomials. 

Multiplication of a characteristic polynomial A(x ) by x±j yields a dipolynomial 
which represents a configuration in which the value of each site has been transferred 
(shifted) to a site j places to its right (left). Periodic boundary conditions in the 
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cellular automaton are implemented by reducing the characteristic dipolynomial 
modulo the fixed polynomial x N - 1 at all stages, according to 

(2.2) 

Note that any dipolynomial is congruent modulo (x N - 1) to a unique ordinary 
polynomial of degree less than N . 

In general, the value aJt) of a site in a cellular automaton is taken to be an arbitrary 
function ofthe values aJ~~I ) , ay-I ), and aJ:~I ) at the previous time step. Until Sect. 5, 
we shall consider a special class of "additive" cellular automata which evolve with 
time according to simple linear combination rules of the form (taking the site index 
i modulo N) 

(2.3) 

where the aj are fixed elements of IRk' and all arithmetic is performed in IRk. This 
time evolution may be represented by multiplication of the characteristic polynomial 
by a fixed dipolynomial in x, 

(2.4) 

according to 

mod(x N 
- I), (2.5) 

where arithmetic is again performed in IRk. Additive cellular automata obey an 
additive superposition principle which implies that the configuration obtained by 
evolution for t time steps from an initial configuration A (0) (x ) + B(O)(x) is identical 
to A (f) (x ) + B (f) (X), where A (f)(X) and B(f )(x) are the results of separate evolution of 
A (O)(x) and B(°l(x), and all addition is performed in IRk. Since any initial configuration 
can be represented as a sum of "basis" configurations ~(x) = x j containing single 
nonzero sites with unit values, the additive superposition principle determines the 
evolution of all configurations in terms of the evolution of ~(x ) . By virtue of the 
cyclic symmetry between the sites it suffices to consider the case j = O. 

3. A Simple Example 

A. Introduction 

This section introduces algebraic techniques for the analysis of additive cellular 
automata in the context of a specific simple example. Section 4 applies the techniques 
to more general cases. The mathematical background is outlined in the appendices. 
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The cellular automaton considered in this section consists of N sites arranged 
around a circle, where each site has value 0 or 1. The sites evolve so that at each 
time step the value of a site is the sum modulo two of the values of its two nearest 
neighbours at the previous time step: 

(I) (t-l ) + (I-I ) a j = a j _ 1 a j +1 mod2. (3.1 ) 

This rule yields in many respects the simplest non-trivial cellular automaton. It 
corresponds to rule 90 of [I] , and has been considered in several contexts elsewhere 
(e.g. [4]). 

The time evolution (3 .1) is represented by multiplication of the characteristic 
polynomial for a configuration by the dipolynomial 

T(x)= x +x- I (3.2) 

according to Eq. (2.5). At each time step, characteristic polynomials are reduced 
modulo x N -I (which is equal to x N + 1 since all coefficients are here, and throughout 
this section, taken modulo two). This procedure implements periodic boundary 
conditions as in Eq. (2.2) and removes any inverse powers of x. 

Equation (3 .2) implies that an initial configuration containing a single nonzero 
site evolves after t time steps to a configuration with characteristic dipolynomial 

(3 .3) 

For t < N / 2 (before " wraparound" occurs) , the region of nonzero sites grows linearly 
with time, and the values of sites are given simply by binomial coefficients modulo 
two, as discussed in [1] and illustrated in Fig. 1. (The positions of nonzero sites are 
equivalently given by ± 2j , ± 2h ± . . . , where the jj give the positions of nonzero digits 
in the binary decomposition of the integer t.) The additive superposition property 
implies that patterns generated from initial configurations containing more than one 
nonzero site may be obtained by addition modulo two (exclusive disjunction) of the 
patterns (3.3) generated from single nonzero sites. 

B. Irreversibility 

Every configuration in a cellular automaton has a unique successor in time. A 
configuration may however have several distinct predecessors, as illustrated in the 
state transition diagram of Fig. 2. The presence of multiple predecessors implies that 
the time evolution mapping is not invertible but is instead "contractive". The cellular 
automaton thus exhibits irreversible behaviour in which information on initial states is 
lost through time evolution. The existence of configurations with multiple predeces-
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sors implies that some configurations have no predecessors I. These configurations 
occur only as initial states, and may never be generated in the time evolution of the 
cellular automaton. They appear on the periphery of the state transition diagram of 
Fig. 2. Their presence is an inevitable consequence of irreversibility and of the finite 
number of states. 

Lemma 3.1. Configurations containing an odd number of sites with value 1 can 
never be generated in the evolution of the cellular automaton defined in Sect. 3A, 
and can occur only as initial states. 

Consider any configuration specified by characteristic polynomial A(O)(x). The 
successor of this configuration is A (l)(x) = T(x)A (O)(x) = (x + [ I )A (0) (x ), taken, as 
always, modulo x N - 1. Thus 

A(l\x) = (x2 + l)B(x) + R(x)(xN - 1) 

for some dipolynomials R(x) and B(x). Since x 2 + 1 = x N - 1 = 0 for x = 1, 
A(l)(1) = O. Hence A(I)(X) contains an even number of terms, and corresponds to a 
configuration with an even number of nonzero sites. Only such configurations can 
therefore be reached from some initial configuration A(O)(x). 

An extension of this lemma yields the basic theorem on the number of unreachable 
configurations: 

Theorem 3.1. The fraction of the 2N possible configurations of a size N cellular 
automaton defined in Sect. 3A which can occur only as initial states, and cannot be 
reached by evolution, is 1/2 for N odd and 3/4 for N even. 

A configuration A (l)(x) is reachable after one time step of cellular automaton 
evolution if and only if for some dipolynomial A (O)(x), 

mod(x N -1), (3.4) 

so that 

A(l)(x) = (x2 + I)B(x) + R(x)(xN -1) (3.5) 

for some dipolynomials R(x) and B(x). To proceed, we use the factorization of 
(x N 

- 1) given in Eq. (A.7), and consider the cases N even and N odd separately. 
(a) N even. Since by Eq. (A.4), (x2 + 1) = (x + 1)2 = (x - 1)2 (taken, as always, 

modulo 2), and by Eq. (A.7), 

(x _1)21 (xN /2 _1)2 = (x N -1) 

for even N, Eq. (3.5) shows that 

(x - 1)21 A(l)(x) 

in this case. But since (x - 1)2 contains a constant term, A (I) (x) / (x - 1)2 is thus an 

1 Such configurations have been termed "Gardens of Eden" [5]. 
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ordinary polynomial if A (l)(x) is chosen as such. Hence all reachable configurations 
represented by a polynomial A (l)(x) are of the form 

for some polynomial C(x). The predecessor of any such configuration is xC(x) , so 
any configuration of this form may in fact be reached. Since deg A (x) < N, deg 
C(x) < N - 2. There are thus exactly 2N

-
2 reachable configurations, or 1/4 of all the 

2N possible configurations. 
(b) N odd. Using Lemma 3.1 the proof for this case is reduced to showing that 

all configurations containing an even number of nonzero sites have predecessors. A 
configuration A(l)(x) with an even number of nonzero sites can always be written in 
the form (x + I)D(x). But 

A(l\x) = (x + I )D(x) 

== (x + X- I )(x2 + X4 + . .. + XN
-

1 )D(x) mod (x N 
- 1) 

== T(x )(x2 + x4 + . .. + x N
-

1 )D(x) mod (x N 
- 1), 

giving an explicit predecessor for A(l)(x). 

The additive superposition principle for the cellular automaton considered in this 
section yields immediately the result: 

Lemma 3.2. Two configurations A(O)(x) and B(O)(x) yield the same configuration 
C(x) == T(x)A (O)(x ) == T(x)B (O) after one time step in the evolution of the cellu
lar automaton defined in Sect. 3A if and only if A(O)(x) = B(O)(x) + Q(x), where 

T(x)Q(x ) == O. 

Theorem 3.2. Configurations in the cellular automaton defined in Sect. 3A which 
have at least one predecessor have exactly two predecessors for N odd and exactly 
four for N even. 

This theorem is proved using Lemma 3.2 by enumeration of configurations Q(x.) 

which evolve to the null configuration after one time step. For N odd, only the 
configurations 0 and 1 +x+ . . . + XN - 1 = X:_~l (corresponding to site values 11111 .. . ) 
have this property. For N even, Q(x ) has the form 

2 N-2 x N 
- 1 

(1 + x + . . . + x )S/x) = x 2 -1 Sj(x ), 

where the S/x ) are the four polynomials of degree less than two. Explicitly, the 
possible forms for Q(x) are 0, 1 + x 2 + .. . + x N

- 2 , X + x 3 + ... + XN
-

1
, and 1 + x + 

x 2 + ... + XN- 1• 

C. Topology of the Stote Transition Diagram 

This subsection derives topological properties of the state transition diagrams il
lustrated in Fig. 2. The results determine the amount and rate of "information 
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loss" or "self organization" associated with the irreversible cellular automaton evo
lution. 

The state transition network for a cellular automaton is a graph, each of whose 
nodes represents one of the possible cellular automaton configurations. Directed arcs 
join the nodes to represent the transitions between cellular automaton configurations at 
each time step. Since each cellular automaton configuration has a unique successor, 
exactly one arc must leave each node, so that all nodes have out-degree one. As 
discussed in the previous subsection, cellular automaton configurations may have 
several or no predecessors, so that the in-degrees of nodes in the state transition 
graph may differ. Theorems 3.1 and 3.2 show that for N odd, 1/ 2 of all nodes have 
zero in-degree and the rest have in-degree two, while for N even, 3/ 4 have zero 
in-degree and 1/ 4 in-degree four. 

As mentioned in Sect. 1, after a possible "transient", a cellular automaton evolving 
from any initial configuration must ultimately enter a loop, in which a sequence of 
configurations are visited repeatedly. Such a loop is represented by a cycle in the 
state transition graph. At every node in this cycle a tree is rooted; the transients 
consist of transitions leading towards the cycle at the root of the tree. 

Lemma 3.3. The trees rooted at all nodes on all cycles ofthe state transition graph 
for the cellular automaton defined in Sect. 3A are identical. 

This result is proved by showing that trees rooted on all cycles are identical to the 
tree rooted on the null configuration. Let A(x ) be a configuration which evolves to 
the null configuration after exactly t time steps, so that If(xY A(x) == 0 mod (x N 

- 1). 
Let R(x) be a configuration on a cycle, and let R(-t) (x) be another configuration on 
the same cycle, such that If(xY R(-t )(x ) == R(x) mod(x N -1). Then define 

'JIR (x) [A(x )] = A(x ) + R(-t\x ). 

We first show that as A(x) ranges over all configurations in the tree rooted on the null 
configuration, 'JI R(x) [A(x )] ranges over all configurations in the tree rooted at R(x). 

Since 

If(x)t'JI R(x) [A(x)] = If(x)t A(x) + If(x)t R(-t)(x) == R(x ) mod(x N -l) , 

it is clear that all configurations 'JI R(x) [A(x )] evolve after t time steps [where the value 
of t depends on A(x)] to R(x). To show that these configurations lie in the tree rooted 
at R(x), one must show that their evolution reaches no other cycle configurations for 
any s < t. Assume this supposition to be false , so that there exists some m *- 0 for 
which 

R(-m)(x) == If(x )s'JI R(x) [A(x)] = If(x)S A(x) + R(S-t) (x) mod(xN -1). 

Since If(x)t A(x) == 0 mod (x N - 1), this would imply R(t-s-m)(x) = R(O)(x) = R(x), 
or R(-m)(x) = R(s-t)(x). But R(-m )(x) - R(s-t)(x ) == If(x)S A(x), and by construc-

tion If(xYA(x) *- 0 for any s < t, yielding a contradiction. Thus 'JIR(x) maps 
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configurations at height t in the tree rooted on the null configuration to configurations 
at height t in the tree rooted at R(x), and the mapping 'P is one-to-one. An analogous 
argument shows that 'P is onto. Finally one may show that 'P preserves the time 
evolution structure of the trees, so that ifT(x)A(O)(x) = A(l)(x), then 

which follows immediately from the definition of 'P. Hence 'P is an isomorphism, so 
that trees rooted at all cycle configurations are isomorphic to that rooted at the null 
configuration. 

Notice that this proof makes no reference to the specific form (3.2) chosen for 
T(x) in this section; Lemma 3.3 thus holds for any additive cellular automaton. 

Theorem 3.3. For N odd, a tree consisting of a single arc is rooted at each node on 
each cycle in the state transition graph for the cellular automaton defined in Sect. 3A. 

By virtue of Lemma 3.3, it suffices to show that the tree rooted on the null 
configuration consists of a single node corresponding to the configuration 111 ... 111. 
This configuration has no predecessors by virtue of Lemma 3.1. 

Corollary. For N odd, the fraction of the 2N possible configurations which may 
occur in the evolution of the cellular automaton defined in Sect. 3A is 1/2 after one 
or more time steps. 

The "distance" between two nodes in a tree is defined as the number of arcs which 
are visited in traversing the tree from one node to the other (e.g. [6]). The "height" of 
a (rooted) tree is defined as the maximum number of arcs traversed in a descent from 
any leaf or terminal (node with zero in-degree) to the root of the tree (formally node 
with zero out-degree). A tree is "balanced" if all its leaves are at the same distance 
from its root. A tree is termed "quaternary" ("binary") if each of its non-terminal 
nodes has in-degree four (two). 

Let D2(N) be the maximum 2j which divides N (so that for example D2(12) = 4). 

Theorem 3.4. For N even, a balanced tree with height D 2(N)/2 is rooted at each 
node on each cycle in the state transition graph for the cellular automaton defined in 
Sect. 3A; the trees are quaternary, except that their roots have in-degree three. 

Theorem 3.2 shows immediately that the tree is quaternary. In the proof of 
Theorem 3.1, we showed that a configuration Q,(x) can be reached from some 
configuration Qo(x) if and only if (1 + x 2) I Q, (x); Theorem 3.2 then shows that if 
Q, (x) is reachable, it is reachable from exactly four distinct configurations Qo(x). 

We now extend this result to show that a configuration Qm(x) can be reached from 
some configuration Qo(x) by evolution for m time steps, with m :5 D2(N)/2, if and 
only if (1 + x2)m I Qm (x). To see this, note that if 

mod(x N -1), (3.6) 
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then 

(3.7) 

and so, since by Eq. (A.7), (x 2 + l)m I (x N - 1) for m :5 D2(N)/2, it follows that 

(3 .8) 

for m :5 D 2(N)/2. On the other hand, if (x 2 + l)m I Qm(x) , say Qm(x) = (x 2 + 
l)m Qo(x) , then Qm(x) == T(x)m x m Qo(x), which shows that Qm(x) is reachable in m 
steps. 

The balance of the trees is demonstrated by showing that for m < D2(N)/2, if 
(x 2 + l)m I Qm(x), then Qm(x) can be reached from exactly 4m initial configurations 
Qo(x). This may be proved by induction on m. If 

then all of the four states Qm-l (x ) from which Qm(x ) may be reached in one step 
satisfy (x 2 + l)m-l I Qm- l (x ). Consider now the configurations Q(x ) which satisfy 

(3.9) 

If we write Q(x) = (x + l)D2(N ) R(x ), then as in Theorem 3.2, the four predecessors 
of Q(x ) are exactly 

(3.10) 

where x R(x) == R*(x) mod (x N -1). Sj(x ) ranges over the four polynomials of degree 
less than two, as in Theorem 3.2. Exactly one of these polynomials satisfies Eq. (3.9), 
whereas the other three satisfy only 

(x + I)D2(N)-2 I Q_
1 
(x) . 

Any state satisfying Eq. (3.9) thus belongs to a cycle, since it can be reached after 
an arbitrary number of steps . Conversely, since any cycle configuration must be 
reachable after DiN)/ 2 time steps, any and all configurations Q_1 (x ) satisfying 
Eq. (3.9) are indeed on cycles. But, as shown above, the three Q_1 (x ) which do not 
satisfy Eq. (3 .9) are roots of balanced quaternary trees of height D2(N) / 2 - 1. The 
proof of the theorem is thus completed. 

Corollary. For N even, a fraction 4-1 of the 2N possible configurations appear 
after t steps in the evolution of the cellular automaton defined in Sect. 3A for 
t :5 D2(N) / 2. A fraction 2-D2(N) of the configurations occur in cycles, and are 
therefore generated at arbitrarily large times. 

Corolla ry. All configurations A(x ) on cycles in the cellular automaton of Sect. 
3A are divisible by (1 + x )D2 (N) . 
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This result follows immediately from the proof of Theorems 3.3 and 3.4. 

Entropy may be used to characterize the irreversibility of cellular automaton 

evolution (cf. [I)). One may define a set (or topological) entropy for an ensemble of 

configurations i occurring with probabilities Pi according to 

I 
S = - log2 L ()(Pi)' N . 

(3.11) 
I 

where ()(p) = I for P > 0, and 0 otherwise. One may also define a measure entropy 

1 
Sil = -- L Pi log2 Pi· 

N . 
I 

(3.12) 

For a maximal entropy ensemble in which all 2N possible cellular automaton config

urations occur with equal probabilities, 

S = Sil = 1. 

These entropies decrease in irreversible cellular automaton evolution, as the proba

bilities for different configurations become unequal. However, the balance property 

of the state transition trees implies that configurations either do not appear, or occur 

with equal nonzero probabilities. Thus the set and measure entropies remain equal in 

the evolution of the cellular automaton of Sect. 3A. Starting from a maximal entropy 

ensemble, both nevertheless decrease with time t according to 

s(t)=sll(t)=1-2t/N, O:o;t:o; Di N )/2, 

s(t) = SIl(t) = 1 - D2(N)/ N, t ~ D2(N)/2. 

D. Maximal Cycle Lengths 

Lemma 3.4. The lengths of all cycles in a cellular automaton of size N as defined 

in Sect. 3A divide the length IlN of the cycle obtained with an initial configuration 

containing a single site with value one. 

This follows from additivity, since any configuration can be considered as a 

superposition of configurations with single nonzero initial sites. 

Lemma 3.5. For the cellular automaton defined in Sect. 3A, with N of the form 

2i , IlN = 1. 

In this case, any initial configuration evolves ultimately to a fixed point consisting 

of the null configuration, since 

(x+[')2
j

l ==(x
2j 

+x-
2j

)==(x N +x-N)==O mod(xN-l). 

Lemma 3.6. For the cellular automaton defined in Sect. 3A, with N even but not 

of the form 2i , IlN = 2IlN /2· 

A configuration A(x) appears in a cycle of length 1T if and only if 

lr(x)" A(x) == A(x) mod (x N - I), 
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and therefore 

(x N - I) I [(x2 + I)" + x"]A(x) . 

After t time steps, the configuration obtained by evolution from an initial state 
containing a single nonzero site is (x + X-I Y; by Theorems 3.3 and 3.4 and the 
additive superposition principle, the configuration 

A(x) == (x +x-')D2(N)/2 

is therefore on the maximal length cycle. Thus the maximal period flN is given by 
the minimum 7r for which 

and so 

---- I [(x 2 + l)nN +xnN] , 
(

X1l I) D2(N) 

x+1 
(3 .13) 

with N = D 2(N)n, n odd. Similarly, 

(xN /2 _ I) I [(x 2 + l)nN/2 + xnN/2 ](x + I)D2(N /2), 

( 

n I) D2(N)/2 
~ I [(x 2 + l)nN/2 +xnN/2 ]. 
x+1 

(3.14) 

Squaring this yields 

~ I [(x2 + 1)2nN/2 +x2nN/2 ], 
( 

11 I) D 2(N) 

x+ I 

from which it follows that 

(3.15) 

Since x N -I divides [(x2 + l)nN +xnN](x + I)D2(N), so does its square root, x N/2 -I, 

and therefore 

(3.16) 

Combining Eqs. (3.15) and (3.16) implies that either flN = 2TIN/2 or TIN = TIN/2. To 
exclude the latter possibility, we use derivatives. Using Eq. (A.6), and the fact that 
the derivative of x 2 + 1 vanishes over G F(2), one obtains from (3.13), 

(
xn_l) ITI xnN-'. 
x + 1 N 

If TIN were odd, the right member would be non-trivial, and the divisibility condition 
could not hold. Thus TIN must be even. But then the right member of (3.13) is a 
perfect square, so that 

( 
XN /2_1 )21[(X2+I)nN/2+xnN/2f . 

(x + 1 )D2(N) /2 

Thus TIN /2 I TIN /2, and the proof is complete. 
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Theorem 3.5. For the cellular automaton defined in Sect. 3A, with N odd, 
TIN I TI;:" = 2 sordN(2) - 1 where sordN (2) is the multiplicative "suborder" function 

of 2 modulo N, defined as the least integer j such that 2j = ± 1 mod N. (Properties 
of the suborder functions are discussed in Appendix B.) 

By Lemma 3.1, an initial configuration containing a single nonzero site cannot be 
reached in cellular automaton evolution. The configuration (x + x-I) mod (x N - 1) 
obtained from this after one time step can be reached, and in fact appears again after 
2sordN(2) - 1 time steps, since 

T(X)2SOrdN (2) 1 == (x +x- I)2SOrdN (2) == (X2sordN(2) +X-2SOrdN (2») 

==(x±l+x'FI)==(x+x-l) mod(xN-l). 

The maximal cycle lengths TIN for the cellular automaton considered in this 
section are given in the first column of Table 1. The values are plotted as a function 
of N in Fig. 4. Table 1 together with Table 4 show that TIN = TI;:" for almost all odd N. 
The first exception appears for N = 37, where TIN = TI;:" /3; subsequent exceptions 

are ~s = f19s/3, TI101 = TIrol/3, TII41 = TIr41/3, TIl97 = TIr97/3, TII99 = TIr99!7, 
TI203 = TI;03/105 and so on. 

4 0 

30 

a 20 4 0 60 eo 100 

Figure 4. The maximal length nN of cycles 

generated in the evolution of a cellular au

tomaton with size N and T(x) = x + x- I . as a 

function of N . Only values for integer N are 

plotted. The irregular behaViour of nN as a 

function of N is a consequence of the depen

dence of nN on number theoretical properties 

of N. 

As discussed in Appendix B, sordN (2) ~ (N - 1)/2. This bound can be attained 
only when N is prime. It implies that the maximal period is 2(N-I)/2 - 1. Notice 

that this period is the maximum that could be attained with any reflection symmetric 
initial configuration (such as the single nonzero site configuration to be considered 
by virtue of Lemma 3.4). 

E. Cycle Length Distribution 

Lemma 3.4 established that all cycle lengths must divide TIN and Theorems 3.3 and 
3.4 gave the total number of states in cycles. This section considers the number of 
distinct cycles and their lengths. 
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N k=2 k=3 k=4 

3 I 6 I 3 2 2 I 
4 I 2 2 2 2 I 4 I 4 
5 3 3 8 8 4 6 6 3 6 
6 2 1 6 6 3 2 2 2 2 
7 7 7 26 26 13 14 14 7 14 
8 I 4 4 8 8 I 8 1 8 
9 7 7 18 1 9 14 14 7 14 

10 6 6 8 8 8 6 12 6 12 
11 31 31 242 121 121 62 62 31 62 
12 4 2 6 6 6 4 4 4 4 
13 63 21 26 13 13 126 42 63 42 
14 14 14 26 26 13 14 28 14 28 
15 15 15 24 24 12 30 30 15 30 
16 8 16 80 80 16 1 16 
17 15 15 1,640 6,560 820 30 30 15 30 
18 14 14 18 18 9 14 28 14 28 
19 511 511 19,682 19,682 9,841 1,022 1,022 511 1,022 
20 12 12 16 40 40 12 24 12 24 
21 63 63 78 78 39 126 126 63 126 
22 62 62 242 242 242 62 124 62 124 
23 2,047 2,047 177,146 88,573 88,573 4,094 4,094 2,047 4,094 
24 8 4 12 24 24 8 8 8 8 
25 1,023 1,023 59,048 59,048 29,524 2,046 2,046 1,023 2,046 
26 126 42 26 26 26 126 84 126 84 
27 511 511 54 I 27 1,022 1,022 511 1,022 
28 28 28 26 26 26 28 56 28 56 
29 16,383 16,383 4,782,968 4,782,968 2,391,484 32,766 32,766 16,383 32,766 
30 30 30 24 24 24 30 60 30 60 
31 31 31 1,103,762 14,348,906 551 ,881 62 62 31 62 
32 I 16 160 6,560 6,560 32 I 32 
33 31 31 726 363 363 62 62 31 62 
34 30 30 1,640 6,560 6,560 30 60 30 60 
35 4,095 4 ,095 265,720 265,720 132,860 8,190 8,190 4,095 8,190 
36 28 28 18 18 18 28 56 28 56 
37 87,381 29,127 19,682 19,682 9,841 174,762 58,254 87,381 58,254 
38 1,022 1,022 19,682 19,682 9,841 1,022 2,044 1,022 2,044 
39 4,095 4,095 78 39 39 8,190 8,190 4,095 8,190 
40 24 24 80 40 40 24 48 24 48 

Table 1. Maximal cycle lengths I1N for one-dimensional nearest-neighbour additive cellular automata 

with size N and k possible values at each site. Results for all possible nontrivial symmetrical rules with 

k :s 4 are given. For k = 2, the fixed time evolution polynomials are T(x ) = x + [ I and x + I + [I 

(corresponding to rules 90 and 150 of [11 , respectively). For k = 3, the polynomials are x +[ I, x + 1+[ 1, 

and x + 2 + x - I , while for k = 4, they are x + x- I , X + I + x- I , X + 2 + x -I , and x + 3 + x - I . 
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N 

3 4 x I 4 
4 I x I I 
5 I x I; 5 x 3 6 
6 4 x l ; 6 x 2 10 
7 I x I; 9 x 7 10 
8 I x I I 
9 4 x I; 36 x 7 40 

10 I x l;5 x 3; 40 x 6 46 
II I x I; 33 x 31 34 
12 4 x I; 6 x 2; 60 x 4 70 
13 I x I; 65 x 63 66 
14 I x I; 9 x 7; 288 x 14 298 
15 4 x I; 20 x 3; 1,088 x 15 1,112 
16 I x I I 
17 I x I; 51 x 5;4,352x 15 4,404 
18 4 x I; 6 x 2; 36 x 7; 4,662 x 14 4,708 
19 I x l ; 513 x 511 514 
20 I x I; 5 x 3; 40 x 6; 5,440 x 12 5,486 
21 4 x I; 36 x 7; 16,640 x 63 16,680 
22 I x l ; 33 x 31 ; 16,896 x 62 16,930 
23 I x I; 2,049 x 2,047 2,050 
24 4 x I; 6 x 2; 60 x 4; 8,160 x 8 8,230 
25 I x 1; 5 x 3; 16,400 x 1,023 16,406 
26 I x 1; 65 x 63; 133, 120 x 126 133,186 
27 4 x I; 36 x 7; 131,328 x 511 131,368 
28 I x I; 9 x 7; 288 x 14; 599,040 x 28 599,338 
29 I x I; 16,385 x 16,383 16,386 
30 4 x I; 6 x 2; 20 x 3; 670 x 6; 1,088 x 15; 8,947, 168 x 30 8,948,956 
31 I x I; 34,636,833 x 31 34,636,834 
32 I x I I 
33 4 x I; 138,547 ,332 x 31 138,547,336 
34 I x I; 51 x 5; 6,528 x 10; 4,352 x 15; 143 , 161 ,216 x 30 143,172,148 
35 I x I ; 5 x 3; 9 x 7; 45 x 21 ; 4,195,328 x 4,095 4,195,388 
36 4 x I; 6 x 2; 60 x 4; 36 x 7; 4,662 x 14; 153,389,340 x 28 153,394;108 
37 I x I; 786,435 x 87,38 1 786,436 
38 I x I; 513 x 511 ; 67,239,936 x 1,022 672,340,450 
39 4 x I; 260 x 63; 49, I64 x 1,365; 67, 108,860 x 4,095 67,158,288 
40 I x I; 5 x 3; 40 x 6; 5,440 x 12; 17lS,954,240 x 24 178,959,726 

Table 2. Multiplicities and lengths of cycles in the cellular automaton of Sect. 3A with size N . The 

notation g; x Tf; indicates the occurrence of g; distinct cycles each of length Tf; . The last column of the 

table gives the total number of distinct cycles or "attractors" in the system. 
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Lemma 3.7. For the cellular automaton defined in Sect. 3A, with N a multiple of 
3, there are four distinct fixed points (cycles of length one); otherwise, only the null 
configuration is a fixed point. 

For N = 3n, the only stationary configurations are 000000 ... (null configuration), 
0110 11 0 ... , 10 110 11 ... , and 11 0 11 0 1 .... 

Table 2 gives the lengths and multiplicities of cycles in the cellular automaton 
defined in Sect. 3A, for various values of N. One result suggested by the table is that 
the multiplicity of cycles for a particular N increases with the length of the cycle, 
so that for large N, an overwhelming fraction of all configurations in cycles are on 
cycles with the maximal length. 

When IlN is prime, the only possible cycle lengths are IlN and I. Then, using 
Lemma 3.7, the number of cycles of length IlN is (2(N-I)-4)/IlN for N = 3n, and is 
(2(N-I ) - 1)/IlN otherwise. 

When IlN is not prime, cycles may exist with lengths corresponding to various 
divisors of IlN. It has not been possible to express the lengths and multiplicities of cy
cles in this case in terms of simple functions. We nevertheless give a computationally 
efficient algorithm for determining them. 

Theorems 3.3 and 3.4 show that any configuration A(x) on a cycle may be written 
in the form 

A(x) = (l + X)D2(N) B(x) , 

where B(x) is some polynomial. The cycle on which A(x) occurs then has a length 
given by the minimum 7r for which 

T(x)" B(x) ;:: (x + X-I)" B(x) ;:: B(x) (

xn _ 1) D2(N) 
mod --

x + 1 ' 
(3.17) 

where N = D 2(N)n with n odd, and (x n 
- I)D2(N) = x N - 1. Using the factorization 

[given in Eq. (A.8)] 
¢(d) 

orod(2) 

xn - 1 = (x - 1) n n Cd, ;<X), 
din ;=1 
#1 

(3.18) 

where the Cd,;(x) are the irreducible cyclotomic polynomials over ~ of degree 
ordd (2), Eq. (3.17) can be rewritten as 

(x+[I)"B(x);::B(x) modC .(X)D2(N) (3.19) 
d, I 

for all din, d '" I, and for all i such that 1 ~ i ~ ¢(d)/ordd (2). Let 7rd, ; [B(x)] denote 
the smallest 7r for which (3.19) holds with given d, i. Then the length of the cycle 
on which A(x) occurs is exactly the least common multiple of all the trd ; [B(x)]. If 
Cd, ;<X)D2(N) I B(x), then clearly Eq. (3.19) holds for 7r = 1, and 7rd, ;[B(x)] = 1. If 
Cd, ; (X)'d ; [B(x) lll B(x) (and 0 ~ rd, ; [B(x)] < D 2(N)), then Eq. (3.19) is equivalentto 

(3 .20) 
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The values of 7rd, i for configurations with rd, i[B(x)] = s are therefore equal, and 

will be denoted 7rd, i,s (0 ::s; s ::s; D 2(N)), Since Cd, ;Cx) I (x d 
- l)/(x + 1) (d * 1), the 

value of 7rd, i,1 divides the minimum 7r for which (x + [I yT == 1 mod (x d 
- l)/(x + 1), 

This equation is the same as the one for the maximal cycle length of a size d cellular 

automaton: the derivation of Theorem 3.5 then shows that 

(3,21) 

It can also be shown that 7rd, i ,2s = 7rd, i ,s or 7rd, i,2s = 27rd, i ,s ' 

As an example of the procedure described above, consider the case N = 30. Here, 

x 30 + 1 = (x 15 + 1)2 = CI , I(X)2C3,I(X)2CS,I(X)2CIS, I(X)2CIS,2(X)2, 

where 

C 1,1 (x) = x + 1, 

C3,I(x) = x 2 
+x + 1, 

CS,I(X)=x4 +x3 +x
2
+x+ 1, 

CIS,I(X) = x4 +x + 1, 

C IS,2(X) = x4 +x3 + 1. 

Then 

7rd ,i,2 = 1, 

7r3,1 , 1 = 1, 

7r5, 1, 1 = 3, 

7r3,I,O = 2, 

7rS,I ,O = 6, 

7r IS, I,1 = 7r 15,2, 1 = 15, 

7r IS,I,O = 7r IS,2,O = 30, 

(3,22) 

(3,23) 

Thus the cycles which occur in the case N = 30 have lengths 1,2,3, 6, 15, and 30. 

To determine the number of distinct cycles of a given length, one must find the 

number of polynomials B(x) with each possible set of values rd, i [B(x) ], This number 

is given by 

fl fl V(rd,i ' d, D2(N)) , 
din i 
# 1 

where V(D2(N) , d , D 2(N)) = 1 and 

VCr, d, D
2
(N)) = 2oTd,,(2)(D2(N)-r) _ 2ordd(2)( D2(N)-r-l) 

for 0 ::s; r < D2(N), The cycle lengths of these polynomials are determined as above 

by the least common multiple of the 7rd, i,rd," 

In the example N = 30 discussed above, one finds that configurations on cycles 

of length 3 have (r3, I' r5, I' r 15 , I ' r IS,2) = (1, 1,2,2) or (2, 1, 2, 2), implying that 60 

such configurations exist, in 20 distinct cycles. 
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4. Generalizations 

A. Enumeration of Additive Cellular Automata 

We consider first one-dimensional additive cellular automata, whose configurations 
may be represented by univariate characteristic polynomials. We assume that the time 
evolution of each site depends only on its own value and the value of its two nearest 
neighbours, so that the time evolution dipolynomial T(x) is at most of degree two. 
Cyclic boundary conditions on N sites are implemented by reducing the characteristic 
polynomial at each time step modulo x N - 1 as in Eq. (2.2) . There are taken to be 
k possible values for each site. With no further constraints imposed, there are k3 

possible T(x), and thus k3 distinct cellular automaton rules. If the coefficients of x 

and X- I in T(x) both vanish, then the characteristic polynomial is at most multiplied 
by an overall factor at each time step, and the behaviour of the cellular automaton 
is trivial. Requiring nonzero coefficients for x and X-I in T(x) reduces the number 
of possible rules to k3 - 2k2 + k. If the cellular automaton evolution is assumed 
reflection symmetric, then T(x) = T(X-I), and only k2 - k rules are possible. Further 
characterisation of possible rules depends on the nature of k. 

(a) k Prime. In this case, integer values 0, 1, ... , k - 1 at each site may be 

combined by addition and multiplication modulo k to form a field (in which each 
nonzero element has a unique multiplicative inverse) 7l.k. For a symmetrical rule, 
T(x ) may always be written in the form 

T(x ) = x + s + x-I (4.1) 

up to an overall multiplicative factor. For k = 2, the rule T(x) = x + X- I was consid
ered above; the additional rule T(x) = x + 1 + X- I is also possible (and corresponds 
to rule 150 of [1]). 

(b) k Composite. 

Lemma 4.1. For k = pf' pf2 ... , with Pj prime, the value ark) of a site obtained by 
evolution of an additive cellular automaton from some initial configuration is given 
uniquely in terms of the values a[pa) attained by that site in the evolution of the set 
of cellular automata obtained by reducing T(x) and all site values modulo p~i. 

This result follows from the Chinese remainder theorem for integers (e.g. [8 , 
Chap. 8]), which states that if kl and k2 are relatively prime, then the values n I and 
n2 determine a unique value of n modulo klk2 such that n ;: nj mod kj for i = 1, 2. 

Lemma 4.1 shows that results for any composite k may be obtained from those 
for k a prime or a prime power. 

When k is composite, the ring 7l.k of integers modulo k no longer forms a field, 
so that not all commutative rings IRk are fields. Nevertheless, for k a prime power, 
there exists a Galois field G F(k) of order k, unique up to isomorphism (e.g. [9, 
Chap. 4]) . For example, the field GF(4) may be taken to act on elements 0, 1, K , K2 

with multiplication taken modulo the irreducible polynomial K2 + K + 1. Time evo
lution for a cellular automaton with site values in this Galois field can be reduced 
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to that given by x + a- + [I, where a- is any element of the field. The behaviour of 
this subset of cellular automata with k composite is directly analogous to those over 

Zp for prime p . 

It has been assumed above that the value of a site at a particular time step is deter
mined solely by the values of its nearest neighbours on the previous time step. One 
generalization allows dependence on sites out to a distance r > I, so that the evolution 
of the cellular automaton corresponds to multiplication by a fixed dipolynomial T(x) 

of degree 2r. Most of the theorems to be derived below hold for any r . 

B. Cellular Automata over tlp (p Prime) 

Lemma 4.2. The lengths of all cycles in any additive cellular automaton over 
Zp of size N divide the length TIN of the cycle obtained for an initial configuration 
containing a single site with value 1. 

This lemma is a straightforward generalization of Lemma 3.4, and follows directly 
from the additivity assumed for the cellular automaton rules . 

Lemma 4.3. For N a multiple of p , TIN I pTIN / p for an additive cellular automaton 

over Zp. 

Remark. For N amultipleof p, but not a power of p, it can be shown that TIN = pTIN / p 

for an additive cellular automaton over Zp with T(x) = x + X-I. In addition, TIpi = I 
in this case. 

Theorem 4.1. For any N not a multiple of p , TIN I TI~ = p ordN(p) - I, and 
TIN I TI~ = p sordN(p) - I if T(x) is symmetric, for any additive cellular automaton 

over Z p . 

The period TIN divides TI~ if 

[T(x)]n~+1 == T(x) mod(x N -1). (4.2) 

Taking 

T(x) = L aixYi
, 

Eq. (A.3) yields 

mod(x N -I), 

since a pA == a mod p and p OrdN(p) == I mod N, and the first part of the theorem 
follows. Since Xp"'"'N(P) == x±l mod p, Eq. (4.2) holds for 

ifT(x) is symmetric, so that T.<x) = T([I). 
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This result generalizes Theorem 3.5 for the particular k = 2 cellular automaton 

considered in Sect. 3. 
Table I gives the values of n N for all non-trivial additive symmetrical cellular 

automata over 1Lz and Z3. Just as in the example of Sect. 3 (given as the first column 

of Table I), one finds that for many values of N not divisible by p 

(4.3) 

When p = 2, all exceptions to (4.3) when T(x) = x + X-I are also exceptions for 

T(x) = x + I + X- I [19] . We outline a proofforthe simplest case, when N is relatively 

prime to 6 (as well as 2). Let nN(x + X-I) be the maximal period obtained with 

T(x) = x + X- I, equal to the minimum integer 7T for which 

(x + 1)21r == x" mOd(~) . 
x +1 

(4.4) 

We now show that n N(x +X-I) is a multiple of the maximum period nN(x + I + X-I ) 

obtained with T(x ) = x + I + X- I. Since the mapping x ~ x 3 is a homomorphism in 

the field of polynomials with coefficients in G F(2) , one has 

(
XN I) mod --
x+1 

for any 7T such that n N(x + X-I) 17T. Dividing by Eq. (4.4), and using the fact that N 

is odd to take square roots, yields 

(
X3 + I)" == x" 
x+1 (

XN I) mod --
x+ 1 

(4.5) 

for any 7T such that n N(x + X- I) 17T. But since x + I +X-I = X- I e:~i), Eq. (4.5) is the 

analogue of Eq. (4.4) for T(x) = x + I + X- I , and the result follows . 

More exceptions to Eq. (4.3) are found with p = 3 than with p = 2. 

Lemma 4.4. A configuration A(x) is reachable in the evolution of a size N addi

tive cellular automaton over Zp ' as described by T(x) if and only if A(x) is divisible 

byAI(x )=(xN -I , T(x ». 

Appendix A.A gives conventions for the greatest common divisor (A(x) , B(x». 

If A(I)(X) can be reached, then 

A(I)(X) = T(x)A (O)(x) 

for some A (O)(x ), so that 

mod (x N 
- I) 

(x N - I) I A(I)(x ) - T(x )A(O)(x). 

But Al (x ) I x N - I and Al (x) I T(x ), and hence if A(l )(x ) is reachable, 

AI(x ) I A (I)(X) . 
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We now show by an explicit construction that all A(l )(x) satisfying (4.6) in fact have 
predecessors A(O)(x) . Using Eq. (A. 10), one may write 

Al (x) = r(x)lf(x) + ~(x)(x N ~ 1) 

for some dipolynomials rex ) and ~(x), so that 

AI(x) == r(x)lf(x ) mod(x N -1). 

Then taking A ( I )(x) = A I (x ) B (x), the configuration given by the polynomial obtained 
by reducing the dipolynomial r(x)B(x ) satisfies 

If(x)r (x )B(x ) == 1\(x )B(x ) == A(l )(x) mod(x N -1) 

and thus provides an explicit predecessor for A(l) (x ). 

Corollary. A(x) is reachable in j steps if and only if Aj (x ) = (x N -1 , lfj (x)) 

divides A(x). 

This is a straightforward extension of the above lemma. 

Theorem 4.2. The fraction of possible configurations which may be reached by 
evolution of an additive cellular automaton over 7L.p of size N is p-degA, (x) , where 

A I(x)=(x N-l , If(x)). 

By Lemma 4.4, only configurations divisible by Al (x ) may be reached. The 
number of such configurations is p N-degA, (x), while the total number of possible 
configurations is p N. 

Let Dp(N) be the maximum pj which divides N and let v i denote the multiplicity 
of the ith irreducible factor of AI(x) in rex ), where rex ) = x rlf(x ) is a polynomial 

with a nonzero constant term. We further define X = min Vi' so that 0 :5 X :5 D peN). 
I 

Theorem 4.3. The state transition diagram for an additive cellular automaton of 
size N over 7L.p consists of a set of cycles at all nodes of which are rooted identical 
pdegA, (x) _ary trees. A fraction p-Dp(N)degA ,(x) of the possible configurations appear 

on cycles. For X > 0, the height of the trees is r D p(N )lx 1. The trees are bal
anced if and only if (a) v i ~ D peN) for all i , or (b) Vi = Vj for all i and j , and 

vi I Dp(N) . 

To determine the in-degrees of nodes in the trees, consider a configuration A(x ) 

with predecessors represented by the polynomials BI(x ) and B2 (x ), so that 

A(x) == If(x )Bi (x ) mod (x N - I) . 

Then since 
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and A, (x) I x N - I, it follows that 

B,(x)-B2(x)=O mOd(XN-I). 
A,(x) 

Since C(x) = (x N -I)/A,(x) has a non-zero constant term, (B,(x) - B2(x»/C(x) 

is an ordinary polynomial. The number of solutions to this congruence and thus the 
number of predecessors B;(x) of A(x) is pdegl',,(x). 

The proof of Lemma 3.3 demonstrates the identity of the trees. The properties 
of the trees are established by considering the tree rooted on the null configuration. 
A configuration A(x) evolves to the null configuration after j steps if lr(x)j A(x) = 

o mod (x N 
- I), so that 

x
N 

- II A(x). 
A/x) 

(4.7) 

Hence all configurations on the tree are divisible by (x N -1)/ Aoo(x), where Aoo(x) = 
lim A/x). All configurations in the tree evolve to the null configuration after at 
J-+OO 

most fDp(N)/xl steps, which is thus an upper bound on the height of the trees. 
But since the configuration (x N 

- I)/Aoo(x) evolves to the null configuration after 
exactly fDp(N)/xl steps, this quantity gives the height of the trees. The tree of 
configurations which evolve to the null configuration (and hence all other trees in 
the state transition diagram) is balanced if and only if all unreachable (terminal) 
configurations evolve to the null configuration after the same number of steps. First 
suppose that neither condition (a) nor (b) is true. One possibility is that some ir
reducible factor (T(x) of A,(x) satisfies (TV(x)IIA,(x) with v < Dp(N) but v does 
not divide Dp(N). The configuration (x N -1)/(TDp(N)(x) reaches 0 in fDp(N)/vl 

steps whereas (x N - 1)/(TDp(N)+'-V(x) reaches 0 in one step fewer, yet both are un

reachable, so that the tree cannot be balanced. The only other possibility is that 
there exist two irreducible factors (T,(x) and (T2(x) of multiplicities v, and v2, re

spectively, with v, and v2 dividing Dp(N) but v, "* v2. Then (x N -1)/(T~p(N)(x) 
reaches 0 in Dp(N)/v, steps, whereas (x N -1)/(T~p(N)(x) reaches 0 in Dp(N)/V2 

steps. Neither of these configurations is reachable, so again the trees cannot 
be balanced. This establishes that in all cases either condition (a) or (b) must 
hold. The sufficiency of condition (a) is evident. If the condition (b) is true, 
then 

[ ]
Dp(N) 

Aoo(x) = n (T(x) , 

and A/x) = A{ (x). Equation (4.7) shows that any configuration A(x) which evolves 
to the null configuration after j steps is of the form 

x N -I 
A(x) = - . -R(x), 

A~(x) 

where R(x) is some polynomial. The proof is completed by showing that all such 
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configurations A(x) with j < Dp(N)/v are indeed reachable. To construct an ex
plicit predecessor for A(x), define the dipolynomial S(x) by T(x) = A,(x)S(x), 

so that (S(x), x N - 1) = 1. Then there exist dipolynomials r(x) and ~(x) such 
that 

r(x)S(x) + ~(X)(xN -1) = 1. 

The configuration given by the dipolynomial 

x N -1 
B(x) = - . -I -r(x)R(x) Ar (x) 

then provides a predecessor for A(x). 

Notice that whenever the balance condition fails, the set and measure entropies 
of Eqs. (3.11) and (3.12) obtained by evolution from an initial maximal entropy 
ensemble become unequal. 

The results of Theorems 4.2 and 4.3 show that if degAI (x) = 0, then the evolution 
of an additive cellular automaton is effectively reversible, since every configuration 
has a unique predecessor. 

In general, 

degA(x) :5 degT*(x), 

so that for the one-dimensional additive cellular automata considered so far, the 
maximum decrease in entropy starting from an initial equiprobable ensemble is 

Dp(N). 
Note that for a cellular automaton over Zp (p > 2) of length N with T(x) = x+x-I, 

degA(x) = 2 if 41 Nand degA(x) = 0 otherwise. Such cellular automata are thus 
effectively reversible for p > 2 whenever N is not a multiple of 4. 
Remark. A configuration A(x) lies on a cycle in the state transition diagram of an 
additive cellular automaton if and only if Aoo(x) 1 A(x). 

This may be shown by the methods used in the proof of Theorem 4.3. 

C. Cellular Automata over ?lie (k Composite) 

Theorem 4.4. For an additive cellular automaton over Zk' 

IlN(Zk; Tk(x)) = 1cm(IlN(Z a, ; T a, (x)) , IlN(Z a2; T a2 (x)), ... ), 
P, P, P2 P2 

where k = p~' p~2 . .. , and in T j (x) all coefficients are reduced modulo j. 

This result follows immediately from Lemma 4.1. 

Theorem 4.5. IlN(Zpa+ l; Tpa+1 (x)) is equal to either (a) pIlN(Zpa; Tpa(x)) or (b) 
IlN(Zpa; Tpa(x)) for an additive cellular automaton. 

First, it is clear that 
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To complete the proof, one must show that in addition 

I1N (Zpa; T pa (X)) is the smallest positive integer 1f for which a positive integer m and 
dipolynomials U (x) and V (x) satisfying 

(4.8) 

exist, where all dipolynomial coefficients (including those in T(x)) are taken as 
ordinary integers in Z, and irrelevant powers of x on both sides of the equation have 
been dropped. Raising both sides of Eq. (4.8) to the power p, one obtains 

T(x)mp+rrp = (x N - I)W(x) + (T(x)m + p UV(x W 

= (x N - I)W(x ) + T(x )mp + p U+ ' Q(x) . 

Reducing modulo pU+' yields the required result. 
For p = 2 and a = 1, it can be shown that case (a) of Theorem 4.5 always obtains 

if T(x) = x + x - ' , but case (b) can occur when T(x) = x + 1+ [ '. 

T heorem 4.6. With k = k,k2 ... (all k; relatively prime), the number of config
urations which can be reached by evolution of an additive cellular automaton over 
Zk is equal to the product of the numbers reached by evolution of cellular automata 
with the same T(x ) over each of the Zk

i
' The state transition diagram for the cellular 

automaton over Zk consists of a set of identical trees rooted on cycles. The in-degrees 
of non-terminal nodes in the trees are the product of those for each of the Zk

i 
cases. 

The height of the trees is the maximum of the heights of trees for the Zk
i 

cases, and 
the trees are balanced only if all these heights are equal. 

These results again follow directly from Lemma 4.1. 
Theorem 4.6 gives a characterisation of the state transition diagram for additive 

cellular automata over Zk when k is a product of distinct primes. No general results are 
avai lable for the case of prime power k . However, for example, with T(x) = x + [ ', 
one may obtain the fraction of reachable states by direct combinatorial methods. With 
k = 2u one finds in this case that the fraction is 1/ 2 for N odd, 1/ 4 for N == 2 mod 4, 
and 2- 2u for 41 N . With k = pU (p *- 2) the systems are reversible (all configurations 
reachable) unless 41 N , in which case a fraction p - 2u may be reached. 

D. Multidimensional Cellular Automata 

The cellular automata considered above consist of a sequence of sites on a line. 
One generalization takes the sites instead to be arranged on a square lattice in two 
dimensions. The evolution of a site may depend either on the values of its four 
orthogonal neighbours (type I neighbourhood) or on the values of all eight neighbours 
including those diagonally adjacent (type II neighbourhood) (e.g. [ I]) . Configurations 
of two-dimensional cellular automata may be represented by bivariate character-
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istic polynomials A(x" x2). Time evolution for additive cellular automaton rules is 
obtained by multiplication of these characteristic polynomials by a fixed bivariate 
dipolynomiaIT(x, , x2). For a type I neighbourhood, T(x , ' x2) contains no x , x2 cross
terms; such terms may be present for a type II neighbourhood. Periodic boundary 
conditions with periods N, and N2 may be implemented by reduction modulo x~' -I 
and modulo Xf2 - I at each time step. Cellular automata may be generalized to an 
arbitrary d-dimensional cubic or hypercubic lattice. A type I neighbourhood in d 
dimensions contains 2d + I sites, while a type II neighbourhood contains 3d sites . As 
before, we consider cellular automata with k possible values for each site. 

Theorem 4.7. For an additive cellular automaton over 7l.k on a d-dimensional cu
bic lattice, with a type I or type II neighbourhood, and with periodicities N" N2,· .. ,Nd, 

Iem(llN, (71.k; T(x" 1, . .. , 1)), . . . ,llN)71.k; T(l , . . . , 1 ,xd))) I llN".,N)71.k; T(x " . . . ,xd)). 

The result may be proved by showing that 

(4.9) 

for all i (such that 1 $ i $ d). The right member of Eq. (4.9) is given by the smallest 
integer 7r for which there exists a positive integer m such that 

d 

[T(x" . .. ,xd )]"+m = [T(x " ... , xd )r + 'l)x;J - l)U/x" ... , xd) 
j= ' 

(4.10) 

for some dipolynomials U j ' Taking Xj = 1 with j *' i in Eq. (4.10), all terms in 
the sum vanish except for the one associated with Xi' and the resulting value of 7r 

corresponds to the left member of Eq. (4.9). 

Theorem 4.8. For an additive cellular automaton over 7l.p on ad-dimensional 
cubic lattice (type I or type II neighbourhood) with periodicities N" N2, ... , Nd 

none of which are multiples of p , 

II (71. ; T(x , ... ,x )) I ll* = p ordN, .. Nd(P) - 1. N" ... ,Nd P , d N" ... ,Nd 

If T(x" ... , xd ) is symmetrical , so that 

for all i, then 

The ordn" ... ,nd (p) and sordn" ... ,n)p) are multidimensional generalizations of the 
multiplicative order and suborder functions, described in Appendix B. 

This theorem is proved by straightforward extension of the one-dimensional The
orem 4.1. 
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Using the result (RI3), one finds for symmetrical rules 

The maximal cycle length is thus bounded by 

n ::5 pICm«N,- I )/2, ... ,(Nr l )/2) - 1 ::5 P<N,- I ) .. . (Nr l )/2d 
- 1, 

N" ... ,Nd 

with the upper limits achieved only if all the N; are prime. (For example, 

n - 2"89 
- 10358 

83, 59 - -

saturates the upper bound.) 
Algebraic determination of the structure of state transition diagrams is more 

complicated for multi-dimensional cellular automata than for the one dimensional 
cellular automata considered above2• The generalization of Lemma 4.4 states that 
a configuration A(xl' ... , xd) is reachable only if A(zl' .. . , zd) vanishes whenever 
the z; are simultaneous roots ofT(x l' ... , xd ) , x N , -1 , . .. , XNd -1. The root sets z; 

form an algebraic variety over Zk (cf. [9]) . 

E. Higher Order Cellular Automata 

The rules for cellular automaton evolution considered above took configurations to be 
determined solely from their immediate predecessors. One may in general consider 
higher order cellular automaton rules, which allow dependence on say s preceding 
configurations. The time evolution for additive one-dimensional higher-order cellular 
automata (with N sites and periodic boundary conditions) may be represented by the 
order s recurrence relation 

s 

A(') (X) = LTj (x )A(,-j) (X) 
j :1 

mod(x N -1) . 

This may be solved in analogy with order s difference equations to yield 

s 

A(t) (x ) = L c/x )[Uj(x )Y , 
j :1 

where the Uj (x ) are solutions to the equation 

s 

[U(x )), = L[U(x)]S-jT/x ), 
j :l 

(4.11 ) 

and the cj (x ) are analogous to "constants of integration" and are determined by 
the initial configurations A (O) (x ), ... , A(s- I)(x ). The state of an order s cellular 

2 In the specific case T(x, ' x2) : x, + xi" + X 2 + xi', one finds that the in-degrees 1 N, .N2 of trees in the state transition 
diagrams for a few N, x N2 cellular automata are: 12,2 : 16, /2.3 : 4, 1,,4 : 16,/2.' : 4, 1,,6: 16, /3.3 : 32, 1),4 : 4, 
1)" : 2, 14•4 : 256. 
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automaton depends on the values of its N sites over a sequence of s time steps; 
there are thus a total kNs possible states. The transition diagram for these states can 
in principle be derived by algebraic methods starting from Eq. (4.11). In practice, 
however, the V/x) are usually not polynomials, but elements of a more general 
function field, leading to a somewhat involved analysis not performed here. 

For first-order additive cellular automata, any configuration may be obtained by 
superposition of the configuration 1 (or its translates x j ). For higher-order cellular 
automata, several "basis" configurations must be included. For example, when s = 2, 
{O, I}, (1, O}, and {x j , I} are all basis configurations, where in {A I (x), A 2(x)}, A I (x), 

and A2(x) represent configurations at successive time steps. 
As discussed in Sect. 4B, some first-order cellular automata over "Lp (p > 2) are 

effectively reversible for particular values of N, so that all states are on cycles. The 
class of second-order cellular automata with T 2(x ) = -1 is reversible for all N and 
k, and for any TI (x) [10] . In the simple case TI (x) = X + x - I , one finds VI (x) = x, 

V2(x) = [I. It then appears that 

DN = kN/2 

=kN 

(k even, N even) 

(otherwise) . 

(The proof is straightforward when k = 2.) In the case T I (x) = x + 1 + X-I, the V/x) 

are no longer polynomials. For the case k = 2, the results for DN with N between 3 
and 30 are: 6,6, 15, 12,9, 12,42, 30, 93, 24,63, 18,510,24, 255, 84, 513,60, 1170, 
186,6141,48,3075,126, 3066,36,9831,1020. 

F. Other Boundory Conditions 

The cellular automata discussed above were taken to consist of N indistinguishable 
sites with periodic boundary conditions, as if arranged around a circle. This section 
considers briefly cellular automata with other boundary conditions. The discussion 
is restricted to the case of symmetric time evolution rules T(x) = T(x - I

). 

The periodic boundary conditions considered above are not the only possible 
choice which preserve the transiation invariance of cellular automata (or the indis
tinguishability of their sites)3. One-dimensional cellular automata may in general be 

viewed as IRk bundles over "LN' Periodic boundary conditions correspond to trivial 
bundles. Non-trivial bundles are associated with "twisted" boundary conditions. 
Explicit realizations of such boundary conditions require a twist to be introduced 
at a particular site. The evolution of particular configurations then depends on the 
position of the twist, but the structure of the state transition diagram does not. 

A twist of value R at position i = CT causes sites with i 2: CT to appear multiplied 
by R in the time evolution of sites with i < CT, and correspondingly, for sites with 
i < CT to appear multiplied by R- I in the evolution of sites with i 2: CT. In the 

J We are grateful to L. Yaffe for emphasizing this point. 
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presence of a twist taken at position (T = 0, the time evolution formula (2.5) becomes 

mod(x N 
- R) . (4.12) 

Multiple twists are irrelevant; only the product of their values R j is significant for 
the structure of the state transition diagram. If IRk = tlp with p prime, then IRk (with 
the zero element removed) forms a multiplicative group, and twists with any value R 

not equal to 0 or I yield equivalent results. When IRk = 7lk with k composite, several 
equivalence classes of R values may exist. 

Using Eq. (4.12) one may obtain general results for twisted boundary condi
tions analogous to those derived above for the case of periodic boundary conditions 
(corresponding to R = 1). When IRk = tlp (p prime), one finds for example, 

rr[MI] I rr[R=I ] 
N N(p- I ) ' 

An alternative class of boundary conditions introduces fixed values at particular 
cellular automaton sites. One may consider cellular automata consisting of N sites 
with values ai ' ... , aN arranged as if along a line, bounded by sites with fixed values 
ao and aN+1• Maximal periods obtained with such boundary conditions will be 
denoted rr~o . aN+ I ) . The case ao = aN+1 = 0 is simplest. In this case, configurations 

N 

A(x )= I >;x; 
;= 1 

of the length N system with fixed boundary conditions may be embedded in config
urations 

N N 

A(x ) = L a;x; + L (k -aN+1_;>x N+1+; (4.13) 
;=1 ;=1 

of a length N = 2N + 2 system with periodic boundary conditions. The condition 
ao = aN+1 = 0 is preserved by time evolution, so that one must have 

rr(O,O) I rr 
N 2N+2 ' 

The periods are equal if the configurations obtained by evolution from a single 
nonzero initial site have the symmetry ofEq. (4.13) . (The simplest cellular automaton 
defined in Sect. 3A satisfies this condition.) 

Fixed boundary conditions ao = r, aN +1 = 0, may be treated by constructing 
configurations A(x) of the form (4.13), with periodic boundary conditions, but now 
with time evolution 

mod(x N -1) , 

where l'(x ) is taken of the form x + ao + [ I . Iteration generates a geometric series 
in l'(x ), which may be summed to yield a rational fu nction of x . For k = 2, r = 1, 
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one may then show that with "["(x) = x + 1 + X - I, rr~· I ) = rr2N+2, while with "["(x ) = 
x + x - I (the case of Sect. 3A), rr~·1) I I1z(2 N+2)" 

s. Non-Additive Cellular Automata 

Equation (2.3) defines the time evolution for a special class of "additive" cellular 
automata, in which the value of a site is given by a linear combination (in IRk) of 
the values of its neighbours on the previous time step. In this section we discuss 
"non-additive" cellular automata, which evolve according to 

(I) _ f[ (1-1) (t-l) (1- 1)] 
a i - ai_I' a i ' a i+1 ' (5.1) 

where f[a_ l , ao ' a+ l ] is an arbitrary function over IRk' not reducible to linear form. The 
absence of additivity in general prevents use of the algebraic techniques developed 
for additive cellular automata in Sects. 3 and 4. The difficulties in the analysis of 
non-additive cellular automata are analogous to those encountered in the analysis 
of non-linear feedback shift registers (cf. [11]) . In fact, the possibility of universal 
computation with sufficiently complex non-additive cellular automata demonstrates 
that a complete analysis of these systems is fundamentally impossible. Some results 
are nevertheless available (cf. [12]). This section illustrates some methods which 
may be applied to the analysis of non-additive cellular automata, and some of the 
results which may be obtained. 

As in [1], most of the discussion in this section will be for the case k = 2. In this 
case, there are 32 possible functions f satisfying the symmetry condition 

and the quiescence condition 

f[O, 0, 0] = o. 

Reference [1] showed the existence of two classes of these "legal" cellular automata. 
The "simple" class evolved to fixed points or short cycles after a small number of 
time steps. The "complex" class (which included the additive rules discussed above) 
exhibited more complicated behaviour. 

We consider as an example the complex non-additive k 2 rule defined by 

f[l , 0, 0] = f[O, 0, 1] = 1, 

otherwise, 
(5.2) 

and referred to as rule 18 in [1]. This function yields a time evolution rule equivalent to 

(I) = (1 + (t-l» )( (t-l ) + (t-l ») a i - a i a i _1 a i+1 mod2. (5.3) 

The rule does not in general satisfy any superposition principle. However, for the 
special class of configurations with a2j = 0 or a2j+1 = 0, Eq. (5.3) implies that 
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the evolution of even (odd) sites on even (odd) time steps is given simply by the 
rule defined in Sect. 3A. Any configuration may be considered as a sequence of 
"domains" in which all even (or odd) sites have value zero, separated by "domain 
walls" or "kinks" [13] . In the course of time the kinks annihilate in pairs. If sites are 
nonzero only in some finite region, then at sufficiently large times in an infinite cellular 
automaton, all kinks (except perhaps one) will have annihilated, and an effectively 
additive system will result. However, out of all 2N possible initial configurations 
for a cellular automaton with N sites and periodic boundary conditions, only a small 
fraction are found to evolve to this form before a cycle is reached: in most cases, 
"kinks" are frozen into cycles, and contribute to global behaviour in an essential 
fashion. 

Typical examples of the state transition diagrams obtained with the rule (5.3) are 
shown in Fig. 5. They are seen to be much less regular than those for additive rules 
illustrated in Fig. 2. In particular, not all transient trees are identical, and few of the 
trees are balanced. Just as for the additive rules discussed in Sects. 3 and 4, only 
a fraction of the 2N possible configurations may be reached by evolution according 
to Eq. (5.3); the rest are unreachable and appear as nodes with zero in-degree on 
the periphery of the state transition diagram of Fig. 5. An explicit characterization 
of these unreachable configurations may be found by lengthy but straightforward 
analysis. 

(4 COPIES) 

(I COPY) 

(I COPY) 

(5 COPIES) 

N· 5 o (2 COPIES) 

N' 8 

Figure 5. Global state transition diagrams for a typical finite non-additive cellular automaton discussed in 

Sect. 5. 

102 



Algebraic Properties of Cellular Automata (1984) 

Lemma 5.1. A configuration is unreachable by cellular automaton time evolution 
according to Eq. (5.3) if and only if one of the following conditions holds: 

(a) The sequence of site values III appears. 

(b) No sequence 11 appears, but the total number of 1 sites is odd. 

(c) A sequence 11a1a2 ••. an 11 appears, with an odd number of the aj having 
value 1. The two 11 sequences may be cyclically identified. 

The number of reachable configurations may now be found by enumerating the 
configurations defined by Lemma 5.1. This problem is analogous to the enumeration 
of legal sentences in a formal language. As a simple example of the techniques 
required (e.g. [14]), consider the enumeration of strings of N symbols 0 or 1 in 
which no sequence III appears (no periodicity is assumed). Let the number of such 

strings be a. In addition, let f3 N be the number of length N strings containing no III 
sequences in their first N - 1 positions, but terminating with the sequence Ill. Then 

f30 =f31 =f32 = 0, f33 = 1, ao = 1, a1 = 2, 

and 

2aN = aN+1 +f3N+1 (N ~ 0), 

aN = f3N+1 + f3N+2 + f3N+3 (N ~ 0). 

(5.4a) 

(5.4b) 

(5.4c) 

The recurrence relations (5.4) may be solved by a generating function technique. 
With 

00 . 

A(z) = L anzn, 
n=O 

Eq. (5.4) may be written as 

2A(z) = z- I(A(z) -1) + Z-l B(z), 

A(z) = z-3 B(z) + z-2 B(z) + z-l B(z). 

Solving these equations yields the result 

1 + z + z2 
A(z) = 1 _ z _ z2 _ z3' 

(5.5a) 

(5.5b) 

Results for specific N are obtained as the coefficients of zN in a series expansion of 
A(z). Taking 

A(z) = AN(z), 
AD(z) 

Eq. (5.5a) may be inverted to yield 

(5.5c) 
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where the Zi are the roots of AD(z) (all assumed distinct), and prime denotes differ
entiation. This yields finally 

aN"" 1.14(1.84)N +0.283(0.737)N cos(2.176N +2.078). (5.6) 

The behaviour of the coefficients for large N is dominated by the first term, associated 
with the smallest root of AD(N). The first ten values of aN are 1, 2, 4, 7, 13,24,44, 
81,149,274,504. 

A lengthy calculation shows that the number of possible strings of length N 
which do not satisfy the conditions in Lemma 5.1, and may therefore be reached by 
evolution of the cellular automaton defined by Eq. (5.3), is given as the coefficient 
of zN in the expansion of the generating function 

z - 3z2 + 6z3 - 8z4 + 4z5 - Z 7 

P(z) = 1 _ 4z + 6z2 - 5z 3 + 2z4 + z5 - z6 + z7 

3 - 4z + z2 2 - z 2 - z 
= - + -1 

1-2z+ z2- z3 2(1-z+z2) 2(-I+z+z2) . 
(5 .7) 

Inverting according to Eq. (5.5c), the number of reachable configurations of length 
N is given by 

(5.8) 

where K "" 1.7548 is the real root of z3 - z2 + 2z - 1 = 0, ¢ = (1 + ./5)/2 = 1.6182, 

and/1 "" 0 .754, e "" 1.408. The first ten values of PN are 1, 1,4,7,11,19,36,67,121, 
216. For large N, PN ~ KN. Equation (5 .8) shows that corrections decrease rapidly 
and smoothly with N. This behaviour is to be contrasted with the irregular behaviour 
as a function of N found for additive cellular automata in Theorems 3.1 and 4.2. 

Equation (5.8) shows that the fraction of a1l2N possible configurations which are 
reachable after one time step in the evolution of the cellular automaton of Eq. (5 .2) 
is approximately (K/ 2)N "" 0.92N . Thus, starting from an initial maximal entropy 
ensemble with s = 1, evolution for one time step according to Eq. (5.2) yields a set 
entropy 

s(t = 1) "" log2 K "" 0.88. (5 .9) 

The irregularity of the transient trees illustrated in Fig. 5 implies a measure entropy 

sl1 < s. 
The result (5 .9) becomes exact in the limit N ~ 00. A direct derivation in this 

limit is given in [17,18], where it is also shown that the set of infinite configurations 
generated forms a regular formal language. The set continues to contract with time, 
so that the set entropy decreases below the value given by Eq. (5 .9) [18]. 

Techniques similar to those used in the derivation of Eq. (5.5) may in principle 
be used to deduce the number of configurations reached after any given number of 
steps in the evolution of the cellular automaton (5.2). The fraction of configurations 
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N PH 
4 0.3125 
5 0.3438 
6 0.1094 
7 

8 
9 

10 

0.0078 
0.1133 
0.1426 
0.0791 

11 0.0435 
12 0.0466 
13 0.0350 
14 0.0163 
15 0.00308 
16 0.00850 
17 0.00857 

Algebraic Properties of Cel lular Automata (1984) 

Table 3. Fraction of configurations appearing in cycles for the non-additive 

cellular automaton of Eq. (5.2). 

which appear in cycles is an irregular function of N; some results for small N are 
given in Table 3. 

6. Discussion 

The analysis of additive cellular automata in Sects. 3 and 4 yielded results on the 
global behaviour of additive cellular automata more complete than those available 
for most other dynamical systems. The extensive analysis was made possible by 
the discrete nature of cellular automata, and by the additivity property which led to 
the algebraic approach developed in Sect. 3. Similar algebraic techniques should be 
applicable to some other discrete dynamical systems. 

The analysis of global properties of cellular automata made in this paper comp
lements the analysis of local properties of ref. [1]. 

One feature of the results on additive cellular automata found in Sects. 3 and 4, is 
the dependence of global quantities not only on the magnitude of the size parameter 
N, but also on its number theoretical properties. This behaviour is shared by many 
dynamical systems, both discrete and continuous. It leads to the irregular variation 
of quantities such as cycle lengths with N, illustrated in Table 1 and Fig. 3. In 
physical realizations of cellular automata with large size N, an average is presumably 
performed over a range of N values, and irregular dependence on N is effectively 
smoothed out. A similar irregular dependence is found on the number k of possible 
values for each site: simple results are found only when k is prime. 

Despite such detailed dependence on N, results such as Theorems 4.1-4.3 show 
that global properties of additive cellular automata exhibit a considerable universality, 
and independence of detailed aspects of their construction. This property is again 
shared by many other dynamical systems. It potentially allows for generic results, 
valid both in the simple cases which may easily be analysed, and in the presumably 
complicated cases which occur in real physical systems. 
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The discrete nature of cellular automata makes possible an explicit analysis of 
their global behaviour in terms of transitions in the discrete phase space of their 
configurations. The results of Sect. 4 provide a rather complete characterization 
of the structure of the state transition diagrams for additive cellular automata. The 
state transition diagrams consist of trees corresponding to irreversible "transients", 
leading to "attractors" in the form of distinct finite cycles. The irreversibility of 
the cellular automata is explicitly manifest in the convergence of several distinct 
configurations to single configurations through motion towards the roots of the trees. 
This irreversibility leads to a decrease in the entropy of an initially equiprobable 
ensemble of cellular automaton configurations; the results of Sect. 4 show that in 
most cases the entropy decreases by a fixed amount at each time step, reflecting 
the balanced nature of the trees. Theorem 4.3 gives an algebraic characterization 
of the magnitude of the irreversibility, in terms of the in-degrees of nodes in the 
trees. The length of the transients during which the entropy decreases is given by 
the height of the trees in Theorem 4.3, and is found always to be less than N. After 
these transients , any initial configurations evolve to configurations on attractors or 
cycles. Theorem 4.3 gives the total number of configurations on cycles in terms of 
N and algebraic properties of the cellular automaton time evolution polynomial. At 
one extreme, all configurations may be on cycles, while at the other extreme, all 
initial configurations may evolve to a single limit point consisting simply of the null 
configuration. 

Theorem 4.1 gives a rather general result on the lengths of cycles in additive 
cellular automata. The maximum possible cycle length is found to be of order 
the square root of the total number of possible configurations. Rather long cycles 
are therefore possible. No simple results on the total number of distinct cycles or 
attractors were found; however, empirical results suggest that most cycles have a 
length equal to the maximal length for a particular cellular automaton. 

The global properties of additive cellular automata may be compared with those of 
other mathematical systems. One closely related class of systems are linear feedback 
shift registers. Most results in this case concentrate on analogues of the cellular 
automaton discussed in Sect. 3, but with the values at a particular time step in general 
depending on those of a few far-distant sites. The boundary conditions assumed 
for feedback shift registers are typically more complicated than the periodic ones 
assumed for cellular automata in Sect. 3 and most of Sect. 4. The lack of symmetry 
in these boundary conditions allows for maximal length shift register sequences, in 
which all 2N - 1 possible configurations occur on a single cycle [2, 3]. 

A second mathematical system potentially analogous to cellular automata is a 
random mapping [15]. While the average cycle length for random mappings is 
comparable to the maximal cycle length for cellular automata, the probability for 
a node in the state transition diagram of a random mapping to have in-degree d is 
~l /d!, and is much more sharply peaked at low values than for a cellular automaton, 
leading to many differences in global properties. 
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Non-additive cellular automata are not amenable to the algebraic techniques used 
in Sects. 3 and 4 for the additive case. Section 5 nevertheless discussed some prop
erties of non-additive cellular automata, concentrating on a simple one-dimensional 
example with two possible values at each site. Figure 5 indicates that the state transi
tion diagrams for such non-additive cellular automata are less regular than those for 
additive cellular automata. Combinatorial methods were nevertheless used to derive 
the fraction of configurations with no predecessors in these diagrams, giving the 
irreversibility and thus entropy decrease associated with one time step in the cellular 
automaton evolution. Unlike the case of additive cellular automata, the result was 
found to be a smooth function of N . 

Appendix A: 
Notations and Elementary Results on Finite Fields 

Detailed discussion of the material in this appendix may be found in [8] . 

A. Basic Notations 

a mod b denotes a reduced modulo b, or the remainder of a after division by b. 
(a , b) or gcd(a, b) denotes the greatest common divisor of a and b. When a and 

b are polynomials, the result is taken to be a polynomial with unit leading coefficient 
(monic). 

a I b represents the statement that a divides b (with no remainder). 
an lib indicates that an is the highest power of a which divides b. 
Exponentiation is assumed right associative, so that abC denotes aWl not (abr 

p usually denotes a prime integer. 
IRk denotes an arbitrary commutative ring of k elements. 
Zk denotes the ring of integers modulo k. 
degP(x) denotes the highest power of x which appears in P(x). 

B. Finite Fields 

There exists a finite field unique up to isomorphism with any size pa (p prime), 
denoted GF(pa). p is termed the characteristic of the field. 

The ring Zk of integers modulo k forms a field only when k is prime, since only 
in this case do unique inverses under multiplication modulo k exist for all nonzero 
elements. (For example, in Z4 ' 2 has no inverse.) GF(p) is therefore isomorphic 

to Zp. 
The field GF(pa) is conveniently represented by the set of polynomials of degree 

less than a with coefficients in Zp, with all polynomial operations performed modulo 
a fixed irreducible polynomial of degree a over GF(p). For example, GF(4) may 
be represented by elements 0, 1, K, K + 1 with operations performed modulo 2 and 
modulo K2 + K + 1. In this case for example K x K == K + 1. Notice that, as mentioned 
in Sect. A.C below, polynomials over a field form a unique factorization domain. 
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Any field of size q yields a group of size q - I under multiplication if the zero 
element is removed. Thus for any element ofGF(q), 

(A. I) 

and x q- I = I for x*- O. Notice that if x E GF(pa) and x rJi = x, then x E GF(PP) . 

C. Polynomials over Finite Fields 

Polynomials in any number of variables with coefficients in GF(q) form a unique fac
torization domain. For such polynomials, therefore, A(x ) B(x) == A (x )C (x ) mod P (x ) 

implies B(x) == C(x ) mod P(x) if (A(x ), P(x » = 1. 
For any polynomials A(x) and B(x ) with coefficients in GF(q), there exist poly

nomials a(x) and [3(x ) such that 

C(x ) = (A(x) , B(x » = a(x )A(x ) + [3(x )B(x ). (A.2) 

There are exactly qn univariate polynomials over GF(q) with degree less than n. 
With a polynomial Q(x ) of degree m, the number of polynomials P(x) with degree 
not exceeding n for which Q(x ) I P(x ) is qn-m for m ~ n. 

For any prime p , and for elements ai of GF(PP) , 

(Laixi( = L (aixi )P" . (A.3) 

Thus for example, 

(x 2
" + I) == (x + 1)2" mod 2, (A.4) 

a result used extensively in Sect. 3. 
If P(x ) I Q(x) , then every root of P(x) must be a root of Q(x ). If A ~ 2 and 

[P(X)]A I Q(x ), (A.5) 

then 

P(x ) I Q' (x ), (A.6) 

where Q' (x) is the formal derivative of Q(x), obtained by differentiation of each term 
in the polynomial. [Note that integration is not defined for polynomials over GF(q).] 

The number of roots (not necessarily distinct) of a polynomial over GF(q) is equal 
to the degree of the polynomial. The roots may lie in an extension of GF(q). 

Over the field GF(p), 

(A.7) 

where N = D p(N)n , with D p(N) defined in Sects. 3 and 4 as the maximum power of 
p which divides N . The polynomial x n - I with n not a multiple of p then factorizes 
over GF(p) according to 

~d) 

ordd(P) 

x n - 1 = (x - I) n n Cd. i (X), 
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where the Cd j(x) are irreducible cyclotomic polynomials of degree ordd(p). Note 
that the multiplicity of any irreducible factor of x N 

- I is exactly D peN) , and that 

Cd, j(x ) I x d - 1. (A.9) 

D. Dipolynomials over Finite Fields 

A dipolynomial A(x ) is taken to divide a dipolynomial B(x) ifthere exists a dipolyno
mial C(x ) such that B(x ) = A(x )C(x ). Hence if A(x) and B(x ) are polynomials, with 
A(O) =/; 0, and if A(x) I B(x ) are dipolynomials, then A(x ) I B(x ) are polynomials. 

Congruence in the ring of dipolynomials is defined as follows: A(x );: B(x ) mod 
C(x ) for dipolynomials A(x ), B(x ), and C(x ) if C(x ) I A(x ) - B(x ). 

The greatest common divisor of two nonzero dipolynomials AI (x ) and A2 (x ) is 
defined as the ordinary polynomial (AT(x ), A~(x», where A7(x ) = x mi A j (x) and mj is 
chosen to make A7(x ) a polynomial with nonzero constant term. Note that by analogy 
with Eq. (A.2) , for any dipolynomials A I (x ) and A2 (x), there exist dipolynomials 
a I (x ) and a2 (x ) such that 

(A I (x ), A2(x » = at (x)A I (x ) + a2(x )A2(x ). (A. 10) 

Appendix B: 
Properties and Values of Some Number 
Theoretical Functions 

A. Euler Totient Function tfJ(N ) 

tfJ(N) is defined as the number of integers less than N which are relatively prime to 
N [7]. ¢Y(N) is a multiplicative function, so that 

¢Y(mn) = ¢Y(m)¢Y(n) , (m , n)=l. (B.l) 

For p prime, 

¢Y(pa) = pa- t (p - 1). (B.2) 

Hence 

¢Y(n) = n pa-I(p - 1), (B.3) 
palin 

providing a formula by which ¢Y(N) may be computed. Some values of ¢Y(N) are 

given in Table 4. 
¢Y(N) is bounded (for N > 1) by 

eN / log log N ::;, ¢Y(N) ::;, N - 1, (B.4) 

where e is some positive constant, and the upper bound is achieved if and only if N 
is prime. For large N , ¢y(N) / N tends on average to a constant value. 

¢y(n) satisfies the Euler-Fermat theorem 

modn (k , n)=l. (B.5) 
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B. Multiplicative Order Function ordN(k ) 

The multiplicative order function ordN(k) is defined as the minimum positive integer 

j for which [8] 

modN . (B.6) 

This condition can only be satisfied if (k, N) = 1. 

By the Euler-Fermat theorem (B.5), 

(B.7) 

In addition, ordmn(k) = lcm(ordn(k), ordm(k», (n, k) = (m, k) = (n, m) = 1. Some 

special cases are 

ordk' _ l (k) = a, 

ordk' +l (k) = 2a. 

A rigorous bound on ordN(k) is 

logk(N) ~ ordN(k) ~ N -1, (B.8) 

where the upper bound is attained only if N is prime. It can be shown that on 

average, for large N, ordN(k);::; .jN; the actual average is presumably closer to N . 

Nevertheless, for large N, ordN(k)/ N tends to zero on average. 

Some values of the multiplicative order function are given in Table 4. 

The multidimensional generalization ordN, ..... N/k) of the multiplicative order 
function is defined as the minimum positive integer j for which ki = 1 simultaneously 

modulo Nl' N2 , ... , and Nd . It is clear that 

ordN" .... N/k ) = lcm(ordN, (k), ... , ordN/k» = ordlcm(N, ..... Nd)(k), 

(k , N l ) = ... = (k, Nd ) = 1. (B.9) 

c. Multiplicative Suborder Function sordN(k) 

The multiplicative suborder function is defined as the minimum j for which 

k i = ±1 mod N, (B . 10) 

again assuming (k, N) = 1. Comparison with (B.6) yields 

(B.l1a) 

or 

(B.l1b) 

The second case becomes comparatively rare for large N; the fraction of integers less 

than X for which it is realised may be shown to be asymptotic to c/[logX]A [16], 

where c and A are constants determined by k . 
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N k=2 k=3 k=4 k=5 </J(N) 

2 1 
3 2 2 2 
4 2 1 2 
5 4 2 4 2 2 4 
6 2 1 2 
7 3 3 6 3 3 3 6 3 6 
8 2 2 2 2 4 
9 6 3 3 3 6 3 6 

10 4 2 4 
11 10 5 5 5 5 5 5 5 10 

12 2 2 4 
13 12 6 3 3 6 3 4 2 12 
14 6 3 6 3 6 
15 4 4 2 2 8 
16 4 4 4 4 8 
17 8 4 16 8 4 2 16 8 16 
18 6 3 6 
19 18 9 18 9 9 9 9 9 18 
20 4 4 8 
21 6 6 3 3 6 3 12 
22 5 5 5 5 10 

23 11 11 11 11 11 11 22 11 22 
24 2 2 8 
25 20 10 20 10 10 5 20 
26 3 3 4 2 12 
27 18 9 9 9 18 9 18 
28 6 3 6 6 12 
29 28 14 28 14 14 7 14 7 28 
30 8 
31 5 5 30 15 5 5 3 3 30 
32 8 8 8 8 16 
33 10 5 5 5 10 10 20 
34 16 8 16 8 16 
35 12 12 12 12 6 6 24 
36 6 6 12 
37 36 18 18 9 18 9 36 18 36 
38 18 9 9 9 18 
39 12 12 6 6 4 4 24 
40 4 4 16 

Table 4. Values of the multiplicative order ordN(k) and suborder sordN(k) functions defined in 

Eqs. (B .6) and (B.IO), respectively, together with values of the Euler totient function ¢!(N). Each column 

gives values of the pair ordN (k), sordN(k). 
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In general, 

(B.12) 

the upper limit again being achieved only if N is prime. For large N, sordN(k)/ N --+ 0 
on average. 

The multidimensional generalization sordN, ..... Nd (k) of the multiplicative suborder 
function is defined as the minimum positive integer j for which k i = ±l simultane
ously modulo N), ... , Nd , with +1 and -1 perhaps taken variously for the different 
N;. The analogue of Eq. (B.9) for this function is 

sordN" .. , N)k) = Icm(sordN , (k), ... , sordNd(k)), 

and 

(B.13a) 

(B.13b) 

or 

(B.l3c) 
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Universality and Complexity 
in Cellular Automata 

1984 

Cellular automata are discrete dynamical systems with simple construction but com
plex self-organizing behaviour. Evidence is presented that all one-dimensional cel
lular automata fall into four distinct universality classes. Characterizations of the 
structures generated in these classes are discussed. Three classes exhibit behaviour 
analogous to limit points, limit cycles and chaotic auractors. The fourth class is 
probably capable of universal computation, so that properties of its infinite time 
behaviour are undecidable. 

1. Introduction 

Cellular automata are mathematical models for complex natural systems containing 
large numbers of simple identical components with local interactions. They consist 
of a lattice of sites, each with a finite set of possible values. The values of the sites 
evolve synchronously in discrete time steps according to identical rules. The value 
of a particular site is determined by the previous values of a neighbourhood of sites 
around it. 

The behaviour of a simple set of cellular automata was discussed in ref. I, where 
extensive references were given. It was shown that despite their simple construction, 
some cellular automata are capable of complex behaviour. This paper discusses the 
nature of this complex behaviour, its characterization, and classification. Based on 
investigation of a large sample of cellular automata, it suggests that many (perhaps 
all) cellular automata fall into four basic behaviour classes. Cellular automata within 
each class exhibit qualitatively similar behaviour. The small number of classes im
plies considerable universality in the qualitative behaviour of cellular automata. This 
universality implies that many details of the construction of a cellular automaton 

Originally published in Physica D, volume 10, pages 1- 35 (January 1984). 
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are irrelevant in determining its qualitative behaviour. Thus complex physical and 
biological systems may lie in the same universality classes as the idealized math
ematical models provided by cellular automata. Knowledge of cellular automaton 
behaviour may then yield rather general results on the behaviour of complex natural 
systems. 

Cellular automata may be considered as discrete dynamical systems. In almost all 
cases, cellular automaton evolution is irreversible. Trajectories in the configuration 
space for cellular automata therefore merge with time, and after many time steps, 
trajectories starting from almost all initial states become concentrated onto "attrac
tors". These attractors typically contain only a very small fraction of possible states. 
Evolution to attractors from arbitrary initial states allows for "self-organizing" be
haviour, in which structure may evolve at large times from structureless initial states. 
The nature of the attractors determines the form and extent of such structures. 

The four classes mentioned above characterize the attractors in cellular automaton 
evolution. The attractors in classes 1, 2 and 3 are roughly analogous respectively to 
the limit points, limit cycles and chaotic ("strange") attractors found in continuous 
dynamical systems. Cellular automata of the fourth class behave in a more compli
cated manner, and are conjectured to be capable of universal computation, so that 
their evolution may implement any finite algorithm. 

The different classes of cellular automaton behaviour allow different levels of 
prediction of the outcome of cellular automaton evolution from particular initial 
states. In the first class, the outcome of the evolution is determined (with probability 
1), independent of the initial state. In the second class, the value of a particular site 
at large times is determined by the initial values of sites in a limited region. In the 
third class, a particular site value depends on the values of an ever-increasing number 
of initial sites. Random initial values then lead to chaotic behaviour. Nevertheless, 
given the necessary set of initial values, it is conjectured that the value of a site 
in a class 3 cellular automaton may be determined by a simple algorithm. On 
the other hand, in class 4 cellular automata, a particular site value may depend on 
many initial site values, and may apparently be determined only by an algorithm 
equivalent in complexity to explicit simulation of the cellular automaton evolution. 
For these cellular automata, no effective prediction is possible; their behaviour may 
be determined only by explicit simulation. 

This paper describes some preliminary steps towards a general theory of cellular 
automaton behaviour. Section 2 below introduces notation and formalism for cellular 
automata. Section 3 discusses general qualitative features of cellular automaton evo
lution illustrating the four behaviour classes mentioned above. Section 4 introduces 
entropies and dimensions which characterize global features of cellular automaton 
evolution. Successive sections consider each of the four classes of cellular automata 
in turn. The last section discusses some tentative conclusions. 

This paper covers a broad area, and includes many conjectures and tentative 
results. It is not intended as a rigorous mathematical treatment. 
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2. Notation and Formalism 

ay) is taken to denote the value of site i in a one-dimensional cellular automaton at 
time step t. Each site value is specified as an integer in the range 0 through k - I. 
The site values evolve by iteration of the mapping 

(r) F[ (I-I) (I-I) (I-I) (I-I)] a,. = a;_r' ai- r+1, ... , a; , ... , ai+r . (2.1) 

F is an arbitrary function which specifies the cellular automaton rule. 
The parameter r in eq. (2.1) determines the "range" of the rule: the value of a 

given site depends on the last values of a neighbourhood of at most 2r + 1 sites. The 
region affected by a given site grows by at most r sites in each direction at every time 
step; propagating features generated in cellular automaton evolution may therefore 
travel at most r sites per time step. After t time steps, a region of at most 1 + 2rt 
sites may therefore be affected by a given initial site value. 

The "elementary" cellular automata considered in ref. 1 have k = 2 and r = 1, 
corresponding to nearest-neighbour interactions. 

An alternative form of eq. (2.1) is 

(2.2) 

where the aj are integer constants, and the function f takes a single integer argument. 
Rules specified according to (2.1) may be reproduced directly by taking aj = k'- j . 

The special class of additive cellular automaton rules considered in ref. 2 corre
spond to the case in which f is a linear function of its argument modulo k. Such rules 
satisfy a special additive superposition principle. This allows the evolution of any 
initial configuration to be determined by superposition of results obtained with a few 
basis configurations, and makes possible the algebraic analysis of ref. 2. 

"Totalistic" rules defined in ref. 1, and used in several examples below, are 
obtained by taking 

(2.3) 

in eq. (2.2). Such rules give equal weight to all sites in a neighbourhood, and imply 
that the value of a site depends only on the total of all preceding neighbourhood 
site values. The results of section 3 suggest that totalistic rules exhibit behaviour 
characteristic of all cellular automata. 

Cellular automaton rules may be combined by composition. The set of cellular 
automaton rules is closed under composition, although composition increases the 
number of sites in the neighbourhood. Composition of a rule with itself yields 
patterns corresponding to alternate time steps in time evolution according to the rule. 
Compositions of distinct rules do not in general commute. However, if a composition 
F IF 2 of rules generates a sequence of configurations with period 1f, then the rule 
F2FI must also allow a sequence of configurations with period 1f. As discussed 
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below, this implies that the rules F 1 F 2 and F 2F 1 must yield behaviour of the same 
class. 

The configuration ai = 0 may be considered as a special "null" configuration 
("ground state"). The requirement that this configuration remain invariant under 
time evolution implies 

F[O, 0, .. . , 0] = 0 (2.4a) 

and 

frO] = O. (2.4b) 

All rules satisfy this requirement if iterated at most k times, at least up to a relabelling 
of the k possible values. 

It is convenient to consider symmetric rules, for which 

(2.5) 

Once a cellular automaton with symmetric rules has evolved to a symmetric state 
(in which an+i = an_i for some n and all i) , it may subsequently generate only 
symmetric states (assuming symmetric boundary conditions), since the operation of 
space reflection commutes with time evolution in this case. 

Rules satisfying the conditions (2.4) and (2.5) will be termed "legal". 
The cellular automaton rules (2.1) and (2.2) may be considered as discrete ana

logues of partial differential equations of order at most 2r + 1 in space, and first order 
in time. Cellular automata of higher order in time may be constructed by allowing a 
particular site value to depend on values of a neighbourhood of sites on a number s of 
previous time steps. Consideration of "effective" site values L~~~ mna?-n ) always 
allows equivalent first-order rules with k = mS 

- 1 to be constructed. 
The form of the function F in the time evolution rule (2.1) may be specified by a 

"rule number" [1] 

(2.6) 

The function f in eq. (2.2) may similarly be specified by a numerical "code" 

(2r+ 1 )(k-I) 

C f = L ef[n] . (2.7) 
n=O 

The condition (2.4) implies that both R F and Cf are multiples of k. 

In general, there are a total of k (k(2'+ I) possible cellular automaton rules of the 
form (2.1) or (2.2). Of these, k k'+I (k ' +1 )/2-1 are legal. The rapid growth of the number 

of possible rules with r implies that an exponentially small fraction of rules may be 
obtained by composition of rules with smaller r. 

A few cellular automaton rules are "reducible" in the sense that the evolution 
of sites with particular values , or on a particular grid of positions and times, are 
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independent of other site values. Such cellular automata will usually be excluded 
from the classification described below. 

Very little information on the behaviour of a cellular automaton can be deduced 
directly from simple properties of its rule. A few simple results are nevertheless 
clear. 

First, necessary (but not sufficient) conditions for a rule to yield unbounded growth 
are 

F[ai_r , ai- r +1, ••• , ai_I' 0, 0, ... ,0] "* 0, 

F[O, ... ,0,0, ai+ t , • •• , ai+r ] "* ° (2.8) 

for some set of ai . If these conditions are not fulfilled then regions containing nonzero 
sites surrounded by zero sites can never grow, and the cellular automaton must exhibit 
behaviour of class 1 or 2. For totalistic rules, the condition (2.8) becomes 

f[n] "* ° (2.9) 

for some n < r . 

Second, totalistic rules for which 

(2.10) 

for all n 1 > n2 exhibit no "growth inhibition" and must therefore similarly be of class 
lor 2. 

One may consider cellular automata both finite and infinite in extent. 
When finite cellular automata are discussed below, they are taken to consist of N 

sites arranged around a circle (periodic boundary conditions) . . Such cellular automata 
have a finite number kN of possible states. Their evolution may be represented by 
finite state transition diagrams (cf. [2]), in which nodes representing each possible 
configuration are joined by directed arcs, with a single arc leading from a particular 
node to its successor after evolution for one time step. After a sufficiently long time 
(less than kN ) , any finite cellular automaton must enter a cycle, in which a sequence 
of configurations is visited repeatedly. These cycles represent attractors for the 
cellular automaton evolution, and correspond to cycles in the state transition graph. 
At nodes in the cycles may be rooted trees representing transients. The transients 
are irreversible in the sense that nodes in the tree have a single successor, but may 
have several predecessors. In the course of time evolution, all states corresponding 
to nodes in the trees ultimately evolve through the configurations represented by the 
roots of the trees to the cycles on which the roots lie. Configurations corresponding 
to nodes on the periphery of the state transition diagram (terminals or leaves of the 
transient trees) are never reached in the evolution: they may occur only as initial 
states. The fraction of configurations which may be reached after one time step in 
cellular automaton evolution, and which are therefore not on the periphery of the 
state transition diagram, gives a simple measure of irreversibility. 
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The configurations of infinite cellular automata are specified by (doubly) infinite 
sequences of site values. Such sequences are naturally identified as elements of a 
Cantor set (e.g. [3]). (They differ from real numbers through the inequivalence of 
configurations such as .111111 ... and 1.0000 ... ). Cellular automaton rules define 
mappings from this Cantor set to itself. The mappings are invariant under shifts by 
virtue of the identical treatment of each site in eqs. (2.1) and (2.2). With natural 
measures of distance in the Cantor set, the mappings are also continuous. The typical 
irreversibility of cellular automaton evolution is manifest in the fact that the mapping 
is usually not injective, as discussed in section 4. 

Equations (2.1) and (2.2) may be generalized to several dimensions. For r = 1, 
there are at least two possible symmetric forms of neighbourhood, containing 2d + 1 
(type I) and 3d (type II) sites respectively; for larger r other "unit cells" are possible. 

3. Qualitative Characterization of Cellular 
Automaton Behaviour 

This section discusses some qualitative features of cellular automaton evolution, and 
gives empirical evidence for the existence of four basic classes of behaviour in cellular 
automata. Section 4 introduces some methods for quantitative analysis of cellular 
automata. Later sections use these methods to suggest fundamental characterizations 
of the four cellular automaton classes. 

Figure 1 shows the pattern of configurations generated by evolution according to 
each of the 32 possible legal totalistic rules with k = 2 and r = 2, starting from a 
"disordered" initial configuration (in which each site value is independently chosen 
as ° or 1 with probability ~). Even with such a structureless initial state, many of the 
rules are seen to generate patterns with evident structure. While the patterns obtained 
with different rules all differ in detail, they appear to fall into four qualitative classes: 

1. Evolution leads to a homogeneous state (realized for codes 0, 4, 16,32,36,48, 
54, 60 and 62). 

2. Evolution leads to a set of separated simple stable or periodic structures (codes 
8, 24, 40, 56 and 58). 

3. Evolution leads to a chaotic pattern (codes 2, 6, 10, 12, 14, 18,22,26,28,30, 
34, 38, 42, 44, 46 and 50). 

4. Evolution leads to complex localized structures, sometimes long-lived (codes 
20 and 52). 

Some patterns (e.g. code 12) assigned to class 3 contain many triangular "clear
ings" and appear more regular than others (e.g. code 10). The degree of regularity is 
related to the degree of irreversibility of the rules, as discussed in section 7. 

Figure 2 shows patterns generated from several different initial states according 
to a few of the cellular automaton rules of fig. 1. Patterns obtained with different 
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Figure la-<. Evolution of all possible legal one-dimensional totalistic cellular automata with k = 2 and 

r = 2. k gives the number of possible values for each site, and r gives the range of the cellular automaton 

rules. A range r = 2 allows the nearest and next-nearest neighbours of a site to affect its value on the next 

time step. Time evolution for totalistic cellular automata is defined by eqs. (2.2) and (2.7). The initial state 

is taken disordered, each site having values 0 and I with independent equal probabilities. Configurations 

obtained at successive time steps in the cellular automaton evolution are shown on successive horizontal 

lines. Black squares represent sites with value I; white squares sites with value O. All the cellular 

automaton rules illustrated are seen to exhibit one of four qualitative classes of behaviour. 
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Figure 1 (continued). 

initial states are seen to differ in their details, but to exhibit the same characteristic 

qualitative features. (Exceptional initial states giving rise to different behaviour may 

exist with low or zero probability.) Figure 3 shows the differences between patterns 

generated by various cellular automaton rules from initial states differing in the value 

of a single site. 

Figures 4, 5 and 6 show examples of various sets of totalistic cellular automata. 

Figure 4 shows some k = 2, r = 3 rules, fig . 5 some k = 3, r = I rules, and fig. 6 some 

k = 5, r = I rules. The patterns generated are all seen to be qualitatively similar to 

those of fig . I, and to lie in the same four classes. 

Patterns generated by all possible k = 2, r = 1 cellular automata were given in 

ref. 1, and are found to lie in classes 1, 2 and 3. Totalistic k = 2, r = 1 rules are found 

to give patterns typical of all k = 2, r = 1 rules. In general, totalistic rules appear 

to exhibit no special simplifications, and give rise to behaviour typical of all cellular 

automaton rules with given k and r. 

An extensive sampling of many other cellular automaton rules supports the general 

conjecture that the four classes introduced above cover all one-dimensional cellular 

automata.* 

• This sampling and many other investigations reported in this paper were performed using the C language computer 
program [4]. 
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Figure 2. Evolution of some cellular automata illustrated in fig . I from several disordered states. The first 

two initial states shown differ by a change in the values of two sites, the next by a change in the values of 

ten sites. The last state is completely different. 
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Figure 2 (continued). 
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k=2 k=2 k=2 k=3 
Table 1. Approximate fractions of le-

Class r = I r=2 r=3 r = 1 
gal totalistic cellular automaton rules 

1 0.50 0.25 0.09 0.12 in each of the four basic classes. 
2 0.25 0.16 0.11 0.19 
3 0.25 0.53 0.73 0.60 
4 0 0.06 0.06 0.07 

Table I gives the fractions of various sets of cellular automata in each of the 
four classes. With increasing k and r, class 3 becomes overwhelmingly the most 
common. Classes I and 2 are decreasingly common. Class 4 is comparatively rare, 
but becomes more common for larger k and r. 

"Reducible" cellular automata (mentioned in section 2) may generate patterns 
which contain features from several classes. In a typical case, fixed or propagat
ing "membranes" consisting of sites with a particular value may separate regions 
containing patterns from classes 3 or 4 formed from sites with other values. 

This paper concerns one-dimensional cellular automata. Two-dimensional cellu
lar automata also appear to exhibit a few distinct classes of behaviour. Superficial 
investigations [5] suggest that these classes may in fact be identical to the four found 
in one-dimensional cellular automata. 

4. Quantitative Characterizations of Cellular Automaton 
Behaviour 

This section describes quantitative statistical measures of order and chaos in pat
terns generated by cellular automaton evolution. These measures may be used to 
distinguish the four classes of behaviour identified qualitatively above. 

Consider first the statistical properties of configurations generated at a particular 
time step in cellular automaton evolution. A disordered initial state, in which each 
site takes on its k possible values with equal independent probabilities, is statistically 
random. Irreversible cellular automaton evolution generates deviations from statis
tical randomness. In a random sequence, all kX possible subsequences ("blocks") of 
length X must occur with equal probabilities. Deviations from randomness imply 
unequal probabilities for different subsequences. With probabilities piX) for the e 
possible sequences of site values in a length X block, one may define a specific 
"spatial set entropy" 

s(x) (X) = ~ logk (t 8(P;X» )) , (4.1) 

where 8(p) = I for p > 0 and 8(0) = 0, and a specific "spatial measure entropy" 

k X 

s(x) (X) = _~ "p(x) log p (x) 
/.I XL ) k) · 

j= l 

(4.2) 
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Figure 3. Differences modulo two between patterns generated by the time evolution of several cellular 

automata illustrated in fig. I with disordered states di ffering by a change in the value of a single si te. 
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Figure 4. Examples of the evolution of typical cellular automata with k = 3 (three possible site values) 

and r = I (only nearest neighbours included in time evolution rules). White squares represent value 0, 

grey squares value I , and black squares value 2. The initial state is taken disordered, with each site having 

values 0, 1 and 2 with equal independent probabilities. 
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Figure 5. Examples of the evolution of typical k = 2, r = 3 cellular automata from a disordered initial 

state. 
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Figure 6. Examples of the evolution of typical k = 5, r = I cellular automata from a disordered initial 

state. Darker squares represent sites with larger values. 
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In both cases, the superscript (x) indicates that "spatial" sequences (obtained at a 
particular time step) are considered. The "set entropy" (4.1) is determined directly by 
the total number N (x )(X) oflength X blocks generated (with any nonzero probability) 
in cellular automaton evolution, according to 

1 
s(x )(X) = -logk N (x )(X). 

X 
(4.3) 

In the "measure entropy" (4.2) each block is weighted with its probability, so that the 
result depends explicitly on the probability measure for different cellular automaton 
configurations, as indicated by the subscriptjl. Set entropy is often called "topological 
entropy"; measure entropy is sometimes referred to as "metric entropy"* (e.g. [6]). 

For blocks oflength 1, the measure entropy s~x) ( 1) is related to the densities Pi' of sites 
with each of the k possible values i. s;:)(2) is related to the densities of "digrams" 
(blocks of length 2), and so on. In general, the measure entropy gives the average 
"information content" per site computed by allowing for correlations in blocks of 
sites up to length X. Note that the entropies (4.1) and (4.2) may be considered to 
have units of (k-ary) bits per unit distance. 

In the equations below, si~i stands for either set entropy s(x) or for measure entropy 

S
(x ) 
J1 . 

The definitions (4.1) and (4.2) yield immediately 

s~x)(X) :5 s(x) (X) :5 1. (4.4) 

The first inequality is saturated (equality holds) only for "equidistributed" systems, 
in which all nonzero block probabilities p}X) are equal. The second inequality is 
saturated if all possible length X blocks of site values occur, but perhaps with 
unequal probabilities. sJ1(X) = 1 only for "X-random" sequences [7], in which all 
e possible sequences of X site values occur with equal probabilities. In addition to 
(4.4), the definitions (4.1) and (4.2) imply 

(4.5) 

s;: )(X) = 0 if and only if just one length X block occurs with nonzero probability, so 
that s(x) (X) = 0 also. As discussed below, the inequality (4.5) is saturated for class 1 

cellular automata. 
Both set and measure entropies satisfy the subadditivity condition 

(4.6) 

The inequality is saturated if successive blocks of sites are statistically uncorrelated. 

In general, it implies some decrease in si~i (X) with X (for example, si~i (2X) :5 

si~i (X». For cellular automata with translation invariant initial probability measures, 
stronger constraints may be obtained (analogous to those for "stationary" processes 

• The terms "set" and "measure" entropy. together with "set" and "measure" dimension, are introduced here to ration
alize nomenclature. 

131 



Wolfram on Cellular Automato and Complexity 

in communication theory [8]) . First, note that bounds on s{~~ (X) valid for any set 

of probabilities piX) also apply to s(x) (X), since s(x) (X) may formally be reproduced 
from the definition (4.2) for s~X) (X) by a suitable (extreme) choice of the p ix). The 
probability p (x) [a I ' .. . , ax ] for the sequence of site values a I' . . . , a x is given in 
general by 

(X) [ ] _ (x) [ ] (x) [ I ] p ai ' .. . , ax - p ai ' ... , aX_I p ax ai ' ... , aX_I ' (4.7) 

where p(x) [ax lal' . . . ' ax_tl denotes the conditional probability for a site value ax ' 

preceded by site values ai ' ... , aX- I. Defining a total entropy 

S(x) [ ] - '" (x) [ ] I (x) [ ] J1 al , · ··, ax --~p al , ··· , ax ogk P al , ··· , ax ' 

and corresponding conditional total entropy 

S~X) [ax lal' ... ' ax _tl = - L p (x) [al' ... , ax ] logk p (x) [axlal' .. . ' aX- I] 

~ S~x) [al' .. . , ax], 

one obtains 

X -1 1 
Xs (x) (X) = S(x) (X) ~ --S(x) (X - 1) + -S(x) (X) . 

J1 J1 X J1 X J1 

Hence 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

so that the set and measure entropies for a translationally invariant system decrease 
monotonically with the block size X. One finds in addition in this case that 

~i (Xs{~~(X» = (X + l)s{~~ (X + 1) - 2Xs{~~ (X) 

+ (X - 1)s{~~ (X - 1) ~ 0, 

so that Xs{~~ (X) is a convex function of X. 

(4.12) 

With the definition s(x) (O) = 1, this implies that there exists a critical block size 

Xc' such that 

s(x )(X) = 1, 

s(x) (X) < 1, 

for X < Xc' 

for X 2: Xc. 
(4.13) 

The significance and values of the critical block size Xc will be discussed in section 7. 
The entropies s(x) and s~x ) may be evaluated either for many blocks in a single 

cellular automaton configuration, or for blocks in an ensemble of different con
figurations . For smooth probability measures on the ensemble of possible initial 
configurations, the results obtained in these two ways are almost always the same. 
(A probability measure will be considered "smooth" if changes in the values of a few 
sites in an infinite configuration lead only to infinitesimal changes in the probability 
for the configuration.) The set entropy s(x) is typically independent of the probability 
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measure on the ensemble, for any smooth measure. The measure entropy s~X) in 
general depends on the probability measure for initial configurations, although for 
class 3 cellular automata, it is typically the same for at least a large class of smooth 
measures. Notice that with smooth measures, the values of s(x)(X) and s~x)(X) are 
the same whether the length X blocks used in their computation are taken disjoint or 
overlapping. 

The entropies (4.1) and (4.2) are defined for infinite cellular automata. A corre
sponding definition may be given for finite cellular automata, with a maximum block 
length given by the total number of sites N in the cellular automaton. The entropies 
s(x )(N) and s;: )(N) are related to global properties of the state transition diagram for 
the finite cellular automaton. The value of s(x)(N) at a particular time is determined 
by the fraction of possible configurations which may be reached at that time by evo
lution from any initial configuration. The limiting value of s(x )(N) at large times is 
determined by the fraction of configuration on cycles in the state transition graph. 
Starting from an initial ensemble in which all kN configurations occur with equal 
probabilities, the limiting value of s~X)(N) is equal to the limiting value of s(x) (N) 

if all transient trees in the state transition graph for the finite cellular automaton are 
identical, so that all configurations with nonzero probabilities are generated with the 
same probability (cf. [2]). 

As mentioned in section 2, the configurations of an infinite cellular automaton 
may be considered as elements of a Cantor set. For an ensemble of disordered con
figurations (in which each site takes on its k possible values with equal independent 
probabilities), this Cantor set has fractal dimension I. Irreversible cellular automaton 
evolution may lead to an ensemble of configurations corresponding to elements of a 
Cantor set with dimension less than one. The limiting value of s(x)(X) as X ~ 00 

gives the fractal or "set" dimension of this set. 
Relations between entropy and dimension may be derived in many ways (e.g. 

[6, 9]). Consider a set of numbers in the interval [0, 1] of the real line. Di
vide this interval into kb bins of width k-b , and let the fraction of bins con
taining numbers in the set be N(b). For large b (small bin width), this num
ber grows as kdb . The exponent d is the Kolmogorov dimension (or "capacity" 
(cf. [8])) of the set. If the set contains all real numbers in the interval [0, I], 
then N (b) = kb , and d = I, as expected. If the set contains only a finite num
ber of points, then N(b) must tend to a constant for large b, yielding d = 0. The 
classic Cantor set consists of real numbers in the interval [0, I], whose ternary 
decomposition contains only the digits ° and 2. Dividing the interval into 3b 

equal bins, it is clear that 2b of these bins contain points in the set. The di
mension of the set is thus log32. This dimension may also be found by an 
explicit recursive geometrical construction, using the fact that the set is "self
similar", in the sense that with appropriate magnification, its parts are identical 
to the whole. 
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to 
The example above suggests that one may define a "set dimension" d according 

. 1 
d = hm -logk N(b), 

b .... oo b 
(4.14) 

where N (b) is the number of bins which contain elements of the set. The bins are of 
equal size, and their total number is taken as kb . Except in particularly pathological 
examples,* the dimension obtained with this definition is equal to the more usual 
Hausdorff (or "fractal") dimension (e.g. [11]) obtained by considering the number 
of patches at arbitrary positions required to cover the set (rather than the number of 
fixed bins containing elements of the set). 

The definition (4.14) may be applied directly to cellular automaton configurations. 
The kb "bins" may be taken to consist of cellular automaton configurations in which 
a block of b sites has a particular sequence of values. The definition (4.3) of set 
entropy then shows that the set dimension is given by 

d (X) = lim s(x) (X) . 
x .... oo 

(4.15) 

A disordered cellular automaton configuration, in which all possible sequences of 
site values occur with nonzero probability (or an ensemble of such configurations), 
gives d (x) = 1, as expected. Similarly, a homogeneous configuration, such as the null 
configuration, gives d(x ) = O. 

The set of configurations which appear at large times in the evolution of a cellular 
automaton constitute the attractors for the cellular automaton. The set dimension of 
these attractors is given in terms of the entropies for configurations appearing at large 
times by eq. (4.15). 

Accurate direct evaluation of the set entropy s(x)(X) from cellular automaton 
configurations typically requires sampling of many more than kX length X blocks. 
Inadequate samples yield systematic underestimates of s(x) (X). Direct estimates 
are most accurate when all nonzero probabilities for length X blocks are equal. In 
this case, a sample of kb blocks yields an entropy underestimated on average by 
approximately 

(4.16) 

Unequal probabilities increase the magnitude of this error, and typically prevent 
the generation of satisfactory estimates of d(x ) from direct simulations of cellular 
automaton evolution. (If the probabilities follow a log normal distribution, as in 
many continuous chaotic dynamical systems [12], then the exponential in eq. (4.16) 
is apparently replaced by a power [13].) 

The dimension (4.15) is given as the limiting exponent with which N (x)(X) 

increases for large X. In the formula (4.15), this exponent is obtained as the limit of 

• Such as the set formed from the end points of the intervals at each stage in the geometrical construction of the classic 
Cantor set. This set has zero Hausdorff dimension, but Kolmogorov dimension log) 2 [9] . 
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10gk[N(X)1 / X] for large X. If N (x)(X) indeed increases roughly exponentially with 
X, then the alternative formula 

d(x) = lim = lim 10 
Xs (X) (X) [ N (x) (X) ] 

X -+oo (X - l)s(x) (X - 1) X-+oo gk N (x) (X - 1) 
(4.17) 

is typically more accurate if entropy values are available only for small X. 
The set dimension (4.15) may be used to characterize the set of configurations oc

curring on the attractor for a cellular automaton, without regard to their probabilities. 
One may also define a "measure dimension" d~X) which characterizes the probability 
measure for the configurations (cf. [12]) : 

(4.18) 

It is clear that 

(4.19) 

The measure dimension d~X) is equal to the "average information per symbol" 
contained in the sequence of site values in a cellular automaton configuration. If the 
sequence is completely random (or "oo-random" [7]), then the probabilities piX) for 
all e sequences of length X must be equal for all X, so that d;:) = 1. In thi s case, 
there is no redundancy or pattern in the sequence of site values, so that determination 
of each site value represents accquisition of one (k-ary ) bit of information. A cellular 
automaton configuration with any structure or pattern must give d~x) < 1. 

In direct simulations of cellular automaton evolution, the probabilities piX) for 
each possible length X block are estimated from the frequencies with which the 
blocks occur. These estimated probabilities are thus subject to Gaussian errors. 
Although the individual estimated probabilities are unbiased, the measure entropy 
deduced from them according to eq. (4.2) , is systematically biased. Its mean typically 
yields a systematic underestimate of the true measure entropy, and with fixed sample 
size, the underestimate deteriorates rapidly with increasing X, making an accurate 
estimate of d~X) impossible. However, since an unbiased estimate may be given for 

any polynomial function of the piX), unbiased estimated upper and lower bounds for 
the measure entropy may be obtained from estimates for polynomials in p iX) just 
larger and just smaller than -pix) logk p?) for 0:5 pix) :5 I [14]. In this way, it may 
be possible to obtain more accurate estimates of s~xl(X) for large X, and thus of d~X) . 

The "spatial" entropies (4.1) and (4.2) were defined in terms of the sequence 
of site values in a cellular automaton configuration at a particular time step. One 
may also define "temporal" entropies which characterize the sequence of values 
taken on by a particular site through many time steps of cellular automaton evolu
tion, as illustrated in fig . 7. With probabilities pit) for the e possible sequences 
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-x-
(a) 

11 
(b) 

Figure 7. Space-time regions sampled in the computation of (a) spatial en

tropies, (b) temporal entropies and (c) patch or mapping entropies. In case 

(c) , the values of sites in the cross-hatched area are completely determined by 

values in the black "rind" . 

• 1 
-x-
(c) 

of values for a site at T successive time steps, one may define a specific temporal set 
entropy in analogy with eq. (4.1) by 

S(I)(T) = ~ logk (t. 8(pYl)) , (4.20) 

and a specific temporal measure entropy in analogy with eq. (4.2) by 

e 
s(r)(T) = _~ "p(r ) log p(r) 
I' T~ J kJ' 

j=l 

(4.21) 

These entropies satisfy relations directly analogous to those given in eqs. (4.3) through 
(4.6) for spatial entropies. They obey relations analogous to (4.11) and (4.12) only for 
cellular automata in "equilibrium", statistically independent of time. The temporal 
entropies (4.20) and (4.21) may be considered to have units of (k-ary) bits per unit 
time. 

Sequences of values in particular cellular automaton configurations typically have 
little similarity with the "time series" of values attained by a particular site under 
cellular automaton evolution. The spatial and temporal entropies for a cellular 
automaton are therefore in general quite different. Notice that the spatial entropy of 
a cellular automaton configuration may be considered as the temporal entropy of a 
pure shift mapping applied to the cellular automaton configuration. 

Just as dimensions may be assigned to the set of spatial configurations generated 
in cellular automaton evolution, so also one may assign dimensions to the set of 
temporal sequences generated by the evolution. The temporal set dimension may be 
defined in analogy with eq. (4.15) by 

d (ll = lim s(I)(T), 
T-+oo 

(4.22) 
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(4.23) 

If the evolution of a cellular automaton is periodic, so that each site takes on a 
fixed cycle of values, then 

(4.24) 

As discussed in section 6 below, class 2 cellular automata yield periodic structures at 
large times, so that the correspondingly temporal entropies vanish. 

As a generalization of the spatial and temporal entropies introduced above, one 
may consider entropies associated with space-time "patches" in the patterns generated 
by cellular automaton evolution, as illustrated in fig. 7. With probabilities pV'X) for 
the kXT possible patches of spatial width X and temporal extent T, one may define 
a set entropy 

(4.25) 

and a measure entropy 

k XT 

s(r ;x) (T' X) = _~ "p(t.x) log p (t.x) 
Jl ' T~ ] k J ' 

j= l 

(4.26) 

Clearly 

(t) (T) (t;x)(T 1) 
s (Jl) = s(Jl ) ; , (4.27) 

If no relation existed between configurations at successive time steps then the 
entropies (4.25) and (4.26) would be bounded simply by 

(4.28) 

The cellular automaton rules introduce definite relations between successive config
urations and tighten this bound. In fact, the values of all sites in a T x X space-time 
patch are determined according to the cellular automaton rules by the values in the 
"rind" of the patch, as indicated in fig. 7. The rind contains only X + 2r(T - 1) sites 
(where r is the "range" of the cellular automaton rule, defined in section 2), so that 

s~t ; X) (T ; X) :s s(t ;x) (T ; X) :s [X + 2r(T - 1)]/ T . 

For large T (and fixed X) , therefore 

s~t ; x) (T ; X) :s s(t ;x) (T ; X) :s 2r. 

(4.29) 

(4.30) 
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If both X and T tend to infinity with T / X fixed, eq. (4.30) implies that the 
"information per site" sS ;x) (T ; X)/ X in a T x X patch must tend to zero. The evolu
tion of cellular automata can therefore never generate random space-time patterns. 

With T ~ 00, X fixed, the length X horizontal section of the rind makes a negli
gible contribution to the entropies. The entropy is maximal if the 2r vertical columns 
in the rind are statistically independent, so that 

S (I ;X) (OO' X) < 2rs (l ) (00) = 2rd(t ) 
(J1 ) , - (J1) (J1 )' (4.31) 

In addition, 

s(t ;x) (oo' X) < s(t ;x) (oo' X + 1) 
( J1 ) , - ( J1 ) ' , (4.32) 

where the bounds are saturated for large X if the time series associated with different 
sets of sites are statistically uncorrelated. 

The limiting set entropy 

h = lim s(t;x) (T ; X) 
T~oo 
x --+oo 

T/ X--+oo 

(4.33) 

for temporally-extended patches is a fundamental quantity equivalent to the set (or 
topological) entropy of the cellular automaton mapping in symbolic dynamics. h 
may be considered as a dimension for the mapping. It specifies the asymptotic rate 
at which the number of possible histories for the cellular automaton increases with 
time. The limiting measure entropy 

h = lim s(t ;x) (T' X) 
J1 T--+oo J1 ' 

X--+oo 
T / X--+oo 

(4.34) 

gives the average amount of "new information" contained in each cellular automaton 
configuration, and not already determined from previous configurations. Equa
tions (4.31) and (4.32) show that 

d(t ) < h < 2 d (t) 
(J1 ) - ( J1 ) - r ( J1 )' 

In addition, 

h < 2 d (x) 
(J1 ) - r (J1 ) ' 

(4.35) 

(4.36) 

The basic cellular automaton time evolution rule (2.1) implies that the value a j of 
a site i at a particular time step depends on sites a maximum distance r away on the 
previous time step according to the function F[a j _ r , ... , aj+r ]. After T time steps, 
the values of the site could depend on sites at distances up to r T, so that features 
in patterns generated by cellular automaton evolution could propagate at "speeds" 
up to r sites per time step. For many rules, however, the value of a site after many 
time steps depends on fewer initial site values, and features may propagate only at 
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lower speeds. In general, let 11FT II denote the minimum R for which the value of 
site i depends only on the initial values of sites i - R , ... , i + R. Then the maximum 
propagation speed associated with the cellular automaton rule F may be defined as 

A+ = lim Il FTIl / T. 
T .... oo 

(4.37) 

(The rule is assumed symmetric; for nonsymmetric rules, distinct left and right 
propagation speeds may be defined.) Clearly, 

(4.38) 

When A+ = 0, finite regions of the cellular automaton must ultimately become 
isolated, so that 

d (t) h (t) ° 
( /1) - ( /1) - • (4.39) 

The construction of fig . 8 shows that for any T, 

(4.40) 

In the limit T --t 00 , the construction implies 

d (t) < 2' d (x) 
(/1) - "-+ (/1). (4.41) 

The ratio of temporal to spatial entropy is thus bounded by the maximum propagation 
speed in the cellular automaton. The relation is consistent with the assignment of 
units to the spatial and temporal entropies mentioned above. 

The corresponding inequalities for mapping entropies are: 

d (t) < h < 2' d (x) 
( /1) - ( /1) - "-+ ( /1)' 

h <2 d (t ) 
( /1) - r ( /1 ) . (4.42) 

The quantity A+ defined by eq. (4.37) gives the maximum speed with which any 
feature in a cellular automaton may propagate. With many cellular automaton rules, 
however, almost all "features" propagate much more slowly. To define an appropriate 
maximum average propagation speed, consider the effect after many time steps of 
changes in the initial state. Let G( lx - xi i; t) denote the probability that the value 
of a site at position x ' is changed when the value of a site at position x is changed 
t time steps before. The form of G(lx - xi i; t) for various cellular automaton rules 
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Figure 8. Pattern of dependence of temporal sequences on spatial 

sequences, used in the proof of inequalities between spatial and 

temporal entropies. 
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is suggested by fig . 3. G(lx - x i i; t) may be considered as a Green function for the 
cellular automaton evolution. For large t , G(lx -xi i; t) typically vanishes outside a 
"cone" defined by Ix - x i i = X+t . X+ may then be considered as a maximum average 
propagation speed. In analogy with eqs. (4.41) and (4.42), one expects 

d(t ) < h < 2' d(t ) 
(Ji) - ( Ji) - Il+ ( Ji ). (4.43) 

Mapping and temporal entropies thus vanish for cellular automata with zero maximum 
average propagation speed. Cellular automata in class 2 have this property. 

The maximum average propagation speed X+ specifies a cone outside which 
G(lx - x i i; t) almost always vanishes. One may also define a minimum average 
propagation speed X_, such that G(lx - xi i; t) > 0 for almost any Ix - x i i < X_. 

The Green function G(lx - x i i; t) gives the probability that a particular site is 
affected by changes in a previous configuration. The total effect of changes may 
be measured by the "Hamming distance" H(t) between configurations before and 
after the changes, defined as the total number of site values which differ between 
the configurations after t time steps. (H(t) is analogous to Lyapunov exponents for 
continuous dynamical systems.) Changing the values of initial sites in a small region, 
H(t) may be given as a space integral of the Green function, and for large t obeys 
the inequality 

H(t)/t:s; 2X+, (4.44) 

to be compared with the result (4.43) obtained above. 
The definitions and properties of dimension given above suggest that the be

haviour of these quantities determines the degree of "chaotic" behaviour associated 
with cellular automaton evolution. "Spatial chaos" occurs when df~~ > 0, and "tem
poral chaos" when df2) > O. Temporal chaos requires a nonzero maximum average 
propagation speed for features in cellular automaton patterns, and implies that small 
changes in initial conditions lead to effects ever-increasing with time. 

5. Class 1 Cellular Automata 

Class 1 cellular automata evolve after a finite number of time steps from almost all 
initial states to a unique homogeneous state, in which all sites have the same value. 
Such cellular automata may be considered to evolve to simple "limit points" in phase 
space; their evolution completely destroys any information on the initial state. The 
spatial and temporal dimensions for such attractors are zero. 

Rules for class 1 cellular automata typically take the function F of eq. (2.1) to 
have the same value for almost all of its k (2r+l ) possible sets of arguments. 

Some exceptional configurations in finite class 1 cellular automata may not evolve 
to a homogeneous state, but may in fact enter non-trivial cycles. The fraction of such 
exceptional configurations appears to decrease very rapidly with the size N, suggest
ing that for infinite class 1 cellular automata the set of exceptional configurations is 
always of measure zero in the set of all possible configurations. For (legal) class 
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1 cellular automata whose usual final state has Gi = n, n * 0 (such as code 60 in 
fig . 1), the null configuration is exceptional for any size N, and yields Gi = O. 

6. Class 2 Cellular Automata 

Class 2 cellular automata serve as "filters" which generate separated simple struc
tures from particular (typically short) initial site value sequences.* The density of 
appropriate sequences in a particular initial state therefore determines the statistical 
properties of the final state into which it evolves. (There is therefore no unique large
time (invariant) probability measure on the set of possible configurations.) Changes 
of site values in the initial state almost always affect final site values only within 
a finite range, typically of order r. The maximum average propagation speed X+ 
defined in section 4 thus vanishes for class 2 cellular automata. The temporal and 
mapping (but not spatial) dimensions for such automata therefore also vanish. 

Although X = 0 for all class 2 cellular automata, A is often nonzero. Thus 
exceptional initial states may exist, from which, for example, unbounded growth 
may occur. Such initial states apparently occur with probability zero for ensembles 
of (spatially infinite) cellular automata with smooth probability measures. 

The simple structures generated by class 2 cellular automata are either stable, or 
are periodic, typically with small periods. The class 2 rules with codes 8, 24, 40 and 56 
illustrated in fig. 1 all apparently exhibit only stable persistent structures. Examples of 
class 2 cellular automata which yield periodic, rather than stable, persistent structures 
include the k = 2, r = 1 cellular automaton with rule number 108 [1] , and the k = 3, 
r = 1 totali stic cellular automaton with code 198. The periods of persistent structures 
generated in the evolution of class 2 cellular automata are usually less than k!. 
However, examples have been found with larger periods. One is the k = 2, r = 3 
totalistic cellular automata with code 228, in which a persistent structure with period 
3 is generated. 

The finiteness of the periods obtained at large times in class 2 cellular automata 
implies that such systems have dg]) = h(JI ) = 0, as deduced above from the vanishing 

of X+. The evolution of class 2 cellular automata to zero (temporal) dimension 
attractors is analogous to the evolution of some continuous dynamical systems to 
limit cycles. 

The set of persistent structures generated by a given class 2 cellular automaton is 
typically quite simple. For some rules, there are only a finite number of persistent 
structures. For example, for the code 8 and code 40 rules of fig. 1, only the sequence 
III (surrounded by 0 sites) appears to be persistent. For code 24, III and 1111 
are both persistent. Other rules yield an infinite sequence of persistent structures, 
typically constructed by a simple process. For example, with code 56 in fig. I , any 
sequence of two or more consecutive 1 sites is persistent. 

• They are thus of direct significance for digital image process ing. 
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In general , it appears that the set of persistent structures generated by any class 2 
cellular automaton corresponds to the set of words generated by a regular grammar. A 
regular grammar [15- 18] (or "sofic system" [19]) specifies a regular language, whose 
legal words may be recognized by a finite automaton, represented by a finite state 
transition graph. A sequence of symbols (site values) specifies a particular traversal 
of the state transition graph. The traversal begins at a special "start" node; the symbol 
sequence represents a legal word only if the traversal does not end at an absorbing 
"stop" node. Each successive symbol in the sequence causes the automaton to make 
a transition from one state (node) to one of k others, as specified by the state transition 
graph. At each step, the next state of the automaton depends only on its current state, 
and the current symbol read, but not on its previous history. 

The set of configurations (symbol sequences) generated from all possible initial 
configurations by one time step of cellular automaton evolution may always be 
specified by a regular grammar. To determine whether a particular configuration 
a ( l) may be generated after one time step of cellular automaton evolution, one may 
attempt to construct an explicit predecessor a (O) for it. Assume that a predecessor 
configuration has been found which reproduces all site values up to position i . 
Definite values ajO) for all j :5 i - r are then determined. Several of the total of 

k 2r sequences of values a;~~+ " ... , a;~~+ , may be possible. Each sequence may be 

specified by an integer q = LJ:n k j a;~~+j+ '. An integer 1/1; between 0 and 2
k2

' may 
then be defined, with the qth binary bit in 1/1; equal to one if sequence q is allowed, 
and 0 otherwise. Each possible value of 1/1 may be considered to correspond to a 
state in a finite automaton. 1/1 = 0 corresponds to a "stop" state, which is reached if 
and only if a(l ) has no predecessors. Possible values for a;~~. +, are then found from 
1/1; and the value of a;~{. These possible values then determine the value of 1/1;+,. 
A finite state transition graph, determined by the cellular automaton rules, gives the 
possible transitions 1/1; ~ 1/1;+ ,. Configurations reached after one time step of cellular 
automaton evolution may thus be recognized by a finite automaton with at most 2 k 2r 

states. The set of such configurations is thus specified by a regular grammar. 
In general, if the value of a given site after t steps of cellular automaton evolution 

depends on m initial site values, then the set of configurations generated by this 
evolution may be recognized by a finite automaton with at most 2km states. The 
value of m may increase as 2rt , potentially requiring an infinite number of states 
in the recognizing automaton, and preventing the specification of the set of possible 
configurations by a regular grammar. However, as discussed above, the value of m 

for a class 2 cellular automaton apparently remains finite as t ~ 00. Thus the set of 
configurations which may persist in such a cellular automaton may be recognized by 
a finite automaton, and are therefore specified by a regular grammar. The complexity 
of this grammar (measured by the minimum number of states required in the state 
transition graph for the recognizing automaton) may be used to characterize the 
complexity of the large time behaviour of the cellular automaton. 
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Finite class 2 cellular automata usually evolve to short period cycles containing the 
same persistent structures as are found in the infinite case. The fraction of exceptional 
initial states yielding other structures decreases rapidly to zero as N increases. 

7. Class 3 Cellular Automata 

Evolution of infinite class 3 cellular automata from almost all possible initial states 
leads to aperiodic ("chaotic") patterns. After sufficiently many time steps, the sta
tistical properties of these patterns are typically the same for almost all initial states. 
In particular, the density of nonzero sites typically tends to a fixed nonzero value 
(often close to 1/ k). In infinite cellular automata, "equilibrium" values of statistical 
quantities are approached roughly exponentially with time, and are typically attained 
to high accuracy after a very few time steps. For a few rules (such as the k = 2, r = 1 
rule with rule number 18 [20]) , however, "defects" consisting of small groups of sites 
may exist, and may execute approximate random walks, until annihilating, usually 
in pairs. Such processes lead to transients which decrease with time only as (- 1/2 . 

Figure 1 showed examples of the patterns generated by evolution of some typical 
class 3 cellular automata from disordered initial states. The patterns range from 
highly irregular (as for code 10), to rather regular (as for code 12). The most obvious 
regularity is the appearance of large triangular "clearings" in which all sites have 
the same value. These clearings occur when a " fluctuation" in which a sequence of 
consequence of consecutive sites have the same value, is progressively destroyed by 
the effects of other sites. The rate at which "information" from other sites may "flow" 
into the fluctuation, and thus the slope of the boundaries of the clearing, may range 
from 1/ k to r sites per time step. The qualitative regularity of patterns generated 
by some class 3 rules arises from the high density of long sequences of correlated 
site values, and thus of triangular clearings. In general, however, it appears that the 
density of clearings decreases with their size n roughly as (J"- n. Different cellular 
automata appear to yield a continuous range of (J" values. Those with larger (J" yield 
more regular patterns, while those with smaller (J" yield more irregular patterns. No 
sharp distinction appears to exist between class 3 cellular automata yielding regular 
and irregular patterns. 

The first column of fig . 9 shows patterns obtained by evolution with typical 
class 3 cellular automaton rules from initial states containing a single nonzero site. 
Unbounded growth, leading to an asymptotically infinite number of nonzero sites, is 
evident in all cases. Some rules are seen to give highly regular patterns, others lead 
to irregular patterns. 

The regular patterns obtained with rules such as code 2 are asymptotically self
similar fractal curves (cf. [11]). Their form is identical when viewed at different 
magnifications, down to length scales of order r sites. The total number of nonzero 
sites in such patterns after ( time steps approaches (d, where d gives the fractal 
dimension of the pattern. Many class 3 k = 2 rules generate a similar pattern, 
illustrated by codes 2 and 34 in fig . 9, with d = log2 3 "" 1.59. Some rules yield 
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codt" Z (000010) {"odli' 2 (000010) ('odt" 2 (000010) 

~~::;~ ~~~~~~~si!~t~~~~ 
code 10 (00 1010) cedt' 10 (001010) code 10 (001010) 

codC' 12 (001 100) code 12 (001100) cod£' 12 (001100) 

A 
AA A ...... 

code 26 (01IU 10) codE' 26 (011010) ('ode 26 (011010) 

codE' 34 ( 100010) cod!' :14 (100010) code 34 (100010) 

code 50 (110010) 

code 42 (101010) code 42 (101010) 

code 50 (110010) ... ode 50 (110010) -•. ~ 
Figure 9. Evolution of some class 3 totali stic cellular automata with k = 2 and r = 2 (as illustrated in fi g. I) 

from initial states containing one or a few nonzero sites. Some cases yield asymptotically self-s imilar 

patterns, while others are seen to give irregular patterns. 

self-similar patterns with other fractal dimensions (for example, code 38 yields 
d "" 1.75), but all self-similar patterns have d < 2, and lead to an asymptotic density 
of sites which tends to zero as td

-
2

• 

Rules such as code 10 are seen to generate irregular patterns by evolution even 
from a single site initial state. The density of nonzero sites in such patterns is found 
to tend asymptotically to a nonzero value; in some, but not all, cases the value is the 
same as would be obtained by evolution from a di sordered initial state. The patterns 
appear to exhibit no large-scale structure. 

Cellular automata contain no intrinsic scale beyond the size of neighbourhood 
which appears in their rules. A configuration containing a single nonzero site is 
also scale invariant, and any pattern obtained by evolution from it with cellular 
automaton rules must be scale invariant. The regular patterns in fig. 9 achieve this 
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scale invariance by their self-similarity. The irregular patterns presumably exhibit 
correlations only over a finite range, and are therefore effectively uniform and scale 
invariant at large distances. 

The second and third columns in fig. 11 show the evolution of several typical class 
3 cellular automata from initial states with nonzero sites in a small region. In some 
cases (such as code 12), the regular fractal patterns obtained with single nonzero sites 
are stable under addition of further nonzero initial sites. In other cases (such as code 
2) they are seen to be unstable. The numbers of rules yielding stable and unstable 
fractal patterns are found to be roughly comparable. 

Many but not all rules which evolve to regular fractal patterns from simple initial 
states generate more regular patterns in evolution from disordered initial states. 
Similarly, many but not all rules which produce stable fractal patterns yield more 
regular patterns from disordered initial states. For example, code 42 in figs. 1 and 9 
generates stable fractal patterns from a simple initial state, but leads to an irregular 
pattern under evolution from a disordered state. (Although not necessary for such 
behaviour, this rule possesses the additivity property mentioned in section 2.) 

The methods of section 4 may be used to analyse the general behaviour of class 3 
cellular automata evolving from typical initial states, in which all sites have nonzero 
values with nonzero probability. Class 3 cellular automata apparently always exhibit 
a nonzero minimum average propagation speed A_. Small changes in initial states 
thus almost always lead to increasingly large changes in later states. This suggests 
that both spatial and temporal dimensions d~~j and d~~J should be nonzero for all 
class 3 cellular automata. These dimensions are determined according to eqs. (4.15), 
(4.18), (4.22) and (4.23) by the limiting values of spatial and temporal entropies. 

A disordered or statistically random initial state, in which each site takes on its 
k possible values with equal independent probabilities, has maximal spatial entropy 
s~~i(X) = 1 for all block lengths X. Figure 10 shows the behaviour of s;,xJ(X) as 
a function of time for several block lengths X in the evolution of a typical class 3 
cellular automaton from a disordered (maximal entropy) initial state. The entropies 

x 
x · , 
x • 2 

X • 3 

X • 4 

X · , 

oL---------~2bO~--------4~O----~ 

Figure 10. Evolution of spatial measure en

tropies s;:>CX) as a function of time for evo

lution of the class 3 cellular automaton with 

code 12 illustrated in fig . I from a disordered 

initial state. The irreversibility of cellular au

tomaton evolution results in a decrease of the 

entropies with time. Rapid relaxation to an 

"equilibrium" state is nevertheless seen. 
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Figure 11. Evolution of (a) spatial and (b) temporal measure entropies s~x>CX) and st )(T) obtained at 

equilibrium by evolution of several class 3 cellular automata illustrated in fig . I, as a function of the spatial 

and temporal block lengths X and T. The entropies are evaluated for the regions indicated in figs. 7(a) 

and 7(b). The limit of s}:)(X) as X -+ 00 is the spatial measure dimension of the attractor for the system; 

the limit of st>CT) as T -+ 00 is the temporal measure dimension. 

are seen to decrease for a few time steps, and then to reach "equilibrium" values. The 
"equilibrium" values of s~xl (X) for class 3 cellular automata are typically indepen
dent of the probability measure on the ensemble of possible initial states, at least for 
"smooth" measures. The decrease in entropy with time manifests the irreversible na
ture of the cellular automaton evolution. The decrease is found to be much greater for 
class 3 cellular automata which generate regular patterns (with many triangular clear
ings) than for those which yield irregular patterns. The more regular patterns require 
a higher degree of self-organization, with correspondingly greater irreversibility, and 
larger entropy decrease. 

As discussed in section 4, the dependence of s{~~ (X) on X measures spatial 
correlations in cellular automaton configurations. s{~~ (X) therefore tends to a constant 
if X is larger than the range of any correlations between site values. In the presence 
of correlations, s{~~ (X) always decreases with X. Available data from simulations 
provide reliable accurate estimates for s{~~ (X) only for 0 ::5 X ;5 8. Figure 11 shows 
the behaviour of the equilibrium value of s~xl (X) as a function of X over this range for 
several typical class 3 cellular automata. For rules which yield irregular patterns the 
equilibrium value of s~Xl (X) typically remains ~ 0.9 for X ;5 8. s~Xl(X) at equilibrium 
typically decreases much more rapidly for class 3 cellular automata which generate 
more regular patterns. At least for small X, s;:l(X) for such cellular automata typically 
decreases roughly as X-'1 with '7 "" 0.1. 

The values of the spatial set entropy s(xl (X) provide upper bounds on the spatial 
measure entropy s~xl (X) . The distribution of nonzero probabilities p;Xl for possible 
length X blocks is typically quite broad, yielding an s;:l (X) significantly smaller 
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than s(x)(X). Nevertheless, the general behaviour of s::)(X) with X usually roughly 
follows s(x )(X), but with a slight X delay. 

As discussed in section 4, the set entropy s(x)(X) attains its maximum value of 
1 if and only if all kX sequences of length X appear (with nonzero probability) in 
evolution from some initial state. Notice that if s(x)(X) = I after one time step, then 
s(x>CX) = 1 at any time. In general, s(x) (X) takes on value 1 for blocks up to some 
critical length Xc (perhaps infinite), as defined in eq. (4.13). 

Since a block of length X is completely determined by a sequence of length 
X + 2r in the previous configuration, any predecessors for the block may in principle 
be found by an exhaustive search of all kX+2r possible length X + 2r sequences. The 
procedure for progressive construction of predecessors outlined in section 6 provides 
a more efficient procedure [21]. The critical block length Xc is determined by the 
minimum number of nodes in the finite automaton state transition graph visited on 
any path from the "start" to "stop" node. The state transition graph is determined by 
the set of transition rules '1'; ~ '1';+,. Starting with length 1 blocks, these transition 
rules may be found by considering construction of all possible progressively longer 
blocks, but ignoring blocks associated with values '1'; for which the transition rules 
have already been found. If Xc is finite, the "stop" node 'I' = 0 is reached in the 
construction of length Xc blocks. Alternatively, the state transition graph may be 
found to consist of closed cycles, not including 'I' = O. In this case, Xc is determined 
to be infinite. Since the state transition graph contains at most 2k2r nodes, the value 
of Xc may be found after at most this many tests. The procedure thus provides a 
finite algorithm for determining whether all possible arbitrarily long sequences of 
site values may be generated by evolution with a particular cellular automaton rule. 

Table 2 gives the critical block lengths Xc for the cellular automata illustrated 
in fig. 1. Class 3 cellular automata with smaller Xc tend to generate more regular 
patterns. Those with larger Xc presumably give systematically larger entropies and 
their evolution is correspondingly less irreversible. 

For additive cellular automata (such as code 42 in fig. I and table 2), all possible 
blocks of any length X may be reached, and have exactly k 2r predecessors of length 
X +2r. In this case, therefore, evolution from a disordered initial state gives s(x) (X) = 

1 for all X (hence Xc = 00). The equality of the number of predecessors for 
each block implies in addition in this case that s~x)(X) = 1, at least for evolution 
from disordered initial states. Hence for additive cellular automata 

(7.1) 

The configurations generated by additive cellular automata are thus maximally 
chaotic. 

In general cellular automata evolving according to eq. (2.1) yield s(x) (X) = I for 
all X, so that d (x) = 1, if F is an injective (one-to-one) function of either its first or 
last argument (or can be obtained by composition of functions with such a property). 
This may be proved by induction. Assume that all blocks of length X are reachable, 
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Code Xc Code 

2 5 32 
4 12 34 
6 7 36 
8 12 38 

10 36 40 
12 5 42 
14 5 44 
16 5 46 
18 5 48 
20 36 50 
22 12 52 
24 7 54 
26 12 56 
28 5 58 
30 3 60 

Xc 

3 
5 

12 
7 

12 
00 

5 
5 
5 
5 

22 
12 
7 

12 
5 

Table 2. Values of critical block length Xc for legal totalistic 

k = 2, r = 2 cellular automata as illustrated in fig. I. For X < 

Xc, all k X possible blocks of X site values appear with nonzero 

probability in configurations generated after any number of 

time steps in evolution from disordered initial states, while for 

X ~ Xc, some blocks are absent, so that the spatial set entropy 
s(x) (X) < I. 

with predecessors of lengths X + 2r. Then form a block of length X + 1 by adding 
a site at one end. To obtain all possible length X + 1 blocks, the value a' of this 
additional site must range over k possibilities. Any predecessors for length X + I 
blocks must be obtained by adding a (X + 2r + l)-th site (with value a) at one end. 
For all length X + 1 blocks to be reachable, all values of a' must be generated when a 
runs over its k possible values, and the result follows. Notice that not all length X + I 
blocks need have the same (nonzero) number of predecessors, so that the measure 
entropy s~X ) (X) may be less than the set entropy s(x )(X). 

While injectivity of the rule function F for a cellular automaton in its first or last 
arguments is sufficient to give d(x ) = I , it is apparently not necessary. A necessary 
condition is not known. 

In section 6 it was shown that the set of configurations obtained by cellular 
automaton evolution for a finite number of time steps from any initial state could 
be specified by a regular grammar. In general the complexity of the grammar may 
increase rapidly with the number of time steps, potentially leading at infinite time 
to a set not specifiable by a regular grammar. Such behaviour may generically be 
expected in class 3 cellular automata, for which the average minimum propagation 
speed X > O. 

As discussed in section 4, one may consider the statistics of temporal as well as 
spatial sequences of site values. The temporal aperiodicity of the patterns generated 
by evolution of class 3 cellular automata from almost all initial states suggests that 
these systems should have nonvanishing temporal entropies si;;) (T) and nonvanishing 

temporal dimensions di;J). Once again, the temporal entropies for blocks starting 
at progressively later times quickly relax to equilibrium values. Notice that the 
dimension di;J) obtained from the large T limit of the si;J) (T) is always independent 
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of the starting times for the blocks. This is to be contrasted with the spatial dimensions 

d~~i , which depend on the time at which they are evaluated. Just as for spatial 
entropies, it found that the equilibrium temporal entropies are essentially independent 
of probability measure for initial configurations. 

The temporal entropies s~;;) (T) decrease slowly with T . In fact, it appears that in 
all cases 

(I ) (Z) > (x) (Z) 
s(J.l ) - s (J.l ) • (7.2) 

The ratio s~;;) (Z)/s~~i(Z) is, however, typically much smaller than its maximum 
value (4.38) equal to the maximum propagation speed A+. Notice that the value of A+ 
determines the slopes of the edges of triangular clearings in the patterns generated 
by cellular automaton evolution. 

At least for the class 3 cellular automata in fig. 1 which generate irregular patterns, 
the equilibrium set entropy s(t )(T) = I for all T ~8 for which data are available. Note 
that the result s(t) (T) = I holds for all T for any additive cellular automaton rule. 
One may speculate that class 3 cellular automata which generate apparently irregular 
patterns form a special subclass, characterized by temporal dimension d (t) = 1. 

For class 3 cellular automata which generate more regular patterns, s(I)(T) appears 
to decrease, albeit slowly, with T. Just as for spatial sequences, one may consider 
whether the temporal sequences which appear form a set described by a regular 
grammar. For the particular case of the k = 2, r = 1 cellular automaton with 
rule number 18, there is some evidence [21] that all possible temporal sequences 
which contain no 11 subsequences may appear, so that N (t) (T) = FT where FT is 
the Tth Fibonacci number (FT = FT_, + FT_2, Fo = F, = I). This implies that 

N(I)(T) - ifJT (ifJ = (.J5 + 1)/ 2 '" 1.618) for large T , suggesting a temporal set 
dimension d (t) = log2 ifJ "" 0.694. In general, however, the set of possible temporal 
sequences is not expected to be described by a regular grammar. 

The non vanishing value of the average minimum propagation speed :t for class 
3 cellular automata suggests that in all cases the value of a particular site depends 
on an ever-increasing number of initial site values. However, the complexity of this 
dependence is not known. The value of a site after t time steps can always be specified 
by a table with an entry for each of k2A+I relevant initial sequences. Nevertheless, it 

is possible that a finite state automaton, specified by a finite state transition graph, 
could determine the values of sites at any time. 

The behaviour of finite class 3 cellular automata with additive rules was analysed 
in some detail in ref. 2. It was shown there that the maximal cycle length for additive 
cellular automata grows on average exponentially with the size N of the cellular 
automaton. Most cycles were found to have maximal length, and the number of 
di stinct cycles was found also to grow on average exponentially with N . The lengths 
of transients leading to cycles was found to grow at most linearly with N . The 
fraction of states on cycles was found on average to tend to a finite limit. 
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For most class 3 cellular automata, the average cycle length grows quite slowly 
with N , although in some cases, the absolute maximum cycle length appears to grow 
rapidly. The lengths of transients are typically short for cellular automata which 
generate more regular patterns, but often become very long as N increases for cellular 
automata which generate more irregular patterns. The fractions of states on cycles 
are typically much larger for finite class 3 cellular automata which generate irregular 
patterns than for those which generate more regular patterns. This is presumably 
a reflection of the lower irreversibility and larger attractor dimension found for the 
former case in the infinite size limit. 

8. Class 4 Cellular Automata 

Figure 12 shows the evolution of the class 4 cellular automaton with k = 2, r = 2 and 
code number 20, from several disordered initial configurations. In most cases, all 
sites are seen to "die" (attain value zero) after a finite time. However, in a few cases, 
stable or periodic structures which persist for an infinite time are formed. In addition, 
in some cases, propagating structures are formed. Figure 13 shows the persistent 
structures generated by this cellular automaton from all initial configurations whose 
nonzero sites lie in a region of length 20 (reflected versions of the last three structures 
are also found). Table 3 gives some characteristics of these structures. An important 
feature , shared by other class 4 cellular automata, is the presence of propagating 
structures. By arranging for suitable reflections of these propagating structures, final 
states with any cycle lengths may be obtained. 

The behaviour of the cellular automata illustrated in fig. 13, and the structures 
shown in fig. 14 are strongly reminiscent of the two-dimensional (essentially totalis
tic) cellular automaton known as the "Game of Life'" (for references see [1]). The 
Game of Life has been shown to have the important property of computational uni
versality. Cellular automata may be viewed as computers, in which data represented 
by initial configurations is processed by time evolution. Computational universal
ity (e.g. [15-18]) implies that suitable initial configurations can specify arbitrary 
algorithmic procedures. The system can thus serve as a general purpose computer, 
capable of evaluating any (computable) function. Given a suitable encoding, the 
system may therefore in principle simulate any other system, and in this sense may 
be considered capable of arbitrarily complicated behaviour. 

The proof of computational universality for the Game of Life [22] uses the exis
tence of cellular automaton structures which emulate components (such as "wires" 
and "NAND gates") of a standard digital computer. The structures shown in fig. 14 
represent a significant fraction of those necessary. A major missing element is a 
configuration (dubbed the "glider gun" in the Game of Life) which acts like a clock, 

• Each site in this cellular automaton can take on one of two possible values; the time evolution rule involves nine site 
(type II ) neighbourhoods. If the values of less than 2 or more than 3 of the eight neighbours of a particular site are 
nonzero then the site takes on value 0 at the next time step; if 2 neighbouring sites are nonzero the site takes the same 
value as on the previous time steps; if exactly 3 neighbouring sites are nonzero, the site takes on value I. 
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Figure 12. Examples of the evolution of a class 4 cellular automaton (totali stic code 20 k = 2, r = 2 rule) 

from several di sordered initial states. Persistent structures are seen to be generated in a few cases. The 

evolution is truncated after 120 time steps . 

and generates an infinite sequence of propagating structures. Such a configuration 
would involve a finite number of initial nonzero sites, but would lead to unbounded 
growth, and an asymptotically infinite number of nonzero sites. There are however 
indications that the required initial configuration is quite large, and is very difficult 
to find. 

These analogies lead to the speculation that class 4 cellular automata are charac
terized by the capability for universal computation. k = 2, r = I cellular automata 
are too simple to support universal computation; the existence of class 4 cellular 
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Period Minimal predecessor ¢>(10) ¢>(20) 

2 10010111 (151 ) 0.027 0.024 

9R 10111011 (187) 0.012 0.0061 

10111 101 (189) 0.014 0.0075 

22 11000011 (195) 0.QJ8 0.017 

9L 11011101 (221 ) 0.012 0.0061 

lR 1001111011 (635) 0.0020 0.00066 

IL 1101111001 (889) 0.0020 0.00066 

38 111 10100100101111 (125231) 0 2.9 x 10-5 

4 10010001011011110111 (595703) 0 7.6 x 10- 6 

4 10010101001010110111 (610999) 0 7.6 x 10-6 

4 10011000011111101111 (624623) 0 7.6 x 10-6 

Table 3. Persistent structures arising from initial configurations with length less than 20 sites in the class 4 

totalistic cellular automaton with k = 2, r = 2 and code number 20, illustrated in figs. 12, 13 and 14. ¢(X ) 

gives the fraction of initial configurations with nonzero sites in a region less than X sites in length which 

generate a particular structure. When an initial configuration yields multiple structures, each is included 

in this fraction. 

automata with k = 2, r = 2 (cf. figs. 13 and 14) and k = 3, r = 1 suggests that with 

suitable time evolution rules even such apparently simple systems may be capable of 

universal computation. 

There are important limitations on predictions which may be made for the be

haviour of systems capable of universal computation. The behaviour of such systems 

may in general be determined in detail essentially only by explicit simulation of their 

time evolution. It may in general be predicted using other systems only by procedures 

ultimately equivalent to explicit simulation. No finite algorithm or procedure may be 

devised capable of predicting detailed behaviour in a computationally universal sys

tem. Hence, for example, no general finite algorithm can predict whether a particular 

initial configuration in a computationally universal cellular automaton will evolve to 

the null configuration after a finite time, or will generate persistent structures, so that 

sites with nonzero values will exist at arbitrarily large times. (This is analogous to 

the insolubility of the halting problem for universal Turing machines (e.g. [15-18]).) 
Thus ifthe cellular automaton of figs. 12 and 13 is indeed computationally uni versal, 

no finite algorithm could predict whether a particular initial state would ultimately 

"die", or whether it would ultimately give rise to one of the persistent structures of 

fig . 13. The result could not be determined by explicit simulation, since an arbitrar

ily large time might elapse before one of the required states was reached. Another 

universal computer could also in general determine the result effectively only by 

simulation, with the same obstruction. 

If class 4 cellular automata are indeed capable of universal computation, then 

their evolution involves an element of unpredictability presumably not present in 
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other classes of cellular automata. Not only does the value of a particular site after 
many time steps potentially depend on the values of an increasing number of initial 
site values; in addition, the value cannot in general be dete~ined by any "short-cut" 
procedure much simpler than explicit simulation of the evolution. The behaviour of 
a class 4 cellular automaton is thus essentially unpredictable, even given complete 
initial information: the behaviour of the system may essentially be found only by 
explicitly running it. 

Only infinite cellular automata may be capable of universal computation; finite 
cellular automata involve only a finite number of internal states, and may therefore 
evaluate only a subset of all computable functions (the "space-bounded" ones). 

The computational universality of a system implies that certain classes of gen
eral predictions for its behaviour cannot be made with finite algorithms. Specific 
predictions may nevertheless often be made, just as specific cases of generally non
computable function may often be evaluated. Hence, for example, the behaviour of 
all configurations with nonzero sites in a region of length 20 or less evolving accord
ing to the cellular automaton rules illustrated in figs. 12 and 13 has been completely 
determined. Figure 14 shows the fraction of initial configurations which evolve to the 
null state within T time steps , as a function of T , for various sizes X of the region of 
nonzero sites. For large X and large T, it appears that the fraction of configurations 
which generate no persistent structures (essentially the "halting probability") is ap
proximately 0.93. It is noteworthy that the curves in fig . 14 as a function of T appear 
to approach a fixed form at large X. One may speculate that some aspects of the form 
of such curves may be universal to all systems capable of universal computation. 

Figure 13. Persistent structures found in the evolution of the class 4 cellular automaton illustrated in 

fig. 12 from initial states with nonzero sites in a region of 20 or less sites. Reflected versions of the last 

three structures are also found. Some properties of the structures are given in Table 3. These structures 

are almost sufficient to prov ide components necessary to demonstrate a universal computation capability 

for this cellular automaton. 
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15 
20 

T 
100 

Figure 14. Fraction of configurations in the 

class 4 cellular automaton of figs . 12 and 13 

which evolves to the null configuration after T 

time steps, from initial states with nonzero sites 

in a region of length less than X (translates of 

configurations are not included). The asymp

totic "halting probability" is around 0.93; 7% 

of initial configurations generate the persistent 

structures of fig . 13 and never evolve to the null 

configuration. 

The sets of persistent structures generated by class 4 cellular automata typically 
exhibit no simple patterns, and do not appear to be specified, for example, by regular 
grammars. Specification of persistent structures by a finite procedure is necessarily 
impossible if class 4 cellular automata are indeed capable of universal computation. 
Strong support of the conjecture that class 4 cellular automata are capable of universal 
computation would be provided by a demonstration of the equivalence of systematic 
enumeration of all persistent structures in particular class 4 cellular automata to the 
systematic enumeration of solutions to generally insoluble Diophantine equations or 
word problems. 

Although one may determine by explicit construction that specific cellular au
tomata are capable of universal computation, it is impossible to determine in general 
whether a particular cellular automaton is capable of universal computation. This is 
a consequence of the fact that the structures necessary to implement universal com
putation may be arbitrarily complicated. Thus, for example, the smallest propagating 
structure might involve an arbitrarily long sequence of site values. 

For class 1, 2 and 3 cellular automata, fluctuations in statistical quantities are 
typically found to become progressively smaller as larger numbers of sites are con
sidered. Such systems therefore exhibit definite properties in the "infinite volume" 
limit. For class 4 cellular automata, it seems likely that fluctuations do not decrease 
as larger number of sites are considered, and no simple smooth infinite volume limit 
exists. Important qualitative effects can arise from special sequences appearing with 
arbitrarily low probabilities in the initial state. Consider for example the class 4 cel
lular automaton illustrated in figs. 12 and 13. The evolution of the finite sequences 
in this cellular automaton shown in fig. 12 (and many thousands of other finite se
quences tested) suggests that the average density of nonzero sites in configurations 
of this cellular automaton should tend to a constant at large times. However, in a 
sufficiently long finite initial sequence, there should exist a subsequence from which 
a "glider gun" structure evolves. This structure would generate an increasing number 
of nonzero sites at large times, and its presence would completely change the average 
large time density. As a more extreme example, it seems likely that a sufficiently long 
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(but finite) initial sequence should evolve to behave as a self-reproducing "organism", 

capable of eventually taking over its environment, and leading to completely different 
large time behaviour. Very special, and highly improbable, initial sequences may 

thus presumably result in large changes in large time properties for class 4 cellular 
automata. These sequences must appear in a truly infinite (typical) initial configu

ration. Although their density is perhaps arbitrarily low, the sequences may evolve 
to structures which come to dominate the statistical properties of the system. The 

possibility of such phenomena suggest that no smooth infinite volume exists for class 
4 cellular automata. 

Some statistical results may be obtained from large finite class 4 cellular automata, 

although the results are expected to be irrelevant in the truly infinite volume limit. The 
evolution of most class 4 cellular automata appears to be highly irreversible.· This 

irreversibility is reflected in the small set of persistent structures usually generated as 
end-products of the evolution. Changes in small regions of the initial state may affect 
many sites at large times. There are however very large fluctuations in the propagation 

speed, and no meaningful averages may be obtained. It should be noted that groups 
of class 4 cellular automata with different rules often yield qualitatively similar 

behaviour, and similar sets of persistent structures, suggesting further classification. 
The frequency with which a particular structure is generated after an infinite time 

by the evolution of a universal computer from random (disordered) input gives the 
"algorithmic probability" p A [24] for that structure. This algorithmic probability has 
been shown to be invariant (up to constant multiplicative factors) for a wide class of 

universal computers. In general, one may define an "evolutionary probability" P E (t) 

which gives the probability for a structure to evolve after t time steps from a random 
initial state. Complex structures formed by cellular automata will typically have evo

lutionary probabilities which are initially small, but later grow. As a simple example, 
the probability for the sequence which yields a period 9 propagating structure in the 
cellular automaton of figs. 12 and 13 begins small, but later increases to a sufficiently 

large value that such structures are almost always generated from disordered states 

of 2000 or more sites. In a much more complicated example, one may imagine that 
the probability for a self-reproducing structure begins small, but later increases to 
a substantial value. Structures whose evolutionary probability becomes significant 
only after a time> T may be considered to have "logical depth" [25] T. 

9. Discussion 

Cellular automata are simple in construction, but are capable of very complex be
haviour. This paper has suggested that a considerable universality exists in this 

complex behaviour. Evidence has been presented that all one-dimensional cellular 

automata fall into only four basic classes. In the first class, evolution from almost 

• This feature allows practical simulation of such cellular automata to be made more efficient by storing information on 

the evolution of the specific sequences of sites which occur with larger probabilities (cf. [23]). 
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aJl initial states leads ultimately to a unique homogeneous state. The second class 
evolves to simple separated structures. Evolution of the third class of cellular au
tomata leads to chaotic patterns, with varying degrees of structure. The behaviours of 
these three classes of cellular automata are analogous to the limit points, limit cycles 
and chaotic ("strange") attractors found in continuous dynamical systems. The fourth 
class of cellular automata exhibits still more complicated behaviour, and its members 
are conjectured to be capable of universal computation. 

Even starting from disordered or random initial configurations, cellular automata 
evolve to generate characteristic patterns. Such self-organizing behaviour occurs by 
virtue of the irreversibility of cellular automaton evolution. Starting from almost any 
initial state, the evolution leads to attractors containing a small subset of all possible 
states. At least for the first three classes of cellular automata, the states in these 
attractors form a Cantor set, with characteristic fractal and other dimensions. For the 
first and second classes, the states in the attractor may be specified as sentences with 
a regular grammar. For the fourth class, the attractors may be arbitrarily complicated, 
and no simple statistical characterizations appear possible. 

The four classes of cellular automata may be distinguished by the level of pre
dictability of their "final" large time behaviour given their initial state. For the first 
class, all initial states yield the same final state, and complete prediction is trivial. In 
the second class, each region of the final state depends only on a finite region of the 
initial state; knowledge of a small region in the initial state thus suffices to predict 
the form of a region in the final state. In the evolution of the third class of cellular 
automata, the effects of changes in the initial state almost always propagate forever 
at a finite speed. A particular region thus depends on a region of the initial state 
of ever-increasing size. Hence any prediction of the "final" state requires complete 
knowledge of the initial state. Finally, in the fourth class of cellular automata, regions 
of the final state again depend on arbitrarily large regions of the initial state. However, 
if cellular automata in the class are indeed capable of universal computation, then 
this dependence may be arbitrarily complex, and the behaviour of the system can be 
found by no procedure significantly simpler than direct simulation. No meaningful 
prediction is therefore possible for such systems. 
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Self-organizing behaviour in cellular automata is discussed as a computational pro
cess. F ormallanguage theory is used to extend dynamical systems theory descriptions 
of cellular automata. The sets of configurations generated after a finite number of 
time steps of cellular automaton evolution are shown to form regular languages. 
Many examples are given. The sizes of the minimal grammars for these languages 
provide measures of the complexities of the sets. This complexity is usually found to 
be non-decreasing with time. The limit sets generated by some classes of cellular 
automata correspond to regular languages. For other classes of cellular automata 
they appear to correspond to more complicated languages. Many properties of these 
sets are then formally non-computable. It is suggested that such undecidability is 

common in these and other dynamical systems. 

1. Introduction 

Systems that follow the second law of thennodynamics evolve with time to maxi
mal entropy and complete disorder, destroying any order initially present. Cellular 
automata are examples of mathematical systems which may instead exhibit "self
organizing" behaviour I . Even starting from complete disorder, their irreversible 
evolution can spontaneously generate ordered structure. One coarse indication of 
such self-organization is a decrease of entropy with time. This paper discusses an 
approach to a more complete mathematical characterization of self-organizing pro
cesses in cellular automata, and possible quantitative measures of the "complexity" 
generated by them. The evolution of cellular automata is viewed as a computation 

Originally published in Communications in Mathematical Physics. volume 96. pages 15-57 (November 1984). 

I An introduction to cellular automata in this context. together with many references is given in [I] . Further results are 
given in [2, 3], and are surveyed in [4, 5]. 
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which processes information specified as the initial state. The structure of the output 
from such information processing is then described using the mathematical theory 
of formal languages (e.g. [6-8]) . Detailed results and examples for simpler cases 
are presented, and some general conjectures are outlined. Computation and formal 
language theory may in general be expected to play a role in the theory of non
equilibrium and self-organizing systems analogous to the role of information theory 
in conventional statistical mechanics. 

A one dimensional cellular automaton consists of a line of sites, with each site 
taking on a finite set of possible values, updated in discrete time steps according to a 
deterministic rule involving a local neighbourhood of sites around it. The value of 
site i at time step t is denoted ail) and is a symbol chosen from the alphabet 

S={O, l , ... , k-l}. ( l.l ) 

The possible sequences of these symbols form the set 1: of cellular automaton config
urations A (I ) . Most of this paper concerns the evolution of infinite sequences 1: = S2; 
finite sequences 1: = SN flanked by quiescent sites (with say value 0) may al so be 
considered. At each time step each site value is updated according to the values of a 
neighbourhood of 2,. + I sites around it by a local rule 

¢: S2,.+1 ~ S 

of the form2 

(I) _ A.[ (1-1 ) (1-1 ) (1-1 ) ] 
Q i - If' Qi- r ' Qi- r+l " '" Q i+r . 

This local rule leads to a global mapping 

on complete cellular automaton configurations. Then in general 

.0.(1+ 1) = <1>.0.(1) ~ .0.(1), 

where 

(1.2) 

(1.3) 

(1.4) 

( 1.5) 

( 1.6) 

is the set (ensemble) of configurations generated after t iterated applications of <I> 

(t time steps). 
Formal languages consist of sets of words formed from strings of symbols in a 

finite alphabet S according to definite grammatical rules. Sets of cellular automa
ton configurations may thus be considered as formal languages, with each word in 
the language representing a cellular automaton configuration. Such infinite sets of 
configurations are then completely specified by finite sets of grammatical rules. (This 

2 The notation used here differs slightly from that of [2]. In particular, F in [2] is denoted here as ¢. 
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descriptive use of formal grammars may be contrasted with the use of their transfor

mation rules to define the dynamical evolution of developmental or L systems (e.g. 

[9]).) 

Figure 1.1 gives typical examples of the evolution of cellular automata from 

disordered initial states according to various rules ¢. Structure of varying complex

ity is seen to be formed. Four basic classes of behaviour are found in these and 

other cellular automata [2]. In order of increasing apparent complexity, qualitative 

characterizations of these classes are as follows: 

l. Tends to a spatially homogeneous state. 

2. Yields a sequence of simple stable or periodic structures. 

3. Exhibits chaotic aperiodic behaviour. 

4. Yields complicated localized structures, some propagating. 

Approaches based on dynamical systems theory (e.g. [10, 11]) suggest some 

quantitative characterizations of these classes: the first three are analogous to the 

limit points, limits cycles and chaotic ("strange") attractors found in continuous 

dynamical systems. The fourth class exhibits more complex behaviour, and, as 

discussed below, is conjectured [2] to be capable of universal computation (e.g. [6, 

7, 8]) . The formal language theory approach discussed in this paper provides more 

precise and complete characterizations of the classes and their complexity. 

The four classes of cellular automata generate distinctive patterns by evolution 

from finite initial configurations, as illustrated in Fig. 1.2: 

1. Pattern disappears with time. 

2. Pattern evolves to a fixed finite size. 

3. Pattern grows indefinitely at a fixed rate. 

4. Pattern grows and contracts with time. 

The classes are also distinguished by the effects of small changes in initial con

figurations: 

1. No change in final state. 

2. Changes only in a region of finite size. 

3. Changes over a region of ever-increasing size. 

4. Irregular changes. 

"Information" associated with the initial state thus propagates only a finite distance 

in classes 1 and 2, but may propagate an infinite distance in classes 3 and 4. In class 

3, it typically propagates at a fixed positive speed. 

161 



Wolfram on Cellular Automata and Complexity 

'Y."_ ••.• y ........................... . 

Figure 1.1. Evolution of cellular automata with various typical local rules cp. The initial state is disor

dered; successive lines show configurations obtained at successive time steps. Four qualitative classes of 

behaviour are seen. (The first five rules shown have k = 2 and r = I . and rule numbers 18. 22. 76. 90 and 

128. respectively [I). The last rule has k = 2. r = 2. and totalistic code number 20 [2).) 

The grammar of a formal language gives rules for generating or recognizing the 
words in the language. An idealized computer (such as a Turing machine) may be 
constructed to implement these rules. Such a computer may be taken to consist of a 
"central processing unit" with a fixed finite number of internal states, together with 
a "memory" or "tape." Four types of formal language are conventionally identified, 
roughly characterized by the size of the memory in computers that implement them 

(e.g. [7]): 
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O. Unrestricted languages3: indefinitely large memory. 

1. Context-sensitive languages: memory proportional to input word length. 

2. Context-free languages: memory arranged in a stack, with a fixed number of 
elements available at a given time. 

3. Regular languages: no memory. 

These four types of languages (essentially) form a hierarchy, with type 0 the 
most general. Only type 0 languages require full universal computers; the other 
three types of language are associated with progressively simpler types of computer 
(linear-bounded automata, pushdown automata, and finite automata, respectively). 

The grammatical rules for a formal language may be specified as "productions" 
which define transformations or rewriting rules for strings of symbols. In addition to 
the set S of "terminal" symbols Sj which appear directly in the words of the language, 
one introduces a set U of intermediate "non-terminal" symbols u j • To generate words 
in the language, one begins with a particular non-terminal "start" symbol, then uses 
applicable productions in tum eventually to obtain strings containing only terminal 
symbols. The different types of languages involve productions of different kinds: 

O. Arbitrary productions. 

1. Productions al ~ a2 for which la21 ~ lall , where a j is an arbitrary string of 
terminal and non-terminal symbols, and laj I is its length. 

2. Productions of the form u j ~ aj only (with a fixed bound on laj I). 

3. Productions of the form u j ~ Sj U k or u j ~ Sj only. 

Words in languages are recognized (or "parsed") by finding sequences of inverse 
productions that transform the words back to the start symbol. 

The grammars for regular (type 3) languages may be specified by the finite state 
transition graphs for finite automata that recognize them. Each arc in such a graph 
carries a symbol Sj from the alphabet S. The nodes in the graph are labelled by non
terminal symbols, and connected according to the production rules of the grammar. 
Words in the language correspond to paths through the state transition graph. The (set) 
entropy of the language, defined as the exponential rate of increase in the number 
of words with length (see Sect. 3), is then given by the logarithm of the largest 
eigenvalue of the adjacency matrix for the state transition graph. This eigenvalue is 
always an algebraic integer. 

The set of all possible sequences of zeroes and ones forms a trivial regular 
language, corresponding to a finite automaton with the state transition graph of 
Fig. 1.3a. Exclusion of all sequences with pairs of adjacent ones (so that any 1 must 
be followed by a 0) yields the regular language of Fig. 1.3b. The set of sequences in 

3 Also known as general. phrase·structure. and semi·Thue languages. 
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... .., ... 

Figure 1.2. Evolution of cellular automata with various typical local rules from finite initial states. (The 

rules shown are the same as in Fig. 1.1.) 

which, say, an even number of isolated ones appear between every 0 II 0 block, again 
forms a regular language, now specified by the graph of Fig. 1.3c. 

Regular expressions provide a convenient notation for regular languages. For ex
ample, ((0*)( 1 *» * represents all possible sequences of zeroes and ones, corresponding 
to Fig. 1.3a. Here a* denotes an arbitrary number of repetitions of the string a. With 
this notation, (0*(10)*)* represents Fig. 1.3b, and (0(0*)1(0*)1)* represents Fig. l.3c. 

Many regular grammars may in general yield the same regular language. However, 
it is always possible to find the simplest grammar for a given regular language 
(Myhill-Nerode theorem (e.g. [7])) , whose corresponding finite automaton has the 
minimal number of states (nodes). This minimal number of states provides a measure 
of the "complexity" B of the regular language. The regular languages of Fig. 1.3a-c 
are thus deemed to have progressively greater regular language complexities. 

Section 2 shows that the sets of configurations nU) generated by any finite number 
of steps in the evolution of a cellular automaton form a regular language. For some 
cellular automata, the complexities of the regular languages obtained tend to a fixed 
limit after a few time steps, yielding a large time limiting set of configurations 
corresponding to a regular language. In general, it appears that the limit sets for 
all cellular automata that exhibit only class 1 or 2 behaviour are given by regular 
languages. For most class 3 and 4 cellular automata, however, the regular language 
complexities B (I) of the sets nU) increase rapidly with time, presumably leading to 

non-regular language limit sets. 
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Sets of symbol sequences analogous to sets of cellular automaton configurations 
are obtained from the "symbolic dynamics" of continuous dynamical systems, in 
which the values of real number parameters are divided into discrete bins, labelled 
by symbols (e.g. [10, 11]). The simplest symbol sequences obtained in this way 
are "full shifts," corresponding to trivial regular languages L containing all possible 
sequences of symbols. More complicated systems yield finite complement languages, 
or "subshifts of finite type," in which a finite set of fixed blocks of symbols is excluded. 
"Sofic" systems, equivalent to general regular languages, have also been studied [12]. 
There is nevertheless evidence that, just as in cellular automata, regular languages 
are inadequate to describe the complete symbolic dynamics of even quite simple 
continuous dynamical systems. 

Context-free (type 2) languages are generalizations of regular languages. Words 
in context-free languages may be viewed as sequences of terminal nodes (leaves) 
in trees constructed according to context-free grammatical rules. Each non-terminal 
symbol in the context-free grammar is taken to correspond to a type of tree node. The 
production rules for the non-terminal symbol then specify its possible descendents in 
the tree. For each word in the language, there corresponds such a "derivation" tree , 
rooted at the start symbol. (In most context-free languages, there are "ambiguous" 
words, obtained from multiple distinct derivation trees.) The syntax for most practical 
computer languages is supposed to be context-free . Each grammatical production 
rule corresponds to a subexpression with a particular structure (such as u 0 v); the 
subexpressions may be arbitrarily nested [as in ((aO(b Oc» O d) Oe] , corresponding 
to arbitrary derivation trees. 

Regular languages correspond to context-free languages whose derivation trees 
consist only of a "trunk" sprouting a sequence of leaves, one at a time. An example 
of a context-free language not represented by any regular grammar is the sequence 
of strings of the form on IOn for any n. (Here, as elsewhere, a n represents n-fold 
repetition of the string a.) A derivation tree for a word in this language is shown 
in Fig. 1.4. In general , the productions of any context-free language may in fact be 

1 

00::> 
o 

o~o 

~-

(a) (b) (c) 

Figure 1.3a-<. State transition graphs for deterministic finite automata (OFA) corresponding to some 

regular languages: a the set of all possible sequences of zeroes and ones; b sequences in which II never 

occurs; c sequences in which an even number of isolated I 's appear between each 0 II 0 block. Words in 

the languages correspond to sequences of symbols on arcs in paths through the OFA state transition graphs. 

The three OFA shown have successively larger numbers of states B. and the sets of symbol sequences 

they represent may be considered to have successively larger "regular language complexities". 
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o o 

Figure 1.4. The derivation tree for a word in the context-free lan

guage consisting of sequences of the form 0" 10" . 

arranged so that all derivation trees are binary (Chomsky normal form)4. 
At each point in the generation of a word in a regular language, the next symbol 

depends only on the current finite automaton state, and not on any previous history. 
(Regular language words may thus be considered as Markov chains.) To generate 
words in a context-free language, however, one must maintain a "stack" (last-in 
first-out memory), which at each point represents the part of the derivation tree 
above the symbol (tree leaf) just generated. In this way, words in context-free 
languages may exhibit certain long-range correlations, as illustrated in Fig. 1.4. (In 
practical computer languages, these long-range correlations are typically manifest in 
the pairing of parentheses separated by many subexpressions.) 

The production rules of a context-free grammar specify transformations for in
dividual non-terminal symbols, independent of the "context" in which they appear. 
Context-sensitive grammars represent a generalization in which transformations for 
a particular symbol may depend on the strings of symbols that precede or follow it 
(its "context"). However, the transformation or production rule for any string a l is 
required to yield a longer (or equal length) string a2• The set of all strings of the 
form on 1 non for any n forms a context-sensitive language, not represented by any 
context-free or simpler language. The words in a context-sensitive language may be 
viewed as formed from sequences of terminal nodes in a directed graph. The graph is 
a derivation tree rooted at the start symbol, but with connections representing context 
sensitivities added. The requirement la21 ~ lall implies that there are progressively 
more nodes at each stage: the length of a word in context-sensitive language thus 
gives an upper bound on the number of nodes that occur at any stage in its derivation. 
A machine that recognizes words in a context-sensitive language by enumerating all 
applicable derivation graphs need therefore only have a memory as large as the words 
to be recognized. 

Unrestricted (type 0) languages are associated with universal computers. A 
system is considered capable of "universal computation" if, with some particular 
input, it can simulate the behaviour of any other computational system5. A universal 
computer may thus be "programmed" to implement any finite algorithm. A universal 

4 Compare many implementations of the LISP programming language. Also, compare with models of multi panicle 
production cascade processes (e.g. [1 3]). 

5 Although there are some mathematically-defined operations which they cannot perform (as discussed below). it seems 
likely that the usual class of "universal computers" can simulate the behaviour of any physically-realizable system. 
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Turing machine has an infinite memory, and a central processing unit with a particular 

"instruction set." (The "simplest" known universal Turing machine has seven internal 

states, and a memory arranged as a line of sites, each having four possible values, 

and with one site accessible to the central processing unit at each time step (e.g. 

[8]).) Several quite different systems capable of universal computation have also 

been found. Among these are string manipulation systems which directly apply the 

production rules of type 0 languages; machines with one, infinite precision, arithmetic 

register; logic circuits analogous to those of practical digital electronic computers; 

and mathematical systems such as A-calculus (general recursive functions). Some 

cellular automata have also been proved capable of universal computation. For 

example, a one-dimensional cellular automaton with k = 18 and r = 1 is equivalent 

to the simplest known universal Turing machine (e.g. [14]) . (A two-dimensional 

cellular automata, the "Game of Life", with k = 2 and a nine site neighbourhood, 

has also been proved computationally universal (e.g. [15]) .) It is conjectured that all 

cellular automata in the fourth class indicated above are in fact capable of universal 

computation [2]. 

There are many problems which can be stated in finite terms, but which are 

"undecidable" in a finite time, even for a universal computer6. An example is the 

"halting problem": to determine whether a particular computer will "halt" in a finite 

time, given particular input. The only way to predict the behaviour of some system S 

is to execute some procedure in a universal computer; but if, for example, S is itself 

a universal computer, then the procedure must reduce to a direct simulation, and can 

run no more than a finite amount faster than the evolution of S itself. The infinite 

time behaviour of S cannot therefore be determined in general in a finite time. For 

a cellular automaton, an analogue of the halting problem is to determine whether a 

particular finite initial configuration will ultimately evolve to the null configuration. 

Any problem which depends on the results of infinite information processing may 

potentially be undecidable. However, when the information processing is sufficiently 

simple, there may be a finite "short-cut" procedure to determine the solution. For 

example, the information processing corresponding to the evolution of cellular au

tomata with only class I or 2 behaviour appears to be sufficiently simple that their 

infinite time behaviour may be found by finite computation. Many problems con

cerning the infinite time behaviour of class 3 and 4 cellular automata may, however, 

be undecidable. For example, the entropies of the invariant sets for class 3 and 4 

cellular automata may in general be non-computable numbers. This would be the 

case if the languages corresponding to these limit sets were of type 0 or 1. 

It seems likely, in fact , that the consequences of infinite evolution in many dynami

cal systems may not be described in finite mathematical terms, so that many questions 

concerning their limiting behaviour are formally undecidable. Many features of the 

6 This is a fonn of Godel's theorem, in which the processes of mathematical proof are fonnalized in the operation of a 
computer. 
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behaviour of such systems may be determined effectively only by explicit simulation: 
no general predictions are possible. 

Even for results that can in principle be obtained by finite computation there is 
a wide variation in the magnitude of time (or memory resources) required. Several 
classes of finite computations may be distinguished (e.g. [7]). 

The first class (denoted P) consists of problems that can be solved by a determin
istic procedure in a time given by some polynomial function of the size of their input. 
For example, finding the successor of a length n sequence in a cellular automaton 
takes (at most) a time linear in n, and is therefore a problem in the class P. Since 
most universal computers can simulate any other computer in a polynomial time, 
the times required on different computers usually differ at most by a polynomial 
transformation, and the set of problems in class P is defined almost independent of 
computer. 

Nondeterministic polynomial time problems (NP) form a second class. Solutions 
to such problems may not necessarily be obtained in a polynomial time by a systematic 
procedure, but the correctness of a candidate solution, once guessed, can be tested in a 
polynomial time. Clearly P ~ NP, and there is considerable circumstantial evidence 
that P "* NP. The problem of finding a pre-image for a length n sequence under 
cellular automaton evolution is in the class NP. 

The problem classes P and NP are characterized by the times required for compu
tations. One may also consider the class of problems PSPACE that require memory 
space given by a polynomial function of the size of the input, but may take an arbitrary 
time. There is again circumstantial evidence that P c PSPACE. 

Just as there exist universal computers which, when given particular input, 
can simulate any other computer, so, analogously, there exist "NP-complete" (or 
"PSPACE-complete") problems which, with particular input, correspond to any NP 
(or PSPACE) problem of a particular size (e.g. [6,7]). Many NP and PSPACE com
plete problems are known. An example of an NP-complete problem is "satisfiability": 
finding truth values for n variables which make a particular Boolean expression true. 
If P "* NP then there is essentially no faster method to solve this problem than to 
try the 2n possible sets of values. (It appears that any method must at least require 
a time larger than any polynomial in n.) As discussed in Sect. 6, it is likely that 
the problem of finding pre-images for sequences in certain cellular automata, or of 
determining whether particular sequences are ever generated, is NP-complete. This 
would imply that no simple description exists even for some finite time properties of 
cellular automata: results may be found essentially only by explicit simulation of all 
possibilities. 

2. Construction of Finite Time Sets 

This section describes the construction of the set of configurations D.(t) generated after 
a finite number of time steps t of cellular automaton evolution, starting from the set 
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.0.(0) = L of all possible configurations. It is shown that .o.(t) may be represented as a 
regular language (cf. [2, 16]), and an explicit construction of the minimal grammar 
for this language is given. Section 3 describes some properties of such grammars, 
and Sect. 4 discusses their form for a variety of cellular automata. 

To describe the construction we begin with a simple example. The procedure 
followed may be generalized directly. 

Consider the construction of the set.o.( I ) generated by one time step in the evolution 
of the k = 2, r = 1 cellular automaton with a local rule ¢ given by ("rule number 76" 
[1]) 

lll~O, 1l0~1, 

010 ~ 1, 

101 ~ 0, 

001 ~ 0, 

100 ~ 0, 

000 ~ O. 

011 ~ 1, 
(2.1) 

The value a?) of a site at position i in a configuration A(I ) = <l>A (O) E .0.(1 ) depends 

on a neighbourhood of three sites (aJ~~, aJO), aJ~~} in the preceding configuration 
A (0) = .0.(0). The adjacent site aJ!~ depends on the overlapping neighbourhood 
{ (0) (0) (O)} Th d d f (I) (0) . d . h h' . I ai ' ai+l , ai+2 . e epen ence 0 ai+1 on ai associate Wit t IS two-site over ap 
in neighbourhoods may be represented by the graph g of Fig. 2.1 (analogous to a de 
Bruijn graph [17]). The nodes in the graph represent the overlaps (aJO) , aJ~~}. These 
nodes are joined by directed arcs corresponding to three-site neighbourhoods. The 
local cellular automaton rule ¢ ofEq. (2.1) defines a transformation for each three-site 
neighbourhood, and thus associates a symbol with each arc of g. Each possible path 
through g corresponds to a particular initial configuration A(O). The successor A(1 ) 

of each initial configuration is given by the sequence of symbols associated with the 

000--0 111--0 

Figure 2.1. The state transition graph g for a non-deterministic finite automaton (NDFA) that generates 

configurations obtained after one time step in the evolution of the k = 2, r = I cellular automaton with 

rule number 76 [Eq. (2.1)]. Possible sequences of site values are represented by possible paths through 

the graph. The nodes in the graph are labelled by pairs of initial site values; the arcs then correspond to 

triples of initial site values. Each such triple is mapped under rule number 76 to a particular site value. 

The graph with arcs labelled by these site values corresponds to all possible configurations obtained after 

one time step. Note that the basic graph is the same for all k = 2, r = I cellular automata; only the images 

of the initial site value triples change from one rule to another. 
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arcs on the path. The sequences of symbols obtained by following all possible paths 
through g thus correspond to all possible configurations A (I) obtained after one time 
step in the evolution of the cellular automaton (2.1). The complete set n(l) may thus 
be represented by the graph g. It is clear that not all possible sequences of O's and 
l's can appear in the configurations of n(l) . For example, no path in g can include 
the sequence 111, and thus no configuration in n(l) can contain a block of sites Ill. 

The graph g of Fig. 2.1 may be considered as the state transition graph for a finite 
automaton which generates the formal language n(l). Each node of g corresponds to 
a state of the finite automaton, and each arc to a transition in the finite automaton, or 
equivalently to a production rule in the grammar represented by the finite automaton. 
The set n(l) thus forms a regular language. Labelling the states in gas uo, U I' u2 , u3' 

the productions in the grammar for this language are: 

U o -) Ou l , u l -) lu2 , 

u2 -) Oul' u3 -) Ou3 , 
(2.2) 

This finite set of rules provides a complete specification of the infinite set n(l). 

Each path through g corresponds uniquely to a particular initial configuration A (0). 

But several different paths may yield the same successor configuration A (I). Each 
such path corresponds to a distinct inverse image of A (I) under <1>. Enumeration of 
paths in g shows, for example, that there are 5 distinct inverse images for the sequence 
00 under the cellular automaton mapping (2.1), 5 also for 01 and 10, and 1 for 11. 

The finite automaton g of Fig. 2.1 is not the only possible one that generates 
the language n(l ) . An alternative finite automaton g is shown in Fig. 2.2, and may 
be considered "simpler" than g since it has fewer states. g is obtained from g by 
combining the 00 and 10 nodes, which are equivalent in that only paths carrying 
the same symbol sequences pass through these nodes. The complete set of symbol 
sequences generated by the possible paths through g is identical to that generated by 
possible paths through g. 

The finite automata g and g are non-deterministic in the sense that multiple arcs 
carrying the same symbol emanate from some nodes, so that several distinct paths may 
generate the same word in the formal language. It is convenient for many purposes 
to find deterministic finite automata (DFA) equivalent to the non-deterministic finite 
automata (NDFA) g and g. Such DFA may always be found by the standard "subset 
construction" (e.g. [6, 7]). 

Consider for example the construction of a DFA G equivalent to the NDFA g of 
Fig. 2.1. Let I/J be the set of all possible subsets of the set of nodes {u i } (the power 

o 
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o 

Figure 2.2. The state transition graph g for an alterna

tive NDFA that generates the language .0.(1) obtained 

after one time step of evolution according to rule 76. 

This NDFA is obtained by combining two equivalent 

states in the NDFA g of Fig. 2.1. 
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o Figure 2.3. The state transition graph G for a deterministic finite 

automaton (OFA) obtained from the non-deterministic finite au

tomaton of Fig. 2.1 by the subset construction [and represented by 

the productions of Eq. (2.3)]. Here and in other OFA graphs, the 

start node 1/1 s is shown encircled. Words in the regular language 

n( I) correspond to paths through G, starting at 1/1 s . 

set of {u;)). There are 24 = 16 elements t/t; of t/t; each potentially corresponds to a 

state in G. The construction of G begins from the "start node" t/t s = {uo' U,' u2 ' u3 }. 

This node is joined by a 0 arc to the node {uo, up u3 } corresponding to the set of 

NDFA states reached by a 0 arc according to (2.2) from any of the u; in t/t s. An 

analogous procedure is applied for each arc at each node in G. The resulting graph 

is shown in Fig. 2.3, and may be represented by the productions 

t/ts = {uo, up u2 ' u3 } ~ O{uo, up u3 }, 

{uo' u" u3 } ~ O{uo' u" u3 }, 

{u 2 , u3 } ~ O{uo, u" u3 }, 

{u2 } ~ O{uo' u,}, 

{uo, U" u2 , u3 } ~ l{u2 , u3 }, 

{uo' u" u3 } ~ 1 {u 2 , u3 }, 

{u 2 , u3 } ~ l{u2 }, 

{u 2 } ~ I{ }, 

{uo' u,} ~ O{uo, utl, {uo, u,} ~ I{u2 , u3 }. 

(2.3) 

Notice that only 5 of the 16 possible t/t; are reached by transitions from t/ts. The 

production in Eq. (2.3) yielding the null set { } (often denoted s) signifies the absence 

of an arc carrying the symbol 1 emanating from the {u 2 } node. 

The DFA G of Fig. 2.3 provides an alternative complete description ofthe language 

.0.(') represented by the NDFA g and g of Figs. 2.1 and 2.2. Possible sequences of 

symbols in words of .0.(') correspond to possible paths through G, starting at t/t s. 

Consider the procedure for recognizing whether a sequence a can occur in .0.(1). If 

a can occur, then it must correspond to a path through the NDFA g, starting at some 

node. The set of possible paths through g is represented by a single path through the 

DFA G. The start state t/t s in G corresponds to the set of all possible states in g. As 

each symbol in the sequence a is scanned, the DFA G makes a transition to a state 

representing the set of states that g could reach at that point. The sequence a can thus 

occur in a word of .0.(1) if and only if it corresponds to a path in G. The deterministic 

nature of G ensures that this path is unique. 

Complete cellular automaton configurations consist of infinite sequences of sym

bols, and correspond to infinite paths in the DFA graph G. The possible words in 

.0.(1) may thus be generated by following all possible paths through G. 
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Just as for the NDFA g, some of the states in the DFA G are equivalent, and may 
be combined. Two states are equivalent if and only if transitions from them with 
all possible symbols (here 0 or 1) lead to equivalent states. An equivalent DFA G 
shown in Fig. 2.4 may thus be obtained by representing each equivalence class of 
states in G by a single state. It may be shown that this DFA is the minimal one that 
recognizes the language .0.(1) [18,6,7]. It is unique (up to state relabellings), and has 
fewer states than any equivalent DFA. Such a procedure yields the minimal form for 
any DFA; the analogous procedure for NDFA does not, however, necessarily yield a 
minimal form. 

In most cases, the minimal DFA that generates all (two-way) infinite words of a 
regular language is the same as the minimal DFA constructed above that recognizes 
all finite (or one-way infinite) sequences of symbols in words of the language. In 
some cases, such as that of Fig. 2.5 (the set .0.(1 ) for rule number 18), however, the 
latter DFA may contain additional "transient" subgraphs rooted at t/I s' feeding into 
the main graph. The set of infinite paths through these transient subgraphs is typically 
a subset of the set of infinite paths in the main graph. 

The minimal DFA G of Fig. 2.4 provides a simple description of the regular 
language .0.(1 ) . Regular expressions, mentioned in Sect. 1, provide a convenient 
notation for this and other regular languages. In terms of regular expressions, 

.0.(1 ) = «0*)1(0 v 10», (2.4) 

where infinite repetition to form each infinite word is understood. Here a* represents 
an arbitrary number (possibly zero) of repetitions of the string a, and a l va2 stands 
fora l or a2 . 
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Figure 2.4. The state transition graph G for the minimal DFA 

that generates the regular language .11( 1) obtained after one time 

step of evolution according to cellular automaton rule 76. The 

graph is obtained by combining equivalent nodes in the DFA G 

of Fig. 2.3. It has the smallest possible number of nodes. 

Figure 2.5. The state transition graph G for the minimal DFA 

corresponding to the regular language .11(1 ) obtained after one 

time step in the evolution of cellular automaton rule 18. This 

graph contains a "transient" subgraph rooted at the start state, 

feeding into the main graph. All symbol sequences occurring at 

any point in a word of .11(1) may be recognized as corresponding 

to paths through G beginning at the start state. Complete words 

in .11(1) may nevertheless be generated as possible infinite paths 

in G, with the transient subgraph removed. 



Computation Theory 01 Cel lular Automata (19841 

The example discussed so far generalizes immediately to show that the set n (t) 

of configurations generated by t time steps of evolution according to any cellular 
automaton rule forms a regular language. Constructions analogous to those described 
above give grammars for these languages. The number of states in the initial NDFA 
g is in general k2rt. (Two examples are shown in Fig. 2.6; graphs for successively 
larger values of r t may be obtained by a recursi ve construction [17].) The size of the 
DFA G obtained from g by the subset construction may be as large as 2k'n - 1, but 
is usually much smaller. (Note that the "reject" state ( } is not counted in the size of 
the grammar.) 

As an example, consider the language n(2) generated by two time steps in the 
evolution of the cellular automaton (2.1). The original NDFA g which corresponds to 
this language has 16 states, and the DFA G obtained from it by the subset construction 
has nine states. Nevertheless, the resulting minimal DFA G has just three states, and 
is in fact identical to that found for n(l ) as shown in Fig. 2.4. Since G gives a complete 
(finite) specification of the languages n (t ) , this implies that 

(2.5) 

in this case. n ( l ) is thus the limit set for the evolution of the cellular automaton of 
Eq. (2.1). 

3 . Properties of Finite Time Sets 

This section discusses some properties of the regular language sets n(t ) generated 
by a finite number of steps of cellular automaton evolution, and constructed by the 
procedure of Sect. 2. 

We consider as a sample set the 32 "legal" cellular automaton rules with k = 2 and 
r = 1. A rule ¢ is considered legal if it is symmetric, and maps the null configuration 
(with all site values 0) to itself. Each of the 256 possible k = 2, r = 1 cellular 
automaton rules is conveniently labelled by a "rule number," defined as the deci
mal equivalent of the sequence of binary digits ¢[1 , 1, 1], ¢[1 , 1, 0], ... , ¢[O, 0, 0] 
(analogous to Eq. (2.1)) [1]. 

Tables 3.1, 3.2 and 3.3 give some properties of the sets n (t) generated by a few 
time steps in the evolution of the 32 legal k = 2, r = 1 cellular automata 7 . These 
properties are deduced from the minimal DFA which describe the n (t) , obtained 
according to the construction of Sect. 2. 

The minimal DFA corresponding to the trivial language n CO) = L illustrated in 

Fig. 1.1 a has just one state. The minimal DFA corresponding to the minimal regular 
grammars for more complicated languages have progressively more states. The total 
number of states g(t) in the minimal DFA that generates a set n (t) provides a measure 

7 Requests for copies of the C language computer program used to obtain these and other results in this paper should be 

directed to the author. 
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Figure 2.6. Non-deterministic finite automaton graphs (de Bruijn graphs) analogous to Fig. 2.1 for the 

cases k = 2, r = 2, and k = 3, r = I. 

of the "complexity" of the set n(t), considered as a regular language. g(t) gives the 
size of the shortest specification of the set n(t) in terms of regular languages: this 
shortest specification becomes longer as the complexity of the set increases. 

Table 3.1 gives the "regular language complexities" g(t) for the sets n(t) generated 
at the first few time steps in the evolution of the legal k = 2, r = I cellular automata. 
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Rule 8(0) 8(1) 8(2) 8(3) 8(4) 

0 (2) I (I) I (I) I (I) I (I) 
4 (2) 2 (3) 2 (3) 2 (3) 2 (3) 

18 (2) 5 (9) 47 (91) 143 (270) ~20000 

22 (2) 15 (29) 280 (551) 4506 (8963) ~20000 

32 (2) 2 (3) 5 (7) 7 (9) 9 (I I) 
36 (2) 3 (5) 3 (4) 3 (4) 3 (4) 
50 (2) 3 (5) 8 (14) 10 (I7) 12 (20) 
54 (2) 9 (16) 17 (32) 94 (179) 675 (1316) 
72 (2) 5 (9) 5 (8) 5 (8) 5 (8) 
76 (2) 3 (5) 3 (5) 3 (5) 3 (5) 
90 (2) I (2) I (2) 1 (2) I (2) 
94 (2) 15 (29) 230 (455) 3904 (7760) ~20000 

104 (2) 15 (29) 265 (525) 2340 (4647) 1394 (2675) 
108 (2) 9 (16) II (19) II (19) II (19) 
122 (2) 15 (29) 179 (347) 5088 (9933) ~20000 

126 (2) 3 (5) 13 (23) 107 (198) 2867 (5476) 
128 (2) 4 (6) 6 (8) 8 (10) 10 (12) 
132 (2) 5 (9) 7 (12) 9 (15) II (18) 
146 (2) 15 (29) 92 (177) 1587 (3126) ~20000 

150 (2) I (2) I (2) I (2) I (2) 
160 (2) 9 (15) 16 (24) 25 (35) 36 (48) 
164 (2) 15 (29) 116 (227) 667 (1310) 1214 (2363) 
178 (2) II (20) 15 (26) 19 (32) 23 (38) 
182 (2) 15 (29) 92 (177) 1587 (3126) ~20000 

200 (2) 3 (5) 3 (5) 3 (5) 3 (5) 
204 (2) (2) I (2) I (2) I (2) 
218 (2) 15 (29) 116 (227) 667 (1310) 1214 (2363) 
222 (2) 5 (9) 7 (12) 9 (15) II (18) 
232 (2) II (20) 15 (26) 19 (32) 23 (38) 
236 (2) 3 (5) 3 (5) 3 (5) 3 (5) 
250 (2) 9 (15) 16 (24) 25 (35) 36 (48) 
254 (2) 4 (6) 6 (8) 8 (10) 10 (12) 

Table 3.1. Numbers of nodes S (I) (and arcs) in minimal deterministic finite automata (DFA) representing 

regular languages corresponding to sets of configurations n (I) generated after 1 time steps in the evolution 

of legal k = 2, r = I cellular automata. Each configuration corresponds to a path through the DFA state 

transition graph. The construction of Sect. 2 yields the DFA with the minimal number of nodes (states) SU) 

that generates a given regular language n U>' This DFA may be considered to give the shortest specification 

of n(l) viewed as a regular language. Its size S U) measures the "complexity" of nUl. The initial (I = 0) 

set of configurations include all possible sequences of zeroes and ones, and correspond to a trivial regular 

language. Cellular automata with only class I or 2 behaviour yield regular languages whose complexities 

become constant, or increase as polynomials in I. Cellular automata capable of class 3 or 4 behaviour 

usually lead to rapidly-increasing complexities. Bounds on these complexities are given when their exact 

calculation exceeded available computational resources. Some of the results in this table were obtained 

using the methods of [52] and [53]. 
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Rule 

o 
4 

18 

22 

32 

36 

SO 

54 

72 

76 

90 

94 

104 

108 

122 

126 

128 

132 

146 

ISO 

160 

164 

178 

182 

200 

204 

218 

222 

232 

236 

250 

254 
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l-it+2it2-it3 

1 +it+it2 _it3 
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(I +it-it2)(-1 +it_2it2 +it3) 

I +it+it2 _it3 

2-it 
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it3(l +it2)(l-it+2it3 _it4) 

-it(2 - 2it +2it2 _it3 + 2it4 -Sit5 + 13it6 - 16it7 + IOit8 - 3it lo -it" + Sit l2 -4it 13 +itI4) 
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1.000 

1.618 

1.755 

1.917 

1.6 18 

1.755 

1.839 

1.867 

1.755 

1.839 

2.000 

1.883 

1.917 

1.867 

1.883 

1.755 

1.618 

1.785 

1.887 

2.000 

1.755 

1.915 

1.785 

1.887 

1.755 

2.000 

1.915 

1.785 

1.785 

1.755 

1.755 

1.618 

Table 3.2. Characteristic polynomials X(I)(it) for the adjacency matrices of state transition graphs for 

minimal DFA representing regular languages generated after one time step in the evolution of legal k = 2, 

r = I cellular automata. The nonzero roots of these polynomials determine the number of distinct symbol 

sequences that can appear in configurations generated by the cellular automaton evolution. The maximal 

root itm•x determines the limiting entropy of the sequences. 
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Rule L(l) L(2) L(3) L(4) 

0 1* 
4 2* 

18 3 II 12 13 
22 8 7 II 9 
32 2* 4* 6* 8* 
36 3* 2* 
50 3* 5* 9* 11* 
54 5 9 9 7 
72 3 3* 
76 3* 
90 

Table 3.3. The length L (I) of the shortest distinct 
94 5 7 11 II 

104 8 8 8 7 
blocks of site values newly-excluded after exactly 

( time steps in the evolution of legal k = 2, r = I 
108 5 4* 

cellular automata. The notation ' indicates that the 
122 5 7 8 10 set of cellular automaton configurations .!1(1) forms 
126 3* 12 13 14 a finite complement language (finite number of dis-
128 3* 5* 7* 9* tinct excluded blocks). The notation - signi fies no 
132 4* 5* 6* 7* new excluded blocks. 
146 6 6 8 8 
150 
160 5* 7* 9* 11* 
164 9 9 8 9 
178 5* 6* 7* 8* 
182 6 6 8 8 
200 3* 
204 
218 9 9 8 9 
222 4* 5* 6* 7* 
232 5* 6* 7* 8' 
236 3* 
250 5* 7* 9* 11* 
254 3* 5* 7* 9* 

In all the cases given, a(t ) is seen to be non-decreasing with time. Cellular automata 

with only class 1 or 2 appear to give a(t) which tend to constants after one or two time 
steps, or increase linearly or quadratically with time. Class 3 and 4 cellular automata 
usually give a (t) which increase rapidly with time. In general, 

(3.1) 

The upper bound is found to be attained in several cases for t = I; for larger t, a (t) 

appears to grow at most exponentially with t. 

All possible sequences of symbols occur in the trivial language L. In more 
complicated regular languages, only some number N (X) of the k X possible sequences 
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of X symbols may occur. Each sequence which occurs corresponds to a distinct path 
in the minimal DFA graph for the language. (Note that all distinct paths in a DFA 
correspond to different symbol sequences; this need not be the case in a NDFA graph.) 
The number of such paths is conveniently computed using a matrix representation 
for the DFA. 

Consider as an example the set n(l) obtained by one time step in the evolution 
of the cellular automaton (2.1). The minimal DFA graph G for this set is given in 
Fig. 2.4, and may be represented by the adjacency matrix 

1 0) o 1 . 
o 0 

(3.2) 

The elements of M X give the numbers N(X) of possible length X paths in G. For 
lengths from 1 to 10 these numbers are 2, 4, 7, 13, 24,44,81, 149, 274, and 504. In 
general, at least for large X, 

(3.3) 

where the Ai are the eigenvalues of M , and Amax is the largest of them. These 
eigenvalues are determined from the characteristic polynomial X(A) for the minimal 
DFA adjacency matrix, given in the case of Eq. (3 .2) by8 

(3.4) 

The largest (real) root of this characteristic polynomial (known as the "index" of the 
graph [19]) is given by the cubic algebraic integer 

Amax = [1 +K+4/ K] "" 1.83929, 

K = [(38 + .J1l88)/2] 1/ 3 
(3.5) 

The set of infinite configurations n (t) generated by cellular automaton evolution 
may be considered to form a Cantor set. The dimension of this Cantor set is given by 

1 
s = lim - logk N (X), 

X ... OO X 
(3.6) 

and is equal to the topological entropy of the shift mapping restricted to this set (e.g. 
[20]). For any regular language, this entropy is given according to Eqs. (3.2) by [21] 

(3.7) 

For the case of Eq. (3.2), the entropy is thus 

s "" log2 1.83929"" 0 .87915. (3.8) 

8 I/x(,t) is related to the generating function for the sequence N(X ) (e.g. [19, Sect. 1.8)). 

178 



Computation Theory of Cellular Automata (1984) 

Table 3.2 gives the characteristic polynomials X(l)(i\.) for the regular languages 
n (l) obtained after one time step in the evolution of the 32 legal k = 2, r = I cellular 

automata, together with their largest real roots i\.max' All the nonzero roots of the X(i\.) 
appear in the expression (3.3) for N(X), and are therefore the same for all possible 

DFA corresponding to a particular regular language. (They may thus be considered 
"topological invariants.") Additional powers of i\. may appear in the characteristic 

polynomials obtained from non-minimal DFA. 

The characteristic polynomials X(i\.) such as those in Table 3.2 obtained from 
regular languages are always monic (the term with the highest power of i\. that 

appears in them always has unit coefficient). The largest roots i\.max of the X(i\.) for 
regular languages are thus always algebraic integers (e.g. [22])9, so that the entropies 
for regular languages are always the logarithms of algebraic integers. The minimal 

polynomial with i\.max as a root has a degree not greater than the size g(t) of the 
minimal DFA for a regular language n (t). This bound is usually not reached, since 

the characteristic polynomial X(i\.) is usually reducible, as seen in Table 3.2. Notice 
that in many cases, X(i\.) has several factors with equal degrees. (The factorizations 
of the X(i\.) are related to the colouring properties of the corresponding graphs [19]. 

Note that graphs corresponding to minimal DFA always have trivial automorphism 
groups.) Factors (other than i\.n) with smaller degrees appear to be associated with 

transient subgraphs in the minimal DFA graph. 
The entropy (3.6) characterizes the number of distinct symbol sequences generated 

by cellular automaton evolution, without regard to the probabilities with which they 
occur. One may also define a measure entropy (e.g. [20]) 

k X 

S = - lim " P logk P !1 x-+ooL I I 

i=l 

(3.9) 

in terms of the probabilities Pi for length X sequences. Starting from an initial ensem
ble in which all symbol sequences of a given length occur with equal probabilities, 
the probability for a sequence i after t time steps is given by 

(3.10) 

where gi is the number of (length X + 2r t) t -step preimages of the sequence i under 
the cellular automaton mapping <1>. This number is equal to the number of distinct 
paths through the NDFA graph analogous to g in Fig. 2.1 that yield the sequence i. 
It may also be computed from reduced NDFA graphs analogous to g of Fig. 2.2 by 

including a weight for each path, equal to the product of weights giving the number 

of unreduced nodes combined into each node on the path. 

The set of configurations generated by cellular automaton evolution always con
tracts or remains unchanged with time, as implied by Eq. (1.5). The entropies 

9 The Am" are always Perron numbers [23]. Any Perron number may be obtai ned from some regular language, and in 
fact also from some fini te complemenllanguage [23] . 
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associated with the sets .oY) are therefore non-increasing with time. Class I cellular 
automata are characterized by (spatial) entropies that tend to zero with time [2]. Class 
2, 3 and 4 cellular automata generate sets of configurations with nonzero limiting 
spatial entropy. (Class 2 cellular automata nevertheless yield patterns essentially 
periodic in time, with zero temporal entropy.) 

Some cellular automata have the special property that 

<l>L = L, (3.11) 

so that all possible configurations can occur at any time in their evolution, and the 
entropies of the .o.(t) are always equal to one. Such surjective cellular automaton 
rules may be recognized by the presence of all k possible outgoing arcs at each node 
in a DFA representing the grammar of the set .0.( I ) obtained after one time step in its 
evolution. The finite maximum size 2k2

, for such a DFA, constructed as in Sect. 2, 
ensures that this procedure (cf. [24-27,2]) for determining the surjectiveness of any 
cellular automaton rule is a finite one lO • 

Since there are k outgoing arcs at each node in the original NDFA analogous to 
Fig. 2.1 for any cellular automaton rule, the rule is surjective if in all cases these arcs 
carry distinct symbols (so that the NDFA is in fact a DFA). This occurs whenever 
the local cellular automaton mapping ¢ is injective with respect to its first or last 
argument (as for additive rules [29, 16] such as 90, 150 or 204 in Tables 3.1-3.3). 
However, at least when k > 2 or r > I, there exist surjective cellular automata for 
which this does not occur [25, 30]. Since all surjective cellular automata must yield 
the same trivial minimal DFA, it is possible that a reversal of the minimization and 
subset algorithms discussed in Sect. 2 could be used to generate all NDFA analogous 
to Fig. 2.1 that correspond to surjective rules. 

Surjective cellular automata yield trivial regular languages, in which all possible 
blocks of symbols may appear. Some cellular automata generate the slightly more 
complicated "finite complement" regular languages, in which a finite set of distinct 
blocks are excluded. (Such languages are equivalent to "subshifts of finite type" (e.g. 
[10, 11]).) An example of a finite complement language, illustrated in Fig. 1.1 b, 
consists of all sequences from which the block of sites 11 is absent. To construct the 
grammar for a finite complement language in which blocks of length b are excluded, 
first form a graph analogous to Fig. 2.1, but with sequences of length b - 1 at each 
node. Each arc then corresponds to a length b sequence, and may be labelled by 
the last symbol in the sequence. With this labelling, one arc carrying each of the k 
possible symbols emanates from each of the e-I nodes, so that the graph represents 
a DFA. Removing arcs corresponding to the excluded length b blocks then yields the 
graph for a DFA that recognizes the finite complement language with these blocks 
absent. Examples of the resulting graphs for two simple cases are shown in Fig. 3.1. 

10 The algorithm essentially involves testing whether a NDFA with k2' states is equivalenlto a NDFA that generates the 

trivial language L. This problem is known to be PSPACE-complete [28] . and therefore presumably cannot be solved 
in a time polynomial in k 2' . 
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o 

o 

(a) 

Figure 3.1 a and b. Non-deterministic finite automata (NDFA) corresponding to finite complement 

regular languages consisting of sequences of zeroes and ones in which a the block II is excluded, and 

b the block III is excluded. The graphs are constructed from analogues of Fig. 2. 1 by dropping arcs 

corresponding to excluded blocks. 

The minimal DFA for a finite complement language with a maximal distinct 
excluded block of length b has at most kb- I states, and at least b states. An excluded 
block is considered "distinct" if it contains no excluded sub-blocks. (Hence, for 
example, in the language of Figs. l.la and 3.1a, the excluded block 11 is considered 
distinct, but 110, 111 and so on, are not.) 

Any path through the minimal DFA graph for a regular language of length greater 
than g(l ) must contain a cycle, which retraverses some arcs. If no symbol sequence 
of length less than g (t) is excluded, then no sequence of any length can therefore be 
excluded, and the corresponding language must be trivial. If some symbol sequences 
of length less than g(t) are excluded, but no distinct sequences with lengths between 
g(t) and 2g(l ) are excluded, then no longer distinct sequences can be excluded, and the 

corresponding language must be a finite complement one. If further distinct excluded 
blocks with lengths between g (t) and 2g(t) are found , then an infinite series of longer 
distinct excluded blocks must exist, and the language cannot be a finite complement 
one. 

The language of Fig. 2.4, generated by the evolution of the k = 2, r = 1 cellular 
automaton with rule number 76, is a finite complement one, in which 111 is the only 
distinct excluded block. The language of Fig. 2.5 , obtained after one time step in 
the evolution of rule number 18, is not a finite complement one. The block III is 
the shortest excluded in this case. But the distinct length 7 block 1101011 is also 
excluded, as are the two distinct length 8 blocks 11001011 and 11010011 , three 
distinct length 9 blocks (11010100011 , 110001011 , 110010011), four distinct length 
10 blocks, and so on. 

The length L (t) of the shortest excluded block in a language flIt) generated by 
cellular automaton evolution (denoted Xc in [2]) is in general given by the shortest 
distance from the start node in the corresponding DFA graph to an "incomplete" 
node, with less than k outgoing arcs. If the cellular automaton rule is not surjective, 
then 

(3.12) 
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Whenever cellular automaton evolution is irreversible, the set of configurations 
flY ) generated contracts with time, and progressively more distinct blocks are ex
cluded. One may define L(t ) to be the length of the shortest newly-excluded block at 
time step t in the evolution of a cellular automaton. The values of L(t) obtained in 
the first few time steps of evolution according to the 32 legal k = 2, r = 1 cellular 
automaton rules are given in Table 3.3. In most cases, Or) is seen to increase with 
time, indicating that progressively finer subsets of L are excluded, and qualitatively 
reflecting the increase of:~(t ) . In general, however, L(t ) need not increase monoton
ically with time. A length I block is excluded after t time steps if there is no initial 
length I + 2rt block that evolves into it. A length I block is newly excluded at time 
step t if and only if no length I + 2r blocks allowed at time step t - 1 evolve to it, but 
at least one length I + 2r block newly excluded at time step t - 1 would evolve to it. 
The length L(t ) of the shortest newly excluded block at time t is thus bounded by 

(3.13) 

Table 3.3 includes several cases for which the lower bound is realized. 
The sets of infinite symbol sequences n(t) generated by cellular automaton evo

lution are characterized in part by the numbers and lengths of allowed and excluded 
finite blocks which appear in them. A further characterization may be given in terms 
of the number TI(p) of infinite sequences with (spatial) period p that appear. This 
number is related to the number of distinct cycles in the minimal DFA graph for n(t). 

Cycles are considered distinct if the sequences of symbols that appear in them are 
distinct. The enumeration of cycles thus requires knowledge of the arc labelling as 
well as connectivity of the DFA graph. 

Just as the number of finite blocks N(X) for all X may be summarized in the 
characteristic polynomial X(A) , so also the number of periodic configurations n(p) 

may be summarized in the zeta function (e.g. [10, 11]) 

(A) = exp (~ TI(p)AP / p ) . (3.14) 

For all regular languages (A) is a rational function of A [31]. For the special case of 
finite complement languages, 

(A) = I /X(A) . (3.15) 

A finite procedure may be given [32] to compute (A) for any regular language. 

4. Evolution of Finite Time Sets 

Tables 3.1-3.3 gave several properties of the sets of configurations generated by a 
finite number of steps in the evolution of legal k = 2, r = I cellular automata. This 
section discusses these results, identifies several types of behaviour, and considers 
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analogies with classes of cellular automaton behaviour defined by dynamical systems 
theory means [2]. 

In the simplest cases, the set fl(t) generated by a cellular automaton evolves to 
a fixed form after a small number of time steps T (the case of surjective cellular 
automata, with fl(r) = L for all t, is considered separately). The minimal DFA cor
responding to fl(t) for all t ~ T are then identical, and the values of g(t) and X(r)(A) 

are thus constant. (Notice that g(t ) = g(t+l) does not necessarily imply fl(t ) = fl(t+l), 

as seen for rule 36 in Table 3.1.) In addition, for t ~ T, no more distinct blocks of 
sites are excluded. Such behaviour occurs in the trivial case of rule 0, under which 
all initial configurations are mapped to the null configuration after one time step. It 

also occurs for many other rules: one example is rule 76, discussed in Sects. 2 and 
3. All the examples of this behaviour in Tables 3.1-3.3 have T = 1 (e.g. rule 76) or 
T = 2 (e.g. rule 108). In the trivial case of rule 0, only a single configuration (the 
null configuration) can appear when t ~ T. More complicated single configurations 
are sometimes generated, represented by minimal DFA consisting of a single cycle. 
In most cases (such as rule 76), however, fl(T) contains an infinite number of con
figurations. However, it appears that even in these cases, all configurations occur on 
finite cycles: each configuration is invariant under the cellular automaton mapping, 
or some finite iteration of it. (A result given in Sect. 5 then shows that the fl(T) must 
form finite complement languages in these cases.) This implies that changes in the 
initial state for such cellular automata propagate a distance of at most rT sites. A 
small initial change can thus ultimately affect a region no larger than 2rT sites. Such 
cellular automata must therefore exhibit class 1 or 2 behaviour [2]. 

For a second set of cellular automata, the form of the minimal DFA does not 
become fixed after a few time steps, but exhibits a simple growth with time, maintain
ing a fixed overall structure. The L(t ) for such cellular automata typically increases 
linearly with time, and g(t ) increases as some polynomial function of t (linear or 
quadratic for legal k = 2, r = 1 rules). Rule 128 gives an example of this behaviour. 
Under this rule III ~ 1, but all other neighbourhoods map to O. Any initial sequence 
of ones thus decreases steadily in length by one site on each side at each time step. 
After t time steps, any pair of ones must be separated by at least 2t + 1 zeroes; all 
blocks of the form 10J I for 1 5 j 5 2t are thus excluded. The first few languages 
fl(t ) in the sequence generated by successive time steps in the evolution of rule 128 
are shown in Fig. 4.1. The minimal DFA are seen to maintain the same overall 
structure, but include a linearly increasing number of nodes at each time step. The 
characteristic polynomials corresponding to these DFA are given by 

(4.1) 

yielding a set entropy which tends to zero at large times, roughly as 1/ t. Rule 160 
provides another example in which the minimal DFA maintains the same overall 
structure, but increases in size with time. In this case, sequences of the form 
1 [(0 v 1 )O]J (0 v i) 1 for all j 5 t, are excluded after t time steps, and the size g(t ) of 
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the corresponding minimal DFA grows quadratically with time. 
Many cellular automata generate sets n(l ) whose corresponding minimal DFA 

become much more complicated at each successive time step, and appear to exhibit 
no simple overall structure. 

Figure 4.2 shows the minimal DFA obtained after one and two time steps in the 
evolution of rule 126. No simple progression in the form of these minimal DFA 
is seen. nO) is a finite complement language, with only the block 010 excluded, 
yielding a characteristic polynomial 

(4.2) 

giving .:\.max "" l.7549. After two time steps, an infinite sequence of distinct blocks 
is excluded, starting with the length 12 block 011101101110. The corresponding 
characteristic polynomial is 

X<2)(.:\.) = -1 +.:\.-.:\.2 +2.:\.3 _4.:\.4 +.:\.5 +3.:\.6 -5.:\.7 

+ 3.:\.8 _ 3.:\.9 + 5.:\.10 _MIl +4.:\.12 _AI3 , 
(4.3) 

with .:\.max "" l.732l. The minimal DFA for n(3) has 107 states, and the shortest 
newly-excluded block is 1011100011101 (length 13). 8(1 ) increases rapidly with 
time. After four time steps, the shortest newly-excluded blocks are 10 III 0000 III 0 1, 

10111000001110 and its reversal (length 14), and 8(4) = 2876. 

Figures 2.5 and 4.3 give the minimal DFA obtained after one and two time steps in 
the evolution of rule 18. A considerable increase in complication with time is again 
evident. After one time step, the shortest of an infinite number of distinct excluded 
blocks is 1101011 (length 7); after two time steps, the shortest newly-excluded block 
is 10011011001 (length 11); after three time steps, it is 110010010011 (length 12), 

and after four time steps it is 1001000010011 (length 13). In this case, as for rule 
126, L (I) is found to increase monotonically over the range of times investigated. 
Progressively larger neighbourhoods of the start state are therefore left unchanged 

"'0' t=2 

o 
o 

Figure 4.1. Minimal deterministic finite automata (OFA) corresponding to the regular languages n (t) 

generated in the first few time steps of evolution according to cellu lar automaton rule 128. The OFA 

maintain the same structure, but increase in size with time. They correspond to finite complement 

languages, with all blocks of the form IOj I excluded for I :S j < 21. 

184 

o 



t=l 

~ 
~ t = 2 

Computation Theory of Cellular Automata (1984) 

o 

Figure 4.2. Minimal deterministic finite automata corresponding to the regular languages generated in 

the first two time steps of evolution according to the class 3 cellular automaton rule 126. A considerable 

increase in complexity with time is evident, characteristic of cellular automata which can exhibit class 3 

behaviour. 

in the corresponding minimal DFA. However, as discussed in Sect. 3, L (t) need not 
increase with time, but must in general only satisfy the inequality (3.13). Rule 22 pro
vides an example in which L(t ) decreases with time. The minimal DFA for .0.(1 ) in this 

case is shown in Fig. 4.4; the shortest excluded blocks are 10101001 and 10010101 
(length 8). After two time steps, the blocks 1110101 and 1010111 (length 7) 
are also excluded. The shortest newly-excluded blocks after three time steps are 
01000010101,01000110101, 10000010101 and their reversals (length 11). After 
four time steps, the shortest newly-excluded blocks are 010110011 and 110011010 
(length 9), realizing the equality in (3.13). 

Rule 126 provides an example in which the set generated after one time step is a 
finite complement language, but the sets generated at subsequent times are not. Rule 
72 exhibits the opposite behaviour I I , as shown in Fig. 4.5. After one time step, it 
yields a set in which the infinite sequence of distinct blocks 111, 1101011, 11001011 , 
... are excluded (as in .0.(1 ) for rule 18). After two time steps, however, the block 
010 is also excluded. The exclusion of this single block implies exclusion of the 
infinite set of blocks excluded from .0.(1 ) . The resulting set thus corresponds to a 
finite complement language. In general, it can be shown that if a cellular automaton 
evolves to a finite complement language limit set, then it must do so in a finite number 
of time steps [34] . 

The sets .o.(t) generated by most cellular automata never appear to become simpler 
with time. One exception is rule 72, in which the number of arcs in the minimal 
DFA for .0.(2) is less than in that for .0.(1 ). In most cases, the regular language 

complexity g(t) appears to be non-decreasing with time. In fact, whenever the set of 
configurations generated continues to contract with time, a different regular language 

II A more complicated example of this behaviour was given in [33]. 
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o 

Figure 4.3. Minimal deterministic finite automata (OFA) corresponding to the regular language generated 

after two time steps of evolution according to the class 3 cellular automaton rule 18. The minimal OFA 

obtained for t = I is shown in Fig. 2.5. Rapidly-increasing complexity is again evident. The OFA 

illustrated here has 47 states. 

must be obtained at each time step. Since there are a limited number of regular 
languages with complexities below any given value (certainly less than 2kB\ the 
complexity must on average increase at least slowly with time in this case. 

Table 3.1 suggests that a definite set of cellular automata (including rules 18, 22 
and 126) yield regular language complexities a(t) that grow on average more rapidly 
than any polynomial in time (perhaps exponentially with time). Many of the cellular 
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Figure 4.4. Minimal detenninistic finite automaton (DFA) corresponding to the regular language n(l ) 

obtained after one time step in the evolution of the class 3 cellular automaton rule 22. The DFA has all 

15 possible states. The shortest excluded block in n(l ) has length 8, and corresponds to the shortest path 

from the encircled start state to the one " incomplete" node in the DFA graph. 

automata in this set generically exhibit class 3, chaotic, behaviour, suggesting that 
rapidly-increasing g(t) are a signal for class 3 behaviour in cellular automata. 

In a few cases, such as rule 94, g(t) increases rapidly with time, but almost all initial 
configurations are found to give ultimately periodic behaviour. Nevertheless, special 
initial conditions (in this case, those in which successive pairs of sites have equal 
values) can yield chaotic behaviour. Since the set n(t) includes all configurations 
that ever occur, it includes those that give chaotic behaviour, even though they 
occur with vanishingly small probability. Presumably these configurations would not 
affect a probabilistic grammar for the set .0.(1 ) that included only nonzero probability 
configurations. But the g(t) for the grammars discussed here appear to increase 
rapidly with time whenever any set of configurations in the cellular automaton yield 
class 3 behaviour. 

Some exceptional cases are surjective class 3 cellular automata, such as the 
additive rules 90 and 150, in which every possible configuration can be generated 
at any time. The complexity of these and other cellular automata could perhaps 
be measured by constructing a grammar for the set of possible space-time patterns 
generated in their evolution. Such a grammar could presumably be characterized in 
terms of computers with memories arranged in a two-dimensional lattice (cf. [35])12. 

12 This paper concentrates on one-dimensional cellular automata. Such cellular automata potentially correspond most 

directly wi th conventional formal languages. Two and higher dimensional cellular automata show some differences. 
For example the set of configurations obtai ned after a finite number of time steps in their evolution need not form a 
regular language and may in fact be nonrecursive [36, 51]. 
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o 

t=2 

o 

Figure 4.5. Minimal deterministic finite automata corresponding to the regular languages n (t) generated 

in the first two time steps of evolution under rule 72. n ( l ) is an infinite complement regular language, with 

the infinite sequence of distinct blocks III , I 10 I 0 II, 1100 I 0 II, .. . excluded. n (2) is a finite complement 

language, with only the blocks 010 and III excluded. 

The local rules ¢ for the 32 legal k = 2, r = I cellular automata of Tables 3.1-3.3 
are all distinct. Yet in many cases sets of configurations with the same structure or 
properties are found to be generated. In some cases, there may exist bijective map
pings which transform configurations evolving according to one cellular automaton 
rule into configurations evolving according to another rule. Several properties of the 
sets .fl(t) are invariant under such mappings. One example is the set of non-zero roots 
of the characteristic polynomials X(t)(A). While after one time step several of the 
cellular automata in Tables 3.1-3.3 yield the same sets of configurations .fl(l), there 
are few examples of complete equivalence between pairs of cellular automaton rules. 
One simple example is rules 146 and 182, which are related by interchange of the 
roles of 0 and 1. 

5. Some Invariant Sets 

Section 2 showed that the set of configurations generated after a finite number of steps 
in the evolution of any cellular automaton forms a regular language. Sections 3 and 
4 discussed some properties of such sets. This section and the next one consider the 
limiting sets of configurations generated after many time steps of cellular automaton 
evolution. 

For all configurations A that appear in the limit set for a cellular automaton, 
there must exist some configuration A' such that A = <1>1 A' for any t. Any set of 
configurations invariant under the cellular automaton rule therefore appear in its limit 
set. This section considers some simple examples of invariant sets; Sect. 6 gives 
some comments on the complete structure of limit sets for cellular automata. 
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Periodic Sets 

A simple class of invariant sets consist of configurations periodic with time un

der cellular automaton evolution. Such sets are found to form finite complement 
languages. 

Consider the set of configurations that are stable (have temporal period 1) under 

a cellular automaton rule with k = 2 and r = I. The set of such configurations is 

exactly those which contain only neighbourhoods {a j _ l , a j , a j + l } for which 

(5.1) 

Only the finite set of distinct three-site blocks that violate (5.1) are forbidden , so 

that the complete set forms a fini te-complement language, with a maximum distinct 

excluded block of length 3. A NDFA that generates the set of stable configurations 

is represented by a graph analogous to Fig. 3.1 in which only those arcs satisfying 

(5.1) are retained. The minimal grammar for this set is obtained by constructing the 

minimal equivalent DFA, as described in Sect. 2. 

The procedure generalizes immediately to arbitrary cellular automaton rules, 

and to sets of configurations with any finite period (cf. [37]). The distinct excluded 

blocks in the finite complement languages corresponding to sets of configurations 

with period p have maximum length 2pr + 1. 
Figure 5.1 shows the minimal grammars for sets of configurations with various 

periods under the k = 2, r = I cellular automata with rule numbers 90, 18 and 22. 

The grammars are represented by graphs containing several disconnected pieces, 

each corresponding to a disjoint set of configurations. 

Figure 5.1 a suggests that only a finite number of configurations , all spatially 

periodic, are found with each temporal period in the surjective cellular automaton 

rule 90. For this and other surjective cellular automata whose local mappings ¢> are 

injective in their first and last arguments, the number of distinct configurations with 

any period p is always finite, and is exactly kh p
, where h is the invariant entropy 

of the cellular automaton mapping (h = 2 for rule 90) I3. This result follows from 

the fact that the complete space-time pattern generated by the evolution of such a 

cellular automaton is completely determined by any patch of site values with infinite 

temporal extent, but spatial width h (typically equal to 2r). Moreover, any possible 

set of site values may occur in this patch. If the complete space-time pattern is to 

have period p, then so must the patch; but there are exactly kh p possible patches with 

period p. (For large p, this result is as expected for any expansive homeomorphism 

(e.g. [10, 11]).) 

In general, the sets of configurations with a particular periodicity under a cellular 

automaton rule are infinite, as illustrated for rules 18 and 22 in Figs. 5.1b and 5. lc. 

13 The actual configurations with particular periods may be found by methods analogous to those used in [29] for the 

complementary problem of determining the temporal periods of configurations with g iven spatial period. 
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Figure 5.1a-<. Minimal deterministic finite automata corresponding to sets of configurations with (tem

poral) periods exactly p under cellular automaton rules a 90, b 18 and c 22. 

Presumably there are sets of this kind with arbitrarily large periods. These infinite 
sets are nevertheless finite complement languages. For example, for the set of 
configurations with period two under rule 18, only the distinct blocks 111, 10 11, 
1101 and 10 1 ° I are excluded. It is common in class 3 cellular automata to find 
configurations with almost every possible period; for class 4 cellular automata, only 
some periods are typically found. 

Periodic configurations form a small subset of all the configurations in the limit 
sets for cellular automata. Their entropy nevertheless provides a lower bound on the 
entropy of the complete limit sets. For rule 90, the set of periodic configurations has 
zero entropy, yet the complete limit contains all possible configurations, and thus has 
entropy I. For rule 18, the period 2 set has entropy ",0.4057 (given as the logarithm 
of the largest root of ,13 -A-I), while the period 4 set has entropy ",0.1824 (,16_,1 -1). 

For rule number 22, the period 4 set has entropy ",0.3219 (,15 - ,14 + ,13 - ,12 - I). 
Since irreversible cellular automaton mappings are contractive, the entropy of the set 
obtained after a finite number of time steps gives an upper bound on the entropy of 
the complete limit set. Using results from Table 3.3 one then finds 
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Figure 5.1 (continued). 

Simulation Sets 

The complete invariant sets for many cellular automata <1> are very complicated. 
Parts of these invariant sets may however have a simpler structure, and may consist 
of configurations for which <1> "simulates" a simpler cellular automaton rule. Thus 
for example stable configurations under <1> may be considered as those for which <1> 

"simulates" the identity mapping. 
One class of configurations for which a cellular automaton rule <1>, may simulate 

a rule <1>2 are those obtained by "blocking transformations." Each symbol in the 
possible configurations of <1>2 is replaced by a length bx block of symbols in <1>1' and 
each time step in the evolution of <1>2 is simulated by bT time steps of evolution under 
<1>,. Thus, for example, rule 18 simulates rule 90 under the (bx = 2, bT = 2) blocking 
transformation 00 ~ 0, a 1 ~ I [1 , 38, 5] . The evolution of an arbitrary configuration 
under rule 90 is thus simulated by the evolution under rule 18 of a configuration 
consisting of the digrams 00 and a I. But since rule 90 is surjective, all possible 
configurations correspond to an invariant set. Thus configurations containing only 00 
and a I digrams form an invariant set for rule 18. The entropy of these configurations 
is 1/2, so that 

0.5 :5 s~~\ :5 0. 8114. (5.3a) 
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Rule 22 simulates rule 90 under the (4, 4) blocking transformation 0000 -? 0,000 I -? 

1, implying that 

0.25 :::; sf;;j ~ 0.9390. (5 .3b) 

A cellular automaton rule may simulate other rules with the same values of k and 
r under different blocking transformations (cf. the simulation network given in [5]). 
Some rules, apparently only surjective ones such as rule 90, simulate themselves , 
and thus correspond to fixed points of the blocking transformation. In other cases, 
one rule may simulate another under several distinct blocking transformations. For 
example, rule 18 simulates rule 90 under both 00 -? 0, 01 -? 1, and 00 -? 0, 10 -? 1, 
while rule 22 simulates rule 90 under any permutation of 0000 -? 0, 0001 -? I. 
One may consider the sets of blocks appearing in these blocking transformations 
to represent different "phases." An initial configuration then consists of several 
"domains," each of which contains blocks of one phase. The domains are separated 
by "walls." For rule 18, these walls appear to execute random walks, and annihilate 
in pairs, yielding progressively larger domains of a single phase [38]. The simulation 
of rule 90 by rule 18 may thus be considered "attractive" [3]. For rule 22, no such 
simple behaviour is observed. 

Blocking transformations yield a particular class of configurations, corresponding 
to simple finite complement languages. Other classes of configurations, specified by 
more general grammars, may also yield simulations. (An example occurs for rule 
number 73, in which configurations containing only odd-length sequences of 0 and 
I sites simulate rule 90.) In addition, a set of configurations evolving under one rule 
may simulate an invariant set of configurations evolving under another rule. 

6. Comments on Limiting Behaviour 

Section 2 showed that after any finite number of time steps, the set of configurations 
n ct) generated by any cellular automaton forms a regular language. Some cellu
lar automata yield regular languages even in the infini te time limit; others appear 
to generate limit sets corresponding to more complicated formal languages. Cel
lular automata which exhibit different classes of overall behaviour appear to yield 
characteristically different limiting languages. 

As discussed in Sect. 4, some cellular automata in Tables 3. 1-3.3 yield regular 
languages which attain a fixed form after a few time steps. The limit sets for such 
cellular automata are thus regular languages. In fact, except for surjective rules, the 
limit sets found appear to contain only temporally periodic configurations, and are 
therefore finite complement languages. These cellular automata exhibit simple large 
time behaviour, characteristic of classes 1 and 2. 

Rule 128 provides a more complicated example, discussed in Sect. 4. After t time 
steps, any pair of ones in configurations generated by this rule must be separated by at 
least 2t sites. The complete set of possible configurations forms a finite complement 
regular language, with a minimal DFA illustrated in Fig. 4.1 whose size g Ct) increases 
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linearly with time. After many time steps, almost all initial configurations evolve to 
the null configuration. However, even after an arbitrarily long time, configurations 
containing just a single block of ones may still appear. A block of n ones, flanked by 
infinite sequences of zeroes, is generated after any number of time steps t from a block 
of n + 2t ones. Such configurations therefore have exactly one predecessor under 
any number of time steps of the cellular automaton evolution. They thus appear in 
the limit set for rule 128, although if all initial configurations are given equal weight, 
they are generated with zero probability. Once generated, their evolution is never 
periodic. An increasing number of distinct blocks are excluded from the successive 
DY) obtained by evolution under rule 128. The set of configurations generated in the 
infinite time limit does not, therefore, correspond to a finite complement language. 
Nevertheless, the set does form a regular language, shown in Fig. 6.1 . While the set 
contains an infinite number of configurations, its entropy vanishes, as given by the 
limit ofEq. (4.1 ). 

Several rules given in Tables 3.1-3.3 exhibit behaviour similar to rule 128: they 
generate (finite complement) regular languages whose minimal grammars increase 
in size linearly or quadratically with time, but in the infinite time limit, yield regular 
language limit sets. These limit sets contain one or a few periodic configurations, 
together with an infinite number of aperiodic configurations, generated from a set of 
initial configurations of measure zero. The sets have zero entropy, and do not cor
respond to finite complement languages. (Only trivial finite complement languages 
can have zero entropy.) All the class 1 cellular automata (except for the trivial rule 
0) in Tables 3.1- 3.3 exhibit such limiting behaviour. The generation of limit sets 
corresponding to regular languages that are not finite complement languages appears 
to be a general feature of class 1 cellular automata. 

Tables 3.1- 3.3 suggest the result, discussed in Sect. 4, that cellular automata 
capable of class 3 or 4 behaviour give rise to sets of configurations represented by 
regular languages whose complexity increases rapidly with time. The limit sets for 
such cellular automata are therefore presumably not usually regular languages. If 
a finite description of them can be given, it must be in terms of more complicated 
formal languages. 

Any language that can be described by a regular grammar must obey the regular 
language "pumping lemma" (e.g. [7]) . This requires that it be possible to write all 
sufficiently long symbol sequences a appearing in the language in the form a 1a2a3 

Figure 6.1. The detenninistic finite automaton representing 

the regular language corresponding to the limit set for cel

lular automaton rule 128. This infinite complement regular 

language is obtained as the infinite time limit of the series 

of finite complement regular languages illustrated in Fig. 4. 1. 

It contains an infinite number of configurations, but has zero 

limiting entropy. 
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so that for any n the symbol sequence ala~a3 also appears in the language. (This 
result follows from the fact that any sufficiently long sequence must correspond 
to a path containing a cycle in the DFA. This cycle may then be traversed any 
number of times, yielding arbitrarily repeated symbol sequences.) The sets generated 
after a finite number of time steps in cellular automaton evolution always obey this 
condition: arbitrary repetitions of the string a2 are obtained by evolution from initial 
configurations containing arbitrarily-repeated sequences evolving to a2• 

It is possible to construct cellular automata for which the regular language pumping 
lemma fails in the large time limit, and which therefore yield non-regular language 
limit sets. In one class of examples [39, 34], there are pairs of localized structures 
which propagate with opposite velocities from point sources. After t time steps, 
such cellular automata generate configurations consisting roughly of repetitions of 
sequences 

(6.1) 

In the infinite time limit, arbitrarily long identical pairs of symbol sequences thus 
appear. The limit sets for such cellular automata are therefore not regular languages. 
Instead it appears that they correspond to context-free languages. 

The pumping lemma for regular languages may be generalized to context-free 
languages. Any sufficiently long sequence in a context-free language must be of 
the form ala2a3a4aS such that ala~a3a~aS is also in the language for any n. The 
possibility for separated equal length identical substrings is a reflection of the non
local nature of context-free languages, manifest for example in the indefinitely large 
memory stacks required in machines to recognize them. 

Limiting sets of configurations of the form (6.1) that violate the regular language 
pumping lemma nevertheless obey the context-free language pumping lemma, and 
thus correspond to context-free languages. 

The correspondence between sets of infinite cellular automaton configurations and 
context-free languages is slightly more complicated than for regular languages. In all 
cases, the cellular automaton configurations correspond to infinite symbol sequences 
generated according to a formal grammar. For regular languages, it is also possible to 
construct finite automata which recognize words in the language, starting at any point. 
The necessity for a stack memory in the generation of context-free languages makes 
their recognition starting at any point in general impossible. Infinite configurations 
generated by context-free grammars must thus be viewed as concatenations of finite 
context-free language words. Only at the boundaries between these words is the 
stack memory for the machine generating the configuration empty, so that sequences 
of symbols may be recognized. Configurations generated by context-sensitive and 
more complicated grammars must be considered in an analogous way. 

If the limit set for a cellular automaton is a context-free language, whose generation 
requires a computer with an indefinitely large stack memory, then one expects that 
the regular language sets obtained at successive finite time steps in the evolution of 
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the cellu lar automaton would require progressively larger finite size stack memories. 
If the limiting context-free grammar contains say Q (non-terminal) productions, 
then there are 0 ( QI) possible stack configurations after t time steps, and the set of 
configurations obtained may be recognized by a finite automaton with about QI states. 
In addition, the context-free pumping lemma is satisfied for repetitions of substrings 
of length up to about t. Regular languages that approximate context-free languages 
for t time steps should have comparatively simple repetitive forms. The regular 
languages of Fig. 4. 1 generated at finite times by rule 128 have roughly the expected 
form, but their limit is in fact a regular language. The absence of obvious patterns 
in the regular grammars such as Figs. 4.2-4.4 generated by typical class 3 cellular 
automata after even a few time steps suggests that the limiting languages in these 
cases are not context-free. They are presumably context-sensitive or unrestricted 
languages. 

The entropies of regular languages are always logarithms of algebraic integers [as 
in Eq. (3.5)]. Context-free languages may, however, have entropies given by loga
rithms of general algebraic numbers (whose minimal polynomials are not necessarily 
monic). The enumeration of words in a formal language may be cast in algebraic 
terms by considering the sequence of words in the language as a formal power se
ries satisfying equations corresponding to the production rules for the language (e.g. 
[40)). For the simple regular language «0*) 10) (repetition understood) of Fig. l.3b, 
with production rules 

(6.2) 

(where the terminal symbols So and s, represent 0 and 1 respectively), the corre
sponding equations are 

(6.3) 

Solving for Uo as the start symbol one obtains 

(6.4) 

The expansion of this generating function (accounting for the non-commutative na
ture of symbol string concatenation) yields the sequence of possible words ir. the 
language. Replacing all terminal symbols in the generating function by a dummy 
variable x , the coefficient of xn in its expansion gives the number of distinct symbol 
sequences of length n in the language. The asymptotic growth rate of this number, 
and thus the entropy of the language, are then determined by the smallest real root 
of the (monic) denominator polynomial. The generating function for any regular 
language is always a rational function of x . For a context-free language, however, 
the equations analogous to (3.8) are in general non-linear in the u j • At least for 
unambiguous languages, the positions of the leading poles in the resulting gener
ating functions obtained by solving these simultaneous polynomial equations are 
nevertheless algebraic numbers [41] . 
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There is a finite procedure to find the minimal regular grammar that generates a 
given regular language, as described in Sect. 2. No finite procedure exists in general, 
however, to find the minimal context-free or other grammar corresponding to a more 
complicated language. The analogue of the regular language complexity is thus 
formally non-computable for context-free and more complicated languages. This is 
an example of the result that no finite procedure can in general determine the shortest 
input program that generates a particular output when run for an arbitrarily long 
time on some computer (e.g. [42]). Explicit testing of successively longer programs 
is inadequate, since the insolubility of the halting problem implies that no upper 
bound can in general be given for the time before the required sequence is generated. 
Particular simple cases of this problem are nevertheless soluble, so that, for example, 
the minimal grammars for regular languages are computable. 

The entropies for regular and context-free languages may be computed by the 
finite procedures described above. The entropies for context-sensitive (type l) and 
unrestricted (type 0) languages are, however, in general non-computable numbers 
[43]. Bounds on them may be given. But no finite procedure exists to calculate them 
to arbitrary precision. (They are in many respects analogous to the non-computable 
probabilities for universal computers to halt given random input.) If many class 3 and 
4 cellular automata do indeed yield limit sets corresponding to context-sensitive or 
unrestricted languages, then the entropies of these sets are in general non-computable. 

The discussion so far has concerned the generation of infinite configurations by 
cellular automaton evolution. One may also consider the evolution of initial config
urations in which nonzero sites exist only in a finite region. Then for class 3 cellular 
automata with almost all initial states, the region of nonzero sites expands linearly 
with time. (Such expansion is guaranteed if, for example, ¢[l , 0, ... , 0] = 1 and so 
on.) For class 4 cellular automata, the region may expand and contract with time. One 
may characterize the structures generated by considering the set of finite sequences 
generated at any time by evolution from a set of finite initial configurations. For 
class 3 cellular automata, this set appears to be no more complicated than a context
sensitive language, while for class 4 cellular automata, it may be an unrestricted 
language. Notice that the set generated after a fixed finite number of time steps 
always corresponds to a regular language, just as for infinite configurations. (The 
regular grammar for these finite configurations consists of all paths with the relevant 
length that begin and end at the 00 ... 0 node of the NDFA analogous to Fig. 2.1.) 

Consider the language formed by the set of sequences of length n generated after 
any number of time steps in the evolution of a class 3 cellular automaton from all 
possible initial configurations with size no 14 . This language appears to be at most 
context-sensitive, since a word of length n in it can presumably be recognized in a 
finite time by a computer with a memory of size at most n. In its simplest form, 

14 This is analogous to but distinct from the problem of finding all initial configurations which ultimately evolve to a 
particular complete fin al configuration, such as the null configuration (cf. [2, 44, 45]). 
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the computer operates by testing configurations generated by evolution from all 
kno possible initial states. Since the configurations expand steadily with time, the 
evolution of each configuration need be traced only until it is of size n ; the required 
configuration of length n is either reached at that time, or will never be reached. 

In a class 4 cellular automaton, evolution from an initial configuration of size no 
may yield arbitrarily large configurations, but then ultimately contract to give a size n 
configuration. No upper bound on the time or memory space required to generate the 
size n configuration may therefore be given. The problem of determining whether a 
particular finite configuration is ever generated in the evolution of a class 4 cellular 
automaton from one of a finite set of initial configurations may therefore in general be 
formally undecidable. No finite computation can give all the structures of a particular 
size ultimately generated in the evolution of a class 4 cellular automaton. 

The procedure for recognizing finite configurations generated by class 3 cellu
lar automata, while finite in principle, may require large computational resources. 
Whenever the context-sensitive language corresponding to the set of finite config
urations cannot be described by a context-free or simpler grammar, the problem of 
recognizing words in the language is PSPACE-complete with respect to the lengths 
of the words (e.g. [28]). It can thus presumably be performed essentially no more 
efficiently than by testing the structures generated by the evolution of each of the kno 

possible finite initial configurations. 
As well as considering the evolution of finite complete configurations, one may 

also consider the generation of finite sequences of symbols in the evolution of infinite 
configurations. Enumeration of sets of length n sequences that can and cannot occur 
provide partial characterizations of sets of infinite configurations. However, even for 
configurations generated at a finite time t , such enumeration in general requires large 
computational resources. A symbol sequence of length n appears only if at least one 
length no = n + 2rt initial block evolves to it after t time steps. A computation time 
polynomial in n and t suffices to determine whether a particular candidate initial 
block evolves to a required sequence. The problem of determining whether any such 
initial block exists is therefore in the class NP. One may expect that for many cellular 
automata, this problem is in fact NP-complete. (The procedure of Sect. 2 provides no 
short cut, since the construction of the required DFA is an exponential computational 
process.) It may therefore effectively be solved essentially only by explicit simulation 
of the evolution of all exponentially-many possible initial sequences. 

In the limit of infinite time, the problem of determining whether a particular finite 
sequence is generated in the evolution of a cellular automata becomes in general 
undecidable. For a cellular automaton with only class I or 2 behaviour, the limit 
set always appears to correspond to a regular language, for which the problem is 
decidable. But for class 3 and 4 cellular automata, whose limit sets presumably 
correspond to more complicated formal languages, the problem may be undecidable. 
(The problem is in general in the undecidability class II, [46] ; the set of finite 
sequences that occur is thus recursively enumerable, but not necessarily recursive.) 
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Even when the general problem is undecidable, the appearance of particular finite 
sequences in the limit set for a cellular automaton may be decidable. The fraction 
of particular sequences whose appearance in the limit set is undecidable provides 
a measure of the degree of unpredictability or "computational achievement" of the 
cellular automaton evolution (presumably related to "logical depth" [47]). 

7. Discussion 

This paper has taken some preliminary steps in the application of computation the
ory to the global analysis of cellular automata. Cellular automata are viewed as 
computers, whose time evolution processes the information specified by their initial 
configurations. Many aspects of this information processing may be described in 
terms of computation theory. The intrinsic discreteness of cellular automata allows 
for immediate identifications with conventional computational systems; but the ba
sic approach and many of the results obtained should be applicable to many other 
dynamical systems. 

Self-organization in cellular automata involves the generation of distinguished 
sets of configurations with time. These sets are described as formal languages in 
computation theory terms. Each configuration corresponds to a word in a language, 
and is formed from a sequence of symbols according to definite grammatical rules. 
These grammatical rules provide a complete and succinct specification of the sets 
generated by the cellular automaton evolution. 

Section 2 showed that, starting with all possible initial configurations, the sets 
generated by a finite number of time steps of cellular automaton evolution always 
correspond to regular formal languages. Such languages are recognized by finite 
automata. These finite automata are specified by finite state transition graphs; words 
in the languages correspond to all possible paths through these graphs. The (limiting) 
set entropies of such regular languages are then given as logarithms of the algebraic 
integers corresponding to the largest eigenvalues of the incidence matrices for their 
state transition graphs. 

In general, several different finite automata or regular grammars may yield the 
same regular language. However, it is always possible to find a simplest finite 
automaton, or set of grammatical rules, which correspond to any particular regular 
language. This simplest finite automaton provides a canonical representation for sets 
generated by cellular automaton evolution, and its size (number of states) gives a 
measure of their "complexity." The larger the "regular language complexity" for a 
set of configurations, the more complicated is the minimal set of grammatical rules 
necessary to describe it as a regular language. 

Section 4 suggests the general result that the regular language complexity is 
non-decreasing with time for all cellular automata. This result gives a quantitative 
characterization of progressive self-organization in cellular automata. It may give a 
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first indication of a generalization of the second law of thermodynamics to irreversible 
systems. 

Entropy may be estimated from experimental data by fitting parameters in simple 
models which reproduce the data. Extraction of regular language complexities from 
experimental data requires the identification of maximal (regular language) patterns 
in the data, or the construction of a minimal (finite automaton) model that generates 
the data. Given perfect data (and an upper bound on the regular language complexity), 
a direct method may be used (e.g. [48]) . In practice, it will probably be convenient 
to construct stochastic finite automata which provide probabilistic reproductions of 
the available data (cf. estimates for the structure of Markovian sources (e.g. [49])). 

Dynamical systems theory methods were used in [2] to identify four general 
classes of cellular automaton behaviour. Sections 4 and 6 suggested computation 
theory characterizations of these classes. The limit sets for cellular automata with 
only class I or 2 behaviour are regular languages. For most class 3 and 4 cellular 
automata, the regular language complexity increases steadily with time, so that the 
set of configurations obtained in the large time limit does not usually form a regular 
language. Instead (at least for appropriate finite size configurations) the limit sets for 
class 3 cellular automata appear to correspond to context-sensitive languages, while 
those for class 4 cellular automata correspond to general languages. 

Regular languages are sufficiently simple that their properties may be determined 
by finite computational procedures. Properties of context-free and more complicated 
languages are, however, often not computable by finite means. Thus, for example, 
the minimal grammars for such languages (whose sizes would provide analogues 
of the regular language complexity) cannot in general be found by finite computa
tions. Moreover, for context-sensitive and general languages, even quantities such 
as entropy are formally non-computable. 

When cellular automaton evolution is viewed as computation, one may consider 
that the limiting properties of a cellular automaton are determined by an infinite 
computational process. One should not expect in general that the results of this infinite 
process can be summarized in finite mathematical terms. For sufficiently simple 
cellular automata, apparently those of classes I and 2, however, it is nevertheless 
possible to "short cut" the infinite processes of cellular automaton evolution, and to 
give a finite specification of their limiting properties. For most class 3 and 4 cellular 
automata, no such short cut appears possible: their behaviour may in general be 
determined by no procedure significantly faster than explicit simulation, and many of 
their limiting properties cannot be determined by any finite computational process. 
(Such non-computable limiting behaviour would be an immediate consequence of 
the universal computation capability conjectured for class 4 cellular automata, but 
does not depend on it.) 

Non-computability and undecidability are common phenomena in the systems 
investigated in pure mathematics, logic and computation. But they have not been 
identified in the systems considered in theoretical physics. In many physical the-
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ories one can in fact imagine constructing complicated systems which behave, for 

example, as universal computers, and for which undecidable propositions may be 

formulated. Cellular automata (and other dynamical systems) may be considered as 

simple physical theories. This paper has suggested that in fact even simple, natural, 

questions concerning the limiting behaviour of cellular automata are often undecid

able (except for very simple systems such as those corresponding to class 1 and 

2 cellular automata). One may speculate that undecidability is common in all but 

the most trivial physical theories. Even simply-formulated problems in theoretical 

physics may be found to be provably insoluble. 

Undecidability and non-computability are features of problems which attempt to 

summarize the consequences of infinite processes. Finite processes may always be 

carried out explicitly. For some particularly simple processes, the consequences of 

a large, but finite, number of steps may be deduced by a procedure involving only a 

small number of steps. But at least for many computational processes (e.g. [28]), it is 

believed that no such short cut exists: each step (or each possibility) must in fact be 

carried out explicitly. It was suggested that this phenomenon is common in cellular 

automata. One may speculate that it is widespread in physical systems. No simple 

theory or formula could ever be given for the overall behaviour of such systems: 

the consequences of their evolution could not be predicted, but could effectively be 

found only by direct simulation or observation. 
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Undecidability and 
Intractability in Theoretical 
Physics 
1985 

Physical processes are viewed as computations, and the difficulty of answering 
questions about them is characterized in terms of the difficulty of performing the 
corresponding computations. Cellular automata are used to provide explicit exam
ples of various formally undecidable and computationally intractable problems. It 
is suggested that such problems are common in physical models, and some other 
potential examples are discussed. 

There is a close correspondence between physical processes and computations. On 
one hand, theoretical models describe physical processes by computations that trans
form initial data according to algorithms representing physical laws. And on the 
other hand, computers themselves are physical systems, obeying physical laws. This 
paper explores some fundamental consequences of this correspondence. I 

The behavior of a physical system may always be calculated by simulating ex
plicitly each step in its evolution. Much of theoretical physics has, however, been 
concerned with devising shorter methods of calculation that reproduce the outcome 
without tracing each step. Such shortcuts can be made if the computations used in 
the calculation are more sophisticated than those that the physical system can itself 
perform. Any computations must, however, be carried out on a computer. But the 
computer is itself an example of a physical system. And it can determine the outcome 
of its own evolution only by explicitly following it through: No shortcut is possible. 
Such computational irreducibility occurs whenever a physical system can act as a 
computer. The behavior of the system can be found only by direct simulation or ob
servation: No general predictive procedure is possible. Computational irreducibility 
is common among the systems investigated in mathematics and computation theory.2 
This paper suggests that it is also common in theoretical physics. Computational 
reducibility may well be the exception rather than the rule: Most physical questions 

Originally published in Physical Review Lelfers, vol ume 54, pages 735-738 (25 February 1985), 
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may be answerable only through irreducible amounts of computation. Those that 
concern idealized limits of infinite time, volume, or numerical precision can require 
arbitrarily long computations, and so be formally undecidable. 

A diverse set of systems are known to be equivalent in their computational capa
bilities, in that particular forms of one system can emulate any of the others. Standard 
digital computers are one example of such "universal computers": With fixed intrinsic 
instructions, different initial states or programs can be devised to simulate different 
systems. Some other examples are Turing machines, string transformation systems, 
recursively defined functions, and Diophantine equations.2 One expects in fact that 
universal computers are as powerful in their computational capabilities as any phys
ically realizable system can be, so that they can simulate any physical system.) This 
is the case if in all physical systems there is a finite density of information, which 
can be transmitted only at a finite rate in a finite-dimensional space.4 No physically 
implementable procedure could then shortcut a computationally irreducible process. 

Different physically realizable universal computers appear to require the same 
order of magnitude times and information storage capacities to solve particular classes 
of finite problems. S One computer may be constructed so that in a single step it carries 
out the equivalent of two steps on another computer. However, when the amount of 
information n specifying an instance of a problem becomes large, different computers 
use resources that differ only by polynomials in n. One may then distinguish several 
classes of problems. 6 The first, denoted P, are those such as arithmetical ones taking a 
time polynomial in n. The second, denoted PSPACE, are those that can be solved with 
polynomial storage capacity, but may require exponential time, and so are in practice 
effectively intractable. Certain problems are "complete" with respect to PSPACE, so 
that particular instances ofthem correspond to arbitrary PSPACE problems. Solutions 
to these problems mimic the operation of a universal computer with bounded storage 
capacity: A computer that solves PSPACE-complete problems for any n must be 
universal. Many mathematical problems are PSPACE-complete.6 (An example is 
whether one can always win from a given position in chess.) And since there is 
no evidence to the contrary, it is widely conjectured that PSPACE * P , so that 
PSPACE-complete problems cannot be solved in polynomial time. A final class of 
problems, denotedNP, consist in identifying, among an exponentially large collection 
of objects, those with some particular, easily testable property. An example would be 
to find an n-digit integer that divides a given 2n-digit number exactly. A particular 
candidate divisor, guessed nondeterministically, can be tested in polynomial time, 
but a systematic solution may require almost all O(2n

) possible candidates to be 
tested. A computer that could follow arbitrarily many computational paths in parallel 
could solve such problems in polynomial time. For actual computers that allow 
only boundedly many paths, it is suspected that no general polynomial time solution 
is possible.s Nevertheless, in the infinite time limit, parallel paths are irrelevant, 
and a computer that solves NP-complete problems is equivalent to other universal 
computers.6 
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I 
Figure 1. Seven examples of patterns generated by repeated application of various simple cellular au

tomaton rules. The last four are probably computationally irreducible, and can be found only by direct 

simulation. 

The structure of a system need not be complicated for its behavior to be highly 
complex, corresponding to a complicated computation. Computational irreducibility 
may thus be widespread even among systems with simple construction. Cellular 
automata (CA)7 provide an example. A CA consists of a lattice of sites, each with k 
possible values, and each updated in time steps by a deterministic rule depending on 
a neighborhood of R sites. CA serve as discrete approximations to partial differential 
equations, and provide models for a wide variety of natural systems. Figure I 
shows typical examples of their behavior. Some rules give periodic patterns, and 
the outcome after many steps can be predicted without following each intermediate 
step. Many rules, however, give complex patterns for which no predictive procedure 
is evident. Some CA are in fact known to be capable of universal computation, 
so that their evolution must be computationally irreducible. The simplest cases 
proved have k = 18 and R = 3 in one dimension,s or k = 2 and R = 5 in two 
dimensions.9 It is strongly suspected that "c1ass-4" CA are generically capable of 
universal computation: There are such CA with k = 3, R = 3 and k = 2, R = 5 in one 
dimension. 10 

Computationally, irreducibility may occur in systems that are not full universal 
computers. For inability to perform, specific computations need not allow all com
putations to be shortcut. Though c1ass-3 CA and other chaotic systems may not be 

universal computers, most of them are expected to be computationally irreducible, so 
that the solution of problems concerning their behavior requires irreducible amounts 
of computation. 

As a first example consider finding the value of a site in a CA after t steps of 
evolution from a finite initial seed, as illustrated in Fig. 1. The problem is specified 
by giving the seed and the CA rule, together with the log t digits of t . In simple cases 
such as the first two shown in Fig. I, it can be solved in the time o (log t) necessary 
to input this specification. However, the evolution of a universal computer CA for a 
polynomial in t steps can implement any computation of length t. As a consequence, 
its evolution is computationally irreducible, and its outcome found only by an explicit 
simulation with length O(t) : exponentially longer than for the first two in Fig. 1. 

One may ask whether the pattern generated by evolution with a CA rule from 
a particular seed will grow forever, or will eventually die out. II If the evolution is 
computationally irreducible, then an arbitrarily long computation may be needed to 
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answer this question. One may determine by explicit simulation whether the pattern 
dies out after any specified number of steps, but there is no upper bound on the time 
needed to find out its ultimate fate. 12 Simple criteria may be given for particular 
cases, but computational irreducibility implies that no shortcut is possible in general. 
The infinite-time limiting behavior is formally undecidable: No finite mathematical 
or computational process can reproduce the infinite CA evolution. 

The fate of a pattern in a CA with a finite total number of sites N can always be 
determined in at most kN steps. However, if the CA is a universal computer, then 
the problem is PSPACE-complete, and so presumably cannot be solved in a time 
polynomial in N . 13 

One may consider CA evolution not only from finite seeds, but also from initial 
states with all infinitely many sites chosen arbitrarily. The value a(l ) of a site after 
many time steps t then in general depends on 2At ~ Rt initial site values, where A 
is the rate of information transmission (essentially Lyapunov exponent) in the CA.9 

In class-J and -2 CA, information remains localized, so that A = 0, and a(t) can be 
found by a length a (log t) computation. For class-3 and -4 CA, however, A > 0, and 
a(l ) requires an OCt) computation.l~ 

The global dynamics of CA are determined by the possible states reached in their 
evolution. To characterize such states one may ask whether a particular string of n 

site values can be generated after evolution for t steps from any (length n + 2A t) initial 
string. Since candidate initial strings can be tested in OCt) time, this problem is in 
the class NP. When the CA is a universal computer, the problem is in general NP

complete, and can presumably be answered essentially only by testing all O(kn+2A /) 

candidate initial strings. IS In the limit t ~ 00, it is in general undecidable whether 
particular strings can appear. 16 As a consequence, the entropy or dimension of the 
limiting set of CA configurations is in general not finitely computable. 

Formal languages describe sets of states generated by CA.17 The set that appears 
after t steps in the evolution of a one-dimensional CA forms a regular formal language: 
each possible state corresponds to a path through a graph with 8(1) < 2k RI nodes. If, 
indeed, the length of computation to determine whether a string can occur increasef> 
exponentially with t for computationally irreducible CA, then the "regular language 
complexity" 8 (1) should also increase exponentially, in agreement with empirical 
data on certain class-3 CA,17 and reflecting the "irreducible computational work" 
achieved by their evolution. 

Irreducible computations may be required not only to determine the outcome of 
evolution through time, but also to find possible arrangements of a system in space. 
For example, whether an x x x patch of site values occurs after just one step in 
a two-dimensional CA is in general NP-complete. 18 To determine whether there is 
any complete infinite configuration that satisfies a particular predicate (such as being 
invariant under the CA rule) is in general undecidable l8 : It is equivalent to finding 
the infinite-time behavior of a universal computer that lays down each row on the 
lattice in tum. 
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There are many physical systems in which it is known to be possible to construct 
universal computers. Apart from those modeled by CA, some examples are electric 
circuits, hard-sphere gases with obstructions, and networks of chemical reactions. 19 

The evolution of these systems is in general computationally irreducible, and so 
suffers from undecidable and intractable problems. Nevertheless, the constructions 
used to find universal computers in these systems are arcane, and if computationally 
complex problems occurred only there, they would be rare. It is the thesis of this 
paper that such problems are in fact common.20 Certainly there are many systems 
whose properties are in practice studied only by explicit simulation or exhaustive 
search: Few computational shortcuts (often stated in terms of invariant quantities) 
are known. 

Many complex or chaotic dynamical systems are expected to be computationally 
irreducible, and their behavior effectively found only by explicit simulation. Just as 
it is undecidable whether a particular initial state in a CA leads to unbounded growth, 
to self-replication, or has some other outcome, so it may be undecidable whether a 
particular solution to a differential equation (studied say with symbolic dynamics) 
even enters a certain region of phase space, and whether, say, a certain n-body system 
is ultimately stable. Similarly, the existence of an attractor, say, with a dimension 
above some value, may be undecidable. 

Computationally complex problems can arise in finding eigenvalues or extremal 
states in physical systems. The minimum energy conformation for a polymer is in 
general NP-complete with respect to its Iength.21 Finding a configuration below a 
specified energy in a spin-glass with particular couplings is similarly NP-complete.22 

Whenever the stationary state of a physical system such as this can be found only 
by lengthy computation, the dynamic physical processes that lead to it must take a 
correspondingly long time.5 

Global properties of some models for physical systems may be undecidable in 
the infinite-size limit (like those for two-dimensional CA). An example is whether a 
particular generalized Ising model (or stochastic multidimensional CA23 ) exhibits a 
phase transition. 

Quantum and statistical mechanics involve sums over possibly infinite sets of 
configurations in systems. To derive finite formulas one must use finite specifications 
for these sets. But it may be undecidable whether two finite specifications yield 
equivalent configurations. So, for example, it is undecidable whether two finitely 
specified four-manifolds or solutions to the Einstein equations are equivalent (under 
coordinate reparametrization).24 A theoretical model may be considered as a finite 
specification of the possible behavior of a system. One may ask for example whether 
the consequences of two models are identical in all circumstances, so that the models 
are equivalent. If the models involve computations more complicated than those 
that can be carried out by a computer with a fixed finite number of states (regular 
language), this question is in general undecidable. Similarly, it is undecidable what 
is the simplest such model that describes a given set of empirical data.25 

207 



Wolfram on Cellular Automata and Complexity 

This paper has suggested that many physical systems are computationally irre

ducible, so that their own evolution is effectively the most efficient procedure for 

determining their future . As a consequence, many questions about these systems can 

be answered only by very lengthy or potentially infi nite computations. But some 

questions answerable by simpler computations may still be formulated . 
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Two-Dimensional Cellular 
Automata 

1985 

A largely phenomenological study of two-dimensional cellular automata is reported. 
Qualitative classes of behavior similar to those in one-dimensional cellular automata 
are found. Growth from simple seeds in two-dimensional cellular automata can 
produce patterns with complicated boundaries, characterized by a variety of growth 
dimensions. Evolutionfrom disordered states can give domains with boundaries that 
execute effectively continuous motions. Some global properties of cellular automata 
can be described by entropies and Lyapunov exponents. Others are undecidable. 

1. Introduction 

Cellular automata are mathematical models for systems in which many simple com
ponents act together to produce complicated patterns of behavior. One-dimensional 
cellular automata have now been investigated in several ways (Ref. 1 and refer
ences therein). This paper presents an exploratory study of two-dimensional cellular 
automata. I The extension to two dimensions is significant for comparisons with 
many experimental results on pattern formation in physical systems. Immediate 
applications include dendritic crystal growth,(6) reaction-diffusion systems, and tur
bulent flow patterns. (The Navier-Stokes equations for fluid flow appear to admit 
turbulent solutions only in two or more dimensions.) 

A cellular automaton consists of a regular lattice of sites. Each site takes on 
k possible values, and is updated in discrete time steps according to a rule ifJ that 
depends on the value of sites in some neighborhood around it. The value ai of a site 

Coauthored with Norman H. Packard. Originally published in Journal of Statistical Physics, volume 38, pages 901-946 
(March 1985). 

I Some aspects of two-dimensional cellular automata were discussed in Refs. 2 and 3, and mentioned in Ref. 4. Additive 
two-dimensional cellular automata were considered in Ref. 5. 
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(a) (b) 

Figure 1. Neighborhood structures considered for two-dimensional cellular automata. In the cellular 

automaton evolution, the value of the center cell is updated according to a rule that depends on the values 

of the shaded cells. Cellular automata with neighborhood (a) are termed "five-neighbor square"; those 

with neighborhood (b) are termed "nine-neighbor square." (These neighborhoods are sometimes referred 

to as the von Neumann and Moore neighborhoods, respectively.) Totalistic cellular automaton rules take 

the value of the center site to depend only on the sum of the values of the sites in the neighborhood. With 

outer totalistic rules , sites are updated according to their previous values, and the sum of the values of the 

other sites in the neighborhood. Triangular and hexagonal lattices are also possible, but are not used in 

the examples given here. Notice that five-neighbor square, triangular, and hexagonal cellular automaton 

rules may all be considered as special cases of general nine-neighbor square rules. 

at position i in a one-dimensional cellular automata with a rule that depends only on 

nearest neighbors thus evolves according to 

(1+1) _ A.[ (I) (I) (I) ] 
a i - 'I' ai_I' a i ,ai+1 (Ll) 

There are several possible lattices and neighborhood structures for two-dimensional 

cellular automata. This paper considers primarily square lattices, with the two neigh

borhood structures illustrated in Fig. 1. A five-neighbor square cellular automaton 

then evolves in analogy with Eq. (1.1) according to 

(1+1) [(I) (I) (I) (I) (I ) ] 
ai ,j = ¢ ai,j' ai ,j+I ' ai+l ,j' ai ,j_I ' ai_l ,j (1.2) 

Here we often consider the special class of totalistic rules, in which the value of a 

site depends only on the sum of the values in the neighborhood: 

(1+1 ) f[ (I) (I) (I) (I) (I)] 
ai, j = ai , j + ai, j+1 + ai+l ,j + ai ,j_1 + ai_l , j (1.3) 

These rules are conveniently specified by a code(7) 

C = L f(n)k" (1.4) 

" 
We also consider outer totalistic rules, in which the value of a site depends separately 

on the sum of the values of sites in a neighborhood, and on the value of the site itself: 

(1+1) f- (I ) (I) (I) (I ) (I ) 
ai, j = (ai ,j' ai, j+1 +ai+ l , j +ai . j _1 +ai _ I ,) 

Such rules are specified by a code 

C = L j[a, n]kkn+a 
n 
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Rule type 

General 
Rotationally symmetric 
Reflection symmetric 

Completely symmetric 
Outer totalistic 

Totalistic 

5-neighbor square 

232 ", 4 X 109 

212 = 4096 

224 ", 2 X 107 

212 = 4096 

210 = 1024 

25 = 32 

9-neighbor square 

2512", 10154 

2140 ", 1042 

2288 '" 5 X 1086 

2102 
'" 5 X 1030 

218 ",3x105 

29 = 512 

Two-Dimensional Cellular Automata (1 9 851 

Hexagonal 

2128 ", 3 X 1038 

264 '" 2 X 1019 

280", 1024 , 

274 '" 2 X 1022 

228 ", 3 X 108 

214 = 16384 

27 = 128 

Table 1. Numbers of possible rules of various kinds for cellular automata with two states per site, and 

neighborhoods of the fonn shown in Fig. I . The two entries for reflectional symmetries of the hexagonal 

lattice refer to reflections across a cell and across a boundary, respectively. The number of quiescent rules 

(defined to leave the null configuration invariant) is always half the total number of rules of a given kind. 

This paper considers two-dimensional cellular automata with values 0 or 1 at each 
site, corresponding to k = 2. Table 1 gives the number of possible rules of various 
kinds for such cellular automata. A notorious example of an outer totalistic nine
neighbor square cellular automaton is the "Game of Life,"(8) with a rule specified by 
code C = 224. 

Despite the simplicity of their construction, cellular automata are found to be 
capable of very complicated behavior. Direct mathematical analysis is in general of 
little utility in elucidating their properties. One must at first resort to empirical means. 
This paper is a phenomenological study of typical two-dimensional cellular automata. 
Its approach is largely experimental in character: cellular automaton rules are selected 
and their evolution from various initial states is traced by direct simulation.2 The 
emphasis is on generic properties. Typical initial states are chosen. Except for some 
restricted kinds of rules, Table 1 shows that the number of possible cellular automaton 
rules is far too great for each to be investigated explicitly. For the most part one must 
resort to random sampling, with the expectation that the rules so selected are typical. 
The phenomena identified by this experimental approach may then be investigated 
in detail using analytical approximations, and by conventional mathematical means. 
Generic properties are significant because they are independent of precise details of 
cellular automaton construction, and may be expected to be universal to a wide class 
of systems, including those that occur in nature. 

2 Several computer systems were used. The first was the special-purpose pipelined TTL machine built by the M.LT. 
Infonnation Mechanics group.(9) This machine updates all sites on a 256x256 square cellular automaton lattice 60 times 
per second. It is controlled by a microcomputer, with software written in FORTH. It allows for five- and nine-neighbor 
rules, with up to four effective values for each site. The second system was a soft ware program running on the Ridge 
32 computer. The kernel is written in assembly language; the top-level interface in the C programming language. A 
128 x 128 cellular automaton lattice is typically updated about 7 times per second . Variants of the program , with kernels 
written in C and FORTRAN, were used on Sun Workstations, VAX, and Cray I computers. One-dimensional cellular 
automaton simulations were carried out with OUf CA cellular automaton simulation package, written in C, usually 
running on a Sun Workstation. 
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Empirical studies strongly suggest that the qualitative properties of one-dimen
sional cellular automata are largely independent of such features of their construction 
as the number of possible values for each site, and the size of the neighborhood. 
Four qualitative classes of behavior have been identified in one-dimensional cellu
lar automata. (7) Starting from typical initial configurations, class-I cellular automata 
evolve to homogeneous final states. Class-2 cellular automata yield separated peri
odic structures. Class-3 cellular automata exhibit chaotic behavior, and yield ape
riodic patterns. Small changes in initial states usually lead to linearly increasing 
regions of change. Class-4 cellular automata exhibit complicated localized and prop
agating structures. Cellular automata may be considered as information-processing 
systems, their evolution performing some computation on the sequence of site val
ues given as the initial state. It is conjectured that class-4 cellular automata are 
generically cal?able of universal computation, so that they can implement arbitrary 
information-pr()~ssing procedures. 

Dynamical systems theory methods may be used to investigate the global proper
ties of cellular automata. One considers the set of configurations generated after some 
time from any possible initial configuration. Most cellular automaton mappings are 
irreversible (and not surjective), so that the set of configurations generated contracts 
with time. Class-I cellular automata evolve from almost all initial states to a unique 
final state, analogous to a fixed point. Class-2 cellular automata evolve to collections 
of periodic structures, analogous to limit cycles. The contraction of the set of con
figurations generated by a cellular automaton is reflected in a decrease in its entropy 
or dimension. Starting from all possible initial configurations (corresponding to a set 
defined to have dimension one), class-3 cellular automata yield sets of configurations 
with smaller, but positive, dimensions. These sets are directly analogous to the chaotic 
(or "strange") attractors found in some continuous dynamical systems (e.g., Ref. 10). 

Entropy or dimension gives only a coarse characterization of sets of cellular au
tomaton configurations. Formal language theory (e.g., Ref. 11) provides a more com
plete and detailed characterization.(l2) Configurations may be considered as words 
in a formal language; sets of configurations are specified by the grammatical rules 
of the language. The set of configurations generated after any finite number of time 
steps in the evolution of a one-dimensional cellular automaton can be shown to form 
a regular language: the possible configurations thus correspond to possible paths 
through a finite graph. For most class-3 and -4 cellular automata, the complexity of 
this graph grows rapidly with time, so that the limit set is presumably not a regular 
language (cf. Ref. 13). 

This paper reports evidence that certain global properties of two-dimensional 
cellular automata are very similar to those of one-dimensional cellular automata. 
Many of the local phenomena found in two-dimensional cellular automata also have 
analogs in one dimension. However, there are a variety of phenomena that depend 
on the geometry of the two-dimensional lattice. Many of these phenomena involve 
complicated boundaries and interfaces, which have no direct analog in one dimension. 
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Section 2 discusses the evolution of two-dimensional cellular automata from sim
ple "seeds," consisting of a few nonzero initial sites. Just as in one dimension, some 
cellular automata give regular and self-similar patterns; others yield complicated and 
apparently random patterns. A new feature in two dimensions is the generation of 
patterns with dendritic boundaries, much as observed in many natural systems. Most 
two-dimensional patterns generated by cellular automaton growth have a poly topic 
boundary that reflects the structure of the neighborhood in the cellular automaton 
rule (cf. Ref. 14). Some rules, however, yield slowly growing patterns that tend to a 
circular shape independent of the underlying cellular automaton lattice. 

Section 3 considers evolution from typical disordered initial states. Some cellular 
automata evolve to stationary structures analogous to crystalline forms. The bound
aries between domains of different phases may behave as if they carry a surface 
tension: positive surface tensions lead to large smooth-walled domains; negative 
surface tensions give rise to labyrinthine structures with highly convoluted walls. 
Other cellular automata yield chaotic, class-3, behavior. Small changes in their ini
tial configurations lead to linearly increasing regions of change, usually circular or 
at least rounded. 

Section 4 discusses some quantitative characterizations of the global properties 
of two-dimensional cellular automata. Many definitions are carried through directly 
from one dimension, but some results are rather different. In particular, the sets of 
configurations that can be generated after a finite number of time steps of cellular 
automaton evolution are no longer described by regular languages, and may in fact be 
nonrecursive. As a consequence, several global properties that are decidable for one
dimensional cellular automata become undecidable in two dimensions (cf. Ref. 15). 

2. Evolution from Simple Seeds 

This section discusses patterns formed by the evolution of cellular automata from 
simple seeds. The seeds consist of single nonzero sites, or small regions containing 
a few nonzero sites, in a background of zero sites. The growth of cellular automata 
from such initial conditions should provide models for a variety of physical and 
other phenomena. One example is crystal growth.(6) The cellular automaton lattice 
corresponds to the crystal lattice, with nonzero sites representing the presence of 
atoms or regions of the crystal. Different cellular automaton rules are found to 
yield both faceted (regular) and dendritic (snowflake-like) crystal structures. In other 
systems the seed may correspond to a small initial disturbance, which grows with 
time to produce a complicated structure. Such a phenomenon presumably occurs 
when fluid turbulence develops downstream from an obstruction or orifice.3 

Figure 2 shows some typical examples of patterns generated by the evolution of 
two-dimensional cellular automata from initial states containing a single nonzero site. 

3 A cellular automaton approximation to the Euler equations is given in Ref. 16. 
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• • • • · 1+1+1+1. 1 

Figure 2. Examples of classes of patterns generated by evolution of two·dimensional cellular automata 

from a single-site seed. Each part corresponds to a different cellular automaton rule. All the rules shown 

are both rotation and reflection symmetric. For each rule, a sequence of frames shows the two·dimensional 

configurations generated by the cellular automaton evolution after the indicated number of time steps. 

Black squares represent sites with value I; white squares sites with value 0. On the left is a space· time 

section showing the time evolution of the center horizontal line of sites in the two-dimensional lattice. 

Successive lines correspond to successive time steps. The cellular automaton rules shown are five-neighbor 

square outer totalistic, with codes (a) 1022, (b) 510, (c) 374, (d) 614 (sum modulo 2 rule) , (e) 174, (f) 494. 
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Figure 2 (continued), 
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In each case, the sequence of two-dimensional patterns formed is shown as a succes
sion of "frames." A space-time "section" is also shown, giving the evolution of the 
center horizontal line in the two-dimensional lattice with time. Figure 3 shows a view 
of the complete three-dimensional structures generated. Figure 4 gives some exam
ples of space-time sections generated by typical one-dimensional cellular automata. 

With some cellular automaton rules, simple seeds always die out, leaving the null 
configuration, in which all sites have value zero. With other rules, all or part of the 
initial seed may remain invariant with time, yielding a fixed pattern, independent of 
time. With many cellular automaton rules, however, a growing pattern is produced. 

Figure 3. View of three-dimensional structures formed from the configurations generated in the first 24 

time steps of the evolution of the two-dimensional cellular automata shown in Fig. 2. Rules (a), (b) , and 

(c) all give rise to configurations with regular, faceted , boundaries. Rules (d), (e) , and (0 yield dendritic 

patterns. In this and other three-dimensional views, the shading ranges periodically from light to dark 

when the number of time steps increases by a factor of two. The three-dimensional graphics here and in 

Figs. 10 and 14 is courtesy of M. Prueitt at Los Alamos National Laboratory. 
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Figure 4. Examples of classes of patterns generated by evolution of one-dimensional cellular automata 

from a single-site seed. Success ive time steps are shown on successive lines. Nonzero sites are shown 

black. The cellular automaton rules shown are totalistic nearest-neighbor (r = I), with k possible values 

at each site: (a) k = 2, code 14, (b) k = 2, code 6, (c) k = 2, code 10, (d) k = 3, code 21, (e) k = 3, code 

102, (f) k = 3, code 138. Irregular patterns are also generated by some k = 2, r = 2 rules (such as that with 

totalistic code 10), and by asymmetric k = 2, r = I rules (such as that with rule number 30). 

Rule (a) in Figs. 2 and 3 is an example of the simple case in which the growing 
pattern is uniform. At each time step, a regular pattern with a fixed density of nonzero 
sites is produced. The boundary of the pattern consists of flat (linear) "facets," and 
traces out a pyramid in space-time, whose edges lie along the directions of maximal 
growth. Sections through this pyramid are analogous to the space-time pattern 
generated by the one-dimensional cellular automaton of Fig. 4(a). 

Cellular automaton rule (b) in Figs. 2 and 3 yields a pattern whose boundary again 
has a simple faceted form, but whose interior is not uniform. Space-time sections 
through the pattern exhibit an asymptotically self-similar or fractal form: pieces of the 
pattern, when magnified, are indistinguishable from the whole. Figure 4(b) shows 
a one-dimensional cellular automaton that yields sections of the same form. The 
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density of nonzero sites in these sections tends asymptotically to zero. The pattern of 
nonzero sites in the sections may be characterized by a Hausdorff or fractal dimension 
that is found by a simple geometrical construction to have value log2 3 :0" 1.59. 

Self-similar patterns are generated in cellular automata that are invariant under 
scale or blocking transformations. (1 7, 18) Particular blocks of sites in a cell ular automa
ton often evolve according to a fixed effective cellular automaton rule. The overall 
behavior of the cellular automaton is then left invariant by a replacement of each 
block with a single site and of the original cellular automaton rule by the effective 
rule. In some cases, the effective rule may be identical to the original rule. Then 
the patterns generated must be invariant under the blocking transformation, and are 
therefore self-similar. (All the rules so far found to have this property are additive.) 
In many cases, the effective rule obtained after several blocking transformations with 
particular blocks may be invariant under further blocking transformations. Then if 
the initial state contains only the appropriate blocks, the patterns generated must be 
self-similar, at least on sufficiently large length scales. 

Cellular automaton (c) gives patterns that are not homogeneous, but appear to 
have a fixed nonzero asymptotic density. The patterns have a complex, and in 
some respects random, appearance. It is remarkable that simple rules, even starting 
from the simple initial conditions shown, can generate patterns of such complexity. It 
seems likely that the iteration of the cellular automaton rule is essentially the simplest 
procedure by which these patterns may be specified. The cellular automaton rule is 
thus "computationally irreducible" (cf. Ref. 19). 

Cellular automata (a) , (b), and (c) in Figs. 2 and 3 all yield patterns whose 
boundaries have a simple faceted form. Cellular automata (d) , (e) , and (f) give instead 
patterns with corrugated, dendritic, boundaries. Such complicated boundaries can 
have no analog in one-dimensional cellular automata: they are a first example of a 
qualitative phenomenon in cellular automata that requires two or more dimensions. 

Cellular automaton (d) follows the simple additive rule that takes the value of 
each site to be the sum modulo two of the previous values of all sites in its five-site 
neighborhood. The space-time pattern generated by this rule has a fractal form. The 
fractal dimension of this pattern, and its analogs on d-dimensionallattices, is given 
by(4): log2 {d[(l +4/ d)I /2 + I]}, or approximately 2.45 for d = 2. The average density 
of nonzero sites in the pattern tends to zero with time. 

Rules (e) and (f) give patterns with nonzero asymptotic densities. The boundaries 
of the patterns obtained at most time steps are corrugated, and have fractal forms 
analogous to Koch curves. The patterns grow by producing "branches" along the 
four lattice directions. Each of these branches then in tum produces side branches, 
which themselves produce side branches, and so on. This recursive process yields a 
highly corrugated boundary. However, as the process continues, the side branches 
grow into each other, forming an essentially solid region. In fact, after each 2i time 
steps the boundary takes on an essentially regular form. It is only between such times 
that a dendritic boundary is present. 
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Cellular automaton (e) is an example of a "solidification" rule,(6) in which any site, 
once it attains value one, never reverts to value zero. Such rules are of significance 
in studies of processes such as crystal growth. Notice that although the interior of the 
pattem takes on a fixed form with time, the possibility of a simple one-dimensional 
cellular automaton model for the boundary alone is precluded by nonlocal effects 
associated with interactions between different side branches. 

The boundaries of the patterns generated by cellular automata (a), (b) , and (c) 
expand with time, but maintain the same faceted form. So after a rescaling in linear 
dimensions by a factor of t, the boundaries take on a fixed form: the pattern obtained 
is a fixed point of the product of the cellular automaton mapping and the rescaling 
transformation (cf. Refs. 20 and 21). The boundaries of Figs. 2(d, e, f) and 3(d, e, f) 
continually change with time; a fixed limiting form after rescaling can be obtained 
only by considering a particular sequence of time steps, such as those of the form 
2 j . The result depends critically on the sequence considered: some sequences yield 
dendritic limiting forms, while others yield faceted forms. The complete space
time patterns illustrated in Figs. 3(d, e, f) again approach a fixed limiting form 
after rescaling only when particular sequences of times are considered. It appears, 
however, that the forms obtained with different sequences have the same overall 
properties: they are asymptotically self-similar and have definite fractal dimensions. 

The limiting structure of patterns generated by the growth of cellular automata 
from simple seeds can be characterized by various "growth dimensions." Two general 
types may be defined. The first, denoted generically D, depend on the overall space
time pattern. The second, denoted D, depend only on the boundary of the pattern. 
The boundary may be defined as the set of sites that can be reached by some path on 
the lattice that begins at infinity and does not cross any nonzero sites. The boundary 
can thus be found by a simple recursive procedure (cf. Ref. 22). For rules that depend 
on more than nearest-neighboring sites, paths that pass within the range of the rule 
of any nonzero site are also excluded, and so no paths can enter any "pores" in the 
surface of the pattern. 

Growth dimensions in general describe the logarithmic asymptotic scaling of 
the total sizes of patterns with their linear dimensions. For example, the spatial 
growth dimension D x is defined in terms of the total number of sites n (interior and 
boundary) contained in patterns generated by a cellular automaton as a function of 
time t by the limit of log n / log t as t -) 00. Figure 5 shows the behavior of log n 

as a function of log t for the cellular automata of Figs. 2 and 3. For those with 
faceted boundaries, Dx = logn / logt = 2 for all sufficiently large t : the total size 
of the patterns scales as the square of the parameter t that determines their linear 
dimensions. When the boundaries can be dendritic, however, log n varies irregularly 
with log t . In case (d), for example, log n depends on the number of nonzero digits 
in the binary decomposition of the integer t (cf. Ref. 4): logn / logt is thus maximal 
when t = 2 j - 1, and is minimal when t = 2 j . One may define upper and lower 
spatial growth dimensions D; and D; in terms of the upper and lower limits (lim sup 
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Figure 5. Sizes of structures generated by the two-dimensional cellular automata of Fig. 2 grow

ing from single nonzero initial sites as a function of time. (Although the sizes are defined only 

at integer times, their successive values are shown joined by straight lines.) n gives the number 

of sites on the boundaries of patterns obtained at time t . n gives the total number of sites con

tained within these boundaries. N is the number of sites in the boundary (surface) of the complete 

three-dimensional space-time structures illustrated in Fig. 3 up to time T , and N is the number of 

and lim in/) of log n/ log t as t ~ 00. For case (d), D; = 2, while D~ = O. For cases 
(e) and (f), log n/ log t oscillates with time, achieving its maximal value at t = 2) -1, 
and its minimal value at or near t = 3/2 x 2). However, in these cases numerical 
results suggest that the upper and lower growth dimensions are in fact equal, and in 
both cases have a value", 2. 

An alternative definition of the spatial growth dimension includes only nonzero 
sites in computing the total sizes of patterns generated by cellular automaton evolu
tion. With this definition, the spatial growth dimension has no definite limit even for 
cellular automata such as that of case (b) which give patterns with faceted boundaries. 

The spatial growth dimensions D x for the boundaries of patterns generated 
by cellular automata are obtained from the limits of log n / log t at large t, where 
n gives the number of sites in the boundary at time t (cf. Ref. 23), Figure 5 
shows the behavior of log n with log t for the cellular automata of Figs. 2 and 
3. For the faceted boundary cases (a), (b), and (c), D x = l. In cases (d), 
(e), and (f), where dendritic boundaries occur, logn varies irregularly with log t. 
log n/ log t is minimal when t = 2) and the boundary is faceted, and is maximal 
when the boundary is maximally dendritic, typically at t = 2) - l. No unique 
limit for D x exists. In case (d), D; = 1.62 ± 0.02, while D; = O. In case 
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sites in their interior. The large-t limits of log n / log t and so on give various growth dimensions for the 

structures. In cases (a), (b), and (c), structures with faceted boundaries are produced, and the growth 

dimensions have unique values. In cases (d), (e), and (f) the structures have dendritic boundaries, and 

the slopes of the bounding lines shown give upper (lim sup ) and lower (lim in!) limits for the growth 

dimensions. In many of the cases shown, the numerical values of these upper and lower limits appear to 

coincide. 

(e), D: 1.65 ± 0.02 and D; = 1, while in case (t) , D: = 1.53 ± 0.02 and 

D; = 1. 
The limiting fOnTIS obtained after rescaling for the spatial patterns generated by the 

dendritic cellular automata (d), (e), and (t) depend on the sequences oftime steps used 
in the limiting procedure, so that there are no unique values for their spatial growth 
dimensions. On the other hand, the overall fOnTIS of the complete space-time patterns 
generated by these cellular automata do have definite limits, so that the growth 
dimensions that characterize them have definite values. The total growth dimensions 

D and D4 may be defined as limT -+00 log N / log T and limT -+00 log N / log T , where 
N is the total number of sites contained in the space-time pattern generated up to time 
step T , and N is the number of sites in its boundary. [Notice that N = '£:0 n(t) .] 

Figure 5 shows the behavior of log N and log N as a function of log T for the cellular 
automata of Figs. 2 and 3. Unique values of D and D are indeed found in all cases. 
Rules that give patterns with faceted boundaries have D = 3, D = 2. The additive 

4 This quantity is referred to as the "growth rate dimension" in Ref. 20. 
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rule of case (d) gives D = 2.36 ± 0.02, D = 2.19 ± 0.02. Cases (e) and (f) both give 

D = 3, D = 2.27 ± 0.02. 
Growth dimensions may be defined in general by considering the intersection of 

the complete space-time pattern, or its boundary, with various families of hyperplanes. 
With fixed-time hyperplanes one obtains the spatial growth dimensions D x and D x . 

Temporal growth dimensions D;x) and D(X) are obtained by considering sections 
through the space-time pattern in spatial direction x. (The section typically includes 
the site of the original seed.) The total growth dimension may evidently be obtained 
as an appropriate average over temporal growth dimensions in different directions. 
(The average must be taken over pattern sizes n, and so requires exponentiation of the 
growth dimensions.) The values of the temporal growth dimensions for the patterns 
of Figs. 2 and 3 depend on their internal structure. Cases (a), (c), (e), and (f) have 

D( = 2; case (b) has D( = log2 3 '" 1.59, and case (d) has D( = log2(1 +.)5) '" 1.69. 

The temporal growth dimensions D (X) for the boundaries of the patterns are equal to 
one for the faceted boundary cases. These dimensions vary with direction in cases 
with dendritic boundaries. They are equal to one in directions of maximal growth, 
but are larger in other directions. 

In general the values of growth dimensions associated with particular hyperplanes 
are bounded by the topological dimensions of those hyperplanes . Empirical studies 
indicate that among all (symmetric) two-dimensional cellular automata, patterns with 
the form of case (c), characterized by D = 3, D = 2, D( = 2 are the most commonly 
generated. Fractal boundaries are comparatively common, but their growth dimen
sions D are usually quite close to the minimal value of two. Fractal sections with 
D( < 2 are also comparatively common for five-neighbor rules, but become less 
common for nine-neighbor rules. 

The rules for the the two-dimensional cellular automata shown in Figs. 2 and 3 are 
completely invariant under all the rotation and reflection symmetry transformations 
on their neighborhoods. Figure 6 shows patterns generated by cellular automaton 
rules with lower symmetries. These patterns are often complicated both in their 
boundaries and internal structure. Even though the patterns grow from completely 
symmetric initial states consisting of single nonzero sites, they exhibit definite direc
tionalities and vorticities as a consequence of asymmetries in the rules. Asymmetric 
patterns may be obtained with symmetrical rules from asymmetric initial states con
taining several nonzero sites. For example, some rules should support periodic 
structures that propagate in particular directions with time. Other rules should yield 
spiral patterns with definite vorticities. Structures of these kinds are expected to be 
simpler in many k > 2 rules than for k = 2 rules (cf. Ref. 24) just as in one-dimensional 
cellular automata. Notice that spiral patterns in two-dimensional cellular automata 
have total growth dimensions D = D = 2. 

Figure 7 shows the evolution of various two-dimensional cellular automata from 
initial states containing both single nonzero si tes, and small regions with a few 
nonzero sites. In most cases, the overall patterns generated after a sufficiently long 
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Figure 6, Examples of patterns generated by growth from single-site seeds for 24 time steps according 

to general nine-neighbor square rules, with symmetries: (a) all, (b) horizontal and vertical refl ection, (c) 

rotation, (d) vertical refl ection, (e) none_ 
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time are seen to be largely independent of the particular form of the initial state. In 
cases such as (c) and (e), features in the initial seed lead to specific dislocations in the 
final patterns. Nevertheless, deformations in the boundaries of the patterns usually 
occur only on length scales of order the size of the seed, and presumably become 
negligible in the infinite time limit. As a consequence, the growth dimensions for the 
resulting patterns are usually independent of the form of the initial seed (cf. Ref. 20 
for additive rules). 

There are nevertheless some cellular automaton rules for which slightly different 
seeds can lead to very different patterns. This phenomenon occurs when a cellular 
automaton whose configurations contain only certain blocks of site values satisfies 
an effective rule with special properties such as scale invariance. If the initial seed 
contains only these blocks, then the pattern generated follows the effective rule. 
However, if other blocks are present, a pattern of a different form may be generated. 
An example of this behavior for a one-dimensional cellular automaton is shown in 
Fig. 8. Patterns produced with one type of seed have temporal growth dimension 
log23"" 1.59, while those with another type of seed have dimension 2. 

Cellular automaton rules embody a finite maximum information propagation 
speed. This implies the existence of a "bounding surface" expanding at this finite 
speed. All nonzero sites generated by cellular automaton evolution from a localized 
seed must lie within this bounding surface. (The cellular automata considered here 
leave a background of zero sites invariant; such a background must be mapped to 
itself after at most k time steps with any cellular automaton rule.) Thus the pattern 
generated after t time steps by any cellular automaton is always bounded by the 
polytope (planar-faced surface) corresponding to the "unit cell" formed from the set 
of vectors specifying the displacements of sites in the neighborhood, magnified by a 
factor t in linear dimensions (cf. Ref. 14). Thus patterns generated by five-neighbor 
cellular automaton rules always lie within an expanding diamond-shaped region, 
while those with nine-neighbor rules may fill out a square region. 

The actual minimal bounding surface for a particular cellular automaton rule often 
lies far inside the surface obtained by magnifying the unit cell. A sequence of better 
approximations to the bounding surface may be found as follows. First consider a 
set of sites representing the neighborhood for a cellular automaton rule. If the center 
site has value one at a particular time step, there could exist configurations for which 
all of the sites in the neighborhood would attain value one on the next time step. 
However, there may be some sites whose values cannot change from zero to one in 
a single time step with any configuration. Growth does not occur along directions 
corresponding to such sites. The polytope formed from sites in the neighborhood, 

~ Figure 7. Examples of patterns generated by evolution of two-dimensional cellular automata from min

imal seeds and small disordered regions. In most cases, growth is initiated by a seed consisting of a 

single nonzero site; for some of the rules shown, a square of four nonzero sites is required. The cellular 

automaton rules shown are nine-neighbor square outer totalistic, with codes (a) 143954, (b) 50224, (c) 

five-neighbor 750, (d) 15822, (e) 699054, (f) 191044, (g) 11202, (h) 93737, (i) 85507. 
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Figure 8. Example of a one-dimensional cellular automaton in which space-time patterns with different 

temporal growth dimensions are obtained with different initial seeds. The cellular automaton has k = 2, 

r = I, and rule number 218. With an initial state containing only the blocks 00 and 10, it behaves like the 

additive rule 90, and yields a self-similar space-time pattern with fractal dimension log2 3. But when the 

initial state contains 10 and I I blocks, it behaves like rule 128, and yields a uniform space-time pattern. 

excluding such sites, may be magnified by a factor t to yield a first approximation to 
the actual bounding surface for a cellular automaton rule. A better approximation is 
given by the polytope obtained after two time steps of cellular automaton evolution, 
magnified by a factor t /2. 

The actual bounding surfaces for five-neighbor two-dimensional cellular automa
ton rules usually have their maximal diamond-shaped form. However, many nine
neighbor rules have a diamond-shaped form, rather than their maximal square form. 
Some nine-neighbor rules, such as those of Figs. 7(g) and 7(h) have octagonal bound
ing surfaces, while still others, such as those of Fig. 7(i) have dodecagonal bounding 
surfaces. The cellular automata rules with lower symmetries illustrated in Fig. 6 in 
many cases exhibit more complicated boundaries, with lower symmetries. 

Patterns that maintain regular boundaries with time typically fill out their bounding 
surface at all times. Dendritic patterns, however, usually expand with the bounding 
surface only along a few axes. In other directions, they meet the bounding surface 
only at specific times, typically of the form 2i. At other times, they lie within the 
bounding surface. 

Dendritic boundaries seem to be associated with cellular automaton rules that 
exhibit "growth inhibition" (cf. Ref. 14). Growth inhibition occurs if there exist 

some ai for which ¢l(a" ... , 0, . .. , an) = 1, but ¢l(a" ... , 1, ... , an) = 0, or vice 
versa. Such behavior appears to be common in physical and other systems. 

Figures 9 and I 0 show examples of two-dimensional cellular automata that exhibit 
the comparatively rare phenomenon of slow, diffusive, growth from simple seeds. 
Figure II gives a one-dimensional cellular automaton with essentially analogous 
behavior. 

The phenomenon is most easily discussed in the one-dimensional case. The 
pattern shown in Fig. II is such that it expands by one site at a particular time step 
only if the site on the boundary has value one. If the boundary site has one of its other 
three possible nonzero values, then on average, no expansion occurs. The cellular 
automaton rule is such that the boundary sites have values one through four with 
roughly equal frequencies. Thus the pattern expands on average at a speed of about 
1/ 4 sites per time step (on each side). 
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(a) 

(b) 

Figure 9. Examples of two-dimensional cellular automata that exhibit slow di ffusive growth from small 

disordered regions. The cellular automaton rules shown are nine-neighbor square outer totalistic. with 

codes (a) 256746. (b) 736. (c) 291552. 

The origin of diffusive growth is similar in the two-dimensional case. Growth 
occurs there only when some particular several-site structure appears on the boundary. 
For example. in the cellular automaton of Fig. 9(a) , a linear interface propagates 
at maximal velocity. Deformations of the interface slow its propagation, and a 
maximally corrugated interface with a "battlement" form does not propagate at all. 
Since many boundary structures occur with roughly equal probabilities, the average 
growth rate is small. In the cases investigated, the growth rate is asymptotically 
constant, so that the growth dimensions have definite values. A remarkable feature 
is that the boundaries of the patterns produced do not follow the poly topic form 
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Figure 9 (continued). 

suggested by the underlying lattice construction of the cellular automaton. Instead, 
in many cases, asymptotically circular patterns appear to be produced. 

3. Evolution from Disordered Initial States 

In this section, we discuss the evolution of cellular automata from disordered initial 
states, in which each site is randomly chosen to have value zero or one (usually 
with probability 1/2). Such disordered configurations are typical members of the 
set of all possible configurations. Patterns generated from them are thus typical of 
those obtained with any initial state. The presence of structure in these patterns is an 
indication of self-organization in the cellular automaton. 
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Figure 10. View of three-dimensional structure fonmed from 

the configurations generated in the first 24 time steps of evo

lution according to the two-dimensional cellular automaton 

rule of Fig. 9(a). 

Figure 11. Example of a one-dimensional cellular automaton that 

exhibits slow growth. The rule shown is totalistic k = 5, r = I, 

with code 985707700. All nonzero sites are shown black. The 

initial state contains a single site with value 3. Growth occurs 

when a site with value I appears on the boundary. 

231 



Wolfram on Cellular Automata and Complexity 

As mentioned in Section 1, four qualitative classes of behavior have been identified 
in the evolution of one-dimensional cellular automata from disordered initial states. 
Examples of these classes are shown in Fig. 12. Figure 13 shows the evolution of 
some typical two-dimensional cellular automata from disordered initial states. The 
same four qualitative classes of behavior may again be identified here. In fact, the 
space-time sections for two-dimensional cellular automata have a striking qualitative 
similarity to sections obtained from one-dimensional cellular automata, perhaps with 
some probabilistic noise added. 

Just as in one dimension, some two-dimensional cellular automata evolve from 
almost all initial states to a unique homogeneous state, such as the null configuration. 
The final state for such class 1 cellular automata is usually reached after just a few 
time steps, but in some rare cases, there may be a long transient. 

Figures 13(a) and 14(a) give an example of a two-dimensional cellular automaton 
with class-2 behavior. The disordered initial state evolves to a collection of separated 
simple structures, each stable or oscillatory with a small period. Each of these struc
tures is a remnant of a particular feature in the initial state. The cellular automaton 
rule acts as a "filter" which preserves only certain features of the initial state. There 
is usually a simple pattern to the set of features preserved, and to the set of persistent 
structures produced. It should in fact be possible to devise cellular automaton rules 
that recognize particular sets of features, and to use such class-2 cellular automata 
for practical image processing tasks (cf. Ref. 25). 

The patterns generated by evolution from several different disordered configura
tions according to a particular cellular automaton rule are almost always qualitatively 
similar. Yet in many cases the cellular automaton evolution is unstable, in that small 
changes in the initial state lead to increasing changes in the patterns generated with 
time. Figures 12 and 13 include difference patterns that illustrate the effect of chang
ing the value of a single site in the initial state. For class-2 cellular automata, such a 
change affects only a finite region, and the difference pattern remains bounded with 
time. Information propagates only a finite distance in class-2 cellular automata, so 
that a particular region of the final state is determined from a bounded region in the 
initial state. For class-3 cellular automata, on the other hand, information generically 
propagates at a nonzero speed forever, and a small change in the initial state affects 
an ever-increasing region. The difference patterns for class-3 cellular automata thus 
grow without bound, usually at a constant rate. 

The locally periodic patterns generated after many time steps by class-2 cellu
lar automata such as in Fig. 13(a) consist of many separated structures located at 

Figure 12. Examples of the evolution of one-dimensional cellular automata from disordered initial states. ~ 

The difference patterns on the right show site values that change when a single initial site value is changed. 

All nonzero sites are shown black. The cellular automaton rules shown are totalistic nearest-neighbor 

(r = 1), with k possible values at each site: (a) k = 2, code 12, (b) k = 5, code 7530, (c) k = 3, code 681, 

(d) k = 5, code 3250, (e) k = 2, code 6, (f) k = 3, code 348, (g) k = 3, code 138, (h) k = 3, code 318, (i) 

k = 3, code 792. 
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Figure 12 (continued). 

essentially arbitrary positions. Figure 13(b) shows another fonn of class-2 cellular 
automaton. There are four basic "phases." Two phases have vertical stripes, with 
either on even or odd sites. The other two phases have horizontal stripes. Regions that 
take on fonns corresponding to one of these phases are invariant under the cellular 
automaton rule. Starting from a typical disordered state, each region in the cellular 
automaton lattice evolves toward a particular phase. At large times, the cellular 
automaton thus "crystallizes" into a patchwork of "domains." The domains consist 
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Figure 13. Examples of the evolution of two-dimensional cellular automata from disordered initial states. 

The cellular automaton rules shown are totalistic five-neighbor square with codes: (a) 24, (d) 510, (e) 52; 

and outer totalistic nine-neighbor with codes: (b) 736, (c) 196623, (f) 152822, (g) 143954, (h) 3276, (i) 

224 (the "Game of Life"). 

of regions in particular phases. They are separated by domain walls. In the example 
of Fig. 13(b), these domain walls become essentially stationary after a finite time. 

A change in a single initial site produces a difference pattern that ultimately 
spreads only along the domain walls. The spread continues only so long as each 
successive region on the domain wall contains only particular arrangements of site 
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Figure 13 (continued). 

values. The spread stops if a "pinning defect," corresponding to other arrangements 
of site values, is encountered. The arrangement of site values on the domain walls 
may in a first approximation be considered random. The difference pattern will 
thus spread forever only if the arrangements of site values necessary to support its 
propagation occur with a probability above the percolation threshold (e.g., Ref. 26) , 
so that they form an infinite connected cluster with probability one. 

Phases in cellular automata may in general be described by "order parameters" 
that specify the spatially periodic patterns of sites corresponding to each phase. The 
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Figure 14. View of three-dimensional structures formed by configurations generated in the first 24 times 

of evolution from disordered initial states (in a finite region) according to the cellular automaton rules of 

Figs. l3(a) and 13(i). 
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size of domains generated by evolution from disordered initial states depends on the 
length of time before the domains become "frozen": slower relaxation leads to larger 
domains, as in annealing. A final state reached after any finite time can contain 
only finite size domains, and therefore cannot be a pure phase. States generated by 
two-dimensional cellular automata may contain "point" and "line" defects. Point 
defects are localized regions within domains. An example is the "L-shaped" region 
of zero sites in domains of the value one phase for the cellular automaton illustrated 
in Fig. 13(e). Line defects correspond to walls separating domains. 

In the cellular automaton of Fig. 13(b), the domains become stationary after a few 
time steps. In the case of Fig. 13(e), however, the domains can continue to move 
forever, essentially by a diffusion process. Figure 12(d) shows a one-dimensional 
cellular automaton with domain walls that exhibit analogous behavior (cf. Refs. 27 
and 17). In both cases, some domains become progressively larger with time, while 
others eventually disappear completely. The domain walls in Fig. 13(e) behave as if 
they carry a positive surface tension (cf. Ref. 28); the diffusion process responsible 
for their movement is biased to reduce the local curvature of the interface. A linear 
interface is stable under the cellular automaton rule. of Fig. 13(e). In addition, the 
heights of any protrusions or intrusions cannot increase with time. In general, they 
decay, often quite slowly, until they are of height at most one. Deformations of 
height one, analogous to surface waves, do not decay further, and are governed by a 
one-dimensional cellular automaton rule (with k = 2, r = 1, and rule number 150). 
At large times, therefore, a domain must either shrink to zero size, or must have walls 
with continually decreasing curvatures. 

Figure 13(c) shows a two-dimensional cellular automaton with structures analo
gous to domains walls that carry a negative surface tension. More and more con
voluted patterns are obtained with time. The resulting labyrinthine state is strongly 
reminiscent of behavior observed with ferroftuids or magnetic bubbles.(29) 

Figures 13(f), 13(g), and 13(h) are examples of two-dimensional cellular automata 
that exhibit class-3 behavior. Chaotic aperiodic patterns are obtained at all times. 
Moreover, the difference patterns resulting from changes in single initial site val
ues expand at a fixed rate forever. A remarkable feature is that in almost all cases 
(Fig. 13(h) is an exception), the expansion occurs at the same speed in all directions, 
resulting in an asymptotically circular difference pattern. For some rules, the expan
sion occurs at maximal speed; but often the speed is about 0.8 times the maximum. 
When the difference patterns are not exactly circular, they tend to have rounded 
comers. And even with asymmetrical rules, circular difference patterns are often 
obtained. A rough analog of this behavior is found in asymmetric one-dimensional 
cellular automata which generate symmetrical difference patterns. Such behavior 
is found to become increasingly common as k and r increase, or as the number of 
independent parameters in the rule 1> increases. 

An argument based on the central limit theorem suggests an explanation for 
the appearance of circular difference patterns in two-dimensional class-3 cellular 
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automata. Consider the set of sites corresponding to the neighborhood for a cellular 
automaton rule. For each site, compute the probability that the value of that site 
changes after one time step of cellular automaton evolution when the value of the 
center site is changed, averaged over all possible arrangements of site values in the 
neighborhood. An approximation to the probability distribution of differences is then 
obtained as a multiple convolution of this kernel. (This approximation is effectively a 
linear one, analogous to Huygens' principle in optics.) The number of convolutions 
performed increases with time. If the number of neighborhood arrangements is 
sufficiently large, the kernel tends to be quite smooth. Convolutions of the kernel 
thus tend to a Gaussian form , independent of direction. 

Some asymmetric class-3 cellular automata yield difference patterns that expand, 
say, in the horizontal direction, but contract in the vertical direction. At large times, 
such cellular automata produce patterns consisting of many independent horizontal 
lines, each behaving essentially as a one-dimensional class-3 cellular automaton. 

Class-3 behavior is considerably the commonest among two-dimensional cellular 
automata, just as it is for one-dimensional cellular automata with large k and r. 
It appears that as the number of parameters or degrees of freedom in a cellular 
automaton rule increases, there is a higher probability for some degree of freedom to 
show chaotic behavior, leading to overall chaotic behavior. 

Figure 12(i) shows an example of a class-4 one-dimensional cellular automaton. 
A characteristic feature of class-4 cellular automata is the existence of a complicated 
set of persistent structures, some of which propagate through space with time. Class-
4 rules appear to occur with a frequency of a few per cent among all one-dimensional 
cellular automaton rules. Often one suspects that some degrees of freedom in a 
cellular automaton exhibit class-4 behavior, but they are masked by overall chaotic 
class-3 behavior. 

Class-4 cellular automata appear to be much less common in two dimensions than 
in one dimension. Figures 13(i) and 13(b) show the evolution of a two-dimensional 
cellular automaton known as the "Game of Life.,,(8) Many persistent structures, some 

propagating, have been identified in this cellular automaton. It has in addition been 
shown that these structures can be combined to perform arbitrary information process
ing, so that the cellular automaton supports universal computation.(8) Starting from a 
disordered initial state, the density of propagating structures ("gliders") produced is 
about one per 2000 site region. 

Except for a few simple variants on the Game of Life, no other definite class-4 two
dimensional cellular automata were found in a random sample of several thousand 
outer totalistic rules.5 Some rules that appeared to be of class 2 were found to have 
long transients, characteristic of class-4 behavior, but no propagating structures were 
seen. Other rules seemed to exhibit some class-4 features, but they were overwhelmed 
by dominant class-3 behavior. 

5 A few examples of c1ass-4 behavior were however found among general rules. Requests for copies of the relevant rule 
tables should be directed to the authors. 
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4. Global Properties 

Section 3 discussed the typical behavior of cellular automata evolving from partic

ular initial states. This section considers the global properties of cellular automata, 

determined by evolution from all possible initial states . Studies of the global proper

ties of one-dimensional cellular automata have been made using methods both from 
dynamical systems theory<7) and from computation theory.( 12) Here these studies are 

generalized to the case of two-dimensional cellular automata. For those based on 

dynamical systems theory the generalization is quite straightforward; but in the com

putation theory approach substantial additional complications occur. Whereas the 

sets of configurations generated after any finite number of steps in the evolution of 
one-dimensional cellular automata always correspond to regular formallanguages,(12) 

the corresponding sets in two-dimensional cellular automata may be nonrecursive.(J5) 

Most cellular automaton rules are irreversible, so that several different initial 

states may evolve to the same final state. As a consequence, even starting from 

all possible initial states, only a subset of possible states may be generated with 

time. The properties of this set then determine the overall behavior of the cellular 

automaton, and the self-organization that occurs in it. 

Entropy and dimension provide quantitative characterizations of the "sizes" of sets 

generated by cellular automaton evolution (e.g., Ref. 7). The spatial set entropy for 

a set of two-dimensional cellular automaton configurations is defined by considering 

a X x Y patch of sites . If the set contains all possible configurations, then all 

e y possible different arrangements of sites values must occur in the patch. In 

general N(X, Y) ~ k XY different arrangements will occur. Then the set entropy (or 

dimension) is defined as 

1 
S = lim -logk N(X, Y) 

X,Y->oo XY 
(4.1) 

If the cellular automaton mapping is surjective, so that all possible configurations 

occur, then this entropy is equal to one. In general it decreases with time in the 

evolution of the cellular automaton. 

Spatial set entropy characterizes the set of configurations that can possibly be 

generated in the evolution of a cellular automaton, regardless of their probabilities 

of occurrence. One may also define a spatial measure entropy in terms of the 

probabilities Pi for possible X x Y patches as 

e r 
-I 

S = lim - " P logk P 
Ji X,Y->oo XY L 1 1 

1=1 

(4.2) 

The limiting value of sJi at large times is typically nonzero for all but cIass-1 cellular 

automaton rules. Notice that in cases where domains with positive "surface tension" 

are formed, sJi tends only very slowly to zero with time. 

To find the spatial set entropy after, say, one time step in the evolution of a 
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cellular automaton one must identify what configurations can be generated. In a 
one-dimensional cellular automaton, one can specify the set of configurations that 
can be generated in terms of rules that determine which sequences of site values 
can appear. These rules correspond to a regular formal grammar, and give the state 
transition graph for a finite state machine. The set of configurations that can be 
generated in a two-dimensional cellular automaton is more difficult to specify. In 
many circumstances in fact the occurrence of a particular patch of site values requires 
a global consistency that cannot be verified in general by any finite computation. As 
a consequence, many propositions concerning sets of configurations generated after 
even a finite number of steps in the evolution oftwo-(and higher-)dimensional cellular 
automata can be formally undecidable. 

In a one-dimensional cellular automaton with a range-r rule, a particular sequence 
of X site values can be generated (reached) after one time step only if there exists 
some length X + 2r sequence of initial site values that evolves to it. The locality 
of the cellular automaton rule ensures that in determining whether a length X + 1 
sequence obtained by appending one new site can also be generated, it suffices to test 
only those length X + 2r + 1 predecessor configurations that differ in their last 2r + 1 
site values. In determining whether sequences of progressively greater lengths can 
be generated it suffices at each stage to record with which length 2r overlaps in the 
predecessor configuration a particular new site value can be appended. Since there 
are only k2r possible sequences of site values in the overlaps, only a finite amount of 
information must be recorded, and a finite procedure can be given for determining 
whether any given sequence can be generated (cf. Ref. 12). Hence in particular 
there is a finite procedure to determine whether any given cellular automaton rule is 
surjective, so that all possible configurations can be reached in its evolution.(30) 

In two-dimensional cellular automata there is no such simple iterative procedure 
for determining whether progressively larger patches of site values can be generated. 
An X x Y patch of site values is generated after one step in the evolution of a two
dimensional cellular automaton with a range-r rule if there exists some (X + 2r)( Y + 2r) 
patch of initial site values that evolves to it. Progressively larger patches can be 
generated if appropriate progressively larger predecessor patches exist. The number 
of sites in the overlap between such progressively larger predecessor patches is not 
fixed, as in one-dimensional cellular automata, but instead grows essentially like the 
perimeter of the patch, 2r(X + Y + 2r). With this procedure, there is thus no upper 
bound on the amount of information that must be recorded to determine whether 
progressively larger patches can be generated. To find whether a patch of any 
particular size X x Y can be generated, it suffices to test all k(X+2r)(Y+2r) candidate 

predecessor patches. (As mentioned below, this is in fact an NP-complete problem, 
and therefore presumably cannot be solved in general in a time polynomial in the 
patch size.) However, questions concerning complete configurations can be answered 
only by considering arbitrarily large patches, and may require arbitrarily complex 
computations. As a consequence, there are global questions about configurations 
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generated by two-dimensional cellular automata after a finite number of time steps 
that can posed, but cannot in general be answered by any finite computational process, 
and are therefore formally undecidable.(15) 

Some examples of such undecidable questions about two-dimensional cellular 
automata are: (i) whether a particular complete (but finitely specified) configuration 
can be generated after one time step from any initial configuration; (ii) whether a 
particular cellular automaton rule is surjective, so that all possible configurations can 
be generated; (iii) whether the set of complete configurations generated after say one 
time step has a nonempty intersection with some recursive formal language such as 
a regular language, whose words can be recognized by a finite computation; (iv) 
whether there exist configurations that have a particular period in time (and are thus 
invariant under some number of iterations of the cellular automaton rule). 

It seems that global questions about the finite time behavior of one-dimensional 
cellular automata are always decidable. Questions about their ultimate infinite 
time behavior may nevertheless be undecidable. To show this, one considers one
dimensional cellular automata whose evolution emulates that of a universal Turing 
machine. The successive arrangements of symbols on the Turing machine tape cor
respond to successive configurations of site values generated in the evolution of the 
cellular automaton. Undecidable questions such as halting for the Turing machines 
are then shown to be undecidable for the corresponding one-dimensional cellular 
automaton. (13) 

In two-dimensional cellular automata, questions about global properties on in
finite spatial scales can be undecidable even at finite times. This is proved(15) by 
considering the line-by-line construction of configurations. The rules used to obtain 
each successive line from the last can correspond to the rules for a universal Turing 
machine. The construction of the configuration can then be continued to infinity and 
completed only if this Turing machine does not halt with the input given, which is in 
general undecidable. Sets of configurations generated at finite times in the evolution 
of two-dimensional cellular automata can thus be nonrecursive. 

Many global questions about two-dimensional cellular automata are closely anal
ogous to geometrical questions associated with tilings of the plane. Consider for 
example the problem of finding configurations that remain invariant under a partic
ular cellular automaton rule. All the neighborhoods in such configurations must be 
such that the values of their center sites are left unchanged by the cellular automaton 
rule. Each such neighborhood may be considered as a "tile." Complete invariant 
configurations are constructed from an array of tiles, with each adjacent pair of tiles 
subject to a consistency condition that the overlapping sites in the neighborhoods to 
which they correspond should agree. In a one-dimensional cellular automaton, the 
set of possible arrangements of tiles or configurations that satisfy the conditions can 
be enumerated immediately, and form a finite complement regular language (subshift 
of finite type).{12) In a two-dimensional cellular automaton, the problem of finding 
invariant configurations is equivalent to tiling the plane with a set of "dominoes" 
corresponding to the possible allowed neighborhoods, and subject to constraints that 

243 



Wolfram on Cellular Automata and Complexity 

can be cast in the form of requiring adjacent pairs of edges to have complementary 
colors.(3I) The problem of determining whether a particular set of dominoes can in 
fact be used to tile the plane is however known to be undecidable(32,33) (cf, Ref. 34), 

The problem of finding whether there exist invariant configurations under a particular 
two-dimensional cellular automaton rule is likewise undecidable. 

If any infinite sequence can be constructed from some set of dominoes in one 
dimension, then it is clear that a spatially periodic sequence can be found. Hence 
if there are to be any configurations with a particular temporal period in a one
dimensional cellular automaton, then there must be spatially periodic configurations 
with this temporal period. (The maximum necessary spatial period for configurations 
with temporal period p is k2rp + I (12): the existence of such spatially periodic config

urations can be viewed as a consequence of the pumping lemma (e,g" Ref. 11) for 
regular languages,) In two dimensions, however, there are sets of dominoes for which 
a tiling of the plane is possible, but the tiling cannot be spatially periodic.(32,33,35) 

In the examples known, it appears that the basic arrangement of tiles is always self
similar, so that it is almost periodic, In the simplest known examples, six square 
dominoes(33) or just two irregularly shaped dominoes(35) are required for this phe

nomenon to occur. (The simplest known example in three dimensions involves seven 
polyhedral "dominoes,"(36» 

The problem of whether a set of dominoes can tile a finite , say, X x X region 
of the plane is clearly decidable, but is NP complete,(37) The analogous problem of 

determining whether a particular patch can occur in an invariant configuration for 
a two-dimensional cellular automaton, or can in fact be generated by one time step 
of evolution from any initial state, is thus also NP complete. These problems can 
presumably be solved only by computations whose complication increases faster than 
a polynomial in X, and are essentially equivalent to explicit testing of all O(kX2) 

possible cases. 
In addition to considering configurations of site values generated at a particular 

step in the evolution of a cellular automaton, one may also discuss sequences of 
site values obtained with time, In general one may consider the number of possible 
arrangements N (v l' ' , , , v p) of site values in a space-time volume consisting of a 
parallelepiped with generator vectors Vi' The set entropy may than be defined as the 
exponential rate of increase of N as the lengths of certain generators are taken to 
infinity (cf, Refs. 38 and 39): 

1 
s = lim ,,·lim logkN(alvl,a2 v2, . .. ,apvp) 

Cll400 Clp-too a, ... apl 
(4.3) 

where the ai are scalar parameters, and p' ::5 P ::5 d, These entropies are in fact 
functions of the unit p forms obtained as the exterior products of the generator vectors 
Vi considered as one-forms in space-time, Certain convergence properties ofthe limits 
in Eq, (4.3) can be proved from the fact that the number of arrangements N(V) of 
site values in a volume V is submultiplicative, so that N(VI U V2)::5 N(VI ) N(V2), A 
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measure-theoretical analog of the set entropy (4.3) may be defined in correspondence 
with Eq. (4.2). 

The spatial entropy (4.1) for two-dimensional cellular automata is obtained from 
the general definition (4.3) by choosing p = 3, p' = 2 and taking VI and v2 to be 
orthogonal purely spacelike vectors along the two lattice directions. The generator 
vector v3 is taken to be in the positive time direction, but the number of arrangements 
N is independent of a3 since a complete configuration at one time step determines 
all future configurations. 

For a d-dimensional cellular automaton, there are critical values of p and p' such 
that entropies corresponding to higher or lower-dimensional parallelepipeds are zero 
or infinity. Entropies with exactly those critical values may be nonzero and bounded 
by quantities that depend on the cellular automaton neighborhood size. 

Entropies are essentially determined by the correlations between values of sites at 
different space-time points. These correlations depend on the propagation of informa
tion in the cellular automaton. The difference patterns discussed in Section 3 provide 
measures of such information propagation. They can be considered as analogs of 
Green functions (cf. Ref. 4) which describe the change produced at some space-time 
point x' in a cellular automaton as a consequence changes at another point x. The 
set-theoretical Green's function is defined to be nonzero whenever a change at x in 
any configuration could lead to a change at x' . In the measure-theoretical Green's 
function the possible configurations are weighted with their probabilities. The max
imum rate of information propagation is determined by the slope of the space-time 
("light") cone within which the Green's function is nonzero. The slope correspond
ing to propagation in a particular spatial direction in say a two-dimensional cellular 
automaton gives the Lyapunov exponent in that direction for the cellular automaton 
evolution.(7.40) In most cases it appears that the space-time structure corresponding 
to the set of sites on which the Green's function is nonzero tends to a fixed form after 
rescaling at large times, so that the structure has a unique growth dimension, and the 
Lyapunov exponents have definite values. Exceptions may occur in rules where dif
ference patterns spread along domain boundaries, typically producing asymptotically 
self-similar structures analogous to percolation clusters (e.g., Ref. 26). 

The Green's functions describe not only how a change at some time affects site 
values at later times, but also how the value of a particular site is affected by the 
previous values of other sites. The backward light cone of a site contains all the 
sites whose values can affect it. (Notice that the backward light cone for a bijective 
rule in general has little relation with the forward light cone for the inverse rule. (4 1)) 
The values of all sites in a volume V are thus determined by the values of sites on 
a surface S that "absorbs" (covers) all the backward light cones of points in V. The 
number of possible configurations in V is then bounded from above by the number of 
possible configurations of the set of sites within one cellular automaton neighborhood 
of the surface S. The entropy associated with the volume V is then not greater than 
the entropy associated with the volume around S. By choosing various "absorbing 
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surfaces" S, whose sizes are determined by the rates of information propagation in 
different directions, one can derive various inequalities between entropies. 

Many entropies can be defined for cellular automata using Eq. (4.3). One signif
icant class is those that are invariant under continuous invertible transformations on 
the space of cellular automaton configurations. Such entropies can be used to identify 
topologically inequivalent cellular automaton rules. For one-dimensional cellular au
tomata, an invariant entropy may be defined by taking p = 2, pi = 1 in Eq. (4.3), and 
choosing v I in the positive time direction, and v2 in the space direction. The entropy 
may be generalized by taking the Vj to be an arbitrary pair of orthogonal spacetime 
vectors (with VI having a positive time component).(38) The most direct generaliza
tion of these invariant entropies to two-dimensional cellular automata would have 
p = 3, pi = 1, and take the Vj to be an orthogonal triple of space-time vectors with 
v I having a positive time component. If v I were chosen purely timelike, then this 
entropy would have no dependence on spatial direction, and would correspond to the 
standard invariant entropy defined for the cellular automaton mapping. In general 
however, there is no upper bound on its value, and it is apparently infinite for most 
cellular automata that have positive Lyapunov exponents in more than one spatial 
direction. A finite entropy can nevertheless be constructed by choosing pi = 2. This 
entropy depends on the spatial (or in general space-time) vector v I xv 2' To obtain an 
invariant entropy, one must perform some average over this vector (accounting for 
the fact that the entropy is a homogeneous function of degree one in the length of the 
vector). One possibility is to form the integral of the quantity (4.3) over those values 
of the vector for which the quantity is less than some constant (say, 1). 

5. Discussion 

This paper has presented an exploratory study of two-dimensional cellular automata. 
Much remains to be done, but a few conclusions can already be given. 

A first approach to the study of cellular automaton behavior is statistical: one 
considers the average properties of evolution from typical initial configurations. 
Statistical studies of one-dimensional cellular automata have suggested that four 
basic qualitative classes of behavior can be identified. This paper has given analogs 
of these classes in two-dimensional cellular automata. One expects that the qualitative 
classification will also apply in three- and higher-dimensional systems. 

Entropies and Lyapunov exponents are statistical quantities that measure the 
information content and rate of information transmission in cellular automata. Their 
definitions for one-dimensional cellular automata are closest to those used in smooth 
dynamical systems. But rather direct generalizations can nevertheless be found for 
two- and higher-dimensional cellular automata. 

Beyond statistical properties, one may consider geometrical aspects of patterns 
generated by cellular automaton evolution. Even though the basic construction of 
a cellular automaton is discrete, its "macroscopic" behavior at large times and on 
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large spatial scales may be a close approximation to that of a continuous system. 
In particular domains of correlated sites may be formed, with boundaries that at a 
large scale seem to show continuous motions and deformations. While some such 
phenomena do occur in one dimension, they are most significant in two and higher 
dimensions. Often their motion appears to be determined by attributes such as 
curvature, that have no analog in one dimension. 

The structures generated by two- and higher-dimensional cellular automata evolv
ing from simple seeds show many geometrical phenomena. The most significant is 
probably the formation of dendritic patterns, characterized by non integer growth 
dimensions. 

Statistical measurements provide one method for comparing cellular automaton 
models with experimental data. Geometrical properties provide another. The ge
ometry of patterns formed by cellular automata may be compared directly with the 
geometry of patterns generated by natural systems. 

Topology is another aspect of cellular automaton patterns. When domains or 
regions containing many correlated sites exist, one may approximate them as con
tinuous structures, and consider their topology. For example, domains produced by 
cellular automaton evolution may exhibit topological defects that are stable under 
the cellular automaton rule. In two-dimensional cellular automata, only point and 
line defects occur. But in three dimensions, knotted line defects (e.g., Ref. 42) and 
other complicated topological forms are possible. The topology of the structures 
supported by a cellular automaton rule may be compared directly with the topology 
of structures that arise in natural systems (cf. Ref. 43). 

Geometry and topology provide essentially local descriptions of the behavior of 
cellular automata. Computation theory potentially provides a more global charac
terization. One may classify the behavior and properties of cellular automata in 
terms of the nature of the computations required to reproduce them. Even in one 
dimension, there are cellular automata that can perform arbitrary computations, so 
that at least some of their properties can be reproduced only by direct simulation 
or observation, and their limiting behavior is formally undecidable. The range of 
properties for which undecidability can occur is much larger in two dimensions than 
in one dimension. In particular, properties that involve a limit of infinite spatial size, 
even at finite times, can be undecidable. As higher-dimensional cellular automata 
are considered, the degree of undecidability that can be encountered in studies of 
particular properties increases. 
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Origins of Randomness 
in Physical Systems 

1985 

Randomness and chaos in physical systems are usually ultimately attributed to ex
ternal noise. But it is argued here that even without such random input, the intrinsic 
behavior of many nonlinear systems can be computationally so complicated as to 
seem random in all practical experiments. This effect is suggested as the basic origin 
of such phenomena as fluid turbulence. 

There are many physical processes that seem random or chaotic. They appear 

to follow no definite rules, and to be governed merely by probabilities. But all 

fundamental physical laws, at least outside of quantum mechanics, are thought to be 

deterministic. So how, then, is apparent randomness produced? 

One possibility is that its ultimate source is external noise, often from a heat 

bath. When the evolution of a system is unstable, so that perturbations grow, any 

randomness introduced through initial and boundary conditions is transmitted or 

amplified with time, and eventually affects many components of the system [1] . A 

simple example of this "homoplectic" behavior occurs in the shift mapping X I = 

2x I _ 1 mod 1. The time sequence of bins, say, above and below ~ visited by X I is 

a direct transcription of the binary-digit sequence of the initial real number Xo [2]. 
So if this digit sequence is random (as for most Xo uniformly sampled in the unit 

interval) then so will the time sequence be; unpredictable behavior arises from a 

sensitive dependence on unknown features of initial conditions [3]. But if the initial 

condition is "simple," say a rational number with a periodic digit sequence, then no 

randomness appears. 

There are, however, systems which can also generate apparent randomness inter

nally, without external random input. Figure 1 shows an example, in which a cellular 

automaton evolving from a simple initial state produces a pattern so complicated 

that many features of it seem random. Like the shift map, this cellular automaton 

Originally published in Physical Review Letters , volume 55, pages 449-452 (29 July 1985). 
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Figure 1. Pattern generated by cellular automaton evolution from a simple initial state. Site values 

o or I (represented by white or black, respectively) are updated at each step according to the rule 

a; = a;_1 EI>(a; v a;+I) (EI> denotes addition modulo two, and v Boolean disjunction). Despite the simplicity 

of its specification, many features of the pattern (such as the sequence of site values down the center 

column) appear random. 

is homoplectic, and would yield random behavior given random input. But unlike 
the shift map, it can still produce random behavior even with simple input. Systems 
which generate randomness in this way will be called "autoplectic." 

In developing a mathematical definition of autoplectic behavior, one must first 
discuss in what sense it is "random." Sequences are commonly considered random 
if no patterns can be discerned in them. But whether a pattern is found depends on 
how it is looked for. Different degrees of randomness can be defined in terms of the 
computational complexity of the procedures used. 

The methods usually embodied in practical physics experiments are computation
ally quite simple [4,5]. They correspond to standard statistical tests for randomness 
[6], such as relative frequencies of blocks of elements (dimensions and entropies), 
correlations, and power spectra. (The mathematical properties of ergodicity and 
mixing are related to tests of this kind.) One characteristic of these tests is that the 
computation time they require increases asymptotically at most like a polynomial 
in the sequence length [7]. So if in fact no polynomial-time procedure can detect 
patterns in a sequence, then the sequence can be considered "effectively random" for 
practical purposes. 

Any patterns that are identified in a sequence can be used to give a compressed 
specification for it. (Thus, for example, Morse coding compresses English text by 
exploiting the unequal frequencies of letters of the alphabet.) The length of the 
shortest specification measures the "information content" of a sequence with respect 
to a particular class of computations. (Standard Shannon information content for 
a stationary process [8] is associated with simple statistical computations of block 
frequencies.) Sequences are predictable only to the extent that they are longer than 
their shortest specification, and so contain information that can be recognized as 
"redundant" or "over-determined." 
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Sequences generated by chaotic physical systems often show some redundancy 

or determinism under simple statistical procedures. (This happens whenever mea

surements extract information faster than it can be transferred from other parts of the 

system [I ].) But typically there remain compressed sequences in which no patterns 

are seen. 

A sequence can, in general, be specified by giving an algorithm or computer 

program for constructing it. The length of the smallest possible program measures 

the "absolute" information content of the sequence [9]. For an "absolutely random" 

sequence the program must essentially give each element explicitly, and so be close 

in length to the sequence itself. But since no computation can increase the absolute 

information content of a closed system [except for O(log t) from input of "clock 

pulses"], physical processes presumably cannot generate absolute randomness [10] . 

However, the numbers of possible sequences and programs both increase exponen

tially with length, so that all but an exponentially small fraction of arbitrarily chosen 

sequences must be absolutely random. Nevertheless, it is usually undecidable what 

the smallest program for any particular sequence is, and thus whether the sequence is 

absolutely random. In general, each program of progressively greater length must be 

tried, and anyone of them may run for an arbitrarily long time, so that the question 

of whether it ever generates the sequence may be formally undecidable. 

Even if a sequence can ultimately be obtained from a small specification or 

program, and so is not absolutely random, it may nevertheless be effectively random 

if no feasible computation can recover the program [II] . The program can always 

be found by explicitly trying each possible one in tum [12]. But the total number 

of possible programs increases exponentially with length, and so such an exhaustive 

search would soon become infeasible. And if there is no better method the sequence 

must be effectively random. 

In general, one may define the "effective information content" e of a sequence to 

be the length of the shortest specification for it that can be found by a feasible (say 

polynomial time) computation. A sequence can be considered "simple" if it has small 

e. e (often normalized by sequence length) provides a measure of "complexity," 

"effective randomness ," or "computational unpredictability." 

Increasing e can be considered the defining characteristic of autoplectic behav

ior. Examples such as Fig. I suggest that e can increase through polynomial-time 

processes. The rule and initial seed have a short specification, with small e. But one 

suspects that no polynomial time computation can recover this specification from 

the center vertical sequence produced, or can in fact detect any pattern in it [13]. 

The polynomial-time process of cellular automaton evolution thus increases e, and 

generates effective randomness. It is phenomena of this kind that are the basis for 

cryptography, in which one strives to produce effectively random sequences whose 

short "keys" cannot be found by any practical cryptanalysis [14] . 

The simplest mathematical and physical systems (such as the shift mapping) can 

be decomposed into essentially uncoupled components, and cannot increase e. Such 
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systems are nevertheless often homoplectic, so that they transfer information, and 
with random input show random behavior. But when their input is simple (low E», 
their behavior is correspondingly simple, and is typically periodic. Of course, any 
system with a fixed finite total number of degrees of freedom (such as a finite cellular 
automaton) must eventually become periodic. But the phenomena considered here 
occur on time scales much shorter than such exponentially long recurrences. 

Another class of systems widely investigated consists of those with linear cou
plings between components [such as a cellular automaton in which ay+1J = (a;~l + 
a;~l) mod 2] . Given random input, such systems can again yield random output, and 
are thus homoplectic. But even with simple input, they can produce sequences which 
pass some statistical tests of randomness. Examples are the standard linear congru
ence and linear-feedback shift-register (or finite additive cellular automaton [15]) 
systems used for pseudorandom number generation in practical computer programs 
[6,16] . 

Characteristic of such systems is the generation of self-similar patterns, contain
ing sequences that are invariant under blocking or scaling transformations. These 
sequences are almost periodic, but may contain all possible blocks of elements with 
equal frequencies. They can be considered as the outputs of finite-state machines 
(generalized Markov processes) given the digits of the numerical positions of each el
ement as input [17]. And although the sequences have certain statistical properties of 
randomness, their seeds can be found by comparatively simple polynomial-time pro
cedures [18] . Such systems are thus not autoplectic (with respect to polynomial-time 
computations). 

Many nonlinear mathematical systems seem, however, to be autoplectic, since 
they generate sequences in which no patterns have ever been found. An example 
is the sequence of leading digits in the fractional part of successive powers of ~ 
[19] (which corresponds to a vertical column in a particular k = 6, r = 1 cellular 
automaton with a single site seed). 

Despite extensive empirical evidence, almost nothing has, however, been proved 
about the randomness of such sequences. It is nevertheless possible to construct 
sequences that are strongly expected to be effectively random [20] . An example is 
the lowest-order bits of x, = X;_l mod (pq) , where p and q are large primes [20]. 
The problem of deducing the initial seed xo' or of substantially compressing this 
sequence, is equivalent to the problem of factoring large integers, which is widely 
conjectured to require more than polynomial time [21]. 

Standard statistical tests have also revealed no patterns in the digit sequences of 
transcendental numbers such as ,J2, e, and IT [22] (or continued-fraction expansions 
of IT or of most cubic irrational numbers). But the polynomial-time procedure of 
squaring and comparing with an integer does reveal the digits of, say, ,J2 as non
random [23]. Without knowing how the sequence was generated, however, such a 
very special "statistical test" (or program) can probably only be found by explicit 
enumeration of all exponentially many possible ones. And if a sequence passes all 
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but perhaps exponentially few polynomial-time batteries of statistical tests, it should 
probably be considered effectively random in practice. 

Within a set of homoplectic dynamical systems (such as class 3 or 4 cellular 
automata) capable of transmitting information, all but the simplest seem to support 
sophisticated information processing, and are thus expected to be autoplectic. In some 
cases (quite probably including Fig. 1 [24]) the evolution of the system represents 
a "complete" or "universal" computation, which, with appropriate initial conditions, 
can mimic any other (polynomial-time) computation [21]. If short specifications 
for sequences generated by anyone such computation could in general be found in 
polynomial time, it would imply that all could, which is widely conjectured to be 
impossible. (Such problems are NP-complete [21].) 

Many systems are expected to be computationally irreducible, so that the outcome 
of their evolution can be found essentially only by direct simulation, and no compu
tational short cuts are possible [25] . To predict the future of these systems requires 
an almost complete knowledge of their current state. And it seems likely that this can 
be deduced from partial measurements only by essentially testing all exponentially 
many possibilities. The evolution of computationally irreducible systems should thus 
generically be autoplectic. 

Autoplectic behavior is most clearly identified in discrete systems such as cellular 
automata. Continuous dynamical systems involve the idealization of real numbers 
on which infinite-precision arithmetic operations are performed. For systems such 
as iterated mappings of the interval there seems to be no robust notion of "simple" 
initial conditions. (The number of binary digits in images of, say, a dyadic rational 
grows like pI, where p is the highest power of x in the map.) But in systems with 
many degrees of freedom, described for example by partial differential equations, 
autoplectism may be identified through discrete approximations. 

Autoplectism is expected to be responsible for apparent randomness in many 
physical systems. Some features of turbulent fluid flow [26], say in a jet ejected from 
a nozzle, are undoubtedly determined by details of initial or boundary conditions. 
But when the flow continues to appear random far from the nozzle, one suspects that 
other sources of effective information are present. One possibility might be thermal 
fluctuations or external noise, amplified by homoplectic processes [1]. But viscous 
damping probably allows only sufficiently large-scale perturbations to affect large
scale features of the flow. (Apparently random behavior is found to be almost exactly 
repeatable in some carefully controlled experiments [27].) Thus, it seems more likely 
that the true origin of turbulence is an internal autoplectic process, somewhat like 
Fig. 1, operating on large-scale features of the flow. Numerical experiments certainl y 
suggest that the Navier-Stokes equations can yield complicated behavior even with 
simple initial conditions [28]. Autoplectic processes may also be responsible for the 
widespread applicability of the second law of thermodynamics. 
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and Hydrodynamics of 
Cellular Automata 

1985 

Simple cellular automata which seem to capture the essential features of thermo
dynamics and hydrodynamics are discussed. At a microscopic level, the cellular 
automata are discrete approximations to molecular dynamics, and show relaxation 
towards equilibrium. On a large scale, they behave like continuumfiuids, and suggest 
efficient methods for hydrodynamic simulation. 

Thermodynamics and hydrodynamics describe the overall behaviour of many sys
tems, inqependent of the precise microscopic construction of each system. One can 
thus study thermodynamics and hydrodynamics using simple models, which are more 
amenable to efficient simulation, and potentially to mathematical analysis. 

Cellular automata (CA) are discrete dynamical systems which give simple models 
for many complex physical processes [1]. This paper considers CA which can be 
viewed as discrete approximations to molecular dynamics. In the simplest case, each 
link in a regular spatial lattice carries at most one "particle" with unit velocity in 
each direction. At each time step, each particle moves one link; those arriving at a 
particular site then "scatter" according to a fixed set of rules. This discrete system is 
well-suited to simulation on digital computers. The state of each site is represented 
by a few bits, and follows simple logical rules. The rules are local, so that many 
sites can be updated in parallel. The simulations in this paper were performed on 
a Connection Machine Computer [2] which updates sites concurrently in each of 
65536 Boolean processors [3]. 

In two dimensions, one can consider square and hexagonal (six links at 60°) 
lattices. On a square lattice [4], the only nontrivial local rule which conserves 
momentum and particle number takes isolated pairs of particles colliding head on to 
scatter in the orthogonal direction (no interaction in other cases). On a hexagonal 

Coauthored with James B. Salem. Originally issued as a Thinking Machines Corporation technical repon (November 
1985). 
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lattice [5], such pairs may scatter in either of the other two directions, and the 
scattering may be affected by particles in the third direction. Four particles coming 
along two directions may also scatter in different directions. Finally, particles on 
three links separated by 120° may scatter along the other three links. At fixed 
boundaries, particles may either "bounce back" (yielding "no slip" on average), or 
reflect "specularly" through 120°. 

On a microscopic scale, these rules are deterministic, reversible and discrete. But 
on a sufficiently large scale, a statistical description may apply, and the system may 
behave like a continuum fluid, with macroscopic quantities, such as hydrodynamic 
velocity, obtained by kinetic theory averages. 

Figure 1 illustrates relaxation to "thermodynamic equilibrium". The system 
randomizes, and coarse-grained entropy increases. This macroscopic behaviour is 
robust, but microscopic details depend sensitively on initial conditions. Small per
turbations (say of one particle) have microscopic effects over linearly-expanding 
regions [6]. Thus ensembles of "nearby" initial states usually evolve to contain 
widely-differing "typical" states. But in addition, individual "simply-specified" ini
tial states can yield behaviour so complex as to seem random [7,8], as in figure 1. The 
dynamics thus "encrypts" the initial data; given only coarse-grained, partial, infor
mation, the initial simplicity cannot be recovered or recognized by computationally 
feasible procedures [7], and the behaviour is effectively irreversible. 

Microscopic instability implies that predictions of detailed behaviour are impos
sible without ever more extensive knowledge of initial conditions. With complete 
knowledge (say from a simple specification), the behaviour can always be reproduced 
by explicit simulation. But if effective predictions are to be made, more efficient 
computational procedures should be found. The CA considered here can in fact act as 
universal computers [9]: with appropriate initial conditions, their evolution can im
plement any computation. Streams of particles corresponding to "wires" can meet in 
logical gates implemented by fixed obstructions or other streams. As a consequence, 
the evolution is computationally irreducible [10]; there is no general shortcut to ex
plicit simulation. No simpler computation can reproduce all the possible phenomena. 

Some overall statistical predictions can nevertheless be made. In isolation, the CA 
seem to relax to an equilibrium in which links are populated effectively randomly 
with a particular average particle density p and net velocity (as in figure 1). On 
length scales large compared to the mean free path A, the system then behaves 
like a continuum fluid. The effective fluid pressure is p = p/ 2, giving a speed of 
sound c = 1/ .Ji. Despite the microscopic anisotropy of the lattice, circular sound 
wavefronts are obtained from point sources (so long as their wavelength is larger 
than the mean free path) [11]. 

Assuming local equilibrium, the large-scale behaviour of the CA can be approxi
mated by average rules for collections of particles, with particular average densities 
and velocities. The rules are like finite difference approximations to partial differen
tial equations, whose form can be found by a standard Chapman-Enskog expansion 
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Figure 1. Relaxation to "thennodynamic equilibrium" in the hexagonal lattice cellular automaton (CA) 

described in the text. Discrete particles are initially in a simple array in the centre of a 32 x 32 site square 

box. The upper sequence shows the randomization of this pattern with time; the lower sequence shows 

the cells visited in the discrete phase space (one particle track is drawn thicker). The graph illustrates 

the resulting increase of coarse-grained entropy L Pi log2 Pi calculated from particle densities in 32 x 32 

regions of a 256 x 256 box. 

[12] of microscopic particle distributions in terms of macroscopic quantities. The 
results are analogous to those for systems [13] in which particles occur with an 
arbitrary continuous density at each point in space, but have only a finite set of 
possible velocities corresponding to the links of the lattice. The hexagonal lattice CA 
is then found to follow exactly the standard Navier-Stokes equations [5 ,14]. As usual, 
the parameters in the Navier-Stokes equations depend on the microscopic structure 
of the system. Kinetic theory suggests a kinematic viscosity v ", ?./2 [15]. 

Figures 2 and 3 show hydrodynamic phenomena in the large scale behaviour of 
the hexagonal lattice CA. An overall flow U is obtained by maintaining a difference 
in the numbers of left- and right-moving particles at the boundaries. Since local 
equilibrium is rapidly reached from almost any state, the results are insensitive to 
the precise arrangement used. Random boundary fluxes imitate an infinite region; 
a regular pattern of incoming particles nevertheless also suffices, and reflecting or 
cyclic boundary conditions can be used on the top and bottom edges. 

The hydrodynamics of the CA is much like a standard physical fluid [16]. For low 
Mach numbers Ma = U Ie, the fluid is approximately incompressible, and the flows 
show dynamical similarity, depending only on Reynolds number Re = U Llv (L » ?.). 

The patterns obtained agree qualitatively with experiment [3]. At low Re, the flows 
are macroscopically stable; perturbations are dissipated into microscopic "heat". 
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x 100 

U = 0.05 

t = 50000 t = 60000 t = 70000 t = 80000 

Figure 2. Time evolution of hydrodynamic flow around a plate in the CA of figure 1 on a 4096 x 4096 site 

lattice. Hydrodynamic velocities are obtained as indicated by averaging over 96x96 site regions. There is 

an average density of 0.3 particles per link (giving a total of 3 x 108 particles). An overall velocity U = 0.1 

is maintained by introducing an excess of particles (here in a regular pattern) on the left hand boundary. 

U = 0.1 U = 0.2 U = 0.3 U = 0.4 U = 0.5 

" 
~ ... 

Figure 3. Hydrodynamic flows obtained after 105 time steps in the CA of figure 2, for various overall 

velocities U . 

As Re increases, periodic vortex streets are at first produced, and then vortices are 
shed in an irregular, turbulent, fashion. Perturbations now affect details of the flow, 
though not its statistical properties. The macroscopic irregularity does not depend 
on microscopic randomness; it occurs even if microscopically simple (say spatially 
and temporally periodic) initial and boundary conditions are used, as illustrated in 
figure 2. As at the microscopic level, it seems that the evolution corresponds to a 
sufficiently complex computation that its results seem random [7]. 

The CA discussed here should serve as a basis for practical hydrodynamic simu
lations. They are simple to program, readily amenable to parallel processing, able to 
handle complex geometries easily [17], and presumably show no unphysical insta
bilities. (Generalization to three dimensions is straightforward in principle [18].) 

Standard finite difference methods [19] consider discrete cells of fluid described by 
continuous parameters. These parameters are usually represented as digital numbers 
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with say 64 bits of precision. Most of these bits are, however, probably irrelevant in 
determining observable features of flow. In the CA approach, all bits are of essentially 
equal importance, and the number of elementary operations performed is potentially 
closer to the irreducible limit. 

The difficulty of computation in a particular case depends on the number of 
cells that must be used. Below a certain dissipation length scale a - Re-d/ 4 (in d 
dimensions), viscosity makes physical homogeneous turbulent fluids smooth [16] . 
In finite difference schemes, individual cells can represent fluid regions of this size. 
But complete calculations with the CA considered here probably require increasing 
numbers of cells in each region [20]. Approximate "turbulence models" involving 
fewer cells may however be devised. 

Several further extensions of the CA scheme can be considered. First, on some 
or all of the lattice, basic units containing say n particles, rather than single particles, 
can be used. The properties of these units can be specified by digital numbers with 
O(logn) bits, but exact conservation laws can still be maintained. This scheme 
comes closer to adaptive grid finite difference methods [19], and potentially avoids 
detailed computation in featureless parts of flows. 

A second, related, extension introduces discrete internal degrees of freedom for . 
each particle. These could represent different particle types, directions of discrete 
vortices [19], or internal energy (giving variable temperature [21]) . 

This paper has given further evidence that simple cellular automata can reproduce 
the essential features of thermodynamic and hydrodynamic behaviour. These models 
make contact with results in dynamical systems theory and computation theory. They 
should also yield efficient practical simulations, particularly on parallel-processing 
computers. 

Cellular automata can potentially reproduce behaviour conventionally described 
by partial differential equations in many other systems whose intrinsic dynamics 
involves many degrees of freedom with no large disparity in scales. 
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A J -dimensional cellular automaton which generates random sequences is discussed. 
Each site in the cellular automaton has value 0 or J, and is updated in parallel ac

cording to the rule a; = ai_1 XOR (ai OR ai+l ) (a; = (ai_1 +ai +ai+1 +aiai+l ) mod 2). 
Despite the simplicity of this rule, the time sequences of site values that it yields 
seem to be completely random. These sequences are analysed by a variety of em

pirical, combinatorial, statistical, dynamical systems theory and computation theory 
methods. An efficient random sequence generator based on them is suggested. 

1. Random Sequence Generation 

Sequences that seem random are needed for a wide variety of purposes. They are 
used for unbiased sampling in the Monte Carlo method, and to imitate stochastic 
natural processes. They are used in implementing randomized algorithms which 
require arbitrary choices. And their unpredictability is used in games of chance, and 
potentially in data encryption. 

To generate a random sequence on a digital computer, one starts with a fixed length 
seed, then iteratively applies some transformation to it, progressively extracting as 
long as possible a random sequence (e.g., [1]). In general one considers a sequence 
"random" if no patterns can be recognized in it, no predictions can be made about it, 
and no simple description of it can be found (e.g., [2]). But if in fact the sequence can 
be generated by iteration of a definite transformation, then a simple description of it 
certainly does exist. I The sequence can nevertheless seem random if no computations 

Originally published in Advances in Applied Mathematics, volume 7 , pages 123-169 (June 1986). 

I A stricter definition of randomness can be based on the non-existence of simple descriptions [3], rather than merely 

the difficulty of finding them. None of the sequences discussed here, nor many generally considered random, would 

qualify according to this definition. 
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done on it reveal this simple description. The original seed must be transformed in 
such a complicated way that the computations cannot recover it. 

The degree of randomness of a sequence can be defined in terms of the classes of 
computations which cannot discern patterns in it. A sequence is "random enough" 
for application in a particular system if the computations that the system effectively 
performs are not sophisticated enough to be able to find patterns in the sequence. 
So, for example, a sequence might be random enough for Monte Carlo integration 
if the values it yields are distributed sufficiently uniformly. The existence say of 
particular correlations in the sequence might not be discerned in this calculation. 
Whenever a computation that uses a random sequence takes a bounded time, there 
is a limit to the degree of randomness that the sequence need have. Statistical tests 
of randomness emulate various simple computations encountered in practice, and 
check that statistical properties of the sequence agree with those predicted if every 
element occurred purely according to probabilities. It would be better if one could 
show in general that patterns could not be recognized in certain sequences by any 
computation whatsoever that, for example, takes less than a certain time. No such 
results can yet be proved, so one must for now rely on more circumstantial evidence 
for adequate degrees of randomness. 

The fact that acceptably random sequences can indeed be generated efficiently 
by digital computers is a consequence of the fact that quite simple transformations, 
when iterated, can yield extremely complicated behaviour. Simple computations are 
able to produce sequences whose origins can apparently be deduced only by much 
more complex computations. 

Most current practical random sequence generation computer programs are based 
on linear congruence relations (of the form x ' = ax + b mod n) (e.g., [1]), or 
linear feedback shift registers [4] (analogous to the linear cellular automata discussed 
below). The linearity and simplicity of these systems has made complete algebraic 
analyses possible and has allowed certain randomness properties to be proved [1, 

4]. But it also leads to efficient algebraic algorithms for predicting the sequences (or 
deducing their seeds) , and limits their degree of randomness. 

An efficient random sequence generator should produce a sequence of length L in 
a time at most polynomial in L (and linear on most kinds of computers). It is always 
possible to deduce the seed (say of length s) for such a sequence by an exhaustive 
search which takes a time at most 0(2$). But if in fact such an exponentially long 
computation were needed to find any pattern in the sequence, then the sequence 
would be random enough for almost any practical application (so long as it involved 
less than exponential time computations). 

No such lower bounds on computational complexity are yet known. It is however 
often possible to show that one problem is computationally equivalent to a large 
class of others. So, for example, one could potentially show that the problem of 
deducing the seed for certain sequences was NP-complete [5]: special instances of 
the problem would then correspond to arbitrary problems in the class NP, and the 
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problem would in general be as difficult as any in NP. (One should also show some 
form of uniform reducibility to ensure that the problem is difficult almost always, as 
well as in the worst case.) The class NP (nondeterministic polynomial time) includes 
many well-studied problems (such as integer factorization), which involve finding 
objects (such as prime factors) that satisfy polynomial-time-testable conditions, but 
for which no systematic polynomial time (P) algorithms have ever been discovered. 

Random sequence generators have been constructed with the property that rec
ognizing patterns in the sequences they produce is in principle equivalent to solving 
certain difficult number theoretical problems [2] (which are in the class NP, but are 
not NP-complete). An example is the sequence of least significant bits obtained 
by iterating the transformation x' = x 2 mod (pq), where p and q are large primes 
(congruent to 3 modulo 4) [6]. Making predictions from this sequence is in principle 
equivalent to factoring the integer pq [6, 7] . 

There are in fact many standard mathematical processes which are simple to 
perform, yet produce sequences so complicated that they seem random. An example 
is taking square roots of integers. Despite the simplicity of its computation, no 
practical statistical procedures have revealed any regularity in say the digit sequence 
of.J2 (e.g., [8]). (Not even its normality or equidistribution has however actually 
been proved.) An even simpler example is multiplication by ~ , say in base 6.2 

Starting with I, one obtains the pattern shown in Fig. 1.1 The center vertical column 
of values, corresponding to the leading digit in the fractional part of ( ~ )n , seems 
random [10]. (Though again not even its normality has actually been proved.) Given 
the complete number obtained at a particular stage, multiplication by ( ~)n suffices to 
reproduce the original seed. But given only the center column, it seems difficult to 
deduce the seed. 

Many physical processes also yield seemingly random behaviour. In some cases, 
the randomness can be attributed to the effects of external random input. Thus, for ex
ample, "analog" random sequence generators such as noise diodes work by sampling 
thermal fluctuations associated with a heat bath containing many components. Coin 
tossings and Roulette wheels produce outcomes that depend sensitively on initial ve
locities determined by complex systems with many components. It seems however 
that in all such cases, sequences extracted sufficiently quickly can depend on only a 
few components of the environment, and must eventually show definite correlations. 

One suspects in fact that randomness in many physical systems (probably in
cluding turbulent fluids) ari ses not from external random input, but rather through 
intrinsic mathematical processes [11]. This paper discusses the generation of ran
dom sequences by simple procedures which seem to capture many features of this 
phenomenon. The investigations described may not only suggest practical methods 

2 This operation can be performed locatty on a base 6 digi t sequence, and so can be implemented as a cettular automaton. 
Given particular finite boundary conditions, it acts like a linear congruentia.l sequence generator (e.g., [I D. But in an 
infinite region, its behaviour is more complicated, and is related to the so-catted 3N + I problem [9]. 
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102.235433213 
133 . 3553520213 
222 .• 25525003213 
333 . 425113050213 
522 . 3414514133213 

1203.53241532220213 
2005.521025203303213 
3012 . 5013420051350213 
4321 . 13223301152433213 

10501 . 520351315518520213 
14132 . 5005451554442003213 
23221 . 13124155541030050213 
35031 . 515102555313431133213 
54345.4544342551523445220213 

123542.42405342455054120303213 
205534.040122341244232004350213 
312523 . 1002035321103500105433213 
451204 . 43030552014354301423520213 

1115011.043442500235534323355003213 
1454314.4054041303555235052543050213 
2423454 . 01231021355550544212344133213 
4035423 . 020443322555442403205402220213 

10055334.3311052042554040050123033303213 
13125223.51444201042531001132043521350213 
21512035 . 454103014042143015201055022433213 
32450055.4231343231032343250014243340520213 
51113125 . 33452350443505351130234052312003213 

114451512.224205441054422445133531204500050213 
154115450.3403124014240341115225150111301133213 
253155413 . 53045100234005314550415431451315220213 
421555322 . 514114303530121542440253454151550303213 

Figure 1.1. Successive powers of 3/2 in base 6. The leading digits in the fractional parts of these numbers 

form a sequence that seems random. The process of multiplication by 3/2 in base 6 corresponds to a 

k = 6, r = I cellular automaton rule. 

for random sequence generation, but also provide further understanding of the nature 
and origins of randomness in physical processes. 

2. Cellular Automata 

A I-dimensional cellular automaton [12, 13] consists of a line of sites with values ai 

between 0 and k -1. These values are updated in parallel (synchronously) in discrete 
time steps according to a fixed rule of the form 

a; = ¢(ai_r , ai- r+1, ••. , ai+,). (2.1) 

Much of this paper is concerned with the study of a particular k = 2, r = 1 cellular 
automaton, described in Section 3. 

For mathematical purposes, it is often convenient to consider cellular automata 
with an infinite number of sites. But practical implementations must contain a finite 
number of sites N. These are typically arranged in a circular register, so as to have 
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periodic boundary conditions, given in the r = 1 case by 

a; = ¢(aN, al' a2) 

a~ = ¢(aN-l' aN' at)· 
(2.2) 

It is also possible to arrange the sites in a feedback shift register (cf. [4]), with 
boundary conditions 

a; = ¢(¢(a2, a3, a4), ¢(a3, a4, a5), at), 

a~ = ¢(¢(a3, a4, a5), at, a2)· 
(2.3) 

Cellular automata can be considered as discrete approximations to partial differ
ential equations, and used as direct models for a wide variety of natural systems (e.g., 
[14]). They can also be considered as discrete dynamical systems corresponding 
to continuous mappings on the Cantor set (e.g., [15]) . Finally they can be viewed 
as computational systems, whose evolution processes information contained in their 
initial configurations (e.g., [16]). 

Despite the simplicity of their construction, cellular automata are found to be 
capable of diverse and complex behaviour. Figure 2.1 shows some patterns gener
ated by evolution according to various cellular automaton rules, starting from typical 
disordered initial conditions. Four basic outcomes are seen [15]: (1) the pattern 
becomes homogeneous (fixed point), (2) the pattern degenerates into simple periodic 
structures (limit cycles), (3) the pattern is aperiodic, and appears chaotic, and (4) 
complicated localized structures are produced. The first two classes of cellular au
tomata yield readily predictable behaviour, and show no seemingly random elements. 
But the third class gives rise to behaviour that is more complex. They can produce 
patterns whose features cannot readily be predicted in detail, and in fact often seem 
completely random. Such cellular automata can be used as models of randomness in 
nature. They can also be considered as abstract mathematical systems, and used for 
practical random sequence generation. 

Figure 2.1 shows patterns produced by evolution according to various cellular 
automaton rules, starting from typical disordered initial conditions, in which the value 
of each site is randomly chosen to be zero or one. Figure 2.2 shows some patterns 
obtained instead by evolution from a very simple initial condition containing a single 
nonzero site. With such simple initial conditions, some class 3 cellular automata yield 
rather simple patterns, which are typically periodic or at least self similar (almost 
periodic). There are nevertheless class 3 cellular automata which yield complex 
patterns, even from simple initial states. Their evolution can intrinsically produce 
apparent randomness, without external input of random initial conditions. It is such 
"autoplectic" systems [11] which seem most promising for explaining randomness 
in nature, or for use as practical random sequence generation procedures. 

Many class 3 cellular automata seem to perform very complicated transforma
tions on their initial conditions. Their evolution thus corresponds to a complicated 
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rule 22 rule 30 rule 45 

rule 54 rule 57 rule 60 

rule 73 rule 110 rule 122 

Figure 2.1. Patterns generated by evolution of various k = 2, r = I cellular automata from disordered 

initial states. Successive lines give configurations obtained on successive time steps, with white and 

black squares representing sites with values 0 and I respectively. The coefficient of zi in the binary 

decomposition of each rule number gives the value of the function rfJ in Eq. (2.1) for the neighbourhood 

whose site values form the integer i (cf. [17]). 

computation. But any predictions of the cellular automaton behaviour must also 
be obtained through computations. Effective predictions require computations that 
are more sophisticated than those corresponding to the cellular automaton evolution 
itself. One suspects however that the evolution of many class 3 cellular automata 
is in fact computationally as sophisticated as that of any (physically realizable) 
system can be [18, 19]. It is thus "computationally irreducible," and its outcome can 
effectively be found only by direct simulation or observation. There are no general 
computational shortcuts or finite mathematical formulae for it. As a consequence, 
many questions concerning infinite time or infinite size limits cannot be answered by 
bounded computations, and must be considered formally undecidable. In addition, 
questions about finite time or finite size behaviour, while ultimately computable, 
may be computationally intractable, and could require, for example, exponential 
time computations. 
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Most class 3 cellular automata are expected to be computationally irreducible. 
A few rules however have special simplifying features which make predictions and 
analysis possible. One class of such rules are those for which the function rp is linear 
(modulo k) in the ai+j . Such cellular automata are analogous to linear feedback shift 
registers [4]. An example with k = 2 is 

a; = (ai_I + ai ) mod 2 = (ai_t XOR ai ), (2.4) 

where XOR stands for exclusive disjunction (this is rule number 60 in the scheme 
of [17]). Linear cellular automata satisfy a superposition principle, which implies 
that patterns generated with arbitrary initial states can be obtained as appropriate 
superpositions of the self-similar pattern produced with a single nonzero initial site 
(as illustrated in Fig. 2.2). As a result, it is possible to give a complete algebraic 
description of the behaviour of the system [20], and to deduce the outcome of its 
evolution by a much reduced computation. 

Most class 3 cellular automata are however nonlinear. No general methods to 
predict their behaviour have been found, and from their likely computational irre
ducibility one expects that no such methods even in principle exist. In studying 
such systems one must therefore to a large extent forsake conventional mathematical 
techniques and instead rely on empirical and experimental mathematical results. 

rule 22 rule 30 rule 45 

rule 54 rule 57 rule 60 

rule 73 rule 110 rule 122 

Figure 2.2. Patterns generaled by evolulion or various k = 2. r = I cellular aU lomata rrom an initial state 

containing a single nonzero site. Complex patterns are seen to be produced even with such simple initial 

condi ti ons. 
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3. A Random Sequence Generator 

There are a total of 223 = 256 cellular automaton rules that depend on three sites, 
each with two possible values (k = 2, r = 1). Among these are several linear rules 
similar to that of Eq. (2.4). But the two rules that seem best as random sequence 
generators are nonlinear, and are given by 

a; = ai_ I XOR (ai OR ai+l ) 

or, equivalently, 

(rule number 30 [17]; equivalent to rule 86 under reflection), and 

a; = ai_I XOR (ai OR (NOT ai+I )) 

or 

(3.1 a) 

(3 .1b) 

(3.2a) 

(3.2b) 

(rule 45; reflection equivalent to rule 75). Here XOR stands for exclusive disjunction 
(addition modulo two); OR for inclusive disjunction (Boolean addition), and NOT 
for negation. The patterns obtained by evolution from a single nonzero site with each 
of these rules were shown in Fig. 2.2. It is indeed remarkable that such complexity 
can arise in systems of such simple construction. A first indication of their potential 
for random sequence generation is the apparent randomness of the center vertical 
column of values in the patterns of Fig. 2.2. 

This paper concentrates on the cellular automaton of Eq. (3 .1). The methods used 
carryover directly to the cellular automaton of Eq. (3.2), but some of the results 
obtained in this case are slightly less favourable for random sequence generation. 

The cellular automaton rule (3.1) is essentially nonlinear. Nevertheless, its de
pendence on ai_I is in fact linear. This feature (termed "left permutivity" in [21], and 
also studied in [22]) is the basis for many of its properties. In the form (3.1), the rule 

gives the new value a; of a site in terms of the old values ai- I' ai and ai+l . But the 
linear dependence on ai_I allows the rule to be rewritten as 

ai_I = a; XOR (a i OR ai+I ) , (3.3) 

giving ai_I in terms of a; , ai and ai+ l . This relation implies that the spacetime 
patterns shown, for example, in Figs. 2.1 and 2.2 can be found not only by direct time 
evolution according to (3.1) from a given initial configuration, but also by extending 
spatially according to (3.3), starting with the temporal sequence of values of two 
adjacent sites. 

Random sequences are obtained from (3 .1) by sampling the values that a particular 
site attains as a function of time. In practical implementations, a finite number of sites 
are considered, and are typically arranged in a circular register. Given almost any 
initial "seed" configuration for the sites in the register, a long and seemingly random 
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sequence can apparently be obtained. This paper discusses several approaches to 
the analysis of the cellular automaton (3.1) and the sequences it produces. While 
little can rigourously be proved, the overwhelming weight of evidence is that the 
sequences indeed have a high degree of randomness. 

4. Global Properties 

This section considers the behaviour of the cellular automaton (3.1) starting from 
all possible initial states. The basic approach is to count the possible sequences 
and patterns that can occur, and to characterize them using methods from dynamical 
systems theory (e.g., [23]). The next section discusses the behaviour obtained by 
evolution from particular initial configurations. For purposes of simplicity, this 
section concentrates on the infinite size limit; Section 9 considers finite size effects. 

Figure 4.1 shows a spacetime pattern produced by evolution according to (3.1) 
starting from a typical disordered initial state. While definite structure is evident, 
one may suspect that a single line of sites at any angle in the pattern can have an 
arbitrary sequence of values. Below we shall show that this is in fact the case: given 
an appropriate initial condition, any sequence can be generated in an infinite cellular 
automaton with the rule (3.1). 

Figure 4.1. Pattern produced by evolution according to the cellular automaton rule (3. 1) from a typical 

disordered initial state. 
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The rule (3.1) can be considered as a mapping from one (say infinite) cellular 
automaton configuration to another. An important property of this mapping is that it 
is surjective or onto. Any configuration A can thus always be obtained as the image 
of some configuration A- , according to A = ¢A-. A possible configuration A- (not 
necessarily unique) can be found by starting with a candidate pair of site values , 
then extending to the left using Eq. (3.3). So if all possible initial configurations 
are considered, then any configuration can be generated at any time step. Thus with 
appropriate initial conditions, any spatial sequence of site values can be produced. 

Every length X spatial sequence of site values that occurs is determined by a 
length X + 2 sequence on the previous time step. The surjectivity of the rule (3.1) 
implies that such a predecessor exists for any length X sequence. But Eq. (3.3) 
also implies that there are exactly four predecessors for any sequence. Given values 
ai ' ai_l' and so on, in one sequence, the values aj+l and aj in its predecessor can 
be chosen in all the four possible ways; in each case the remaining aj_j are then 
uniquely determined by Eq. (3.3). Thus starting from an ensemble that contains all 
possible (infinite) cellular automaton configurations with equal probabilities, each 
configuration will be generated with equal probability throughout the evolution of 
the cellular automaton, and so every possible spatial sequence of a particular length 
will occur with equal frequency. 

One may also consider sequences of values attained by a single site as a function 
of time. Starting from an initial ensemble which contains all configurations with 
equal probabilities, all such sequences again occur with equal frequencies. For, 
given any temporal sequence, iteration of Eq. (3 .3) yields an equal number of initial 
configurations which evolve to it. The same is true for sequences of site values on 
lines at any angle in the spacetime pattern. 

Entropies provide characterizations of the number of possible sequences that 
occur. First, let the number of distinct length n blocks in these sequences be N (n), 

and let the ith such sequence appear with probability Pi. Then the topological entropy 
of the sequence is given by (e.g., [15]) 

. 1 
s = hm -log2 N(n), 

n-+oo n 
(4.1) 

and the measure entropy by 

2n 

-1 L s/1 = lim - Pi log2 Pi· 
n--+oo n . 

(4.2) 
I 

If the cellular automaton configurations are considered as elements of a Cantor 
set, then these entropies give respectively the Hausdorff (strictly Kolmogorov) and 
measure dimensions of this set. If the sequences are considered as "messages," then 
the entropies give respectively their capacity and Shannon information content. 
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For the cellular automaton of Eq. (3.1), all possible sequences occur with equal 
probabilities (given an equal probability initial ensemble) so both entropies are max
imal: 

(4.3) 

Any reduction in entropy would reveal redundancy in the sequences, and would 
imply a lack of randomness. Equation (4.3) is thus a necessary (though not sufficient) 
condition for randomness. (It is related to statistical test A of Section 10 and Appell
dix A.) 

Although Eq. (4.3) implies that all possible sequences of values for single sites 
can occur along any spacetime direction, the deterministic nature of the cellular 
automaton rule (3.1) implies that only certain spacetime patches of values can occur. 
In fact, all the site values in a particular patch are completely determined by the 
values that appear on its upper, left and right boundaries. Once these boundaries are 
specified, the values of remaining sites in the patch are redundant, and can be found 
simply by applying (3.1) and (3.3). 

In general the degree of redundancy in such spacetime patterns can be character
ized by the invariant topological and measure entropies for the cellular automaton 
mapping, given by (e.g., [15,24]) 

1 
h = lim lim - log2 N(X, T) 

x -+00 T -+00 T 

and 

2XT 
- 1 

hI' = lim lim - L Pi log2 Pi' 
X -+00 T -+00 T 

i=l 

(4.4) 

(4.5) 

where N(X, T) gives the total number of distinct X x T spacetime patches of site 
values that occur, and the Pi give their probabilities. 

It is clear from the locality of the rule (3.1) that 

hI' :s h :s 2. (4.6) 

A calculation based on the method of [25] in fact shows that3 

hI' ~ 1.20. (4.7) 

Hence a knowledge of the time sequences of values of about 1.2 sites suffice in 
principle to determine the values of all other sites. In practice however the function 
which gives the initial configuration in terms of these temporal sequences seems 
rapidly to become intractably complicated, as discussed in Section 7. 

3 Recent results [45] suggest in fact that hp '" 1 + T -(O.6±O.I), yielding a final value of 1. 
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s. Stability Properties 

Section 4 considered properties of possible patterns generated by evolution with the 
cellular automaton rule of Eq. (3 .1), starting from all possible initial configurations. 
This section considers the change in the patterns produced by small perturbations in 
the initial state. Figure 5.1 shows the differences resulting from reversal of a single 
site value in a typical disordered initial configuration. The region affected increases 
in size with time, reflecting the instability of the patterns generated. 

This instability implies that information on localized changes eventually propa
gates throughout the cellular automaton. The rates of information transmission to the 
left and right are determined by the slopes of the difference pattern in Fig. 5.1. These 
in turn give left and right Lyapunov exponents AL and AR for the cellular automaton 
evolution [15, 26] . (The sequence of site values in a configuration, starting from a 
particular point, can be represented as a real number. Linear growth of the difference 
pattern in Fig. 5.1 then implies exponential divergence of the numbers representing 
nearby configurations.) 

The form of the cellular automaton rule (3.1) immediately implies that 

(5.1) 

For consider a configuration in which the difference pattern has reached site -1. 
Whatever the current values of sites 0 and 1, the XOR in (3.1) leads to a change in 
the new value of site O. The value (5.1) is the maximum allowed by the locality of 
the rule (3 .1). 

Empirical measurements suggest that the left-hand side of the difference pattern 
expands at an asymptotically linear rate, with a slope [45] 

AL = (0.2428 ± 0.0003). 
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Figure 5.1. Differences in patterns 

produced by evolution according to 

the cellular automaton rule of Eq. 

(3. I) from two typical di sordered 

states which differ by reversal of the 

centre site value. The growth of the 

region of differences refl ects the in

stability of the cellular automaton 

evolution. 
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A simple statistical estimate for AL can be given. Consider a pair of configurations for 
which the front of the difference pattern has reached site O. As a first approximation, 
one may assume that the motion of this front depends only on the neighbouring 
values a_I and a+l , where, by cons.truction, a_I is the same for the two configurations. 
When a_I = 0, the front advances (left) by one site, independent of the values of the 
a l . When a_I = 1, the front remains stationary if the a+1 for the two configurations 
are equal, and retreats by one site if they are unequal. If possible sets of site values 
occurred with equal probabilities, the front should thus follow a biased random 
walk, advancing at average speed 1/4. In practice, however, Fig. 5.1 shows that the 
front can retreat by many sites in a single time step. This occurs when the cellular 
automaton rule yields the same image for multiple site value sequences, as for say 
10100 and 11001. Such phenomena make the probabilities for different difference 
patterns unequal, and invalidate this purely statistical approach discussed. (The 
values of AL obtained in this approach by considering the effects of between 1 and 5 
sites on the right are 0.25, 0.1875, 0.15625, 0.140625 and 0.134766.) 

The result (5.2) gives the average speed of the left-hand side of the difference 
pattern. As the random walk interpretation suggests, however, one can choose initial 
configurations for which a single site change leads to differences which expand at 
speed 1 on the left. In general, one can construct the analog of a Green's function, 
giving the probability that a site at a particular position and time will be affected 
by an initial perturbation. This function is nonzero within a "light cone" with 
edges expanding at speed 1. It appears to be uniform on the right-hand side. But 
on the left-hand side, it appears to be determined by a diffusion equation which 
gives the average behaviour of the biased random walk. The difference pattern can 
thus extend beyond the line given by Eq. (5.2), but with an exponentially damped 
probability. 

Lyapunov exponents measure the rate of information transmission in cellular 
automata, and provide upper bounds on entropies, which measure the information 
content of patterns generated by cellular automaton evolution. For surjective cellular 
automata it can be shown, for example, that [15] 

(5.3) 

consistent with Eq. (4.6) and (5.2). The existence of positive Lyapunov exponents is 
a characteristic feature of class 3 cellular automata. 

The difference pattern of Fig. 5.1, and the related Green's function, measure the 
effect of initial perturbations on the values of individual sites. In studying random 
sequence generation, one must also consider the effect of such perturbations on time 
sequences of site values, say of length T. These sequences are always completely 
determined from the initial values of 2T + I sites. But not all these initial values 
necessarily affect the time sequences. A change in any of the T + I left-hand initial 
sites necessarily leads to a change in at least one element of the time sequence. 
But some changes in the T right-hand initial sites have no effect on any element 
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of the time sequence. It seems that the probability for a particular initial site to 
affect the time sequence decreases exponentially with distance to the right. The 
average number of sites on the right which affect the time sequence is found to be 
approximately 0.26 + 0.19T. Thus the total number of initial sites on which a length 
T time sequence depends is on average approximately 1.91 + 1.19T. This result is 
presumably related to the entropy (4.6). 

6. Particular Initial States 

Sections 4 and 5 have discussed some properties of the patterns produced by evo
lution according to Eq. (3.1) from generic initial conditions. This section considers 
evolution from particular special initial configurations. 

Figure 6.1 shows on two scales the pattern produced by evolution from a configu
ration containing a single nonzero site. (This could be considered a difference pattern 
for the special time-invariant state in which all sites have value zero.) Remarkable 
complexity is evident. 

There are however some definite regularities. For example, diagonal sequences of 
sites on the left-hand side of the pattern are periodic, with small periods. In general, 
the value of a site at a depth N from the edge of the pattern depends only on sites at 
depths N or less; all the other sites on which it could depend always have value 0 
because of the initial conditions given. As a consequence, the sites down to depth N 
are independent of those deeper in the pattern, and in fact follow a shifted version of 
the cellular automaton rule (3.1), with boundary conditions that constrain two sites 
at one end to have value zero. Since such a finite cellular automaton has a total of 
2N possible states, any time sequence of values in it must have a period of at most 
2N. The corresponding diagonal sequences in the pattern of Fig. 6.1 must therefore 
also have periods not greater than 2N. 

Table 6.1 gives the actual periods of diagonal sequences found at various depths 
on the left- and right-hand sides of the pattern in Fig. 6.1. These are compared with 
those for the self-similar pattern shown in Fig. 2.2 generated by evolution according 
to the linear cellular automaton rule (2.4). 

The short periods on the left-hand side of the pattern in Fig. 6.1 are related to 
the high degree of irreversibility in the effective cellular automaton rule for diagonal 
sequences in this case [27]. Starting with any possible initial configuration, this 
cellular automaton always yields cycles with period 2j . The maximum value of j 
increases very slowly with N , yielding maximum cycle lengths which increase in 
jumps, on average slower than linearly with N . (Between the N values at which the 
maximum cycle length increases, a single additional cycle of maximal length seems to 
be added each time N increases by one. The total number of cycle states thus increases 
at most quadratically with N, implying an increasing degree of irreversibility.) The 
actual sequences that occur near the left-hand boundary of the pattern in Fig. 6.1 
correspond to a particular set of those possible in this effective cellular automaton. In 
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Figure 6.1. Patterns generated by evolution for 250 and 2000 generations, respecti vely, according to the 

cellular automaton rute (3. 1) from an initial state containing a single nonzero site. (The second pattern 

was obtained by Jim Salem using a prototype Connection Machine computer.) 
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CA30 CA60 
Depth 7rR 7rL 7rR 

0 1 1 1 
1 2 1 2 
2 2 1 4 
3 4 2 4 
4 8 1 8 
5 8 2 8 
6 16 2 8 
7 32 1 8 Table 6.1. Period lengths for diagonal sequences in pat· 
8 32 4 16 terns generated by evolution from a single nonzero site 
9 64 1 16 according to the cellular automaton rules of Eqs. (3.1) and 

10 64 4 16 
(2.4). 1fR and 1fL signify respectively periods for diago-

11 64 4 16 
12 64 4 16 nal sequences on the right and left of the patterns, at the 

13 64 4 16 specified depth. (The entries left blank were not found.) 

14 64 4 16 
15 128 4 16 
16 256 4 32 

32 8 64 

64 4 128 

128 8 256 

256 8 512 

512 16 1024 

1024 16 2048 

a first approximation, they can be considered uniformly distributed among possible 
N -site configurations, and their periods increase very slowly with N . 

The effective rule for the right-hand side diagonal pattern in Fig. 6.1 is a shifted 
version ofEq. (3.1) 

a ; = a; XOR (a;+1 OR a;+2) ' 

with boundary conditions 

a~_ 1 = aN_I XOR aN ' 

a~ = aN' 

(6.la) 

(6.1 b) 

This system is exactly reversible: all of its 2N possible configurations have unique 
predecessors. All the configurations thus lie on cycles, and again the cycles have 
periods of the form 2i. Figure 6.2 shows the lengths of longest cycles as a function 
of N. These lengths increase roughly exponentially with N; a least squares fit to the 
data of Fig. 6.2 yields 

log2 fIN "" O.S(N + I) . (6.2) 

This length is small compared to the total number of states 2N ; few states in fact lie on 
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Figure 6.2. Maximal period lengths ON for the effec

tive cellular automaton which gives the right-hand di

agonal sequences in Fig. 6.1 down to depth N. Points 

plotted at integer N are joined for pictorial purposes. 

such longest cycles. Nevertheless, the periods of the right-hand diagonal sequences 
in Fig. 6.1 do seem to increase roughly exponentially with depth, as suggested by 
Table 6.1. 

The boundary in Fig. 6.1 between regular behaviour on the left and irregular 
behaviour on the right seems to be asymptotically linear, and to move to the left 
with speed 0.25. A statistical argument for this result can be given in analogy with 
that for Eq. (5.2). Each site at depth d on the left-hand side of the pattern could in 
principle be affected by sites down to depth d arbitrarily far up in the pattern. In 
practice, however, it is unaffected by changes in sites outside a cone whose boundary 
propagates at speed ilL '" 0.25. Thus the irregularity on the right spreads to the left 
only at this speed. 

While diagonal sequences at angles ±l in Fig. 6.1 must ultimately become peri
odic, sequences closer to the vertical need not. In fact, no periodicity has been found 
in any such sequences. The center vertical (i.e., temporal) sequence has, for example, 
been tested up to length 219 '" 5 X 105 , and no periodicity is seen. One can prove in 

fact that only one such vertical sequence (obtained from any initial state containing 
a finite number of nonzero sites) can possibly be periodic [22]. For if two sequences 
were both periodic, then it would follow that all sequences to their right must also 
be, which would lead to a contradiction at the edge of the pattern. 

Not only has no periodicity been detected in the center vertical sequence of 
Fig. 6.1; the sequence has also passed all other statistical tests ofrandomness applied 
to it, as discussed in Section 10. 

While individual sequences seem random, there are local regularities in the overall 
pattern of Fig. 6.1. Examples are the triangular regions of zero sites. Such regularities 
are associated with invariants of the cellular automaton rule. 

The particular configuration in which all sites have value 0 is invariant under the 
cellular automaton rule of Eq. (3.1). As a consequence, any string of zeroes that 
appears can be corrupted only by effects that propagate in from its ends. Thus each 
string of zeroes that is produced leads to a uniform triangular region. 

Table 6.2 and Fig. 6.3 give other configurations which are periodic under the rule 
(3.1). (They can be considered as invariant under iterations of the rule.) Again, 
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Period 

3 

4 

Element 

o 
01 

00001111100 I 

0000001 

0000111 

0010011 

0111111 

Table 6.2. Configurations periodic under the cellular automaton 

mapping (3.1) consist of infinite repetitions of the elements given. 

Notice that the four elements given for period four correspond sim

ply to different phases in a cycle. The patterns generated by these 

periodic configurations are shown in Fig. 6.3. 

any string that contains just the sequences in these configurations can be corrupted 
only through end effects, and leads to a regular region in spacetime patterns generated 
by Eq. (3.1). 

In general, there is a finite set of configurations with any particular period p under 
a permutive cellular automaton rule such as (3.1). The configurations may be found 
by starting with a candidate length 2p string, then testing whether this and the string 
it yields through Eq. (3.3) on the left are in fact invariant under </Jp. The string to 
be tested need never be longer than 22p

, since such a string can contain all possible 
length 2p strings. Thus the periodic configurations consist of repetitions of blocks 
containing 22p or less site values. (For an arbitrary cellular automaton rule, the set 
of invariant configurations forms a finite complement language which contains in 
general an infinite number of sequences with the constraint that certain blocks are 
excluded [16].) 

The pattern in Fig. 6.1 can be considered the effect of a single site "defect" in 
the periodic pattern resulting from a configuration with all sites O. Figure 6.4 shows 
difference patterns produced by single site defects in the other periodic configurations 
of Table 6.2 and Fig. 6.3. 

The periodic configurations of Table 6.2 and Fig. 6.3 can be viewed as special 
states in which the cellular automaton of Eq. (3.1) behaves just like the identity rule. 
Concatenations of other blocks could simulate other cellular automata: one block 
might correspond to a value 0 site, and another to a value 1 site in the effective cellular 
automaton. Some cellular automata (such as that of Eq. (2.4» simulate themselves 

period 1 period 3 period 4 

Figure 6.3. Periodic patterns for the cellular automaton rule of Eq. (3.1). The form of these patterns is 

given in Table 6.2. 
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period 1 period 3 period 4 

Figure 6.4. Patterns produced by evolution according to the cellular automaton rule (3.1) by single site 

initial defects in the periodic patterns of Fig. 6.2 and Table 6.2. 

under such "blocking transformations," and thus evolve to self-similar patterns. The 
cellular automata of Eqs. (3.1) and (3.2) are unique among k = 2, r = 1 rules in 
simulating no other rules, at least with blocks of length up to eight [14]. 

7. Functional Properties 

Cellular automaton rules such as (3.1) can be considered as functions ¢J which map 
three Boolean values to one. Iterations of these rules for say t steps correspond to 
functions of 2t + 1 Boolean values. The complexity of these functions reflects the 
intrinsic complexity of the cellular automaton evolution. 

The complexity of a Boolean function can be characterized by the number of 
logic gates that would be needed to evaluate it with a particular kind of circuit, or the 
number of terms that it would have in a particular symbolic representation. Explicit 
evolution according to the cellular automaton rule (3.1) corresponds to a circuit with 
0(t2 ) components and depth t. But for purposes of comparison, it is convenient to 
consider fixed depth representations. One such representation is disjunctive normal 
form (DNF), in which the function is written as a disjunction of conjunctions. A 
two-level circuit can be constructed in direct correspondence with this form (as 
programmable logic arrays often are). 

For the function of Eq. (3.1), the DNF is 

(7.1) 

where + stands for OR, concatenation for AND, and bar for NOT. Notice that by 
using in addition an XOR operation, Eq. (3.1) itself gives a shorter form for this 
function. 

The general problem of finding the absolute shortest representation for an arbitrary 
Boolean function, even in DNF, is NP-complete (e.g., [5]), and so presumably requires 
an exponential time computation. But a definite approximation can be found in 
terms of "prime implicants" (e.g., [28]). A Boolean function of n variables can 
be considered as a colouring of the Boolean n-cube. Prime implicants give the 
hyperplanes (with different dimensions) in the n-cube which must be superimposed 
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CA30 CA60 Table 7.1. Number of terms in disjune-

P.I. Min. P.I.IMin. tive normal form Boolean expressions eor-

1 3 3 2 responding to iterations of the mappings 

2 9 7 2 (3.1) (CA30) and (2.4) (CA60). P.I. gives 

3 23 17 8 the number of prime implieants; min. the 

4 76 41 2 number of terms obtained by [29]. (The 

5 185 105 8 
two numbers are the equal in the ease of 

6 666 272 8 
Eq. (2.4) .) 

to obtain the region with value 1. Each prime implicant can thus be used as a term in 
a DNF for the function. The number of prime implicants required gives a measure of 
the total number of "holes" in the colouring of the n-cube, and thus of the complexity 
of the function. 

The minimal DNF obtained with prime implicants for the function corresponding 
to two iterations of the cellular automaton mapping (3.1) is 

¢2(a_2, a_I ' ao' ai ' a2) = (a_2 a_I ao a l a2 ) + (a_2a_IaOa l a2 ) 

+ (a_2a_IaOa l a2 ) + (a_2a_IaOa;- a2 ) 
(7.2) 

+ (a_2a_1 a l a2 ) + (a_2 a_I ao a2) 

+ (a_2a_1 aOa2) + (a_2a_1 aOa2) + (a_2a_1 ao )' 

Table 7.1 gives the number of prime implicants for successive iterations of the 
mapping (3.1). These results are plotted in Fig. 7.1. For arbitrary Boolean functions 
of 2t + 1 variables, the number of prime implicants could increase like 41

• In practice, 
however, a least squares fit to the data of Table 7.1 suggests growth like 4°.771. 

Various efficient methods are known to find DNF that are somewhat simpler than 
those obtained using prime implicants. With one such method [28, 29], the DNF of 
Eq. (7.2) can be reduced to 

¢2(a_2, a_I' ao ' ai' a2) = (a_2 a_I ao a l ) + (a_2 a_Iaoa l ) 

+ (a_2 a_I ao a2) + (a_2 a_IaOa2) (7.3) 

+ (a_2 a;- a2 ) + (a_2 a_I ao) + (a_2a_1 ao ). 

The sizes of the minimal DNF obtained by this method for iterations of Eq. (3.1) 
are shown in Table 7.1 and Fig. 7.1. They are seen to grow more slowly than those 
obtained with prime implicants; the data given are however again fit by exponential 
growth like 4°.651• 

Table 7.1 and Fig. 7.1 also give the size of the minimal DNF for iterations of 
the linear cellular automaton mapping (2.4). This number remains much smaller, 
apparently increasing like 22# 1(1)-1 < t 2 , where #1 (t) gives the number of ones in the 
binary representation for the integer t (cf. [30]). 

The rapid increase in the size of the minimal DNF found for iterations of Eq. (3.1) 
indicates the increasing computational complexity of determining the result of evolu
tion according to (3.1), and supports the conjecture of its computational irreducibility. 
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Figure 7.1. Number of terms in disjunctive 

normal form Boolean expressions for t step 

iterations of the mappings (3.1) and (2.4). The 

upper curve gives the number of prime impli-

cants for iterations of Eq. (3 .1). The next 

curve gives the minimal number of terms ob

tained in this case using [29]. The lowest 

curve gives the minimal number of terms for 

the linear cellular automaton mapping (2.4). 

(Note however that even the parity function cannot be computed by any DNF, or in 
general fixed-depth, circuit of polynomial size [31].) 

Equation (7.3) gives the function which determines the value of a single site after 
two iterations of the cellular automaton rule (3.1). One can also construct a function 
which gives the length t sequence of values of a particular site attained through 
time by evolution from a given length 2t + 1 initial sequence. The minimal DNF 
representation for this function is found (using [29]) to grow in size approximately 
as 21.36t. 

The results of Table 7.1 and Fig. 7.1 concern the difficulty of finding the outcome 
of cellular automaton evolution according to Eq. (3.1) from a given initial state. One 
may also consider the problem of deducing the initial state from time sequences of 
site values produced in the evolution. Given say t steps in the time sequence of values 
for two adjacent sites, the initial configuration up to t sites to the left can be deduced 
directly by iteration of Eq. (3.3). The combinatorial results of Section 4 indicate in 
fact that only about 1.2 such temporal sequences should on average be required. And 
in principle from a single sufficiently long temporal sequence, it should be possible 
to deduce a complete initial configuration for a finite cellular automaton. In practice, 
however, the necessary computation seems to become increasingly intractable as the 
size of the system increases. 

Given a particular temporal sequence, say at position 0, Eq. (3.3) uniquely de
termines the values of all sites in a triangle to the left as a function of values in the 
temporal sequence at position 1. The number of values in the position 1 temporal 
sequence on which a given site depends varies with the form of the position 0 se
quence [32]. For example, if the position 0 sequence consists solely of ones, then the 
whole triangle of sites is completely determined, entirely independent of the position 
1 sequence. Table 7.2 gives some results from considering the dependence of the site 
value a_t at position -t (the apex of the triangle) on the position 1 sequence, for all2t 
possible position 0 sequences. The number of values in the position I sequence on 
which a_t depends seems to be roughly Poisson distributed, with a mean that grows 
like O.4t, as shown in Fig. 7.2. This is consistent with the combinatorial result (4.6). 
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Vl 
Q) 

:0 
'" . ~ 

> 

n 

2 
3 
4 

5 

6 
7 

8 
9 

IO 

(Var.) 

0.5 

1.375 
1.125 

2.281 
2.828 
3. 164 
3.699 
4.254 

(P.I.) 

0.75 
1.125 

1.375 
1.219 

2.7 19 
3.539 
4. 105 

n 

Max. P.I. 

2 

3 
3 

12 
17 
26 

Table 7.2. Properties of Boolean expressions for left

most initial site values deduced from length n time se

quences, obtained by evolution according to Eq. (3.1 ). 

The average number of variables appearing in the 

Boolean expressions is given, together with the num

berof prime implicants in the disjunctive normal form 

for the expression. The maximum number of vari 

ables which can appear is always n - 1. (Results for 

n ?: 9 were obtained by Carl Feynman using a Sym

bolics 3600 LISP machine. The entries left blank 

were not found.) 

Figure 7.2. Average number of additional site values 

necessary to "back-track" and determine uniquely the 

initial site value a- n given the sequence of values ao 

for n subsequent time steps. 

Table 7.2 also gives some properties of the prime implicant forms for a_I" It is 
clear that the complexity of the function that determines a_I from temporal sequences 
grows with t, probably at an increasingly rapid rate. Again this suggests that the 
problem of deducing the initial sequence for evolution according to Eq. (3.1), while 
combinatorially possible, is computational complex. 

By comparison, the corresponding problem for evolution according to the linear 
rule (2.4) is quite straightforward. For each possible position 0 sequence, there are 
only two possible forms for the dependence of a_Ion the position 1 sequence, and 
each ofthem involves exactly 2#\(1-1 ) prime implicants. This simplicity can be viewed 

as a consequence of the algebraic structure associated with this system. 

8. Computation Theoretical Properties 

The discussion of the previous section can be considered as giving a characterization 
of the computational complexity of iterations of the cellular automaton mapping 
(3.1) in a particular simple model of computation. The results obtained suggest that 
at least in this model, there is no shortcut method for finding the outcome of the 
evolution: the computations required are no less than for an explicit simulation of 
each time step. As discussed above, one suspects in fact that the evolution is in 
general computationally irreducible, so that no possible computation could find its 
outcome more efficiently than by direct simulation. 
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This would be the case if the cellular automaton ofEq. (3.1) could act as an efficient 
universal computer (e.g., [33]), so that with an appropriate initial state, its evolution 
could mimic any possible computation. In particular, it could be that the problem 
of finding the value of a particular site after t steps (given say a simply-specified 
initial state, as in Fig. 6.1) must take a time polynomial in t on any computer. (Direct 
simulation takes O(t2) time on a serial-processing computer, and O(t) time with O(t) 

parallel processors.) For a linear cellular automaton such as that of Eq. (204), this 
problem can be solved in a time polynomial in log(t); but for the cellular automaton 
of Eq. (3.1) it quite probably cannot [18]. 

In addition to studying cellular automaton evolution from given initial config
urations, one may consider the problem of deducing configurations of the cellular 
automaton from partial information such as temporal sequences. In particular, one 
may study the computational complexity of finding the seed for a cellular automaton 
in a finite region from the temporal sequences it generates. 

There are 2N possible seeds for a size N cellular automaton, and one can always 
find which ones produce a particular sequence by trying each of them in tum. Such 
a procedure would however rapidly become impractical. The results in Section 7 
suggest a slightly more efficient method. If it were possible to find two adjacent tem
poral sequences, then the seed could be found easily using Eq. (3.3). Given only one 
temporal sequence, however, some elements of the seed are initially undetermined. 
Nevertheless, in a finite size system, say with periodic boundary conditions, one can 
derive many distinct equations for a single site value. The site value can then be 
deduced by solving the resulting system of simultaneous Boolean equations. The 
equations will however typically involve many variables. As discussed in Section 7, 
the number of variables seems to be Poisson-distributed with a mean around OAN. 

The general problem of solving a Boolean equation in n variables is NP-complete 
(e.g., [5]), and so presumably cannot be solved in a time polynomial in n. In addition, 
it seems likely that the average time to solve an arbitrary Boolean equation is corre
spondingly long. To relate the problem of deducing the seed discussed above to this 
would however require a demonstration that the Boolean equations generated were 
in a sense uniformly distributed over all possibilities. Out of all 22n n-variable equa
tions, the problem here typically involves O(2n), but these seem to have no special 
simplifying features. At least with the method discussed above, it is thus conceivable 
that the problem of deducing the seed is equivalent to the general problem of solving 
Boolean equations, which is NP-complete. 

9. Finite Size Behaviour 

Much of the discussion above has concerned the behaviour of the cellular automaton 
(3.1) in the idealized limit of an infinite lattice of sites. But practical implementations 
must use finite size registers, and certain global properties can depend on the size 
and boundary conditions chosen. 
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The total number of possible states in a size N cellular automaton is 2N. Evolution 
between these states can be represented by a finite state transition diagram. Figure 9.1 
gives some examples of such diagrams for the cellular automaton of Eq. (3.1) with 
periodic boundary conditions, as in Eq. (2.2). Table 9.1 summarizes some of their 
properties. The results are seen to depend not only on the magnitude of N, but also 
presumably on its number theoretical properties. 

Each state transition diagram contains a set of cycles, fed by trees representing 
transients. The cycles may be considered as "attractors" to which states in their 
"basins of attraction" irreversibly evolve. 

There are many regularities in the structure of the state transition diagrams ob
tained from Eq. (3.1). The evolution is thus not well-approximated by a random 
mapping between 2N states. 

N Cycles Frac. longest Cyc. frac . (Transient) 

4 I x8, 3 x I 0.75 0.69 0.5 

5 I x 5, I x I 0.94 0.19 4.3 

6 3 x I 1.00 0.05 3.3 

7 I x 63 , 7 x 4, I x I 0.60 0.72 0.4 

8 I x 40, I x 8, 3 x I 0.88 0.20 3.1 

9 I x l7l,l x72, l x l 0.81 0.48 1.1 

10 2 x 15, I x 5, 3 x I 0.82 0.04 14.8 

II I x 154, II x 17, I x I 0.76 0.17 3.3 

12 4 x 102, I x 8, 4 x 3, 3 x I 0.93 0.11 4.4 

13 I x832,1 x 260, I x 247 , I x9 1, 1 x I 0.32 0.17 2.2 

14 I x 1428, 2x 133, 1 x 112,2x84, 1 x63, 1 x 14, 3x I 0.84 0.1 3 2.7 

15 I x 1455, 5x30,5x9, I5 x7 , 4 x5 , I x I 0.93 0.05 5.7 

16 I x60 16,1 x 4144,3x40, 1 x8,3x I 0.50 0.16 

17 I x 10846, 1 x 1632, 1 x 867 , I x 306, I x 136, 1 x 17, 1 x I 0.96 0.11 

Table 9.1. Properties of state transition diagrams for the cellular automaton rule of Eq. (3.1) in a circular 

register of size N. The multiplicity and length of each cycle is given, followed by the fraction of initial 

states which evolve to a longest cycle (size of attractor basin), the total fraction of all 2N states which 

lie on cycles, and the average length of transient before a cycle is reached in evolution from an arbitrary 

initial state. (Results for N '" 16 were obtained by Holly Peck.) 

A first observation is that most configurations have unique predecessors under 
the mapping (3.1) (as mentioned for infinite lattices in Section 4), so there is little 
branching in the state transition diagram. In fact, it can be shown [32] that a 
configuration has a unique predecessor unless it contains a pair of value zero sites 
separated by a sequence of 3n + 1 value one sites (with n ~ 0), or unless N is 
divisible by 3, and all sites have value one. In the former case, the configuration 
has exactly zero or two predecessors; in the latter case, it has three. The numbers of 
configurations with zero and two predecessors are equal when N is not divisible by 
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Figure 9.1. State transition dia

grams for configurations of cellu

lar automata evolving according 

to Eq. (3.1) in circular registers of 

size N. Each node represents one 

of the 2N possible length N con

figurations, and is joined by an arc 

to its successor under the cellular 

automaton mapping. Transients 

corresponding to trees in the graph 

are seen ultimately to evolve to pe

riodic cycles. Some properties of 

these state transition diagrams are 

given in Table 9.1. (Graphics by 

Steve Strassmann.) 
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3; there are two more with zero predecessors when 31 N. For large N, the number of 
configurations with zero or two predecessors behaves as [32] K

N
, where K "" 1.696 is 

the real root of 4K3 - 2K2 - 1 = O. Since the total number of configurations grows like 
2N , the fraction of nodes in the state transition diagram that are branch points thus 

tends exponentially to zero. 
A second observation is that there are often many identical parts in the state 

transition diagrams of Table 9.1 and Fig. 9.1. This is largely a consequence of shift 
invariance. States in a cellular automaton with periodic boundary conditions that 
are related by shifts (translations) evolve equivalently. Thus, for example, there are 
often several identical cycles, related by shifts in their configurations. In addition, 
the periods of the cycles are often divisible by N or its factors, since they contain 
several sequences of configurations related by shifts. The transient trees that feed 

each of these sequences are then identical. 
The evolution of a finite cellular automaton with periodic boundary conditions is 

equivalent to the evolution of an infinite cellular automaton with a periodic initial 
configuration. Thus the results on cycle length distributions in Table 9.1 can be 
considered as inverse to those in Table 6.2 on configurations with given temporal 
periods. Cycles of lengths corresponding to these temporal periods occur whenever 
N is divisible by the spatial periods of these configurations. Such short cycles are 
absent if N has none of these factors. 

For large N, the state transition diagrams for Eq. (3.1) appear to be increasingly 
dominated by a single cycle. This cycle is longer than the others, and its basin of 
attraction is large enough that most arbitrarily chosen initial states evolve to it. The 
low degree of branching in the transient trees implies that the points reached from 
arbitrary initial states should be roughly uniformly distributed around the cycle. 

The shorter cycles in Table 9.1 can be considered as related to subsets of states 
invariant under the cellular automaton rule. With N even, for example, configura
tions which consist of two identical length N /2 subsequences can evolve only to 
configurations of the same type. Once such a configuration has been reached, the 
evolution is "trapped" within this subset of configurations, and must yield shorter 
cycles. (This phenemonon also occurs for cellular automata with essentially trivial 
rules, such as the shift mapping a; = aj • All states are on cycles in this case. The 
different cycles correspond to the possible "necklaces" with N beads of two kinds, 
which are inequivalent under shifts or rotations. These necklaces in tum correspond 
to cyclotomic polynomials; there are LdlN ¢(d)2N /d of them, where ¢ the Euler 
totient function (e.g., [4]).) In general, there may exist subsets of states with certain 
special symmetry properties that are preserved by the cellular automaton rule. Initial 
states with particular, symmetrical, forms can be expected to have these properties, 
and thus to be trapped in subsets of state space, and to yield short cycles. For ex
ample, with N = 36, a configuration containing a single nonzero site evolves to a 
length 2844 cycle, while most initial configurations evolve to the longest cycle, with 
2237472 states. 
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In the infinite size limit, patterns such as that of Fig. 6.1 generated by the cellular 
automaton of Eq. (3.1) never become periodic. But with a total of N sites, a cycle 
must occur after 2N or less steps. Table 9.2 and Fig. 9.2 give the actual maximal 
cycle lengths fIN found. A roughly exponential increase of fIN with N is seen, and 
a least squares fit to the data of Table 9.2 yields 

log2 fIN"" O.61(N + 1). (9.1) 

Note that if the state transition diagram corresponded to an entirely random mapping 
between the 2N cellular automaton states, then cycles of average length 2N /2 would be 

expected [34]. The cycles actually obtained are significantly longer. The exponent in 
Eq. (9.1) may be related to the entropy (4.6) as a result of the expansivity or instability 
of the mapping discussed in Section 5. 

If there were very short cycles, then the sequences produced by the cellular 
automaton would readily be predictable. So if in fact no such prediction can be made 
by any polynomial time computation, the length of the cycles that occur should in 
general increase asymptotically faster than polynomial in N (cf. [2]). This behaviour 
is supported by Eq. (9.1). 

If indeed the evolution of cellular automata such as (3.1) is computationally 
irreducible, then a complex computation may always be required to determine for 
example the lengths of cycles that appear. For in this case, there can effectively be no 
better way to find the succession of states that occur, except by explicit application 
of the rule (3.1). One expects in fact that the problem of finding say whether two 
configurations lie on the same cycle is PSPACE-complete, and so presumably cannot 
be solved in a time polynomial in N, but rather essentially requires a direct simulation 
of the cellular automaton evolution. (Note that if the lengths of the cycles studied are 
O(2M), where both 2N- M and 2M are large, then parallel processing is essentially of 

no avail in this problem.) 
While the determination of cycle lengths and structures may be computationally 

intractable for cellular automata such as (3.1), it should be much easier for linear 
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Figure 9.2. Maximal cycle lengths nN for the cellular automaton of Eqs. (3.1) (CA30) and (2.4) (CA60) 

in circular registers of size N. 
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CA30 CA60 

N nN log2 nN nN log2 nN 
4 3.0 I 0.0 
5 5 2.3 15 3.9 
6 0.0 6 2.6 
7 63 6.0 7 2.8 
8 40 5.3 0.0 
9 171 7.4 63 6.0 

10 15 3.9 30 4.9 
II 154 7.3 341 8.4 
12 102 6.7 12 3.6 
13 832 9.7 819 9.7 
14 1428 10.5 14 3.8 
15 1455 10.5 15 3.9 
16 6016 12.6 I 0.0 
17 10845 13.4 255 8.0 
18 2844 11.5 126 7.0 
19 3705 11.9 9709 13.2 
20 6150 12.6 60 5.9 
21 2793 11.4 63 6.0 
22 3256 11.7 682 9.4 
23 38249 15.2 2047 11.0 
24 185040 17.5 24 4.6 
25 588425 19.2 25575 14.6 
26 312156 18.3 1638 10.7 
27 67554 16.0 13797 13.7 
28 249165 17.9 28 4.8 
29 1466066 20.5 475107 18.9 
30 306120 18.2 30 4.9 
31 2841150 21.4 31 5.0 
32 2002272 20.9 0.0 
33 2038476 21.0 1023 10.0 
34 5656002 22.4 510 9.0 
35 18480630 24.1 4095 12.0 
36 2237472 21.1 252 8.0 
37 49276415 25 .6 3233097 21.6 
38 9329228 23 .2 19418 14.2 
39 961272 19.9 4095 12.0 
40 19211080 24.2 120 6.9 
41 51151354 25.6 41943 15.4 
42 109603410 26.7 126 7.0 
43 93537212 26.5 5461 12.4 
44 192218312 27.5 1364 10.4 
45 75864495 26.2 4095 12.0 
46 261598274 28.0 4094 12.0 
47 81128481 3 29.6 8388607 23.0 
48 3035918676 31.5 48 5.6 
49 9937383652 33.2 2097151 21.0 
50 593487780 29.1 51150 15.6 
51 3625711023 31.8 255 8.0 
52 20653434880 34.3 3276 11.7 
53 40114679273 35.2 3556769739 31.7 
54 7551779562 32.8 27594 14.8 

Table 9.2. Maximum cycle lengths IlN found for the cellular automata of Eqs. (3.1) (CA30) and (2.4) 

(CA60) in circular registers of size N. In the former case, a selection of seeds, including single nonzero 

sites, were used. In the latter case, maximal length cycles are always obtained with single nonzero site 

seeds. The results are plotted in Fig. 9.2. (Results for N 2: 32 were obtained by Holly Peck and Tsutomu 

Shimomura with an assembly-language program on a Celerity C-1200 computer.) 
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cases such as (2.4). From the algebraic theory of these systems it is possible to show 
for example that the maximal cycle length TIN satisfies [20] 

(9.2) 

where nlm states that the integer n exactly divides m. Here ordN(k) is the multi
plicative order function, equal to the minimum integer j such that k j = 1 mod N . 
This function divides the totient function ¢>(N) (equal to the number of integers less 
than N which are relatively prime to N), which is maximal for prime N . Table 9.2 
and Fig. 9.2 give the actual maximal periods found in this case. Equation (9.2) 
rarely holds as an equality, and the TIN found are usually much shorter than the 
corresponding ones for the nonlinear rule (3.1). 

The cycle structures of finite cellular automata depend in detail on the boundary 
conditions chosen. Table 9.3 gives the maximal cycle lengths found for rules (3.1) 

CA30 CA60 

N nN log2 nN nN log2 nN 

4 5 2.3 15 3.9 

5 2 1.0 21 4.4 

6 7 2.8 21 4.4 

7 4 2.0 127 7.0 

8 17 4.1 63 6.0 

9 65 6.0 73 6.2 

10 6 2.6 889 9.8 
11 57 5.8 1533 10.6 

12 50 5.6 1085 10.1 Table 9.3. Maximum cycle lengths 
13 118 6.9 7905 12.9 nN found for the cellular automata of 
14 185 7.5 11811 13.5 

Eqs. (3.1) (CA30) and (2.4) (CA60) in 
15 257 8.0 32767 15.0 
16 481 8.9 255 8.0 shift registers of size N (with bound-
17 907 9.8 273 8.1 ary conditions given by Eq. (2.3». 
18 1681 10.7 253921 18.0 
19 707 9.5 413385 18.7 
20 2679 11.4 761763 19.5 
21 5630 12.5 5461 12.4 
22 1368 10.4 4194303 22.0 
23 31241 14.9 2088705 21.0 
24 3567 11.8 2097151 21.0 
25 60503 15.9 2192337 21.1 
26 4752 12.2 22995 14.5 
27 46519 15.5 41943035 25.3 
28 35569 15.1 17895697 24.1 
29 207197 17.7 
30 149899 17.2 
31 482717 18.9 
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and (2.4) with shift register boundary conditions. The results differ substantially from 
those with periodic boundary conditions given in Table 9.2. One notable feature is 
the presence of length 2N - 1 cycles in the linear cellular automaton (2.4) for certain 
N. These correspond to maximal length linear feedback shift registers, and can be 
identified by a direct algebraic procedure [4]. 

Other boundary conditions may also be considered. Among them are twisted 
ones, in which the sites at and aN are negated in Eq. (2.2). The maximum cycle 
lengths found with such boundary conditions seem typically shorter than in the purely 
periodic case. 

One may in addition consider boundary conditions in which the boundary site 
values are fixed, rather than being periodically identified. Section 6 (particularly 
Fig. 6.2) gave some examples of results with such boundary conditions. Different 
cycles are obtained in different cases; all those investigated nevertheless gi ve maximal 
cycle lengths shorter than those of Table 9.2 found with periodic boundary conditions. 

What has been discussed so far are cycles in complete finite cellular automaton 
configurations. But in obtaining random sequences one samples single sites. The 
sequences found could potentially have periods which were sub-multiples of the 
periods for the complete configuration. For permutive rules such as (3.1) (or (2.4» 
this carmot, however, occur. 

The state transition diagrams summarized in Table 9.1 give the number of complete 
N -site configurations that can occur at various stages in the evolution of the cellular 
automaton (3.1). One may also consider the number of single site temporal sequences 
that can occur. Table 9.4 gives the fraction of the 2L possible length L temporal 
sequences that are actually generated from any of the 2N possible initial states in a 
size N cellular automaton evolving according to Eq. (3.1) (with periodic boundary 
conditions). The results are plotted in Fig. 9.3. Whenever N ~ L + 2, all possible 
sequences seem to be generated. They appear with roughly equal frequencies. 

10. Statistical Properties 

The sequences generated by the cellular automaton of Eq. (3.1) may be considered 
effectively random if no feasible procedure can identify a pattern in them, or allow 
their behaviour to be predicted. Even though it may not be possible to prove that 
no such procedure can exist, circumstantial evidence can be accumulated by trying 
various statistical procedures and finding that they reveal no regularities. The basic 
approach is to compare statistical results on sequences generated by (3.1) with those 
calculated for sequences whose elements occur purely according to probabilities. 

To establish the validity of (3.1) as a general-purpose random sequence generator, 
one should apply a variety of statistical procedures, related to various different kinds 
of calculations. The choice of tests is necessarily as ad hoc as the choice of calcu
lations done. Appendix A lists those used here. (But see also [35].) Some can be 
considered related to Monte Carlo simulations of physical and other systems. Others 

296 



Random Sequence Generation by Cellular Automata (1986) 

L 4 5 6 7 9 10 II 12 

3 0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.4 0.250 0.625 0.875 0.938 1.000 1.000 1.000 1.000 1.000 1.000 

5 0.125 0.313 0.656 0.844 1.000 1.000 1.000 1.000 1.000 1.000 

6 0.063 0.156 0.344 0.594 0.906 1.000 1.000 1.000 1.000 1.000 

7 0.031 0.Q78 0.180 0.352 0.609 0.891 1.000 1.000 1.000 1.000 

8 0.016 0.039 0.094 0.188 0.328 0.633 0.949 0.992 1.000 1.000 

9 0.008 0.020 0.047 0.094 0.168 0.361 0.668 0.895 0.996 1.000 

10 0.004 0.010 0.023 0.047 0.085 0.195 0.386 0.644 0.917 0.989 

II 0.002 0.005 0.012 0.023 0.042 0.102 0.204 0.377 0.666 0.897 

12 0.001 0.002 0.006 0.012 0.021 0.052 0.105 0.204 0.387 0.651 

13 0.000 0.00 1 0.003 0.006 0.011 0.026 0.054 0.105 0.209 0.385 

14 0.000 0.001 0.001 0.003 0.005 0.013 0.027 0.053 0.109 0.209 

15 0.000 0.000 0.001 0.001 0.003 0.007 0.013 0.027 0.055 0.109 

Table 9.4. Fraction of length L temporal sequences generated from all possible seeds by evolution 

according to Eq. (3.1) in a length N circular register. 

successive columns. The results are plotted in Fig. 9.3. 

Results for successive values of N are given in 

Figure 9.3. Fraction of length L sequences 

obtained by evolution from all possible 

seeds according to Eq. (3.1) in a size N cir

cular register. The three-dimensional view 

is from the point N = L = 20, with eleva

tion 2. 

to statistical analyses that would be done on data from various kinds of measurements. 
While quite ad hoc, the tests seem to be sensitive, and reasonably independent. 

As an example, consider the "equidistribution" or "frequency" test. If a sequence 
of zeroes and ones is to be random, the digits zero and one must occur in it with 
equal frequency. In general, in fact, all 2n possible length n blocks of digits must 
also occur with equal frequency. (The measure entropy of (4.2) is maximal exactly 
when such equidistribution occurs.) However, in a finite sample of length m, there 
are expected to be statistical fluctuations , which lead to slightly different numbers of 
zeroes and ones. (The value of entropy deduced from a finite sample is thus almost 
always not maximal, even if it would be maximal were the sequence to be continued 
forever.) As a consequence, one can never definitively conclude by studying a finite 
sample that the complete sequence is not random. One can however calculate the 
probability that a truly random sequence would have the properties seen in the finite 
sample. 
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To do this (e.g., [36]), one evaluates X2, defined in terms of the observed and 
expected frequencies Po and Pe as 

v 

X2 = L(Po - Pe)2 / Pe' 
I 

(10.1) 

Here v gives the number of degrees of freedom, or number of distinct objects whose 
frequencies are included in the sum. If blocks of length n are studied then v = 2n. 
Now one must find the probability that a value of X2 larger than that observed would 
occur for a random sequence. This "confidence interval" is obtained immediately 
from the integral of the X2 distribution (e.g., [36]). 

If the confidence interval is very close to zero or one, then the observed X2 
is unlikely to be produced from a random sequence, and one may infer that the 
observed sequence is not random. Of course, if say a total of k tests are done, it 
is to be expected that the confidence interval for at least one of them will be less 
than 1/ k. Evidence for nonrandom ness in a sequence must come from an excess of 
confidence interval values close to zero or one, over and above the number expected 
for a uniform distribution. 

Table 10.1 gives results from the statistical tests described in Appendix A for 
sequences generated by the cellular automaton (3.1) in a finite circular register. 
Except when the sample sequence is comparable in length to the period of the 
system, as given by Table 9.2, no significant deviations from randomness are found. 

CA30 CA30 CA30 CA30 CA30 CA30 

N=17 N = 17 N =23 N=29 N =37 N=49 

L = 8k L =64k L =64k L =64k L =64k L =64k 

A 0.0039 1.0000 0.0456 0.7375 0.3852 0.8003 

B 0.0171 0.9944 0.3391 0.4888 0.1010 0.1494 

C 0.4164 0.4783 0.7256 0.4847 0.4083 0.9407 

0 0.3227 0.9998 0.1506 0.1434 0 .1678 0.6074 

E 0.4576 0.4484 0.6790 0.8492 0.5414 0.7991 

F 0.4306 0.8644 0.8751 0.5590 0.6681 0.6606 

G 0.2942 0.9944 0.1232 0.7359 0.4448 0.6961 

Table 10.1. Results of the statistical tests described in Appendix A for sequences of length L (k = 1024) 

generated by the cellular automaton of Eq. (3.1) (rule number 30) in circular registers of length N. In each 

case, the seed used consists of a single nonzero site. The numbers given are the probabilities (confidence 

intervals) for statistical averages of truly random sequences to exceed those of the sequences analysed. 

The numbers should be uniformly distributed between 0 and I if the sequences analysed are indeed truly 

random. Results below 0.05 and above 0.95 are shown in bold type. Accumulations close to 0 or I suggest 

deviations from randomness . Such accumulations are seen in this case only when the period of the cellular 

automaton is comparable to the length of the sequence sampled. (The statistical test programs used here 

were written in C by Don Mitchell.) 
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CA60 LFSR LFSR LCG ./2 e 7r 

N =29 N=17 N =29 N = 32 

L =64k L =64k L =64k L =64k L = 51906k L = 9501k L = 26755k 

A 1.0000 0.0390 0.9998 0.0167 0.6255 0.5505 0.1441 

B 1.0000 0.9773 0.4378 0.0841 0.0801 0.4556 0.9525 

C 1.0000 0.2654 1.0000 0.1676 0.0582 0.8615 0.2799 

D 1.0000 0.8797 0.8400 0.8322 0.8553 0.7605 0.9986 

E 0.9256 1.0000 0.9435 0.5850 0.6363 0.6890 0.0049 

F 0.9998 1.0000 0.9674 0.9248 0.8499 0.7031 0.1297 

G 1.0000 0.9790 0.3476 0.3137 0.8465 0.4086 0.5473 

Table 10.2. Results of statistical tests for sequences generated by various procedures. CA60 is the linear 

cellular automaton rule of Eq. (2.4), in a size N circular register. LFSR is a linear feedback shift register 

of length N with period 2N - I. For N = 17 the shift register taps are at positions 14 and 17; for N = 29 

they are at positions 27 and 29. For CA60 and LFSR seeds consisting of a single nonzero site were used. 

LCG is the linear congruential generator x' = ( I 1035 I 5245x + 12345) mod 231 (used, for example, in 

many implementations of the UNIX operating system). The seed x = I was used. The behaviour of CA60, 

LFSR and LCG are illustrated in Fig. 11.1 . ,J2, e and 1f are the binary digit sequences of the square root of 

two, the exponential constant, and pi , respectively. (These digit sequences were obtained by R. W. Gosper 

using a Symbolics 3600 LISP machine.) 

Table 10.2 gives statistical results for sequences generated by other procedures. 
Those obtained from linear feedback shift registers, while provably random in some 
respects (e.g. , [4]) , are revealed as significantly nonrandom by several of the tests 
used here. Many sequences obtained from linear congruential generators are also 
found to be significantly nonrandom with respect to these tests . No regularities are 
detected in the digit sequence of v'2 (and other surds tried) (cf. [37]). There is, 
however, some possible evidence for nonrandomness in the digit sequences of e and 
7r (cf. [38]). (This will be explored elsewhere.) 

Table 10.3 gives statistical results for temporal sequences in the pattern of Fig
ure 6.1 obtained by evolution according to Eq. (3.1) from a single nonzero initial 
site on an infinite lattice. Once again, no significant deviations from randomness 
are seen. 

If deviations from randomness were detected by some statistical procedure, then 
this procedure could be used to make statistical predictions about the sequence. In 
addition, it could be used to obtain a compressed representation for the sequence, 
and would thus demonstrate that the sequence did not have maximal information 
content. The fact that deviations from randomness have not been found by any of 
the statistical procedures considered lends strong support to the belief that sequences 
produced by Eq. (3.1) with large N are indeed random for practical purposes. 
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i=O i=O i=O i= 1 i =-1 i = 32 i = -32 

L = 8k L =64k L = 512k L = 512k L = 512k L = 512k L = 512k 

A 0.1536 0.2234 0.6453 0.8629 0.8630 0.8733 0.2677 

B 0.5996 0.0637 0.4891 0.7639 0.8343 0.2525 0.1751 

C 0.6448 0.6538 0.5443 0.5887 0.4000 0.8271 0.8815 

D 0.5921 0.2643 0.0051 0.0105 0.7030 0.4550 0.7832 

E 0.1358 0.1348 0.6631 0.8430 0.7498 0.1264 0.8353 

F 0.2622 0.1957 0.9385 0.4324 0.9009 0.4736 0.8022 

G 0.4542 0.8773 0.6658 0.1080 0.7169 0.7744 0.2364 

Table 10.3. Results of statistical tests for vertical sequences at position i in the pattern of Fig. 6.1 generated 

by evolution according to Eq. (3.1) from a single nonzero initial site on an infinite lattice. Leading zeroes in 

each sequence were truncated. (The sequences were obtained by Jim Salem using a prototype Connection 

Machine computer.) 

11. Practical Implementation 

The simplicity and intrinsic parallelism of the cellular automaton rule (3.1) makes 
possible efficient implementation on many kinds of computers. 

On a serial-processing computer, each site could be updated in tum according to 
(3.1). But in practice, site values can be represented by single bits in say a 32-bit word, 
and updated in parallel using standard word-wise Boolean operations. (Additional 
bit-wise operations are often needed for boundary conditions.) 

On a synchronous parallel-processing computer, different sites or groups of sites 
in the cellular automaton can be assigned to different processors. They can then 
be updated independently (though synchronously), using the same instructions, and 
with only local communications. 

Very efficient hardware implementations of (3.1) should also be possible. For 
short registers, explicit circuitry can be included for each site. And for long registers, 
a pipelined approach analogous to a feedback shift register can be used (cf. [39]). 

The evidence presented above suggests that the cellular automaton ofEq. (3.1) can 
serve as a practical random sequence generator. The most appropriate detailed choices 
of parameters depend on the application intended. The most obvious constraint is 
one of cycle length. To obtain a cycle length larger than 232 "" 4 X 109 , Table 9.2 
shows that a circular register of length N = 49 can be used. Cycle lengths tend to 
increase with N , but Table 9.2 shows some irregularities. Thus it is not clear, for 
example, how large N need be to obtain a cycle length larger than 264 "" 1019• But 
based on Eq. (9.1), a value N = 127 should certainly suffice. 

Random sequences can be obtained by sampling the sequence of values of a 
particular site in a register updated according to Eq. (3.1). The theoretical and 
statistical studies described above support the contention that such sequences show 
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LFSR 
N=29 
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Figure 11.1. Patterns obtained by various procedures in registers of size N. CA30 stands for the cellular 

automaton of Eq. (3.1), with periodic boundary conditions. CA60 is the linear cellular automaton of 

Eq. (2.4) , again with periodic boundary conditions. LFSR is a linear feedback shift register with size N 

and period 2N - I. For N = 17 the taps are at positions 14 and 17; for N = 29, they are at positions 27 and 

29. LCG is a linear congruential sequence generator, operating on the 32-bit integers whose binary digit 

sequences are given. The seed in all cases consists of a single nonzero bit in the center of the register. 

Statistical properties of the sequences produced are given in Tables 10.1 and 10.2. 

no regularities. For some critical applications, it may be best however, to sample site 
values only say on alternate time steps. While this method generates a sequence more 
slowly, it should foil prediction procedures along the lines discussed in Section 7. 

Sequences could potentially be obtained more quickly by extracting the values 
of several sites in the register at each time step. But Eq. (4.6) implies that some 
statistical correlations must exist between these values. The correlations are probably 
minimized if the sites sampled are equally spaced around the register. Nevertheless, 
in some applications where only a low degree of randomness is needed, it may even 
be satisfactory to use all site values in the register. (An example appears to be 
approximation of partial differential equations, where randomness can be used to 
emulate additional low-order digits.) 

The random sequences obtained from Eq. (3.1) have an equal fraction of 0 and 
1. Many applications, however, involve random binary choices with unequal proba-
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bilities. There is nevertheless a simple algorithm [40] to obtain digits with arbitrary 
probabilities. First write the probability p for outcome 1 as a binary number. Then 
generate a random binary sequence s with a length equal to this number. The output is 
obtained by an iterative procedure. Begin with a "current result" of 1. Then, starting 
from the least significant digit in p, successively find a new result by combining the 
old result with the corresponding digit of s, using a function AND or OR, depending 
on whether the digit in p is 0 or 1, respectively. The final result thus obtained is equal 
to 1 with probability exactly p. 

Configurations in two length N registers with slightly different seeds should 
become progressively less correlated under the action (3.1) as a result of the instability 
discussed in Section 5. The characteristic time for this process is governed by 
Eqs. (5 .1) and (5 .2), and should be ~0.8N. Thus, if several sequences are to be 
generated with seeds that differ only slightly (obtained for example from addresses 
of computer elements), then (3.1) should be applied at least O(N) times to the seeds 
before beginning to extract random sequences. 

One may compare the scheme for random sequence generation described here 
with the linear methods now in common use (e.g., [1]). Figure 11.1 shows patterns 
produced by these various schemes. The primary feature of linear schemes is that 
they can be analysed by algebraic methods. As a consequence, certain randomness 
properties can be proved for the sequences they generate, and cases that give long 
cycles can be identified. But the simplicity in structure which underlies this analysis 
also limits the degree of randomness that such schemes can produce. The nonlinear 
scheme described here is not readily amenable to complete analysis, and no significant 
limits on the degree of randomness it yields are known. But on the other hand, no 
conventional mathematical proofs for particular randomness properties can be gi ven, 
and it must be investigated by largely empirical methods. 

1 2. Alternative Schemes 

The cellular automaton of Eq. (3.1) is one of the simplest that seems good for random 
sequence generation. But other cellular automata may also be considered, and some 
potentially have certain advantages. 

Among k = 2, r = 1 cellular automata, Eq. (3.2) is the only other serious 
contender. No direct equivalence between this rule and that of Eq. (3.1) is known, 
but their properties are very similar. Equation (3.2) gives however [45] 

AL = (0.1724 ± 0.0004), (12.1) 

slightly smaller than the corresponding result (5.2) for Eq. (3.1). In addition, it gives 
a slightly smaller invariant entropy hI" It seems to have no advantages over (3.1). 

Cellular automata with k > 2 or R > 3 may also be studied. (Here. R is defined 
as the total number of sites in the neighbourhood for the rule.) Any class 3 (chaotic) 
cellular automaton rule can be considered a candidate random sequence generator. 
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Table 12.1. Bijective cellular automata rules with k possible 

values for each site and depending on strictly R previous 

site values . The rules given are "totally quiescent," so that 

¢(a , a , . .. , a) = a for all a. The rules are specified by 

giving the values of ¢ as digits in a binary number indexed 

by a number formed from the arguments of ¢. The binary 

number is then stated in base 32, with letters of the alphabet 

representing successive digits greater than 9. Leading zeroes 

are not truncated. Long specifications correspond to rules 

with larger values of R. 

Autoplectic rules which produce complex patterns even from simple initial conditions 
are probably best. Some of these rules have larger Lyapunov exponents and invariant 
entropies than Eq. (3 .1), but they are also more difficult to compute. In addition, many 
rules that seem to produce chaotic overall patterns nevertheless yield sequences that 
show definite regularities, resulting, for example, in non-maximal temporal entropies. 
Permutive chaotic rules avoid such problems, but are very similar in character to the 
rule of Eq. (3.1), and so potentially share any of its possible deficiencies. 

One possibility is to consider bijective cellular automaton rules, which are invert
ible, so that each configuration has both a unique successor in time, and a unique 
predecessor. The state transition diagrams for such cellular automata in finite regions 
with periodic boundary conditions can contain only cycles, and no transients. But 
only a very small fraction of all cellular automaton rules are bijective, and very few of 
those that are exhibit chaotic behaviour. Table 12.1 gives some non-trivial bijective 

rule 22 rule 30 rule 41 

rule 45 rule 73 rule 105 

Figure 12.1. Patterns generated by various bijective (reversible) k = 2, r = I cellular automata with rules 

of the form (12.2). 
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cellular automaton rules with k = 2 and R :5 5 (cf. [41]). None of those with R :5 4 
are chaotic. 

With larger effective k, it is nevertheless possible to construct chaotic bijective 
rules explicitly. One method [42] yields cellular automaton rules that are most easily 
stated in terms of dependence on second-to-last as well as immediately preceding 
site values: 

(I) = A.( (t-I) ... (t-I ) XOR (1-2) at 'f' at _ r , , a1+r at· (12.2) 

Such rules may be stated in the standard form (2.1) by considering sites with k2 

possible values. Some examples of patterns generated by rules of the form (12.2) are 
shown in Fig. 12.1. The rules are bijective, so that all states lie on cycles. However, 
there are often many distinct cycles, each quite short, making the system unsuitable 
for random sequence generation. 

13. Discussion 

This paper has used methods from several disciplines to study the behaviour of the 
nonlinear cellular automaton of Eq. (3.1). Despite the simplicity of its construction, 
all the approaches taken support the conjecture that its behaviour is so complicated 
as to seem random for practical purposes. It is remarkable that such a simple system 
can give rise to such complexity. But it is in keeping with the observation that 
mathematical systems with few axioms, or computers with few intrinsic instructions, 
can lead to essentially arbitrary complexity. And it seems likely that the mathematical 
mechanisms at work are also responsible for much of the randomness and chaos seen 
in nature. 

The simplicity of Eq. (3.1) makes it amenable to highly efficient practical imple
mentation. And the analyses carried out here suggest that the sequences it produces 
have a high degree of randomness. In fact, if any regularity could be found in these 
sequences, it would probably have substantial consequences for studies of many 
complex and seemingly random phenomena. 

Appendix A: 
Statistical Procedures 

This Appendix describes the statistical randomness testing procedures used in Sec
tion 10. The procedures are mostly taken from [1], although their numbering has 
been changed slightly. The basic method in each case is to compare an observed 
distribution with that calculated for a purely probabilistic sequence. 

The sequences studied consist of strings of binary bits. In many of the tests, 
these bits are grouped into blocks: either length 8 (non-overlapping) bytes, or length 
4 (non-overlapping) nybbles. The possible bit sequences in these blocks can be 
represented by integer "values" between 0 and 255 or 16, respectively. 
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A. Block Frequency Distribution. Each of the 2n possible n-blocks should occur 
with equal frequency. (n = 8 is used.) 

B. Gap Length Distribution. The lengths of runs of n-blocks whose values are all 

greater than i2 or less than i I should follow a binomial distribution. (n = 8, i I = 100, 
i2 = 200 are used; runs longer than 16 blocks are lumped together.) 

C. Distinct Blocks Distribution. The frequencies with which p out of q successive 
m-blocks are distinct should follow a definite distribution. (m = 4, q = 4 are used.) 

D. Block Accumulation Distribution. The number of successive n-blocks necessary 
for all possible m-blocks to appear in order as their first m elements should follow 
a definite distribution. (n = 8, m = 3 are used; numbers greater than 40 are lumped 
together.) 

E. Permutation Frequency Distribution. The values of q successive n-blocks 
should occur in all q! possible orderings with equal frequency. (n = 8, q = 5 
are used.) 

F. Monotone Sequence Length Distribution. The lengths of sequences in which 
successive n-blocks have monotonically increasing values should follow a definite 
distribution. (n = 8 is used; lengths greater than 6 are lumped together; elements 
immediately following each run are discarded to make successive runs statistically 
independent.) 

G. Maxima Distribution. The maximum values of n-blocks in sequences of q n

blocks should follow a power law distribution. (n = 8, q = 8 are used.) 
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Note added in proof Eq. (3.1) can also be used to generate efficiently a key 
sequence for stream encryption [46]. 
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Approaches to 
Complexity Engineering 

1986 

Principles for designing complex systems with specified forms of behaviour are 
discussed. Multiple scale cellular automata are suggested as dissipative dynamical 
systems suitable for tasks such as pattern recognition. Fundamental aspects of the 
engineering of such systems are characterized using computation theory, and some 
practical procedures are discussed. 

The capabilities of the brain and many other biological systems go far beyond those of 
any artificial systems so far constructed by conventional engineering means. There 
is however extensive evidence that at a functional level, the basic components of 
such complex natural systems are quite simple, and could for example be emulated 
with a variety of technologies. But how a large number of these components can 
act together to perform complex tasks is not yet known. There are probably some 
rather general principles which govern such overall behaviour, and allow it to be 
moulded to achieve particular goals . If these principles could be found and applied, 
they would make new forms of engineering possible. This paper discusses some 
approaches to such forms of engineering with complex systems. The emphasis is on 
general concepts and analogies. But some of the specific systems discussed should 
nevertheless be amenable to implementation and detailed analysis. 

In conventional engineering or computer programming, systems are built to 
achieve their goals by following strict plans, which specify the detailed behaviour of 
each of their component parts. Their overall behaviour must always be simple enough 
that complete prediction and often also analysis is possible. Thus for example motion 
in conventional mechanical engineering devices is usually constrained simply to be 
periodic. And in conventional computer programming, each step consists of a single 
operation on a small number of data elements. In both of these cases, much more com-

Originally published in Physica D. volume 22. pages 385-399 (October 1986). 
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pie x behaviour could be obtained from the basic components, whether mechanical or 
logical, but the principles necessary to make use of such behaviour are not yet known. 

Nature provides many examples of systems whose basic components are simple, 
but whose overall behaviour is extremely complex. Mathematical models such as 
cellular automata (e.g. [1]) seem to capture many essential features of such systems, 
and provide some understanding of the basic mechanisms by which complexity is 
produced for example in turbulent fluid flow. But now one must use this understand
ing to design systems whose complex behaviour can be controlled and directed to 
particular tasks. From complex systems science, one must now develop complex 
systems engineering. 

Complexity in natural systems typically arises from the collective effect of a very 
large number of components. It is often essentially impossible to predict the detailed 
behaviour of anyone particular component, or in fact the precise behaviour of the 
complete system. But the system as a whole may nevertheless show definite overall 
behaviour, and this behaviour usually has several important features. 

Perhaps most important, it is robust, and is typically unaffected by perturbations 
or failures of individual components. Thus for example a change in the detailed 
initial conditions for a system usually has little or no effect on the overall outcome of 
its evolution (although it may have a large effect on the detailed behaviour of some 
individual elements). The visual system in the brain, for example, can recognize 
objects even though there are distortions or imperfections in the input image. Its 
operation is also presumably unaffected by the failure of a few neurons. In sharp 
contrast, however, typical computer programs require explicit account to be taken of 
each possible form of input. In addition, failure of anyone element usually leads to 
catastrophic failure of the whole program. 

Dissipation, in one of many forms, is a key principle which lies behind much of 
the robustness seen in natural systems. Through dissipation, only a few features in 
the behaviour of a system survive with time, and others are damped away. Dissi
pation is often used to obtain reliable behaviour in mechanical engineering systems. 
Many different initial motions can for example be dissipated away through viscous 
damping which brings particular components to rest. Such behaviour is typically 
represented by a differential equation whose solution tends to a fixed point at large 
times, independent of its initial conditions. Any information on the particular initial 
conditions is thus destroyed by the irreversible evolution of the system. 

In more complicated systems, there may be several fixed points, reached from 
different sets of initial conditions. This is the case for an idealized ball rolling on 
a landscape, with dissipation in the form of friction. Starting at any initial point, 
the ball is "attracted" towards one of the local height minima in the landscape, and 
eventually comes to rest there. The set of initial positions from which the ball goes 
to a particular such fixed point can be considered as the "basin of attraction" for that 
fixed point. Each basin of attraction is bounded by a "watershed" which typically lies 
along a ridge in the landscape. Dissipation destroys information on details of initial 
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conditions, but preserves the know ledge of which basin of attraction they were in. The 
evolution of the system can be viewed as dividing its inputs into various "categories", 
corresponding to different basins of attraction. This operation is the essence of many 
forms of pattem recognition: despite small changes, one recognizes that a particular 
input is in a particular category, or matches a particular pattern. In the example of 
a ball rolling on a landscape, the categories correspond to different regions of initial 
positions. Small changes in input correspond to small changes in initial position. 

The state of the system just discussed is given by the continuous variables repre
senting the position of the ball. More familiar examples of pattern recognition arise 
in discrete or digital systems, such as those used for image processing. An image 
might be represented by a 256 x 256 array of cells, each black or white. Then a simple 
image processing (or "image restoration") operation would be to replace any isolated 
black cell by a white cell. In this way certain single cell errors in the images can be 
removed (or "damped out"), and classes of images differing just by such errors can be 
recognized as equivalent (e.g. [3]). The process can be considered to have attractors 
corresponding to the possible images without such errors. Clearly there are many 
of these attractors, each with a particular basin of attraction. But in contrast to the 
example with continuous variables above, there is no obvious measure of "distance" 
on the space of images, which could be used to determine which basin of attraction a 
particular image is in. Rather the category of an image is best determined by explicit 
application of the image processing operation. 

Length n sequences of bits can be considered as corners of an n-dimensional unit 
hypercube. The Hamming distance between two sequences can then be defined as the 
number of edges of the hypercube that must be traversed to get from one to the other, 
or, equivalently, the total number of bits that differ between them. It is possible using 
algebraic methods to devise transformations with basins of attraction corresponding 
to spheres which enclose all points at a Hamming distance of at most say two bits 
from a given point [4]. This allows error-correcting codes to be devised in which 
definite messages can be reconstructed even though they may contain say up to two 
erroneous bits. 

The transformations used in error-correcting codes are specially constructed to 
have basins of attraction with very simple forms. Most dissipative systems, however, 
yield much more complicated basins of attraction, which cannot for example be 
described by simple scalar quantities such as distances. The form of these basins 
of attraction determines what kinds of perturbations are damped out, and thus what 
classes of inputs can be recognized as equivalent. 

As a first example, consider various idealizations of the system discussed above 
consisting of a ball rolling with friction on a landscape, now assumed one dimensional. 
In the approximation of a point ball, this is equivalent to a particle moving with 
damping in a one-dimensional potential. The attractors for the system are again fixed 
points corresponding to minima of the potential. But the basins of attraction depend 
substantially on the exact dynamics assumed. In the case of very large friction, the 
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particle satisfies a differential equation in which velocity is proportional to force , and 
force is given by the gradient of the potential. With zero initial velocity, the basins of 
attraction in this case have a simple form, separated by boundaries at the positions of 
maxima in the potential. In a more realistic model, with finite friction and the inertia 
of the ball included, the system becomes similar to a Roulette wheel. And in this case 
it is known that the outcome is a sensitive function of the precise initial conditions. 
As a consequence, the basins of attraction corresponding for example to different 
holes around the wheel must have a complicated, interdigitated, form (cf. [5]). 

Complicated basin boundaries can also be obtained with simpler equations of 
motion. As one example, one can take time to be discrete, and assume that the 
potential has the form of a polynomial , so that the differential equation of motion is 
approximated by an iterated polynomial mapping. The sequence of positions found 
from this mapping may overshoot the minimum, and for some values of parameters 
may in fact never converge to it. The region of initial conditions which evolves to a 
particular attractor may therefore be complicated. In the case of the complex iterated 
mapping z --) z2 + c, the boundary of the basin of attraction (say for the attractor 
z = 00) is a Julia set, and has a very complicated fractal form (e.g. [6]). 

The essentials of the problem of finding basins of attraction already arise in the 
problem of determining what set of inputs to a function of discrete variables yields 
a particular output. This problem is known in general to be computationally very 
difficult. In fact, the satisfiability problem of determining which if any assignments of 
truth values to n variables in a Boolean expression make the whole expression true is 
NP-complete, and can presumably be solved in general essentially only by explicitly 
testing all 2n possible assignments (e.g. [7]). For some functions with a simple, 
perhaps algebraic, structure, an efficient inversion procedure to find appropriate 
inputs may exist. But in general no simple mathematical formula can describe the 
pattern of inputs: they will simply seem random (cf. [8]). 

Many realistic examples of this problem are found in cellular automata. Cellular 
automata consist of a lattice of sites with discrete values updated in discrete steps 
according to a fixed local rule. The image processing operation mentioned above 
can be considered as a single step in the evolution of a simple two-dimensional 
cellular automaton (cf. [9]) . Other cellular automata show much more complicated 
behaviour, and it seems in fact that with appropriate rules they capture the essential 
features of many complex systems in nature (e.g. [1]). The basic problems of 
complexity engineering thus presumably already arise in cellular automata. 

Most cellular automata are dissipative, or irreversible, so that after many steps, 
they evolve to attractors which contain only a subset of their states. In some cellular 
automata (usually identified as classes 1 and 2), these attractors are fixed points (or 
limit cycles) , and small changes in initial conditions are usually damped out [10] . 
Other cellular automata (classes 3 and 4), however, never settle down to a fixed 
state with time, but instead continue to show complicated, chaotic, behaviour. Such 
cellular automata are unstable, so that most initial perturbations grow with time to 
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affect the detailed configuration of an ever-increasing number of sites. The statistical 

properties of the behaviour produced are nevertheless robust, and are unaffected by 

such perturbations. 

It can be shown that the set of fixed points of a one-dimensional cellular automaton 

consists simply of all those configurations in which particular blocks of site values 

do not appear [11]. This set forms a (finite complement) regular language, and can 

be represented by the set of possible paths through a certain labelled directed graph 

[11]. Even when they are not fixed points, the set of states that can occur after 

say t time steps in the evolution of a one-dimensional cellular automaton in fact 

also forms a regular language (though not necessarily a finite complement one). In 

addition, the basin of attraction, or in general the set of all states which evolve after 

t steps to a given one, can be represented as a regular language. For class 1 and 

2 cellular automata, the size of the minimal graph for this language stays bounded, 

or at most increases like a polynomial with t. For class 3 and 4 cellular automata, 

however, the size of the graph often increases apparently exponentially with t, so 

that it becomes increasingly difficult to describe the basin of attraction. The general 

problem of determining which states evolve to a particular one after t steps is in fact a 

generalization of the satisfiability problem for logical functions mentioned above, and 

is thus NP complete. The basin of attraction in the worst case can thus presumably be 

found only by explicit testing of essentially all 0(21) possible initial configurations 

(cf. [12]). Its form will again often be so complicated as to seem random. For 

two-dimensional cellular automata, it is already an NP-complete problem just to find 

fixed points (say to determine which n x n blocks of sites with specified boundaries 

are invariant under the cellular automaton rule) [13]. 

It is typical of complex systems that to reproduce their behaviour requires exten

sive computation. This is a consequence of the fact that the evolution of the systems 

themselves typically corresponds to a sophisticated computation. In fact, the evo

lution of many complex systems is probably computationally irreducible: it can be 

found essentially only by direct simulation, and cannot be predicted by any short-cut 

procedure [12, 14]. Such computational irreducibility is a necessary consequence 

of the efficient use of computational resources in a system. Any computational 

reducibility is a sign of inefficiency, since it implies that some other system can 

determine the outcome more efficiently. 

Many systems in nature may well be computationally irreducible, so that no 

general predictions can be made about their behaviour. But if a system is to be used 

for engineering, it must be possible to determine in advance at least some aspects of 

its behaviour. Conventional engineering requires detailed speci fication of the precise 

behaviour of each component in a system. To make use of complex systems in 

engineering, one must relax this constraint, and instead require only some general or 

approximate specification of overall behaviour. 

One goal is to design systems which have particular attractors. For the example 

of an inertialess ball rolling with friction on a landscape, this is quite straightforward 
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(cf. [15]). In one dimension, the height of the landscape at position x could be given 
by the polynomial nj (x - xy, where the Xj are the desired minima, or attractors. 
This polynomial is explicitly constructed to yield certain attractors in the dynamics. 
However, it implies a particular structure for the basins of attraction. If the attractors 
are close to equally spaced, or are sufficiently far apart, then the boundaries of 
the basins of attraction for successive attractors will be roughly half way between 
them. Notice, however, that as the parameters of the landscape polynomial are 
changed, the structure of the attractors and basins of attraction obtained can change 
discontinuously, as described by catastrophe theory. 

For a more complex system, such as a cellular automaton, it is more difficult to 
obtain a particular set of attractors. One approach is to construct cellular automaton 
rules which leave particular sequences invariant [16]. If these sequences are say 
of length L, and are arbitrarily chosen, then it may be necessary to use a cellular 
automaton rule which involves a neighbourhood of up to L - 1 sites. The necessary 
rule is straightforward to construct, but takes up to 2L- 1 bits to specify. 

Many kinds of complex systems can be considered as bases for engineering. Con
ventional engineering suggests some principles to follow. The most important is the 
principle of modularity. The components of a system should be arranged in some 
form of hierarchy. Components higher on the hierarchy should provide overall con
trol for sets of components lower on the hierarchy, which can be treated as single units 
or modules. This principle is crucial to software engineering, where the modules are 
typically subroutines. It is also manifest in biology in the existence of organs and defi
nite body parts, apparently mirrored by subroutine-like constructs in the genetic code. 

An important aspect of modularity is the abstraction it makes possible. Once the 
construction of a particular module has been completed, the module can be treated 
as a single object, and only its overall behaviour need be considered, wherever the 
module appears. Modularity thus divides the problem of constructing or analysing a 
system into many levels, potentially making each level manageable. 

Modularity is used in essentially all of the systems to be discussed below. In 
most cases, there are just two levels: controlling (master) and controlled (slave) 
components. The components on these two levels usually change on different time 
scales. The controlling components change at most slowly, and are often fixed once 
a system say with a particular set of attractors has been obtained. The controlled 
components change rapidly, processing input data according to dynamical rules 
determined by the controlling components. Such separation of time scales is common 
in many natural and artificial systems. In biology, for example, phenotypes of 
organisms grow by fast processes, but are determined by genotypes which seem to 
change only slowly with time. In software engineering, computer memory is divided 
into a part for "programs", which are supposed to remain fixed or change only slowly, 
and another part for intermediate data, which changes rapidly. 

Multiple scale cellular automata provide simple but quite general examples of 
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such hierarchical systems. An ordinary cellular automaton consists of a lattice of 
sites, with each site having say k possible values, updated according to the same 
definite rule. A two-scale cellular automaton can be considered to consist of two 
lattices, with site values changing on different characteristic time scales. The values 
of the sites on the "slow" lattice control the rules used at the corresponding sites on 
the "fast" lattice. With q possible values for the slow lattice sites, there is an array of 
q possible rules for each site on the fast lattice. (Such a two-scale cellular automaton 
could always be emulated by specially chosen configurations in an ordinary cellular 
automaton with at most qk possible values at each site.) 

If the sites on the slow lattice are fixed, then a two-scale cellular automaton 
acts like a dynamic random field spin system (e.g. (17)), or a spin glass (e.g. (18)) 
(cf. (19)). Examples of patterns generated by cellular automata of this kind are shown 
in figure l. If instead the "slow" lattice sites change rapidly, and take on essentially 
random values, perhaps as a result of following a chaotic cellular automaton rule, 
then the evolution of the fast lattice is like that of a stochastic cellular automaton, or 
a directed percolation system (e.g. (21)). 

With dissipative dynamics, the evolution of the fast lattice in a two-scale cellular 
automaton yields attractors. The form of these attractors is determined by the control 
configuration on the slow lattice. By choosing different slow lattice configurations, 
it is thus possible to engineer particular attractor structures. 

In a typical case, a two-scale cellular automaton might be engineered to recognize 
inputs in different categories. Each category would be represented by a fixed point 
in the fast lattice dynamics. The system could then be arranged in several ways. 
Assume that the input is a one-dimensional symbol sequence (such as a text string). 
Then one possibility would be to consider a one-dimensional cellular automaton 
whose fixed points correspond to symbol sequences characteristic of each category. 
But if the required fixed points are arbitrarily chosen, only a few of them can be 
obtained with a single slow configuration. If the cellular automaton has N sites, then 
each fixed point of the fast lattice is specified by N log2 k bits. A configuration of the 
slow lattice involves only N log2 q bits. As a consequence, the number of arbitrarily
chosen fixed points that can be specified is just log q / log k , a result independent of 
N. (More fixed points may potentially be specified if there is redundancy between 
their symbol sequences.) 

It is usually not necessary, however, to give all N log2 k bits of a fixed point to 
specify the form of the attractor for a particular category. The number of bits actually 
needed presumably increases with the number of categories. It is common to find 
a small number of possible categories or responses to a wide variety of input data. 
The responses can then for example be represented by the values of a small number 
of sites on the fast lattice of a two-scale cellular automaton. The input data can be 
used to give initial values for a larger number of sites, possibly a different set. (In an 
analogy with the nervous system, some sites might receive input from afferent nerves 
while others, typically smaller in number, might generate output for efferent nerves.) 
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A second possibility is to consider a two-dimensional two-scale cellular automa

ton, in which the input is specified along a line, and the dynamics of the fast lattice 

transfers information only in a direction orthogonal to this line [22] (cf. [23]). This 

arrangement is functionally equivalent to a one-dimensional two-scale cellular au

tomaton in which the slow lattice configuration changes at each time step. In its 

two-dimensional form, the arrangement is very similar to a systolic array [24], or in 

fact to a multistage generalization of standard modular logic circuits. In an N x M 
system of this kind, a single slow lattice configuration can specify M log q / log k 

length N fixed points in the fast configuration (cf. [2]). 

In the approaches just discussed, input is given as an initial condition for the 

fast lattice. An alternative possibility is that the input could be given on the slow 

lattice, and could remain throughout the evolution of the fast lattice. The input might 

for example then specify boundary conditions for evolution on a two-dimensional 

fast lattice. Output could be obtained from the final configuration of the fast lattice. 

However, there will often be several different attractors for the fast lattice dynamics 

even given boundary conditions from a particular slow lattice configuration. Which 

attractor is reached will typically depend on the initial conditions for the fast lattice, 

which are not specified in this approach. With appropriate dynamics, however, it 

is nevertheless possible to obtain almost unique attractors: one approach is to add 

probabilistic elements or noise to the fast lattice dynamics so as to make it ergodic, 

with a unique invariant measure corresponding to a definite "phase" [25]. 

Cellular automata are arranged to be as simple as possible in their basic microscopic 

construction. They are discrete in space and time. Their sites are all identical, 

and are arranged on a regular lattice. The sites have a finite set of possible val

ues, which are updated synchronously according to identical deterministic rules that 

depend on a few local neighbours. But despite this microscopic simplicity, the 

overall macroscopic behaviour of cellular automata can be highly complex. On a 

large scale, cellular automata can for example show continuum features [13, 26], 

randomness [8], and effective long-range interactions [27]. Some cellular automata 

are even known to be universal computers [28] , and so can presumably simulate 

any possible form of behaviour. Arbitrary complexity can thus arise in cellular au

tomata. But for engineering purposes, it may be better to consider basic models that 

are more sophisticated than cellular automata, and in which additional complexity 

is included from the outset (cf. [2]). Multiple scale cellular automata incorporate 

modularity, and need not be homogeneous. Further generalizations can also be 

considered, though one suspects that in the end none of them will tum out to be 

crucial. 

~ Figure 1. Patterns generated by two-scale cellular automata with k = 2, q = 2 and r = I. The configuration 

of the slow lattice is fixed in each case, and is shown at the top. The rule used at a particular site on the 

fast lattice is chosen from the two rules given according to the value of the corresponding site on the slow 

lattice. (The rule numbers are as defined in ref. (20).) 
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First, cellular automaton dynamics is local: it involves no long-range connections 
which can transmit information over a large distance in one step. This allows (one or 
two-dimensional) cellular automata to be implemented directly in the simple planar 
geometries appropriate, for example, for very large-scale integrated circuits. Long 
range electronic signals are usually carried by wires which cross in the third dimen
sion to form a complicated network. (Optical communications may also be possible.) 
Such an arrangement is difficult to implement technologically. When dynamically
changing connections are required, therefore, more homogeneous switching networks 
are used, as in computerized telephone exchanges, or the Connection Machine com
puter [29]. Such networks are typically connected like cellular automata, though 
often in three (and sometimes more) dimensions. 

Some natural systems nevertheless seem to incorporate intrinsic long-range con
nections. Chemical reaction networks are one example: reaction pathways can give 
almost arbitrary connectivity in the abstract space of possible chemical species [30, 
31, 32]. Another example is the brain, where nerves can carry signals over long 
distances. In many parts of the brain, the pattern of connectivity chosen seems to 
involve many short-range connections, together with a few long-range ones, like mo
torways (freeways) or trunk lines [33] . It is always possible to simulate an arbitrary 
arrangement of long range connections through sequences of short range connections; 
but the existence of a few intrinsic long range connections may make large classes 
of such simulations much more efficient [33]. 

Many computational algorithms seem to involve arbitrary exchange of data. Thus 
for example, in the fast Fourier transform, elements are combined according to a 
shuffle-exchange graph (e.g. [29]). Such algorithms can always be implemented by 
a sequence of local operations. But they seem to be most easily conceived without 
reference to the dynamics of data transfer. Indeed, computers and programming 
languages have traditionally been constructed to enforce the idealization that any 
piece of data is available in a fixed time (notions such as registers and pipe lining go 
slightly beyond this). Conventional computational complexity theory also follows 
this idealization (e.g. [34]). But in developing systems that come closer to actual 
physical constraints, one must go beyond this idealization. Several classes of al
gorithms are emerging that can be implemented efficiently and naturally with local 
communications (e.g. [35]). A one-dimensional cellular automaton ("iterative array") 
can be used for integer multiplication [36, 37] and sorting [38]. Two dimensional 
cellular automata ("systolic arrays") can perform a variety of matrix manipulation 
operations [24]. 

Although the basic rules for cellular automata are local, they are usually applied 
in synchrony, as if controlled by a global clock. A generalization would allow 
asynchrony, so that different sites could be updated at different times (e.g. [39]). 
Only a few sites might, for example, be updated at each time step. This typically 
yields more gradual transitions from one cellular automaton configuration to another, 
and can prevent certain instabilities. Asynchronous updating makes it more difficult 
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for information to propagate through the cellular automaton, and thus tends to prevent 
initial perturbations from spreading. As a result, the evolution is more irreversible 
and dissipative. Fixed point and limit cycle (class 1 and 2) behaviour therefore 
becomes more common. 

For implementation and analysis, it is often convenient to maintain a regular 
updating schedule. One possibility is to alternate between updates of even and odd
numbered sites (e.g. [40]). "New" rather than "old" values for the nearest neighbours 
of a particular cell are then effectively used. This procedure is analogous to the 
implicit, rather than explicit, method for updating site values in finite difference 
approximations to partial differential equations (e.g. [41]), where it is known to 
lead to better convergence in certain cases. The scheme also yields, for example, 
systematic relaxation to thermodynamic equilibrium in a cellular automaton version 
of the microcanonical Ising model [42]: simultaneous updating of all sites would 
allow undamped oscillations in this case [40]. 

One can also consider systems in which sites are updated in a random order, 
perhaps one at a time. Such systems can often be analysed using "mean field theory", 
by assuming that the behaviour of each individual component is random, with a 
particular average (cf. [2]). Statistical predictions can then often be made from 
iterations of maps involving single real variables. As a result, monotonic approach 
to fixed points is more easily established. 

Random asynchronous updating nevertheless makes detailed analysis more diffi
cult. Standard computational procedures usually require definite ordering of opera
tions, which can be regained in this case only at some cost (cf. [43]). 

Rather than introducing randomness into the updating scheme, one can instead 
include it directly in the basic cellular automaton rule. The evolution of such stochas
tic cellular automata can be analogous to the steps in a Monte Carlo simulation of a 
spin system at nonzero temperature [44] . Randomness typically prevents the system 
from being trapped in metastable states, and can therefore accelerate the approach to 
equilibrium. 

In most practical implementations, however, supposedly random sequences must 
be obtained from simple algorithms (e.g. [37]). Chaotic cellular automata can produce 
sequences with a high degree of randomness [8], presumably making explicit insertion 
of external randomness unnecessary. 

Another important simplifying feature of cellular automata is the assumption of 
discrete states. This feature is convenient for implementation by digital electronic 
circuits. But many natural systems seem to involve continuously-variable parameters. 
There are usually components, such as molecules or vesicles of neurotransmitter, that 
behave as discrete on certain levels. But very large numbers of these components can 
act in bulk, so that for example only their total concentration is significant, and this 
can be considered as an essentially continuous variable. In some systems, such bulk 
quantities have simple behaviour, described say by partial differential equations. But 
the overall behaviour of many cellular automata and other systems can be sufficiently 
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complex that no such bulk or average description is adequate. Instead the evolution 
of each individual component must be followed explicitly (cf. [12]). 

For engineering purposes, it may nevertheless sometimes be convenient to con
sider systems which involve essentially continuous parameters. Such systems can for 
example support cumulative small incremental changes. In a cellular automaton, the 
states of n elements are typically represented by O(n) bits of information. But bulk 
quantities can be more efficiently encoded as digital numbers, with only 0 (log n) 

bits. There may be some situations in which data is best packaged in this way, and 
manipulated say with arithmetic operations. 

Systems whose evolution can be described in terms of arithmetic operations on 
numbers can potentially be analysed using a variety of standard mathematical tech
niques. This is particularly so when the evolution obeys a linear superposition 
principle, so that the complete behaviour can be built up from a simple superposition 
of elementary pieces. Such linear systems often admit extensive algebraic analy
sis (cf. [45]), so that their behaviour is usually too simple to show the complexity 
required. 

Having selected a basic system, the problem of engineering consists in designing or 
programming it to perform particular tasks. The conventional approach is systemat
ically to devise a detailed step-by-step plan. But such a direct constructive approach 
cannot make the most efficient use of a complex system. 

Logic circuit design provides an example (e.g. [46]). The task to be performed is 
the computation of a Boolean function with n inputs specified by a truth table. In a 
typical case, the basic system is a programmable logic array (PLA): a two-level circuit 
which implements disjunctive normal form (DNF) Boolean expressions, consisting 
of disjunctions (ORs) of conjunctions (ANDs) of input variables (possibly negated) 
[24, 47]. The direct approach would be to construct a circuit which explicitly tests 
for each of the 2n cases in the truth table. The resulting circuit would contain 0 (n2n) 

gates. Thus for example, the majority function, which yields 1 if two or more of its 
three inputs a, are one would be represented by the logical circuit corresponding to 
a la2a3 + a la2a3 +a la2a3 +~a2a3 ' where multiplication denotes AND, addition OR, 
and bar NOT. (This function can be viewed as the k = 2, r = 1 cellular automaton 
rule number 232 [20].) 

Much smaller circuits are, however, often sufficient. But direct constructive 
techniques are not usually appropriate for finding them. Instead one uses methods 
that manipulate the structure of circuits , without direct regard to the meaning of 
the Boolean functions they represent. Many methods start by extracting prime 
implicants [46, 47]. Logical functions of n variables can be considered as colourings 
of the Boolean n-cube. Prime implicants represent this colouring by decomposing it 
into pieces along hyperplanes with different dimensionalities. Each prime implicant 
corresponds to a single conjunction of input variables: a circuit for the original 
Boolean function can be formed from a disjunction of these conjunctions. This 
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circuit is typically much smaller than the one obtained by direct construction. (For 
the majority function mentioned above, it is a,a2 + a l a3 + a2a3.) And while it 
performs the same task, it is usually no longer possible to give an explicit step-by
step "explanation" of its operation. 

A variety of algebraic and heuristic techniques are used for further simplification 
of DNF Boolean expressions [47]. But it is in general very difficult to find the 
absolutely minimal expression for any particular function. In principle, one could 
just enumerate all possible progressively more complicated expressions or circuits, 
and find the first one which reproduces the required function. But the number of 
possible circuits grows exponentially with the number of gates, so such an exhaustive 
search rapidly becomes entirely infeasible. It can be shown in fact that the problem of 
finding the absolute minimal expression is NP hard, suggesting that there can never 
be a general procedure for it that takes only polynomial time [7]. Exhaustive search 
is thus effectively the only possible exact method of solution. 

Circuits with a still smaller number of gates can in principle be constructed 
by allowing more than two levels of logic. (Some such circuits for the majority 
function are discussed in ref. [48].) But the difficulty of finding the necessary 
circuits increases rapidly as more general forms are allowed, and as the absolute 
minimum circuit is approached. A similar phenomenon is observed with many 
complex systems: finding optimal designs becomes rapidly more difficult as the 
efficiency of the designs increases (cf. [49]). 

In most cases, however, it is not necessary to find the absolutely minimal circuit: 
any sufficiently simple circuit will suffice. As a result, one can consider methods that 
find only approximately minimal circuits. 

Most approximation techniques are basically iterative: they start from one circuit, 
then successively make changes which preserve the functionality of the circuit, but 
modify its structure. The purpose is to find minima in the circuit size or "cost" 
("fitness") function over the space of possible circuits. The effectiveness of different 
techniques depends on the form of the circuit size "landscape". 

If the landscape was like a smooth bowl, then the global minimum could be found 
by starting at any point, and systematically descending in the direction of the local 
gradient vector. But in most cases the landscape is presumably more complicated. 
It could for example be essentially flat, except for one narrow hole containing the 
minimum (like a golf course). In such a case, no simple iterative procedure could 
find the minimum. 

Another possibility, probably common in practice, is that the landscape has a 
form reminiscent of real topographical landscapes, with a complicated pattern of 
peaks and valleys of many different sizes. Such a landscape might well have a self 
similar or fractal form: features seen at different magnifications could be related by 
simple scalings. Straightforward gradient descent would always get stuck in local 
minima on such a landscape, and cannot be used to find a global minimum (just 
as water forms locali~ed lakes on a topographical landscape). Instead one should 
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use a procedure which deals first with large-scale features, then progressively treats 
smaller and smaller scale details. 

Simulated annealing is an example of such a technique [50]. It is based on the 
gradient descent method, but with stochastic noise added. The noise level is initially 
large, so that all but the largest scale features of the landscape are smeared out. A 
minimum is found at this level. Then the noise level ("temperature") is reduced, so 
that smaller scale features become relevant, and the minimum is progressively refined. 
The optimal temperature variation ("annealing schedule") is probably determined by 
the fractal dimension of the landscape. 

In actual implementations of the simulated annealing technique, the noise will not 
be truly random, but will instead be generated by some definite, and typically quite 
simple, procedure. As a consequence, the whole simulated annealing computation 
can be considered entirely deterministic. And since the landscape is probably quite 
random, it is possible that simple deterministic perturbations of paths may suffice 
(cf. [51]). 

In the simulated annealing approach, each individual "move" might consist of 
a transformation involving say two logic gates. An alternative procedure is first to 
find the minimal circuit made from "modules" containing many gates, and then to 
consider rearranging progressively smaller submodules. The hierarchical nature of 
this deterministic procedure can again mirror the hierarchical form of the landscape. 

The two approaches just discussed involve iterative improvement of a single 
solution. One can also consider approaches in which many candidate solutions 
are treated in parallel. Biological evolution apparently uses one such approach. It 
generates a tree of different genotypes, and tests the "fitness" of each branch in 
parallel. Unfit branches die off. But branches that fare well have many offspring, 
each with a genotype different by a small random perturbation ("genetic algorithm" 
[52]). These offspring are then in tum tested, and can themselves produce further 
offspring. As a result, a search is effectively conducted along many paths at once, 
with a higher density of paths in regions with greater fitness. (This is analogous to 
decision tree searching with, say, a,B-pruning [53] .) Random perturbations in the 
paths at each generation may prevent getting stuck in local minima, but on a fractal 
landscape of the type discussed above, this procedure seems less efficient than one 
based on consideration of progressively finer details. 

In the simplest iterative procedures, the possible changes made to candidate 
solutions are chosen from a fixed set. But one can also imagine modifying the set of 
possible changes dynamically [54] (cf. [55]). To do this, one must parametrize the 
possible changes, and in tum search the space of possibilities for optimal solutions. 

The issues discussed for logic circuit design also arise in engineering complex systems 
such as two-scale cellular automata. A typical problem in this case is to find a 
configuration for the slow lattice that yields particular fixed points for evolution 
on the fast lattice. With simple linear rules, for example, a constructive algebraic 
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solution to this problem can be given. But for arbitrary rules, the problem is in 
general NP hard. An exact solution can thus presumably be found only by exhaustive 
search. Approximation procedures must therefore again be used. 

The general problem is to find designs or arrangements of complex systems 
that behave in specified ways. The behaviour sought usually corresponds to a 
comparatively simple, usually polynomial time, computation. But to find exactly the 
necessary design may require a computation that effectively tests exponentially many 
possibilities. Since the correctness of each possibility can be tested in polynomial 
time, the problem of finding an appropriate design is in the computational complexity 
class NP (non-deterministic polynomial time). But in many cases, the problem is 
in fact NP complete (or at least NP hard). Special instances of the problem thus 
correspond to arbitrary problems in NP; any general solution could thus be applied 
to all problems in NP. 

There are many NP complete problems, all equivalent in the computational diffi
culty of their exact solution [7]. Examples are satisfiability (finding an assignment of 
truth values to variables which makes a Boolean expression true), Hamilton circuits 
(finding a path through a graph that visits each arc exactly once), and spin glass 
energy minima (finding the minimum energy configuration in a spin glass model). 
In no case is an algorithm known which takes polynomial time, and systematically 
yields the exact solution. 

Many approximate algorithms are nevertheless known. And while the difficulty of 
finding exact solutions to the different problems is equivalent, the ease of approxima
tion differs considerably. (A separate consideration is what fraction of the instances 
of a problem are difficult to solve with a particular algorithm. Some number theoreti
cal problems, for example, have the property that all their instances are of essentially 
equivalent difficulty [56].) Presumably the "landscapes" for different problems fall 
into several classes. There is already some evidence that the landscapes for spin glass 
energy and the "travelling salesman" problem have a hierarchical or ultrametric, and 
thus fractal, form [57]. This may explain why the simulated annealing method is 
comparatively effective in these cases. 

Even though their explicit forms cannot be found, it could be that particular, say 
statistical, features of solutions to NP problems could easily be predicted. Certainly 
any solution must be distinguished by the P operation used to test its validity. But 
at least for some class of NP hard problems, one suspects that solutions will appear 
random according to all standard statistical procedures. Despite the "selection" 
process used to find them, this would imply that their statistical properties would be 
typical of the ensemble of all possibilities (cf. [58]). 

There are many potential applications for complex systems engineering. The most 
immediate ones are in pattern recognition. The basic problem is to take a wide 
variety of inputs, say versions of spoken words, and to recognize to which category 
or written word they correspond (e.g. [59]). 
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In general, there could be an arbitrary mapping from input to output, so that each 
particular case would have to be specified explicitly. But in practice the number of 
possible inputs is far too large for this to be feasible, and redundancy in the inputs 
must be used. One must effectively make some form of model for the inputs, which 
can be used, for example, to delineate categories that yield the same output. The 
kinds of models that are most appropriate depend on the regularities that exist in the 
input data. In human language and various other everyday forms of input, there seem 
for example to be regularities such as power laws for frequencies (e.g. [60]). 

In a simple case, one might take inputs within one category to differ only by 
particular kinds of distortions or errors. Thus in studies of DNA sequences, changes 
associated with substitution, deletion, insertion, or transposition of elements are 
usually considered [61]. (These changes have small effects on the spatial structure 
of the molecule, which determines many of its functions.) A typical problem of 
pattern recognition is to determine the category of a particular input, regardless of 
such changes. 

Several approaches are conventionally used (e.g. [59]). 
One approach is template matching. Each category is defined by a fixed "tem

plate". Then inputs are successively compared with each template, and the quality 
of match is determined, typically by statistical means. The input is assigned to the 
category with the best match. 

A second approach is feature extraction. A fixed set of "features" is defined. The 
presence or absence of each feature in a particular input is then determined, often 
by template-matching techniques. The category of the input is found from the set of 
features it contains, typically according to a fixed table. 

In both these approaches, the pattern recognition procedure must be specially 
designed to deal with each particular set of categories considered. Templates or 
features that are sufficiently orthogonal must be constructed, and small changes in 
the behaviour required may necessitate large changes in the arrangement used. 

It would be more satisfactory to have generic systems which would take simple 
specifications of categories, and recognize inputs using "reasonable" boundaries 
between the categories. Dissipative dynamical systems with this capability can 
potentially be constructed. Different categories would be specified as fixed points (or 
other attractors). Then the dynamics of the system would determine the forms of the 
basins of attraction. Any input within a particular basin would be led to the appropriate 
fixed point. In general, however, different inputs would take varying numbers of steps 
to reach a fixed point. Conventional pattern recognition schemes typically take a fixed 
time, independent of input. But more flexible schemes presumably require variable 
times. 

It should be realized, however, that such schemes implicitly make definite models 
for the input data. It is by no means clear that the dynamics of such systems yield 
basin structures appropriate for particular data. The basins are typically complicated 
and difficult to specify. There will usually be no simple distance measure or metric, 
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Figure 2. Representation of the basins of attrac

tion for fixed points in a length 8 two-scale cel

lular automaton with q = 2 and rules 36 and 72. 

The configurations in each basin correspond to 

possible paths traversing each graph from left 

to right. Descending segments represent value 

one, ascending segments value zero. 

analogous to the quality of template matches, which determines the basin for a 
particular input from the fixed point to which it is "closest". Figure 2 shows a 
representation of the basins of attraction in a two-scale cellular automaton. No 
simple metric is evident. 

While the detailed behaviour of a system may be difficult to specify, it may be 
possible to find a high-level phenomenological description of some overall features , 
perhaps along the lines conventional in psychology, or in the symbolic approach to 
artificial intelligence (e.g. [62]) . One can imagine, for example, proximity relations 
for attractors analogous to semantic networks (e.g. [62]). This high level description 
might have the same kind of relation to the underlying dynamics as phenomenological 
descriptions such as vortex streets have to the basic equations of fluid flow. 

To perform a particular pattern recognition task, one must design a system with 
the appropriate attractor structure. If, for example, categories are to be represented 
by certain specified fixed points, the system must be constructed to have these fixed 
points. In a two-scale cellular automaton with k = 2 and q = 2, a single fixed point 
on the whole lattice can potentially be produced by an appropriate choice of the slow 
configuration. Arbitrary fixed points can be obtained in this way only with particular 
pairs of rules. (The rules that take all configurations to zero, and all configurations 
to one, provide a trivial example.) But even in this case, it is common for several 
different slow configurations to yield the same required fixed point, but to give very 
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different basin structures. Often spurious additional fixed points are also produced. 
It is not yet clear how best to obtain only the exact fixed points required. 

It would be best to devise a scheme for "learning by example" (cf. [63]). In the 
simplest case, the fixed points would be configurations corresponding to "typical" 
members of the required categories. In a more sophisticated case, many input and 
output pairs would be presented, and an iterative algorithm would be used to design 
an attractor structure to represent them. In a multiple scale cellular automaton, such 
an algorithm might typically make "small" incremental changes of a few sites in the 
slow configuration. Again such a procedure involves inferences about new inputs, 
and requires a definite model. 
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Minimal Cellular Automaton 
Approximations to Continuum 
Systems 

1986 

1. Introduction 

The basic components of cellular automata are discrete. But at least in some cases 
the aggregrate behaviour of large numbers of these components can be effectively 
continuous. As a result, it is possible to use cellular automata as models of continuum 
systems, such as fluids. 

The mathematical origins of continuum behaviour in cellular automata are much 
the same as they are for many physical systems. A gas, for example, consists of many 
discrete molecules. Nevertheless, on a large scale, it can be described as a fluid. 

Several conditions are necessary for the overall behaviour of a system with discrete 
elements to seem continuous. 

First, continuum behaviour must be associated with some kind of extensive quan
tity. Such a quantity must be additive, and must be conserved in the dynamical 
evolution of the system. In a gas, one example of such a quantity is particle number. 
Other examples are energy and momentum. 

A continuum system such as a fluid has the feature that its state can be described 
(locally) by just a few extensive quantities. To describe the precise microscopic state 
of a real gas one must, of course, specify the precise configuration of molecules. But it 
is believed that unless the gas is highly rarefied, this precise configuration is irrelevant 
to the macroscopic behaviour of the gas. Only the values of the few, averaged, 
extensive quantities are significant, so that a fluid approximation can be used. 

The basis for this belief is embodied in the Second Law of thermodynamics. 
It seems that almost regardless of the initial microscopic configuration, collisions 
rapidly tend to randomize the configuration of gas molecules, so that at least for 
macroscopic purposes, it suffices to specify merely the values of certain average 
quantities. 

Originally presented at Cellular Automata '86 (June 1986). 
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The true basis for this phenomenon has never been very clear. Some descriptions 
of it can be given in terms of the apparent increase of coarse-grained entropy. But no 
fundamental derivation has ever been given. The investigation of cellular automaton 
models seems likely to provide some new insights. 

If microscopic randomization is assumed, then overall continuum behaviour can 
be derived using statistical mechanics. Based on master or transport equations, one can 
find partial differential equations satisfied by the densities of the extensive quantities 
conserved by the cellular automaton evolution. 

Thus for example there has been much recent work on cellular automata which 
reproduce the Navier-Stokes equations for viscous fluid flow (see various other CA 
'86 posters). 

Statistical mechanics, and the continuum equations derived from it, provide a 
considerably reduced description of the system. There may in fact be many systems 
with different detailed microscopic dynamics, which nevertheless yield identical 
large-scale statistical or continuum behaviour. Thus, for example, the Navier-Stokes 
equations describe the aggregrate behaviour of fluids such as air and water with very 
different microscopic constitutions. 

Given generic macroscopic behaviour, it is important for both theoretical and 
practical purposes to try and find the simplest microscopic dynamics which can 
reproduce the macroscopic behaviour. One may, for example, seek the simplest 
cellular automaton rule which reproduces a particular form of continuum behaviour. 
("Simplest" can be defined for example as requiring minimum storage space and 
minimum number of logical operations to implement.) 

Specific rules which reproduce given macroscopic behaviour can conceivably be 
produced by explicit construction. Different elements of the rules can for example 
be arranged to mimic particular forms of particle collisions, and so on. The result 
of such a procedure will be some rule with the desired behaviour. But it will most 
likely not be the simplest such rule. Finding the simplest rule is in general a difficult 
optimization problem. 

It is in some respects akin to problems such as logic circuit design in which 
a device with a particular form of overall behaviour must be constructed with the 
minimum number of circuit elements. Such problems have recently increasingly 
been tackled by iterative or adaptive procedures. Some dynamics in the space of 
possible circuits is defined, and the optimization process consists in applying this 
dynamics with certain constraints imposed. 

Thus one can consider finding minimal cellular automaton rules by various itera
tive and adaptive procedures. 

Such methods are examples of a general approach to computer programming and 
other design problems which one expects will become increasingly common. At 
present, most systems are designed in a step-by-step fashion, with their complete 
progression of states foreseen in detail by the designer. But more efficient designs 
may potentially be found by a more "goal-oriented" approach. Having specified the 

330 



M inimal Cellular Automaton Approximations to Continuum Systems (19861 

constraints, a definite adaptive or iterative procedure traverses the space of possible 
designs, seeking the one which optimizes some measure of success. The result will 
typically be a more efficient "computer-generated" design, whose operation cannot 
necessarily be "understood" in an explicit step-by-step fashion. 

This poster considers as an example the problem of finding the simplest cellular 
automaton rule which reproduces the one-dimensional diffusion equation. 

The potential interest of these investigations is severalfold. 

I . They may provide practical methods for solving problems related to continuum 
systems (and these methods may be compared in detail with existing methods). 

2. They provide examples of systems which exhibit the basic phenomena of 
thermodynamics, and should allow further elucidation of the foundations of 
thermodynamics. 

3. They give examples of the procedure of "adaptive programming". 

2. The Approach 

The diffusion equation can be derived by considering the behaviour of the aggregate 
density of a large number of particles, each of which executes a random walk. The 
random walk may result from collisions with other particles of the same kind (as in 
self diffusion), or from interactions with some separate stochastic background. 

The overall statistical behaviour of random walks is well known to be highly 
insensitive to the precise details of the walk. Thus for example walks whose steps 
are constrained to lie on various discrete lattices give in the large scale limit the same 
statistical behaviour as walks whose steps have no constraints. 

By constructing a cellular automaton rule which involves various discrete par
ticles, whose total number is conserved, one should thus be able to reproduce the 
diffusion equation. 

A crucial issue, which relates to the foundations of thermodynamics, is the degree 
of randomness which is produced by a cellular automaton, or which, for that matter, 
is really necessary to reproduce macroscopic diffusion phenomena. 

Nevertheless, following the approach discussed in the introduction, one is con
cerned not merely with finding some cellular automaton rule which reproduces dif
fusion, but rather with finding the simplest or optimal one. One must delineate a 
class of rules capable of reproducing diffusion, and then search within these to find 
the optimal one. 

The conservation laws necessary for macroscopic diffusion turn out to be quite 
straightforward to ensure in a class of cellular automata. The capability for random
ness generation cannot, it seems, be guaranteed directly by the structure of the rule, 
but must rather be deduced by studying the explicit behaviour of the system. 

Diffusion requires that a scalar quantity (which in some cases can be identified as 
a particle number) is additively conserved. 
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In the simplest cellular automata, one considers rules which specify the new value 
of a single site in terms of the values of a neighbourhood of sites around it on the 
previous time step. In most such rules, no additive quantities can be conserved. 
In addition, such rules are usually highly irreversible, so that they evolve towards 
attractors which contain only a subset of the possible states. The accessibility of 
only a subset of states makes an adequate degree of randomness less likely. It does 
however necessarily preclude diffusion equation behaviour; the various statistical 
mechanical tools used in derivations can still be applied, but now not to all possible 
states, but only to those on the attractor. 

There are several methods for constructing classes of cellular automata whose 
evolution satisfies certain conservation laws. (See Y. Pomeau "Invariant in cellular 
automata", J. Phys. A17 (1984) L415 and N. Margolus "Physics-like models of com
putation", Physica lOD (1984) 81, both reprinted in Theory and Applications o/Cel
lular Automata (edited by S. Wolfram).) The method used here involves considering 
cellular automata which map one block of sites into another block of the same size. 

In the simplest case, one considers a one-dimensional cellular automaton which 
maps pairs of binary site values to other pairs of binary values. The dynamics is 
chosen to be such that the boundaries of the pairs are taken to be at even and at odd 
sites on alternate time steps. 

Figure 2.1 shows patterns generated by all the 44 = 256 possible cellular automata 
of this kind. A variety of phenomena are observed. 

Most of the cellular automata of this class show neither additive conservation 
laws nor reversibility. But unlike cellular automata whose rules are constructed in 
the usual way, the conditions for conservation and reversibility in these blocked 
cellular automata are comparatively simple to state. 

The condition for reversibility is simply that the mapping from one set of blocks 
to another be a permutation (so that this mapping is invertible). (There are 24 such 
rules in the set shown in figure 2.1.) 

The condition for additive conservation laws is that for some values Vo and VI the 
quantity voNo + VI NI be conserved, where N; is the number of sites with value i in 
each possible block. 

Table 2.1 gives the possible rules which satisfy this condition. Two are reversible; 
two are not. Inspection of figure 2.1 shows that in none of the cases is sufficient 
randomness generated. 

As a result, one must conclude that two possible values at each site (k = 2) and 
block size 2 (b = 2) are not sufficient to yield diffusion equation behaviour. 

Figure 2.1. Patterns generated by evolution from disordered initial states according to all possible one- ~ 

dimensional k = 2, b = 2 blocked cellular automaton rules. These rules have 2 possible values at each 

site. They are updated by mapping each block of two adjacent sites on to another block of two sites. On 

one "half step", blocks which begin on even-numbered sites are updated; on the other "half step", blocks 

beginning at odd-numbered sites are updated. The rules are numbered as follows. The output blocks for 

each of the possible input blocks II, 10, 0 I and 00 are written down in order. Then each output block is 

converted to a base 4 digit. The resulting base 4 number is then quoted in base 10. 
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rill 1111111111---
rule 0 (0000) rule 1 (0001) ru I e 3 (0003) 

rule <4 (0010) rule 6 (0012) 

-rule 8 (0020) rule 9 (0021) rule 10 (0022) rule 11 (0023) 

rule 12 (0030) rule 13 (0031) ru I e 14 (0032) rule 15 (0033) 

rule 16 (0100) rule 17 (0101) rule 19 (0103) 

rule 20 (0110) rule 21 (0111) ru l e 22 (0112) rule 23 (0113) 
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rule 24 (0120) rule 25 (0121) rule 26 (0122) rule 27 (0123) 

i~ 
~ 

~ 

~~ 
~= = 
~ ~"<:>/ 

rule 28 (0130) rule 29 (0131) rule 30 (0132) rule 31 (0133) 

rule 32 (0200) rule 33 (0201) 

rule 36 (0210) rule 39 (0213) 

rule 40 (0220) ru l e 41 (0221) ru I e 42 (0222) rule 43 (0223) 

rule 44 (0230) rule 45 (0231) rule 46 (0232) rule 47 (0233) 

Figure 2.1 (continued). 
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.. .. ~. 

~-rule 48 (0300) rule 49 (0301) 

ru t e 52 (0310) ru le 53 (0311) 

rule 56 (0320) ru le 57 (0321) 

rule 60 (0330) rule 61 (0331) 

III 
rule 64 (1000) rule 65 (1001) 

rule 68 (1010) rule 69 (1011) 

Figure 2.1 (continued). 

&\1 -rule 50 (0302) rule 51 (0303) 

rule 54 (0312 ) rule 55 (0313) 

rule 58 (0322) rule 59 (0323) 

rule 62 (0332) rule 63 (0333) 

rule 66 (1002) 
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rulo 72 (1020) rulo 73 (1021) 

rulo 76 (1030) 

rulo 80 (1100) rulo 81 (1101) 

rulo 84 (1110) rulo 85 (1111) 

rulo 88 (1120) rulo 89 (1121) 

rulo 92 (1130) rulo 93 (1131) 

Figure 2.1 (continued). 
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rulo 74 (1022) 

rulo 78 (1032) 

rulo 82 ( 1102 ) 

rulo 86 (1112 ) 

rulo 90 (1122 ) 

rulo 94 (1132) 

rulo 75 (1023) 

-• rule 79 (1033) 

r u I 0 83 (1103) 

rule 87 (1113) 

rule 91 (1123) 

rulo 95 (1133) 



I .. ' ... ".," ........ , .. . , 

rule 96 (1200) 

rule 112 (1300) 

, continued). Figure 21 ( 

II 

m '" III 
II 

II, 
rule 101 (1211) 

., .. 

• :~ w 
rule 109 (1231) 

III 

•• 
• 

W' IU" I~ ~ 'Il~ 

• 
I~ 

~ ~ 
rule 103 (1213) 

r U I e 111 (1233) 
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rule 120 (1320) rule 121 (1321) rule 122 (1322) rule 123 (1323) 

.u 
rule 124 (1330) rule 125 (1331) rule 126 (1332) rule 127 (1333) 

rule 128 (2000) rule 130 (2002) 

In- ' ..... ,.. . r ' ,., rrrlT 

ru l e 132 (2010) rule 133 (2011) rule 135 (2013) 

rule 136 (2020) rule 137 (2021) rule 138 (2022) rule 139 (2023) 

• rule 140 (2030) rule 141 (2031) ru Ie 142 (2032) rule 143 (2033) 

Figure 2.1 (continued), 
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rule 144 (2100) rule 145 (2101) rule 147 (2103) 

rule 148 (2110) rule 149 (2111) rule 150 (2112) rule 151 (2113) 

rule 152 (2120) rule 153 (2121) rule 154 (2122) rule 155 (2123) 

.... 
rule 156 (2130) rule 157 (2131) ru le 158 (2132) rule 159 (2133) 

rule 160 (2200) 

';lJ 
[ 

In -
rule 164 (2210) rule 165 (2211) rule 166 (2212) rule 167 (2213) 

Figure 2.1 (continued). 
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rule 168 (2220 ) 

rule 172 (2230) 

rule 176 (2300) 

rule 180 (2310) 

,. 
rule 184 (2320) 

rule 188 (2330) 

rule 169 (2221) 

rule 173 (2231) 

~. 

~ 
~ 
~ 
~ ~ 

rule 177 (2301) 

rule 181 (2311) 

ru I e 185 (2321) 

rule 189 (2331) 

Figure 2.1 (continued). 
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ru I e 170 (2222) 
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rule 182 (2312) 
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rule 171 (2223) 

rule 175 (2233) 
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rule 179 (2303) 

rule 183 (2313) 

rul e 187 (2323) 

rule 191 (2333) 
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rul. 192 (3000) 

• r I pi" ."..,.. '1IIr , ..... " •• 

rul. 196 (3010) rule 199 (3013) 

rul. 200 (3020) ru I. 201 (3021) rul. 202 (3022) rule 203 (3023) 

rul. 204 (3030) ru I. 205 (3031) rul. 206 (3032) rule 207 (3033) 

rul. 208 (3100) rul. 209 (3101) rul. 210 (3102) rule 211 (3103) 

rul. 212 (3110) rul. 213 (3111) rul. 214 (3112) rule 215 (3113) 

Figure 2.1 (continued). 
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rule 216 (3120) rule 217 (3121) rule 218 (3122) rule 219 (3123) 

rule 220 (3130) ru l e 221 (3131) rule 222 (3132) rule 223 (3133) 
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ru I e 224 (3200) rule 225 (3201) ru I e 226 (3202) ru I e 227 (3203) 

rule 228 (3210) r u I e 229 (3211) ru I e 230 (3212) ru I e 231 (3213) 

rule 232 (3220) ru I e 233 (3221) rule 234 (3222) ru I e 235 (3223) 

rule 236 (3230) rule 237 (3231) ru I e 238 (3232) rule 239 (3233) 

Figure 2.1 (continued). 
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ru I e 240 (3300) ru I e 241 (3301) rule 242 (3302) rule 243 (3303) 

rule 244 (3310) ru l e 245 (3311) rule 246 (3312) rule 247 (3313) 

rule 248 (3320) rule 249 (3321) rule 250 (3322) rule 251 (3323) 

ru le 252 (3330 ) rule 253 (3331) rule 254 (3332) rule 255 (3333) 

Figure 2.1 (continued). 

no + n I constant 216 invertible 

228 identity 
232 
212 

no + n I mod 2 constant 27 invertible 

39 invertible 
23 
43 

Table 2.1. k = 2, b = 2 block cellular automaton rules as illustrated in fi gure 2. 1, with certain conservation 

laws relating to the total numbers n ; of si tes with values i. 
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r 
rul. 197631684 (452781630)rul. 197633124 (452783610) rule '99757124 (456781230) 
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~Q.\~'~ ~ ~ Y~o6~'t·~ .. : . .. . ..:. ... -: 
rul. 207079524 (472581630)rul. 207080964 (472583610) rul. 209204964 (476581230) rul. 209206404 (476583210) 

rule 371919204 (8567"'3210) 

rule 379240164 (872541630)rul. 379241604 (872543610) rul. 381365604 (876541230) rul. 381367044 (876543210) 

Figure 2.2. Patterns generated by all k = 3, b = 2 rules which are reversible and conserve the number 

of binary bits in each configuration. These rules are candidates for simulation of the one-dimensional 

diffusion equation. 

It turns out that k = 2, b = 3 is also not sufficient. 
As a result, one must consider k = 3, b = 2 rules. (A rough estimate of the "com

plexity" of rules can be obtained from the number of bits necessary, without compres

sion, to specify their complete rule tables. This number is given by log2 ((kb)<k
b»). 

It is slightly larger for k = 3, b = 2 than for k = 2, b = 3.) 
With k = 3, there is slightly more freedom in the definition of additive quantities. 

One might, for example, consider adding the numerical values of sites. It turns out, 
again, that the set of rules with this quantity conserved is too highly constrained to 
allow a sufficient degree of randomness generation. 

An alternative class of rules are those which conserve not the sum of the numerical 
values of sites, but the total number of binary bits contained in these values. There are 
16 possible rules which satisfy this condition, and are reversible. Patterns generated 
by them are illustrated in figure 2.2. 

Some of these rules obviously do not show sufficient randomness to yield diffusion 
behaviour. But others require more sophisticated analysis. 
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3. Randomization and Thermodynamics 

It is observed that many systems, starting from almost any state, evolve rapidly to 
states which seem for practical purposes random. The sense in which the states are 
random is that their properties (say, statistical ones) are typical of the ensemble of all 
possible states. Several explanations and conditions for such randomness have been 
given. No complete understanding yet exists. 

A common approach is based on ergodicity. Only reversible systems can be 

ergodic. The condition for ergodicity is that starting from any initial state, the 
evolution of the system eventually visits all possible states. The state transition 
diagram for the system thus consists of a single large cycle. If a system is ergodic, 
then at least after a sufficiently long time, it must evolve to an arbitrary, and thus 
"typical" state. In practice, however, the maximum period of time necessary to 
reach arbitrary states is usually astronomically large (it is typically exponential in the 
system size, and comparable to the recurrence time). Evolution for practical times 
reaches only some small subset of possible states. 

What must now be explained is why these states seem random. 
This is a subtle issue. There are always special choices of initial conditions 

for which the states reached are far from random. For example, one could choose 
initial conditions which are obtained from some orderly state by time reversal of the 
dynamics for some number of steps. These initial conditions would yield evolution 
which would not show degradation to randomness: rather it would suddenly yield 
orderly behaviour, seemingly violating the Second Law of thermodynamics. 

One approach often taken is to consider the dependence of the evolution on small 
changes in initial conditions. It is supposed that the initial conditions cannot be 
determined precisely, so that in practice, measurements or experimental preparations 
can be guaranteed to yield only one of an ensemble of states, which differ slightly. 
The effects of small changes in initial conditions can be seen quite clearly in cellular 
automata. 

One considers the evolution of a cellular automaton from two states, which differ 
say by a change in the value of a single site. The pattern of differences between states 
produced as a function of time shows the effect of this small initial perturbation. 
Figure 3.1 shows such difference patterns for the rules of figure 2.2. In some cases, 
initial changes remain localized; the evolution in such cases may be considered 
"stable". (Notice that in a reversible cellular automaton, the effects of changes in 
initial conditions can never die out completely, because information on the initial 
state must be preserved.) In other cases ("class 3" cellular automata), small initial 
changes are progressively amplified by the evolution. Change of the value of one 
site can ultimately affect the values of sites an arbitrary distance away. The patterns 
produced by such cellular automata can thus be considered unstable with respect to 
arbitrarily small perturbations. 
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rul. 197631684 (452781638)rule Ul7633t24 ( 452783618 ) rule 199757124 (456781238) rule 199758564 (4567832 18) 

rule 2818751524 (472581638)rule 287888964 ( 472583610) rule 289284964 (476581238) rule 289286484 (476583218) 

rule 3&9792324 (852741638)rule 369793764 (852743618) rule 371917764 (856741 238) rule 371919284 (856743218) 

I 
rul. 379248164 (872541638)rule 379241684 (81254~6,e) rule 381365684 (876541230) rule 381367844 (8765432 10) 

Figure 3.1. Difference patterns for the rules of figure 2.2. The patterns show the evolution of the difference 

between two random configurations which initially differ just by a change in a single bit. Some rules are 

seen to be stable under such perturbations; for other rules, the effect of these changes grows with time. 

The rate of growth gives the Lyapunov exponent of dynamical systems theory. Such instability leads to a 

sensitive dependence on the initial conditions for the evolution. 

This phenomenon is central to much of what has been studied in the theory of 
chaotic dynamical systems. It implies that with incomplete knowledge of initial 
conditions, a time must ultimately come at which the results of measurements can 
no longer be predicted, because they depend on unknown features of the initial 
conditions. 

It is not however guaranteed that the system will at this point be random. Its 
randomness depends on the randomness of the unknown features of the initial con
ditions. It is by no means clear in fact that in actual experiments, these features are 
indeed adequately random. Certainly one can consider cases in which for example 
only a few cellular automaton sites are nonzero, and all sites beyond some point are 
zero. In this case, randomness in final configurations cannot be directly attributed to 
random unknown data in the initial conditions. 

A further, related, problem is the exact definition of "apparently random" states. 
A sequence or configuration is commonly considered "random" if no pattern can be 
discerned in it, so that no procedure can be used to predict additional elements of 
it, or to compress the information associated with it. The meaning of randomness 
depends on the kinds of pattern recognition which are considered. 

If one starts with an orderly initial state, all states generated with time can be 
specified by giving this state, and the number of steps required to generate them. Such 
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a specification will usually represent a substantial compression in the information as

sociated with the state. Yet despite the possibility for such compression, many aspects 

of the state may still seem random. Although compression is possible, it may not be 

revealed by the kinds of statistical procedures commonly used to analyse the states. 

Figure 3.2 shows examples of some simple k = 2, r = 1 cellular automata 

which illustrate this phenomenon. In each case, a simple initial condition is chosen, 

consisting of a single nonzero site. With these initial conditions, some cellular 

automata yield simple patterns, and sequences of sites in these patterns are for 

example periodic. Other cellular automata yield slightly more complicated, self 

similar, patterns. But here again sequences of site values are almost periodic, and are 

readily predictable. Some cellular automata, however, can yield apparently random 

sequences even starting from these simple initial conditions. The two simplest 

examples (found by explicit search) are rules 30 and 45. In both cases, the sequences 

generated seem random according to all standard statistical tests (see S. Wolfram, 

"Random sequence generation by cellular automata", Adv. Applied Math. 7 (1986) 

123 and in Theory and Applications o/Cellular Automata). Figure 3.3 shows a more 

detailed example of evolution according to rule 30. 

The phenomenon observed in this case occurs in other mathematical systems. 

Even though a simple specification for 7r, for example, can be given, its digit sequence, 

once generated, seems random for all practical purposes. The fractional parts of 

successive powers of 3/2, which can be generated by a k = 6, r = I cellular 

automaton, provide another example. In all cases, what is observed is that a sequence 

which can be generated easily can be hard to invert or compress. This phenomenon 

is the basis for the possibility of pseudorandom number generation or cryptography. 

Given a short seed or key as an initial specification, there are algorithms (such as 

that of figure 3.3) which yield long sequences from which the simplicity of the initial 

conditions is not apparent. The dynamics of the evolution has effectively "encrypted" 

the initial data to the point where it cannot be recovered by any simple computation. 

Computation theory provides a characterization of this phenomenon. The process 

of generating a sequence is in the polynomial time class P. But the process of recog

nizing the origins of the sequence is in the class NP of non-deterministic polynomial 

time computations. It seems that P *- NP so that there exist at least some cases in 

which the problem of recognition cannot be solved by a polynomial time computation. 

It is clear that an exhaustive search through all possible initial conditions would 

reveal whether any "simple" one yielded a particular sequence. But the number of 

such possible initial conditions is exponentially large, so that such a search could 

take an exponentially long time. As a result, it would rapidly become infeasible. 
The standard statistical tests of randomness applied to physical systems are com

putationally quite simple. As a result, they are unable to detect regularities that 

require say exponential time computations to recognize. Thus if a system "encrypts" 

its initial data to the same degree as that of say figure 3.3 does, it will yield behaviour 

that appears random for practical purposes. 
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rule 18 (aeataBle ) r u l e 38 (&8811119 ) 

ru l e 45 ( e0 101'81) ru l e 73 ( 01eeleOl ) 

ru l e 105 ( 8 11 01e81 ) rule 110 (81181118 ) 

ru l e 158 (1e0181 10 ) ru l. 169 ( 181e1ee1 ) 

Figure 3.2. Examples of patterns generated by various simple k = 2, r = I cellular automata, evolving 

from a single nonzero initial site. Some rules are seen to give comparatively simple patterns, while other 

ru les give patterns which seem in many respects random. The generation of randomness in this way may 

well be the source of thermodynamic behaviour in many systems. It is necessary for the reproduction of 

continuum phenomena such as diffus ion. 
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Figure 3.3. The pattern generated by k = 2, r = I rule 30 starting from a single site initial seed. This rule 

has the form 

a; = (aj_1 + aj + aj+1 + ajaj+ l) mod 2. 

Despite the simplicity of this rule, the patterns it generates are so complicated as to seem in many respects 

random. Thus for example the centre column in this picture seems random for at least a million sites 

according to standard statistical randomness tests. This rule is probably the simplest cellular automaton 

which generates random behaviour in this way. It was found by an explicit search over all possible rules. 

I believe that most of the randomization associated with thermodynamic behaviour 
is ofthe mathematical type illustrated in figure 3.3. Even though the initial conditions 
are simple, the system encrypts them to the point where no feasible measurements or 
computations can recover them. 

4. The Winning Rule 

The phenomenon of randomization from simple initial conditions occurs in some but 
not all of the candidate diffusion equation cellular automata of figure 2.2. Figure 4.1 
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rul. 187631684 (452781638)rul. 197633124 (45278361.) rul. 188757124 (456781238) rul. 188758584 (45678321.) 

rul. 207079524 (472581630)rul. 207080.64 (472583610) rul. 209204964 (476581238) rul. 289286484 (476583211) 

~ I ~ I 
rul. 369792324 (852741638)rul. 369793764 (852743618) rule 371917764 (856741238) rul. 371918284 (85674321.) 

~ I ~ I 
rul. 379240164 (872541630)rul. 379241604 (872543610) rul. 381365604 (876541238) rul. 3813670« (876543210) 

Figure 4.1. Patterns generated by the k = 3, b = 2 blocked cellular automata of figure 2.2, starting from 

a simple initial condition. The cellular automata are shown on a size 80 lattice with periodic boundary 

conditions. The initial condition consists of a block of 20 sites with value I in the centre of the system. 

Most of the rules are seen to give rise to simple periodic patterns. 

shows evolution from a simple initial condition for all of these rules. Only one 
rule, and its (2,1) conjugate, show randomization in this case. Figure 4.2 shows the 
longer time evolution of this rule, on a size 80 with periodic boundary conditions. 
Regularities are still seen, but many features seem random. 

The degree of randomness generated by this rule can be tested by applying certain 
statistical procedures. A simple one is the computation of coarse-grained entropy. 
Figure 4.3 shows the coarse-grained entropy for the system. It is seen to tend rapidly 
to a maximum value, as expected for an apparently random system. 

Table 4.1 gives the block transformations for this rule. Interpretations in terms 
of particles and so on can be given. But it is noteworthy that making the rule 
"increasingly mixing" by including transitions for various other blocks does not 
yield an increase in the randomness of the overall behaviour. In fact, as figures 2.2 
and 4.1 show, such "additional mixing" usually leads to simpler overall behaviour. 
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.... 1.1, 

Figure 4.2. Longer sequences generated by one rule from figure 4.1 which seems to generate randomness 

from simple initial conditions. The patterns on this page were made on a size 80 lattice, with a size 20 

initial block. The patterns on the next page were made with a size 21 initial block. The degradation of 

orderly initial conditions into apparent randomness is clearly visible in these pictures. 
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Figure 4.2 (continued). 
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Figure 4.3. Timedevelopmentofthecoarse

grained entropy associated with the process 

of figure 4.2. The density of bits was com

puted in 10 bins across the system. Then the 

densities Pi found were combined to give 

the entropy 

s = - L Pi log Pi. 

This coarse-grained entropy is seen to tend 

to a maximum, as expected from the Sec

ond Law of thermodynamics. 

The large scale average density of bits in evolution according to the rule of table 
4.1 should satisfy a diffusion equation. Figure 4.4 shows the microscopic dynamics 
of this rule for the cases of low and high bit density. At low bit densities, the rule 
exhibits particle dynamic phenomena, as might be seen in a rarefied gas. At high 
bit densities, however, it acts like a dense gas, and defects or particles executing 
apparently random walks can be seen. 

22 -) 11 
21 -) 21 
20 -) 02 
12-)J2 
11-) 22 
10-)10 
02 -) 20 
0 1 -) 01 
00 -) 00 

Table 4.1. Block transitions which define the k = 3, b = 2 rule which reproduces the 

diffusion equation. Blocks which change under the rule are shown in bold. The rule is 

applied on alternate time steps to even and odd blocks in the one-dimensional cellular 

automaton configuration. The rule is arranged to be reversible, so that each block has 

a unique predecessor as well as a unique successor under the time evolution. It is also 

bit conserving. so that the total number of binary bits in each block is invariant under 

these transitions. 

The microscopic configurations of this system are highly sensitive to small 
changes in initial conditions. Figure 4.5 shows the pattern of differences associ
ated with the change in single initial site value. The pattern of differences is seen to 
expand at a fixed "speed of sound". 

The overall average behaviour of this system however obeys the diffusion equa
tion, and so is insensitive to small changes. This phenomenon is just the same as 
occurs in real gases. 

The cellular automaton of table 4.1 can be considered as a system which contains 
particles executing random walks. What is perhaps remarkable about it is that the 
randomness necessary to produce appropriate average behaviour in these walks is 
generated intrinsically by the system, apparently at a low computational cost. 
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Figure 4.4. Microscopic diffusion at two densities in the minimal cellular automaton approximation to the 

one-dimensional diffusion equation. 
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Figure 4.4 (continued). 
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Figure 4.5. Difference pattern for the rule of figure 4.2. This shows the bits which change as a result of a 

change in a single initial bit in a random initial configuration. 

One can consider this system as a random sequence generator. The effectiveness 
of the system as a model for diffusion is related to its effectiveness as a random 
sequence generator. 

One issue is what the global behaviour of the system on a finite lattice is. Since 
the system is reversible, all states lie on cycles. Table 4.2 gives the multiplicities and 
sizes of these cycles for various lattice sizes. 

The lattice sizes so far investigated are not large enough to determine whether the 
maximum cycle time for the system does indeed increase exponentially with its size. 

The exact sets of cycles that occur for particular lattice sizes depend on the number
theoretical properties of the lattice size. It is clear that the system is not ergodic, since 
there are often many distinct cycles. Some of these cycles may however be largely 
spurious. For example, when the lattice size is not prime, there are classes of initial 
states whose site values show a periodicity which is some divisor of the lattice size. 
Such classes of states must lie on distinct cycles. 

For complete randomization to occur, the system should have no conservation 
laws other than that of total bit number. The presence of multiple cycles implies that 
some other conservation laws may exist. However, no simple invariant quantities 
seem likely to be associated with these additional conservation laws. 
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size 7 

total number: 1918; number distinct lengths: 6 

3 x 6, 2 x 5, 8 x 4, 24 x 3, 174 x 2, 1707 x I 

size 9 

total number: 17135; number distinct lengths: II 

I x 12, I x 10, I x 9, 7 x 8, 12 x 7, 19 x 6, 31 x 5, 93 x 4, 182 x 3, 1537 x 2, 15251 x I 

size II 

total number: 24219; number distinct lengths: 143 

4 x 816,4 x 672, 4 x 654,12 x 547, 4 x 540, 4 x 372, 8 x 366, 4 x 354, 12 x 349, 4 x 342,6 x 330, 12 x 315 

4 x 312, 2 x 270,12 x 264, 2 x 246, 12 x 244, 8 x 240,12 x 239, 8 x 234, 8 x 225 , 8 x 222, 24 x 220, 24 x 2 19 

12 x 194, 8x 183, 12 x 179, 14 x 174, 12 x 169,36x 168,4x 162, 12 x 161,8 x 159, 12 x 153, 18 x 150 

12 x 149,36 x 148, 12 x 143, 12 x 141,24 x 139, 10 x 138, 12 x 137, 12 x 135,6 x 130, 36 x 126,36 x 124 

12 x 121 , 40x 120, 12 x 119, 12x 117,24 x 115, 28x 114, 12 x 110, 12 x 109, 48 x 108, 24 x 103, 36x 102 

28x96, 12 x95,48x94,48x93,24x9 1,46x90,48x89, 12 x 86, 12x85, 16 x84, 12 x83,24x8 1,24x80 

12 x 79, 26 x78, 12 x 77, 24 x75, 24x 74,60 x73, 64 x 72, 24x 71 , 32 x 69, 72 x68, 12 x 67, 84x 66, 60 x65 

24 x 64, 64 x 63,168 x 60,36 x 59, 32 x 57, 48 x 56, 48 x 55, 168 x 54, 12 x 52, 24 x 51,12 x 50,108 x 49 

l64 x 48,84x 47, 132 x 46, 124 x 45 , 108 x 44, 168 x43, 266 x 42, 132x4 1, 72x40,96x39, 156 x38 

96 x 37,136 x 36,132 x 35,108 x 34,116 x 33, 72 x 32, 84 x 31 , 218 x 30, 60 x 29, 84 x 28,156 x 27, 258 x 26 

192 x 25, 140 x 24, 168 x 23, 162 x 22, 408 x 21, 222 x 20, 360 x 19, 304 x 18,372 x 17, 492 x 16, 101 8 x 15 

498 x 14,528x 13, 576x 12,546 x 11 , 612x 10, 1415x9, 1710 x8, 1194 x7, 1740x6,495 x 5, 1248 x4 

1725 x 3, 1460 x2, 1190 x I 

Table 4.2. Cycles in finite size systems evolving according to the rule of table 4.1. In each case, the 

cellular automaton is taken to have periodic boundary conditions. The multiplicities and sizes of all cycles 

are given. For width II , the cycles have lengths which contain all primes up to 149, excluding 101 , 107, 

113, 127 and 131. An ergodic system would have just one cycle. 

5. Discussion 

This poster has illustrated a simple cellular automaton rule which exhibits continuum 
average behaviour in the large scale limit. It is possible to construct similar rules in 
two dimensions, and to give various other kinds of continuum behaviour (see several 
CA '86 posters) . 

In each case, one may compare the cellular automaton rules with traditional 
approaches to emulating these continuum systems on digital computers. In the con
ventional approach, one starts from partial differential equations, then makes discrete 
numerical approximations to them. These approximations involve considering a dis
crete lattice of points. But unlike in cellular automata, each of these lattice points 
carries a continuous variable which represents the precise value of a continuum quan
tity, such as particle density, at that point. In actual computer implementations, the 
continuous variable is represented by a floating-point number, say 64 bits in length. 
The number is updated in a sequence of time steps, according to a discrete rule. The 
rule in general involves arithmetic operations, which cannot be carried out precisely 
on the finite precision number. As a result, low-order bits of the number are truncated. 
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Numerical analysis has studied in detail the propagation of such round-off errors, and 
has suggested schemes which minimize their effects. 

In a cellular automaton, the values of variables such as particle density are stored 
in a distributed fashion. It is necessary to average over a region of the system to find 
the values of such macroscopic variables. Each bit which contributes to this average 
is however treated according to a precise deterministic rule, and each bit is equally 
important. Nevertheless, the need for averaging introduces 1/.JN fluctuations in 
the values of measured quantities. For some systems, such as turbulent ones, only 
statistical averages are expected to be reproducible. But in others, such as the 
diffusion equation, the need for averaging represents a limit on accuracy. 

One can imagine a hybrid of cellular automaton and numerical analysis schemes. 
Consider the case of the diffusion equation. On a lattice of sites, one stores values 
which consist of sequences of bits. The high-order bits are encoded digitally, so that 
n bits can represent 2n possible numbers of particles. The low-order bits are however 
encoded in unary, and correspond to individual particles. The update scheme can 
conserve the total number of particles. 

Viewed as a numerical analysis procedure, the dynamics of the low-order bits 
represents a dynamics of round-off errors. Instead of systematically truncating the 
numbers, their low-order bits are modified according to dynamics which yields 
effectively random behaviour. The result is similar to random round-off, but includes 
a precise particle conservation law. 

By adjusting the number of unary and digital bits, one can determine the tradeoffs 
between cellular automaton and numerical analysis approaches. 

One of the major issues in numerical analysis is convergence. This is very difficult 
to prove for all but the simplest equations and the simplest schemes. But in cellular 
automata, the analogue of convergence is the process of coming to "thermodynamic" 
equilibrium. Thus the problem of "convergence" is related to a fundamental problem 
of physics. 
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1986 

Continuum equations are derived for the large-scale behavior of a class of cellu
lar automaton models for jiuids. The cellular automata are discrete analogues of 
molecular dynamics, in which particles with discrete velocities populate the links of 
a fixed array of sites. Kinetic equations for microscopic particle distributions are 
constructed. Hydrodynamic equations are then derived using the Chapman-Enskog 
expansion. Slightly modified Navier-Stokes equations are obtained in two and three 
dimensions with certain lattices. Viscosities and other transport coefficients are cal
culated using the Boltzmann transport equation approximation. Some corrections to 
the equations of motionfor cellular automatonjiuids beyond the Navier-Stokes order 
are given. 

1. Introduction 

Cellular automata (e.g., Refs. 1 and 2) are arrays of discrete cells with discrete 
values. Yet sufficiently large cellular automata often show seemingly continuous 
macroscopic behavior (e.g., Refs. 1 and 3). They can thus potentially serve as models 
for continuum systems, such as fluids . Their underlying discreteness, however, makes 
them particularly suitable for digital computer simulation and for certain forms of 
mathematical analysis. 

On a microscopic level, physical fluids also consist of discrete particles. But on a 
large scale, they, too, seem continuous, and can be described by the partial differential 
equations of hydrodynamics (e.g. , Ref. 4). The form of these equations is in fact 
quite insensitive to microscopic details. Changes in molecular interaction laws can 
affect parameters such as viscosity, but do not alter the basic form of the macroscopic 
equations. As a result, the overall behavior of fluids can be found without accurately 
reproducing the details of microscopic molecular dynamics. 

Originally published in Journal of Statistical Physics. volume 45. pages 471-526 (November 1986). 
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This paper is the first in a series which considers models of fluids based on cel
lular automata whose microscopic rules give discrete approximations to molecular 
dynamics. I The paper uses methods from kinetic theory to show that the macroscopic 
behavior of certain cellular automata corresponds to the standard Navier-Stokes equa
tions for fluid flow. The next paper in the series(l6) describes computer experiments 
on such cellular automata, including simulations of hydrodynamic phenomena. 

Figure 1 shows an example of the structure of a cellular automaton fluid model. 
Cells in an array are connected by links carrying a bounded number of discrete 
"particles." The particles move in steps and "scatter" according to a fixed set of 
deterministic rules. In most cases, the rules are chosen so that quantities such 
as particle number and momentum are conserved in each collision. Macroscopic 
variations of such conserved quantities can then be described by continuum equations. 

Particle configurations on a microscopic scale are rapidly randomized by colli
sions, so that a local equilibrium is attained, described by a few statistical average 
quantities. (The details of this process will be discussed in a later paper.) A master 
equation can then be constructed to describe the evolution of average particle den
sities as a result of motion and collisions. Assuming slow variations with position 
and time, one can then write these particle densities as an expansion in terms of 
macroscopic quantities such as momentum density. The evolution of these quanti
ties is determined by the original master equation. To the appropriate order in the 
expansion, certain cellular automaton models yield exactly the usual Navier-Stokes 
equations for hydrodynamics. 

The form of such macroscopic equations is in fact largely determined simply by 
symmetry properties of the underlying cellular automaton. Thus, for example, the 
structure of the nonlinear and viscous terms in the Navier-Stokes equations depends 
on the possible rank three and four tensors allowed by the symmetry of the cellular 
automaton array. In two dimensions, a square lattice of particle velocities gives 
anisotropic forms for these terms. (6) A hexagonal lattice, however, has sufficient 
symmetry to ensure isotropy.(7) In three dimensions, icosahedral symmetry would 
guarantee isotropy, but no crystallographic lattice with such a high degree of symme
try exists. Various structures involving links beyond nearest neighbors on the lattice 
can instead be used. 

Although the overall form of the macroscopic equations can be established by 
quite general arguments, the specific coefficients which appear in them depend on 
details of the underlying model. In most cases, such transport coefficients are found 
from explicit simulations. But, by using a Boltzmann approximation to the master 
equation, it is possible to obtain some exact results for such coefficients, potentially 
valid in the low-density limit. 

I This work has many precursors. A discrete model of exactly the kind considered here was discussed in Ref. 6. A 
version on a hexagonal lattice was introduced in Ref. 7, and further studied in Refs. 8, 9. Related models in which 
particles have a discrete set of possible velocities, but can have continuously variable positions and densities. were 
considered much earlier.( IO-I') Detai led derivations of hydrodynamic behavior do not, however, appear to have been 
given even in these cases (see, however, e.g., Ref. 15). 
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Figure 1. Two successive microscopic configurations in the typical cellular automaton fluid model dis

cussed in Section 2. Each arrow represents a discrete "particle" on a link of the hexagonal grid. Continuum 

behavior is obtained from averages over large numbers of particles. 

This paper is organized as follows. Section 2 describes the derivation of kinetic 
and hydrodynamic equations for a particular sample cellular automaton fluid model. 
Section 3 generalizes these results and discusses the basic symmetry conditions nec
essary to obtain standard hydrodynamic behavior. Section 4 then uses the Boltzmann 
equation approximation to investigate microscopic behavior and obtain results for 
transport coefficients. Section 5 discusses a few extensions of the model. The Ap
pendix gives an SMP program(17) used to find macroscopic equations for cellular 
automaton fluids. 

2. Macroscopic Equations for a Sample Model 

2.1. Structure of the Model 

The model(7) is based on a regular two-dimensional lattice of hexagonal cells, as 
illustrated in Fig. 1. The site at the center of each cell is connected to its six 
neighbors by links corresponding to the unit vectors e, through e6 given by 

ea = (cos(27raj6) , sin(27raj6)) (2.1.1) 

At each time step, zero or one particles lie on each directed link. Assuming unit time 
steps and unit particle masses, the velocity and momentum of each particle is given 
simply by its link vector ea' In this model, therefore, all particles have equal kinetic 
energy, and have zero potential energy. 

The configuration of particles evolves in a sequence of discrete time steps. At 
each step, every particle first moves by a displacement equal to its velocity ea' Then 
the particles on the six links at each site are rearranged according to a definite set 
of rules. The rules are chosen to conserve the number and total momentum of the 
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particles. In a typical case, pairs of particles meeting head on might scatter through 
60°, as would triples of particles 120° apart. The rules may also rearrange other 
configurations, such as triples of particles meeting asymmetrically. Such features are 
important in determining parameters such as viscosity, but do not affect the form of 
the macroscopic equations derived in this section. 

To imitate standard physical processes, the collision rules are usually chosen to 
be microscopically reversible. There is therefore a unique predecessor, as well as a 
unique successor, for each microscopic particle configuration. The rules for collisions 
in each cell thus correspond to a simple permutation of the possible particle arrange
ments. Often the rules are self-inverse. But in any case, the evolution of a complete 
particle configuration can be reversed by applying inverse collision rules at each site. 

The discrete nature of the cellular automaton model makes such precise reversal in 
principle possible. But the rapid randomization of microscopic particle configurations 
implies that very complete knowledge of the current configuration is needed. With 
only partial information, the evolution may be effectively irreversible.(8,19) 

2.2. Basis for Kinetic Theory 

Cellular automaton rules specify the precise deterministic evolution of microscopic 
configurations. But if continuum behavior is seen, an approximate macroscopic 
description must also be possible. Such a description will typically be a statistical 
one, specifying not, for example, the exact configuration of particles, but merely the 
probabilities with which different configurations appear. 

A common approach is to consider ensembles in which each possible microscopic 
configuration occurs with a particular probability (e.g., Ref. 18). The reversibility of 
the microscopic dynamics ensures that the total probability for all configurations in 
the ensemble must remain constant with time. The probabilities for individual con
figurations may, however, change, as described formally by the Liouville equation. 

An ensemble is in "equilibrium" if the probabilities for configurations in it do not 
change with time. This is the case for an ensemble in which all possible configurations 
occur with equal probability. For cellular automata with collision rules that conserve 
momentum and particle number, the subsets of this ensemble that contain only those 
configurations with particular total values of the conserved quantities also correspond 
to equilibrium ensembles. 

If the collision rules effectively conserved absolutely no other quantities, then 
momentum and particle number would uniquely specify an equilibrium ensemble. 
This would be the case if the system were ergodic, so that starting from any initial 
configuration, the system would eventually visit all other microscopic configurations 
with the same values of the conserved quantities. The time required would, however, 
inevitably be exponentially long, making this largely irrelevant for practical purposes. 

A more useful criterion is that starting from a wide range of initial ensembles, 
the system evolves rapidly to ensembles whose statistical properties are determined 
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solely from the values of conserved quantities. In this case, one could assume for 
statistical purposes that the ensemble reached contains all configurations with these 
values of the conserved quantities, and that the configurations occur with equal 
probabilities. This assumption then allows for the immediate construction of kinetic 
equations that give the average rates for processes in the cellular automaton. 

The actual evolution of a cellular automaton does not involve an ensemble of 
configurations, but rather a single, specific configuration. Statistical results may 
nevertheless be applicable if the behavior of this single configuration is in some 
sense "typical" of the ensemble. 

This phenomenon is in fact the basis for statistical mechanics in many different 
systems. One assumes that appropriate space or time averages of an individual con
figuration agree with averages obtained from an ensemble of different configurations. 
This assumption has never been firmly established in most practical cases; cellular 
automata may in fact be some of the clearest systems in which to investigate it. 

The assumption relies on the rapid randomization of microscopic configurations, 
and is closely related to the second law of thermodynamics. At least when statistical 
or coarse-grained measurements are made, configurations must seem progressively 
more random, and must, for example, show increasing entropies. Initially ordered 
configurations must evolve to apparent disorder. 

The reversibility of the microscopic dynamics nevertheless implies that ordered 
initial configurations can always in principle be reconstructed from a complete knowl
edge of these apparently disordered states. But just as in pseudorandom sequence 
generators or cryptographic systems, the evolution may correspond to a sufficiently 
complex transformation that any regularities in the initial conditions cannot readily 
be discerned. One suspects in fact that no feasibly simple computation can discover 
such regularities from typical coarse-grained measurements.(I9.20) As a result, the 
configurations of the system seem random, at least with respect to standard statistical 
procedures. 

While most configurations may show progressive randomization, some special 
configurations may evolve quite differently. Configurations obtained by computing 
time-reversed evolution from ordered states will, for example, evolve back to ordered 
states. Nevertheless, one suspects that the systematic construction of such "antither
modynamic" states must again require detailed computations of a complexity beyond 
that corresponding to standard macroscopic experimental arrangements. 

Randomization requires that no additional conserved quantities are present. For 
some simple choices of collision rules, spurious conservation laws can nevertheless 
be present, as discussed in Section 4.5. For most of the collision rules considered in 
this paper, however, rapid microscopic randomization does seem to occur. 

As a result, one may use a statistical ensemble description. Equilibrium en
sembles in which no statistical correlations are present should provide adequate 
approximations for many macroscopic properties. At a microscopic level , however, 
the deterministic dynamics does lead to correlations in the detailed configurations of 
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particles.2 Such correlations are crucial in determining local properties of the system. 
Different levels of approximation to macroscopic behavior are obtained by ignoring 
correlations of different orders. 

Transport and hydrodynamic phenomena involve systems whose properties are 
not uniform in space and time. The uniform equilibrium ensembles discussed above 
cannot provide exact descriptions of such systems. Nevertheless , so long as macro
scopic properties vary slowly enough, collisions should maintain approximate local 
equilibrium, and should make approximations based on such ensembles accurate. 

2.3. Kinetic Equations 

An ensemble of microscopic particle configurations can be described by a phase space 
distribution function which gives the probability for each complete configuration. In 
studying macroscopic phenomena, it is, however, convenient to consider reduced 
distribution functions, in which an average has been taken over most degrees of 
freedom in the system. Thus, for example, the one-particle distribution function 
f a(x, t) gives the probability of finding a particle with velocity ea at position x and 
time t, averaged over all other features of the configuration (e.g., Ref. 23). 

Two processes lead to changes in f a with time: motion of particles from one cell 
to another, and interactions between particles in a given cell. A master equation can 
be constructed to describe these processes. 

In the absence of collisions, the cellular automaton rules imply that all particles 
in a cell at position X with velocity ea move at the next time step to the adjacent cell 
at position X + ea' As a result, the distribution function evolves according to 

(2.3.1 ) 

For large lattices and long time intervals, position and time may be approximated 
by continuous variables. One may define, for example, scaled variables x = 0xX and 
t = or T , where ox' or « 1. In terms of these scaled variables, the difference equation 
(2.3.1) becomes 

(2.3.2) 

In deriving macroscopic transport equations, this must be converted to a differential 
equation. Carrying out a Taylor expansion, one obtains(24) 

12 12 2 3 
0Afa +oxea . V f a + "2 0r au f a +oxor(ea . V)aJa + "2 0x(ea . V) f a + 0(0 ) = 0 

(2 .3.3) 

2 The kinetic theory approach used in this paper concentrates on average particle distribution functions. An alternative 
but essentially equivalent approach concentrates on microscopic correlation functions (e.g .• Refs. 21 . 22). 
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If all variations in the fa are assumed small, and certainly less than O(l/Ox' 1/ 8/), 
it suffices to keep only first-order terms in 8x ' 8/. In this way one obtains the basic 
transport equation 

(2.3.4) 

This has the form of a collisionless Boltzmann transport equation for fa (e.g., Ref. 25). 
It implies, as expected, that fa is unaffected by particle motion in a spatially uniform 
system. 

Collisions can, however, change f a even in a uniform system, and their effect can 
be complicated. Consider, for example, collisions that cause particles in directions e I 
and e4 to scatter in directions e2 and es' The rate for such collisions is determined by 
the probability that particles in directions e l and e4 occur together in a particular cell. 
This probability is defined as the joint two-particle distribution function F\~. The 
collisions deplete the population of particles in direction e t at a rate F\~. Microscopic 
reversibility guarantees the existence of an inverse process, which increases the 
population of particles in direction e l at a rate given in this case by Fi~. Notice that 
in a model where there can be at most one particle on each link, the scattering to 
directions e2 and es in a particular cell can occur only if no particles are already present 
on these links. The distribution function F is constructed to include this effect, which 
is mathematically analogous to the Pauli exclusion principle for fermions . 

The details of collisions are, however, irrelevant to the derivation of macroscopic 
equations given in this section. As a result, the complete change due to collisions 
in a one-particle distribution function f a will for now be summarized by a simple 
"collision term" na , which in general depends on two-particle and higher order 
distribution functions. (In the models considered here, na is always entirely local, 
and cannot depend directly on, for example, derivatives of distribution functions.) In 
terms of na , the kinetic equation (2.3.3) extended to include collisions becomes 

(2.3.5) 

With the appropriate form for na, this is an exact statistical equation for f a (at least 
to first order in 8). 

But the equation is not in general sufficient to determine f a' It gives the time 
evolution of f a in terms of the two-particle and higher order distribution functions 
that appear in na' The two-particle distribution function then in tum satisfies an 
equation involving three-particle and higher order distribution functions, and so on. 
The result is the exact BBGKY hierarchy of equations/23) of which Eq. (2.3 .5) is the 
first level. 

The Boltzmann transport equation approximates (2.3.5) by assuming that na 
depends only on one-particle distribution functions. In particular, one may make a 
"molecular chaos" assumption that all sets of particles are statistically uncorrelated 
before each collision, so that multiple-particle distribution functions can be written 
as products of one-particle ones. The distribution function F\~ is thus approximated 
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as Id4(1- 12 )(1 - 13)(1 - 15)(1 - 16 ), The resulting Boltzmann equations will be 
used in Section 4. In this section, only the general form (2.3.5) is needed. 

The derivation of Eq. (2.3.5) has been discussed here in the context of a cel
lular automaton model in which particles are constrained to lie on the links of a 
fixed array. In this case, the maintenance of terms in (2.3.3) only to first order in 
6x , 6

1 
is an approximation, and corrections can arise, as discussed in Section 2.5.(24) 

Equation (2.3.5) is, however, exact for a slightly different class of models, in which 
particles have a discrete set of possible velocities, but follow continuous trajectories 
with arbitrary spatial positions. Such "discrete velocity gases" have often been con
sidered, particularly in studies of highly rarefied fl uids, in which the mean distance 
between collisions is comparable to the overall system size.(11 ,14) 

2.4. Conservation Laws 

The one-particle distribution functions typically determine macroscopic average 
quantities. In particular, the total particle density n is given by 

(2.4.1) 
a 

while the momentum density nu , where u is the average fluid velocity, is given by 

(2.4.2) 

The conservation of these quantities places important constraints on the behavior of 

the la' 
In a uniform system Via = 0, so that Eq. (2.3.5) becomes 

(2.4.3) 

and Eqs. (2.4.1) and (2.4.2) imply 

(2.4.4) 
a 

(2.4.5) 
a 

Using the kinetic equation (2.3.5), Eq. (2.4.4) implies 

(2.4.6) 
a a 

With the second term in the form V . (2:: eala), Eq. (2.4.6) can be written exactly in 
terms of macroscopic quantities as 

BIn + V . (n u ) = 0 (2.4.7) 
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This is the usual continuity equation, which expresses the conservation of fl uid. It 
is a first example of a macroscopic equation for the average behavior of a cellular 
automaton fluid. 

Momentum conservation yields the slightly more complicated equation 

a a 

Defining the momentum flux density tensor 

nij = L(ea);(ea)Ja 
a 

Eq. (2.4.8) becomes 

(2.4.8) 

(2.4.9) 

(2.4.10) 

No simple macroscopic result for nij can, however, be obtained directly from the 
definitions (2.4.1) and (2.4.2). 

Equations (2.4.7) and (2.4.10) have been derived here from the basic transport 
equation (2.3.5). However, as discussed in Section 2.3, this transport equation is 
only an approximation, valid to first order in the lattice scale parameters ox' 0[,(24) 

Higher order versions of (2.4.7) and (2.4.10) may be derived from the original Taylor 
expansion (2.3.3), and in some cases, correction terms are obtained.(24) 

Assuining Ox = or = 0, Eq. (2.4.6) to second order becomes 

~ [(at + ea . V) + ~o(at + ea . V)2] = 0 (2.4.11) 

Writing the 0(0) term in the form 

at L(at + ea ' V)fa + V · L(at + ea ' V)eafa (2.4.12) 
a a 

this term is seen to vanish for any fa which satisfy the first-order equations (2.4.7) 
and (2.4.10). Lattice discretization effects thus do not affect the continuity equation 
(2.4.7), at least to second order. 

Corrections do, however, appear at this order in the momentum equation (2.4.10). 
To second order, Eq. (2.4.8) can be written as 

(2.4.13) 

The second term vanishes if fa satisfies the first-order equation (2.4.8). The third 
term, however, contains a piece trilinear in the ea' which gives a correction to the 
momentum equation (2.4.10). (24) 

367 



Wolfram on Cellular Automato and Complexity 

2.5. Chapman-Enskog Expansion 

If there is local equilibrium, as discussed in Section 2.2, then the microscopic dis
tribution functions f a (x, t) should depend, on average, only on the macroscopic 
parameters u(x, t) and n(x, t) and their derivatives. In general, this dependence may 
be very complicated. But in hydrodynamic processes, u and n vary only slowly with 
position and time. In addition, in the subsonic limit, lui « 1. 

With these assumptions, one may approximate the f a by a series or Chap
man-Enskog expansion in the macroscopic variables. To the order required for 
standard hydrodynamic phenomena, the possible terms are 

f a = f {I +c(l)ea · U+C(2) [(ea' U)2 - ~l u I 2 ] 

+ C~2) [(ea ' V)(ea . u) - ~V . u] + .. . } (2.5.1) 

where the c (i) are undetermined coefficients. The first three terms here represent the 
change in microscopic particle densities as a consequence of changes in macroscopic 
fluid velocity; the fourth term accounts for first-order dependence of the particle 
densities on macroscopic spatial variations in the fluid velocity. The structures of 
these terms can be deduced merely from the need to form scalar quantities f a from 
the vectors ea , u, and V. 

The relation 

(2.5.2) 

where here M = 6 and d = 2, and i and j are space indices, has been used in 
Eq. (2.5.1) to choose the forms of the lul2 and Vu terms so as to satisfy the constraints 
(2.4.1) and (2.4.2), independent of the values of the coefficients C(2) and c~2). In terms 
of (2.5.1) , Eq. (2.4.1) yields immediately 

f = n/ 6 

while (2.4.2) gives 

c (l ) = 2 

(2.5.3) 

(2.5.4) 

The specific values of c (2) and c~) can be determined only by explicit solution of 
the kinetic equation (2.3.5) including collision terms. (Some approximate results 
for these coefficients based on the Boltzmann transport equation will be given in 
Section 4.) Nevertheless, the structure of macroscopic equations can be derived from 
(2.5.1) without knowledge of the exact values of these parameters. 

For a uniform equilibrium system with u = 0, all the fa are given by 

fa = f = n/ 6 (2.5.5) 

In this case, the momentum fl ux tensor (2.4.9) is equal to the pressure tensor, given, 
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1 
Pjj = L(ea)j(ea)J = "2 nOjj 

a 
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(2.5.6) 

where the second equality follows from Eq. (2.5.2). Note that this form is spatially 
isotropic, despite the underlying anisotropy of the cellular automaton lattice. This 
result can be deduced from general symmetry considerations, as discussed in Sec
tion 3. Equation (2.5.6) gives the equation of state relating the scalar pressure to the 
number density of the cellular automaton fluid: 

p = nl2 (2.5.7) 

When u * 0, fl ij can be evaluated in the approximation (2.5.1) using the relations 

L(ea)j(ea)/ea)k = 0 (2.5.8) 
a 

and 

M 
L(e )(e )(e \(e ), = (0 Ok' + 0kO , + O,Ok) a a 1 a J a a d(d + 2) IJ 1 J 1 J 

(2.5.9) 

The result is 

_ n n (2) [ 1 2 ] n (2) [ 1 ] fl .. - -0 .. + -c u ·u · - -lui 0 . + - cv au - -"i/ . U 
IJ 2 IJ 4 1 J 2 IJ 4 1 J 2 (2.5.10) 

Substituting the result into Eq. (2.4.10), one obtains the final macroscopic equation 

a/nu) + ~nc(2) {(u . "i/)u + [u("i/' u) - ~"i/IUI2]} 
1 1 (2) 2 I ~ 

=--"i/n--nc "i/ U--I:I 
2 8 v 4 

(2.5.11) 

where 

:=: = u(u . "i/)(nc(2») - ~ luI2"i/(nc(2») + (u . "i/)(nc~2» ) - ~("i/ . u)"i/(nc~2» ) 
2 2 

(2.5.12) 

The form (2.5 .10) for flij follows exactly from the Chapman-Enskog expansion 
(2.5.1). But to obtain Eq. (2.5.11), one must use the momentum equation (2.4.10). 
Equation (2.4.13) gives corrections to this equation that arise at second order in the 
lattice size parameter 0. These corrections must be compared with other effects 
included in Eq. (2.5.11). The rescaling x = 0xX implies that spatial gradient terms 
in the Chapman-Enskog expansion can be of the same order as the O(ox) correction 
terms in Eq. (2.4.13). When the ea . u term in the Chapman-Enskog expansion (2.5.1) 
for the f a is substituted into the last term of Eq. (2.4.13), it gives a contribution(24) 

1 1 
'P = --nc(I)"i/2u = --n"i/2u 

16 8 
(2.5.13) 
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to the right-hand side of Eq. (2.5.11). Note that IJI depends solely on the choice of ea , 

and must, for example, vary purely linearly with the particle density f. 

2.6. Navier-Stokes Equation 

The standard Navier-Stokes equation for a continuum fluid in d dimensions can be 
written in the form 

at(nu ) + jln(u . V')u = -V' P + 1]V'2u + ({ + ~I]) V'(V' . u) (2.6.1) 

where p is pressure, and I] and { are, respectively, shear and bulk viscosities (e.g., 
Ref. 27). The coefficientjl of the convective term is usually constrained to have value 
1 by Galilean invariance. Note that the coefficient of the last term in Eq. (2.6.1) is 
determined by the requirement that the term in ilij proportional to I] be traceless.(27.57) 

The macroscopic equation (2.5.11) for the cellular automaton fluid is close to the 
Navier-Stokes form (2.6.1). The convective and viscous terms are present, and have 
the usual structure. The pressure term appears according to the equation of state 
(2.5.7). There are, however, a few additional terms. 

Terms proportional to uV'n must be discounted, since they depend on features of 
the microscopic distribution functions beyond those included in the Chapman-Enskog 
expansion (2.5.1). The continuity equation (2.4.7) shows that terms proportional to 
u(V' . u) must also be neglected. 

The term proportional to V'l u l2 remains, but can be combined with the V'n term to 
yield an effective pressure term which includes fluid kinetic energy contributions. 

The form of the viscous terms in (2.5.11) implies that for a cellular automaton 
fluid, considered here, bulk viscosity is given by 

{ =O (2.6.2) 

The value of I] is determined by the coefficient C~2) that appears in the microscopic 
distribution function (2.5.1), according to 

(2.6.3) 

where v is the kinematic viscosity. An approximate method of evaluating C~2) is 
discussed in Section 4.6. 

The convective term in Eq. (2.5.11) has the same structure as in the Navier-Stokes 
equation (2.6.1) , but includes a coefficient 

1 jl = _ C(2) 

4 
(2.6.4) 

which is not in general equal to 1. In continuum fluids , the covariant derivative usually 
has the form Dt = at + u . V' implied by Galilean invariance. The cellular automaton 
fluid acts, however, as a mixture of components, each with velocities ea , and these 
components can contribute with different weights to the covariant derivatives of 
different quantities, leading to convective terms with different coefficients. 
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The usual coefficient of the convective tenn can be recovered in Eq. (2.6.1) and 
thus Eq. (2.5.11) by a simple rescaling in velocity: setting 

li = flU (2.6.5) 

the equation for li has coefficient 1 for the (li . V)li tenn. 
Small perturbations from a unifonn state may be represented by a linearized 

approximation to Eqs. (2.4.7) and (2.5.11), which has the standard sound wave 
equation fonn , with a sound speed obtained from the equation of state (2.5.7) as 

c = I /h (2.6.6) 

The fonn of the Navier-Stokes equation (2.6.1) is usually obtained by simple phys
ical arguments. Detailed derivations suggest, however, that more elaborate equations 
may be necessary, particularly in two dimensions (e.g., Ref. 28). The Boltzmann 
approximation used in Section 4 yields definite values for c(2) and C~2). Correlation 

function methods indicate, however, that additional effects yield logarithmically di
vergent contributions to c~2) in two dimensions (e.g., Ref. 29). The full viscous tenn 
in this case may in fact be of the rough fonn V2 log(V2)u. 

2.7. Higher Order Corrections 

The derivation of the Navier-Stokes fonn (2.5.11) neglects all terms in the Chapman
Enskog expansion beyond those given explicitly in Eq. (2.5.1). This approximation 
is expected to be adequate only when lu i « c. Higher order corrections may be par
ticularly significant for supersonic flows involving shocks (e.g., Ref. 30). 

Since the dynamics of shocks are largely determined just by conservation laws 
(e.g., Ref. 27), they are expected to be closely analogous in cellular automaton fluids 
and in standard continuum fluids. For lul/c;;: 2, however, shocks become so strong 
and thin that continuum descriptions of physical fluids can no longer be applied in 
detail (e.g. , Ref. 14). The structure of shocks in such cases can apparently be found 
only through consideration of explicit particle dynamics. (I 1.14) 

In the transonic flow regime lu i"" c, however, continuum equations may be used, 
but corrections to the Navier-Stokes fonn may be significant. A class of such 
corrections can potentially be found by maintaining tenns O (u3 ) and higher in the 
Chapman-Enskog expansion (2.5.1). 

In the homogeneous fluid approximation Vu = 0, one may take 

fa = f{1 + c(I)e
a 

. u + c(2) [(ea . u)2 + 0"21 u 12] 

+ c(3) [(ea . U)3 + 0"3 1u 12(ea . u)] 

+ C(4) [( ea . U)4 + 0" 4.ll u I2( ea . U)2 + 0" 4.2I u I4] + ... } 

The constraints (2.4.1 ) and (2.4.2) imply 

c(I) = d 

(2 .7.1) 

(2.7.2) 
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1 
CT2 =--

d 
3 

CT3 = --d-+-2 

3 1 
---+ -CT +CT =0 d(d + 2) d 4, 1 4,2 

where d is the space dimension, equal to two for the model of this section. 

(2.7.3) 

(2.7.4) 

(2.7.5) 

Corrections to (2.5.11) can be found by substituting (2.7.1) in the kinetic equation 
(2.4.8). For the hexagonal lattice model, one obtains, for example, 

1 (2) 
ar(nu) + 4nc (uxax ux + UXayUy + UyayUx - UixUy) 

+ ~nc(4) {[(5 + 4CT4, I )u~ - 3u x u ~ ]ax u x 

+ [(3 + 2CT4, 1 )u; + (3 + 6CT4, I )u~u y]ayu x 

- [(3 + 4CT 4, 1 )u; + 3u~ uy ]ax u y 

+ [(1 + 2CT4,I )u~ + (9 + 6CT4, 1 )uxu~]ayU y} = 0 (2.7.6) 

The O(u2 ) term in Eq. (2.7.6) has the isotropic form given in Eq. (2.5.11). The 
O(u4

) term is, however, anisotropic. 
To obtain an isotropic O(u4

) term, one must generalize the model , as discussed 
in Section 3. One possibility is to allow vectors ea corresponding to comers of an 
M -sided polygon with M > 6. In this case, the continuum equation deduced from 
the Chapman-Enskog expansion (2.7.1) becomes 

a/nu) + ~nc(2) [(u . V)u + u(V· u) - ~VIUI 2 ] 
I 

+ -nc(4) (1 + CT4 1 )(luI2[(u . V)u + u(v . u) - Vlul2] 
4 ' 

+ u(u . V)luI2} = 0 

(2.7.7) 

This gives a definite foml for the next-order corrections to the convective part of the 
Navier-Stokes equation. 

Corrections to the viscous part can be found by including terms proportional to 
Vu in the Chapman-Enskog expansion (2.7.1). The possible fourth-order terms are 
given by contractions of UjUj akU, with products of (ea)m or 6.mn • They yield a piece 
in the Chapman-Enskog expansion of the form 

44)[ TI (ea ' u)2(ea . V)(ea . u) + T 2lul2(ea . V)(ea . u) 

+ T3(ea . u)(u· V)(ea . u) + T4(ea . u)2(V . u) + T5IuI2(V . u)] (2.7.8) 
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where Eq. (2.4.1) implies the constraints (for d = 2) 

T, + 2T3 = 0 

T) +4T2 +4T4 +8Ts = 0 

(2.7 .9) 

(2 .7.10) 

The resulting continuum equations may be written in terms of vectors formed by 

contractions of u;ujBkB/um and u;BjukB/um . The complete result is 

B/(nu ) + ~nc(2) [ (U . \7)u + u (V· u ) - ~\7I U I 2 J 

1 
+ -nc(4)(l + (T4 ,)(l u I2[(u . \7)u + u (V . u ) - \7l u l2] + u (u . \7)l u I2} 

4 ' 

= - ~nc~2)\72u 
8 

- 3
1
2 n44

) [ ((T, - 4T2 + 12T4 )u (V . U)2 - (T, - 4T2 + 4T4) 

x u {\7[(u· \7)u] - (u · \7)(\7. u )} + 8T4 {[(U . \7)u ] . \7} u 

1 
+ 2(T, +4T2)[(\7 lu I2) . \7] u 

+2T, U U\7· (\7l u I2)- u · (\72U)J -4T4 (V ' u )\7l u I
2
) 

+ { 8T4 [U(u . \7)(\7 . u ) - ~IUI 2\7(V. U)J 

+ 2T, u [u · (\72u )] + 4T2I UI2\72U} J (2 .7 .11) 

where, on the right-hand side, the first group of terms are all 0((\7U)2), while the 
second group are O(Wu). Further corrections involve higher derivative terms, such 

as u;Bj BkB/um • 

For a channel flow with u x = ax 2
, u y = 0, the time-independent terms in Eq. 

(2.7.11) have an x component 

(2.7.12) 

and zero y component. 

3. Symmetry Considerations 

3.1. Tensor Structure 

The form of the macroscopic equations (2.4.7) and (2.5 .11) depends on few specific 
properties of the hexagonal lattice cellular automaton model. The most important 
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properties relate to the symmetries of the tensors 

E (n ) . = ~(e ) . . . (e ) 
' 1' 2''''n ~ a I I a In 

(3.1.1 ) 
o 

These tensors are determined in any cellular automaton fluid model simply from the 
choice of the basic particle directions eo. The momentum flux tensor (2.4.9) is given 
in terms of them by 

n f(E (2) (I )E (3) (2) [E(4) E (2) ] 
i j = ij + C ijk Uk + C ijklU kUI + (T ij Uk Uk 

(2) [E(4) a E(2)a] + Cv ijk l k UI + (T ij kUk ) (3 .1.2) 

where repeated indices are summed, and to satisfy the conditions (2.4.1) and (2.4.2) 

(3.1.3) 

The basic condition for standard hydrodynamic behavior is that the tensors E (n) for 
n :5 4 which appear in (3 .1.2) should be isotropic. From the definition (3.1.1) , the 
tensors must always be invariant under the discrete symmetry group of the underlying 
cellular automaton array. What is needed is that they should in addition be invariant 
under the full continuous rotation group. 

The definition (3.1.1) implies that the E (n ) must be totally symmetric in their 
space indices. With no further conditions, the E (n) could have (n~- l) independent 
components in d space dimensions. Symmetries in the underlying cellular automaton 
array provide constraints which can reduce the number of independent components. 

Tensors that are invariant under all rotations and reflections (or inversions) can 
have only one independent component. Such invariance is obtained with a continuous 
set of vectors eo uniformly distributed on the unit sphere. Invariance up to finite n 

can also be obtained with certain finite sets of vectors eo. 
Isotropic tensors E (n ) obtained with sets of M vectors eo in d space dimensions 

must take the form 

E (2n+ l ) = 0 

M 
E (2n) = !:1(2n) 

d(d + 2) . .. (d + 2n - 2) 

where 

!:1;~) = 6ij 

!:1;~1 1 = 6ij 6kl + 6ik 6jl + 6il6jk 

(3 .1.4) 

(3 .1.5) 

(3 .1.6) 

(3 .1.7) 

and in general !:1 (2n) consists of a sum of all the (2n - I)!! possible products of 
Kronecker delta symbols of pairs of indices, given by the recursion relation 

(3.1.8) 
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The fonn of the t,.(2n) can also be specified by giving their upper simplicial com
ponents (whose indices fonn a nonincreasing sequence). Thus, in two dimensions, 

t,.(4) = [3 , 0, 1,0, 3] (3.1.9) 

where the 1111, 2111 , 2211, 2221 , and 2222 components are given. In three dimen
sions, 

t,.(4) = [3, 0, 1,0, 3, 0, 0, 0,0, 1,0, 1, 0, 0, 3] 

Similarly, 

t,.(6) = [5, 0, 1, 0,1 , 0, 5] 

and 

t,.(6) = [15,0, 3,0, 3, 0, 15, 0,0,0,0,0, 0, 3, 

0, 1, 0, 3, 0, 0, 0, 0, 3,0, 3,0, 0, 15] 

in two and three dimensions, respectively. 
For isotropic sets of vectors ea' one finds from (3.1.5) 

1 " 2n 2n (2n -I)!! 2n 
M L.)ea . v) = Q 2n Ivl = d(d + 2) ... (d + 2n _ 2) Ivl 

a 

so that for d = 2 

while for d = 3 

1 
Q 2n = 2n + 1 

Similarly, 

1 
M L(ea . v)2nea . V = Q2n lvl2n v 

a 

(3.1.10) 

(3.1.11) 

(3.l.l2) 

(3.1.13) 

(3.1.14) 

(3.1.15) 

(3.1.16) 

In the model of Section 2, all the particle velocities ea are fundamentally equiv
alent, and so are added with equal weight in the tensor (3.1.1 ). In some cellular 
automaton fluid models, however, one may, for example, allow particle velocities ea 

with unequal magnitudes (e.g. , Ref. 31 ). The relevant tensors in such cases are 

E (n) . =" w(le 12)(e ) . . . (e ) 
' \ ' 2·· ·/ " ~ a a ' \ a I" 

(3.l.l7) 
a 

where the weights w(lea 12) are typically detennined from coefficients in the Chapman
Enskog expansion. 

3.2. Polygons 

As a first example, consider a set of unit vectors ea corresponding to the vertices of 
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a regular M -sided polygon: 

(
bra 21fa) 

ea = cos M ,sin M (3.2.1) 

For sufficiently large M, any tensor E(n) constructed from these ea must be isotropic. 
Table 1 gives the conditions on M necessary to obtain isotropic E(n). In general, it 
can be shown that E(n) is isotropic if and only if M does not divide any of integers 
n , n - 2, n - 4, .... (32) Thus, for example, E(n) must be isotropic whenever n > M. 

E(2) 
E(3) 
E(4) 
E(5) 

M>2 

M ~2, M *3 

M >2,M *4 

Table 1. Conditions for the tensors E(n) of Eq. (3.1.1) to be isotropic 

with the lattice vectors ea chosen to correspond to the vertices of 

regular M -sided polygons. 
M ~2,M *3,5 

E(6) M >4,M*6 
E(7) M ~ 2, M * 3, 5, 7 

In the case M = 6, corresponding to the hexagonal lattice considered in Section 2, 
the E(n) are isotropic up to n = 5. The macroscopic equations obtained in this case 
thus have the usual hydrodynamic form. However, a square lattice, with M = 4, 
yields an anisotropic E(4), given by 

(3.2.2) 

where 8(n) is the Kronecker delta symbol with n indices. The macroscopic equation 
obtained in this case is 

1 (2) 
a/nux) + "inc (uxaxux - Uyax Uy) 

= - ~a n - ~nc(2)(a u - au) - ~(u2 - u2)a (nc(2) 2 x 8 v xx x xy y 4 x y x 

1 (2) 
- g(axux -ayUy)ax(ncv ) (3 .2.3) 

which does not have the standard Navier-Stokes form. (6),3 
On a hexagonal lattice, E(4) is isotropic, but E(6) has the component form 

(6) _ 1 
E I M=6 - 16 [33,0,3,0,9,0,27] (3.2.4) 

which differs from the isotropic result (3.1.11). The corrections (2.7.6) to the Navier
Stokes equation are therefore anisotropic in this case. 

3 Note that even the linearized equation for sound waves is anisotropic on a square lanice. The waves propagate 

isotropicaBy, but are damped with an effective viscosity that varies with direction, and can be negative533) 
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3.3. Polyhedra 

As three-dimensional examples, one can consider vectors ea corresponding to the 

vertices of regular polyhedra. Only for the five Platonic solids are all the lea 12 
equal. Table 2 gives results for the isotropy of the E (n ) in these cases. Only for 

the icosahedron and dodecahedron is E (4) found to be isotropic, so that the usual 

hydrodynamic equations are obtained. As in two dimensions, the E(2n) for the cube 

are all proportional to a single Kronecker delta symbol over all indices. 

In five and higher dimensions, the only regular polytopes are the simplex, and the 
hypercube and its dual.(34) These give isotropic E(n ) only for n < 3, and for n < 4 and 

n < 4, respectively. 
In four dimensions, there are three additional regular polytopes,(34) specified 

by Schlafi symbols {3, 4, 3}, {3, 3, 5}, and (5 , 3, 3). (The elements of these lists 

give the number of edges around each vertex, face, and 3-cell, respectively.) The 

(3 , 4, 3) polytope has 24 vertices with coordinates corresponding to permutations of 

(±1 , ±1, 0 , 0). It yields E(n ) that are isotropic up to n = 4. The {3 , 3, 5} polytope has 

120 vertices corresponding to (±1, ±1, ±1 , ±1) , all permutations of (±2, 0 , 0 , 0), and 

even-signature permutations of (±rp, ±1 , rp- l, 0), where rp = (1 + -/5)/ 2. The (5 , 3, 3) 

polytope is the dual of {3, 3, 5}. Both yield E (n ) that are isotropic up to n = 8. 

3.4. Graup Theory 

The structure of the E (n) was found above by explicit calculations based on particular 

choices for the ea' The general form of the results is, however, determined solely by 

the symmetries of the set of ea ' A finite group G of transformations leaves the ea 
invariant. (For the hexagonal lattice model of Section 2, it is the hexagonal group 

S6') In general G is a finite subgroup of the d-dimensional rotation group Oed). 
The ea form the basis for a representation of G, as do their products E (n ). If the 

representation R (n) carried by the E (n) is irreducible, then the E (n) can have only one 

ea M E (2) E (3) E (4) E (5) E (6) 

Tetrahedron (I , I, I) , eye: (I , -I , -I) 4 Y N N N N 

Cube (±I, ±I, ±J) 8 y y N Y N 

Octahedron eye: (±I , 0, 0) 6 y y N Y N 

Dodecahedron (±I , ±I , ±I), eye: (0, ±rp- l, ±rp) 20 Y Y y y N 

Icosahedron eye: (0, ±rp, ±I) 12 Y Y Y Y N 

Table 2. Isotropy of the tensors E (n) with ea chosen as the M vertices of regular polyhedra. In the forms 

for ea (which are given without normalization), the notation "cyc:" indicates all cyclic permutations. (All 

possible combinations of signs are chosen in all cases.) ¢ is the golden ratio ( I + ./5)/ 2 '" 1.6 18. 
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independent component, and must be rotationally invariant. But R (n) is in general 

reducible. The number of irreducible representations that it contains gives the number 
of independent components of E(n) allowed by invariance under G. 

This number can be found using the method of characters (e.g., Refs. 35 and 

36). Each class of elements of G in a particular representation R has a character 

that receives a fixed contribution from each irreducible component of R. Characters 
for the representation R (n) of G can be found by first evaluating them for arbitrary 

rotations, and then specializing to the particular sets of rotations (typically through 

angles of the form 27r/ k) that appear in G. To find characters for arbitrary rotations, 
one writes the E(n) as sums of completely traceless tensors u(n) which form irreducible 

representations of Oed) (e.g., Ref. 37): 

E(n) = U(n) + U(n-2) + .. . + U(O) (3.4.1) 

The characters of the E(n) are then sums of the characters X<m) for the irreducible 

tensors u(m). For proper rotations through an angle </J, the X(m) are given by (e.g., 

Ref. 37) 

x<m\</J) = e2Trim
¢ (d = 2) (3.4.2) 

(m) _ sin[(2m + 1)</J/2] 
X (</J) - sin</J/2 (d = 3) 

The resulting characters for the representations R (n) formed by the E(n) are given in 

Table 3. 
The number of irreducible representations in R(n) can be found as usual by evalu

ating the characters for each class in R(n) (e.g., Ref. 35). Consider as an example the 

case ofR(4) with G the octahedral group O. This group has classes E, 8C3, 9C2 , 6C4, 

where E represents the identity, and Ck represents a proper rotation by </J = 27r/ k 
about a k-fold symmetry axis. The characters for these classes in the representation 

R (4) can be found from Table 3. Adding the results, and dividing by the total number 

of classes in G, one finds that R(4) contains exactly two irreducible representations 

of O. Rank 4 symmetric tensors can thus have up to two independent components 
while still being invariant under the octahedral group.(38) 

Dimension Rank Character 

2 2 4c2 -1 

2 4 (4c2 + 2c -1)(4c2 - 2c-1) 

3 2 4c2 +2c 

3 4 (2c + 1)(2c - 1)(4c2 + 2c - 1) 

Table 3. Characters oftransfonnations of totally symmetric rankn tensors E (n) in d dimensions. c = cos(¢), 

where ¢ is the rotation angle. For improper rotations in three dimensions, 1f - ¢ must be used. 

378 



Cellular Automaton Fluids: Basic Theory (1986 ) 

In general, one may consider sets of vectors ea that are invariant under any 

point symmetry group. Typically, the larger the group is, the smaller the number of 
independent components in the E(n ) can be. In two dimensions, there are an infinite 

number of point groups, corresponding to transformations of regular polygons. There 

are only a finite of nontrivial additional point groups in three dimensions. The largest 

is the group Y of symmetries of the icosahedron (or dodecahedron). Second largest 

is the cubic group E. As seen in Table 2, only Y guarantees isotropy of all tensors 
E (n) up to n = 4 (compare Ref. 39). 

It should be noted, however, that such group-theoretic considerations can only 

give upper bounds on the number of independent components in the E (n ) . The actual 

number of independent components depends on the particular choice of the ea' and 

potentially on the values of weights such as those in Eq. (3.1.16). 

3.5. Regular Lattices 

If the vectors ea correspond to particle velocities, then the possible displacements of 

particles at each time step must be of the form La kaea. In discrete velocity gases, 
particle positions are not constrained. But in a cellular automaton model, they are 

usually taken to correspond to the sites of a regular lattice. 

Only a finite number of such "crystallographic" lattices can be constructed in any 

space dimension (e.g., Refs. 40 and 41) . As a result, the point symmetry groups 

that can occur are highly constrained. In two dimensions, the most symmetrical 

lattices are square and hexagonal ones. In three dimensions, the most symmetrical 

are hexagonal and cubic. The group-theoretic arguments of Section 3.4 suffice to 
show that in two dimensions, hexagonal lattices must give tensors E(n ) that are 

isotropic up to n = 4, and so yield standard hydrodynamic equations (2.5.11) . In 
three dimensions, group-theoretic arguments alone fail to establish the isotropy of 

E (4) for hexagonal and cubic lattices. A system with icosahedral point symmetry 

would be guaranteed to yield an isotropic E (4), but since it is not possible to tesselate 

three-dimensional space with regular icosahedra, no regular lattice with such a large 

point symmetry group can exist. 
Crystallographic lattices are classified not only by point symmetries, but also by 

the spatial arrangement of their sites. The lattices consist of "unit cells" containing a 

definite arrangement of sites, which can be repeated to foml a regular tesselation. In 

two dimensions, five distinct such Bravais lattice structures exist; in three dimensions, 

there are 14 (e.g., Refs. 40 and 41). 

Sites in these lattices can correspond directly to the sites in a cellular automaton. 

The links which carry particles in cellular automaton fluid models are obtained by 

joining pairs of sites, usually in a regular arrangement. The link vectors give the 

velocities ea of the particles. 

In the simplest cases, the links join each site to its nearest neighbors. The 
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regularity of the lattice implies that in such cases, all the ea are of equal length, so 

that all particles have the same speed. 
For two-dimensional square and hexagonal lattices, the ea with this nearest neigh

bor arrangement have the form (3.2.1). The results of Section 3.2 then show that 
with hexagonal lattices, such ea give E (n ) that are isotropic up to n = 4, and so yield 

the standard hydrodynamic continuum equations (2.6.1). 
Table 4 gives the forms ofE(n ) for the most symmetrical three-dimensional lattices 

with nearest neighbor choices for the ea' None yield isotropic E (4) (compare Ref. 38). 

The hexagonal and face-centered cubic lattices, which have the largest point sym
metry groups in two and three dimensions, respectively, are also the lattices that give 
the densest packings of circles and spheres (e.g., Ref. 42). One suspects that in more 
than three dimensions (compare Ref. 43) the lattices with the largest point symmetry 

continue to be those with the densest sphere packing. The spheres are placed on 
lattice sites; the positions of their nearest neighbors are defined by a Voronoi polyhe

dron or Wigner-Seitz cell. The densest sphere packing is obtained when this cell, and 

thus the nearest neighbor vectors ea' are closest to forming a sphere. In dimensions 
d ~ 8, it has been found that the optimal lattices for sphere packing are those based 

on the sets of root vectors for a sequence of simple Lie groups (e.g., Ref. 44). Results 
on the isotropy of the tensors E (n ) for these lattices are given in Table 5. 

More isotropic sets of ea can be obtained by allowing links to join sites on the 
lattice beyond nearest neighbors.(3 1) On a square lattice, one may, for example, 

include diagonal links, yielding a set of vectors 

ea = (0, ±l), (±1 , 0) , (±l, ±1) 

Including weights w(leaI2) as in Eq. (3.1.16) , this choice of ea yields 

E (2) = 2[w(1) + 2w(2)]8(2) 

E (4) = 4w(2).:1(4) + 2[w(1) - 4w(2)]8(4) 

(3 .5.1) 

(3.5.2) 

(3.5 .3) 

If the ratio of particles on diagonal and orthogonal links can be maintained so that 

w(1) = 4w(2) (3.5.4) 

ea M E(2) E(4) E(6) 

Primitive cubic cyc: (±! , 0, 0) 6 28(2) 28(4) 28(6) 

Body-centered cubic (±! , ±J , ±!) 8 88(2) 8(.:1(4) - 28(4) 8(.:1(6) - 2.:1(4,2) + 168(6) 

Face-centered cubic cyc: (±1 , ±1 , 0) 12 88(2) 4(.:1(4) - 8(4) 4(.:1(4,2) - 138(6) 

Table 4. Fonns of the tensors E (n} for the most symmetrical three-dimensional Bravais lattices. The basic 

vectors ea (used here without nonnalization) are taken to join each site with its M nearest neighbors. Ifn} 

represents the Kronecker delta symbol of n indices; t,.(n} represents the rotationally invariant tensor defined 

in Eqs. (3.1.6)-(3. 1.8). t,.(n.m} is the sum of all possible products of pairs of Kronecker delta symbols with 

n and m indices, respectively. 
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d Group M nmax 

SU(2) 
Table 5. Sequence of simple Lie groups whose sets of root 

1 Al 2 vectors yield optimal lattices for sphere packing in d di-
2 A2 SU(3) 6 4 mensions. These lattices may also yield maximal isotropy 
3 A3 SU(4) 12 2 

for the tensors E(n ) . Results are given for the maximum 
4 D4 SO(8) 24 4 

even n at which the E(n ) are found to be isotropic. The 
5 D5 SO(10) 40 2 
6 E6 72 0 

root vectors are given in Ref. 45. 

then Eq. (3.S.3) shows that E(4) will be isotropic. This choice effectively weights 
the individual vectors (0, ±1) and (±1 , 0) with a factor./2. As a result, the vectors 
(3.S.1) are effectively those for a regular octogon, given by Eq. (3.2.1) with M = 8. 

Including all 24 ea with components I(ea)jl :::; 2 on a square lattice, one obtains 

E (2) = 2[w(l) + 2w(2) + 4w(4) + lOw(S) + 8w(8)]o'2) 

E(4) = 4[w(2) + 8w(S) + 16w(8)]Ll(4) 

+ 2[w(l) - 4w(2) + 16w(4) - 14w(S) - 64w(8)]o'4) 

E(6) = ~[w(2) + 20w(S) + 64w(8)]Ll(6) 
3 
+ 2[w(l) - 8w(2) + 64w(4) -70w(S) - SI2w(8)]o'6) 

With w(S) = w(8) = 0, E(4) and E (6) are isotropic if 

w(2) 3 w(4) 

w(l) 32 
= 

w(l) g' 

They cannot both be isotropic if w( 4) also vanishes. 

(3.S.S) 

(3.S.6) 

(3.S.7) 

(3.S.8) 

In three dimensions, one may consider a cubic lattice with sites at distances 1, 
./2, and .J3 joined. The ea in this case contain all those for primitive, face-centered, 
and body-centered cubic lattices, as given in Table 4. The E(n ) can then be deduced 
from the results of Table 4, and are given by 

E(2) = 2[w(l) + 4w(2) + 4w(3)]o'2) 

E (4) = 4[w(2) + 2w(3)]Ll(4) + 2[w(l) - 2w(2) - 8w(3)]8(4) 

E (6) = 8w(2)Ll(6) + 4[w(2) - 4w(3)]Ll(4.2) + 2[w(1) - 26w(2) 

+ 64w(3)]8(6) 

Isotropy of E(4) is obtained when 

w(1) = 2w(2) + 8w(3) 

and of E(6) when 

w(1) = lOw(2) = 40w(3) 

(3 .S.9) 

(3.S.1O) 

(3.S.11) 

(3.S.12) 

(3.S.13) 
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Notice that (3.5.12) and (3.5.13) cannot simultaneously be satisfied by any nonzero 
choice of weights. Nevertheless, so long as (3.5.12) holds, isotropic hydrodynamic 
behavior is obtained in this three-dimensional cellular automaton fluid. Isotropic 
E(6) can be obtained by including in addition vectors ea of the form (±2, 0, 0) (and 
permutations), and choosing 

1 
w(2) = "2w(l), 

1 
w(3) = gW(1), 

1 
w(4) = -w(1) 

16 
(3.5.14) 

The weights in Eq. (3.1.17) give the probabilities for particles with different speeds 
to occur. These probabilities are determined by microscopic equilibrium conditions. 
They can potentially be controlled by using different collision rules on different time 
steps (as discussed in Section 4.9). Each set of collision rules can, for example, be 
arranged to yield each particle speed with a certain probability. Then the frequency 
with which different collision rules are used can determine the densities of particles 
with different speeds. 

3.6. Irregular LaHices 

The general structure of cellular automaton fluid models considered here requires 
that particles can occur only at definite positions and with definite discrete velocities. 
But the possible particle positions need not necessarily correspond with the sites 
of a regular lattice. The directions of particle velocities should be taken from the 
directions of links. But the particle speeds may consistently be taken independent of 
the lengths of links. 

As a result, one may consider constructing cellular automaton fluids on quasilat
tices (e.g., Ref. 46), such as that illustrated in Fig. 2. Particle velocities are taken 
to follow the directions of the links, but to have unit magnitude, independent of the 
spatial lengths of the links. Almost all intersections involve just two links, and so 

M = 3 M = 5 M = 7 

Figure 2. Lattices and quasi lattices constructed from grids oriented in the directions of the vertices of 

regular M -sided polygons. An appropriate dual of the M = 5 pattern is the Penrose aperiodic tiling. 
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can support only two-particle interactions. These intersections occur at a seemingly 
irregular set of points, perhaps providing a more realistic model of collisions in 
continuum fluids. 

The possible ea on regular lattices are highly constrained, as discussed in Sec
tion 3.5. But it is possible to construct quasilattices which yield any set of ea. Given 
a set of generator vectors ga' one constructs a grid of equally spaced lines orthogonal 
to each of them.(47) The directions of these lines correspond to the ea. 

If the tangent of the angles between the ga are rational, then these lines must 
eventually form a periodic pattern, corresponding to a regular lattice. But if, for 
example, the ga correspond to the vertices of a pentagon, then the pattern never 
becomes exactly periodic, and only a quasilattice is obtained. A suitable dual of the 
quasilattice gives in fact the standard Penrose aperiodic tiling.(48) 

In three dimensions, one may form grids of planes orthogonal to generator vectors 
ga o Possible particle positions and velocities are obtained from the lines in which 
these planes intersect. 

Continuum equations may be derived for cellular automaton fluids on quasilat
tices by the same methods as were used for regular lattices above. But by appropriate 
choices of generator vectors, three-dimensional quasilattices with effective icosahe
dral point symmetry may be obtained, so that isotropic fluid behavior can be obtained 

even with a single particle speed. 
Quasilattices yield an irregular array of particle positions, but allow only a limited 

number of possible particle velocities. An entirely random lattice would also allow 
arbitrary particle velocities. Momentum conservation cannot be obtained exactly with 
discrete collision rules on such a lattice, but may be arranged to hold on average. 

4. Evaluation of Transport CoeHicients 

4 .1. Introduction 

Section 2 gave a derivation of the general form of the hydrodynamic equations for a 
sample cellular automaton fluid model. This section considers the evaluation of the 
specific transport coefficients that appear in these equations. While these coefficients 
may readily be found by explicit simulation, as discussed in the second paper in this 
series, no exact mathematical procedure is known for calculating them. This section 
considers primarily an approximation method based on the Boltzmann transport 
equation. The results obtained are expected to be accurate for certain transport 
coefficients at low particle densities.4 

4.2. Basis for Boltzmann Transport Equation 

The kinetic equation (2.3.5) gives an exact result for the evolution of the one-particle 
distribution function f a. But the collision term !la in this equation depends on 
two-particle distribution functions, which in tum depend on higher order distribution 

4 Some similar results have been obtained by a slightly different method in Ref. 49. 
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functions, fonning the BBGKY hierarchy of kinetic equations. To obtain explicit 

results for the fa one must close or truncate this hierarchy. 
The simplest assumption is that there are no statistical correlations between the 

particles participating in any collision. In this case, the multiparticle distribution 
functions that appear in na can be replaced by products of one-particle distribution 

fu nctions fa' yielding an equation of the standard Boltzmann transport fonn, which 
can in principle be solved explicitly for the fa' 

Even if particles were uncorrelated before a collision, they must necessarily show 
correlations after the collision. As a result, the factorization of multi particle distri
bution functions used to obtain the Boltzmann transport equation cannot formally 

remain consistent. At low densities, it may nevertheless in some cases provide an 
adequate approximation. 

Correlations produced by a particular collision are typically important only if the 
particles involved collide again before losing their correlations. At low densities, 

particles usually travel large distances between collisions, so that most collisions 
involve different sets of particles. The particles involved in one collision will typically 
suffer many other collisions before meeting again, so that they are unlikely to maintain 

correlations. At high densities, however, the same particles often undergo many 
successive collisions, so that correlations can instead be amplified. 

In the Boltzmann transport equation approximation, correlations and deviations 
from equilibrium decay exponentially with time. Microscopic perturbations may, 
however, lead to collective, hydrodynamic, effects, which decay only as a power of 
time.(29) Such effects may lead to transport coefficients that are nonanalytic functions 

of density and other parameters, as mentioned in Section 2.6. 

4.3. Construction of Boltzmann Transport Equation 

This subsection describes the fonnulation of the Boltzmann transport equation for 
the sample cellular automaton fluid model discussed in Section 2. 

The possible classes of particle collisions in this model are illustrated in Fig. 3. 

The rules for different collisions within each class are related by lattice symmetries. 

But, as illustrated in Fig. 3, several choices of overall rules for each class are often 
allowed by conservation laws. 

In the simplest case, the same rule is chosen for a particular class of collisions at 
every site. But it is often convenient to allow different choices of rules at different 
sites. Thus, for example, there could be a checkerboard arrangement of sites on 
which two-body collisions lead alternately to scattering to the left and to the right. 

In general, one may apply a set of rules denoted by k at some fraction Yk of the 
sites in a cellular automaton. (A similar procedure was mentioned in Section 3.5 as 
a means for obtaining isotropic behavior on three-dimensional cubic lattices.) The 

randomness of microscopic particle configurations suggests that the Yk should serve 
merely to change the overall probabi lities for different types of collisions. 
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+1( * * -j{--

3S Figure 3. Possible types of initial and final states for collisions 

in the cellular automaton fluid model of Section 2. 
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The term !la in the kinetic equation (2.3.5) for la is a sum of terms representing 
possible collisions involving particles of type a. Each term gives the change in 
the number of type a particles due to a particular type of collisions, multiplied by 
the probability for the arrangement of particles involved in the collision to occur. 
In the Boltzmann equation approximation, the probability for a particular particle 
arrangement is taken to be a simple product of the densities Ib for particles that 
should be present, multiplied by factors (1 - I e) for particles that should be absent. 

The complete Boltzmann transport equation for the model of Section 2 thus 
becomes 

where 

!l = [Y2LA(1 , 4) + (Y2 - Y2L)A(2, 5)] - Y2A(O, 3) 

+Y3s [A(1, 3, 5) - A(O, 2, 4)] 

+ Y 3A [A(2, 4,5) + A(1 , 2, 5) - A(O, 3, 5) - A(O, 2, 3) 

+ A(1 , 4, 5) + A(1, 2, 4) - A(O, 3, 4) - A(O, 1,3)] 

+ [Y4A(1, 2, 4, 5) - Y4LA(O, 2, 3, 5) - (Y4 - Y4L)A(O , 1, 3, 4)] 

(4.3 .1) 

(4.3.2) 
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Here 

f a+it nM 

f. 
1 - f. . (1 - a+j) 

a+lt j=! 

(4.3.3) 

where all indices on the fb are evaluated modulo M, and in this case M = 6. Note 
that in Eq. (4.3.2), the index a has been dropped on both .0. and A. 

The Boltzmann transport equations for any cellular automaton fluid model have 
the overall form of Eqs. (4.3.1) and (4.3.2). In a more general case, the simple 
addition of constants ij to the indices a in the definition of 1\ can be replaced by 
transformations with appropriate lattice symmetry group operations. 

Independent of the values of the Yk' fla is seen to satisfy the momentum and 
particle number constraints (2.4.4) and (2.4.5). 

In the following calculations it is often convenient to maintain arbitrary values for 
the Y k so as to trace the contributions of different classes of collisions. But to obtain 
a form for fla that is invariant under the complete lattice symmetry group, one must 
take 

1 
Y2L = Y2R = 272 

1 
Y4L = Y4R = 2"Y4 

4.4. Linear Approximation to Bolamann Transport Equation 

(4.3.4) 

(4.3.5) 

In studying macroscopic behavior, one assumes that the distribution functions fa dif
fer only slightly from their equilibrium values, as in the Chapman-Enskog expansion 
(2.5.1). The fa may thus be approximated as 

(4.4.1) 

With this approximation, the collision term fla in the Boltzmann transport equation 
may be approximated by a power series expansion in the ¢ a: 

fla = L w~~¢b + L w~2L¢b¢C + ... (4.4.2) 
b b,c 

The matrix w(l ) here is analogous to the usual linearized collision operator (e.g., 
Ref. 26). Notice that for a cellular automaton fluid model with collisions involving 
at most K particles, the expansion (4.4.2) terminates at O(¢K). 

Microscopic reversibility immediately implies that the tensors w(n) are all com
pletely symmetric in their indices. The conservation laws (2.4.4) and (2.4.5) yield 
conditions on all the w(n ) of the form 
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In the particular case of w(l), the more stringent conditions 

and 

LW~~=O 
b 

'" e w(l) = 0 ~ a ab 
b 

(4.4.5) 

(4.4.6) 

also apply. 
In the model of Section 2, all particle types a are equivalent up to lattice symmetry 

transformations. As a result, W~:~I)bC .. is always given simply by a cyclic shift 
of w~n~c .. ' so that the complete form of w(n ) can be determined from the first row 
w\~c .. , The w (n) are thus circulant tensors (e.g. , Ref. 50), and the values of their 
components depend only on numerical differences between their indices, evaluated 
modulo M. 

Expansion of (4.3.2) now yields 

w~~ = f2(1 - f)circ{-[y2P + (Y3S + 4Y3A)j f + Y4f 2], 
U - 2 

Ynf + (Y3S + 2Y3A)f f + y 4L f , 
u - 2 

(1- Yn )f + (-Y3S + 2Y3A)f f + (1"4 - Y4L)f , 
u - 2 

- [y2f + (-Y3S + 4Y3A)f f + y 4f ], 
u - 2 

Y2d + (-Y3S +2Y3A)ff +y4L f , 
u - 2 

(1 - Yn )f + (Y3S + 2Y3A)f f + (1"4 - Y4L)f } (4.4.7) 

where j = (1 - f) . Taking for simplicity 1"2 = 1, Yn = ~, Y3S = 1, Y3A = Y4i = 0, 
one finds 

w~~ = f 2(1- f)2 circ [-1 , ~(1 + f) , ~(1- 3f), 2f - 1, ~(1- 3f), ~(1 + f)] 

(4.4.8) 

o 
-f(f -I) 

f(3f -1) 

-2(f - 1)(2f - 1) 

f(3f -I) 

-f(f -1) 

-f(f -1) 

o 
2f(f - 1) 

-f(5f-3) 

(f - 1)(2f - 1) 

-2f2 

f(3f - 1) 

2f(f -1) 

o 
-f(f -1) 

2f(3f - 2) 

(f - 1)(2f - 1) 

-2(f - 1)(2f - 1) f(3f -1) 

(f - 1)(2f - 1) 

2f(3f - 2) 

-f(f -1) 

-f(5f-3) 

-f(f-I) 

o 
-f(f -1) 

-f(5f-3) 

- f(f-1) 

o 
2f(f -1) 

-2f2 

(f - 1)(2f - 1) 

-f(5f-3) 

2f(f -1) 

o 

(4.4.9) 
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4.5. Approach to Equilibrium 

In a spatially uniform system close to equilibrium, one may use a linear approximation 
to the Boltzmann equation (4.3.1): 

B/(f¢a) = LW~~¢b (4.5.1) 
b 

This equation can be solved in terms of the eigenvalues and eigenvectors of the 
matrix w~~. The circulant property of w~~ considerably simplifies the computations 
required. 

An M x M circulant matrix Uab can in general be written in the form(50) 

U ab = u [(a - b + 1) mod M] = U II 1+ U I2TI + .. . + U1MTI(M- I ) (4.5 .2) 

where 

TI = circ[O, 1,0,0, . .. , 0] (4.5.3) 

is an M x M cyclic permutation matrix, and I is the M x M identity matrix. From 
this representation , it follows that all M x M circulants have the same set of right 
eigenvectors ve ' with components given by 

1 2rri(c -l)(a - 1) 
(ve)a = !""II exp 

vM M 
(4.5.4) 

Writing 

M 

f(z) = L Ul aza- I (4.5 .5) 
a=1 

the corresponding eigenvalues are found to be 

( [
2rri(C-l)]) 

Ae = f exp M (4.5 .6) 

Using these results, the eigenvectors of w~~ for the model of Section 2 are found 
to be 

(4.5.7) 
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1 v'3 
-;-(V2 -V6)= 17(0,1,1,0,-1,-1) 
21 2,,6 

where 

1 
(T = exp(irr/3) = 2(1 + iJ3) 

and the corresponding eigenvalues are 

Al = ° 
~=O 

A3 = - 3 f2(1 - f) { [Y20 - f)2 + 4Y3A fO - f) + Y4f2] 

-~ [0- f)2 (~2 -Yn) + f2 (~4 -Y4L) J} 
A4 = - 6Y3Sf30- f)2 

A5 = (A3)* 

A6 = ° 
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(4.5.8) 

Combinations of the cPa corresponding to eigenvectors with zero eigenvalue are 
conserved with time according to Eq. (4.5.1). Three such combinations are associated 
with the conservation laws (2.4.1) and (2.4.2). VI corresponds to La cPa' which is the 
total particle number density. (v2 + v6)/2 and (v2 - v6)/2i correspond, respectively, 
to the x and y components of the momentum density L a eacPa. 

The cPa may always be written as sums of pieces proportional to each of the 
orthogonal eigenvectors V c of Eq. (4.5.7): 

(4.5.9) 

The coefficients t{ll' (t{l2 + t{l6)/2, and (t{l2 - t{l6)/2i give the values of the conserved 
particle and momentum densities in this representation, and remain fixed with time. 

The general solution ofEq. (4.5.1) is given in terms ofEq. (4.5.9) by 

(4.5.10) 

Equation (4.5.8) shows that for any positive choices of the Yk' all nonzero Ac have 
negative real parts. As a result, the associated t{I c must decay exponentially with 
time. Only the combinations of cPa associated with conserved quantities survive at 
large times. 

This result supports the local equilibrium assumption used for the derivation of 
hydrodynamic equations in Section 2. It implies that regardless of the initial average 
densities cPa' collisions bring the system to an equilibrium that depends only on 
the values of the macroscopic conserved quantities (2.4. 1) and (2.4.2). One may 
thus expect to be able to describe the local state of the cellular automaton fluid on 
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time scales large compared to 1i\-cI-1 (AC "* 0) solely in terms of these macroscopic 
conserved quantities. [Section 4.2 nevertheless mentioned some effects not accounted 
for by the Boltzmann equation (4.3.1) that can slow the approach to equilibrium.] 

One notable feature of the results (4.5.8) is that they imply that the final equilibrium 
values of the ¢a are not affected by the choice of the parameters Y2L and Y4L' which 
determine the mixtures of two- and four-particle collisions with different chiralities. 
When the rate for collisions with different chiralities are unequal, however, A3 and 
A5 acquire imaginary parts, which lead to damped oscillations in the ¢ a as a function 
of time. 

When all the types of collisions illustrated in Fig. 3 can occur, Eq. (4.5.8) implies 
that momentum and particle number are indeed the only conserved quantities. If, 
however, only two-particle collisions are allowed, then there are additional conserved 
quantities. In fact, whenever symmetric three-particle collisions are absent, so that 
Y3S = 0, Eq. (4.5.8) implies that the quantities 

M/ 2+j 

Qj = L fa (4.5.11) 
a=i 

where the index a is evaluated modulo M = 6, is conserved. Thus, independent of 
the value of Y 2L' the total momenta on the two sides of any line (not along a lattice 
direction) through the cellular automaton must independently be conserved. 

If three-particle symmetric collisions are absent, the cellular automaton thus 
exhibits a spurious additional conservation law, which prevents the attainment of 
standard local equilibrium, and modifies the hydrodynamic behavior discussed in 
Section 2. Section 4.8 considers some general conditions which avoid such spurious 
conservation laws. 

4.6. Equilibrium Conditions and Transport Coefficients 

Section 4.5 discussed the solution of the Boltzmann transport equation for uniform 
cellular automaton fluids. This section considers nonuniforin fluids, and gives some 
approximate results for transport coefficients. 

The Chapman-Enskog expansion (2.5.1) gives the general form for approxima
tions to the microscopic distribution functions fa' The coefficients c(2) and C~2) that 
appear in this expansion can be estimated using the Boltzmann transport equation 
(4.3.1) from the microscopic equilibrium condition 

(4.6.1) 

In estimating c(2), one must maintain terms in D.a to the second order in ¢b' but one 
can neglect spatial variation in the ¢a' As a result, the Boltzmann equation (4.3.1) 
becomes 

(4.6.2) 
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Substituting forms for the CPa from the Chapman-Enskog expansion (2.5.1), one 
obtains 

C(2) L w~~(u . eb)2 + [C(I)] 2 L w~~c (u . eb)(u . ec ) = 0 (4.6.3) 
b ~ c 

where c(l ) = 2 according to Eq. (2.5.4). Using the forms for w(l ) and w (2) determined 

by the expansion of Eq. (4.3.2), one finds that the two terms in (4.6.3) show exactly 

the same dependence on the Y k . The final result for c(2) is thus independent of the 

Yk' and is given by 

C(2) = 2(1 - 2f)/(1 - f) (4.6.4) 

In the Boltzmann equation approximation, this implies that the coefficient J1 of the 
n(u . V)u term in the hydrodynamic equation (2.6.1) is (1- 2f)/[2(1- f)] . Notice 

that, as discussed in Section 2.6, this coefficient is not in general equal to 1. 

The value of the coefficient C~2) can be found by a slightly simpler calculation, 

which depends only on the linear part w~~ of the expansion of the collision term .fLa . 

Keeping now first-order spatial derivatives of the CPa ' one can determine c~) from the 

equilibrium condition 

which yields 

L c~2)w~~ (eb . V)(eb . u) = c(l ) f(ea . V)(ea . u) 
b 

(4.6.5) 

(4.6.6) 

With the approximations used, Eq. (2.4.7) implies that V . u = O. Then Eq. (4.6.6) 

gives the result 

(4.6.7) 

Using Eq. (2.6.3), this gives the kinematic viscosity of the cellular automaton fluid 

in the Boltzmann equation approximation as 

(4.6.8) 

Some particular values are 

v = [12f(l- f)3r 1 (Y2 = 1, Y3A = Y4 = 0) 

V = [12f(1 - f)(I + 2f - 2f2)rl (Y2 = Y 3A = Y4 = 1) 
(4.6.9) 

For f = 1/ 6 one obtains in these cases v "" 0 .86 and v "" 0.47 , respectively, while for 

f = 1/ 3, V "" 0.84 and v "" 0.26. 
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4.7. A General Nonlinear Approximation 

At least for homogeneous systems, Boltzmann's H theorem (e.g., Ref. 51) yields a 
general form for the equilibrium solution of the full nonlinear Boltzmann equation 
(4.3.1). The H function can be defined as 

(4.7.1) 
a 

where 

- t. 
f a =l_

a
fa (4.7.2) 

This definition is analogous to that used for Fermi-Dirac particles (e.g., Refs. 51, 
52): the factors (l - fa) account for the exclusion of more than one particle on each 
link, as in Eq. (4.3.1). The microscopic reversibility of (4.3.1) implies that when the 
equilibrium condition at H = ° holds, all products fa, fa

2 
••• must be equal for all 

initial and final sets of particles {a I' a2 , •.. } that can participate in collisions. As a 
result, the log(fa) must be simple linear combinations of the quantities conserved in 
the collisions. If only particle number and momentum are conserved, and there are 
no spurious conserved quantities such as (4.5.11), the fa can always be written in the 
form(7,49,54) 

(4.7.3) 

The one-particle distribution functions thus have the usual Fermi-Dirac form 

(4.7.4) 

where a and,B are in general functions of the conserved quantities n and IUI 2 . 

For smalllul2 , one may write 

(4.7.5) 

These expansions can be substituted into Eq. (4.7.4), and the results compared with 
the Chapman-Enskog expansion (2.7.1). 

For u = 0, one finds immediately the "fugacity relation" 

f exp(-a ) =-
o 1- f 

Then, from the expansion (related to that for generating Euler polynomials) 
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together with the constraints (2.7.3)-(2.7.5) one obtains (for d = 2) 

2 
/30 = - 1- f 

a _ \~ - 2f 
1 - ( \ _ f)2 

1- 2f + 2f2 
/31 = (1- f)3 

(1-2f)(3-4f +4f2) 
a2 = - ----=-16-(-I----=f-)4:---=---

(4.7 .8) 

where it has been assumed that the ea form an isotropic set of unit vectors, satisfying 
Eq. (3 . l.5). The complete Chapman-Enskog expansion (2.7.1) then becomes 

{ 
d2 1 - 2f [ 2 1 2] 

J. = f 1 +du · e + --- (u · e ) - -lui 
a a 2 I-f a d 

d 3 1 - 6 f + 6 f2 [ 3 3 2 ] + - (u . e ) - --lui (u · e ) 
6 (1 - f)2 a d + 2 a 

1 1-2f 
+ - 3 [32(1 - 12f + 12f2)(u . ea )4 

48 (1- f) 

(4.7.9) 

+ 384f(l- f)luI2(u · ea )2 + 3(11- 36f + 36f2)lu14
] + .. . } 

where for the last term it has been assumed that d = 2. 
The result (4.6.4) for c (2) follows immediately from this expansion. For cellular 

automaton fluid models with E (6) isotropic, the continuum equation (2.7 .7) holds. 
The results for the coefficients that appear in this equation can be obtained from the 
approximation (4.7.9), and have the simple forms 

C(2) = d
2
(1- 2f) 

2(1- f) 

(4) 2(1-2f) 
c (1+0"4 ,1)= 3(1-f)3 (d=2) 

(4.7.10) 

(4 .7.11) 

These results allow an estimate of the importance of the next-order corrections to 
the Navier-Stokes equations included in Eq. (2.7.7). They suggest that the corrections 
may be important whenever lu/(1- f? 12 is not small compared to l. The corrections 
can thus potentially be important both at high average velocities and high particle 
densities. 

The hexagonal lattice model of Section 2 yields a continuum equation of the form 
(2.7.6), with an anisotropic O(u2Vu) term. Equation (4.7 .9) gives in this case 

3f(I-2j) 
a/(6fux) + 1 _ f (u xaxux + UxayUy + uiyux - UixUy) 
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+ f(1- 2f; {[(55 _ 84f + 84f2)u; 
4(1- f) 

+ 3(13 + 4f - 4f2)u; lux8xux 

+ 2[(1 + 12f - 12f2)u; + 9(1- 2f)2u; lux8yuy 

+ 6[(1 + 12f - 12f2)u; + (1- 2f)21uy8yux 

+ 3[(13 + 4f - 4f2)u; + (13 - 28f + 28f2)u; lu y8xuy} = 0 

3f(1- 2f) 
8t (6fu y) + 1- f (-u x8xux + ux8xu y + uy8xux - uiyu) 

+ ~~~ = ~;; {[(35 - 36f + 36f2)u; 

+ 307 - 44f + 44f2)u; lux8yux 

+ 2[0 + 12f - 12f2)u; + 9(1- 2f)2u; lux8xu y 

+6[0 + 12f -12f2)u; +0-2f)21uixux 

+ 3[(17 - 44f + 44f2)U; + (17 - 12f + 12f2)u; luiyUy} = 0 

(4.7.12) 

(4.7. 13) 

The O(uV'u) term is as given in Eq. (2.5 .11). The O(u3V'u) terms are anisotropic, 
and are not even invariant under exchange of x and y coordinates (If / 2 rotation) . For 
small densities f, Eqs. (4.7.12) and (4.7.13) become 

1 
8/ux) + 2(ux8xux + ux8yuy + uy8yux - uy8xuy) 

+ 2~ [(55u ; + 39u; )ux8xux + 2(u; + 9u;)ux8yuy 

+ 6(u; + u; )u y8yux + 39(u; + u; )u y8xuyl = 0 

1 
8/u y) + 2(-ux8xux + ux8xu y + uixux - UiyUy) 

1 
+ 24 [(35u ; + 51u; )ux8yux + 2(u; + 9u; )ux8xu y 

+ 6(u; + u; )uixux + 51(u; + u; )u y8yuyl = 0 

(4.7 .14) 

(4.7 .15) 

The results (4.7.10) and (4.7.11) follow from the Fermi-Dirac particle distribution 
(4.7.4). If instead an arbitrary number of particles were allowed at each site, the 
equilibrium particle distribution (4.7.4) would take on the Maxwell-Boltzmann form 

(4.7.16) 

With this simpler form, more complete results for fa as a function of nand u can 
be found . Results which are isotropic to all orders in u can be obtained only for an 
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infinite set of possible particle directions, parametrized, say, by a continuous angle B. 
In this case, the number and momentum densities (2.4.1) and (2.4.2) may be obtained 
as integrals 

I 12

" - I(B) dB = I 
27r 0 

1 12
" - e(B)/(B)d(} = lu 

27r 0 

With the distribution (4.7.16), these integrals become 

1 12
" - exp(-a - f3u cos B) dB = e-Q 10(j3u) = I 

27r 0 

1 12

" - exp(-a - f3u cos B) cos () u/u dB = -e-Q II (j3u)u / u = lu 
27r 0 

where u = lui, and the I/ z) are modified Bessel functions (e.g., Ref. 53) 

00 (z/2t+2n 
I(z )=" ,10(0)=1,//0)=0 (v>O) 
v ~ n!(v+n)! 

t(1-x2r- I/2e-zx dx =7rz-V (2v-l)!!Iv(z) 
i -I 
Iv_ I(Z) - Iv+I(Z) = (2v/z)lv(z) 

(4.7.17) 

(4.7.18) 

(4.7.19) 

(4.7.20) 

(4.7.21) 

(4.7.22) 

(4.7.23) 

The rapid convergence of the series (4.7.21) means that Eqs. (4.7.19) and (4.7.20) 
provide highly accurate approximations even for a small number of discrete directions 
ea' [For example, with M = 6, a = 0, f3 = 1, and u = (1, 1), the error in Eq. (4.7.19) 
is less than 10-9 .] 

For the simple distribution (4.7.16) the momentum flux density tensor (2.4.9) may 
be evaluated in direct analogy with Eqs. (4.7.19) and (4.7.20) as 

flij = e-Q [~/o(f3U)Oij + 12(f3u ) C~~j - ~Oij)] (4.7.24) 

Using the recurrence relation (4.7.23) , and substituting the results (4.7.19) and 
(4.7.20), this may be rewritten in the form 

fl .. = I -lo(f3u)o. + 1 + - _'_J --0 [1 (2) (U .U. 1 )] 
IJ 2 IJ f3 u2 2 IJ 

(4.7.25) 

Combining Eqs. (4.7.19) and (4.7.20), one finds that the function f3(f, u) is inde-
pendent of I, and can be determined from the implicit equation 

II (f3u) lo(f3u) 
--=--=-u 
10(f3u) 10(f3u) 

(4.7.26) 
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Expanding in powers of u2, as in Eq. (4.7.5), yields 

130 = -2, 

Equation (4.7.19) then gives 

a(u, f) = L an u2n 

n=O 

In the limit u ~ 1, 13 ~ -00. 

25 
a--

3 - 36' 
133 

a --
4 - 192 

(4.7.27) 

(4.7.28) 

The above results immediately yield values for the transport coefficients c(n) in 
the Chapman-Enskog expansion: 

C(2) = 2 

2 
C(4)(1 +IT ) =-

4, 1 3 

(4.7.29) 

(4.7.30) 

independent of density. Equation (4.7.29) imples that the coefficient J1 of the con
vective term in the Navier-Stokes equation (2.6.1) is equal to 1/2. The deviation 
from the Galilean invariant result 1 is associated with the constraint of fixed speed 
particles. 

Figure 4 shows the exact result for f3(u) obtained from Eq. (4.7.26), compared 
with series expansions to various orders. Significant deviations from the O(u2 ) 

"Navier-Stokes" approximation are seen for u ~ 0.4. 
For Fermi-Dirac distributions of the form (4.7.4), the integrals (4.7.19) and 

(4.7.20) can only be expressed as infinite sums of Bessel functions. 

4.8. Other Models 

The results obtained so far can be generalized directly to a large class of cellular 
automaton fluid models. 

In the main case considered in Section 3, particles have velocities corresponding 
to a set of M unit vectors ea' If this set is invariant under inversion, then both ea 
and -ea always occur. As a result, two particles colliding head on with velocities 
ea and -ea can always scatter in any directions eb and -eb with b *- a. One simple 
possibility is to choose the rules at different sites so that each scattering direction 
occurs with equal probability. If only such two-particle collisions are possible (as in 
a low-density approximation), and only one particle is allowed on each link, then the 
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- (2 + ~) 

0.0 0.2 0.4 0.6 O.H 

II 

Figure 4. Dependence of {3(u) from Eq. (4.7.16) on the magnitude u of the macroscopic velocity. The 

results are for Maxwell-Boltzmann particles with unit speeds and arbitrary directions in two dimensions. 

The function {3(u) appears both in the microscopic distribution function (4.7.16) and in the macroscopic 

momentum flux tensor (4.7.25). The result for {3(u) from an exact solution of the implicit equation (4.7.26) 

is given, together with results from the series expansion (4.7.27). The O(u2 ) result corresponds to the 

Navier-Stokes approximation. Deviation from the exact result is seen for u ~ 0.4. 

Boltzmann transport equation becomes 

(4.8.1) 

where fa is the distribution function for particles with direction -ea. To second order 
in the expansion (4.4.2) this gives 

B/(f¢a)+ea · V(f¢a) = f2(1- f)M-3 [-(¢a +¢a)+ M ~2 L _(¢b +¢ii)] 
b#J ,a 

+ 1'(1- f)M-4(l- 2f) [-000, + M ~ 2 "E,: 0,0'] 

+ f\l - f)M-4 [- ~' _ ¢b¢c + M ~ 2 £;(¢a¢b + ¢a¢ii)] (4.8.2) 
b,C'kl ,a;f:'Fb 

where I:' denotes summation over the triangular region in which the indices form a 
strictly increasing sequence. 

The form of the ¢ a for a homogeneous system can be obtained from the general 
equilibrium conditions of Section 4.7. The coefficients c(n) in the Chapman-Enskog 
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expansion are then given by Equations (4.7.10) and (4.7.11). The convective transport 
coefficient J1 in the Navier-Stokes equation (2.6.1) is thus given by 

d 2(1- 2f) 
J1 = 8(1- f) 

(4.8.3) 

The c~) cannot be obtained by the methods of Section 4.7. But from Eq. (4.8.2) 
one may deduce immediately the linearized collision term 

2 
Xa = M -2 

(4.8.4) 

Then, in analogy with Eq. (4.6.8), the kinematic viscosity for the cellular automaton 
fluid is found to be 

M-2 
v = ------::-----:-:-7 

2d(d + 2)Mj2(1- f)M -3 

For an icosahedral set of ea , with d = 3 and M = 12, this yields 

v = [36f2(1- f)9rl 

(4.8.5) 

(4.8.6) 

Several generalizations may now be considered. First, or e may allow not just one, 
but, say, up to K particles on each link of the cellular automaton array. In the limit 
K ~ 00 an arbitrary density of particles is thus allowed in each cell. The Boltzmann 
equation for this case is the same as (4.8.1), but with all (1- f e) factors omitted. The 
resulting transport coefficients are 

1 
J1=-

2 
M-2 

v=----____::_ 
2d(d +2)Mj2 

(4.8.7) 

(4.8.8) 

Another generalization is to allow collisions that involve more than two particles. 
The simplest such collisions are "composite" ones, formed by superposing collisions 
involving two or less particles. The presence of such collisions changes the values 
of transport coefficients, but cannot affect the basic properties of the model. The 
four-particle and asymmetric three-particle collisions in the hexagonal lattice model 
of Section 2 are examples of composite collisions. They increase the total collision 
rate, and thus, for example, decrease the viscosity, but do not change the overall 
macroscopic behavior of the model. 

In general, collisions involving k particles can occur if the possible ea are such 
that 

(4.8.9) 

for some sets of incoming and outgoing particles a i and bi • Cases in which all the 
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a j and bj are distinct may be considered "elementary" collisions. In the hexagonal 
lattice model of Section 2, only two-particle and symmetric three-particle collisions 
are elementary. 

No elementary three-particle collisions are possible on primitive and body-centered 
cubic three-dimensional lattices, or with ea corresponding to the vertices of icosahe
dra or dodecahedra. For a face-centered cubic lattice, however, eight distinct triples 
of ea sum to zero [an example is (1, -1, 0) + (0, I, -1) + (-1, 0, 1)], so that elementary 
three-particle collisions are possible. 

One feature of the hexagonal lattice model discussed in Section 2 is the existence 
of the conservation law (4.5.11) when elementary three-body symmetric collisions 
are absent. Such spurious conservation laws exist in any cellular automaton fluid 
model in which all particles have the same speed, and only two-particle collisions 
can occur. Elementary three-particle collisions provide one mechanism for avoiding 
these conservation laws and allowing the equilibrium of Section 4.7 to be attained. 

4.9. Multiple Speed Models 

A further generalization is to allow particles with velocities ea of different magnitudes. 
This generalization is significant not only in allowing two-particle collisions alone to 
avoid the spurious conservation laws of Section 4.5, but also in making it possible to 
obtain isotropic hydrodynamic behavior on cubic lattices, as discussed in Section 3.5. 

One may define a kinetic energy 1/21ea12 that differs for particles of different 
speeds. In studies of processes such as heat conduction, one must account for the 
conservation of total kinetic energy. In many cases, however, one considers systems 
in contact with a heat bath, so that energy need not be conserved in individual 
collisions. 

In a typical case, one may then take pairs of particles with speed Sj colliding head 
on to give pairs of particles with some other speed Sj' In general, different collision 
rules may be used on different sites, typically following some regular pattern, as 
discussed in Section 4.3. Thus, for example, collisions between speed Sj particles 
may yield speed Sj particles at a fraction Yj->j of the sites. 

The number mj of possible particles with speed Sj = (lea 12)1 /2 that can occur at 
each site is determined by the structure of the lattice. The collision rules at different 
sites may be arranged, as in Section 4.8, to yield particles of a particular speed Sj 

with equal probabilities in each of the mj possible directions. 
In a homogenous system, the probability!; for a link with speed Sj to be populated 

should satisfy the master equation 

where it assumed that 

.L Yj->j = .L Yj-> j = 1 
j 

(4.9.1) 

(4.9.2) 
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and! is the reduced particle density given by Eq. (4.7.2). With two speeds, r ij 

becomes 

r
ij 

= (-YI -+2
m

l Y2-+ l
m
2) (4.9 .3) 

YI-+2m l - Y2-+l m 2 

The solutions of Eq. (4.9.1) can be found in terms of the eigenvalues and correspond
ing eigenvectors of this matrix: 

A=O: (4.9.4) 

A = -(YI -+2ml + Y 2-+ lm2) : (-1 , 1) (4.9 .5) 

In the large-time limit, only the equilibrium eigenvector (4.9.4) should survive, giving 
a ratio of reduced particle densities 

- 2 
1 2 YI -+2 m l 
-2 
II Y 2-+ l m 2 

For three particle speeds, one finds the equilibrium conditions 
- 2 

1 2 = m l YI -+2Y 3-+ 1 +YI -+2Y 3-+2 +YI -+3Y 3-+2 
-2 
II m 2 Y 2-+ IY3-+ 1 + Y2-+ I Y 3-+2 + Y2-+3Y3-+ 1 
- 2 

1 3 m I Y 1-+2Y2-+3 + Y 1-+3Y 2-+ 1 + Y 1-+3Y2-+3 
-2 
II m 3 Y 2-+IY3-+ 1 + Y 2-+ I Y 3-+2 + Y 2-+3 Y 3-+ 1 

(4.9.6) 

(4.9.7) 

Different choices for the Yk yield different equilibrium speed distributions. The 
probabilities Ii give the weights w(s,2) that appear in Eq. (3.1.16). Equation (4.9.6) 
shows that by choosing 

(4.9.8) 

one obtains a ratio of weights for the model of Eq. (3.5 .1) that satisfy the condition 
(3.5.5) for the isotropy of E (4) . [There is a small correction to equality in Eq. (4.9.8) 
associated with the difference between I and f.] 

On a cubic lattice, one may similarly satisfy the condition (3 .5.12) for the isotropy 
of E (4) simply by taking 1 3 = 0, and 

(4.9.9) 

In this way, one may obtain approximate isotropic hydrodynamic behavior on a 
three-dimensional cubic lattice. 

4 . 10. Tagged Particle Dynamics 

In the discussion above, all the particles in the cellular automaton fluid were assumed 
indistinguishable. This section considers the behavior of a small concentration of 
special "tagged" particles. 

The density ga of tagged particles with direction ea satisfies an equation of the 
Fokker-Planck type (e.g., Ref. 26): 

(4.10.1) 

400 



Cellular Automoton Fluids: Bosic Theory (19861 

Assuming as in the Boltzmann equation approximation that there are no correlations 
between particles at different sites, the collision term of Eq. (4.10.1) may be written 
in the form 

Ela = L Babgb (4.10.2) 
b 

where Bab gives the probability that a particle that arrives at a particular site from 
direction eb leaves in direction ea with a oF b. The probability is averaged over 
different arrangements of ordinary particles. Various deterministic rules may be 
chosen for collisions between ordinary and tagged particles. The simplest assumption 
is that on average the tagged particles take the place of any of the outgoing particles 
with equal probability. 

Conservation of the total number of tagged particles implies 

(4.10.3) 
a 

The total momentum of tagged particles is not conserved; the background of ordinary 
particles acts like a "heat bath" which can exchange momentum with the tagged 
particles through the noise term Ela. Assuming a uniform background fluid, one may 
make an expansion for the ga of the form 

The total number of tagged particles then satisfies the equation 

a g +d(l)~E(2)aag = 0 
t M I} I} 

(4.10.4) 

(4.10.5) 

where the collision term disappears as a result ofEq. (4.10.3). With the ea chosen so 
that E~~) is isotropic, Eq. (4.10.5) becomes the standard equation for self-diffusion, 

with the diffusion coefficient D given by 

D = -~d(l ) 
d 

(4.10.6) 

(4.10.7) 

The value of d(l) must be found by solving Eq. (4.10.1) for ga using the approxi
mation (4.10.4). The equilibrium condition for Eq. (4.10.1) in this case becomes 

(ea· V)g = d(l) L Babeb . Vg 
b 

(4.10.8) 

Thus -d(l ) is given in this approximation by the mean free path i\. for particle scatter
ing, so that the diffusion coefficient is given by the standard kinetic theory formula 

1 
D=-i\. 

d 
(4.10.9) 
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For the hexagonal lattice model of Section 2, 

D = {2f2(l- f)2[(l- f)2 + (Y3S + 4Y3A)f(1- f) + Y4 f 2W' (4.10.10) 

5. Some Extensions 

The simple physical basis for cellular automaton fluid models makes it comparatively 
straightforward for them to include many of the physical effects that occur in actual 
fluid experiments. 

Boundaries can be represented by special sites in the cellular automaton array. 
Collisions with boundaries conserve particle number, but not particle momentum. 
One possibility is to choose boundary collision rules that exactly reverse the ve
locities of all particles, so that particles in a layer close to the boundary have zero 
average momentum. This choice yields macroscopic "no slip" boundary conditions, 
appropriate for many solid surfaces (e.g., Ref. 27). For boundaries that consist of 
flat segments aligned along lattice directions, an alternative is to take particles to 
undergo "specular" reflection, yielding a zero average only for the transverse compo
nent of particle momentum, and giving "free slip" macroscopic boundary conditions. 
The roughness of surfaces may be modeled explicitly by including various combi
nations of these microscopic boundary conditions (corresponding, say, to different 
coefficients of accommodation). 

Arbitrarily complex solid boundaries may be modeled by appropriate arrange
ments of boundary cells. To model, for example, a porous medium one can, for 
example, use a random array of "boundary" cells with appropriate statistical proper
ties. 

A net flux of fluid can be maintained by continually inserting particles on one 
edge with an appropriate average momentum and extracting particles on an oppo
site edge. The precise arrangement of the inserted particles should not affect the 
macroscopic properties of the system, since microscopic processes should rapidly 
establish a microscopically random state of local equilibrium. Large-scale inho
mogeneities, perhaps representing "free stream turbulence" (e.g., Ref. 4), can be 
included explicitly. 

External pressure and density constraints, whether static or time-dependent, can 
be modeled by randomly inserting or extracting particles so that local average particle 
densities correspond to the macroscopic distribution required. 

External forces can be modeled by randomly changing velocities of individual 
particles so as to impart momentum to the fluid at the required average rate. Moving 
boundaries can then be modeled by explicit motion of the special boundary cells, 
together with the inclusion of an appropriate average momentum change for particles 
striking the boundary. Gravitational and other force fields can also be represented in 
a "quantized approximation" by explicit local changes in particle velocities. 

Many other physical effects depend on the existence of surfaces that separate 
different phases of a fluid or distinct immiscible fluids. Toe existence of such 
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surfaces requires collective ordering effects within the system. For some choices of 
parameters, no such ordering can typically occur. But as the parameters change, phase 
transitions may occur, allowing large correlated regions to form. Such phenomena 
will be studied elsewhere. (Surface tension effects have been observed in other 
two-dimensional cellular automata. (3») 

6. Discussion 

Partial differential equations have conventionally formed the basis for mathematical 
models of continuum systems such as fluids. But only in rather simple circumstances 
can exact mathematical solutions to such equations be found. Most actual studies 
of fluid dynamics must thus be based on digital computer simulations, which use 
discrete approximations to the original partial differential equations (e.g., Ref. 55). 

Cellular automata provide an alternative approach to modeling fluids and other 
continuum systems. Their basic constituent cells are discrete, and ideally suited to 
simulation by digital computers. Yet collections of large numbers of these cells can 
show overall continuum behavior. This paper has given theoretical arguments that 
with appropriate rules for the individual cells, the overall behavior obtained should 
follow that described by partial differential equations for fluids. 

The cellular automata considered give simple idealized models for the motion 
and collision of microscopic particles in a fluid. As expected from the second law 
of thermodynamics, precise particle configurations are rapidly randomized, and may 
be considered to come to some form of equilibrium. In this equilibrium, it should 
be adequate to describe configurations merely in terms of probabilities that depend 
on a few macroscopic quantities, such as momentum and particle number, that are 
conserved in the microscopic particle interactions. Such averaged macroscopic 
quantities change only slowly relative to the rate of particle interactions. Partial 
differential equations for their behavior can be found from the transport equations 
for the average microscopic particle dynamics. 

So long as the underlying lattice is sufficiently isotropic, many cellular automata 
yield in the appropriate approximation the standard Navier- Stokes equations for con
tinuum fluids. The essential features necessary for the derivation of these equations 
are the conservation of a few macroscopic quantities, and the randomization of all 
other quantities, by microscopic particle interactions. The Navier-Stokes equations 
follow with approximations of low fluid velocities and velocity gradients. The sim
plicity of the cellular automaton model in fact makes it possible to derive in addition 
next order corrections to these equations. 

The derivation of hydrodynamic behavior from microscopic dynamics has never 
been entirely rigorous. Cellular automata can be considered as providing a simple 
example in which the necessary assumptions and approximations can be studied in 
detail. But strong support for the conclusions comes from explicit simulations of 
cellular automaton fluid models and the comparison of results with those from actual 
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experiments. The next paper in this series will present many such simulations. 

The cellular automaton method of this paper can potentially be applied to a wide 

variety of processes conventionally described by partial differential equations. 

One example is diffusion. At a microscopic level, diffusion arises from random 

particle motions. The cellular automata used above can potentially reproduce diffu

sion phenomena, as discussed in Section 4.10. But much simpler cellular automaton 

rules should suffice. The derivation of the diffusion equation requires that the num

ber of particles be conserved. But it is not necessary for total particle momentum to 

be conserved. Instead, particle directions should be randomized at each site. Such 

randomization can potentially be achieved by very simple cellular automaton rules, 

such as that of Ref. 20. Thus, one may devise cellular automaton methods for the 
solution of the diffusion equation,(56) which in turn gives a relaxation method for 

solving Laplace, Poisson, and related equations. 

Whenever the physical basis for partial differential equations involves large num

bers of particles or other components with local interactions, one can expect to derive 

an effective cellular automaton model. For systems such as electromagnetic or grav

itational fields, such models can perhaps be obtained as analogues of lattice gauge 

theories. 

Appendix: SMP Programs 

This appendix contains a sample SMP(l7) computation of the macroscopic equations 

for the hexagonal lattice cellular automaton fluid model of Section 2. 

The SMP definitions are as follows: 

/. two-dimensional case ./ 
d:2 

/. define position and velocity vectors ./ 
r:{x,y} 
u:{ux,uy} 

/. generate polygonal set of lattice vectors ./ 
<XTrig 
polygon[$n) :: (e:Ar[$n,{Cos[2Pi S/$n),Sin[2Pi $/$n)}) 

/. calculate terms in number density, momentum vector and stress tensor ./ 
suma[$x) :: Ex[Sum[$x,{a,l,Len[e)})) 
nterm[$f) :: suma[$f[a)) 
uterm[$f) :: suma[e[a) $f[a)) 
piterm[$f) :: suma[e[a) •• e[a) $f[a)) 

/* define vector analysis operators ./ 
egrad[$x,$a) :: Sum[e[$a) [i) Dt[$x,r[i)),{i,l,d}) 
div[$x) :: Sum[Dt[$x[i),r[i)),{i,l,d}) 

/. terms in Chapman-Enskog expansion ./ 
n : f Len[e) 
ceO [$a) f 
cel[$a) : f e[$a).u 
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ce2[$a] : f «e[$a].u)A2 - u.u/2) 
ce2d[$a] : f (egrad[e[$a].u,$a] - div[u]/2) 
celist : {ceO,cel,ce2,ce2d} 

/. specify commutativity of second derivatives ./ 
Dt[$f,$l,{$2_-(Ord[$2,$1]>0),l}] :: Dt[$f,$2,$1] 

/. define printing of derivatives ./ 
_Dt[Pr] [[$l,$2]]::Fmt[{{O,O},{l,-1},{2,O}},D,$2,$1] 
_Dt[Pr][[$l,$2{$3,l}]]::Fmt[{{O,O},{l,-1},{2,-1},{3,O}},D,$2,$3,$1] 

The following is a transcript of an interactive SMP session: 

.1[1]:: <"cafluid.smp" /. load definitions ./ 

.1[2]:: polygon[6] /. set up for hexagonal lattice ./ 

1/2 1/2 1/2 1/2 
3 3 - 3 -3 

.0[2]: {{1/2,----},{-1/2,----},{-l,O},{-1/2,------},{1/2,------},{l,O}} 
2 2 2 2 

.1[3]:: Rap[nterm,celist] /. find contributions to number density from 
terms in Chapman-Enskog expansion ./ 

.0[3]: {6f,O,O,O} 

.1[4]:: Rap[uterm,celist] /. find contributions to momentum vector ./ 

.0[4]: {{O,O},{3f ux,3f uy},{O,O},{O,O}} 

.1[5]:: Rap[piterm,celist] /. stress tensor ./ 

.0[5]:. {{{3f,O},{O,3f}},{{O,O},{O,O}}, 

2 2 2 2 
3f ux 3f uy 3f ux uy 3f ux uy -3f ux 3f uy 

{{------ - ------,--------},{--------,-------- + ------}}, 
4 4 2 2 4 4 

3f D ux 
x 

{{------- -
4 

3f D uy 3f D ux 
Y Y 

------- -------, 
4 4 

3f D uy 
x 

+ -------}, 
4 

3f Dux 
Y 

3f D uy -3f D ux 
x x 

{------- + -------,-------- + 
4 4 4 

3f D uy 
Y 

-------}}} 
4 

.1[6]:: Dt[f,$$]:O; /. make incompressibility approximation ./ 

.1[7]:: Fac[Rap[div,G5]] /. contributions to momentum equation ./ 
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3f (u.x D u.x + u.x D uy + uy D u.x - uy D uy) 
x y y x 

.0[7]:. {{O,O},{O,O},{------------------------------------------, 
2 

-3f (u.x D u.x - u.x D uy - uy D u.x - uy D uy) 
Y x x y 

-------------------------------------------}, 
2 

3f (D u.x + D u.x) 3f (D uy + D uy) 
xx yy xx yy 

{------------------,------------------}} 
4 4 
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Cellular Automata 

1983 

Introduction 

It appears that the basic laws of physics relevant to everyday phenomena are now 
known. Yet there are many everyday natural systems whose complex structure and 
behavior have so far defied even qualitative analysis. For example, the laws that 
govern the freezing of water and the conduction of heat have long been known, but 
analyzing their consequences for the intricate patterns of snowflake growth has not 
yet been possible. While many complex systems may be broken down into identical 
components, each obeying simple laws, the huge number of components that make 
up the whole system act together to yield very complex behavior. 

In some cases thi s complex behavior may be simulated numerically with just a 
few components. But in most cases the simulation requires too many components, 
and this direct approach fails. One must instead attempt to distill the mathematical 
essence of the process by which complex behavior is generated. The hope in such 
an approach is to identify fundamental mathematical mechanisms that are common 
to many different natural systems. Such commonality would correspond to universal 
features in the behavior of very different complex natural systems. 

To discover and analyze the mathematical basis for the generation of complexity, 
one must identify simple mathematical systems that capture the essence of the process. 
Cellular automata are a candidate class of such systems. This article surveys their 
nature and properties, concentrating on fundamental mathematical features. Cellular 
automata promise to provide mathematical models for a wide variety of complex 
phenomena, from turbulence in fluids to patterns in biological growth. The general 
features of their behavior discussed here should form a basis for future detailed 
studies of such specific systems. 

Originally published in Los Alamos Sciellce , volume 9, pages 2-2 1 (Fall 1983). 
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The Nature of Cellular Automata and a Simple Example 

Cellular automata are simple mathematical idealizations of natural systems. They 
consist of a lattice of discrete identical sites, each site taking on a finite set of, 
say, integer values. The values of the sites evolve in discrete time steps according 
to deterministic rules that specify the value of each site in terms of the values of 
neighboring sites. Cellular automata may thus be considered as discrete idealizations 
of the partial differential equations often used to describe natural systems. Their 
discrete nature also allows an important analogy with digital computers: cellular 
automata may be viewed as parallel-processing computers of simple construction. 

As a first example of a cellular automaton, consider a line of sites , each with value 
o or I (Fig. 1). Take the value of a site at position i on time step t to be air) . One 
very simple rule for the time evolution of these site values is 

(1+ 1) (I) + (I) 
a i = a i_ I a i+1 mod 2, (1 ) 

where mod 2 indicates that the 0 or I remainder after division by 2 is taken. According 
to this rule, the value of a particular site is given by the sum modulo 2 (or, equivalent
ly, the Boolean algebra "exclusive or") of the values of its left- and right-hand nearest 
neighbor sites on the previous time step. The rule is implemented simultaneously at 
each site.· Even with this very simple rule quite complicated behavior is nevertheless 
found. 

Fractal Patterns Grawn fram Cellular Automata 

First of all, consider evolution according to Eq. I from a "seed" consisting of a single 
site with value I, all other sites having value O. The pattern generated by evolution for 
a few time steps already exhibits some structure (Fig. 2). Figure 3 shows the pattern 
generated after 500 time steps. Generation of this pattern required application of 
Eq. I to a quarter of a million site values. The pattern of Figs. 2 and 3 is an intricate 
one but exhibits some striking regularities. One of these is "self-similarity." As 
illustrated in Fig. 3, portions of the pattern, when magnified, are indistinguishable 
from the whole. (Differences on small scales between the original pattern and the 
magnified portion disappear when one considers the limiting pattern obtained after 
an infinite number of time steps.) The pattern is therefore invariant under rescaling of 
lengths. Such a self-similar pattern is often called a fractal and may be characterized 
by a fractal dimension. The fractal dimension of the pattern in Fig. 3, for example, is 

10110100011010110100 

••• •••• 
Figure 1. A typical configuration in the simple cellular automaton described by Eq. 1, consisting of a 

sequence of sites with values 0 or 1. Sites with value 1 are represented by squares; those with value 0 are 

blank . 

• In the very simplest computer implementation a separate array of updated site values must be maintained and copied 
back to the orig inal site value array when the updating process is complete. 
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Figure 2. A few time steps in the evolution of the simple cellular automaton defined by Eq. I, starting 

from a "seed" containing a single nonzero site. Successive lines are obtained by success ive applications 

of Eq. I at each site. According to thi s rule, the value of each site is the sum modulo 2 of the values of 

its two nearest neighbors on the previous time step. The pattern obtained with this simple seed is Pascal 's 

triangle of binomial coefficients, reduced modulo 2. 

log2 3 = log 3/ log 2 :>< 1.59. Many natural systems, including snowflakes, appear to 
exhibit fractal patterns. (See Benoit B. Mandelbrot, The Fractal Geometry of Nature, 
W. H. Freeman and Company, 1982.) It is very possible that in many cases these 
fractal patterns are generated through evolution of cellular automata or analogous 
processes. 

Self-Organization in Cellular Automata 

Figure 4 shows evolution according to Eq. 1 from a "disordered" initial state. The 
values of sites in this initial state are randomly chosen: each site takes on the value 0 
or 1 with equal probability, independently of the values of other sites. Even though the 
initial state has no structure, evolution of the cellular automaton does manifest some 
structure in the form of many triangular "clearings." The spontaneous appearance of 
these clearings is a simple example of "self-organization." 

The pattern of Fig. 4 is strongly reminiscent of the pattern of pigmentation found 
on the shells of certain mollusks (Fig. 5). It is quite possible that the growth of these 
pigmentation patterns follows cellular automaton rules. 

In systems that follow conventional thermodynamics, the second law of thermo
dynamics implies a progressive degradation of any initial structure and a universal 
tendency to evolve with time to states of maximum entropy and maximum disorder. 
While many natural systems do tend toward disorder, a large class of systems, biolog
ical ones being prime examples, show a reverse trend: they spontaneously generate 
structure with time, even when starting from disordered or structureless initial states. 
The cellular automaton in Fig. 4 is a simple example of such a self-organizing system. 
The mathematical basis of thi s behavior is revealed by considering global properties 
of the cellular automaton. Instead of following evolution from a particular initial 
state, as in Fig. 4, one follows the overall evolution of an ensemble of many different 
initial states. 
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Figure 3. Many time steps in the evolution of the cellular automaton of Fig. 2, generated by applying the 

rule of Eq. I to about a quarter of a million site values. The pattern obtained is "self similar": a part of 

the pattern, when magnified, is indistinguishable from the whole. The pattern has a fractal dimension of 

log23 '" 1.59. 

It is convenient when investigating global properties to consider finite cellular 
automata that contain a finite number N of sites whose values are subject to periodic 
boundary conditions. Such a finite cellular automaton may be represented as sites 
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Figure 4. Evolution of the simple cellular automaton defined by Eq. I, from a disordered initial state 

in which each site is taken to have value 0 or I with equal , independent probabilities. Evolution of the 

cellular automaton even from such a random initial state yields some simple structure. 

arranged, for example, around a circle. If each site has two possible values, as it does 
for the rule of Eq. 1, there are a total of 2N possible states, or configurations, for the 
complete finite cellular automaton. The global evolution of the cellular automaton 
may then be represented by a finite state transition graph plotted in the "state space" 
of the cellular automaton. Each of the 2N possible states of the complete cellular 
automaton (such as the state 110101101010 for a cellular automaton with twelve 
sites) is represented by a node, or point, in the graph, and a directed line connects 
each node to the node generated by a single application of the cellular automaton rule. 
The trajectory traced out in state space by the directed lines connecting one particular 
node to its successors thus corresponds to the time evolution of the cellular automaton 
from the initial state represented by that particular node. The state transition graph 
of Fig. 6 shows all possible trajectories in state space for a cellular automaton with 
twelve sites evolving according to the simple rule of Eq. 1. 

A notable feature of Fig. 6 is the presence of trajectories that merge with time. 
While each state has a unique successor in time, it may have several predeces
sors or no predecessors at all (as for states on the periphery of the state transition 
graph). The merging of trajectories implies that information is lost in the evolu
tion of the cellular automaton: knowledge of the state attained by the system at a 
particular time is not sufficient to determine its history uniquely, so that the evo
lution is irreversible. Starting with an initial ensemble in which all configurations 
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Figure 5. A "cone shell" with a pigmentation pattern reminiscent of the pattern generated by the cellular 

automaton of Fig. 4. (Shell courtesy of P. Hut.) 

occur with any distribution of probabilities, the irreversible evolution decreases the 
probabilities for some configurations and increases those for others. For example, 
after just one time step the probabilities for states on the periphery of the state 
transition graph in Fig. 6 are reduced to zero; such states may be given as initial 
conditions, but may never be generated through evolution of the cellular automaton. 
After many time steps only a small number of all the possible configurations actually 
occur. Those that do occur may be considered to lie on "attractors" of the cellular 
automaton evolution. Moreover, if the attractor states have special "organized" 
features, these features will appear spontaneously in the evolution of the cellular 
automaton. The possibility of such self-organization is therefore a consequence of 
the irreversibility of the cellular automaton evolution, and the structures obtained 
through self-organization are determined by the characteristics of the attractors. 

The irreversibility of cellular automaton evolution revealed by Fig. 6 is to be 
contrasted with the intrinsic reversibility of systems described by conventional ther
modynamics. At a microscopic level, the trajectories representing the evolution of 
states in such systems never merge: each state has a unique predecessor, and no 
information is lost with time. Hence a completely disordered ensemble, in which all 
possible states occur with equal probabilities, remains disordered forever. Moreover, 
if nearby states are grouped (or "coarse-grained") together, as by imprecise mea
surements, then with time the probabilities for different groups of states will tend 
to equality, regardless of their initial values. In this way such systems tend with 
time to complete disorder and maximum entropy, as prescribed by the second law of 
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60 Copies 6 Copies 4 Copies 

Figure 6. The global state transition graph for a finite cellular automaton consisting of twelve sites arranged 

around a circle and evolving according to the simple rule of Eq. 1. Each node in the graph represents one 

of the 4096 possible states, or sequences of the twelve site values , of the cellular automaton. Each node 

is joined by a directed line to a successor node that corresponds to the state obtained by one time step of 

cellular automaton evolution. The state transition graph consists of many disconnected pieces, many of 

identical structure. Only one copy of each structurally identical piece is shown explicitly. Possible paths 

through the state transition graph represent possible trajectories in the state space of the cellular automaton. 

The merging of these trajectories reflects the irreversibility of the cellular automaton evolution. Any initial 

state of this cellular automaton ultimately evolves to an "attractor" represented in the graph by a cycle. For 

this particular cellular automaton all configurations evolve to attractors in at most three time steps. (From 

O. Martin, A. Odlyzko, and S. Wolfram, "Algebraic Properties of Cellular Automata," Bell Laboratories 

report (January 1983) and to be published in Communications in Mathematical Physics.) 

thennodynamics. Tendency to disorder and increasing entropy are universal features 
of intrinsically reversible systems in statistical mechanics. Irreversible systems, such 
as the cellular automaton of Figs. 2, 3, and 4, counter this trend, but universal laws 
have yet to be found for their behavior and for the structures they may generate. One 
hopes that such general laws may ultimately be abstracted from an investigation of 
the comparatively simple examples provided by cellular automata. 

While there is every evidence that the fundamental microscopic laws of physics are 
intrinsically reversible (infonnation-preserving, though not precisely time-reversal 
invariant), many systems behave irreversibly on a macroscopic scale and are ap
propriately described by irreversible laws. For example, while the microscopic 
molecular interactions in a fluid are entirely reversible, macroscopic descriptions of 
the average velocity field in the fluid, using, say, the Navier-Stokes equations, are 
irreversible and contain dissipative tenns. Cellular automata provide mathematical 
models at this macroscopic level. 

Mathematical Analysis of a Simple Cellular Automaton 

The cellular automaton rule of Eq. I is particularly simple and admits a rather 
complete mathematical analysis. 

The fractal patterns of Figs. 2 and 3 may be characterized in a simple alge
braic manner. If no reduction modulo 2 were perfonned, then the values of sites 
generated from a single nonzero initial site would simply be the integers appearing in 
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Pascal 's triangle of binomial coefficients. The pattern of nonzero sites in Figs. 2 

and 3 is therefore the pattern of odd binomial coefficients in Pascal's triangle. (See 

Stephen Wolfram, "Geometry of Binomial Coefficients," to be published in American 
Mathematical Monthly.) 

This algebraic approach may be extended to determine the structure of the state 

transition diagram of Fig. 6. (See O. Martin, A. Odlyzko, and S. Wolfram, "Algebraic 

Properties of Cellular Automata," Bell Laboratories report (January 1983) and to be 

published in Communications in Mathematical Physics.) The analysis proceeds by 

writing for each configuration a characteristic polynomial 

N-l 

A(x) = L aixi , 
i=O 

where x is a dummy variable, and the coefficient of xi is the value of the site at 

position i. In terms of characteristic polynomials, the cellular automaton rule of 

Eq. I takes on the particularly simple form 

A(I+I)(X) = T(x)A (I) (X) mod (x N -1), 

where 

and all arithmetic on the polynomial coefficients is performed modulo 2. The re

duction modulo x N - I implements periodic boundary conditions. The structure of 

the state transition diagram may then be deduced from algebraic properties of the 

polynomial T(x). For even N one finds, for example, that the fraction of states on 

attractors is 2-D2(N), where D2(N) is defined as the largest integral power of 2 that 

divides N (for example, D2(l2) = 4) . 

Since a finite cellular automaton evolves deterministically with a finite total num

ber of possible states, it must ultimately enter a cycle in which it visits a sequence 

of states repeatedly. Such cycles are manifest as closed loops in the state transition 

graph. The algebraic analysis of Martin et al. shows that for the cellular automaton 

of Eq. I the maximal cycle length IT (of which all other cycle lengths are divisors) is 
given for even N by 

ITN=2j = I 
or 

ITN=2(2k+ l) = 2ITN=2k+l ' 

For odd N, IT may be shown to divide 

2 sord N (2) - I 

and in fact is almost always equal to this value (the first exception occurs for N = 37). 

Here sordN (2) is a number theoretical function defined to be the minimum positive 
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integer j for which 2 j = ±1 modulo N. The maximum value of sordN (2) , typically 

achieved when N is prime, is (N - 1)/2. The maximal cycle length is thus of order 

2N /2, approximately the square root of the total number of possible states 2N. 
An unusual feature of this analysis is the appearance of number theoretical con

cepts. Number theory is inundated with complex results based on very simple 

premises. It may be part of the mathematical mechanism by which natural systems 
of simple construction yield complex behavior. 

More General Cellular Automata 

The discussion so far has concentrated on the particular cellular automaton rule 

given by Eq. 1. This rule may be generalized in several ways. One family of rules is 

obtained by allowing the value of a site to be an arbitrary function of the values of 

the site itself and of its two nearest neighbors on the previous time step: 

(1+1 ) _ F( (I) (I) (I) a j - a j _ 1, a j ,aj +1 . 

A convenient notation illustrated in Fig. 7 assigns a "rule number" to each of the 256 

rules of this type. The rule number of Eq. 1 is 90 in this notation. 

Further generalizations allow each site in a cellular automaton to take on an 

arbitrary number k of values and allow the value of a site to depend on the values of 

sites at a distance up to r on both sides, so that 

The number of different rules with given k and r grows as kk" +1 and therefore becomes 

immense even for rather small k and r. 
Figure 8 shows examples of evolution according to some typical rules with various 

k and r values. Each rule leads to patterns that differ in detail. However, the 

examples suggest a very remarkable result: all patterns appear to fall into only four 

Rule 

Rule 
Number 

111 

o 
110 101 

o 
100 011 

010110102 = 90'0 

010 

o 
001 000 

o 

Figure 7. Assignment of rule numbers to cellular automata for which k = 2 and r = I. The values of sites 

obtained from each of the eight possible three-site neighborhoods are combined to form a binary number 

that is quoted as a decimal integer. The example shown is for the rule given by Eq. I. 
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Figure 8. Evolution of some typical cellular automata from disordered initial states. Each group of six 

patterns shows the evolution of various rules with particular values of k and r. Sites take on k possible 

values, and the value of a site depends on the values of sites up to r sites distant on both sides. Different 

colors represent different site values: black corresponds to a value of 0, red to I, green to 2, blue to 3, and 

yellow to 4. The fact that these and other examples exhibit only four qualitative classes of behavior (see 

text) suggests considerable universality in the behavior of cellular automata. The examples on page 420 

for which r = I are labeled by rule number (in the notation of Fig. 7) and behavior class. The examples 

420 



on page 420 for which r = 2 evolve according to rules in which the value of a site depends only on the 

sum of the values of the 2,. + 1 sites in its neighborhood on the previous time step. Such rules may be 

specified by numerical codes C such that the coefficient of 2i in the binary decomposition of C gives the 

value attained by a site if its neighborhood had total value j on the previous time step. These examples are 

labeled by code number and behavior class. (\ am grateful to R. Pike and J. Condon of Bell Laboratories 

for their help in preparing these and other color pictures of cellular automata.) 
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Figure 8 (continued), 
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qualitative classes. These basic classes of behavior may be characterized empirically 
as follows: 

• Class l---evolution leads to a homogeneous state in which, for example, all 
sites have value 0; 

• Class 2---evolution leads to a set of stable or periodic structures that are 
separated and simple; 

• Class 3---evolution leads to a chaotic pattern; 

• Class 4---evolution leads to complex structures, sometimes long-lived. 

Examples of these classes are indicated in Fig. 8. 
The existence of only four qualitative classes implies considerable universality 

in the behavior of cellular automata; many features of cellular automata depend 
only on the class in which they lie and not on the precise details of their evolution. 
Such universality is analogous, though probably not mathematically related, to the 
universality found in the equilibrium statistical mechanics of critical phenomena. In 
that case many systems with quite different detailed construction are found to lie in 
classes with critical exponents that depend only on general , primarily geometrical 
features of the systems and not on their detailed construction. 

Universality Classes in Cellular Automata 

To proceed in analyzing universality in cellular automata, one must first give more 
quantitative definitions of the classes identified above. One approach to such defini
tions is to consider the degree of predictability of the outcome of cellular automaton 
evolution, given knowledge of the initial state. For class 1 cellular automata com
plete prediction is trivial : regardless of the initial state, the system always evolves 
to a unique homogeneous state. Class 2 cellular automata have the feature that 
the effects of particular site values propagate only a finite distance, that is, only 
to a finite number of neighboring sites. Thus a change in the value of a single 
initial site affects only a finite region of sites around it, even after an infinite num
ber of time steps. This behavior, illustrated in Fig. 9, implies that prediction of 
a particular final site value requires knowledge of only a finite set of initial site 
values. In contrast, changes of initial site values in class 3 cellular automata, 
again as illustrated in Fig. 9, almost always propagate at a finite speed forever 
and therefore affect more and more distant sites as time goes on. The value of 
a particular site after many time steps thus depends on an ever-increasing number 
of initial site values. If the initial state is disordered, this dependence may lead 
to an apparently chaotic succession of values for a particular site. In class 3 cel
lular automata, therefore, prediction of the value of a site at infinite time would 
require knowledge of an infinite number of initial site values. Class 4 cellular au
tomata are distinguished by an even greater degree of unpredictability, as discussed 
below. 
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Figure 9. Difference patterns showing the differences between configurations generated by evolution, 

according to various cellular automaton rules. from initial states that differ in the value of a single site. 

Each di ffe rence pattern is labeled by the behavior class of the cellular automaton rule. The effects of 

changes in a single site value depend on the behav ior class of the rule: for class 2 rules the effects have 

finite range; for class 3 rules the effects propagate to neighboring sites indefinitely at a fi xed speed; and 

for class 4 rules the effects also propagate to neighboring sites indefinitely but at various speeds. The 

di fference patterns shown here are analogues of Green's functions for cellular automata. 

Class 2 cellular automata may be considered as "filters" that select particular fea
tures of the initial state. For example, a class 2 cellular automata may be constructed 
in which initial sequences III survive, but sites not in such sequences eventually 
attain value O. Such cellular automata are of practical importance for digital image 
processing: they may be used to select and enhance particular patterns of pixels. 
After a sufficiently long time any class 2 cellular automaton evolves to a state con
sisting of blocks containing nonzero sites separated by regions of zero sites. The 
blocks have a simple form, typically consisting of repetitions of particular site values 
or sequences of site values (such as 10 10 10 ... ). The blocks either do not change 
with time (yielding vertical stripes in the patterns of Fig. 8) or cycle between a few 
states (yielding "railroad track" patterns). 

While class 2 cellular automata evolve to give persistent structures with small 
periods, class 3 cellular automata exhibit chaotic aperiodic behavior, as shown in 
Fig. 8. Although chaotic, the patterns generated by class 3 cellular automata are 
not completely random. In fact , as mentioned for the example of Eq. 1, they may 
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exhibit important self-organizing behavior. In addition and again in contrast to class 
2 cellular automata, the statistical properties of the states generated by many time 
steps of class 3 cellular automaton evolution are the same for almost all possible 
initial states. The large-time behavior of a class 3 cellular automaton is therefore 
determined by these common statistical properties. 

The configurations of an infinite cellular automaton consist of an infinite sequence 
of site values. These site values could be considered as digits in a real number, so that 
each complete configuration would correspond to a single real number. The topology 
of the real numbers is, however, not exactly the same as the natural one for the 
configurations (the binary numbers 0.111111 ... and 1.00000 . .. are identical, but 
the corresponding configurations are not). Instead, the configurations of an infinite 
cellular automaton form a Cantor set. Figure 10 illustrates two constructions for a 
Cantor set. In construction (a) of Fig. 10, one starts with the set of real numbers 
in the interval 0 to 1. First one excludes the middle third of the interval , then the 
middle third of each interval remaining, and so on. In the limit the set consists of an 
infinite number of disconnected points. If positions in the interval are represented by 
ternimals (base 3 fractions , analogous to base 10 decimals), then the construction is 
seen to retain only points whose positions are represented by ternimals containing no 
l 's (the point 0.2202022 is therefore included; 0.2201022 is excluded). An important 
feature of the limiting set is its self-similarity or fractal form: a piece of the set, when 
magnified, is indistinguishable from the whole. This self-similarity is mathematically 
analogous to that found for the limiting two-dimensional pattern of Fig. 3. 

In construction (b) of Fig. 10, the Cantor set is formed from the "leaves" of an 
infinite binary tree. Each point in the set is reached by a unique path from the "root" 
(top as drawn) of the tree. This path is specified by an infinite sequence of binary 
digits, in which successive digits determine whether the left- or right-hand branch is 
taken at each successive level in the tree. Each point in the Cantor set corresponds 
uniquely to one infinite sequence of digits and thus to one configuration of an infinite 
cellular automaton. Evolution of the cellular automaton then corresponds to iterated 
mappings of the Cantor set to itself. (The locality of cellular automaton rules implies 
that the mappings are continuous.) This interpretation of cellular automata leads to 
analogies with the theory of iterated mappings of intervals of the real line. (See 
Mitchell 1. Feigenbaum, "Universal Behavior in Nonlinear Systems," Los Alamos 
Science, Vol. 1, No. 1(1980): 4-27.) 

Cantor sets are parameterized by their "dimensions." A convenient definition of 
dimension, based on construction (a) of Fig. 10, is as follows. Divide the interval 
from 0 to 1 into kn bins, each of width k-n . Then let N(n) be the number of these 
bins that contain points in the set. For large n this number behaves according to 

N(n) _ kdn (2) 

and d is defined as the "set dimension" of the Cantor set. If a set contained all 
points in the interval 0 to 1, then with this definition its dimension would simply 
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Figure 10. Steps in two constructions of a Cantor set. At each step in construction (a), the middle third of 

all intervals is excluded. The fi rst step thus excludes all points whose positions, when expressed as base 3 

fractions, have a I in the fi rst "ternimal place" (by analogy with decimal place), the second step excludes all 

points whose positions have a I in the second ternimal place, and so on. The limiting set obtained after an 

infi nite number of steps consists of an infinite number of disconnected points whose positions contain no 

I 's. The set may be assigned a dimension, according to Eq. 2, that equals log3 2 ", 0.63. Construction (b) 

reflects the topological structure of the Cantor set. lnfinite sequences of digits, representing cellular 

automaton config urations, are seen to correspond uniquely with points in the Cantor set. 

be 1. Similarly, any finite number of segments of the real line would form a set with 
dimension 1. However, the Cantor set of construction (a) , which contains an infinite 

number of disconnected pieces, has a dimension according to Eq. 2 of log3 2 '" 0.63. 
An alternative definition of dimension, agreeing with the previous one for present 

purposes, is based on self-s imilarity. Take the Cantor set of construction (a) in Fig. 10. 
Contract the set by a magnification factor k-m

• By virtue of its self-similarity, the 

whole set is identical to a number, say M (m), of copies of this contracted copy. For 
large m, M(m) ", kdm, where again d is defined as the set dimension. 
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With these definitions the dimension of the Cantor set of all possible configura
tions for an infinite one-dimensional cellular automaton is 1. A disordered ensemble, 
in which each possible configuration occurs with equal probability, thus has dimen
sion 1. Figure 11 shows the behavior of the probabilities for the configurations of 
a typical cellular automaton as a function of time, starting from such a disordered 
initial ensemble. As expected from the irreversibility of cellular automaton evo
lution, exemplified by the state transition graph of Fig. 6, different configurations 
attain different probabilities as evolution proceeds, and the probabilities for some 
configurations decrease to zero. This phenomenon is manifest in the "thinning" of 
configurations on successive time steps apparent in Fig. 11. The set of configurations 
that survive with nonzero probabilities after many time steps of cellular automaton 
evolution constitutes the "attractors" for the evolution. This set is again a Cantor set; 

for the example of Fig. 11 its dimension is log2 K '" 0.88, where K '" 1.755 is the real 
solution of the polynomial equation z3 - z2 + 2z - 1 = O. (See D. A. Lind, "Appli
cations of Ergodic Theory and Sofic Systems to Cellular Automata," University of 
Washington preprint (April 1983) and to be published in Physica D; see also Martin 
et aI., op. cit.) The greater the irreversibility in the cellular automaton evolution, 
the smaller is the dimension of the Cantor set corresponding to the attractors for the 
evolution. If the set of attractors for a cellular automaton has dimension 1, then 
essentially all the configurations of the cellular automaton may occur at large times. 
If the attractor set has dimension less than 1, then a vanishingly small fraction of 

RULE: eealeele (18) 
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Figure 11. Time evolution of the probabilities for each of the 1024 possible configurations of a typical 

class 3 cellular automaton with k = 2 and r = I and of size 10, starting from an initial ensemble in which 

each possible configuration occurs with equal probability. The configurations are specified by integers 

whose binary digits form the sequence of site values. The probability for a particular configuration is 

given on successive lines in a vertical column: a dot appears at a particular time step if the configuration 

occurs with nonzero probability at that time step. In the initial ensemble all configurations occur with 

equal nonzero probabilities, and dots appear in all positions. The cellular automaton evolution modifies 

the probabilities for the configurations, making some occur with zero probability and yielding gaps in 

which no dots appear. This "thinning" is a consequence of the .irreversibility of the cellular automaton 

evolution and is reflected in a decrease of entropy with time. In the limit of cellular automata of infinite 

size, the configurations appearing at large times form a Cantor set. For the rule shown (rule 18 in the 

notation of Fig. 7) the limiting dimension of this Cantor set is found to be approximately 0.88. 
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all possible configurations are generated after many time steps of evolution. The 
attractor sets for most class 3 cellular automata have dimensions less than 1. For 
those class 3 cellular automata that generate regular patterns, the more regular the 
pattern, the smaller is the dimension of the attractor set; these cellular automata are 
more irreversible and are therefore capable of a higher degree of self-organization. 

The dimension of a set of cellular automaton configurations is directly proportional 
to the limiting entropy (or information) per site of the sequence of site values that make 
up the configurations. (See Patrick Billingsley, Ergodic Theory and Information, 
John Wiley & Sons, 1965.) If the dimension of the set was 1, so that all possible 
sequences of site values could occur, then the entropy of these sequences would be 
maximal. Dimensions lower than 1 correspond to sets in which 'some sequences of 
site values are absent, so that the entropy is reduced. Thus the dimension of the 
attractor for a cellular automaton is directly related to the limiting entropy attained 
in its evolution, starting from a disordered ensemble of initial states. 

Dimension gives only a very coarse measure of the structure of the set of config
urations reached at large times in a cellular automaton. Formal language theory may 
provide a more complete characterization of the set. "Languages" consist of a set 
of words, typically infinite in number, formed from a sequence of letters according 
to certain grammatical rules. Cellular automaton configurations are analogous to 
words in a formal language whose letters are the k possible values of each cellular 
automaton site. A grammar then gives a succinct specification for a set of cellular 
automaton configurations. 

Languages may be classified according to the complexity of the machines or com
puters necessary to generate them. A simple class of languages specified by "regular 
grammars" may be generated by finite state machines. A finite state machine is rep
resented by a state transition graph (analogous to the state transition graph for a finite 
cellular automaton illustrated in Fig. 6). The possible words in a regular grammar are 
generated by traversing all possible paths in the state transition graph. These words 
may be specified by "regular expressions" consisting of finite length sequences and 
arbitrary repetitions of these. For example, the regular expression 1 (00)* I represents 
all sequences containing an even number of O's (arbitrary repetition of the sequence 
00) flanked by a pair of 1 's. The set of configurations obtained at large times in class 
2 cellular automata is found to form a regular language. It is likely that attractors for 
other classes of cellular automata correspond to mo~e complicated languages. 

Analogy with Dynamical Systems Theory 

The three classes of cellular automaton behavior discussed so far are analogous to 
three classes of behavior found in the solutions to differential equations (contin
uous dynamical systems). For some differential equations the solutions obtained 
with any initial conditions approach a fixed point at large times. This behavior is 
analogous to class 1 cellular automaton behavior. In a second class of differential 
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equations, the limiting solution at large times is a cycle in which the parameters vary 
periodically with time. These equations are analogous to class 2 cellular automata. 
Finally, some differential equations have been found to exhibit complicated, appar
ently chaotic behavior depending in detail on their initial conditions. With the initial 
conditions specified by decimals, the solutions to these differential equations depend 
on progressively higher and higher order digits in the initial conditions. This phe
nomenon is analogous to the dependence of a particular site value on progressively 
more distant initial site values in the evolution of a class 3 cellular automaton. The 
solutions to this final class of differential equations tend to "strange" or "chaotic" 
attractors (see Robert Shaw, "Strange Attractors, Chaotic Behavior, and Information 
Flow," Zeitschrift fur Naturforschung 36A(1981):80), which form Cantor sets in 
direct analogy with those found in class 3 cellular automata. The correspondence 
between classes of behavior found in cellular automata and those found in contin
uous dynamical systems supports the generality of these classes. Moreover, the 
greater mathematical simplicity of cellular automata suggests that investigation of 
their behavior may elucidate the behavior of continuous dynamical systems. 

A Universal Computation Class of Cellular Automata 

Figure 12 shows patterns obtained by evolution from disordered initial states accord
ing to a class 4 cellular automaton rule. Complicated behavior is evident. In most 
cases all sites eventually "die" (attain value 0). In some cases, however, persistent 
structures that survive for an infinite time are generated, and a few of these persistent 
structures propagate with time. Figure 13 shows all the persistent structures gener
ated from initial states with nonzero sites in a region of twenty or fewer sites. Unlike 
the periodic structures of class 2 cellular automata, these persistent structures have 
no simple patterns. In addition, the propagating structures allow site values at one 
position to affect arbitrarily distant sites after a sufficiently long time. No analogous 
behavior has yet been found in a continuous dynamical system. 

The complexity apparent in the behavior of class 4 cellular automata suggests the 
conjecture that these systems may be capable of universal computation. A computer 
may be regarded as a system in which definite rules are used to transform an initial 
sequence of, say, l's and O's to a final sequence of l 's and O's. The initial sequence 
may be considered as a program and data stored in computer memory, and part of the 
final sequence may be considered as the result of the computation. Cellular automata 
may be considered as computers; their initial configurations represent programs 
and initial data, and their configurations after a long time contain the results of 
computations. 

A system is a universal computer if, given a suitable initial program, its time 
evolution can implement any finite algorithm. (See Frank S. Beckman, Mathematical 
Foundations of Programming, Addison-Wesley Publishing Co., 1980.) A universal 
computer need thus only be "reprogrammed," not "rebuilt," to perform each possi-
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Figure 12. Evolution of a class 4 cellular automaton from several disordered initial states. The bottom 

example has been reproduced on a larger scale to show detail. In this cellular automaton, for which k = 2 

and r = 2, the value of a site is I only if a total of two or four sites out of the five in its neighborhood 

have the value I on the previous time step. For some initial states persistent structures are formed, some 

of which propagate with time. This cellular automaton is believed to support universal computation, so 

that with suitable initial states it may implement any finite algorithm. 
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Figure 13. Persistent structures exhibited by the class 4 cellular automaton of Fig. 12 as it evolves from 

initial states with nonzero sites in a region of twenty or fewer sites. These structures are almost sufficient 

to demonstrate a universal computation capability for the cellular automaton. 

ble calculation. (All modern general-purpose electronic digital computers are, for 
practical purposes, universal computers; mechanical adding machines were not.) If 
a cellular automaton is to be a universal computer, then, with a fixed rule for its time 
evolution, different initial configurations must encode all possible programs. 

The only known method of proving that a system may act as universal computer is 
to show that its computational capabilities are equivalent to those of another system 
already classified as a universal computer. The Church-Turing thesis states that no 
system may have computational capabilities greater than those of universal comput
ers. The thesis is supported by the proven equivalence of computational models such 
as Turing machines, string-manipulation systems, idealized neural networks, digital 
computers, and cellular automata. While mathematical systems with computational 
power beyond that of universal computers may be imagined, it seems likely that no 
such systems could be built with physical components. This conjecture could in prin
ciple be proved by showing that all physical systems could be simulated by a universal 
computer. The main obstruction to such a proof involves quantum mechanics. 

A cellular automaton may be proved capable of universal computation by iden
tifying structures that act as the essential components of digital computers, such as 
wires, NAND gates, memories, and clocks. The persistent structures illustrated in 
Fig. 13 provide many of the necessary components, strongly suggesting that the cel
lular automaton of Figs. 12 and 13 is a universal computer. One important missing 
component is a "clock" that generates an infinite sequence of "pulses"; starting from 
an initial configuration containing a finite number of nonzero sites, such a structure 
would give rise to an ever-increasing number of nonzero sites. If such a structure 
exists, it can undoubtedly be found by careful investigation, although it is probably 
too large to be found by any practical exhaustive search. If the cellular automaton 
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of Figs. 12 and 13 is indeed capable of universal computation, then, despite its very 
simple construction, it is in some sense capable of arbitrarily complicated behavior. 

Several complicated cellular automata have been proved capable of universal 
computation. A one-dimensional cellular automaton with eighteen possible values at 
each site (and nearest neighbor interactions) has been shown equivalent to the simplest 
known universal Turing machine. In two dimensions several cellular automata with 
just two states per site and interactions between nearest neighbor sites (including 
diagonally adjacent sites, giving a nine-site neighborhood) are known to be equivalent 
to universal digital computers. The best known of these cellular automata is the 
"Game of Life" invented by Conway in the early 1970s and simulated extensively 
ever since. (See Elwyn R. Bedekamp, John H. Conway, and Richard K. Guy, 
Winning Ways , Academic Press, 1982 and Martin Gardner, Wheels, Life, and Other 
Mathematical Amusements, W. H. Freeman and Company, October 1983. The Life 
rule takes a site to have value 1 if three and only three of its eight neighbors are I or 
if four are I and the site itself was 1 on the previous time step.) Structures analogous 
to those of Fig. 13 have been identified in the Game of Life. In addition, a clock 
structure, dubbed the glider gun, was found after a long search. 

By definition, any universal computer may in principle be simulated by any other 
universal computer. The simulation proceeds by emulating the elementary operations 
in the first universal computer by sets of operations in the second universal computer, 
as in an "interpreter" program. The simulation is in general only faster or slower by 
a fixed finite factor, independent of the size or duration of a computation. Thus the 
behavior of a universal computer given particular input may be determined only in a 
time of the same order as the time required to run that universal computer explicitly. 
In general the behavior of a universal computer cannot be predicted and can be 
determined only by a procedure equivalent to observing the universal computer itself. 

If class 4 cellular automata are indeed universal computers, then their behavior 
may be considered completely unpredictable. For class 3 cellular automata the values 
of particular sites after a long time depend on an ever-increasing number of initial 
sites. For class 4 cellular automata this dependence is by an algorithm of arbitrary 
complexity, and the values of the sites can essentially be found only by explicit 
observation of the cellular automaton evolution. The apparent unpredictability of 
class 4 cellular automata introduces a new level of uncertainty into the behavior of 
natural systems. 

The unpredictability of universal computer behavior implies that propositions 
concerning the limiting behavior of universal computers at indefinitely large times are 
formally undecidable. For example, it is undecidable whether a particular universal 
computer, given particular input data, will reach a special "halt" state after a finite time 
or will continue its computation forever. Explicit simulations can be run only for finite 
times and thus cannot determine such infinite time behavior. Results may be obtained 
for some special input data, but no general (finite) algorithm or procedure may even 
in principle be given. If class 4 cellular automata are indeed universal computers, 
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then it is undecidable (in general) whether a particular initial state will ultimately 
evolve to the null configuration (in which all sites have value 0) or will generate 
persistent structures. As is typical for such generally undecidable propositions, 
particular cases may be decided. In fact, the halting of the cellular automaton of 
Figs. 12 and 13 for all initial states with nonzero sites in a region of twenty sites 
has been determined by explicit simulation. In general, the halting probability, or 
fraction of initial configurations ultimately evolving to the null configuration, is 
a noncomputable number. However, the explicit results for small initial patterns 
suggest that for the cellular automaton of Figs. 12 and 13, this halting probability is 
approximately 0.93. 

In an infinite disordered configuration all possible sequences of site values appear 
at some point, albeit perhaps with very small probability. Each of these sequences 
may be considered to represent a possible "program"; thus with an infinite disordered 
initial state, a class 4 automaton may be considered to execute (in parallel) all possible 
programs. Programs that generate structures of arbitrarily great complexity occur, 
at least with indefinitely small probabilities. Thus for example, somewhere on the 
infinite line a sequence that evolves to a self-reproducing structure should occur. 
After a sufficiently long time this configuration may reproduce many times, so that it 
ultimately dominates the behavior of the cellular automaton. Even though the a priori 
probability for the occurrence of a self-reproducing structure in the initial state is 
very small , its a posteriori probability after many time steps of cellular automaton 
evolution may be very large. The possibility that arbitrarily complex behavior seeded 
by features of the initial state can occur in class 4 cellular automata with indefinitely 
low probability prevents the taking of meaningful statistical averages over infinite 
volume (length). It also suggests that in some sense any class 4 cellular automaton 
with an infinite disordered initial state is a microcosm of the universe. 

In extensive samples of cellular automaton rules, it is found that as k and r 
increase, class 3 behavior becomes progressively more dominant. Class 4 behavior 
occurs only for k > 2 or r > 1; it becomes more common for larger k and r but 
remains at the few percent level. The fact that class 4 cellular automata exist with 
only three values per site and nearest neighbor interactions implies that the threshold 
in complexity of construction necessary to allow arbitrarily complex behavior is 
very low. However, even among systems of more complex construction , only a 
small fraction appear capable of arbitrarily complex behavior. This suggests that 
some physical systems may be characterized by a capability for class 4 behavior and 
universal computation; it is the evolution of such systems that may be responsible 
for very complex structures found in nature. 

The possibility for universal computation in cellular automata implies that arbi
trary computations may in principle be performed by cellular automata. This suggests 
that cellular automata could be used as practical parallel-processing computers. The 
mechanisms for information processing found in most natural systems (with the ex
ception of those, for example, in molecular genetics) appear closer to those of cellular 
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automata than to those of Turing machines or conventional serial-processing digital 

computers. Thus one may suppose that many natural systems could be simulated more 

efficiently by cellular automata than by conventional computers. In practical terms, 

the homogeneity of cellular automata leads to simple implementation by integrated 

circuits. A simple one-dimensional universal cellular automaton with perhaps a mil

lion sites and a time step as short as a billionth of a second could perhaps be fabricated 

with current technology on a single silicon wafer (the one-dimensional homogeneous 

structure makes defects easy to map out) . Conventional programming methodology 

is, of course, of little utility for such a system. The development of a new method

ology is a difficult but important challenge. Perhaps tasks such as image processing, 

which are directly suitable for cellular automata, should be considered first. 

A Basis for Universality? 

The existence of four classes of cellular automata was presented above as a largely 

empirical result. Techniques from computation theory may provide a basis, and 

ultimately a proof, of this result. 

The first crucial observation is that with special initial states one cellular automaton 

may behave just like another. In this way one cellular automaton may be considered 

to "simulate" another. A single sitp with a particular value in one cellular automaton 

may be simulated by a fixed block of sites in another; after a fixed number of time 

steps, the evolution of these blocks imitates the single time-step evolution of sites in 

the first cellular automaton. For example, sites with value 0 and 1 in the first cellular 

automaton may be simulated by blocks of sites 00 and 11, respectively, in the second 

cellular automaton, and two time steps of evolution in the second cellular automaton 

correspond to one time step in the first. Then, with a special initial state containing 

11 and 00 but not 01 and 10 blocks, the second cellular automaton may simulate the 

first. 

Figure 14 gives the network that represents the simulation capabilities of sym

metric cellular automata with k = 2 and r = 1. (Only simulations involving blocks of 
length less than four sites were included in the construction of the network.) If a cel

lular automaton is computationally universal, then with a sufficiently long encoding 

it should be able to simulate any other cellular automaton, so that a path should exist 

from the node that represents its rule to nodes representing all other possible rules. 

An example of the simulation of one cellular automaton by another is the sim

ulation of the additive rule 90 (Eq. 1) by the class 3 rule 18. A rule 18 cellular 

automaton behaves exactly like a rule 90 cellular automaton if alternate sites in the 

initial configuration have value 0 (so that 0 and 1 in rule 90 are represented by 00 

and 01 in rule 18) and alternate time steps are considered. Figure 15 shows evolution 

according to rule 18 from a disordered initial state. Two "phases" are clearly evident: 

one in which sites at even-numbered positions have value 0 and one in which sites 

at odd-numbered positions have value O. The boundaries between these regions 
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Figure 14. Simulation network for symmetric cellular automaton rules with k = 2 and r = I. Each rule is 

specified by the number obtained as shown in Fig. 7, and its behavior class is indicated by shades of gray: 

light gray corresponds to class I, medium gray to class 2, and dark gray to class 3. Rule A is considered 

to simulate rule B if there exist blocks of site values that evolve under rule A as single sites would evolve 

under rule B. Simulations are included in the network shown only when the necessary blocks are three or 

fewer sites long. Rules 90 and 150 are additive class 3 rules, rule 204 is the identity rule, and rules 170 

and 240 are left- and right-shift rules , respectively. Attractive simulation paths are indicated by bold lines. 

(Network courtesy of J. Milnor.) 
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Figu re 15. Evolution of the class 3 cellular automaton rule 18 from a disordered initial state with pairs 

of sites combined. The pair of site values 00 are shown as black, 0 I as red, 10 as green, and I I as blue. 

At large times two phases are clearly evident, separated by "defects" that execute approximately random 

walks and ultimately annihilate in pairs. In each phase alternate sites have value 0, and the other sites 

evolve according to the additive rule 90. Thus for almost all initial states rule 18 behaves like rule 90 at 

large times. Rule 18 therefore follows an attractive simulation path to rule 90. 

execute approximately random walks and eventually annihilate in pairs, leaving a 
system consisting of blocks of sites that evolve according to the additive rule 90. (Cf. 
P. Grassberger, "Chaos and Diffusion in Deterministic Cellular Automata," to be 
published in Physica D.) Thus the simulation of rule 90 by ru le 18 may be considered 

Figure 16. Evolution of the class 2 cellular automaton rule 94 from an initial state in which the members 

of most pairs of sites have the same values, so that the digrams 00 and II predominate and the sequences 

010 and 101 are nearly absent. (Color designations are the same as in Fig. 15.) Class 3 behavior occurs, 

but is unstable : class 2 behavior is "seeded" by 10 and 01 digrams and ultimately dominates. Rule 94 

exhibits a repulsive simulation path to the class 3 additive rule 90 and an attractive path to the identity 

ru le 204. 
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an "attractive" one: starting from almost all initial states, rule 18 evolves toward 
states in which it simulates rule 90. In general, one expects that some paths in the 
network of Fig. 14 are attractive, while the rest are repulsive. The consequences of 
a repulsive simulation path are illustrated in Fig. 16: with special initial states rule 
94 behaves like rule 90, but any impurities in the initial states grow and eventually 
dominate the evolution of the system. 

Class 1 cellular automata have an attractive simulation path to rule 0 (or its 
equivalents). Class 2 cellular automata have attractive simulation paths to the identity 
rule 204. A conjecture for which some evidence exists is that all class 3 rules exhibit 
attractive simulations to additive rules such as 90 or 150. Simulation by blocking 
of site values is analogous to a block spin or renormalization group transformation; 
additive rules have the special property that they are invariant under such transfor
mations. As mentioned earlier, class 4 cellular automata are distinguished by the 
presence of simulation paths leading to every other cellular automaton rule. It is 
likely that no specific path is distinguished as attractive. 

Cellular automata of different classes may thus be distinguished by their limiting 
behavior under simulation transformations. This approach suggests that classification 
of the qualitative behavior of cellular automata may be related to determinations of 
equivalence of systems and problem classes in computation theory. In general, 
one may hope for fundamental connections between computation theory and the 
theory of complex nonequilibrium statistical systems. Information theory forms a 
mathematical basis for equilibrium statistical mechanics. Computation theory, which 
addresses time-dependent processes, may be expected to playa fundamental role in 
nonequilibrium statistical mechanics. 
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Computation offers a new means of describing and investigating scientific and math
ematical systems. Simulation by computer may be the only way to predict how certain 

complicated systems evolve. 

Scientific laws give algorithms, or procedures, for detennining how systems behave. 
The computer program is a medium in which the algorithms can be expressed and 
applied. Physical objects and mathematical structures can be represented as num
bers and symbols in a computer, and a program can be written to manipulate them 
according to the algorithms. When the computer program is executed, it causes the 
numbers and symbols to be modified in the way specified by the scientific laws. It 
thereby allows the consequences of the laws to be deduced. 

Executing a computer program is much like perfonning an experiment. Unlike 
the physical objects in a conventional experiment, however, the objects in a com
puter experiment are not bound by the laws of nature. Instead they follow the laws 
embodied in the computer program, which can be of any consistent fonn. Compu
tation thus extends the realm of experimental science: it allows experiments to be 
perfonned in a hypothetical universe. Computation also extends theoretical science. 
Scientific laws have conventionally been constructed in tenns of a particular set of 
mathematical functions and constructs, and they have often been developed as much 
for their mathematical simplicity as for their capacity to model the salient features of 
a phenomenon. A scientific law specified by an algorithm, however, can have any 
consistent form. The study of many complex systems, which have resisted analysis 
by traditional mathematical methods, is consequently being made possible through 
computer experiments and computer models. Computation is emerging as a major 
new approach to science, supplementing the long-standing methodologies of theory 
and experiment. 

Originally published with illustrations under the title "Computer Software in Science and Mathematics" in Scientific 
American , volume 251 , pages 188-203 (September 1984). 
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There are many scientific calculations, of course, that can be done by conventional 

mathematical means, without the aid of the computer. For example, given the 

equations that describe the motion of electrons in an arbitrary magnetic field, it is 

possible to derive a simple mathematical formula that gives the trajectory of an 

electron in a uniform magnetic field (one whose strength is the same at all positions). 

For more complicated magnetic fields, however, there is no such simple mathematical 

formula. The equations of motion still yield an algorithm from which the trajectory 

of an electron can be determined. In principle the trajectory could be worked out 

by hand, but in practice only a computer can go through the large number of steps 

necessary to obtain accurate results. 

A computer program that embodies the laws of motion for an electron in a magnetic 

field can be used to perform computer experiments. Such experiments are more flexi

ble than conventional laboratory experiments. For example, a laboratory experiment 

could readily be devised to study the trajectory of an electron moving under the influ

ence of the magnetic fie ld in a television tube. No laboratory experiment, however, 

could reproduce the conditions encountered by an electron moving in the magnetic 

field surrounding a neutron star. The computer program can be applied in both cases. 

The magnetic field under investigation is specified by a set of numbers stored in a 

computer. The computer program applies an algorithm that simulates the motion of 

the electron by changing the numbers representing its position at successive times. 

Computers are now fast enough for the simulations to be carried out quickly, and 

so it is practical to explore a large number of cases. The investigator can interact 

directly with the computer, modifying various aspects of a phenomenon as new 

results are obtained. The usual cycle of the scientific method, in which hypotheses are 

formulated and then tested, can be followed much faster with the aid of the computer. 

Computer experiments are not limited to processes that occur in nature. For exam

ple, a computer program can describe the motion of magnetic monopoles in magnetic 

fields, even though magnetic monopoles have not been detected in physical experi

ments. Moreover, the program can be modified to embody various altemative laws 

for the motion of magnetic monopoles. Once again, when the program is executed, 

the consequences of the hypothetical laws can be determined. The computer thus 

enables the investigator to experiment with a range of hypothetical natural laws. 

The computer can also be used to study the properties of abstract mathematical 

systems. Mathematical experiments carried out by computer can often suggest 

conjectures that are subsequently established by conventional mathematical proof. 

Consider a mathematical system that can be introduced to model the path of a beam of 

electrons traveling through the magnetic fields in a circular particle accelerator. The 

transverse displacement of an electron as it passes a point on one of its revolutions 

around the accelerator ring is given by some fraction x between 0 and 1. The value 

of the fraction corresponding to the electron's displacement on the next revolution is 

then ax(l - x), where a is a number that can range between 0 and 4. The formula 
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gives an algorithm from which the sequence of values for the electron's displacement 
can be worked out. 

A few trials show how the properties of the sequence depend on the value of a. 
If a is equal to 2 and the initial value of x is equal to .8, the next value of x, which 
is given by ax(l - x ), is equal to .32. If the formula is applied again, the value of 
x obtained is .4352. After several iterations the sequence of values for x converges 
to .5. Indeed, when a is small and x is any fraction between 0 and 1, the sequence 
quickly settles down to give the same value of x for each revolution of the electron. 

As a increases, however, a phenomenon called period doubling can be observed. 
When a reaches 3, the sequence begins to alternate between two values of x. As a 
continues to increase, first four, then eight and finally, when it reaches about 3.57, an 
entire range of values for x appear. This behavior could not readily be guessed from 
the construction of the mathematical system, but it is immediately suggested by the 
computer experiment. The detailed properties of the system can then be established 
by a conventional proof. 

The mathematical processes that can be described by a computer program are not 
limited to the operations and functions of conventional mathematics. For example, 
there is no conventional mathematical notation for the function that reverses the order 
of the digits in a number. Nevertheless, it is possible to define and apply the function 
in a computer program. The computer makes it practical to introduce scientific and 
mathematical laws that are intrinsically algorithmic in nature. Consider the chain of 
events set up when an electron accelerated to a high energy is fired into a block of 
lead. There is a certain probability that the electron emits a photon of a particular 
energy. If a photon is emitted, there is a certain probability that it gives rise to a second 
electron and a positron (the antiparticle of the electron). Each member of the pair 
can in tum emit more photons, so that a cascade of particles is eventually generated. 
There is no simple mathematical formula that can describe even the elements of 
the process. Nevertheless, an algorithm for the process can be incorporated into a 
computer program, and the outcome of the process can be deduced by executing the 
program. The algorithm serves as the basic law that describes the process. 

The mathematical basis of most conventional models of natural phenomena is the 
differential equation. Such an equation gives relations between certain quantities and 
their rates of change. For example, a chemical reaction proceeds at a rate proportional 
to the concentrations of the reacting chemicals, and that relation can be expressed 
by a differential equation. A solution to the equation would give the concentration 
of each reactant as a function of time. In some simple cases it is possible to find a 
complete solution to the equation in terms of standard mathematical functions. In 
most cases, however, no such exact solution can be obtained, and one must resort to 
approximation. 

The commonest approximations are numerical. Suppose one term of a differential 
equation gives the instantaneous rate of change of a quantity with time. The term 
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can be approximated by the total change in the quantity over some small interval 
and then substituted into the differential equation. The resulting equation is in effect 
an algorithm that determines the approximate value of the quantity at the end of an 
interval, given its value at the beginning of the interval. By applying the algorithm 
repeatedly for successive intervals, the approximate variation of the quantity with 
time can be found. Smaller intervals yield more accurate results. The calculation 
required for each interval is quite simple, but in most cases it must be repeated many 
times to achieve an acceptable level of accuracy. Such an approach is practical only 
with a computer. 

The numerical methods embodied in computer programs have been employed to 
find approximate solutions to differential equations in a wide variety of disciplines. In 
some cases the solutions have a simple form. In many cases, however, the solutions 
show complicated, almost random behavior, even though the differential equations 
from which they arise are quite simple. For such cases experimental mathematics 
must be used. 

In practical applications one often finds not only that differential equations are 
complicated but also that there are many of them. For example, the theoretical 
models of nuclear explosions employed in the design of weapons and the study of 
supernovas involve hundreds of differential equations that describe the interactions 
of many isotopes. In practice such models are always used in the form of computer 
programs: only a computer can follow the interrelations among so many quantities. 

The results of some numerical calculations, such as the abundance of helium in the 
universe, can be stated as single numbers. In most cases, however, one is concerned 
with the variation of certain quantities as the parameters of a calculation are changed. 
When the number of parameters is only one or two, the results can be displayed as 
a graph. When there are more than two parameters, however, the results often can 
be stated succinctly only as a mathematical formula. Exact formulas usually cannot 
be found, but it is often possible to derive approximate formulas. Such formulas 
are particularly convenient because, unlike graphs or tables of numbers, they can be 
inserted directly into other calculations. 

A common form for an approximate formula is a series of terms. Each term 
includes a variable raised to some power; the power is larger in each successive term. 
When the value of the variable is small, the terms in the series become progressively 
smaller; thus for small values of x the sum of the first few terms in an infinite series 
such as 1 - x + x 2 - x 3 + ... gives an accurate approximation to the sum of the entire 
series, which is I / O +x). The first few terms in a series are usually easy to evaluate, 
but the complexity of the terms increases rapidly thereafter. In order to evaluate 
terms that include large powers of x the computer becomes essential. 

In principle computer programs can operate with any well-defined mathematical 
construct. In practice, however, the kinds of construct that can be used in a particular 
program are largely determined by the computer language in which the program is 
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written. Numerical methods require only a limited set of mathematical constructs, 
and the programs that embody such methods can be written in general-purpose 
computer languages such as C, FORTRAN or BASIC. The derivation and manipulation of 
formulas require operations on higher-level mathematical constructs such as algebraic 
expressions, for which new computer languages are needed. Among the languages 
of this kind now in use is the SMP language that I have developed. 

SMP is a language for manipulating symbols. It operates not only with numbers 
but also with symbolic expressions that can represent mathematical formulas. For 
example, in SMP the algebraic expression 2x - 3 y + 5x - y would be simplified to the 
form 7 x - 4 y. This transformation is a general one, valid for any possible numerical 
values of x and y. The standard operations of algebra and mathematical analysis are 
among the fundamental instructions in SMP. 

The SMP language also includes operations that allow higher-level mathematical 
constructs to be defined and manipulated, much as they are in ordinary mathematical 
work. Real numbers (which include all rational and irrational values) as well as 
complex numbers (which have both a real and an ima.ginary part) are fundamental in 
SMP. The mathematical constructs known as quaternions, which are generalizations 
of the complex numbers, are not fundamental. They can nonetheless be defined in 
SMP, and rules can be specified for their addition and multiplication. In this way the 
mathematical knowledge of SMP can be extended. 

Some of the advantages of a language such as SMP can be compared to the 
advantages of using a calculator instead of a table of logarithms. By now the 
widespread availability of electronic calculators and computers has made such tables 
obsolete: it is far more convenient to call on an algorithm in a computer to obtain 
a logarithm than it is to look up the result in a table. Similarly, with a language 
such as SMP it has become possible to make the entire range of mathematical 
knowledge available in algorithmic form. For example, the calculation of integrals, 
conventionally done with the aid of a book of tables, can increasingly be left to a 
computer. The computer not only carries out the final calculations quickly and without 
error but also automates the process of finding the relevant formulas and methods. 

In SMP an expanding collection of definitions is being assembled in order to 
provide for a wide variety of mathematical calculations. One can now find in SMP 
the definition of variance in statistics, and one can immediately apply the definition to 
calculate the variance in a particular case. Such definitions enable programs written 
in the SMP language to call on increasingly sophisticated mathematical knowledge. 

Differential equations give adequate models for the overall properties of physical 
processes such as chemical reactions. They describe, for example, the changes in the 
total concentration of molecules; they do not, however, account for the motions of 
individual molecules. These motions can be modeled as random walks: the path of 
each molecule is like the path that might be taken by a person in a milling crowd. In 
the simplest version of the model the molecule is assumed to travel in a straight line 
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until it collides with another molecule; it then recoils in a random direction. All the 
straight-line steps are assumed to be of equal length. It turns out that if a large number 
of molecules are following random walks, the average change in the concentration 
of molecules with time can in fact be described by a differential equation called the 
diffusion equation. 

There are many physical processes, however, for which no such average descrip
tion seems possible. In such cases differential equations are not available and one 
must resort to direct simulation. The motions of many individual molecules or com
ponents must be followed explicitly; the overall behavior of the system is estimated 
by finding the average properties of the results. The only feasible way to carry out 
such simulations is by computer experiment: essentially no analysis of the systems 
for which analysis is necessary could be made without the computer. 

The self-avoiding random walk is an example of a process that can apparently be 
studied only by direct simulation. It can be described by a simple algorithm that is 
similar to the ordinary random walk. It differs in that the successive steps in the self
avoiding random walk must not cross the path taken by any previous steps. The fold
ing of long molecules such as DNA can be modeled as a self-avoiding random walk. 

The introduction of the single constraint makes the self-avoiding random walk 
much more complicated than the ordinary random walk. Indeed, there is no simple 
average description, analogous to the diffusion equation, that is known for the self
avoiding random walk. In order to investigate its properties it seems one has no choice 
but to carry out a direct computer experiment. The procedure is to generate a large 
number of sample random walks, choosing a random direction at each step. The prop
erties of all the walks are then averaged. Such a procedure is an example of the Monte 
Carlo method, so called because its application depends on the element of chance. 

Several examples have been given of systems whose construction is quite simple 
but whose behavior is extremely complicated. The study of such systems is leading 
to a new field called complex-systems theory, in which the computational method 
plays a central role. The archetypal example is fluid turbulence, which develops, for 
example, when water flows rapidly around an obstruction. The set of differential 
equations satisfied by the fluid can easily be stated. Nevertheless, the patterns of 
fluid flow to which the equations give rise have largely defied mathematical analysis 
or description. In practice the patterns are found either through observation of the 
actual physical system or, as far as possible, through computer experiment. 

It is suspected there is a set of mathematical mechanisms common to many systems 
that give rise to complicated behavior. The mechanisms can best be studied in systems 
whose construction is as simple as possible. Such studies have recently been done for 
a class of mathematical systems known as cellular automata. A cellular automaton 
is made up of many identical components; each component evolves according to a 
simple set of rules. Taken together, however, the components generate behavior of 
essentially arbitrary complexity. 
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The components of a cellular automaton are mathematical "cells," arranged in one 
dimension at a sequence of equally spaced points along a line or in two dimensions 
on a regular grid of squares or hexagons. Each cell carries a value chosen from 
a small set of possibilities, often just 0 and 1. The values of all the cells in the 
cellular automaton are simultaneously updated at each "tick" of a clock according to 
a definite rule. The rule specifies the new value of a cell , given its previous value 
and the previous values of its nearest neighbors or some other nearby set of cells. 

Consider a one-dimensional cellular automaton in which each cell can have the 
value 0 or 1. Even in such a simple case the overall behavior of the cellular automaton 
can be quite complex; the most effective way to investigate the behavior is by 
computer experiment. Most of the properties of cellular automata have in fact been 
conjectured on the basis of patterns generated in computer experiments. In some 
cases they have later been established by conventional mathematical arguments. 

Cellular automata can serve as explicit models for a wide variety of physical 
processes. Suppose ice is represented on a two-dimensional hexagonal grid by cells 
with the value I and water vapor is represented by cells with the value O. A cellular
automaton rule can then be used to simulate the successive stages in the freezing of 
a snowflake. The rule states that once a cell is frozen it does not thaw. Cells exposed 
at the edge of the growing pattern freeze unless they have so many ice neighbors 
that they cannot dissipate enough heat to freeze. Snowflakes grown in a computer 
experiment from a single frozen cell according to this rule show intricate treelike 
patterns, which bear a close resemblance to real snowflakes. A set of differential 
equations can also describe the growth of snowflakes, but the much simpler model 
given by the cellular automaton seems to preserve the essence of the process by 
which complex patterns are created. Similar models appear to work for biological 
systems: intricate patterns of growth and pigmentation may be accounted for by the 
simple algorithms that generate cellular automata. 

Simulation by computer is the only method now used for investigating many of the 
systems discussed so far. It is natural to ask whether simulation, as a matter of 
principle, is the most efficient possible procedure or whether there is a mathematical 
formula that could lead more directly to the results. In order to address the question 
the correspondence between physical and computational processes must be studied 
more closely. 

It is presumably true that any physical process can be described by an algorithm, 
and so any physical process can be represented as a computational process. One 
must determine how complicated the latter process is. In cellular automata the cor
respondence between physical and computational processes is particularly clear. A 
cellular automaton can be regarded as a model of a physical system, but it can also 
be regarded as a computational system closely analogous to an ordinary digital com
puter. The sequence of initial cell values in a cellular automaton can be understood as 
abstract data or information, much like the sequence of binary digits in the memory 
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of a digital computer. During the evolution of a cellular automaton the information is 

processed: the values of the cells are modified according to definite rules. Similarly, 
the digits stored in the memory of the digital computer are modified by rules built 

into the central processing unit of the computer. 
The evolution of a cellular automaton from some initial configuration may thus be 

viewed as a computation that processes the information carried by the configuration. 
For cellular automata exhibiting simple behavior the computation is a simple one. 
For example, it may serve only to pick out sequences of three consecutive cells whose 
initial values are equal to 1. On the other hand, the evolution of cellular automata 

that show complicated behavior may correspond to a complicated computation. 
It is always possible to determine the outcome of a given number of steps in the 

evolution of a cellular automaton by explicitly simulating each step. The problem is 
whether or not there can be a more efficient procedure. Can there be a short cut to 

step-by-step simulation, an algorithm that finds the outcome after many steps in the 
evolution of a cellular automaton without effectively tracing through each step? Such 
an algorithm could be executed by a computer, and it would predict the evolution 

of a cellular automaton without explicitly simulating it. The basis of its operation 
would be that the computer could carry out a more sophisticated computation than the 
cellular automaton could and so achieve the same result in fewer steps. It would be 

as if the cellular automaton were to calculate 7 times 18 by explicitly finding the sum 
of seven 18's, while the computer found the same product according to the standard 

method for multiplication. Such a short cut is available only if the computer is able 
to carry out a calculation that is intrinsically more sophisticated than the calculation 

embodied in the evolution of the cellular automaton. 
One can define a certain class of problems called computable problems that can 

be solved in a finite time by following definite algorithms. A simple computer such 

as an adding machine can solve only a small subset of these problems. There exist 
universal, or general-purpose, computers, however, that can solve any computable 
problem. A real digital computer is essentially such a universal machine. The instruc

tions that can be executed by the central processing unit of the computer are rich 
enough to serve as the elements of a computer program that can embody any algo
rithm. A number of systems in addition to the digital computer have been shown 

to be capable of universal computation. Several cellular automata are among them: 
for example, universal computation has been proved for a simple two-dimensional 
cellular automaton with a 0 or a 1 in each cell. It is strongly suspected that several 
one-dimensional cellular automata are also universal computers. The simplest candi

dates have three possible values at each cell and rules of evolution that take account 
only of the nearest-neighbor cells. 

Cellular automata that are capable of universal computation can mimic the behav
ior of any possible computer; since any physical process can be repres~nted as a 

computational process, they can mimic the action of any possible physical system as 
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well. If there were an algorithm that could work out the behavior of these cellular 
automata faster than the automata themselves evolve, the algorithm would allow 
any computation to be speeded up. Because this conclusion would lead to a logical 
contradiction, it follows there can be no general short cut that predicts the evolution 
of an arbitrary cellular automaton. The calculation corresponding to the evolution is 
irreducible: its outcome can be found effectively only by simulating the evolution 
explicitly. Thus direct simulation is indeed the most efficient method for determining 
the behavior of some cellular automata. There is no way to predict their evolution; 
one must simply watch it happen. 

It is not yet known how widespread the phenomenon of computational irreducibil
ity is among cellular automata or among physical systems in general. Nevertheless, 
it is clear that the elements of a system need not be very complicated for the overall 
evolution of the system to be computationally irreducible. It may be that computa
tional irreducibility is almost always present when the behavior of a system appears 
complicated or chaotic. General mathematical formulas that describe the overall 
behavior of such systems are not known, and it is possible no such formulas can 
ever be found. In that case, explicit simulation in a computer experiment is the only 
available method of investigation. 

Much of physical science has traditionally focused on the study of computation
ally reducible phenomena, for which simple overall descriptions can be given. In 
real physical systems, however, computational reducibility may well be the excep
tion rather than the rule. Fluid turbulence is probably one of many examples of 
computational irreducibility. In biological systems computational irreducibility may 
be even more widespread: it may tum out that the form of a biological organism 
can be determined from its genetic code essentially only by following each step in 
its development. When computational irreducibility is present, one must adopt a 
methodology that depends heavily on computation. 

One of the consequences of computational irreducibility is that there are questions 
that can be asked about the ultimate behavior of a system but that cannot be answered 
in full generality by any finite mathematical or computational process. Such questions 
must therefore be considered undecidable. An example of such a question is whether 
a particular pattern ever dies out in the evolution of a cellular automaton. It is 
straightforward to answer the question for some definite number of steps, say 1,000: 
one need only simulate 1,000 steps in the evolution of the cellular automaton. In 
order to determine the answer for any number of steps, however, one must simulate 
the evolution of the cellular automaton for a potentially infinite number of steps. If 
the cellular automaton is computationally irreducible, there is no effective alternative 
to such direct simulation. 

The upshot is that no calculation of any fixed length can be guaranteed to determine 
whether a pattern will ultimately die out. It may be possible to tell the fate of a 
particular pattern after tracing only a few steps in its evolution, but there is no general 
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way to tell in advance how many steps will be required. The ultimate form of a pattern 
is the result of an infinite number of steps, corresponding to an infinite computation; 
unless the evolution of the pattern is computationally reducible, its consequences 
cannot be reproduced by any finite computational or mathematical process. 

The possibility of undecidable questions in mathematical models for physical 
systems can be viewed as a manifestation of G6del's theorem on undecidability in 
mathematics, which was proved by Kurt GOdel in 1931. The theorem states that in 
all but the simplest mathematical systems there may be propositions that cannot be 
proved or disproved by any finite mathematical or logical process. The proof of a 
given proposition may call for an indefinitely large number of logical steps. Even 
propositions that can be stated succinctly can require an arbitrarily long proof. In 
practice there are many simple mathematical theorems for which the only known 
proofs are very long. In addition the cases that must be examined to prove or refute 
conjectures are often quite complicated. In number theory, for example, there are 
many cases in which the smallest number having some special property is extremely 
large; the number can often be found only by testing each whole number in tum. 
Such phenomena are making the computer an essential tool in many mathematical 
investigations. 

Computational irreducibility implies many fundamental limitations on the scope of 
theories for physical systems. It may be possible to model a system at many levels, 
from simulating the motions of individual molecules to solving differential equations 
for overall properties. Computational irreducibility implies there is a highest level 
at which abstract models can be made; above that level results can be found only by 
explicit simulation. 

When the level of description becomes computationally irreducible, undecidable 
questions also begin to appear. Such questions must be avoided in the formulation of 
a theory, much as the simultaneous measurement of the position and velocity of an 
electron-impossible according to the uncertainty principle-is avoided in quantum 
mechanics. Even if such questions are eliminated, there is still the practical difficulty 
of answering questions that in principle can be answered. The degree of difficulty 
depends strongly on the nature of the objects involved in the simulation. If the only 
way to predict the weather were to simulate the motions of every molecule in the 
atmosphere, no practical calculations could be carried out. Nevertheless, the relevant 
features of the weather can probably be studied by considering the interactions of 
large volumes of the atmosphere, and so useful simulations should be possible. 

The efficiency with which a computationally irreducible system can be simulated 
depends on the computational sophistication of each step in its evolution. The steps 
in the evolution of the system can be simulated by instructions in a computer pro
gram. The fewer the instructions needed to reproduce each step, the more efficient 
the simulation. Higher-level descriptions of physical systems typically call for more 
sophisticated steps, much as single instructions in higher-level computer languages 
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correspond to many instructions in lower-level ones. One time step in the numerical 
approximation of a differential equation that describes a jet of gas requires a com
putation more sophisticated than the one needed to follow a collision between two 
molecules in the gas. On the other hand, each step in the higher-level description 
given by a differential equation accounts for an immense number of steps in the 
lower-level description of molecular collisions. The resulting gain in efficiency more 
than makes up for the fact that the individual steps are more sophisticated. 

In general the efficiency of a simulation increases with higher levels of description, 
until the operations needed for the higher-level description are matched with the 
operations carried out directly by the computer doing the simulation. It is most 
efficient for the computer to be as close an analogue to the system being simulated 
as possible. 

There is one major difference between most existing computers and physical 
systems or models of them: computers process information serially, whereas physical 
systems process information in parallel. In a physical system modeled by a cellular 
automaton the values of all the cells are updated together at each time step. In a 
standard computer program, however, the simulation of the cellular automaton is 
carried out by a loop that updates the value of each cell in tum. In such a case 
it is straightforward to write a computer program that performs a fundamentally 
parallel process with a serial algorithm. There is a well-established framework in 
which algorithms for the serial processing of information can be described. Many 
physical systems, however, seem to require descriptions that are essentially parallel 
in nature. A general framework for parallel processing does not yet exist, but when 
it is developed, more effective high-level descriptions of physical phenomena should 
become possible. 

The introduction of the computer in science is comparatively recent. Already, how
ever, computation is establishing a new approach to many problems. It is making 
possible the study of phenomena far more complex than the ones that could previ
ously be considered, and it is changing the direction and emphasis of many fields of 
science. Perhaps most significant, it is introducing a new way of thinking in science. 
Scientific laws are now being viewed as algorithms. Many of them are studied in 
computer experiments. Physical systems are viewed as computational systems, pro
cessing information much the way computers do. New aspects of natural phenomena 
have been made accessible to investigation. A new paradigm has been born. 
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This note describes the geometrical pattern of zeroes and ones obtained by reducing 
modulo two each element of Pascal's triangle formed from binomial coefficients. 
When an infinite number of rows of Pascal's triangle are included, the limiting 
pattern is found to be "self-similar," and is characterized by a "fractal dimension" 
log2 3. Analysis of the pattern provides a simple derivation of the result that the 
number of even binomial coefficients in the nth row of Pascal's triangle is 2#1 (n), 

where #1 (n) is a function which gives the number of occurrences of the digit 1 in the 
binary representation of the integer n. 

Pascal's triangle modulo two appears in the analysis of the structures generated 
by the evolution of a class of systems known as "cellular automata." (See [1], [2], [3] 
for further details and references.) These systems have been investigated as simple 
mathematical models for natural processes (such as snowflake growth) which exhibit 
the phenomenon of "self-organization." The self-similarity of the patterns discussed 
below leads to self-similarity in the natural structures generated. 

Figure 1 shows the first few rows of Pascal's triangle, together with the figure 
obtained by reducing each element modulo two, and indicating ones by black squares 
and zeroes by white (blank) squares. Figure 2 gives sixty-four rows of Pascal's 
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Figure 1. The first few lines of Pascal 's triangle modulo two. 

Originally published in the American Mathematical Monthly, volume 91, pages 566-571 (November 1984), 
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Figure 2. The first sixty-four lines of Pascal's triangle modulo two (black squares indicate ones, white 

squares indicate zeroes). 

triangle reduced modulo two. A regular pattern of inverted triangles with various 
sizes differing by powers of two is clear. Large inverted triangles spanning the 
whole of Pascal's triangle begin at rows n = 2j • Consider the pattern down to the 
beginning of one such large inverted triangle (say down to the sixty-third row) . A 
striking feature of the pattern is that the largest upright triangle contains three smaller 
triangles whose contents are similar (except at the scale of very small triangles) to 
those of the largest triangle, but reduced in size by a factor of two. Inspection of each 
of these three smaller triangles reveals that each is built from three still smaller similar 
triangles. This "self-similarity" continues down to the smallest triangles. At each 
stage, one upright triangle from the pattern could be magnified by one or more factors 
of two to obtain essentially the complete pattern. The pattern obtained differs from 
the original complete pattern at the scale of very small triangles. If, however, Pascal 's 
triangle were extended to an infinite number of rows, then for all finite triangles this 
effect would disappear, and the original and magnified patterns would be identical. 
In fact, triangles of any size could be reproduced by taking smaller triangles and then 
magnifying them. The limiting pattern obtained from Pascal's triangle modulo two 
is thus "self-similar" or "scale invariant," and may be considered to exhibit the same 
structure at all length scales. Many examples of other "self-similar" figures are given 
in [4], [5]. 

If the number of inverted triangles with base length i is denoted T;, then Fig. 2 
indicates that T; /2 = 3 T;. For large i, therefore 

(I) 
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The exponent log2 3", 1.59 appearing here gives the "fractal dimensionality" [4], [5] 
of the self-similar pattern. 

Consider a ("filled in") square. Reduce the square by a factor of two in each of its 
linear dimensions. Four copies of the resulting reduced square are then required to 
cover the original square. Alternatively, one may write that the number of squares Si 
with side length i contained in the original square satisfies Si/2 = 4Si, so that Si - i-2. 
The exponent two here gives the usual dimensionality of the square. One may then 
by analogy identify the exponent '" 1.59 in Equation (1) as the generalized or "fractal" 
dimension of the figure formed from Pascal's triangle modulo two. 

Figure 2 suggests that the number N (n) of ones in the nth row of Pascal's triangle 
modulo two (or, equivalently, the number of odd binomial coefficients of the form 
( ~ ) is a highly irregular function of n. However, when n is of the form 2i, the simple 
result N(2 i ) = 2 is obtained. This can be considered a consequence of the algebraic 
relation ( ~j) = 0 mod p for 0 < i < p j and all primes p , which may be proved 
by considering the base p representations of factorial s. Algebraic methods [6]-[12] 
have been used to obtained the general result 

(2) 

The function #1 (n) gives the number of occurrences of the digit in the binary 
representation of the integer n. Hence, for example, # 1 (1) = 1, # 1 (2) = # 1 (102) = 1, 
#1(3) = #1(11 2) = 2, #1(4) = 1, and so on. A graph of #I(n) for n up to 128 
is given in Fig. 3. Note that although the function is defined only for integer n, 
values at successive integers have been joined by straight lines on the graph. For 
n > 0, 1 :::; #1 (n) :::; [log2 n]. The lower bound is reached when n is of the form 
2j ; the upper one when n = 2j - 1. Clearly #1(2 j n) = #I(n) (since multiplication 
by 2j simply appends zeroes, not affecting the number of 1 digits), and for n < 2j, 

Br---------,----------r----~ 

o~o--------~---n-------L--~1~2B 

Figure 3. The number of ones in the binary 

representation of the integer n . 
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#1 (n +2j ) = #1 (n)+ 1 (since the addition of2 j in this case prepends a single 1, without 
affecting the remaining digits). 

The result (2) for N(n) may be obtained by consideration of the geometrical 
pattern of Fig. 2, continued for 2[log2 "] rows, so as to include the complete upright 
triangle containing the nth row. By construction, the nth row corresponds to a line 
which crosses the lower half of the largest upright triangle. Each successive digit in 
the binary decomposition of n determines whether the line crosses the upper (0) or 
lower (1) halves of successively smaller upright triangles. The upper halves always 
contain one upright triangle smaller by a factor two; the lower halves contain two such 
smaller triangles. The total number of triangles crossed by the line corresponding to 
the nth row is thus multiplied by a factor of two each time the lower half is chosen. 
The total number of ones in the nth row is therefore a product of the factors of two 
associated with each 1 digit in the binary representation of n, as given by Equation (2). 

There are several possible extensions and generalizations of the results discussed 
above. 

One may consider Pascal's triangle reduced modulo some arbitrary integer k. 
Figure 4 shows the resulting patterns for a few values of k. In all cases, a self-similar 
pattern is obtained when sufficiently many rows are included. For k prime, a very 
regular pattern is found, with fractal dimension 

k (k+l) Dk = logk L i = 1 + logk -- , 
;= 1 2 

so that D3 = 1 + log3 2 '" l.63l. Ds '" l.683, and so on. In general, for large k, one 
finds that Dk ~ 2 - 1/ log2 k; when k ..., 00, the elements of Pascal's triangle modulo 
k become ordinary integers, which are all nonzero by virtue of the nonzero values 
of binomial coefficients. By a simple generalization of Equation (2), the number 
of entries with value r in the nth row of Pascal's triangle modulo k is found to be 
N(r )(n) = 2#~kl(n ) , where now #~k](n) gives the number of occurrences of the digit r in 

the base-k representation of the integer n. 
One may also consider the generalization of Pascal 's triangle to a three-dimensional 

pyramid of trinomial coefficients. Successive rows in the triangle are generalized 
to planes in the pyramid, with each plane carrying a square grid of integers. The 
apex of the pyramid is formed from a single 1. In each successive plane, the integer 
at each grid point is the sum of the integers at the four neighbouring grid points in 
the preceding plane. When the integers in the resulting three-dimensional array are 
reduced modulo k , a self-similar pattern is again obtained. With k = 2, the fractal 
dimension of the pattern is log25 '" 2.32. In general, the pattern obtained from the 
d-dimensional generalization of Pascal's triangle, reduced modulo two, has fractal 

dimension log2(2d + 1). 
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Figure 4. Patterns obtained by reducing Pascal's triangle modulo k for several values of k. White squares 

indicate zeroes; progressively blacker squares indicate increasing values, up to k - l. 
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Twenty Problems in the Theory 
of Cellular Automata 

1985 

Cellular automata are simple mathematical systems that exhibit very complicated 
behaviour. They can be considered as discrete dynamical systems or as computational 
systems. Progress has recently been made in studying several aspects o/them. Twenty 
central problems that remain unsolved are discussed. 

Many of the complicated systems in nature have been found to have quite simple 
components. Their complex overall behaviour seems to arise from the cooperative 
effect of a very large number of parts that each follow rather simple rules. Cellular 
automata are a class of mathematical models that seem to capture the essential 
features of this phenomenon. From their study one may hope to abstract some 
general laws that could extend the laws of thermodynamics to encompass complex 
and self-organizing systems. 

There has been recent progress in analysing some aspects of cellular automata. 
But many important problems remain. This paper discusses some of the ones that 
have so far been identified. The problems are intended to be broad in scope, and 
are probably not easy to solve. To solve anyone of them completely will probably 
require a multitude of subsidiary questions to be asked and answered. But when they 
are solved, substantial progress towards a theory of cellular automata and perhaps of 
complex systems in general should have been made. 

The emphasis of the paper is on what is not known: for expositions of what 
is already known about cellular automata, see [1-4]. The paper concentrates on 
theoretical aspects of cellular automata. There is little discussion of models for 
actual natural systems. But many of the theoretical issues discussed should have 
direct consequences for such models. 

Originally published in Physico Scripta. volume T9 [proceedings of the fifty-ninth Nobel Symposium]. pages 170-183 
(1985). 
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Cellular automata consist of a homogeneous lattice of sites, with each site taking 
on one of k possible values. The sites are updated according to a defiRite rule that 
involves a neighbourhood of sites around each one. So in a one-dimensional cellular 
automaton the value aitJ of a site at position i evolves according to 

(1+1) [(I) (I) (I) 
a i = ¢J a i_r , a i- r+1, . .. ,ai+r ]. 

The local rule if> has a range of r sites. Its form determines the behaviour of the cellular 
automaton. Some examples of patterns generated by cellular automata are shown 
in Figs. 1 and 2. Figure 1 shows examples of the four basic classes of behaviour 
seen in the evolution of cellular automata from disordered initial states. Figure 2 
shows patterns generated by evolution from initial configurations containing a single 
nonzero site. 

Cellular automata may be considered as discrete dynamical systems. Their global 
properties are studied by considering evolution from the set of all possible initial 
configurations (e.g., [5]). Since most cellular automata are irreversible, the set of 
configurations that is generated typically contracts with time. Its limiting form at 
large times determines the asymptotic behaviour of the cellular automaton, and is 
dominated by the attractors for the evolution. Some of the properties of cellular 

I • • ~.J. .... -:--. .- -. •• ,!-~:: •....... :-.... y.. . . . . . 1!- ==_ .. ~= .. ":;:== -:!;:-.:-===- -. == . .= - - ~.. === == = :: = .~.". === -- .. -- ----- .. .... ----- .. .... ----- .. .... ----- .. ..... ----- .. .. .. ----- .. .... ----- .. .... ----- .. -- ----- ... .... ----- ... .... ----- .. .. .. ---..... .. .... ----- ... .. .. ----- .. .... ----- ... .... ----- .. .... ----- .. .... ----- .... ----- .. --== .. .. .. ---
i! = --
-7 ; == 
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Figure 1. Examples of the four qualitative classes of behaviour seen in the evolution of one-dimensional 

cellular automata from disordered initial states. Successive time steps are shown on successive lines. 

Complex and varied behaviour is evident. The sites in the cellular automata illustrated have three possible 

values (k = 3); value 0 is shown blank, I is grey, and 2 is black. The value of each site at each time step is 

given by rules that depend on the sum of its own and its nearest neighbours' old values (r = I totalistic). 

The cases shown have rules specified by code numbers [5] 1302, 1005,444 and 792, respectively. 
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Figure 2. Examples of patterns generated by the evolution of various cellular automata starting from 

single site seeds. In the second case shown, a fractal pattern is generated. The subsequent cases shown 

illustrate the remarkable phenomenon that complicated and in some cases apparently random patterns can 

be generated by cellular automaton rules even from simple initial states. The cellular automata shown 

have k = 3, r = I totalistic rules with code numbers 1443, 31 2,1554,16 17, 1410 and 600, respectively. 

automata may be characterized in terms of quantities such as entropies and Lyapunov 
exponents that are used in studies of continuous dynamical systems (e.g. , [6]). 

An alternative view of cellular automata is as information-processing systems 
[7]. Cellular automaton evolution may be considered to carry out a computation on 
data represented by the initial sequence of site values. The nature of the evolution 
may then be characterized using methods from the theory of computation (e.g. , 
[8]). So for example the sets of configurations generated in the evolution may be 
described as formal languages: a one-dimensional cellular automaton gives a regular 
formal language after any finite number of time steps [7]. One suspects that in many 
cases the computations corresponding to cellular automaton evolution are sufficiently 
complicated as to be irreducible (cf. [9]). In that case, there can be essentially no 
short-cut to determining the outcome of the cellular automaton evolution by explicit 
simulation or observation of each step. This implies that certain limiting properties 
ofthe cellular automaton are undecidable, since to find them would require an infinite 
computation. 
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The problems discussed here address both dynamical systems theory and compu
tation theory aspects of cellular automata. But probably the most valuable insights 
will come from the interplay between these two aspects. 

Problem 1 

What overall classification of cellular automaton behaviour can be given? 

Experimental mathematics provides a first approach to this problem. One performs 
explicit simulations of cellular automata, and tries to find empirical rules for their 
behaviour. These may then suggest results that can be investigated by more conven
tional mathematical methods. 

An extensive experimental study [5] suggests that the patterns generated in the 
evolution of cellular automata from disordered initial states can be grouped into four 
general classes, illustrated in Fig. 1: 

(1) Evolves to homogeneous state. 

(2) Evolves to simple separated periodic structures. 

(3) Yields chaotic aperiodic patterns. 

(4) Yields complex pattern of localized structures. 

The classification is at first qualitative. But there are several ways to make it more 
quantitative, and to formulate precise definitions for the four classes. For some 
cellular automaton rules, one expects that all definitions will agree. But there are 
likely to be borderline cases where definitions will disagree. 

Continuous dynamical systems provide analogues for the classes of behaviour 
seen in cellular automata. Class 1 cellular automata show limit points, while class 
2 cellular automata may be considered to evolve to limit cycles. Class 3 cellular 
automata exhibit chaotic behaviour analogous to that found with strange attractors. 
Class 4 cellular automata effectively have very long transients, and no direct analogue 
for them has been identified among continuous dynamical systems. 

Dynamical systems theory gives a first approach to the quantitative characteri
zation of cellular automaton behaviour. Various kinds of entropy may be defined 
for cellular automata. Each counts the number of possible sequences of site values 
corresponding to some spacetime region. For example, the spatial entropy gives the 
dimension of the set of configurations that can be generated at some time step in the 
evolution of the cellular automaton, starting from all possible initial states. There 
are in general N (X) :s F (k is the number of possible values for each site) possible 
sequences of values for a block of X sites in this set of configurations. The spatial 
topological entropy d(x) is given by limx-+oo(i/ X) 10gkN(X). One may also define 
a spatial measure entropy dj:) formed from the probabilities of possible sequences. 
Temporal entropies d(t) may then be defined to count the number of sequences that 
occur in the time series of values taken on by each site. Topological entropies reflect 
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the possible configurations of a system; measure entropies reflect those that are prob
able, and are insensitive to phenomena that occur with zero probability. A tentative 
definition of the four classes of cellular automaton behaviour may be given in terms 
of measure entropies. Class I has zero spatial and temporal measure entropy. Class 2 
has zero temporal measure entropy, since it almost always yields periodic structures, 

~. :-t ----== ------------------== --
== --------== --== ... -

Figure 3. Patterns of differences generated by chang ing a single initial site value in the cellular automata 

of Fig. I. In the first two cases, the difference (shown modulo three) is seen to remain localized. In the 

second two cases, it grows progressively with time. 

but has positive spatial measure entropy. Class 3 has positive spatial and temporal 
measure entropies. 

Another property of cellular automata is their stability under small perturbations 
in initial conditions. Figure 3 shows differences in patterns generated by cellular 
automata induced by changes in a single initial site value. Such differences almost 
always die out in class I cellular automata. In class 2 cellular automata, they may per
sist, but remain localized. In class 3 cellular automata, however, they typically expand 
at an asymptotically constant rate. The rate of this expansion gives the Lyapunov ex
ponent for the evolution [5, 10], and measures the speed of propagation of information 
about the initial configuration in the cellular automaton. Class 4 cellular automata 
give rise to a pattern of differences that typically expands irregularly with time. 
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The four classes of cellular automaton behaviour identified here can be defined to 
be complete. But there are some cellular automata whose behaviour should probably 
be considered intermediate between the classes. In particular, there are many where 
there is a clear superposition of two classes of behaviour. So for example sites with 
values 0 and 1 can exhibit class 2 behaviour, while sites with values 0 and 2 show 
class 3 behaviour. The result is a sequence of chaotic regions separated by rigid 
"walls". 

Even at a qualitative level, it is possible that definite subclasses of the four classes 
of cellular automaton behaviour may be identified. Some class 3 cellular automata 
in one dimension seem to give patterns with large triangular clearings and low but 
presumably nonzero entropies; others give highly irregular patterns with no long
range structure. No clear statistical difference between these kinds of class 3 cellular 
automata has yet been found. But it is possible that one exists. Among class 4 
cellular automata there seem to be some definite subclasses in which persistent or 
almost persistent structures of rather particular kinds occur. 

Problem 2 

What are the exact relations between entropies and Lyapunov exponents for cellular 
automata? 

Using the finite information density of cellular automaton configurations, and the 
finite rate of information propagation in cellular automata, a number of inequalities 
may be derived between entropies and Lyapunov exponents (.:t). An example is 
d(t) /d(x) :::; 2.:t [5]. Preliminary numerical evidence suggests that for some cellular 
automata these inequalities may in fact be equalities. This would imply an impor
tant connection between the static properties of cellular automata, as embodied in 
entropies, and their dynamic properties, as measured by Lyapunov exponents. One is 
hampered in these studies by the lack of an efficient method for computing entropies. 
The best approach so far uses a conditional entropy method [11]. 

Lyapunov exponents can be considered to measure the rate of divergence of 
trajectories in the space of configurations. In continuous dynamical systems, a 
geometry is defined for this space, and one can identify Lyapunov exponents for 
various directions. 

Problem 3 

What is the analogue of geometry for the configuration space of a cellular 
automaton? 

Several simple observations may be made. First, if the cellular automaton lattice 
is more than one-dimensional, one may consider Lyapunov exponents in different 
directions on this lattice. A remarkable empirical observation is that for cellular 
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automata these exponents are approximately equal in all directions, even those not 
along the axes of the lattice, and even for cellular automata with asymmetric rules 
[12]. Second, in a one-dimensional cellular automaton one may consider Lyapunov 
exponents for subsets of configurations, or for particular components of configura
tions. For example, for a cellular automaton in which a class I component involving 
sites with values 0 and 2 is superimposed on class 3 behaviour involving sites with 
values 0 and 1, the Lyapunov exponent is positive in the "value 1" direction, and 
negative in the "value 2" direction. In general it seems that the cellular automaton 
evolution induces a form of geometry on the configuration space [13] . But the de
tails are unclear; one does not know, for example, the analogue of the tangent space 
considered in continuous dynamical systems. 

Problem 4 

What statistical quantities characterize cellular automaton behaviour? 

There are several direct statistical measurements that can be made on cellular au
tomaton configurations. Very simple examples are densities of sites or blocks of 
sites with particular values. Such densities are closely related to block entropies; 
their limit for large block sizes is the spatial entropy of the cellular automaton con
figurations, equal to the dimension of the Cantor set formed by the configurations 
(e.g. , [5]). Another direct statistical measurement that can be made is of correlation 
functions, which describe the interdependence of the values of separated sites [2]. 
For class 1 and 2 cellular automata, one expects that the correlation functions vanish 
beyond some critical distance. For class 3 cellular automata there are indications that 
the correlation functions typically fall off exponentially with distance. For class 4 
cellular automata, the large distance part of the correlation function is dominated by 
propagating persistent structures, and may decrease slowly. 

Power spectra or Fourier transforms provide other statistical measures of cellular 
automaton configurations. (Entirely discrete Walsh-Hadamard transforms [14] may 
be slightly more suitable.) Their form is not yet known. But many processes in 
cellular automata occur on a variety of spatial or temporal scales, so one expects 
definite structure in their transforms. 

Beyond entropies and Lyapunov exponents, dynamical systems theory suggests 
that zeta functions may give a characterization of the global behaviour of cellular 
automata. Zeta functions measure the density of periodic sequences in cellular 
automaton configurations, and may possibly be related to Fourier transforms. The fact 
that the set of configurations generated from all possible initial states at a particular 
time step in the evolution of a cellular automaton forms a regular language (or "sofic 
system") implies that the corresponding zeta function is rational [15]. 
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Problem 5 

What invariants are there in cellular automaton evolution? 

The existence of invariants or conservation laws in the evolution of a cellular au
tomaton would imply a partitioning of its state space, much as energy provides a 
partitioning of the state space for Hamiltonian (energy-conserving) dynamical sys
tems. For some class 1 and 2 cellular automata it is straightforward to identify 
invariants. In other cases, one can specifically construct cellular automaton rules that 
exhibit certain conservation laws [16 -18]. For example, the cellular automata may 
evolve as if on several disjoint spatial lattices. Or they may support a set of persistent 
structures or "particles" that interact in simple ways. But in general , the identification 
of numerical invariants in cellular automata will probably be as difficult as it is in 
other non-linear dynamical systems. 

It is nevertheless often possible to find partitionings of the state space for a cellular 
automaton that are left invariant by its evolution. The partitionings may be formed 
for example from sets of configurations corresponding to particular regular formal 
languages (cf. [7]). For example, the set of configurations with a particular period 
under a cellular automaton mapping is invariant, and in one dimension forms a finite
complement regular language (or "subshift of finite type"). Different elements in 
such partitionings may be considered to carry different values of what is often an 
infinite set of conserved quantities. 

A particular cellular automaton rule usually evolves to give qualitatively similar 
behaviour from almost all initial states (each site is chosen to have each of the k 
possible values with equal probabilities). Often there are sets of initial states that 
occur with probability zero (for example, states in which all sites have the same value) 
that evolve differently from the rest. Such states may be distinguished by invariant or 
conserved quantities. But most initial states evolve to configurations with the same 
statistical properties. This suggests that even if the possible states could be partitioned 
according to the value of some invariant, they would be essentially equivalent. It 
remains conceivable, however, that there exist cellular automata in which two sets 
of initial states that occur with nonzero probabilities could lead to two qualitatively 
different forms of behaviour. 

Problem 6 

How does thermodynamics apply to cellular automata? 

Thermodynamics is supposed to describe the average overall behaviour of physical 
systems with many components. The microscopic dynamics of these systems is 
assumed to be reversible, so that the mapping from one state to another with time is 
invertible. Most cellular automata are irreversible, so that a particular configuration 
may arise from several distinct predecessors. However, a small subset of cellular 
automaton rules are bijective or invertible. Complete tables of invertible rules exist 
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for k = 2, r ~ 2 [19,20] and for k = 3, r = 1 [20], but in general no efficient procedure 

for finding such rules is known. Nevertheless, it is possible to construct particular 

classes of invertible rules [16,21]. 

To apply thermodynamics one must also "coarse-grain" the system, grouping 

together many microscopically-different states to mimic the effect of imprecise mea

surements. Coarse-graining in cellular automata may be achieved by applying an 

irreversible transformation, perhaps a cellular automaton rule, to the cellular automa

ton configurations. A simple example would be to map the value of every other site 

to zero. 

Coarse-grained entropy in reversible cellular automata should follow the second 

law of thermodynamics, and be on average non-decreasing with time. One may 

start from a set or ensemble of configurations with non-maximal coarse-grained 

entropy. The degrees of freedom that do not affect the coarse-grained entropy are 

undetermined, and are assumed to have maximal (fine-grained) entropy. In reversible 

class 2 cellular automata, the determined and undetermined degrees of freedom do 

not mix significantly with time, and the coarse-grained entropy remains essentially 

constant. But for class 3 and 4 cellular automata, the degrees of freedom mix, and 

the coarse-grained entropy increases towards its maximum possible value. 

As in all applications of thermodynamics, the question arises of what coarse

graining prescriptions and ensembles of initial states are permissible. The initial 

states could for example be specially chosen so as to be the predecessors of a low 

coarse-grained entropy ensemble. The coarse-grained entropy would then decrease. 

Such examples do not seem physically reasonable. But it has never been clear exactly 

what mathematical criteria should be imposed to exclude them. One possibility 

is that one could require the coarse-graining procedure and the initial ensemble 

to be computationally simple (cf. [22]). If the cellular automaton evolution were 

computationally irreducible, then such a criterion could exclude ensembles obtained 

by reversing the evolution for many steps. 

For the usual case of irreversible cellular automata, coarse-graining is usually of 

little consequence: the progressive contraction in the number of states generated by 

the cellular automaton evolution soon far outweighs the reduction associated with 

coarse-graining. 

Problem 7 

How is different behaviour distributed in the space of cellular automaton rules? 

Random sampling yields some empirical indications of the frequencies of different 

classes of behaviour among cellular automaton rules of various kinds. For symmetric 

one-dimensional cellular automata, class 1 and 2 cellular automata appear to become 

progressively less common as k and r increase; class 3 becomes more common, and 

class 4 slowly becomes less common. In two-dimensional cellular automata, class 

3 is overwhelmingly the most common; class 4 is very rare [12]. It seems that class 
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3 behaviour in any "direction" in the cellular automaton state space leads to overall 
class 3 behaviour. And as the number of degrees of freedom in the rules increases, the 
chance that this happens for one of the directions increases. For very large k and r a 
direct statistical treatment of the set of cellular automaton rules may well be possible. 

There are many common features in the behaviour of cellular automata with ap
parently very different rules. It is not clear to what extent a direct equivalence exists 
between rules with qualitatively similar behaviour. In some cases, different rules may 
be related through invertible cellular automaton mappings. The nature of the equiv
alence classes of cellular automata generated in this way is presumably determined 
largely by the structure of the group of invertible cellular automaton mappings. 

There are various ways to define distances in the space of cellular automaton 
rules. There are often cellular automata whose rules differ only slightly, but whose 
behaviour is very different. Nevertheless, it should be possible to find families 
of cellular automaton rules with closely related behaviour. For example, one may 
consider totalistic rules [5] in which the function that gives the new value of a site in 
terms of the sum of the old values in its neighbourhood is a discrete approximation 
to a function that involves a continuous parameter [23]. The behaviour of different 
cellular automaton rules obtained by changing this parameter may be compared with 
the behaviour found in iterated mappings of an interval of the real line (e.g., [24]) 
according to the same function. There are indications of a significant correspondence 
[23]. As the parameter is increased, regular periodic (class 2) cellular automaton 
behaviour can exhibit period doubling. Then as the parameter is further increased, 
chaotic (class 3) behaviour can occur. Class 4 seems to appear as an intermediate 
phenomenon. 

Problem 8 

What are the scaling properties of cellular automata? 

Scaling transformations change the number of sites in a cellular automaton. Under 
such transformations, one cellular automaton rule may simulate another one. For 
example, if each site with value 0 is replaced by a pair of sites 00, and each 1 is 
replaced by 01, a new cellular automaton rule is obtained [2]. In some cases, this 
rule may have the same k and r as the original rule; in other cases it may not. 
The inverse transformation, in which 00 is replaced by 0, and 01 by 1, may be 
considered as a "blocking transformation" analogous to a block spin transformation 
(e.g. , [25]), and yields a cellular automaton with fewer degrees of freedom. However, 
the transformation may be applied only to those special configurations in which just 
00 and 01 site value pairs occur. 

One may develop a network that shows the results of blocking transformations on 
rules of a particular kind, say with k = 2 and r = 1 [4, 26]. Some rules are found to be 
invariant under blocking transformations. Examples are the additive rules numbers 90 
and 150 with k = 2 and r = 1. Patterns generated by these rules are thus scale invari-
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ant, so that they have the same form when viewed with different magnifications. If the 
initial configuration consists of a simple seed, say a single nonzero site, then regular 
scale-invariant patterns are obtained. These fractal patterns [27] have the property that 
pieces of them, when magnified, are indistinguishable from the whole pattern. (The 
fractal dimensions of the patterns are related to the parameters of the blocking trans
formations.) When the initial state is disordered, the patterns generated are instead 
statistically scale invariant, in the sense that their statistical properties are invariant 
under blocking transformations. So, for example, the pattern obtained by considering 
every site in the cellular automaton may have the same statistical properties as the 
pattern obtained by considering only every other site on every other time step. 

Blocking transformations typically apply only to configurations that contain spe
cific blocks in a given cellular automaton. So for example, different simple injtial 
seeds in a cellular automaton may lead to rather different behaviour if they contain 
blocks that allow for different blocking transformations. Under certain blocking 
transformations, many of the k = 2, r = 1 cellular automata simulate the additive 
rules 90 or 150, which are invariant under blocking transformations. An initial state 
containing a single nonzero site is often one for which this simulation occurs, so that 
the pattern to which it leads is self-similar, just as for rule 90 or rule 150. With more 
complicated initial states, however, patterns with different forms may be obtained. 

Starting from a disordered initial state, in which all possible sequences of site 
values occur with equal probabilities, the irreversible evolution of many cellular 
automata leads to states in whjch only particular sequences actually occur. If these 
sequences correspond to those for which some blocking transformation applies, then 
the overall behaviour of the cellular automaton will be given by the result of this 
blocking transformation. In a typical case, a cellular automaton rule supports a 
number of "phases". Each phase consists of sequences to which some blocking 
transformation applies, and under which the cellular automaton behaves just like 
one with a different rule. So for example [28], in the k = 2, r = 1 rule number 
18, sequences containing only 00 and 01, or only 00 and 10, constitute two phases 
with behaviour just like the additive rule 90. An arbitrary disordered state consists 
of a series of small domajns, each in one of these phases, separated by "domain 
walls", consisting of 11 blocks. These domain walls execute approximately random 
walks with time, and annihilate in pairs, leaving larger and larger domains in a pure 
phase [28]. In two and higher dimensional cellular automata, the domains may have 
complicated geometrical structures [12]. The domain walls often behave as if they 
have a surface tension. When the surface tension is positive, the domains tend to 
become spherical. When the surface tension is negative, the domains take on a 
highly-convoluted labyrinthine form. 

It seems that one may in general define a quantity analogous to free energy, 
or essentially pressure, for each possible phase in a cellular automaton. Domains 
containing phases with higher pressures typically expand linearly with time through 
domains with lower pressures, sometimes following biased random walks. The 
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walls between domains with equal pressures typically execute unbiased random 
walks. After a long time, the phases with the highest pressure (or lowest free 
energy) dominate the behaviour of the cellular automaton, and thus determine the 
form of the limiting set of configurations. One may speculate that the phases that 
survive in this limit should be fixed points of the blocking transformation, and 
thus should exhibit some form of scale invariance. This is evident in some cases, 
where there are phases that behave say like rule 90. It is not clear how general 
the phenomenon is. If, however, it were widespread, then the overall large time 
behaviour of cellular automata would be dominated by fixed points of the blocking 
transformations, much as critical phenomena in spin systems are dominated by fixed 
points of the renormalization group or block spin transformation. Then there would 
be a universality in the properties of the many different cellular automata attracted to a 
particular fixed point rule. (So far the only fixed points of the blocking transformation 
that have been found are additive rules, but one suspects that not all fixed point rules 
must in fact be additive.) The spatial measure entropies for the different cellular 
automata would for example presumably then be related by simple rational factors. 

One rule whose scaling propeities remain unclear is the k = 2, r = 1 rule number 
22. This rule simulates rule 90 under the blocking transformation 0000 --7 0,0001 --7 

1, and its rotated equivalents. But the simulation is not an attractive one: starting from 
a disordered initial state, domains of these phases do not grow. It may be possible 
to describe the configurations obtained as domains of phases corresponding to some 
other blocking transformation. A generalization of blocking transformations may 
be required. One may consider a blocking transformation as a translation from one 
formal language to another. In simple cases, such a translation may be achieved with 
a finite automaton that reads symbols sequentially from the "input" configuration, 
and writes symbols into the "output" configuration according to the internal state that 
it reaches. Blocking transformations that consist of simple substitutions correspond 
to very simple finite automata of this kind. More complicated finite automata may 
be necessary to describe phases in cellular automata such as rule number 22. In 
general , the irreversible nature of most cellular automata implies that only a subset 
of possible configurations are generated with time. As a consequence, only certain 
neighbourhoods of site values may appear, so that some of the elements of the cellular 
automaton rule are never used, and a different rule would give identical results. 

The description of cellular automaton configurations in terms of domains of 
different phases is related to a description in terms of "elementary excitations". Just as 
for a spin system, one may consider decomposing a cellular automaton configuration 
into a "ground state" part, together with "phonons" or excitations. The excitations 
may for example correspond to domain walls. Or they could be persistent structures 
in class 4 cellular automata. But if their interactions are comparatively simple, then 
they can be used to provide an overall description of the cellular automaton behaviour, 
and perhaps allow for example a computation of entropies. 
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Problem 9 

What is the correspondence between cellular automata and continuous systems? 

Cellular automata are discrete in several respects. First, they consist of a discrete 
spatial lattice of sites. Second, they evolve in discrete time steps. And finally, each 
site has only a finite discrete set of possible values. 

The first two forms of discreteness are addressed in the numerical analysis of 
approximate solutions to, say, differential equations. It is known that so long as a 
"stable" discretization is used, the exact continuum results are approximated more 
and more closely as the number of sites and the number of time steps is increased. It is 
possible to devise cellular automaton rules that provide approximations to partial dif
ferential equations in this way. In the simplest cases, however, the approximations are 
of the Jacobi, rather than the Gauss-Seidel kind, in that the algorithm for calculating 
new site values uses the old values of all the neighbours, rather than the new values 
of some of them. This can lead to slow convergence and instabilities in some cases. 

The third form of discreteness in cellular automata is not so familiar from nu
merical analysis. It is an extreme form of round-off, in which each "number" can 
have only a few possible values (rather than the usual say 2 16 or 232) . It is not clear 
what aspects of, say, differential equations are preserved in such an approximation. 
However, preliminary studies in a few cases suggest that the overall structure of 
solutions to the equations are remarkably insensitive to such approximations. If the 
cellular automaton approximates for example a continuous field, then the value of 
the field at a particular point could correspond roughly to the density of say nonzero 
sites around that point: the values of individual field points would be represented 
in a distributed manner, just as they often are in actual physical systems. Explicit 
examples of cellular automaton approximations to partial differential equations of 
physical importance would be valuable. 

There are some aspects of nonlinear differential equations that may well have 
rather direct analogues in cellular automata. For example, the persistent propagating 
structures found in class 4 cellular automata may well be related to solitons in non
linear differential equations, at least in their solitary persistence, if not in their inter
actions. Similarly, the overall topological forms of some of the patterns generated by 
two and higher dimensional cellular automata [29] may correspond to those generated 
say by reaction-diffusion equations [30] . Moreover, many highly-nonlinear partial 
differential equations give solutions that exhibit discrete or cellular structure on some 
characteristic length scale (e.g. , [31]) . The interactions between components in the 
cellular structure cannot readily be described by a direct discretization of the original 
differential equation, but a cellular automaton model for them can be constructed. 

Continuum descriptions may be given of many of the large-scale structures that 
occur in cellular automata. For example, the motion of domain walls between phases 
may be described by diffusion-like differential equations. A very direct continuum 
approximation to a cellular automaton is provided by a mean field theory, in which 
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only the average density of sites, and not their individual values, is considered [2]. 
Presumably in the limit of large spatial dimensionality, this approximation should 
become accurate. But in one or two dimensions, it is usually quite inadequate, and 
gives largely misleading results. Large-scale phenomena in cellular automata occur 
as collective effects involving many individual sites, and the particular rules that 
relate the values of these sites are significant. 

Problem 10 

What is the correspondence between cellular automata and stochastic systems? 

Cellular automata satisfy deterministic rules. But their initial states can have a 
random form. And the patterns they generate can have many of the properties 
of statistical randomness. As a consequence, the behaviour of cellular automata 
may have a close correspondence with the behaviour of systems usually described 
by basic rules that involve noise or probabilities. So for example domain walls 
in cellular automata execute essentially random walks, even though the evolution 
of the cellular automaton as a whole is entirely deterministic. Similarly, one can 
construct a cellular automaton that mimics sayan Ising spin system with a fixed total 
energy (microcanonical ensemble) [32]. Apparently random behaviour occurs as a 
consequence of randomly-chosen initial conditions, just as in many systems governed 
by the deterministic laws of classical physics. 

Even models that involve explicit randomness are in practice simulated in com
puter experiments using pseudorandom sequences generated by some definite algo
rithm. These sequences are not unlike the sequences of site values produced by many 
cellular automata. In fact, the linear feedback shift registers often used in practice to 
produce pseudorandom sequences are exactly equivalent to certain additive cellular 
automata (cf. [33]). Empirical evidence suggests that the properties of many suppos
edly stochastic models are quite insensitive to the detailed form of the randomness 
used in their simulation. It should be possible to find entirely deterministic forms 
for such models, based say on cellular automata. One expects in general that just as 
with algorithms say for primality testing the fundamental capabilities of stochastic 
and deterministic models should be equivalent. 

Problem 11 

How are cellular automata affected by noise and other imperfections? 

Many mathematical approaches to the analysis of cellular automata make essential 
use of their simple deterministic structure. One must find out to what extent results 
for the overall behaviour of cellular automata are changed when imperfections are 
introduced into them. The imperfections can be of several kinds . First, the cellular 
automaton rules can have a probabilistic element (e.g., [17, 34, 35]). Then for 
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example each site may be updated at each time step according to one rule with 
probability p, and according to another rule with probability 1 - p. A second class 
of imperfections modifies the homogeneous cellular automaton lattice. One may for 
example take different sites to follow different rules. Or one may take the connections 
that ~pecify the rules on the lattice to be different at different sites. In an ordinary 
cellular automaton, the values of all the sites are updated simultaneously, using the 
previous values of the sites in their neighbourhoods. One may consider the effect 
of deviations from this synchronization, allowing different sites to be updated at 
different times [36]. Finally, each site is usually taken to have a discrete set of 
possible values. One could instead allow the sites to have a continuum of values, but 
take the rules to be continuous functions with sharp thresholds. 

Several classes of models can be considered as imperfect cellular automata. Di
rected percolation is directly analogous to certain cellular automata in the presence 
of noise [35]. The patterns generated with time by noisy cellular automata also 
correspond to the equilibrium configurations of spin systems at finite temperature 
[35]. And if inhomogeneities are introduced into the cellular automata, they give 
spin glass configurations. When nonlocal connections and asynchronous updates 
are introduced, models analogous to Boolean or neural networks are obtained (e.g., 
[37]). 

Even an arbitrarily small imperfection in a cellular automaton can have a large 
effect at arbitrarily large times. However, small imperfections very often do not affect 
the overall behaviour of a cellular automaton. There is often a critical magnitude of 
imperfection at which essentially a phase transition occurs, and the behaviour of the 
cellular automaton changes suddenly. One can presumably find such transitions as a 
function of noise and other imperfections in many different cellular automata (cf. [34, 
35]). Often the transitions should be associated with critical exponents; one expects 
that several universality classes may be identified. Note that even one-dimensional 
cellular automata can exhibit phase transitions at nonzero values of imperfection 
parameters if imperfections are introduced in such a way that for example certain 
initial states still evolve as they would without the imperfections. 

Given a pattern generated by a cellular automaton with imperfections, as might be 
obtained in a physical experiment, one may consider how the basic cellular automaton 
rule could be deduced. One could lay down a definite grid, and then accumulate 
histograms of the new site values obtained with all neighbourhoods, and thereby 
deduce the cellular automaton rule (it will not necessarily be unique, since certain 
neighbourhoods may never appear) [13]. This procedure accounts for imperfections 
due to noise, but not for imperfections such as deformations of the lattice. It appears 
that an iterative optimization approach must be used to treat such imperfections. 
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Problem 12 

Is regular language complexity generically non-decreasing with time in 
one-dimensional cellular automata? 

The sets of configurations generated by cellular automaton evolution, starting say 
from all possible initial states, can be considered as formal languages. Each config
uration corresponds to a word in the language, formed from a sequence of symbols 
representing site values, according to a definite set of grammatical rules. For one
dimensional cellular automata, it can be shown that the set of configurations generated 
after any finite number of time steps forms a regular formal language [7]. Thus the 
configurations correspond to the possible paths through a finite directed graph, whose 
arcs are labelled by the values that occur at each site. There is an algorithm to find the 
graph with the minimal number of nodes that represents a particular regular language 
[8 , 38], in such a way that each word in the language corresponds to a unique path 
through the graph (deterministic finite automaton). This minimal graph provides a 
complete canonical description of the set generated by the cellular automaton evolu
tion. From it properties such as topological entropy may be deduced. The entropy is 
in fact given by the logarithm of the largest eigenvalue of the adjacency matrix for 
the graph, which is an algebraic integer. 

One characteristic of a regular language is the total size or number of nodes 8 in 
its minimal graph. This quantity can be considered as a measure of the complexity of 
the regular language. The larger it is, the more complicated a subset of the space of 
possible symbol sequences the language corresponds to. 8 gives in a sense the size 
of the shortest description of this subset, at least in terms of regular languages. The 
value of 8 is in general bounded above by 2 (ln - 1. The empirical studies done so 
far suggest that for class 1 and 2 cellular automata, 8 in fact becomes constant after 
a few time steps, or increases at most as a polynomial with t. For most class 3 and 4 
cellular automata, however, 8 appears to increase rapidly with time, though it usually 
stays far below the upper bound. There are a few cases where 8 decreases slightly at 
a particular time step, but in general it seems that 8 is usually non-decreasing with 
time. If this is indeed a general result, it gives a quantitative form to the qualitative 
statement that complexity seems to increase with time. It could be a principle for 
self-organizing systems analogous in generality but complementary in content to the 
law of entropy increase in thermodynamic systems. 

If the non-decrease of 8 is indeed a general result, then it should have a simple 
proof that depends on few of the properties of the system considered. A crucial 
property of cellular automata may be irreversibility, which leads to a progressive 
contraction in the set of configurations generated. As a consequence of this con
traction, the set generated at each time step must correspond to a different regular 
language. But there are only a limited number of regular languages with complexi
ties less than any particular value, and so the complexity of the language generated 
must increase, albeit slowly, with time. To find a complete bound, one must study 
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the structure of the space of possible regular languages. It is clear that the number 
of regular languages of complexity B is less than the number of labelled directed 
graphs with B nodes, 2kS2. The minimal graph for a regular language must have a 
trivial automorphism group; but the number of graphs with a given automorphism 
group does not appear to be known (e.g., [39]) . Beyond the total number of regular 
languages, one may consider the network that represents the containment of regular 
languages, divided into zones of different B. One suspects that this network is close 
to a tree, with a number of nodes increasing perhaps exponentially with depth B. 

Problem 13 

What limit sets can cellular automata produce? 

Not all possible sets of configurations can be produced as limit sets of cellular 
automata. For the number of distinct cellular automaton rules, while infinite, is 
countable. Yet the number of possible sets of configurations is uncountable. 

At each step in the evolution of an irreversible cellular automaton, a new set of 
configurations is excluded. The limit set consists of those configurations that are 
never excluded. The set of all excluded configurations is recursively enumerable, 
since each of its elements is found by a finite computation. Thus the limit sets for 
cellular automata are always the complements of recursively enumerable (co-r.e.) 
sets, and are therefore countable in number. Nevertheless, not every co-r.e. set is 
the limit set for a cellular automaton: one additional condition is that they must 
be translationally invariant. Thus for example, cellular automaton limit sets must 
contain either one configuration, or an infinite number of distinct configurations, and 
cannot consist of some other finite number of configurations [40]. Not every possible 
real number value of dimension or entropy can be realized by cellular automata; but 
the set that is realized presumably includes some values that are non-computable. 

After any finite number of time steps, the set of configurations generated by a one
dimensional cellular automaton forms a regular formal language. For some cellular 
automata (essentially those in classes I and 2), the limit set is also a regular language. 
But in other cases, the limit set probably corresponds to a more complicated formal 
language. Explicit examples are known in which context-free and context-sensitive 
languages are obtained as limit sets [40] . In addition, cellular automata that are capa
ble of universal computation can generate limit sets that are not recursive [40]. The 
generic behaviour is however not known: some more examples would be valuable. 

When the limit set forms a regular language, the simplest description of it, in terms 
of a regular grammar or graph, can be found by a finite algorithm. The size B of 
this description can be used as a measure of the complexity of the set. However, for 
languages more complicated than regular ones, there is in general no finite algorithm 
to find the simplest grammar (e.g. , [8]) . The size of such a minimal grammar is thus 
formally non-computable. One may test a sequence of grammars, but the languages 
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to which they lead cannot in general be enumerated by a computation of any bounded 
length. 

Minimum grammar size is thus not a useful measure of complexity for complicated 
cellular automaton limit sets. Some other measure must be found. And in terms of 
this measure, one should be able to determine how the complexity of the behaviour 
of a cellular automaton, as revealed by the structure of its limit set, depends on the 
complexity of its local rule, or the values of k and r . 

One may wonder what features of the local rule for a cellular automaton determine 
its global properties, and the structure of its limit set. Some simple observations may 
be made. For example, unless the local rule contains elements that give value 1 with 
neighbourhoods such as 001, no information can propagate in the cellular automaton, 
and class 1 or 2 behaviour must occur. But in general one expects that the problem is 
undecidable: the only way to determine many of the limiting properties of a cellular 
automaton is probably by explicit simulation of its evolution, for an infinite time. 

As a practical matter, one may ask whether cellular automaton rules may be 
constructed to yield particular limit sets (cf. [41]), so that their evolution serves to 
filter out the components that appear in these limit sets. It is probably possible to 
construct cellular automata that yield any of some class of regular languages as limit 
sets. But one suspects that a construction for more complicated limit sets can be 
carried out only in very special cases. 

Problem 14 

What are the connections between the computational and statistical characteristics 
of cellular automata? 

The rate of information transmission is one attribute of cellular automata that poten
tially affects both computational and statistical properties. On the statistical side, the 
rate of information transmission gives the Lyapunov exponent for the cellular au
tomaton evolution. Class 1 and 2 cellular automata have zero Lyapunov exponents, 
so that information almost always remains localized, and the value of a particular 
site at any time can almost always be determined from the initial values of a bounded 
neighbourhood of initial sites. As a consequence, the limit sets for one-dimensional 
such cellular automata correspond to regular languages. The configurations can thus 
be generated by an essentially Markovian process, in which there are no long-range 
correlations between different parts. 

Class 3 and 4 cellular automata have positive Lyapunov exponents, so that a small 
initial change expands with time. The value of a particular site after many time 
steps thus depends in general on an ever-increasing region in the initial state. The 
limit sets for such cellular automata can thus involve long-range correlations, and 
need not correspond to regular languages. If class 4 cellular automata are generi
cally capable of universal computation, then their limit sets should be unrestricted, 
in general non-recursive, formal languages. Some arguments can be given that 
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class 3 cellular automata should yield limit sets that correspond to context-sensitive 

languages. In general, one suspects that dynamical systems that exhibit chaotic be

haviour characterized by positive Lyapunov exponents should yield limit sets that 

are more complicated than regular languages. 

When the limit set for a cellular automaton is a regular language, its spatial entropy 

can be computed, and is given by the logarithm of an algebraic integer. If the limit set 

is a context-free language, then it seems that the entropy is always the logarithm of 

some algebraic number. But for context-sensitive and more complicated languages, 

the entropy is in general non-computable. It may thus be common to find class 3 and 

4 cellular automata for which the entropy of their limit sets is non-computable. 

The computational structure of sets generated in the evolution of two and higher 

dimensional cellular automata can be very complicated even after a finite number 

of time steps. In particular, while in one-dimensional cellular automata the set 

of configurations that can be generated at any finite time forms a regular formal 

language, this set can be non-recursive in two-dimensional cellular automata [12, 42] . 

The essential origin of this difference is that there is an iterative procedure to find 

the possible predecessors of arbitrarily long sequences in one-dimensional cellular 

automata, but no such procedure exists for two-dimensional cellular automata. In 

fact, even the problem of finding configurations that evolve periodically in time in 

a two-dimensional cellular automaton appears to be equivalent to the domino tiling 

problem, which is known to be formally undecidable [43]. Nevertheless, it seems 

likely that only two-dimensional cellular automata in which information transmission 

can occur throughout the plane, as revealed by positive Lyapunov exponents in all 

directions, exhibit such complications, and give non-recursive sets at finite times. 

The grammar for a formal language specifies which sequences occur in the lan

guage, but not how often they occur. It does not for example distinguish sequences 

that occur with zero probability from those that occur with positive probability. How

ever, it is the probable, rather than the possible, behaviour of cellular automata that 

is most significant in determining their statistical properties, such as Lyapunov expo

nents and measure entropies. There are class 1 and 2 cellular automata in which a set 

of states of measure zero yields class 3 behaviour: this is irrelevant in the Lyapunov 

exponent or the measure entropy, but affects the topological entropy, and the structure 

of the grammar for the limit set. One should construct formal languages that include 

probabilities for configurations. A suitable approach may be to consider stochastic 

automata, closely related to standard Markov chains. 

Problem lS 

How random are the sequences generated by cellular automata? 

The spatial sequences obtained after a finite number of steps in the evolution of 

a one-dimensional cellular automaton starting from all possible initial states are 

known to form a regular formal language. But no such characterization is known 
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for the temporal sequences generated by cellular automata. At least for cellular 
automata capable of universal computation, these sequences can be non-recursive. 
But the generic behaviour is not known, and no non-trivial examples have yet been 
given. 

One question is to what extent the initial state of a cellular automaton can be 
reconstructed from a knowledge of the time series of values of a few sites. An 
essentially equivalent question is how wide a patch of sites need to be considered 
to compute the invariant entropy of the cellular automaton mapping. When the 
mapping is surjective and expansive (so that roughly information transmission occurs 
at a positive rate), only a finite width is required (e.g., [44]). Nevertheless, the 
transformation necessary to find the initial state from the temporal sequence may 
be very complicated. In particular, there may be effectively no better method than 
to try all exponentially many possible initial states. Temporal sequences in cellular 
automata are thus candidates for use in pseudorandom number generation and in 
cryptography [20]. 

The patterns generated by some cellular automata evolving from initial states 
consisting of simple seeds have a simple form. They may be asymptotically homo
geneous, or may correspond to regular fractals. But many cellular automata yield 
complicated patterns even starting from an initial state as simple as a single nonzero 
site. Some examples are shown in Fig. 2. It is remarkable that such complicated and 
intricate patterns can be generated in such a simple system. 

Often the temporal sequences that appear in these patterns have a seemingly 
random form, and satisfy many statistical tests for randomness. There is empirical 
evidence that in many cases the sequence of values taken on say by the centre site 
in the pattern contains all possible subsequences with equal frequencies, so that the 
whole sequence effectively has maximal measure entropy. A simple example of this 
phenomenon occurs in the k = 2, r = 1 rule number 30 (aY+

1
) = a}~l EBmax (aY), a}~l)). 

Systems that exhibit chaotic behaviour usually start from initial conditions that 
contain an infinite amount of information, either in the form of an infinite sequence 
of cellular automaton site values, or the infinite sequence of digits in a real number. 
Their irregular behaviour with time can then be viewed as a progressive excavation 
of the initial conditions. The chaotic behaviour seen in Fig. 2 is however of another 
kind: it occurs as a consequence of the dynamics of the system, even though the 
initial conditions are simple. It may well be that this kind of chaos is central to 
physical phenomena such as fluid turbulence. 

It is important to investigate the mathematical bases for such behaviour. The 
closest analogies seem to lie in number theory. The integers generated for example 
by repeated application of a linear congruence transformation form a pseudorandom 
sequence (e.g" [45]), often used in practical applications. The linearity ofthis system 
makes it amenable to a rather complete number theoretical analysis, which provides 
formulae for computing the nth integer in the sequence directly from the original 
seed, with working out all the intermediates. It seems likely that such analyses, and 
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the resulting short cuts, are not possible in most nonlinear cellular automata. The 
randomness produced in these systems may be more like the randomness say of the 
digits of 1r. In some cases it is in fact possible to cast essentially number theoretical 
problems in terms of questions about patterns generated by cellular automata. One 
example concerns the sequence of leading binary digits in the fractional parts of 
successive powers of 3/ 2 [46]. There is empirical evidence that aU possible blocks 
of digits occur in this sequence, so that in a sense it has maximal entropy. The 
sequence corresponds to the time series of values of the central site in the pattern 
generated by a particular cellular automaton from a simple initial state. 

Problem 16 

How common are computational universality and undecidability in 
cellular automata? 

If a system is capable of universal computation, then with appropriate initial condi
tions, its evolution can carry out any finite computational process. A computationally 
universal system can thus mimic the behaviour of any other system, and so can in a 
sense exhibit the most complicated possible behaviour. 

Several specific cellular automata are known to be capable of universal computa
tion. The two-dimensional nearest-neighbour cellular automaton with two possible 
values at each site known as the "Game of Life" has been proved computation uni
versal [47]. The proof was carried out by showing that the cellular automaton could 
support structures that correspond to all the components of an idealized digital elec
tronic computer, and that these components could be connected so to implement any 
algorithm. Some one-dimensional nearest-neighbour cellular automata with k = 18 
have been shown to be computationaUy equivalent to the simplest known universal 
Turing machines, and are thus capable of universal computation [48]. 

One speculates that cellular automata identified on statistical grounds as class 4 are 
in fact generically capable of universal computation. This would imply that there exist 
one-dimensional computationally universal cellular automata in cases as simple as k = 
2, r = 2 or k = 3, r = 1. But it remains to prove the computational universality of any 
particular such rule. Several methods could be used for such a proof. One is to identify 
a set of persistent structures in the cellular automaton that could act as the components 
of a digital computer, or like combinations of symbols and internal states for a Turing 
machine. Structures that remain fixed , propagate, and interact in various ways have 
been found. A structure that can act as a "clock", producing an infinite sequence 
of "signals", has not yet been found in such cellular automata. Another method of 
proving universality would be a direct demonstration that thi s cellular automaton 
rule could simulate any other cellular automaton rule with an appropriate encoding 
of initial states. Blocking transformations may provide the necessary encodings: so 
one must find out whether a particular cellular automaton rule is connected to all 
others in the simulation networks constructed from blocking transformations. 
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If class 4 cellular automata are indeed capable of universal computation, then 

the capability for universal computation is quite common among one-dimensional 

cellular automata. Class 4 behaviour is however much rarer in two dimensional 

cellular automata-the "Game of Life" is almost the only known example (cf. [12]). 

There may well be cellular automata whose behaviour is usually computationally 

simple, but which with very special initial states can perform arbitrary computations. 
It is certainly possible to construct cellular automata in which universal computation 

occurs only with initial states in which say every other site has value zero (cf. [49]), 

a condition that occurs in disordered states with probability zero. Such phenomena 

may be common in class 3 cellular automata. 

Any predictions about the behaviour of a cellular automaton must be made by 

performing some computation. But if the cellular automaton is capable of universal 

computation, then this computation must in general reduce to a direct simulation 

of the cellular automaton evolution. So questions about the infinite time limiting 

behaviour of cellular automata may require infinite computations, and therefore be 
formally undecidable. 

For example, one may consider the question of whether the patterns generated from 

particular finite initial seeds ever die out in the evolution of the cellular automaton. 

One may simulate the evolution explicitly to find out whether a pattern dies out after 

say a thousand time steps; but to determine its ultimate fate in general requires a 

computation of unbounded length. The question is therefore formally undecidable. 

The set of finite configurations that evolve to the null configuration after a fixed 

finite time can be specified by a regular formal language (cf. [50]). But there is no 

such finite specification for the set of finite configurations that evolve after any time 

to the null configuration. Even the fraction of configurations in this set is in general 

a non-computable number. 

A similar problem is to determine whether a particular finite sequence of site 

values occurs in any configurations in the limit set for a cellular automaton. Again 

this problem is in general undecidable [40]. An explicit finite calculation can show 

that a sequence is forbidden after say three time steps. But a particular sequence 

may only be forbidden after some arbitrarily large number of time steps. In a 

one-dimensional cellular automaton, the length L (I ) of the shortest sequence newly 
excluded at a given time step in the evolution is bounded by L (I ) ~ L (I- I ) -2r . In most 

actual examples L (r) seems to increase monotonically with time, so that the exclusion 

of a particular finite sequence must occur before some predictable finite time. But in 

some cases L (I ) is not monotonic, and the occurrence of particular sequences may be 

undecidable. 

The capability for universal computation can be used to establish the undecid
ability of questions about the behaviour of a system. But undecidability can occur 

even in systems not capable of full universal computation. For example, one may 

arrange to disable all computations that give results of a certain form. In this way, the 

system fails to be able to perform arbitrary computations. Nevertheless, there may be 
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undecidable questions about the class of computations that it still can perfonn. These 
may well occur in cellular automata. Proofs of undecidability usually use a diagonal 
argument based essentially on universal computation. To establish undecidability in 
a system not itself capable of universal computation, one must usually find another 
system that is capable of universal computation, and show that a reduction of its 
capabilities does not affect undecidability. 

Rice 's theorem states that almost all questions about an arbitrary recursively
enumerable set are undecidable (e.g., [8]). However, it may be that natural or simple 
questions, which can be stated in say a few logical symbols, are usually decidable. 
So for example the halting of all simple initial seeds in a particular cellular automaton 
might be easy to detennine, and it might only be very large and specially-chosen initial 
seeds whose halting was difficult to detennine. There are certainly examples in which 
the halting problem appears to be difficult to answer even for simple seeds. One must 
establish in general not only whether there are any undecidable propositions about 
the behaviour of a particular cellular automaton, but whether simple propositions 
about it are in fact undecidable. 

Problem 17 

What is the nature of the infinite size limit for cellular automata? 

Statistical averages in many systems converge to definite values when the infinite 
size or thennodynamic limit is taken. Several complications can however arise in 
cellular automata. 

Different seeds can lead to very different behaviour in class 4 cellular automata. 
Some may die out; others may yield periodic patterns; still others may produce 
propagating structures. Propagating structures usually involve at least five or ten 
sites, and appear only with seeds of such a size. One expects that when larger seeds 
are used, new kinds of structures can begin to occur. For example, there may be 
structures that periodically generate propagating patterns, giving an asymptotically 
infinite number of nonzero sites. If the cellular automaton is capable of universal 
computation, then it should support structures with arbitrarily complicated behaviour. 
So for example there may be self-reproducing structures, which replicate even in the 
presence of a disordered background. Any such structure present in an initial state 
would yield offspring that could eventually dominate the behaviour of the system. 
In a given class 4 cellular automaton, the simplest self-reproducing structure may 
have a size of say 100 sites. The density at which the structure would occur in a 
disordered state is then k- IOO • So in practical simulations, there is an overwhelming 
probability that no such structure would ever be seen. But if configurations of size 
much larger than k100 were considered, such a structure would occur in almost every 
case. And after a long time, the behaviour of the system would almost always be 
dominated by the self-reproducing structures. Statistical results obtained with smaller 
configurations would then be misleading. And as the idealized limit of infinite size is 
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taken, more and more complicated phenomena may occur, and statistical quantities 
have no simple limits. 

Since a finite description in terms of regular formal languages can be given for the 
set of configurations generated at any finite time in the evolution of a one-dimensional 
cellular automaton, definite infinite size limits for statistical quantities presumably 
exist in this case. With time the limits may however become more complicated, and 
be reached more slowly. One expects that most statistical quantities will continue to 
show simple behaviour for class 3 cellular automata. But for class 4 cellular automata, 
in which different structure appears to be manifest on every different scale, the limits 
may become progressively more complicated, and may not exist at infinite times. 

Two-dimensional cellular automata exhibit complicated infinite size limits even 
after a finite number of time steps. The sets of configurations that they generate can 
be non-recursive in the infinite size limit [12, 42], and some statistical quantities may 
have no limits as a consequence. 

It is in general undecidable how large the smallest structure with some property 
such as self-reproduction can be in a particular cellular automaton. In some cases, the 
cellular automaton rule may be specially constructed to allow such structures. But for 
simple rules, one is reduced to an essentially experimental search for the structures. In 
several class 4 one-dimensional cellular automata with k = 2, all configurations of less 
than 21 sites have been tested, and all those up to about 30 sites are probably accessible 
with special-purpose computer hardware [51]. In the Game of Life, a number of 
complex structures were found through extensive experimentation. Further examples, 
particularly in one-dimensional cellular automata, would be valuable. One may 
imagine that each capability such as self-reproduction has a logical description of 
some length. Then the size of the smallest configuration that has the capability may 
be related in some way to this length. Obviously particular cellular automata may 
have special properties with respect to particular capabilities, but the result may 
hold as some average over all possible capabilities. If so, the very large number of 
particles in the universe could be essential for very complex physical and biological 
phenomena to occur. 

For direct simulation and other practical purposes one is often concerned with 
cellular automata of finite size. When an infinite size limit exists, the local properties 
deduced from studies of finite cellular automata are likely to correspond directly 
with the infinite size case. But for global properties the correspondence is less clear. 
For the rather special case of finite cellular automata with additive rules, algebraic 
methods provide a complete description of the state transition diagram [33]. There 
are typically about kN /2 cycles, each of length about kN /2 steps. The cycles are 
reached after transients of length less than N. In the limit N ~ 00, the system exhib
its chaotic behaviour, but the mapping is surjective, so that all configurations are 
generated. Presumably in this limit there are an infinite number of infinite cycles, 
perhaps each characterized by a particular form of some invariant algebraic function. 
In general, some cellular automata that show chaotic behaviour in the infinite size limit 
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exhibit exponentially long cycles at small finite sizes. Others exhibit exponentially 
long transients. Some show neither. The general connections between the structure of 
finite state transition diagrams, and the behaviour of cellular automata in the infinite 
size limit remain to be established. 

Problem 18 

How common is computational irreducibility in cellular automata? 

One way to find out the behaviour of a cellular automaton is to simulate each step in 
its evolution explicitly. The question is how often there are better ways. 

Cellular automaton evolution can be considered as a computation. A procedure 
can short cut this evolution only if it involves a more sophisticated computation. 
But there are cellular automata capable of universal computation that can perform 
arbitrarily sophisticated computations. So at least in these cases no short cut proce
dure can in general be found. The cellular automaton evolution corresponds to an 
irreducible computation, whose outcome can be found effectively only by carrying 
it out explicitly. 

A number of complications arise in giving a precise definition of such compu
tational irreducibility. In general one should compare the number of steps in the 
evolution of a system such as a cellular automaton with the number of steps required 
to reproduce the evolution using another computational system. However, by making 
the computational system more complicated, it is always possible to reduce the num
ber of steps required by an arbitrary constant factor, or even an arbitrary function . For 
example, if a computer can apply the square of a cellular automaton mapping at each 
step, then it can always simulate T steps of cellular automaton evolution in T / 2 steps. 

Nevertheless, no amount of additional complication in the computer can allow it 
to find in a finite time the outcome of an infinite number of steps in the evolution 
of a cellular automata that is for example capable of universal computation. As a 
consequence, there are undecidable propositions about the ultimate behaviour of the 
cellular automaton. The occurrence of such undecidable propositions may be viewed 
as a consequence of computational irreducibility. But to give a complete definition of 
computational irreducibility for finite time processes, one must in some way exclude 
arbitrary complication in the computer used for predictions. 

One approach is to consider finite cellular automata and to use methods from 
computational complexity theory. A cellular automaton with N sites can evolve for 
a time up to kN before retracing its steps. The computation corresponding to thi s 
evolution is performed in a bounded space, and is therefore in the class PSPACE 

(e.g. , [8]), but it can take a time exponential in N . However if the computation 
were reducible, then it could be possible to find the outcome of the evolution in a 
time polynomial in N , or in other words to reduce the problem to one in the class 
P . It is believed that PSPACE *- P, so that there exist problems that can be solved 
in polynomial space that cannot be solved in polynomial time. Determining the 
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outcome of the evolution of some cellular automata may be a problem of this kind 
(cf. [52]). 

Conventional computational complexity theory concerns computations in finite 
systems. It may well be that the definition of computational irreducibility for cellular 
automata can be sharpened in the infinite size limit. 

The evolution of class 1 and 2 cellular automata yielding periodic configurations 
is computationally reducible. But one suspects that the evolution of most class 3 
and 4 cellular automata is computationally irreducible. In fact, it may well be in 
general that most systems that show apparently complex or chaotic behaviour are 
computationally irreducible. 

Even if the detailed behaviour of a system can effectively be found only by 
direct simulation, it could be that many of its overall properties can be found by 
more efficient procedures. It is this possibility that makes investigations of cellular 
automata worthwhile even when computational irreducibility is present. But what 
should be done is to find a characterization of those properties whose behaviour can be 
found by efficient methods, and those for which computational irreducibility makes 
explicit simulation the only possible approach, and precludes a simple description. 

Problem 19 

How common are computationally intractable problems about cellular automata? 

Questions concerning the finite time behaviour of finite cellular automata can al
ways be answered by finite computations. But as the phenomenon of computational 
irreducibility suggests, there may be questions for which the computations are neces
sarily very long. One may consider for example the question of whether a particular 
sequence of X site values can occur after T time steps in the evolution of a one
dimensional cellular automaton, starting from any initial state. Then one may ask 
whether there exists any algorithm that can determine the answer in a time given by 
some polynomial in X and T. The question can certainly be answered by testing all 
kX+2r T sequences of initial site values that determine the length X sequence, but this 
procedure requires a time that grows exponentially with X and T. Nevertheless, if 
an initial sequence could be guessed, then it could be tested in a time polynomial in 
X and T. As a consequence, the problem is in the class NP. Now if P *- NP, then 
there may be no polynomial time algorithm for the problem, and the best method of 
solution may essentially be to try all the exponentially many possible cases explic
itly, so that the problem rapidly becomes intractable. In the infinite time limit, the 
analogous problem is in general undecidable. 

Just as undecidability in a system can be proved by establishing a capability for 
universal computation, so, assuming P *- NP, computational intractability can be 
proved through NP-completeness. A problem is NP-complete if specific instances 
of it correspond to arbitrary problems in the class NP [8,53]. This can be shown by 
establishing equivalence to a known NP-complete problem. Thus for example it has 
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been possible to give a specific example of a cellular automaton in which the problem 
of determining whether particular sequences can occur after T time steps is equivalent 
to the NP-complete problem of finding a set of truth values for variables so that a 
particular logical expression is satisfied [54] . How widespread NP-completeness is 
in problems concerning cellular automata has yet to be established. But one suspects 
that it is common in many class 3 and 4 systems. 

Problem 20 

What higher-level descriptions of information processing in cellular automata can 

be given? 

Cellular automaton evolution can in principle carry out arbitrary information pro
cessing. An important problem of theory and practice is to find a way of organizing 
this information processing. In specific cases one can devise cellular automaton rules 
that allow particular computations to be carried out (e.g., [55)). Or one can identify 
within a cellular automaton structures that can interact so as to mimic the components 
of conventional digital computers. But all these approaches are strongly based on 
analogues with conventional serial-processing computers. Information processing in 
cellular automata occurs however in a fundamentally distributed and parallel fash
ion, and one must invent a new framework to make use of it. Such a framework 
would likely be valuable in studying the many physical systems in which information 
processing is also distributed. 

One approach is statistical in nature. It consists in devising and describing 
attractors for the global evolution of cellular automata. All initial configurations in a 
particular basin of attraction may be thought of as instances of some pattern, so that 
their evolution towards the same attractor may be considered as a recognition of the 
pattern. This approach is probably effective when the basins of attraction are local in 
space, as in image processing (e.g., [56)) . But the construction of attractors for more 
general problems is likely to be very difficult. An attempt in this direction might 
be made by considering basins of attraction as sets of sequences corresponding to 
particular formal languages (cf. [50)). 

Another approach is to use symbolic representations for various attributes or com
ponents of cellular automaton configurations. But the structures used in conventional 
computer languages are largely inappropriate. The definite organization of computer 
memory into named areas, stacks, and so on, is not suitable for cellular automata 
in which processing elements are not distinguished from memory elements. Rather 
perhaps data could be represented by an object like a graph, on which transformations 
can be performed in parallel. But the simple organizing principles that are required 
still remain to be found. It seems likely that a radically new approach is needed [57] . 
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Cryptography 
with Cellular Automata 
1986 

This abstract discusses a stream cipher based on a simple one-dimensional cellular 

automaton. The cellular automaton consists of a circular register with N cells, each 

having a value ai equal to 0 or I. The values are updated synchronously in discrete 

time steps according to the rule 

a; = ai_ 1 XOR (a i OR ai+ I ), (la) 

or, equivalently, 

(lb) 

The initial state of the register is used as a seed or key. The values art) attained by 

a particular cell through time can then serve as a random sequence. Ciphertext C 

can be obtained from binary plaintext P as usual according to Ci = Pi XOR a(i) ; the 

plaintext can be recovered by repeating the same operation, but only if the sequence 
a (i) is known. 

Cellular automata such as (1) have been investigated in studies of the origins of 

randomness in physical systems [2]. They are related to non-linear feedback shift 

registers, but have slightly different boundary conditions. 

Figure I shows the pattern of cell values produced by (I) with a seed consisting 

of a single nonzero cell in a large register. The time sequence of values of the centre 

cell shows no statistical regularities under the tests of ref. [3] (for sequence lengths 

up to 2 19 ",5 X 105). Some definite spacetime patterns are nevertheless produced by 

the cellular automaton rule. 

In the limit N --7 00, the cellular automaton evolution is like an iterated continuous 

mapping of the Cantor set, and can be studied using dynamical systems theory [4] . 

One result is that the evolution is unstable with respect to small perturbations in 

Originally published as an abstract in Advances in Cryptology: Crypto '85 Proceedings, Lecture Notes in Computer 
Science, volume 2 18, pages 429-432 (Springer-Verlag, 1986). 
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Figure 1. Pattern produced by evolution according to the cellular automaton of eqn. (I ) from a simple 

seed containing a single nonzero bit. 250 successive states of an arbitrarily large register are shown; black 

squares represent nonzero cells. Columns of cell values, say in the centre, seem random for practical 

purposes. 

the initial seed. A change produced by reversing a single cell value typically expands 
at a rate given by Lyapunov exponents, equal to 0.25 on the left, and 1 on the right. 
Length T time sequences of cell values are found however to be affected on average 
only by about 1.19T initial values. 

Iterations of the cellular automaton rule (1) can be considered as Boolean functions 
of initial cell values. Disjunctive normal forms (minimized using [5]) for these 
functions are found to increase in size roughly as 4°.651 , giving some indication of 
the complexity of the cellular automaton evolution. 

Figure 2 shows the complete state transition diagram for the cellular automaton 
(1) in a register of size N = 11. For large N, an overwhelming fraction of states 
lie on the longest cycle. But there are also shorter cycles, often corresponding to 
states with special symmetries. Figure 3 shows the length of the longest cycle as a 
function of N. The results (up to N = 53, which gives cycle length 40114679273) 
fit approximately 2°·61 N. The mapping (1) is not a bijection, but is almost so; only a 
fraction (K/2)N "" 0.85N of states do not have unique predecessors [6] (K is the real 
root of 4K3 - 2K2 - 1 = 0). 

The security of a cryptographic system based on (1) relies on the difficulty of 
finding the seed from a time sequence of cell values. This problem is in the class NP. 
No systematic algorithm for its solution is currently known that takes a time less than 
exponential in N. No statistical regularities have been found in sequences shorter 
than the cycle length. 

One approach to the problem of finding the seed [6] uses the near linearity of the 
rule (1). Equation (1) can be written in the altemative form ai-l = a; XOR (ai ORai+1). 
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Figure 2. Complete state transition diagram for the cellular automaton of eqn. (I) in a circular register of 

size N = II . There are 2N states, each represented by dots. Evolution from any state leads eventually to 

one of the cycles shown. 

Given the values of cells in two adjacent columns, this allows the values of all cells 
in a triangle to the left to be reconstructed. But the sequence provided gives only one 
column. Values in the other column can be guessed, and then determined from the 
consistency of Boolean equations for the seed. But in disjunctive normal form the 
number of terms in these equations increases linearly with N, presumably making 
their solution take a time more than polynomial in N . 

The cellular automaton (1) can be implemented efficiently on an integrated circuit; 
it requires less than ten gate delay times to generate each output bit, and can thus 
potentially be used in a variety of high-bandwidth cryptographic applications. 
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II .. " .. .. 
N 

Figure 3. Length nN of the longest cycle as a function of register size N. 

Much of the work summarized here was done while I was consulting at Thinking 
Machines Corporation (Cambridge, MA). I am grateful for discussions with many 
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Complex Systems Theory 

1988 

Some approaches to the study of complex systems are outlined. They are encompassed 
by an emerging field of science concerned with the general analysis of complexity. 

Throughout the natural and artificial world one observes phenomena of great com

plexity. Yet research in physics and to some extent biology and other fields has 

shown that the basic components of many systems are quite simple. It is now a 

crucial problem for many areas of science to elucidate the mathematical mechanisms 

by which large numbers of such simple components, acting together, can produce 

behaviour of the great complexity observed. One hopes that it will be possible to 

formulate universal laws that describe such complexity. 

The second law of thermodynamics is an example of a general principle that 

governs the overall behaviour of many systems. It implies that initial order is pro

gressively degraded as a system evolves, so that in the end a state of maximal disorder 

and maximal entropy is reached. Many natural systems exhibit such behaviour. But 

there are also many systems that exhibit quite opposite behaviour, transforming ini

tial simplicity or disorder into great complexity. Many physical phenomena, among 

them dendritic crystal growth and fluid turbulence are of this kind. Biology provides 

the most extreme examples of such self-organization. 

The approach that I have taken over the last couple of years is to study mathemat

ical models that are as simple as possible in formulation, yet which appear to capture 

the essential features of complexity generation. My hope is that laws found to govern 

these particular systems will be sufficiently general to be applicable to a wide range 

of actual natural systems. 

The systems that I have studied are known as cellular automata. In the simplest 

case, a cellular automaton consists of a line of sites. Each site carries a value 0 or 1. 

Based on a talk given Oct. 6, 1984 at the Founding Workshop of the Santa Fe Institute. Published in Emergillg Syl/lheses 

in Sciellce: Proceedillgs oJ the Founding Workshops oJ the Sallla Fe Instilllte, pages 183-189 (Addison-Wesley, 1988). 
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The configurations of the system are thus sequences of zeroes and ones. They evolve 
in a series of time steps. At each step, the value of each site is updated according to 
a specific rule. The rule depends on the value of a site, and the values of say its two 
nearest neighbours. So for example, the rule might be that the new site value is given 
by the sum of the old value of the site and its nearest neighbours, reduced modulo 
two (i.e. the remainder after division of the sum by two) . 

Even though the construction of cellular automata is very simple, their behaviour 
can be very complicated. And as a consequence, their analysis can be correspondingly 
difficult. In fact, there are reasons of principle to expect that there are no general 
methods that can universally be applied. 

The first step in studying cellular automata is to simulate them, and see explicitly 
how they behave. Figure I shows some examples of cellular automata evolving from 
simple seeds. In each picture, the cellular automaton starts on the top line from an 
initial state in which all the sites have value zero, except for one site in the middle, 
which has value one. Then successive lines down the page are calculated from the 
lines above by applying the cellular automaton rule at each site. 

Figure lea) shows one kind of pattern that can be generated by this procedure. 
Even though the rule is very simple (it can be stated in just one sentence, or a 
simple formula), and the initial seed is likewise simple, the pattern produced is quite 
complicated. Nevertheless, it exhibits very definite regularities. In particular, it is 
self-similar or fractal , in the sense that parts of it, when magnified, are similar to 
the whole. 

Figure 2 illustrates the application of a cellular automaton like the one in fig
ure lea) to the study of a natural phenomenon: the growth of dendritic crystals, 
such as snowflakes (as investigated by Norman Packard). The cellular automaton 
of figure I (a) is generalized to be on a planar hexagonal grid, rather than a line. 
Then a cellular automaton rule is devised to reproduce the microscopic properties of 
solidification. A set of partial differential equations provide a rather complete model 
for solidification. But to study the overall patterns of growth produced, one can use 
a model that includes only some specific features of the microscopic dynamics. The 
most significant feature is that a planar interface is unstable, and produces protrusions 

Figure 1. Patterns generated by evolution according to simple one-dimensional cellular automaton rules 

from simple initial conditions. 
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Figure 2. Snowflake growth simulation with a two-dimensional celJular automaton (courtesy of Norman 

H. Packard). 

with some characteristic length scale. The sizes of the sites in the cellular automaton 
correspond to this length scale, and the rules that govern their evolution incorporate 
the instability. With this simple caricature of the microscopic laws, one obtains 
patterns apparently very similar to those seen in actual snowflakes. It remains to 
carry out an actual experiment to find out whether the model indeed reproduces all 
the details of snowflakes. 

Figure I (b) shows a further example of a pattern generated by cellular automaton 
evolution from simple initial seeds. It illustrates a remarkable phenomenon: even 
though the seed and the cellular automaton rules are very simple, the pattern produced 
is very complicated. The specification of the seed and cellular automaton rule requires 
little information. But the pattern produced shows few simplifying features, and 
looks as if it could only be described by giving a large amount of information, 
explicitly specifying its intricate structure. 

Figure 1 is a rather concrete example of the fact that simple rules can lead to very 
complicated behaviour. This fact has consequences for models and methodologies in 
many areas of science. I suspect that the complexity observed in physical processes 
such as turbulent fluid flow is of much the same mathematical character as the 
complexity of the pattern in figure I (b). 

The phenomenon of figure I also has consequences for biology. It implies that 
complicated patterns of growth or pigmentation can arise from rather simple basic 
processes. In practice, however, more complicated processes may often be involved. 
In physics, it is a fair principle that the simplest model for any particular phenomenon 
is usually the right one. But in biology, accidents of history often invalidate this 
principle. It is only the improbability of very complicated arrangements that have 
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been reached by biological evolution that makes a criterion of simplicity at all 
relevant. And in fact it may no more be possible to understand the construction of 
a biological organism than a computer program: each is arranged to work, but a 
multitude of arbitrary choices is made in its construction. 

The method of investigation exemplified by figures 1 and 2 is what may be called 
"experimental mathematics". Mathematical rules are formulated, and then their 
consequences are observed. Such experiments have only recently become feasible, 
through the advent of interactive computing. They have made a new approach to 
science possible. 

Through computers, many complex systems are for the first time becoming 
amenable to scientific investigation. The revolution associated with the introduc
tion of computers in science may well be as fundamental as, say, the revolution in 
biology associated with the introduction of the telescope. But the revolution is just 
beginning. And most of the very easy questions have yet to be answered, or even 
asked. Like many other aspects of computing, the analysis of complex systems by 
computer is an area where so little is known that there is no formal training that is of 
much advantage. The field is in the exciting stage that anyone, whether a certified 
scientist or not, can potentially contribute. 

Based on my observations from computer experiments such as those of figure 1, 
I have started to formulate a mathematical theory of cellular automata. I have had to 
use ideas and methods from many different fields. The two most fruitful so far are 
dynamical systems theory and the theory of computation. 

Dynamical systems theory was developed to describe the global properties of 
solutions to differential equations. Cellular automata can be thought of as discrete 
idealizations of partial differential equations, and studied using dynamical systems 
theory. The basic method is to consider the evolution of cellular automata from 
all its possible initial states, not just say those consisting of a simple seed, as in 
figure 1. Figure 3 shows examples of patterns produced by the evolution of cellular 
automata with typical initial states, in which the value of each site is chosen at 
random. Even though the initial states are disordered, the systems organizing itself 
through its dynamical evolution, spontaneously generating complicated patterns. 
Four basic classes of behaviour are found, illustrated by the four parts of figure 3. 
The first three are analogous to the fixed points, limit cycles and strange attractors 
found in differential equations and other dynamical systems. They can be studied 
using quantities from dynamical systems theory such as entropy (which measures the 
information content of the patterns), and Lyapunov exponents (which measure the 
instability, or rate of information propagation). 

Cellular automata can not only be simulated by computers: they can also be 
considered as computers in their own right, processing the information corresponding 
to their configurations. The initial state for a cellular automaton is a sequence of 
digits, say ones and zeroes. It is directly analogous to the sequence of digits that 
appears in the memory of a standard digital electronic computer. In both cases the 
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Figure 3. Four classes of behaviour found in evolution of one-dimensional cellular automata from disor

dered initial states. 

sequences of digits are then processed according to some definite rules: in the first 
case the cellular automaton rules, and in the second case the instructions of the 
computer's central processing unit. Finally some new sequence of digits is produced 
that can be considered as the result or output of the computation. 

Different cellular automata carry out computations with different levels of com
plexity. Some cellular automata, of which figure 3(d) is probably an example, are 
capable of computations as sophisticated as any standard digital computer. They can 
act as universal computers, capable of carrying out any finite computation, or of per
forming arbitrary information processing. The propagating structures in figure 3(d) 
are like signals, interacting according to particular logical rules. 

If cellular automata such as the one in figure 3(d) can act as universal computers, 
then they are in a sense capable of the most complicated conceivable behaviour. Even 
though their basic structure is simple, their overall behaviour can be as complex as 
in any system. 

This complexity implies limitations of principle on analyses which can be made of 
such systems. One way to find out how a system behaves in particular circumstances 
is always to simulate each step in its evolution explicitly. One may ask whether there 
can be a better way. Any procedure for predicting the behaviour of a system can be 
considered as an algorithm, to be carried out using a computer. For the prediction to 
be effective, it must short cut the evolution of the system itself. To do this it must 
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perform a computation that is more sophisticated than the system itself is capable of. 
But if the system itself can act as a universal computer, then this is impossible. The 
behaviour of the system can thus be found effectively only by explicit simulation. No 
computational short cut is possible. The system must be considered "computationally 
irreducible". 

Theoretical physics has conventionally been concerned with systems that are 
computationally reducible, and amenable for example to exact solution by analytical 
methods. But I suspect that many of the systems for which no exact solutions are 
now known are in fact computationally irreducible. As a consequence, at least some 
aspects of their behaviour, quite possibly including many of the interesting ones, can 
be worked out only through explicit simulation or observation. Many asymptotic 
questions about their infinite time behaviour thus cannot be answered by any finite 
computations, and are thus formally undecidable. 

In biology, computational irreducibility is probably even more generic than in 
physics, and as a result, it may be even more difficult to apply conventional theoret
ical methods in biology than in physics. The development of an organism from its 
genetic code may well be a computational irreducible process. Effectively the only 
way to find out the overall characteristics of the organism may be to grow it explic
itly. This would make large-scale computer-aided design of biological organisms, 
or "biological engineering", effectively impossible: only explicit search methods 
analogous to Darwinian evolution could be used. 

Complex systems theory is a new and rapidly developing field. Much remains to 
be done. The ideas and principles that have already been proposed must be studied 
in a multitude of actual examples. And new principles must be sought. 

Complex systems theory cuts across the boundaries between conventional scien
tific disciplines. It makes use of ideas, methods and examples from many disparate 
fields. And its results should be widely applicable to a great variety of scientific and 
engineering problems. 

Complex systems theory is now gaining momentum, and is beginning to develop 
into a scientific discipline in its own right. I suspect that the sociology of this process 
is crucial to the future vitality and success of the field . Several previous initiatives in 
the direction of complex systems theory made in the past have failed to develop their 
potential for largely sociological reasons. One example is cybernetics, in which the 
detailed mathematical results of control theory came to dominate the field, obscuring 
the original more general goals. One of the disappointments in complex systems 
theory so far is that the approaches and content of most of the papers that appear reflect 
rather closely the training and background of their authors. Only time will ultimately 
tell the fate of complex systems theory. But as of now the future looks bright. 
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Many of the models now used in science and engineering are over a century old. Most 
of them can be implemented on modem digital computers only with considerable 
difficulty. This article discusses new basic models which are much more directly 
suitable for digital computer simulation. 

The ultimate purpose of most scientific investigations is to determine how phys
ical or other systems will behave in particular circumstances. Over the last few 
years, computer simulation has been emerging as the most effective method in many 
different cases. The basic approach is to use an algorithm which operates on data 
in the computer so as to emulate the behavior of the system studied (e.g., [1]). This 
algorithm can be considered to provide a "computational model" for the system. 

Theoretical investigations of physical systems have conventionally been based on 
a few definite classes of mathematical models. By far the most common are partial 
differential equations (e.g., [2]). These equations were designed to describe systems 
such as fluids which can be considered as continuous media. Calculus was used 
as a tool to find mathematical formulae for the solutions to these equations. This 
allowed great progress to be made in the understanding of many phenomena, partic
ularly those such as electro magnetism, which are described and/or approximated by 
linear partial differential equations and laminar (regular) fluid flows , which can be 
approximated by linear partial differential equations. But the standard methods of 
mathematical analysis made little headway on problems such as fluid turbulence, for 
which nonlinear partial differential equations are essential. 

When digital computers became available, it was natural that they should be used 
to try to find solutions to such partial differential equations. But digital computers 
can represent such equations only approximately. While equations involve contin
uous variables, digital computers can treat only discrete digital quantities. The real 

Originally publi shed in High·SpeedCompwing: Scielllific Applications and Algorithm Design , ed. Roben B. Wilhelmson 
(University of Illinois Press, 1988). 
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numbers that correspond to continuous variables in the equations must be represented 

on the computer by packets of bits, typically in the form of 32- or 64-bit numbers in 

floating point format. In addition, the derivates which appear in the equations must 

be approximated by fini te differences on a discrete grid. Much effort has been spent 

in numerical analysis to show, for example, that with sufficiently fine grids, exact so

lutions to the continuum equations can be found. Unfortunately, such theorems have 

been proved almost exclusively only in cases where exact solutions to the continuum 

equations are known. For most important nonlinear equations, quite ad hoc methods 

must be used to gauge the accuracy of approximations. 

Nevertheless, the thrust in scientific computation has been to develop computer 

hardware and algorithms which allow more and more extensive approximations to 

partial differential equations to be made. Thus, for example, the performance of 

computers is often measured in terms of the rate at which they can carry out the 

floating point operations needed. In many cases, there seem to be limitations that 

will prevent rapid increases in such performance. 

Significant progress may perhaps more easily be made by somewhat shifting the 

emphasis. The kinds of operations which can efficiently be carried out by digital 

electronic circuits and thus digital computers, are quite clear. Large numbers of 

simple logical operations can be performed, potentially in parallel on many elements 

of a regular grid. Given the structure, one may then ask the question of whether 

accurate computational models based on this structure can be found for physical and 

other systems. 

Cellular automata (e.g., [3,4]) provide one class of examples. A cellular automaton 

consists of a discrete lattice of sites. Each site carries a discrete value chosen from a 

small set of possibilities. The values are updated in a sequence of discrete timesteps 

according to logical rules which depend on the values of neighboring sites. Cellular 

automata are thus, by construction, almost ideal for simulation on digital electronic 

computers. They are particularly well suited for the coming generation of massively 

parallel machines, such as the Connection Machine computer [5], in which a very 

large number (currently 65,536) of separate processors, each simple, act in parallel. 

One of the most remarkable results of recent studies on cellular automata is 

that even with very simple rules, it is possible to obtain behavior of considerable 

complexity [3,4]. Figure 1 shows a few examples. The rules consist of just a 

few simple logical operations, but when they are applied over and over again, their 

collective effect can yield very complex patterns of behavior. Often these show 

striking similarities to forms seen in many natural systems, and in other mathematical 

models for these systems. Chaotic behavior, corresponding to strange attractors, is 

common in cellular automata. Fractal patterns are also often produced, for example. 

One thus expects that very simple computational models, based, for example, 

on cellular automata, should be sufficient to reproduce many different natural phe

nomena. The challenge is to abstract the essential mathematical features of the 

phenomena, so as to be able to capture them in as simple a model as possible. 
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Figure 1. Examples of patterns generated by simple one-dimensional cellular automata. The cellular 

automaton consists of a row of about 600 sites whose values evolve with time down the page according 

to simple logical rules. The value 0 or I of each site (represented by white or black) is detenmined from 

its own value, and the values of its two nearest neighbors on the step before. Patterns generated by four 

different rules are shown. [n each case, the pattern obtained with an initial state containing a single nonzero 

site is shown above, and a pattern generated with a random initial state is shown below. ([n the notation 

of ref. [3], the rules are numbers 18,45,73, and lID.) Despite the simplicity of these cellular automata, 

the patterns generated show considerable complexity. 
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As one example, I shall discuss some recent models for fluid flow phenomena 
based on cellular automata (e.g., [6]). 

Fluids are conventionally described by the Navier-Stokes partial differential equa
tions (e.g., [7]). These equations can presumably describe in principle the important 
phenomenon of fluid turbulence. But digital computer simulations based on the 
Navier-Stokes equations are barely able to reach the regime needed to reproduce 
turbulence accurately. Of course, the Navier-Stakes equations are themselves an 
approximation. At a fundamental level, fluids consist of discrete particles, usually 
molecules. The Navier-Stokes equations give an approximate continuum descrip
tion of the average behavior of large numbers of such discrete particles. When the 
Navier-Stokes are simulated on digital computers, however, discrete approximations 
must again be made. These approximations, perhaps in the form of finite differences, 
bear little resemblance to the original system of discrete particles. Yet in the limit 
of a large number of discrete elements, they too should correspond to the continuum 
Navier-Stokes equations. 

A wide variety of systems, with very different microscopic dynamics, in fact 
appear to follow the Navier-Stokes equations in the large-scale limit. Thus, for 
example, air and water, despite their very different molecular constitution, can both be 
described by the Navier-Stokes equations, albeit with different values of parameters 
such as viscosity. 

In an attempt to devise the most efficient computational models for fluids, one 
may try to find the simplest microscopic dynamics that reproduces the Navier-Stokes 
equations in the macroscopic limit. Such models may correspond to optimal algo
rithms for determining the behavior of a fluid using a digital computer. 

One class of computational models is based on a simple discrete idealization of 
molecular dynamics [6] . Particles move in discrete steps along the links of a fixed 
lattice, with each link supporting, for instance, at most one particle. The particles 
collide and scatter according to simple logical rules. The rules are arranged so as 
to conserve the total number of particles, and the total momentum carried by these 
particles. Fluid behavior can potentially be obtained in this system by considering 
the values of bulk quantities such as particle density or momentum density, averaged 
over a large lattice region. 

Figure 2 shows some results obtained in this way. Detailed studies have demon
strated that many of the phenomena seen in actual fluid experiments can accurately 
be reproduced by this simple cellular automaton model. Figure 2 shows calculations 
of two-dimensional flow past a cylinder. The standard transition from steady flow to 
a regular vortex street is observed. Then at higher Reynolds numbers (dimensionless 
fluid flow rates) the vortex street is seen to become aperiodic, corresponding to the 
onset of turbulent behavior. 

The cellular automaton method used in figure 2 may well be practical for many 
fluid dynamics computations. Through its close correspondence with the underlying 
physics of fluids, it is straightforward to include many physical effects and con-
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Figure 2. Fluid flow pattern obtained from a simple two-dimensional cellular automaton, simulated on a 

Connection Machine computer. The cellular automaton consists of 4096 x 2048 site hexagonal grid. Each 

site carries up to six discrete particles, which move and collide according to a simple discrete idealization 

of molecular dynamics. On a small scale, the particle motions appear random. But on a large scale, there 

is evidence that their average motion corresponds to that expected from a fluid which obeys the usual 

Navier-S tokes partial differential equations. In this figure, particles are injected on the left, leading to a net 

fluid motion from left to right. A circular obstacle is inserted in the fluid, and the resulting fluid velocities 

are computed by averaging individual particle velocities over 96 x 96 site regions. The velocities in the 

figure are shown transformed to the frame in which the obstacle is moving, and distant fluid is at rest. 

The simulation corresponds to a dimensionless Reynolds number around 100, and shows the formation 

of a "vortex street" behind the cylinder, as observed in physical experiments. The computations were 

performed with help from Bruce Nemnich and Jim Salem, on a Connection Machine computer with 65,536 

Boolean processors. The results shown were obtained after 105 time steps. 

straints. Thus, for example, solid objects with arbitrary shapes and, possibly, flexible 
boundaries can be treated easily. In our current implementation on a Connection 
Machine computer with 65,536 processors, lattices of size 4096 x 8192 can be up
dated at a rate of about 109 sites per second, allowing the fluid flow patterns around 
objects to be found interactively up to Reynolds numbers of several hundred. The 
readily scalable architecture of the Connection Machine computer makes much larger 
simulations with the same method quite feasible in the future. 

At a theoretical level, cellular automaton fluid models can be analyzed by much 
the same methods of statistical mechanics as have been used in trying to derive 
the Navier-Stokes equations for physical fluids from the microscopic dynamics of 
real molecules. One approach is to use kinetic theory to derive transport equations 
for the average densities of particles with particular positions and directions (e.g. , 
[8]). In the hydrodynamic limit, these microscopic average densities can be approxi
mated through a Chapman-Enskog expansion in terms of macroscopic fluid densities 
and velocities. The resulting equations for these macroscopic quantities correspond 
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closely with the usual Navier-Stokes equations. Just like a real fluid, however, the 
cellular automaton model contains definite higher-order corrections, not included in 
the Navier-Stokes equations. In addition, analytical methods provide only approxi
mate values for parameters such as viscosity; accurate values must be obtained from 
explicit computer simulations. 

A fundamental assumption of the kinetic theory method is that the microscopic 
configurations of particles can be specified purely in terms of probabilities, which are 
in tum determined by the values of averaged quantities. This is essentially equivalent 
to the assumption of thermodynamic equilibrium and is related to the fundamental 
principles of thermodynamics. 

The Second Law of thermodynamics suggests that even if the initial configuration 
of particles is orderly, it will become progressively more disordered as a result of the 
motion and collisions of particles and will show, for example, an increasingly coarse
grained entropy. This phenomenon occurs if the evolution of the cellular automaton, 
even from "simple" initial conditions, yields behavior that is so complicated as to 
seem random for practical purposes. 

Very simple examples of cellular automata are known in which such apparent 
randomness can be produced. Figure 3 shows a one-dimensional example [9,10] . 
Even starting from an initial state containing a single nonzero site, many features of 
the pattern produced, such as the sequences of values in the center vertical column, 
are sufficiently random that they pass standard statistical tests of randomness [9]. The 
cellular automaton evolution thus acts like a pseudorandom number generator: even 
though a simple seed is given, the algorithm yields sequences whose simple origins 
cannot be discerned. The evolution of the system thus effectively "encrypts" the 
initial data: given just the output sequence, it is very difficult to deduce the original 
seed. The cellular automaton of figure 3 can in fact be used as an efficient practical 
random sequence generator or stream encryption algorithm [11 ] (it is, for example, 
the primary pseudorandom generator used on the Connection Machine computer). 

There are many mathematical systems which act in this way. It is, for example, 
easy to specify Jr, or to generate its digits. Yet once generated, the sequence of digits 
seems random for all practical purposes. Observations of this kind are related to 
the general conjecture of computational complexity theory (e.g. , [12]) that P *- NP. 
Computations that can be performed in polynomial time (P) seem to have inverses 
(which must be in the class NP) that require more than polynomial time, and probably 
often correspond to computations that are infeasible in pra~tice. 

Many mathematical models of physical processes probably show such behavior 
[10]. Even with simple initial data, they rapidly yield configurations which seem ran
dom for practical purposes. Such behavior may well be the basis for the widespread 
validity of the Second Law of thermodynamics. One of its important consequences is 
that a probabilistic or statistical description should indeed be valid for many systems 
such as cellular automaton fluid models. Such a description would depend only on 
macroscopic average variables. This may explain why different microscopic models 
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Figure 3. Pattern generated by a one-dimensional cellular automaton with two possible values at each 

site, and rule a; = (aj_1 + aj + aj+1 + ajaj+I), starting from a single nonzero site. Despite the simplicity of 

its specification, many aspects of the pattern seem random. For example, the center column of site values 

passes all standard statistical tests of randomness. This cellular automaton illustrates the rather general 

phenomenon that simple processes can lead to complexity that is so great that many aspects of it seem 

random. 

often yield the same macroscopic behavior. It is the basic reason that simple discrete 
dynamics can give essentially the same overall behavior as the full dynamics of 
physical molecules. 

Statistical descriptions of cellular automaton fluid models are close in form to 
explicit finite difference approximations to partial differential equations. In both 
cases, each site on a grid carries a continuous variable which describes the average 
density and velocity of the fluid at that point. In practical computations with the finite 
difference method, this variable is typically represented directly as a floating-point 
number. In the cellular automaton method, the variable can be viewed as represented 
in a probabilistic or statistical fashion. 

Following the usual development of statistical mechanics, a statistical description 
of a cellular automaton fluid can be obtained as an average over an ensemble of 
possible microscopic particle configurations. But an actual cellular automaton fluid 
simulation involves the evolution of just a single, specific, microscopic configura
tion. Nevertheless, following a fundamental assumption of statistical mechanics, one 
expects that suitable space or time averages of this specific configuration should yield 
results which are close to those obtained from averages over the whole ensemble. 

This interpretation allows a comparison between cellular automata and discrete 
approximations to partial differential equations. In the latter case, ensemble av
erage properties are considered, and their evolution is followed precisely. In the 
former case, just a single instance of the ensemble is considered, and macroscopic 
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quantities are obtained as explicit averages over microscopic variables. If the fun
damental assumptions of statistical mechanics are indeed valid, one expects that the 
cellular automaton method cannot fail to be more efficient than the finite difference 
method, because much of the information manipulated in the finite difference case is 
undoubtedly irrelevant to the macroscopic behavior of interest. 

Some evidence for this conclusion comes from the fact that most fluid computa
tions yield results which are accurate to, at most, the percent level. Yet in the finite 
difference approach, fluid velocities at individual grid points are typically stored to 
16-decimal-digit accuracy. Presumably it is only the most significant few digits, and 
certain overall features of less significant digits, which affect the final results. In the 
cellular automaton method, all bits of information about microscopic particle config
urations are equally important. The cellular automaton representation may thus be a 
more efficient encoding of the state of the fluid. 

The cellular automaton approach to fluid dynamics is but one example of an 
expanding set of computational models which are based on the collective properties 
of large numbers of simple discrete components. Standard cellular automata with 
deterministic rules have been used as models for reaction-diffusion systems, dendritic 
growth processes, dynamic spin systems, aggregation processes, and many other 
phenomena (e.g., [3]) . Intrinsically probabilistic rules can also be used, and their 
consequences deduced by Monte Carlo sampling. The resulting models have been 
used extensively in studying quantum fields and many other systems. 

In practice the probabilistic elements of such models must be implemented on 
digital computers using pseudorandom number generation algorithms. The resulting 
complete computational model, including the pseudorandom number generator, must 
thus be entirely deterministic. And since even very simple deterministic cellular au
tomata can yield a high degree of randomness, one expects that formally probabilistic 
models can be replaced by deterministic ones, often involving a smaller total number 
of steps. One example of this occurs for the Ising spin system model, which is con
ventionally studied by updating spins probabilistic ally, but for which a more efficient 
algorithm based on a simple deterministic cellular automaton is known [13]. 

In general, there may be many different cellular automaton models for any par
ticular system. Although the microscopic rules are different, their large-scale or 
continuum behavior may be equivalent. In seeking the most efficient simulation 
algorithm for a particular system, one must find the "simplest" cellular automaton 
rules which yield the required large-scale behavior. 

Most computational models are created by explicit construction. Like most 
computer programs, each step or feature of their construction is specifically designed 
to have particular known consequences, but in most cases, this methodology will not 
yield truly optimal programs. Instead, one may imagine defining particular goals or 
constraints , and then searching the space of possible programs for the optimal ones 
which achieve these goals (e.g., [14,15]). This approach is particularly promising 
for problems such as finding optimal cellular automation rules, in which the space 
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of possible programs has a comparatively simple structure. Thus, for example, 
one may consider searching for the simplest cellular automaton rule which has a 
particular form of large-scale behavior. Typically the space of possible rules can be 
reduced by imposing certain constraints, such as microscopic conservation laws, but 
the suitability of any particular rule can usually be determined essentially only by 
explicit simulation. The randomness-generating rule of figure 3 was found by such 
a search-based method. 

The problem of finding optimal automaton rules is analogous in many ways 
to problems such as the optimization of Boolean logic circuits, or the layout of 
large-scale integrated circuits. The overall goal is defined by the function to be 
implemented, but the most efficient circuits or rules can usually not be obtained by 
explicit construction. Instead one searches a large number of candidates, typically 
using a computer, and finds which of them is best. 

Rather than performing an exhaustive search of possible circuits or rules, it is often 
better to use an iterative or adaptive procedure. One begins with a particular circuit 
or rule which has been constructed to satisfy the constraints that have been imposed. 
Then one makes a sequence of "moves" in the space of possible rules or circuits, 
with each move arranged so that the constraints are still satisfied. In the simplest 
cases, each move is chosen to yield a circuit or rule which is more optimal, or may 
be considered to have a lower "cost." But such a "gradient descent" method can find 
optima only when the "landscape" associated with the problem (whose height gives 
the cost for a circuit represented by a particular point) is essentially a smooth bowl. 
For many actual problems, the landscape seems closer to a "mountainous" or fractal 
one on which the gradient descent method will get stuck in local optima. Simulated 
annealing seems to be a more promising general technique for optimization in such 
cases [16]. With this method, randomness is introduced into the choice of moves. 
Initially, a high level of randomness is used, so that the moves are sensitive only to 
the gross features of the landscape. The randomness is progressively decreased, so 
that optimization is carried out with respect to smaller and smaller scale features of 
the landscape. 

As one example of such "adaptive programming," I have recently been searching 
for the simplest one-dimensional cellular automaton rule that reproduces the diffusion 
equation in the large scale limit. (For another example, see ref. [17].) The rule 
must conserve a scalar additive quantity (analogous to particle number), but must 
generate randomness on a microscopic scale. In addition, the rules were chosen 
to be microscopically reversible, so that, analogous with real physical systems, the 
evolution of the system can be uniquely reversed. Figure 4 shows the behavior 
of a rule found by a search over a particular class of simple rules. Starting from 
a simple initial state, the rule generates progressively more random microscopic 
configurations. Although the simple initial conditions can in principle be recovered 
at any time by reversing the evolution, it becomes progressively more difficult to 
do so. As discussed above, this phenomenon may well illustrate the fundamental 
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Figure 4. Pattern generated by a simple cellular automaton rule intended to mimic one-dimensional 

diffusion. Starting from a simple initial state, the reversible cellular automaton rule yields states that 

seem progressively more random. Such behavior corresponds to that expected from the Second Law 

of thermodynamics, and can form the basis for simple discrete cellular automata to show macroscopic 

average behavior which mimics continuum phenomena. 

basis for the Second Law of thermodynamics. With the rule of figure 4, macroscopic 
average densities should follow the diffusion equation. As a result, slow spatial 
variations in density are, for example, damped on average according to the diffusion 
equation. 
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In this article I have discussed some new directions for computational modeling. 
The fundamental principle is that the models considered should be as suitable as 
possible for implementation on digital computers. It is then a matter of scientific 
analysis to determine whether such models can reproduce the behavior seen in phys
ical and other systems. Such analysis has now been carried out in several cases, and 
the results are very encouraging. 
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Introduction 

This appendix gives tables of properties of one-dimensional cellular automata with 
two possible values at each site (k = 2), and with rules depending on nearest neigh
bours (r = 1). These cellular automata are some of the simplest that can be con
structed. Yet they are already capable of a great diversity of highly complex be
haviour. The tables in this appendix attempt to capture some of this behaviour, both 
pictorially and numerically. 

There are 256 possible rules for k = 2, r = 1 cellular automata. Table 1 gives 
forms for these rules, together with simple equivalences among them. 

Tables 2 and 3 show patterns produced by evolution according to all possible in
equivalent rules, starting from "typical" disordered or random initial conditions. Sev
eral general classes of qualitative behaviour are seen (see pages 115-157 in this book): 

1. A fixed, homogeneous, state is eventually reached (e.g. rules 0, 8, 136). 

2. A pattern consisting of separated periodic regions is produced (e.g. rules 4, 
37,56, 73). 

3. A chaotic, aperiodic, pattern is produced (e.g. rules 18,45, 146). 

4. Complex, localized structures are generated (e.g. rule 110). (This behaviour 
is clearly visible in the pictures of table 15.) 

Much of the data in this appendix can be understood in terms of this classification. 
The patterns produced with a particular rule by evolution from different disordered 

initial states are qualitatively similar. Nevertheless, changes in initial conditions can 
lead to detailed changes in the configurations produced. Table 4 shows the pattern of 

Originally published in Theory and Applications of Cellular Automata. World Scientific Publishing Co. Ltd., pages 
485- 557 ( 1986). 
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differences produced by single-site changes in initial conditions. For class 1 rules, 
the changes always die out. For class 2 rules, they may persist, but remain localized. 
Class 3 rules, however, show "instability": small changes in initial conditions can 
lead to an ever-expanding region of differences. "Information" on the initial state 
thus propagates, typically at a fixed speed, through the cellular automaton. In class 4 
cellular automata, such information transmission occurs irregularly, through motion 
of specific localized structures. 

Table 6 gives the values of some statistical quantities which characterize some 
of the behaviour seen in tables 2, 3 and 4. The definitions of entropies and Lya
punov exponents for cellular automata (see pages 115-157 in this book) are closely 
analogous to those for conventional continuous dynamical systems. 

Tables 2, 3, 4 and 6 concern the generic behaviour of cellular automata with 
"typical" disordered initial conditions. The generation of complexity in cellular 
automata is however perhaps more clearly illustrated by evolution from particular, 
simple, initial conditions, as in table 5. With such initial conditions, some cellular 
automaton rules yield simple or regular patterns. But other rules yield highly complex 
patterns, which seem in many respects random. 

Tables 2 through 6 suggest that many different k = 2, r = 1 cellular automata 
exhibit similar behaviour. Table 1 gives some simple equivalences between rules. 
Table 7 gives equivalences arising from more complex transformations. Often dif
ferent regions in a cellular automaton will form "domains" which show different 
equivalences. 

Table 8 gives further relations between rules, in the form of factorizations which 
express one rule as compositions of others. 

An important feature of cellular automata is their capability for "self organiza
tion". Even starting from arbitrary disordered or random initial conditions, their time 
evolution can pick out particular "ordered" states. Tables 9 through 11 give mathe
matical characterizations of the sets of configurations that can occur in the evolution 
of k = 2, r = 1 cellular automata. Table 9 concerns blocks of site values which are 
filtered out by the cellular automaton evolution. 

The complete set of configurations produced after any finite number of time steps 
can be described in terms of regular formal languages (see pages 159-202 in this 
book). Tables 10 and 11 give the values of quantities which characterize the certain 
aspects of the "complexity" of these languages. 

The behaviour of class 3 and 4 cellular automata often seems to be so complex 
that its outcome cannot be detetmined except by essentially performing a direct 
simulation. Tables 10 and 11 may provide some quantitative basis forthis supposition. 
Table 12 gives a more direct measure of the difficulty of computing the outcome of 
cellular automaton evolution in the context of a simple computational model involving 
Boolean functions. 

The results for most of the tables here are for cellular automata on lattices with 
an infinite number of sites. Tables 13 and 14 give some of the more complete results 
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that can be obtained for cellular automata on finite lattices (or with spatially periodic 
configurations). Table 13 shows fragments of the state transition diagrams which 
describe the global evolution of finite cellular automata. Table 14 plots some of their 
overall properties. 

Many of the k = 2, r = 1 cellular automata show highly complex behaviour. Such 
behaviour is probably most evident in rule 110. Table 15 gives some properties of 
the particle-like structures which are found in this rule. One suspects that with ap
propriate combinations of these structures, it should be possible to perform universal 
computation. 

The final table shows patterns produced by reversible generalizations of the stan
dard k = 2, r = 1 cellular automata. Qualitatively similar behaviour is again seen. 

It is remarkable that with such simple construction, the k = 2, r = 1 cellular 
automata can show such complex behaviour. The tables in this appendix give some 
first attempts at characterizing and quantifying this behaviour. Much, however, still 
remains to be done. 
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Table 1: Rule Forms and Equivalences 

rule number equivalent rules 
boolean expression dep min 

dec binary hex conj ret! c.r. 

0 00000000 00 0 --- 255 0 255 0 
I 00000001 01 (a_laoa)) ••• 127 I 127 I 
2 00000010 02 (a_I aoal) ••• 191 16 247 2 
3 00000011 03 (a_lao) .. - 63 17 119 3 
4 00000100 04 (a_laoa)) ••• 223 4 223 4 
5 00000101 05 (a_la)) .-. 95 5 95 5 
6 00000110 06 (a_I aoal) + (a_laoa)) ••• 159 20 215 6 
7 00000111 07 (a_I al) + (a_I ao) ••• 31 21 87 7 
8 00001000 08 (a_laoa)) ••• 239 64 253 8 
9 00001001 09 (a_laoa)) + (a_laoa)) ••• III 65 125 9 

10 00001010 Oa (a_I al) .-. 175 80 245 10 
II 00001011 Ob (a_I ao) + (a_I al) ••• 47 81 117 II 
12 00001100 Oc (a_lao) .. - 207 68 221 12 
13 00001101 Od (a_I al) + (a_I ao) ••• 79 69 93 13 
14 00001110 Oe (a_lao) + (a_la)) ••• 143 84 213 14 
15 00001111 Of (a_I) 0-- 15 85 85 15 
16 00010000 10 (a_laoa)) ••• 247 2 191 2 
17 00010001 II (aoa)) - .. 119 3 63 3 
18 00010010 12 (a_I aoal) + (a_I aoal) ••• 183 18 183 18 
19 000100 11 13 (aoal) + (a_I ao) ••• 55 19 55 19 

20 00010100 14 (a_laoal) + (a_I aoal) ••• 215 6 159 6 
21 00010101 15 (aoa)) + (a_I al) ••• 87 7 31 7 
22 00010110 16 (a_I aoal) + (a_laoal) + (a_I aoal) ••• 151 22 151 22 
23 00010111 17 (aoal) + (a_I al) + (a_I ao) ••• 23 23 23 23 
24 00011000 18 (a_I aoal) + (a_I aoa)) ••• 231 66 189 24 
25 00011001 19 (a_I aoal) + (aoal) ••• 103 67 61 25 
26 00011010 la (a_laoal) + (a_I al) ••• 167 82 181 26 
27 0001 lOll Ib (aoal) + (a_I al) ••• 39 83 53 27 
28 00011100 Ic (a_I aoal) + (a_I ao) ••• 199 70 157 28 
29 00011101 Id (aoal) + (a_lao) ••• 71 71 29 29 

30 00011110 Ie (a_I aoal) + (a-lao) + (a_I al) 0 •• 135 86 149 30 
31 00011111 If (aoad + (a_I) ••• 7 87 21 7 
32 00100000 20 (a_laoad ••• 251 32 251 32 
33 00100001 21 (a_I aOal) + (a_I aoal) ••• 123 33 123 33 
34 00100010 22 (aoal) - .. 187 48 243 34 
35 00100011 23 (a- lao) + (aoal) ••• 59 49 115 35 
36 00100100 24 (a_I aoal) + (a_I aoal) ••• 219 36 219 36 
37 00100101 25 (a_laoa)) + (a_lal) ••• 91 37 91 37 
38 00100110 26 (a_I aoal) + (aoal) ••• 155 52 211 38 
39 00100111 27 (a_lad+(aoad ••• 27 53 83 27 

40 00101000 28 (a_I aoal) + (a_laoal) ••• 235 96 249 40 
41 00101001 29 (a_I aoal) + (a_I aoal) + (a_I aoal) ••• 107 97 121 41 
42 00101010 2a (aoa l )+(a_lad ••• 171 112 241 42 
43 00101011 2b (a_I ao) + (aoal) + (a_I al) ••• 43 113 113 43 
44 00101100 2c (a_I aOal) + (a_lao) ••• 203 100 217 44 
45 00101101 2d (a- Iaoal) + (a_I al) + (a_I ao) 0 •• 75 101 89 45 
46 00101110 2e (a_I ao) + (aoad ••• 139 116 209 46 
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rule number equivalent rules 
boolean expression dep min 

dec binary hex conj reft c.r. 

47 00101111 2f (aoat) + (a_I) ••• 11 117 81 11 
48 00110000 30 (a- lao) .. - 243 34 187 34 
49 00110001 31 (aoal) + (a-lao) ••• 115 35 59 35 

50 00110010 32 (a_l ao) + (aoal) ••• 179 50 179 50 
51 00110011 33 (ao) - 0 - 51 51 51 51 
52 00110100 34 (a-laoal) + (a- lao) ••• 211 38 155 38 
53 00110101 35 (a_l al) + (a_l ao) ••• 83 39 27 27 
54 00110110 36 (a- l aoal) + (a_l ao) + (aoal) . 0 . 147 54 147 54 
55 00110111 37 (a-lal) + (ao) ••• 19 55 19 19 
56 00111000 38 (a_l aoal) + (a_l ao) ••• 227 98 185 56 
57 00111001 39 (a_l aoal) + (aoal) + (a_l ao) . 0 . 99 99 57 57 
58 00111010 3a (a_l ao) + (a-l al) ••• 163 114 177 58 
59 00111011 3b (a-lal) + (ao) ••• 35 115 49 35 

60 001 11100 3c (a-l ao) + (a_l ao) 00- 195 102 153 60 
61 00111101 3d (a_l ad + (a-l ao) + (a_l ao ) ••• 67 103 25 25 
62 00111110 3e (a-lad + (a- lao) + (a- lao ) ••• 131 118 145 62 
63 00111111 3f (ao) + (a_I) .. - 3 119 17 3 
64 01000000 40 (a_l aoal) ••• 253 8 239 8 
65 01000001 41 (a-laoad + (a- laoal) ••• 125 9 111 9 
66 01000010 42 (a- l aoad + (a_l aoal) ••• 189 24 231 24 
67 01000011 43 (a_l aoal) + (a_l ao) ••• 61 25 103 25 
68 01000100 44 (aoal) - .. 221 12 207 12 
69 01000101 45 (a-l al) + (aoad ••• 93 13 79 13 

70 01000110 46 (a_l aoa l) + (aOal ) ••• 157 28 199 28 
71 01000111 47 (aoal) + (a-lao) ••• 29 29 71 29 
72 01001000 48 (a_l aoal) + (a- laoad ••• 237 72 237 72 

73 01001001 49 (a_l aoal) + (a-l aOal) + (a-l aoal) ••• 109 73 109 73 
74 01001010 4a (a_l aoal) + (a_l al) ••• 173 88 229 74 
75 01001011 4b (a-l aoal) + (a- l ao) + (a- l a l ) 0 •• 45 89 101 45 
76 01001100 4c (aOal) + (a-l ao) ••• 205 76 205 76 
77 01001101 4d (a-l al) + (aoal) + (a- l ao) ••• 77 77 77 77 
78 01001110 4e (aoal)+(a- lad ••• 141 92 197 78 
79 01001111 4f (aoad + (a- I) ••• 13 93 69 13 

80 01010000 50 (a- lal) .-. 245 10 175 10 
81 01010001 51 (aoal)+(a- lad ••• 117 11 47 11 
82 01010010 52 (a-l aoal) + (a- l al) ••• 181 26 167 26 
83 01010011 53 (a-l al) + (a- l ao) •• • 53 27 39 27 
84 01010100 54 (a- l al) + (aoal) ••• 213 14 143 14 
85 01010101 55 (a I) --0 85 15 15 15 
86 01010110 56 (a-laoal) + (a- lad + (aoad •• 0 149 30 135 30 
87 01010111 57 (a-l ao ) + (a d ••• 21 31 7 7 
88 01011000 58 (a_l aoal) + (a- l al) ••• 229 74 173 74 
89 01011001 59 (a- l aoa I ) + (aoa I ) + (a-l ad • • 0 101 75 45 45 

90 01011010 Sa (a- l al) + (a_l al) 0-0 165 90 165 90 
91 01011011 5b (a- lao) + (a-lal) + (a- lal ) ••• 37 91 37 37 
92 01011100 5c (a- lal) + (a- lao) ••• 197 78 141 78 
93 01011101 5d (a- lao) + (al) ••• 69 79 13 13 
94 01011110 5e (a-l ao) + (a_l al) + (a-la d ••• 133 94 133 94 
95 01011111 Sf (al) + (a- d .-. 5 95 5 5 
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rule number equivalent rules 
boolean expression dep min 

dec binary hex conj reR c.r. 

96 01100000 60 (a- Iaoad + (a_1 aOal) ••• 249 40 235 40 
97 01100001 61 (a_1 aoa l ) + (a_IaOal) + (a_Iaoal) ••• 121 41 107 41 
98 01100010 62 (a_1 aoal) + (aoad ••• 185 56 227 56 
99 011000 11 63 (a- Iaoal) + (a_1 ao) + (aOal) . 0 . 57 57 99 57 

100 01100100 64 (a_1 aoal) + (aoal) ••• 217 44 203 44 
101 01100101 65 (a_Iaoad + (a_Ial) + (aoad •• 0 89 45 75 45 
102 01100110 66 (aoad + (aoal) -0-0 153 60 195 60 
103 01100111 67 (a_1 ao) + (aoad + (aoa I) ••• 25 61 67 25 
104 01101000 68 (a_Iaoad + (a_Iaoad + (a- Iaoad ••• 233 104 233 104 
105 01101001 69 (a-Iaoad + (a- Iaoal) + (a_Iaoad + (a_Iaoad 00 0 105 105 105 105 
106 01101010 6a (a_1 aoal) + (aoal) + (a_Ial) •• 0 169 120 225 106 
107 01101011 6b (a_Iaoal) + (a_1 ao) + (aoal) + (a_1 al) ••• 41 121 97 41 
108 01101100 6c (a_Iaoal) + (aoal) + (a_1 ao) . 0 . 201 108 201 108 
109 01101101 6d (a_IaOal) + (a_Ial) + (aoal) + (a-lao) ••• 73 109 73 73 

110 01101110 6e (a_1 ao) + (aoal) + (aoal) ••• 137 124 193 110 
III 01101111 6f (aoal) + (aoal) + (a_I) ••• 9 125 65 9 
112 01110000 70 (a_Ial) + (a-lao) ••• 241 42 171 42 
113 01110001 71 (aoad + (a_1 al) + (a- laO) ••• 113 43 43 43 
114 01110010 72 (a- lad + (aoad ••• 177 58 163 58 
115 01110011 73 (a_1 al) + (ao) ••• 49 59 35 35 
116 01110100 74 (aoal) + (a_1 ao) ••• 209 46 139 46 
117 01110101 75 (a_1 ao) + (al) ••• 81 47 11 11 
118 01110110 76 (a_1 ao) + (aoal) + (aOal) ••• 145 62 131 62 
119 01110111 77 (al) + (ao) - .. 17 63 3 3 

120 01111000 78 (a- Iaoal) + (a_Ial) + (a-lao) 0 •• 225 106 169 106 
121 01111001 79 (a_IaOal) + (aoal) + (a_1 al) + (a_1 ao) ••• 97 107 41 41 
122 01111010 7a (a- laO) + (a_Ial) + (a_Ial) ••• 161 122 161 122 
123 01111011 7b (a_1 al) + (a_1 al) + (ao) ••• 33 123 33 33 
124 01111100 7c (a- lad + (a-lao) + (a- lao) ••• 193 110 137 110 
125 01111101 7d (a_1 ao) + (a_1 ao) + (al) ••• 65 111 9 9 
126 01111110 7e (a_Ial) + (aoal) + (a_1 ao) ••• 129 126 129 126 
127 01111111 7f (ad + (ao) + (a-d ••• 1 127 1 1 
128 10000000 80 (a_ Iaoal) ••• 254 128 254 128 
129 10000001 81 (a- Iaoad + (a- Iaoad ••• 126 129 126 126 

130 10000010 82 (a- Iaoad + (a-Iaoad ••• 190 144 246 130 
131 10000011 83 (a_Iaoal) + (a-lao) ••• 62 145 118 62 
132 10000100 84 (a_IaOal) + (a-Iaoad ••• 222 132 222 132 
133 10000101 85 (a_1 aoal) + (a_1 al) ••• 94 133 94 94 
134 10000110 86 (a_1 aoal) + (a- Iaoal) + (a_1 aoal) ••• 158 148 214 134 
135 10000111 87 (a_1 aoal) + (a_Ial) + (a_1 ao) 0 •• 30 149 86 30 
136 10001000 88 (aoal) - .. 238 192 252 136 
137 10001001 89 (a_Iaoad + (aoal) ••• 110 193 124 110 
138 10001010 8a (a_1 al) + (aoal) ••• 174 208 244 138 
139 10001011 8b (a_1 ao) + (aoal) ••• 46 209 116 46 

140 10001100 8c (a-l ao ) + (aoal) ••• 206 196 220 140 
141 10001101 8d (a_1 al) + (aoal) ••• 78 197 92 78 
142 10001110 8e (a_1 ao) + (a_1 al) + (aoal) ••• 142 212 212 142 
143 10001111 8f (aoal) + (a_I) ••• 14 213 84 14 
144 10010000 90 (a- Iaoad + (a_1 aoad ••• 246 130 190 130 
145 10010001 91 (a- Iaoal) + (aOal) ••• 118 131 62 62 
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rule number equivalent rules 
boolean expression dep min 

dec binary hex conj reft c.r. 

146 10010010 92 (a_Iaoal) + (a_1 aoad + (a-Iaoad ••• 182 146 182 146 
147 10010011 93 (a-Iaoad + (aoad + (a-lao) . 0 . 54 147 54 54 
148 10010100 94 (a-Iaoad + (a-Iaoal) + (a_Iaoal) ••• 214 134 158 134 
149 10010101 95 (a-Iaoal) + (aoal) + (a-lad •• 0 86 135 30 30 

150 10010110 96 (a_IaOal) + (a_1 aoad + (a_IaOal) + (a_Iaoal) 000 150 150 150 150 
151 10010111 97 (a_1 aoal) + (aoal) + (a.:. I al) + (a_1 ao) ••• 22 151 22 22 
152 10011000 98 (a-Iaoad + (aoad ••• 230 194 188 152 
153 10011001 99 (aoad + (aoad -00 102 195 60 60 
154 10011010 9a (a-IaOal) + (a_1 al) + (aoa l) •• 0 166 210 180 154 
155 10011011 9b (a_1 ao) + (aoal) + (aoal) ••• 38 211 52 38 
156 10011100 9c (a-Iaoal) + (a-lao) + (aoa l) . 0 . 198 198 156 156 
157 10011101 9d (a-lao) + (aoad + (aoal) ••• 70 199 28 28 
158 10011110 ge (a_Iaoal) + (a-lao) + (a_1 al) + (aoal) ••• 134 214 148 134 
159 10011111 9f (aoal) + (aoal) + (a_I) ••• 6 215 20 6 

160 10100000 aO (a_Ial) .-. 250 160 250 160 
161 10100001 al (a-Iaoal) + (a_Ial) ••• 122 161 122 122 
162 10100010 a2 (aoal) + (a-lad ••• 186 176 242 162 
163 10100011 a3 (a-lao) + (a-lad ••• 58 177 114 58 
164 10100100 a4 (a-Iaoad + (a-lad ••• 218 164 218 164 
165 10100101 a5 (a_Ial) + (a-lad 0-0 90 165 90 90 
166 10100110 a6 (a_Iaoal) + (aoal) + (a_1 a l ) •• 0 154 180 210 154 
167 10100111 a7 (a-lao) + (a_Ial) + (a_Ial) ••• 26 181 82 26 
168 10101000 a8 (a_1 al) + (aoal) ••• 234 224 248 168 
169 10101001 a9 (a-Iaoad + (a-la d + (aoa l ) •• 0 106 225 120 106 

170 10101010 aa (al) --0 170 240 240 170 
171 10101011 ab (a-lao) + (al) ••• 42 241 112 42 
172 10101100 ac (a_Iao)+(a_lal) ••• 202 228 216 172 
173 10101101 ad (a-lao) + (a_1 al) + (a_Ial) ••• 74 229 88 74 
174 10101110 ae (a-lao) + (ad ••• 138 244 208 138 
175 10101111 af (a-I) + (ad .-. 10 245 80 10 
176 10110000 bO (a-lao) + (a_Ial) ••• 242 162 186 162 
177 10110001 bl (aoal) + (a_Ial) ••• 114 163 58 58 
178 10110010 b2 (a- lao) + (aoal) + (a_Ial ) ••• 178 178 178 178 
179 10110011 b3 (a_Ial) + (ao) ••• 50 179 50 50 

180 10110100 b4 (a_1 aoal) + (a-lao) + (a_Ial) 0 •• 210 166 154 154 
181 10110101 b5 (a-lao) + (a_1 al) + (a_Ial) ••• 82 167 26 26 
182 10110110 b6 (a_Iaoal) + (a-lao) + (aoal) + (a-lad ••• 146 182 146 146 
183 101101 11 b7 (a_1 al) + (a_1 al) + (ao) ••• 18 183 18 18 
184 10111000 b8 (a_1 ao) + (aoad ••• 226 226 184 184 
185 10111001 b9 (a-lao) + (aoal) + (aoal) ••• 98 227 56 56 
186 10111010 ba (a_1 ao) + (al) ••• 162 242 176 162 
187 10111011 bb (ao) + (al) - .. 34 243 48 34 
188 10111100 be (a_1 al) + (a_1 ao) + (a_1 ao) ••• 194 230 152 152 
189 10111101 bd (aoal) + (a_Ial) + (a_1 ao ) ••• 66 231 24 24 

190 10111110 be (a_1 ao) + (a_1 ao) + (ad ••• 130 246 144 130 
191 10111111 bf (ao) + (a_I) + (ad ••• 2 247 16 2 
192 11000000 cO (a_lao) .. - 252 136 238 136 
193 11000001 c1 (a-Iaoad + (a_lao) ••• 124 137 110 110 
194 11000010 c2 (a-Iaoad + (a-lao) ••• 188 152 230 152 
195 11000011 c3 (a-lao) + (a-lao) ao- 60 153 102 60 
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rule number equivalent ru les 
boolean expression dep min 

dec binary hex conj reft c.r. 

196 11000100 c4 (aoGI) + (a-lao) ••• 220 140 206 140 
197 11000101 c5 (G_IGd+(a_Iao) ••• 92 141 78 78 
198 11000110 c6 (G_I aoad + (aoad + (a- lao) . 0 . 156 156 198 156 
199 11000111 c7 (a_1 al) + (a_1 ao) + (a_1 ao) ••• 28 157 70 28 

200 11001000 c8 (a_1 ao) + (aoal) ••• 236 200 236 200 
201 11001001 c9 (a_Iaoal) + (a-lao) + (aoal) . 0 . 108 201 108 108 
202 11001010 ca (a_lao) + (a_Ial) ••• 172 216 228 172 
203 11001011 cb (a_Ial) + (a- lao) + (a_lao) ••• 44 217 100 44 
204 11001100 cc (ao) - 0 - 204 204 204 204 
205 11001101 cd (a_Ial)+(ao) ••• 76 205 76 76 
206 11001110 ce (a_1 al) + (ao) ••• 140 220 196 140 
207 11001111 cf (a_I) + (ao) .. - 12 221 68 12 
208 11010000 dO (a_1 al) + (a_1 ao) ••• 244 138 174 138 
209 11010001 dl (aoal) + (a_1 ao) ••• 116 139 46 46 

210 11010010 d2 (a_Iaoal) + (a_Ial) + (a_lao) 0 •• 180 154 166 154 
211 11010011 d3 (a_Ial) + (a_lao) + (a_lao) ••• 52 155 38 38 
212 11010100 d4 (a_Ial) + (aoad + (a-lao) ••• 212 142 142 142 
213 11010101 d5 (a_1 ao) + (al) ••• 84 143 14 14 
214 11010110 d6 (a_Iaoal) + (a_1 al) + (aoal) + (a_lao) ••• 148 158 134 134 
215 11010111 d7 (a- lao) + (a_lao) + (al) ••• 20 159 6 6 
216 11011000 d8 (a_Iad+(aoad ••• 228 202 172 172 
217 11011001 d9 (a_lao) + (aoal) + (aoal) ••• 100 203 44 44 
218 11011010 da (a_lao) + (a-lad + (a_1 al) ••• 164 218 164 164 
219 11011011 db (aoal) + (a_1 al) + (a_1 ao) ••• 36 219 36 36 

220 11011100 dc (a_Ial)+(ao) ••• 196 206 140 140 
221 11011101 dd (al) + (ao) - .. 68 207 12 12 
222 11011110 de (a_Ial) + (a- lad + (ao) ••• 132 222 132 132 
223 11011111 df (al)+ (a_I) + (ao) ••• 4 223 4 4 
224 11100000 eO (a_1 ao) + (a_1 ad ••• 248 168 234 168 
225 11100001 el (a_1 aoal) + (a_1 ao) + (a_Ial) 0 •• 120 169 106 106 
226 11100010 e2 (a-lao) + (aoad ••• 184 184 226 184 
227 11100011 e3 (a_1 al) + (a_lao) + (a_lao) ••• 56 185 98 56 
228 11100100 e4 (aoad + (a-lad ••• 216 172 202 172 
229 11100101 e5 (a_lao) + (a_Ial) + (a- lad ••• 88 173 74 74 

230 11100110 e6 (a- lao) + (aoal) + (aoal) ••• 152 188 194 152 
231 11100111 e7 (a_1 al) + (aoad + (a_1 ao) ••• 24 189 66 24 
232 11101000 e8 (a_1 ao) + (a_Ial) + (aoal) ••• 232 232 232 232 
233 11101001 e9 (a_1 aoal) + (a_1 ao) + (a_1 al) + (aoal) ••• 104 233 104 104 
234 11101010 ea (a_lao) + (ad ••• 168 248 224 168 
235 11101011 eb (a_lao) + (a_lao) + (ad ••• 40 249 96 40 
236 11101100 ec (a_Iad+(ao) ••• 200 236 200 200 
237 11101101 ed (a_1 al) + (a_1 al) + (ao) ••• 72 237 72 72 
238 11101110 ee (ao) + (al) - .. 136 252 192 136 
239 11101111 ef (a_I) + (ao) + (ad ••• 8 253 64 8 

240 11110000 fO (a_I) 0 -- 240 170 170 170 
241 11110001 f1 (aoad + (a-d ••• 112 171 42 42 
242 11110010 f2 (aoad + (a_I) ••• 176 186 162 162 
243 11110011 f3 (ao) + (a-d .. - 48 187 34 34 
244 11110100 f4 (aoad + (a_I) ••• 208 174 138 138 
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rule number equivalent rules 

dec binary hex 
boolean expression dep 

conj 

245 11110101 f5 (al)+(a_l) .-. 80 
246 11110110 f6 (aoad + (aoad + (a_I) ••• 144 
247 11110111 f7 (al) + (ao) + (a_I) ••• 16 
248 11111000 f8 (aoal) + (a_I) •• • 224 
249 11111001 f9 (aoal) + (aoal) + (a_I) ••• 96 

250 11111010 fa (a- I)+(ad .-. 160 
251 11111011 fb (ao) + (a_I) + (al) ••• 32 
252 11111100 fc (a_I) + (ao) .. - 192 
253 11111101 fd (al) + (a_I) + (ao) ••• 64 
254 11111110 fe (a- d + (ao) + (ad ••• 128 
255 11111111 ff 1 --- 0 

Forms of rules and equivalences between rules. 

The table lists all 256 possible rules for k = 2, r = lone-dimensional cellular 
automata. Such cellular automata consist of a line of sites, each with value 0 or 1. 
At each time step, the value ai of a site at position i is updated according to the rule 

This table lists the 223 = 256 possible choices of ifJ. 

Each digit in the binary representation of the rule number gives the value of ifJ for 
a particular set of (a i_ I ' ai' ai+I ). The digit corresponding to the coefficient of 2n in 
the rule number gives the value of ifJ(n 2, n I ' no)' where n = 4n2 + 2n I + no. Thus 
the leftmost digit in the binary representation of the rule number gives ifJ( 1, 1, 1), the 
next gives ifJ( 1, 1, 0) , and so on, down to ifJ(O , 0, 0). 

The table also gives the decimal and hexadecimal representations of the rule 
numbers. 

Each ifJ can be considered a Boolean function of three variables, say a_I ' ao and 
a l • The table gives the minimal disjunctive normal form representations for these 
Boolean functions . Boolean multiplication and addition are used (corresponding 
to AND and OR operations). Bar denotes complementation. In each case, the 
expression with the minimal number of components, using only these operations, is 
given. 

The column labelled "dep" gives the dependence of ifJ(a_l , ao' a l ) on each of the 
a_l' ao and a l . The symbol - indicates no change in ifJ when the corresponding aj 

is changed. The symbol 0 denotes linear dependence of ifJ on the corresponding aj : 

whenever aj changes, ifJ also changes. The symbol . denotes arbitrary dependence 
of ifJ. Rules such as 90 in which only 0 and - dependence occurs, are called additive, 
and can be represented as linear functions modulo two. 

For each rule, the table gives rules equivalent under simple transformations. 
"conj" denotes conjugation: interchange of the roles of 0 and 1. "refl" denotes reflec-
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reft c. r. 

175 10 
190 130 
191 2 
234 168 
235 40 

250 160 
251 32 
238 136 
239 8 
254 128 
255 0 

min 

10 
130 

2 
168 
40 

160 
32 

136 
8 

128 
0 
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tion. Rules invariant under reflection are symmetric. "c.r." denotes the combined 
operation of conjugation and reflection. 

Many of the properties considered in this Appendix are unaffected by these trans
formations. The rules form equivalence classes under these transformations, and it is 
usually convenient to consider only the minimal (lowest-numbered) representatives 
of each class, as given by the last column in the table. 

In some cases, further equivalences between rules can be used. Table 7 gives one 
important set of such further equivalences. 

Some special rules are: 

51 complement 
170 left shift 
204 identity 
240 right shift 

Table by Lyman P. Hurd (Mathematics Department, Princeton University) . (Boolean expres

sions by S. Wolfram.) 
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TT 
rul. 33 (00100001) rul. 34 (00100010) rul. 35 (00100011) rul. 36 (00100100) 

Illill 
rul. 37 (00100101) rul.38 (00100110) rul. 40 (00101000) rul. 41 (00101001 ) 

rul. 42 (00101010) rul. 43 (00101011) rul. 44 (00101100) rul. 45 (00101101 ) 

rul. 46 (00101110) rul. 50 (00110010) rul.51 (00110011) rul. 54 (00110110 ) 

• rul. 56 (00111000) rul. 57 (00111001) ru I. 58 (00111010) rul. 60 (00111100) 

rul.61 (00111101) rul. 62 (00111110) rul. 72 (01001000) rul. 73 (01001001) 

rul. 74 (01001010) rul. 76 (01001100) rul. 77 (01001101) rul. 78 (01001110) 
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.. ~~~II ~·n '¥ f1 ~ ,... · · · W · · Y~Y ~ I • ., ~ ~. ' :oJ . .. : . .,.~ ...... ; ... J.t :. ;, 
~ ~*-~ . . • . 

_ _ .;p~_-IffR .. . 
,ul. 90 (01011010) 'ul. 94 (01011110) ,ul. 104 (01101000) 'ul. 105 (01101001) 

~ ~~~~~~ ... 
,ul. 106 (01101010) ,ul. 108 (01101100) ,ul. 110 (01101110) 'ul. 122 (01111010) 

.-----. .-- I- - -
,u l . 126 (01111110) ,ul. 128 (10000000) ,u l . 130 (10000010) ,ul. 132 (10000100) 

~ .~ ...... -r r r r 
,ul. 134 (10000110) ,ul. 136 (10001000) ,ul. 138 (10001010) ,ul. 140 (10001100) 

~ a~i.~ 
'ul. 142 (10001110) ,ul. 146 (10010010) ,ulo 150 (10010110) ,ulo 152 (18011000) .. ~! ~ _.-.. -_ ... --
,ul. 154 (10011010) ,ul. 156 (10011100) ,ul. 160 (10100000) 'ul. 162 (10100010) 

Ilrl r 

•• . ••.•.• rrr r 
,ul. 164 (10100100) 'ul. 168 (10101000) ,ul. 170 (10101010) ,ul. 172 (10101100) 
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rul. 178 (101100 10) rule 184 (10111000) rul e 188 (1 0 111100) rule 200 (11001000) 

I I III r' 
rul e 204 (11001100) rul e 232 (11101000) 

Patterns generated by evol~tion from disordered initial states. 

Each picture is for a different rule. All the "minimal representative" rules of ta
ble I are included. (Other rules have patterns equivalent to those of their minimal 
representatives.) 

Sites with values I and 0 are represented respectively by black and white squares. 
The initial configuration is at the top of each picture. The values of sites in it are 
chosen randomly to be 0 or 1 with probability 1/ 2. Successive lines are obtained by 
applications of the cellular automaton rule. 

These pictures show the evolution of cellular automata with 80 sites for 60 time 
steps. Periodic boundary conditions were imposed on the edges. 

Different specific initial configurations for a particular rule almost always yield 
qualitatively similar patterns. Different rules are however seen to give a wide variety 
of different kinds of patterns. 
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Table 3: Blocked PaHerns from Disordered States 

----- ------ 11111111 ~ .~ 
rul. e (eeeeee80) rul. 1 (eeeeeee1) ru l . 2 ( eeeeeele) rul. 3 (eeeeeell) 

-- 1[ -- 111111 ~ ~ 
rul. 4 (eeeeelee) rul.5 (eeeeele1) rul.6 (eeaeelle) rul.7 (eeeeell1) 

---- '. ~ 

rul. 8 (eeeeleee) rulo 9 (eeeelee1) rulo le (eeeele l e) rul. 11 (eaealel l) 

r 1 - '111111 • 
rul. 12 (eaeellee) rul. 13 (eeeellel) rulo 14 (eeee1110) rul. 15 (ea0elll1) 

I~il"r] 1111111 . 11111 
rul. 18 (eeeleele) rul. 19 (eaeleel1) rul. 22 (eeelelle) rul. 23 (eeele" 1) 

~ ••• ',\~ 
rul. 24 (eee"eee) rul. 25 (eeellee1) rul. 26 (eeellele) rul. 27 (eeellel1) 

'11111111' 11111 .---~- .. 
rul. 28 (eeelllee) rul. 29 (e80lllel) ru l .3e (eeelllle ) rul. 32 (eeleeeee) 
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r1nl~ ~ ~ ~In ---
rule 33 (00100001) r ul e 34 (00100010) rule 35 (00100011) rule 36 (00100100) 

~ ~f~] ~ -'Y"" ~ 
rul. 37 (00100101) r u le 38 (00100110) rul. 40 (00101000) rul.41 (00101001) 

-~---I-. 
rul. 42 (00101010) r u le 43 (00101011) rul. H (00101100) rul. 45 (00101101) 

-I I I 
rule 46 (00 101110 ) r u le 50 (00110010) rul. 51 (00110011) rul. 54 (00110110) 

~ - - ~ -~~~ 
rul. 56 (00111000) r u l. 57 (00111001) rul. 58 (00111010) rul. 60 (00111100) 

• --- --~ U-!iIU 
rul. 61 (00111101) r ul . 62 (00111110) rul.72 (01001000) rul. 73 (01001001) 

~ - ~ -1111 "Ifnll' 
rule 74 (01001010) r u l. 76 (01001100) rul. 77 (01001101) rul. 78 (01001110) 
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.. ~ ' III~ lr'"'[' .'. 
rule 90 {01011010} rule 94 (01011110) rulo 104 ( 01101000) rule 105 (01101001) 

III -~~I • 
,ul. ,e6 (e11e,e,e) ,ul. ,e8 (e11e11ee) ,ul. 11e (e11e11,e) ,ul. '22 (e1111e,e) •.. __ ._-~ l"-

,ul. '26 (e111111e) ,ul. '28 (,eeeeeee) ,ul. ,3e (,eeeee,e) ,ul. '32 (,eeee,ee) 

~ .... '-.--' ~ 1--'~ 

'ul. '34 (,eeee11e) 'ul. '36 (,eee,eee) ,ul. '38 (,eee,e,e) ,ul. '4e (,eee11ee) 

!~1"'·1. ~ 
,ul. '42 (,eee11,e) 'ul. '46 (,ee,ee,e) 'ul. '5e (,ee,e11e) ,ul. '52 (,ee11eee) 

~ 'I~r UI ....... --~ 
,ul. '54 (,ee11e,e) ,ul. '56 (,ee11,ee) ,ul. '6e (,e,eeeee) ,ul. '62 (,e,eee,e) 

Y- .- r--w
"- y" - fd ". T'Tf' 

'ul. '64 (,e,ee,ee) ,ul. '68 (,e,e,eee) ,ul. ,7e (,e,e,e,e) 'ul. '72 (,e,e11ee) 
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r II 
rul. 178 (10110010) rul. 184 (10111000) rul. 188 (10111100) rul. 200 (11001000) 

11111 1111 
rul. 204 (11001100) rul. 232 (11101000) 

Blocks in patterns generated by evolution from disordered initial states. 

The pictures in this table are analogous to those in table 2, but show only every 
other site in both space and time. Certain features become clearer in this "blocked" 
representation. 

It is common for cellular automata to exhibit several "phases". The blocked 
representation often makes differences between these phases visible. 
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Table 4: DiHerence PaHerns 

I / \ 
ru I, e (00000000) rule 1 (00000001 ) rul. 2 (00000010) rule .3 (00000011 ) 

) \ 
ru Ie 4 (00000100) rule 5 (00000101 ) rul. 6 (00000110 ) rule 7 (00000111 ) , / ~ 
rule 8 (00001000) ru I. 9 (00001001 ) rule 10 (00001010) rule 11 (00001011 ) 

, 
~ 

rule 12 (00001100) ru I, 13 (00001101 ) rul. 14 (00001 110) rule 1S (00001111 ) 

A 4 
rule 18 (00010010) rule 19 (00010011 ) rul. 22 (00010110) rule 23 (00010111 ) 

~ < / \ 
rule 24 (00011000) rule 25 (00011001 ) rul. 26 (00011010) rul. 27 (0001 1011) 

A 
rule 28 (00011100) rule 29 (00011101) rule 30 (000 11110 ) rule 32 (00100000) 

I ( 
rule 33 (00100001 ) rul. 34 (00100010) rule JS (00100011 ) rul. 36 (00100100) 

t / 
~ 

A 
rule 37 (00100101 ) rul.38 (00100110) rul. 40 (00101000) rul. 41 (00101001) 

531 



Wolfram on Cellular Automata and Complexity 

/ ) 1 A 
rul. 42 (00101010) rule 43 (00101011) ru Ie 44 (00101100) rule 45 (80101101) 

/ I ~ 
ru I e 46 ( 00101110) ru Ie 50 (00110010) rule 51 (00110011) rule 54 (00118118) 

'" / / ~ 
rule 56 (00111000) rul.57 (08111001) rule 58 (0011101 8) rule 68 (80111180) 

~ ~ iJJ 
rul. 61 (00111101) rule 62 (00111110) ru Ie 72 (01001080) ru I, 73 (81881801 ) 

/ 
rul o 74 (81881818) rule 76 (81881188) rule 77 (81801181) ru I. 78 (81801118) 

A I I A 
rul.90 (81811810) rule 94 (01011110) ru Ie 184 (01181008) rule 185 (81 181801) 

/ Il A 
rulo 186 (81101810) rule 108 (81181180) rulo 118 (81181118) rul e 122 (81111818) 

A / r 
rulo 126 (81111118) rule 128 (18000008) rule lJe (10080818) rule 132 (18888188) 

/ 
rulo 134 (18800118) rul. 136 (18081088) rulo 138 (10801810) rulo 148 (18881188) 
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( ~ A "" rulo 142 (10081118) rul. 146 (18818818) rul. 158 (108181 18) rul. 152 (18811080) 

/ I / 
rulo 154 (18011010) rul. 156 (10011100) rulo 160 (10108000) rul. 162 (10100018) 

r 
( 

/ / 

rul. 164 (18188180) rul. 168 (10101000) rulo 170 (101018 18) rul. 172 (10101100) 

I \ / 
rul. 178 (18118818) rul. 184 (18111800) rul. 188 (18111188) rul. 288 (11881088) 

rul. 284 (11081188) rul. 232 (11181888) 

Differences in patterns produced by evolution from disordered states resulting 
from changes in single initial site values. 

The evolution of small perturbations made in the initial configurations for all the 
"minimal representative" rules of table 1 are given. In each case, an initial configura
tion was chosen in which sites had value 0 or 1 with probability 1/ 2, and the pattern 
obtained by evolution according to the cellular automaton rule was found. Then 
the value of the centre site in the initial configuration was complemented, and the 
resulting pattern obtained by cellular automaton evolution was found. The pictures 
show as black squares the site values that differed between the patterns found with 
these initial configurations. Evolution for 40 time steps is shown. 

In some cases, the differences die out, or remain localized, with time. In other 
cases, the differences grow. The left and right growth speeds correspond to the left 
and right Lyapunov exponents AL and AR , given in table 6. 

For some rules (such as 18), initial perturbations on some configurations may 
grow, but on others may die out. The pictures show results from a particular trial. 
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Table 5: PaHerns from Single Site Seeds 

/ = 
rul. 0 (00000000) rul. , (00000001) rul. 2 (000000'0) ru I. 3 (000000") 

/ 
rul •• (00000'00) rul.5 (00000'0') rul. 6 (00000"0) rul. 7 (00000"1) 

/ 
rul. 8 (0000'000) rul. 9 (0000'001) rul. '0 (0000'0'0) rul. " (0000'0") 

.1111 / 
rul. '2 (0000"00) rule '3 (0000"0') rul. '4 (0000"'0) rul. '5 (0000"") 

rul. '8 (000'00'0) rul. '9 (000'00") rule 22 (000'0"0) rule 23 (000'0"') 

~ ilia" A 
ru Ie 24 (000' '000) ru I. 25 (000"001) rul. 26 (000"0'0) rul. 27 (000"0") 

~ A 
ru Ie 28 (000" '00) ru Ie 29 (000"'01) rul. 30 (000""0) ru I. 3' (000""') 

/ 
ru Ie 32 (00'00000) ru Ie 33 (00'0000' ) rule 34 (00'000'0) rul.35 (00'000") 

! / 
rul. 36 (00'00'00) ru Ie 37 (00'00'0') rul. 38 (00'00"0) rul. 39 (00'00"') 
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/ 
ru l .48 (88181888) rul.41 (80101081) rul. 42 (00101010) ru lo 43 (eelelel1) 

rulo 44 (88181188) ru l o 45 (e81el181) rul. 46 ( ee18111e) rulo 47 (eelelll1) 

rul. 58 (80110018) ru l e 51 (00110011) rul.54 (00118118) rulo 55 (08118111) 

~ 
ru I. 56 (e0111000) rulo 57 (00111001) r ulo 58 (80111010) rulo 59 (08111011 ) 

~ • rulo 60 (88111108) rule 61 (88111101) ru l o 62 (08111110) ru l o 63 (00111111) 

~~~~~~~~~~5:"~ / • .~ rule 72 (818ele88) rulo 73 (elee1881) rulo 74 (81881818) rulo 75 (e1881811) 

III. ~ •• rulo 76 (81881188) rulo 77 (81881181) rulo 78 (81881118) rulo 79 (81881111) 

A • rule oe (81el1e18) rulo 91 (81811811) rulo 94 (8181111e) rul. 95 (81811111) 

/ 
rul. le4 (811eleee) rulo 185 (81181881) rulo 186 (81181818) rulo 187 (81181811) 
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rul. 188 (81181188) rul. 189 (81181181) rul. 118 (81181118) rul. 111 (81181111) 

ru I, 122 (81111818) rul. 123 (81111811) rul. 126 (01111118) rul. 127 (81111111) 

• •• .• "Y • . 
.•. ..Y. .• y.Iy. •. / 

rule 128 (18888888) rul. 129 (18808001) rul. 138 (18808818) rul. 131 (18088811) 

/ 
rul. 132 (10800180) rul. 133 (10000181) rul. 134 (18800118) rul. 135 (18880111) 

/ 
rul. 136 (10001000) rul. 137 (10001881) rul. 138 (18881818) rul. 139 (10001811) 

/ 
rule 140 (10001100) rul. 141 (18001181) rul. 142 (18881110) rul. 143 (18801111) 

~ 
ru I, 146 (18810018) rul. 147 (10010011) rul. 158 (18818118) rul. 151 (leel.111) 

~ 
ru I. 152 (10011800) rul. 153 (18811881) rul. 154 (18811818) rul. 155 (10011.11) 

~ 
rule 156 (180 11108) rul. 157 (18811181) rul. 158 (18811118) ru l . 159 (lee11111) 
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/ 
rul. 160 (10100000) rul. 161 (10100001) rul. 162 (10100010 ) rul. 163 (10100011) 

/ 
rul. 164 (10100100) rul. 165 (10100101) rul. 166 (10100110 ) rul. 167 (10100111) 

/ 
rul. 168 (10101000) rul. 169 (10101001) rul. 170 (10101010 ) rul. 171 (10101011) 

/ 
rul. 172 (10101100) rul. 173 (10101101) rul. 174 (10101110) rul. 175 (10101111) 

rul. 178 (10110010) rul. 179 (10110011) rul. 182 (10110110) rul. 183 (10110111) 

~ 
ru Ie 184 (10111000) rul. 185 (10111001) rul. 186 (10111010 ) rul. 187 (10111011) 

~ 
rule 188 (10111100) rul. 189 (10111101) rul. 190 (10 111110) ru l . 191 (10111111) 

/ 
rul. 200 (11001000) rul.201 (11001001) rul. 202 (11001010 ) rul. 203 (11001011) 

rul. 204 (11001100) rul. 205 (11001101) rul. 206 (11001110 ) rul. 207 (11001111) 
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rul. 218 (11011010) rule 219 (11011011) rule 222 (11811118) rul. 223 (11011111) 

/ 
rul. 232 (11101000) rul. 233 (11101001) rule 234 (11101018) rul. 235 (11181ell) 

rul. 236 (11101100) rul. 237 (11101101) rule 238 (11101110) rul. 239 (11181111) 

rul. 25. (lllllel.) rule 251 (11111011) rul. 254 (llllllle) rule 255 (1111111 1) 

rule 18 (8001801.) rule 38 (88811110) 

rul. 45 (e8181101) rule 73 (e1881801) 
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rul. 105 (01101001) rul. 110 (01101110) 

rul. 150 (10010110) rul. 169 (10101001) 

Patterns generated by evolution from configurations containing a single 
nonzero site. 

The first part of the table shows pictures for all distinct rules. Since the initial configu
ration is not invariant under complementation, rules which differ by complementation 
can produce different patterns, and are shown separately. Only the minimal repre
sentative is shown for rules related by reflection. In all cases, the patterns correspond 
to evolution for 38 time steps. 

Many rules are seen to yield equivalent patterns. The results of table 7 can often 
be used to deduce these equivalences. 

Some rules (such as 122) yield asymptotically homogeneous patterns. Others 
(such as 90 and 150) yield asymptotically self similar or fractal patterns. (The 
fractal dimensions of the patterns obtained from rules 90 and 150 are respectively 
10g23 "" 1.59 and 10g2(1 + vis) "" 1.69.) But some rules (such as 30 and 73) yield 
irregular patterns which show no periodic or almost periodic behaviour. The second 
part of the table gives some of the distinct patterns obtained by evolution for 360 
time steps. Note that the structure on the right of the pattern generated by rule 110 
eventually dies out, leaving an essentially periodic structure. 
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Table 6: Statistical Properties 

density h(x) 
I' AL AR h(l) 

I' h I' 
h lmin ) 

I' 

0 0 0 - - 0 0 0 
) 1/8 .43536 0 0 0 0 0 

2 1/8 .48752 I -I h(x) 
I' 

h(x) 
I' 0 

3 1/4 .70121 -1 / 2 1/2 h1X )/ 2 h1X )/2 0 

4 1/8 .51771 0 0 0 0 0 

5 7/16 .702± .001 0 0 0 0 0 

6 .241 ± .001 <.573 ± .001 1 -1 h(x) 
I' 

h(x) 
I' 0 

7 .469 ± .001 <.502± .001 - 1/ 2 1/2 h1x)/2 h1X )/2 0 

8 0 0 - - 0 0 0 

9 .410±.001 <.264± .002 -I I h(x) 
I' 

h(x) 
I' 0 

10 1/4 .68872 I -I h(x) 
I' 0 h(x) 

I' 

II 1/2 <.567± .001 -I I h(x) 
I' 

h(x) 
I' 0 

12 1/4 .68872 0 0 0 0 0 

13 .437 ± .001 .378 ± .001 0 0 0 0 0 

14 1/2 0 (- I, I) (1,-1) 0 0 0 

IS 1/2 I - 1 I 1.0 1.0 0 

18 1/4 1/2 I I 0.5 1.0 1.0 

19 1/2 .62351 0 0 0 0 0 

22 .35095 ± .00002 <.795 ± .001 .7660 ± .0002 .7660 ± .0002 .744± .003 <.9146 ± .0007 <.9146 ± .0007 

23 1/2 .599± .001 0 0 0 0 0 

24 3/16 .55081 -I I h(x) 
I' 

h(x) 
I' 0 

25 .447 ± .001 <.180± .001 -1 / 2 1/2 h1X )/2 h1X )/2 0 

26 .386 ± .001 <.790± .001 I -I h(x) 
I' 

h(x) 
I' 0 

27 .531 ± .001 <.800± .001 -1 / 2 1/2 h1x)/ 2 h~)/2 0 

28 1/2 .500± .001 0 0 0 0 0 

29 1/2 .86742 0 0 0 0 0 

30 1/2 I .2428 ± .0002 I I <1.15436 <.763141 

32 0 0 - - 0 0 0 

33 .396± .001 <.637± .001 0 0 0 0 0 

34 1/4 .68872 I -I h(x) 
I' 

h(x ) 
I' 0 

35 .375 ± .001 <.645 ± .001 -1 / 2 1/2 h~)/2 h1x)/2 0 

36 1/ 16 .32483 0 0 0 0 0 

37 .384± .001 .506± .001 0 0 0 0 0 

38 9/32 .73733 I -1 h(x) 
I' 

h(x) 
I' 0 

40 0 0 - - 0 0 0 

41 .372± .001 <.360 ± .001 -1 I h(x) 
I' 

h(x) 
I' 0 

42 3/8 .85684 I -I h(x) 
I' 

h(x) 
I' 0 

43 1/2 0 (-1 , 1) (I, -I) 0 0 0 

44 .167 ± .001 .528 ± .001 0 0 0 0 0 

45 1/2 I .1724 ± .0003 1 I <1.13036 <.673893 

46 3/8 .55081 1 -1 h(x) 
I' 

h(x) 
I' 0 

50 1/2 .601 ± .001 0 0 0 0 0 

51 1/2 I 0 0 0 0 0 
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density h(x) 
I' AL AR h (r ) 

I' hI' 
hlm;n] 

I' 

54 .49±.0] <.2720 ± .0005 .553 ± .002 .553 ± .002 <.250± .002 <.250± .002 <.250± .002 

56 .376 ± .001 <.589± .001 -I I h(X) 
I' 

h(x ) 
I' 0 

57 1/2 0 (-I , I) (I, -I) 0 0 0 

58 .625 ± .001 <.332± .001 I -I h (x) 
I' 

h(x ) 
I' 0 

60 1/2 I 0 I I 2 2 

62 .644± .002 <.262± .001 0 0 0 0 0 

72 1/8 .32483 0 0 0 0 0 

73 .463 ± .001 <.714± .001 0 0 0 0 0 

74 .318 ± .001 <.629± .001 I -I h(x ) 
I' h~) 0 

76 3/8 .85060 0 0 0 0 0 

77 1/2 .599± .001 0 0 0 0 0 

78 .562±.001 .377 ± .001 0 0 0 0 0 

90 1/2 I I I I 2 2 

94 .584± .001 <.562± .001 0 0 0 0 0 

104 .068 ± .001 .208 ± .001 0 0 0 0 0 

105 1/2 I I I I 2 2 

106 1/2 I I -.1335 ± .0006 I < 1.06985 <.461366 

108 5/16 .78025 0 0 0 0 0 

] 10 4/7 0 (.26-5) (-.27-0.) 0 0 0 

122 1/2 1/2 I I 0.5 1.0 1.0 

126 1/2 1/2 I 1 0.5 1.0 1.0 

128 0 0 - - 0 0 0 

130 .167 ± .001 .525 ± .001 I -I h(x) 
I' 

h(x) 
I' 0 

132 1/8 .599± .001 0 0 0 0 0 

134 .292± .001 <.533 ± .001 1 -I h(x) 
I' 

h (·f ) 
I' 0 

136 0 0 - - 0 0 0 

138 3/8 .806± .001 I -I h(x ) 
I' 

I (x) 
11' 0 

140 1/4 <.678 ± .001 0 0 0 0 0 

142 1/2 0 (-I , I) (1 , -1) 0 0 0 

146 1/4 1/2 I I 0.5 1.0 1.0 

150 1/2 I I I I 2 2 

152 .185 ± .001 .515±.001 -I I h (x) 
I' 

h (x) 
I' 0 

154 1/2 I I -I I I 0 

156 1/2 .502 ± .001 0 0 0 0 0 

160 0 0 - - 0 0 0 

162 .333 ± .001 .667 ± .001 I -I h (x) 
I' 

h (x) 
I' 0 

164 .083±.001 .389± .001 0 0 0 0 0 

168 0 0 - - 0 0 0 

170 1/2 -I I I 1.0 1.0 0 

172 1/8 .485 ± .001 0 0 0 0 0 

178 1/2 .599± .001 0 0 0 0 0 

184 1/2 0 (-I , I) (1 , -1) 0 0 0 

200 3/8 .70121 0 0 0 0 0 

204 1/2 I 0 0 0 0 0 

232 1/2 .599± .001 0 0 0 0 0 

541 



Wolfram on Cellular Automato and Complexity 

Statistical proper ties of evolution from disordered states. 

Results are given for all the "minimal representative" rules of table 1. In all cases, 
initial configurations were used in which each site has value 0 or I with probability 
1/2. Some properties of some rules remain unchanged with different kinds of initial 
configurations. 

Rational numbers, or numbers without errors, are quoted whenever analytical 
arguments yield exact results. In a few cases, the rigour of these arguments may be 
subject to question. 

The column labelled "density" gives the asymptotic density of nonzero sites. 
For some, but not all , rules this depends on the initial density, here taken to be 
1/ 2. For most rules, the relaxation to the final density appears to be approximately 
exponential. For some rules (such as 18), in which particle-like excitations undergo 
random annihilation, the relaxation may be like [- 1/2, or slower. Rule 110 shows 
particularly slow relaxation. 

The column labelled h1x ) gives estimates for the asymptotic spatial measure en
tropy, as defined in pages 115-157 in this book. This quantity gives a measure of 
the "information content" of cellular automaton configurations. It is computed by 
breaking the configuration into blocks of sites, say of length X, then evaluating the 
quantity -t L Pi log2 Pi ' where the sum runs over a1l 2x possible blocks, which are 
taken to occur with probabilities Pi. h1x ) is the limit of this quantity as X --+ 00. The 
values decrease monotonically with X, allowing upper bounds on the X --+ 00 limit 
to be derived from finite X results. Where errors are quoted, the values or bounds on 
h1X

) given in the table were obtained after 400 time steps, with blocks up to length 
X = 11 considered. (More accurate results were obtained for rules 22 and 54.) Fits 
to values obtained as a function of X suggest that the exact h1x ) for rules 22 and 54 
may in fact be zero. 

The definition of h1X
) implies that it achieves its maximal value of 1 only when 

all possible sequences of site values occur with equal probability, so that each site 
has value 0 or 1 with independent probability 1/ 2. h1X

) = 0 if only a finite number of 
complete cellular automaton configurations can occur. 

Results for h~) given without errors in the table were obtained by explicit con
struction of probabilistic regular languages which represent the sets of configurations 
produced by cellular automaton evolution, as in table II. 

The quantities AL and AR are left and right Lyapunov exponents, which measure 
the rate of information transmission. They give the slopes of the left and right 
boundaries of the difference patterns illustrated in table 4. Thus they measure the 
rate at which perturbations in cellular automaton configurations spread to the left and 
right. 

The notation - indicates that almost all changes in initial configurations die out, 
so that the AL•R are not defined. 
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The notation (-1 , 1) indicates that the infonnation propagation direction can 
alternate, typically as progressively more distant particle-like structures from the 
initial configuration are encountered. There is probably no definite infinite size limit 

for the AL,R in such cases. 
Rule 110 shows highly complex infonnation transmission properties, associated 

with the particle-like structures of table 15. The values of AL,R given in the table 
for this case are possible bounds associated with the fastest and slowest-moving 
particle-like structures. 

The quantity h~ ) is the temporal measure entropy, which measures the infonnation 
content of time sequences of values of individual sites. It is evaluated by applying 
the same procedure as for h1x ) but to sequences of values of a single site attained on 
many successive time steps. It can be shown (see pages 115-157 in this book) that 
h~ ) =:; (AL + AR)h~) . 

The quantities h~) and h~ ) measure respectively the information content of spatial 
and temporal sequences that are one site wide. The quantity hJl gives the entropy 
associated with spacetime patches of sites of arbitrary width. (Nevertheless, for 
many rules, the exact value of hJl is in fact obtained from patches of width I or 2.) In 
general, hJl =:; 2h~) , and h~) =:; hJl =:; (AL + AR )h1X

). 

The quantity hJl is evaluated by considering spacetime patches of sites that extend 
in the time direction. The last column of the table uses a generalization in which 
the patches can extend in any spacetime direction. It gives the minimum value 
hJl obtained as a function of direction. (The actual bounds given in the table were 
obtained from vertical or diagonal patches; other directions may yield stricter bounds.) 

Table by Peter Grassberger (Physics Dep'artment, University ofWuppertal). 
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Table 7: Blocking Transformation Equivalences 

0 0: 00 10(1) 15 240: 00 10 (2) 

I 0: II 10 (2) 15: 110001 (3) 

200: 00 11 (2) 18 90: 00 10 (2) 
204: 000 III (2) 204: 11000 10100 (2) 

2 34: 00 10(2) 0: 10100 11100 (2) 
170: 000100 (3) 19 51: 00 I I (1) 
0: 1000 1100 (4) 0: II 10 (2) 

3 0: II 10 (2) 204: 00 II (2) 
240: 00 II (4) 22 146: 00 10 (2) 

4 204: 00 10 (1) 90: 0000 1000 (4) 
0: 00 II (1) 0: 11011000 11111000 (4) 

5 200: 00 10 (2) 23 51: 00 11 (1) 
204: 000 100 (2) 128: 00 10 (2) 
0: III 110 (2) 204: 00 11 (2) 
51: 00010 11010(1) 0: 000 100 (2) 

6 184: 00 10(2) 24 48: 00 10 (2) 
34: 00 11 (2) 240: 000 100 (3) 
170: 0000 1000 (4) 0: 1000 11 (3) 
128: 0100 1100 (4) 
240: 1000 1010 (4) 
85: 10000 11000 (5) 

25 0: 1101000 111 1000 (7) 
240: 00000oo 110 1 000 (14) 

0: 11000 11100 (10) 26 90: 00 10 (2) 

7 192: 00 10 (2) 
0: 000 100 (2) 
240: 000 III (6) 

8 0: 0010(1) 

9 0: 00101110 (2) 
170: 10000010 (6) 
34: 1000 0011 (6) 
204: 0100000 1100000 (5) 
240: oooooooo 1 1010000 (8) 

85: 010 110 (3) 
170: 100100 101100 (6) 
0: 101 10 100 10111 100 (8) 
240: 11100100 10011100 (16) 

27 48: II 10 (4) 
85: 010 110 (3) 
240: 000 100 (6) 
0: 0100 1100 (8) 
170: 100100 101100 (6) 

10 34: 00 10 (2) 
170: 000 100 (3) 
0: 010110 (3) 

II 240: 00 II (2) 
0: 010110(3) 
15: 000 III (3) 
128: 1100 1001 (4) 
170: 1100100 1001100 (7) 

12 204: 00 10(1) 

28 192: 00 10 (2) 
200: 1001 (2) 
5 1: 100 110 (1) 
204: 100 110 (2) 
0: 1010 1100 (1) 

29 204: 00 10 (2) 
200: 1001 (2) 
51: 100 110 ( I) 
0: 1010 1100 (1) 

0: 100110(1) 30 

13 192: 00 10 (2) 32 0: 00 II (I) 

0: 100 110 (I) 128: 00 10(2) 

204: 10100 10010 (I) 33 132: 00 10(2) 

14 240: 1001 (2) 200: 00 11 (2) 

34: 00 11 (2) 0: 111100(2) 

15: 010101 (3) 204: 000 II I (2) 

0: 1100 1000 (4) 128: 0000 1010 (4) 

170: 0000 1100 (4) 34 170: 00 10 (2) 
128: 1100 OlIO (4) 0: 100 110 (3) 

544 



Tables of Cellular Automaton Properties (19861 

35 240: 00 II (4) 54 50: 00 10 (2) 
0: 100 ItO (3) 51 : 1000 00 10 (2) 
170: tOlOO 10010 (5) 128: 0000 1000 (4) 

36 0: 0011(1 ) 204: 1000 0010 (4) 

4 ' 00 10 (2) 170: 1000 1110 (4) 

204: 000 100 (I ) 240: OOtO 1110 (4) 

37 200: 00 II (2) 0 : 000010 1II0tO (4) 

0: 11111100 (2) 56 240: 00 to (2) 

204: 0000 IIII (2) 128: 1001 (2) 

170: 100000 110000 (6) 184: 01 0 101 (3) 

240: 010000 110000 (6) 0: 1010 OltO (2) 

128: 010000 111000 (6) 34: 10tO 1101 (4) 

38 34: 00 10 (2) 170: I tOtO 10110 (5) 

85: 100 110 (3) 57 128: 1001 (2) 

170: 0000 1000 (4) 184: 010101 (3) 

0: 1100 litO (4) 0: 10tO 0110 (2) 

40 128: 00 to (2) 
0 : 00 II (2) 
170: II0tO 10110 (5) 

41 148: 00 to (2) 

184: 0000 1000 (4) 
176: 0000 10tO (4) 
170: I tOtO tOIIO (5 ) 
240: 00000000 10000000 (8) 

48: 10tO 0100 (4) 
34: 10tO 1101 (4) 
240: 10100 10010 (5) 
170: I tOtO tOIIO (5) 

58 128: 00 to (2) 
0 : 101 100 (3) 
240: 1100 1110 (8) 
170: I tOtO tOIIO (5) 

128: 10000000 to I 00000 (8) 60 60: 00 10 (2) 

0: 11111000 11001000 (8) 62 240: 1100 1110 (8) 

136: OtOlOOOO tOtOIIOI (8) 204: 11000 II0tO (3) 

42 170: 00 10 (2) 0: III ItO 100000 (3) 

34: 00 II (2) 72 0: 00 to ( I) 

0: 1100 1110 (4) 4 : 00 II (2) 

43 170: to 01 (2) 204: 000 110 (I ) 

240: 00 II (2) 73 204: 1100 0110 (2) 

15 : 000 III (3) 51 : 11000 II0tO ( I) 

0: 1001 1000 (4) 0: 1011010000 (2) 

128: 1100 0110 (4) 74 34: 00 10 (2) 

44 12: 00 10 (2) 170: 000 100 (3) 

204: 000 100 ( I) 0 : 10000 10100 (5) 

0: 1000 1100 (I ) 85: 1110000 1101000 (7) 

45 76 204: 00 to (I ) 

46 34: 00 II (2) 0: 10tO lItO (I ) 

0: 110100 (3) 77 204: 1001 ( I) 

170: 000 110 (3) 128 : 00 10 (2) 

50 51 : to 01 ( I) 0 : 10tO 1000 (I ) 

128: 00 to (2) 78 0: 101100 ( I) 

204: to 01 (2) 204: II0tO 101 to (I ) 

0: tOtO 1000 (2) 90 90: 00 to (2) 

51 5 1: tOOl ( I) 94 90: 00 II (2) 
204: 00 to (2) 0 : 10tO 1110 ( I) 

204: 10tO OtOl (2) 
51 : 1001011110 ( I) 
136: 111100 110110 (6) 
192: 110110 01 litO (6) 
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104 128: 00 10 (2) 146 90: 00 10 (2) 
4: 00 II (2) 204: 11000 10100 (2) 
0: 000100 (I) 0: 10010 11110 (2) 
204: 0000 1100 (I) 150 150: 00 10 (2) 

105 150: 00 10(2) 152 48: 00 10 (2) 
106 170: 00 10 (2) 240: 000 100 (3) 
108 76: 00 10 (2) 136: 10001111 (4) 

204: 000 100 (I) 0: 01000 11000 (5) 
51: 10100 11100(1) 154 90: 00 10 (2) 
0: 10010 11110 (2) 85: 010 110(3) 

110 0: 110100 101100 (9) 170: 11000110(4) 
240: 11000 100110 (9) 156 192: 00 10 (2) 
170: 10011000 11111000 (16) 200: 1001 (2) 

122 128: 00 10 (2) 136: 10 II (2) 
90: 00 II (2) 51: 100 110 (I) 
0: 1010 1000 (2) 204: 100 110 (2) 
204: 11100 11110(2) 0: 1010 1100 (I) 

126 90: 00 II (2) 160 128: 00 10 (2) 
204: 11100 11110(2) 0: 000 100 (I) 
0: 01110 10001 (2) 162 170: 00 10 (2) 

128 0: 00 10 (I) 128: 10 II (2) 
128: 00 II (2) 0: 100 110 (3) 

130 34: 00 10(2) 164 90: 1110(2) 
170: 000 100 (3) 128: 00 11 (2) 
0: 1000 1100 (4) 204: 000 100 (I) 
128: 1000 1111 (4) 0: 0000 1100 (I) 

132 204: 00 10 (I) 
128: 00 II (2) 
0: 000 110 (I) 

168 128: 00 10(2) 
136: 00 11 (2) 
170: 10 II (2) 

134 184: 00 10 (2) 0: 000 100 (I) 
162: 00 II (2) 
170: 0000 1000 (4) 
128: 0100 1100 (4) 
240: 1000 1010 (4) 
85: 10000 11000 (5) 
0: 100000 101100 (6) 

170 170: 00 10 (2) 

172 34: II 10 (2) 
204: 000 100 (I) 

170: 110111 (3) 
0: 1000 1100 (I) 

136 0: 00 10 (I) 178 51: 1001(1) 

136: 00 II (2) 128: 00 10(2) 

138 34: 00 10 (2) 
170: 00 II (2) 

204: 1001 (2) 
0: 1010 1000 (2) 

0: 010 110(3) 184 240: 00 10 (2) 

140 204: 00 10 (I) 

0: 100 110(1) 

142 240: 1001 (2) 
170: 00 II (2) 
15: 010 101 (3) 
0: 1100 1000 (4) 

128: 1001 (2) 
170: 10 11 (2) 
184: 010 101 (3) 
0: 1010 OlIO (2) 

200 0: 00 10 (I) 
204: 00 II (I) 

128: 11000110(4) 204 204: 00 10 (I) 

232 204: 0011(1) 
128: 00 10 (2) 
0: 000 100 (I) 
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Equivalences between rules under blocking transformations. 

When only particular blocks of site values occur, the evolution of one cellular au

tomaton rule (say R) may be equivalent to that of another (say R' ). Thus for example, 
the evolution under rule 1 of configurations consisting of the blocks 000 and 111 
is equivalent to evolution under rule 204 in which 000 is replaced by 0, and 111 

is replaced by 1. (Two time steps in evolution according to rule 1 are necessary to 
reproduce one time step of evolution according to rule 204.) Since rule 204 is the 
identity, this implies that configurations consisting only of the blocks 000 and 111 
must be periodic under rule 1 (with period 2). 

In general, one may consider replacing site values 0 and 1 in evolution according to 
rule R by blocks Bo and B I • In some cases, the resulting evolution may correspond 

to T time steps of another rule R'. Evolution according to rule R' can thus be 
"simulated" by evolution according to rule R, under the blocking transformation 

o -+ Bo' 1 -+ B I • Such blocking transformations can be considered analogous to 
block spin transformations in the renormalization group approach. 

The table gives possible simulations for all the "minimal representative" rules of 

table 1. The notation R': Bo BI (T) indicates simulation of rule R' by replacing 0 
with the block Bo' and 1 with B I; T steps of rule R are needed to reproduce one step 
of rule R' evolution. 

The table includes all simulations for block lengths up to 8. The blocks Bo and B I 
are always assumed distinct. Only one representative set of blocks is given for each 
simulation. (Thus for example, only the blocks 00 and 10 are given for the simulation 
of rule 90 by rule 18; the blocks 00 and 01 would also suffice.) Simulations with 

block length 1 are not included; these correspond to transformations given in table 1. 
No simulations are found for rules 30 and 45 up to block length 8. 

Many rules are seen to be equivalent under blocking transformations to simple 
rules, such as 204 (the identity), 170 (left shift), 240 (right shift), 51 (complemen

tation) and O. Equivalence is also often found to the additive rules 90 and 150. An 
important property of all these simple rules is that they simulate themselves under 

blocking transformations. This has the consequence that patterns generated by these 
rules are self similar. Fractal patterns are thus produced by evolution according to 
rules 90 and 150 from single site seeds, as shown in table 5. 

The simulations given in the table occur when only particular blocks occur in 
the configuration of a cellular automaton. In disordered configurations, all possible 
blocks can occur. But since a cellular automaton under most rules is irreversible, 

only a subset of blocks may occur after a sufficiently long time. Often the subset 
of blocks that occur is, at least approximately, the blocks which correspond to a 
particular simulation. In this case, the behaviour of one cellular automaton may be 
considered "attracted" to that of another. 

It is common to find "domains" in which only particular blocks occur. Within 
each such domain, the evolution may correspond to that of a simpler rule. The 
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domains are separated by walls or "defects", whose behaviour is not reproduced by 
the simpler rule. In some cases, the defects remain stationary; in others, they execute 
random walks, and, for example, annihilate in pairs. In the latter cases, the sizes of 
domains grow slowly with time. 

While a large subset of possible initial configurations for a cellular automaton may 
be attracted to a particular form of behaviour, there are usually some special initial 
states (typically occurring among disordered states with probability zero), for which 
very different behaviour occurs. Such special initial states may for example consist 
of blocks which yield a simulation to which the rule is not generically attracted. 

The blocking transformations considered in the table represent one form of trans
formation between rules. Many others can also be considered. A general class, which 
includes the blocking transformations of the table, are those transformations which 
can be carried out by arbitrary finite state machines. 

The blocking transformations used in the table have the property that they reduce 
the total number of sites. This is a consequence of the fact that the blocks used are 
always taken not to overlap. An alternative approach is to perform replacements 
for overlapping blocks, thus obtaining configurations with the same number of sites. 
An example of such a replacement is 00 -7 0,01 -7 1, 10 -7 1, 11 -7 O. For some 
rules, the resulting transformed configurations show evolution according to other 
k = 2, r = 1 cellular automaton rules. Rules related in this way must have the 
same global properties, and must yield for example the same entropies. The minimal 
representative rules from table 1 equivalent under such transformations are: 

15,240 240 
23,232 132 
43, 212 184 
51,204 204 
77,178 222 
85, 170 170 
105,150 150 
113, 142 226 

Main table by John Milnor (Institute for Advanced Study). (Original program by 
S. Wolfram.) Second table by Peter Grassberger. 
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Table 8: Factorizations into Compositions of Simpler Rules 

¢J ¢JI ¢J2 ¢J ¢JI ¢J2 ¢J ¢JI ¢J2 
0 0 0 I 17 192 46 34 60 

0 12 238 3 34 252 
0 48 2 17 48 221 60 
0 60 
0 192 
0 204 
0 240 
0 252 

17 0 
34 0 
34 192 
51 0 
68 0 

238 12 
3 17 240 

51 192 
204 3 
238 15 

8 119 48 
136 12 

12 34 48 
34 240 

221 63 
51 51 204 

85 240 
170 15 
204 51 

60 51 60 
102 240 
153 15 
204 60 

68 192 51 48 72 119 60 
85 0 204 12 136 60 

102 0 221 12 90 102 60 
119 0 221 15 153 60 
136 0 15 51 240 126 102 252 
153 0 204 15 153 63 
170 0 18 17 60 128 119 3 
187 0 238 60 136 192 
187 3 
204 0 
221 0 
221 3 
238 0 

19 17 252 
238 63 

24 102 48 
153 12 

136 85 3 
119 51 
136 204 
170 192 

255 0 34 34 12 170 85 51 
255 3 34 204 170 204 
255 12 85 48 200 119 63 
255 15 170 12 136 252 
255 48 221 48 204 51 51 
255 51 221 51 85 15 
255 60 36 102 192 170 240 
255 63 153 3 204 204 

Factorizations into compositions of simpler rules. 

The 256 rules in table I are stated as functions of three site values ¢(a_ l , ao ' a l ) . Of 
these, 48 depend only on two of the site values. Some other rules can be formed 
from compositions of these simpler rules. This table lists rules which can be formed 
by compositions according to 

where - indicates that the value is irrelevant. Only minimal representative rules from 
table 1 are included. In each case, all possible compositions are listed. Note that 
most of the compositions do not commute. 

Table by Erica Jen (Los Alamos National Laboratory). 
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Table 9: Lengths of Distinct Blocks of Sites Newly 
Excluded at Time t 

rule t = I 2 3 4 rule t = 1 2 3 4 

0 1 - - - 57 6 5 5 7 
1 3 - - - 58 4 5 5 6 
2 2 - - - 60 - - - -
3 3 - - - 62 5 7 8 7 
4 2 - - - 72 3 3 - -
5 5 - - -
6 3 6 7 7 
7 4 5 5 6 
8 2 1 - -

9 4 7 9 9 

73 6 6 7 14 
74 4 6 6 7 
76 3 - - -
77 5 6 7 8 
78 4 4 6 5 

10 3 - - -
11 3 5 7 9 
12 2 - - -
13 4 4 6 6 
14 3 5 7 9 
15 - - - -
18 3 11 12 13 

90 - - - -

94 5 7 11 11 

104 8 8 8 7 
105 - - - -

106 - - - -

108 5 4 - -

19 3 3 - - 110 5 10 11 11 

22 8 7 11 9 122 5 7 8 10 
23 5 6 7 8 126 3 12 13 14 
24 2 3 - - 128 3 5 7 9 
25 5 6 8 8 130 4 6 7 10 
26 4 10 8 11 132 4 5 6 7 
27 4 6 6 9 134 5 6 6 8 
28 3 6 6 8 136 3 4 5 6 
29 4 - - - 138 3 - - -

30 - - - - 140 4 5 6 7 
32 2 4 6 8 142 5 7 9 11 
33 4 7 6 6 146 6 6 8 8 
34 2 - - - 150 - - - -
35 4 6 7 9 152 5 5 6 6 
36 3 2 - - 154 - - - -
37 9 8 9 8 156 6 7 7 9 
38 4 3 - -

40 3 4 5 7 
41 5 9 8 9 
42 3 - - -
43 5 7 9 11 
44 4 4 6 6 
45 - - - -

46 3 3 - -

160 5 7 9 11 
162 4 6 8 10 
164 9 9 8 9 
168 4 5 6 7 
170 - - - -

172 4 5 6 7 
178 5 6 7 8 

50 3 5 9 11 184 4 6 8 10 

51 - - - - 200 3 - - -

54 5 9 9 7 204 - - - -

56 3 4 6 8 232 5 6 7 8 
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Lengths of distinct blocks of sites newly excluded at time t. 

Most cellular automaton rules are irreversible, so that even starting from all possible 
initial configurations, only a subset of configurations can occur after t time steps. In 
this subset of configurations, only certain blocks of site values can occur. The subset 
can be specified by giving the blocks which are excluded. In some cases (such as rule 
128), the number of distinct excluded blocks is finite; in other cases, it is countably 
infinite. Irreversibility leads to an increase in the size of the set of excluded blocks 
with time. 

The table gives the lengths of the shortest blocks which are newly excluded after 
exactly t time steps. Such blocks can occur in configurations up to time t - 1, but 
cannot occur at time t or after. The lengths L(t) of the shortest blocks newly excluded 
at time t obey the inequality (see pages 159-202 in this book) L(t) ~ L(t - 1) - 2. 

The notation - in the table indicates that no blocks are newly excluded at a par
ticular time step. This implies that the rule has reached a stable set of configurations, 
which can occur after any number of steps. It should be noted, however, that this 
table takes no account of the probabilities with which different configurations may 
occur. 

Table by Lyman P. Hurd (Mathematics Department, Princeton University). (Original 
program by S. Wolfram.) 
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Table 10: Regular Language Complexities 

1 = 1 1=2 1=3 1=4 1 = 5 1>5 00 

0 1[1) I [I) I [I) 
I 4 (6) 4 (6) 4 (6) 
2 3 (4) 3 (4) 3 (4) 
3 3 (5) 3 (5) 3 (5) 
4 2 (3) 2 (3) 2 (3) 
5 9 (15) 9 (15) 9 (15) 
6 9 (16) 13 (22) 22 (37) 26 (44) 31 [52) 
7 4 (7) 7 (12) 12 (21) 14 (24) 16 (27) 
8 3 (4) I [I) I [I) I [I) 
9 9 (16) 22 (40) 44 (80) 106 (198) 266 (500) 

10 4 (6) 4 (6) 4 (6) 
II 3 (5) 7 (12) 10 (17) 12 (20) 14 (23) 
12 2 (3) 2 (3) 2 (3) 
13 6 [II) 10 (17) 12 (19) 14 (21) 16 (23) 
14 3 (5) 7 (12) 10 (17) 12 (20) 14 (23) 
15 1(2) 1 (2) I (2) 
16 3 (4) 3 (4) 3 (4) 
17 3 (5) 3 (5) 3 (5) 
18 5 (9) 47 (91) 143 (270) 
19 3 (5) 5 (8) 5 (8) 5 (8) 

20 10 (17) 21 (37) 32 [57) 37 (65) 50 (89) 
21 4 (7) 9 (16) 12 (21) 14 (24) 16 (27) 
22 15 (29) 280 (551) 4506 (8963) 
23 II (20) 15 (26) 19 (32) 23 (38) 27 (44) 
24 2 (3) 3 (4) 3 (4) 3 (4) 
25 6 [II) 26 [50) 55 (106) 114 (220) 333 (649) 
26 13 (25) 92 (179) 2238 (4454) 
27 10 (18) 14 (25) 18 (32) 21 (37) 24 (42) 
28 3 (5) 8 (14) 10 (17) II (18) 12 (19) 
29 4 (7) 4 (7) 4 (7) 

30 1(2) 1[2) 1(2) 
32 2 (3) 5 (7) 7 (9) 9 [11) II (13) 21+ 1[21+3] 4 (6) 
33 5 (9) 11(20) 26 (47) 40 (68) 41 (68) 
34 2 (3) 2 (3) 2 (3) 
35 4 (7) 7 (13) 9 (16) 10 (18) 12 (21) 
36 3 (5) 3 (4) 3 (4) 3 (4) 
37 15 (29) 194 (376) 870 (1698) 3735 (7290) 
38 5 (9) 5 (8) 5 (8) 5 (8) 

40 10 (17) 12 (19) 15 (22) 18 (25) 21 (28) 
41 14 (27) 128 (250) 1049 (2069) 
42 3 (5) 3 (5) 3 (5) 
43 9 (16) 13 (22) 17 (28) 21 (34) 25 (40) 
44 4 (7) II (20) 18 (32) 23 (40) 27 (46) 
45 1(2) 1(2) 1(2) 
46 3 (5) 5 (8) 5 (8) 5 (8) 
48 2 (3) 2 (3) 2 (3) 
49 4 (7) 6 (10) 7 [II) 9 (14) 10 (15) 
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t - 1 t-2 t-3 t-4 t-5 t > 5 00 

50 3 [5] 8 [14] 10 [17] 12 [20] 14 [23] 
51 I [2] 1[2] 1 [2] 
52 4 [7] 5 [9] 5 [9] 5 [9] 

53 10 [18] 15 [25] 17 [28] 21 [33] 23 [36] 
54 9 [16] 17 [32] 94 [179] 675 [1316] 
56 3 [5] 5 [9] 7 [12] 9 [15] 11 [18] 
57 II [20] 15 [27] 15 [26] 24 [42] 32 [55] 
58 10 [18] 20 [35] 33 [55] 55 [88] 76 [122] 

60 1 [2] 1 [2] 1 [2] 
61 5 [9] 16 [30] 40 [76] 94 [177] 185 [350] 
62 5 [9] 21 [39] 61 [114] 81 [150] 129 [240] 
64 3 [4] I [I] 1 [1] I [I] 
65 9 [15] 20 [35] 42 [75] 88 [157] 220 [401] 
66 2 [3] 3 [4] 3 [4] 3 [4] 
68 2 [3] 2 [3] 2 [3] 
69 5 [8] 10 [17] 12 [19] 14 [23] 16 [25] 

70 3 [5] 8 [14] 9 [15] II [19] 11 [19] 
72 5 [9] 5 [8] 5 [8] 5 [8] 
73 15 [29] 82 [155] 390 [757] 1443 [2796] 
74 13 [25] 45 [85] 66 [123] 69 [125] 75 [135] 
76 3 [5] 3 [5] 3 [5] 
77 11 [20] 15 [26] 19 [32] 23 [38] 27 [44] 
78 10 [18] 15 [27] 18 [30] 20 [34] 22 [36] 

80 4 [6] 4 [6] 4 [6] 
81 3 [5] 7 [11] 9 [14] 11 [16] 13 [19] 
82 13 [25] 167 [331] 3134 [6257] 
84 3 [5] 7 [12] 9 [14] 11 [17] 13 [19] 
85 1 [2] 1 [2] 1 [2] 
86 1[2] 1 [2] 1 [2] 
88 13 [25] 63 [117] 114 [210] 117 [213] 1288 [2106] 
89 1 [2] 1 [2] 1 [2] 

90 1 [2] 1 [2] 1 [2] 
92 10 [18] 14 [23] 18 [29] 18 [27] 22 [33] 
94 15 [29] 230 [455] 3904 [7760] 
96 9 [16] 11 [17] 14 [20] 17 [23] 20 [26] 
97 14 [27] 99 [195] 626 [1237] 
98 3 [5] 4 [6] 6 [9] 8 [12] 10 [15] 

100 5 [9] 11 [19] 17 [29] 18 [29] 22 [34] 
102 1 [2] 1 [2] 1[2] 
104 15 [29] 265 [525] 2340 [4647] 1394 [2675] 1542 [2913] 
105 1[2] 1[2] 1[2] 
106 1 [2] 1[2] 1[2] 
108 9 [16] 11 [19] II [19] 11 [19] 

110 5 [9] 20 [38] 160[312] 1035 [2037] 
112 3 [5] 3 [5] 3 [5] 
113 9 [16] 13 [22] 17 [28] 21 [34] 25 [40] 
114 10 [18] 20 [35] 33 [56] 50 [82] 72 [115] 
116 3 [5] 5 [8] 5 [8] 5 [8] 
118 5 [9] 16 [29] 49 [92] 74 [139] 95 [175] 

553 



Wolfram on Cellular Automata and Complexity 

1-1 

120 1[2) 
122 15 [29) 
124 5 [9) 
126 3 [5) 

128 4 [6) 

130 9 [15) 
132 5 [9) 
134 14 [27) 
136 3 [5) 
138 3 [5) 

140 4 [7) 
142 9 [16) 
144 9 [16) 
146 15 [29) 
148 14 [27) 

150 1 [2) 
152 6 [11) 
154 1 [2) 
156 11 [20) 

160 9 [15) 
162 5 [8) 
164 15 [29) 
168 4 [7) 

170 1 [2) 
172 10 [18) 
176 6 [11) 
178 II [20) 

180 1[2) 
184 4 [7) 
188 5 [9) 

192 3 [5) 
196 4 [7) 

200 3 [5) 
204 1 [2) 
208 3 [5) 

2 12 9 [16) 
216 10 [18) 

224 4 [7) 

232 11 [20) 

240 1 (2) 

1-2 1-3 1-4 1-5 I> 5 00 

1 [2) 1 [2) 
179 [347) 5088 [9933) 

20 [38) 208 [407) 1356 [2672) 
13 [23) 107 [198) 2867 [5476) 

6 [8) 8 [10) 10 [12) 12 [14) 2/+2[2/+4] 3 [5) 

14 [21) 18 [25) 22 [29) 26 [33) 
7 [12) 9 [15) II [18) 13 [21) 

44 [82) 99 [182) 125 [224) 
4 [6) 5 [7) 6 [8) 7 [9) 1+ 2[1 + 4] 3 [5) 

3 [5) 3 [5) 

5 [9) 6 [II) 7 [13) 8 [15) 
13 [22) 17 [28) 21 [34) 25 [40) 
16 [28) 20 [34) 24 [40) 28 [46) 

92 [177) 1587 [3126) 
68 [127) 113 [209) 188 [347) 

1[2) 1 [2) 
20 [37) 30 [55) 32 [59) 36 [65) 

1 [2) 1 [2) 
20 [35) 24 [42) 28 [47) 34 [58) 

16 [24) 25 [35) 36 [48) 49 [63) (I + 2)2[(1 + 2)(1 + 4)] 9 [15) 
7 [10) 9 [12) 11 [14) 13 [16) 

116 [227) 667 [1310) 1214 [2363) 
5 [8) 6 [9) 7 [10) 8 [11 ) 1+ 3[1 + 6] 3 [5) 

1 [2) 1 [2) 
11 [20) 12 [22) 13 [24) 14 [26) 
8 [14) 10 [17) 12 [20) 14 [23) 

15 [26) 19 [32) 23 [38) 27 [44) 

1 [2) 1 [2) 
6 [10) 8 [13) 10 [16) 12 [19) 

14 [25) 21 [36) 25 [43) 33 [56) 

4 [6) 5 [7) 6 [8) 7 [9) 
5 [8) 6 [9) 7 [10) 8 [II) 

3 [5) 3 [5) 
1 [2) 1 [2) 
3 [5) 3 [5) 

13 [22) 17 [28) 21 [34) 25 [40) 
11 [19) 12 [20) 13 [21) 14 [22) 

5 [8) 6 [9) 7 [10) 8 [1 1) 1+ 3[1 + 6] 3 [5) 

15 [26) 19 [32) 23 (38) 27 (44) 

1 (2) 1 (2) 

Regular language complexities. 

The set of configurations that can appear after t steps in the evolution of a one
dimensional cellular automaton can be shown to form a regular formal language (see 
pages 159-202 in this book). Possible configurations thus correspond to possible 
paths through a fi nite graph which represents the grammar for the regular language. 
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The table gives the minimum number of nodes in the graphs for such grammars; the 
number of arcs is given in brackets in each case. The notation . indicates that the 
regular language is the same as at the preceding time step. 

Entries in the last column of the table give sizes of graphs for regular languages 
representing limiting sets of states that can be reached after any number of steps. 

The size of a regular grammar gives a measure of the "complexity" of the set 
of configurations it describes. Notice that the grammar specifies merely which 
configurations can possibly occur; it does not account for the probabilities of different 
configurations. 

The graphs used for the table represent possible sequences of site values that occur 
in configurations read from left to right. Rules related by reflection may in general 
yield different regular languages. The table thus includes minimal representatives 
for alI rules from table 1 not related by complementation. 

Entries in the table for t :5 5 that have been left blank were not found . They 
are probably ~ 20000. The growth of regular language complexities is bounded by 
2 241 - l. 

For some rules, it has been possible to find explicit forms for the regular languages 
produced after any number of time steps. Formulae for complexities in these cases 
are listed in the table. In many cases, it is however suspected that the limiting set 
does not form a regular language, and may in fact be non-recursive. 

Table by Lyman P. Hurd (Mathematics Department, Princeton University) . (Original 
program by S. Wolfram.) 
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Table 11: Measure Theoretical Complexities 

rule 1 = I 1=2 1 = 3 rule 1 = 1 1=2 1=3 
0 0 0 0 52 0.9003 0.9216 0.9216 
I 0.8223 0.8223 0.8223 53 1.906 2.057 2.016 
2 0.7356 0.7356 0.7356 54 1.7707 2.609 3.921 
3 0.9003 0.9003 0.9003 56 0.8305 1.3503 1.732 
4 0.3768 0.3768 0.3768 57 2.086 2.190 1.946 
5 1.8005 1.8005 1.8005 58 1.9132 2.132 2.106 
6 1.783 1.964 1.968 60 0 0 0 
7 1.2707 1.670 1.933 61 1.430 2.065 3.076 
8 0.7356 0 0 62 1.341 2.406 3.720 
9 1.9135 2.598 3.303 64 0.7356 0 0 

10 1.1247 1.1247 1.1247 65 1.5310 2.268 2.970 
11 1.0434 1.3442 1.973 66 0.5623 0.9216 0.9216 

12 0.5623 0.5623 0.5623 68 0.5623 0.5623 0.5623 
13 1.4756 1.7879 1.713 69 1.0562 1.790 1.842 
14 0.9026 1.3607 1.927 70 0.8305 1.7802 1.815 
15 0 0 0 72 0.9003 0.4634 0.4634 
16 0.7356 0.7356 0.7356 73 2.604 3.685 4.473 
17 0.9003 0.9003 0.9003 74 2.461 2.713 2.755 
18 0.9026 2.129 3.933 76 0.8305 0.8305 0.8305 
19 0.9026 1.1539 1.1539 77 1.9862 2.153 2.330 
20 1.7756 2.759 3.059 78 1.7553 2.111 2.029 

21 1.2707 1.8266 1.931 80 1.1247 1.1247 1.l247 
22 2.591 4.601 6.213 81 1.0434 1.5837 1.716 
23 1.9862 2.153 2.330 82 2.460 3.823 5.375 
24 0.5623 0.9216 0.9216 84 0.8992 1.740 1.984 
25 1.643 2.665 3.231 85 0 0 0 
26 2.244 2.659 2.945 86 0 0 0 
27 1.666 2.128 2.392 88 2.2441 3.081 3.605 
28 0.8305 1.6009 1.6645 89 0 0 0 
29 1.2652 1.2652 1.2652 90 0 0 0 
30 0 0 0 92 1.9132 1.768 1.735 
32 0.3768 0.4957 0.2346 94 2.599 3.682 5.311 
33 1.2930 1.941 2.529 96 1.782 1.3689 0.995 
34 0.5623 0.5623 0.5623 97 2.491 3.470 4.846 
35 1.l034 1.748 2.006 98 0.8305 0.8932 0.979 
36 0.9003 0.4634 0.4634 100 1.298 1.667 1.632 
37 2.518 4.435 5.410 102 0 0 0 
38 1.298 1.256 1.256 104 2.591 4.379 4.969 
40 1.775 1.547 1.127 105 0 0 0 
41 2.332 4.134 5.471 106 0 0 0 
42 0.9003 0.9003 0.9003 108 1.7707 1.5093 1.5093 
43 1.9584 2.269 2.483 110 1.344 2.435 3.407 
44 0.9003 1.574 1.748 112 0.9003 0.9003 0.9003 
45 0 0 0 113 1.957 2.266 2.482 
46 0.5623 0.9216 0.9216 114 1.754 2.344 2.825 
48 0.5623 0.5623 0.5623 116 0.5623 0.9215 0.9215 
49 1.2512 1.451 1.455 118 1.342 1.945 2.827 
50 0.8305 1.589 1.775 120 0 0 0 
51 0 0 0 122 2.600 4.307 5.981 
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rule (= 1 (=2 (= 3 rule ( = 1 (=2 (=3 
124 1.343 2.321 3.933 164 2.520 3.343 3.353 
126 0.9003 2.049 3.914 168 1.2707 1.3676 1.369 
128 0.8223 0.457 0.1986 170 0 0 0 
130 1.533 1.263 1.025 172 1.909 2.080 2.242 
132 1.292 1.459 1.637 176 1.4757 1.723 1.863 
134 2.496 3.050 3.010 180 0 0 0 
136 0.9003 0.8223 0.641 184 1.2652 1.575 1.788 
138 1.0434 1.0434 1.0434 188 1.433 1.962 1.733 
140 1.2512 1.5808 1.7551 192 0.9003 0.8113 0.6415 
142 1.957 2.266 2.482 196 1.1034 1.0302 0.9170 
144 1.913 1.988 2.056 
146 2.604 3.742 5.350 
148 2.328 3.589 3.815 
150 0 0 0 
152 1.644 2.626 3.031 
154 0 0 0 

200 0.9003 0.9003 0.9003 
204 0 0 0 
208 1.0434 1.0434 1.0434 
212 1.9584 2.269 2.483 
216 1.667 2.033 2.065 

156 2.083 2.506 2.563 224 1.2707 1.368 1.369 

160 1.805 1.633 1.281 232 1.9862 2.153 2.330 

162 1.0562 0.8654 0.7355 240 0 0 0 

Measures of the information content of regular grammars for sets of 
configurations generated by evolution from disordered initial states. 

This table gives values of a probabilistic analogue of the regular language complexity 
of table 10, in which the nodes of regular language graphs are weighted with the 
probabilities that they are visited. 

Starting from a disordered state in which all possible configurations occur with 
equal probability, irreversible cellular automaton evolution can lead to ensembles in 
which different configurations occur with different probabilities. These ensembles 
can be described by probabilistic analogues of regular languages. 

All the configurations that can occur after t steps correspond to possible paths 
through the standard regular language graphs of table 10. To account for the different 
probabilities of different configurations, one may weight the nodes of the graph 
according to the probabilities Pi that they are visited. In terms of these probabilities, 

one may then compute a measure theoretical complexity - L Pi log2 Pi' where the 
sum runs over all nodes in the regular language graph. The table gives estimated 
values for this quantity. The last digit in each estimate is subject to statistical errors. 

Table and concept by Peter Grassberger (Physics Department, University ofWupper
tal). 
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Table 1 2: Iterated Rule Expression Sizes 

rule t = 1 t=2 t=3 t=4 t = 5 rule t = 1 t=2 t=3 t=4 t=5 
0 0(0) 0(0) 0(0) 0(0) 0(0) 56 2 (2) 6 (4) 14 (9) 38 (20) 103 (45) 
1 1 (1) 6 (4) 1 (I) 6 (4) 1 (I) 57 3 (3) 7 (6) 17 (12) 41 (23) 130 (50) 

2 1 (1) 1 (I) 1 (I) 1 (I) 1 (1) 58 2 (2) 6 (5) 15 (10) 34 (18) 80 (32) 
3 1 (I) 3 (2) 1 (I) 3 (2) 1 (I) 59 2 (2) 4 (4) 9 (8) 14 (10) 34 (17) 

4 1 (I) 1 (1) 1 (1) 1 (1) 1 (I) 60 2 (2) 2 (2) 8 (8) 2 (2) 8 (8) 
5 1 (1) 2 (2) 1 (I) 2 (2) 1 (1) 61 3 (3) 4 (4) 14 (10) 21 (17) 60 (30) 
6 2 (2) 4 (4) 13 (10) 25 (21) 110 (50) 62 3 (3) 6 (6) 20 (12) 56 (27) 137(48) 
7 2 (2) 7 (4) 6 (6) 18 (8) 10 (10) 63 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 
8 1 (I) 0(0) 0(0) 0(0) 0(0) 72 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 
9 2 (2) 5 (5) 18 (II) 43 (31) 138 (53) 73 3 (3) 8 (7) 36 (20) 90 (46) 276(1 18) 

10 1 (1) 1 (1) 1 (1) 1 (1) 1 (I) 74 2 (2) 5 (5) 13 (II) 30 (22) 77 (45) 
11 2 (2) 5 (4) 10 (6) 26 (12) 50 (16) 75 3 (3) 8 (8) 24 (20) 81 (52) 241 (118) 
12 1 (1) 1 (I) 1 (I) 1 (I) 1 (I) 76 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 
13 2 (2) 6 (4) 9 (5) 13 (7) 17 (8) 77 3 (3) 7 (5) 14 (7) 32 (9) 57 (II) 
14 2 (2) 5 (5) 17 (10) 51 (24) 144 (48) 78 2 (2) 5 (4) 8(7) 20 (10) 21 (12) 
15 1 (I) 1 (I) 1 (1) 1 (1) 1 (I) 79 2 (2) 7 (4) 9 (5) 13 (6) 20 (7) 
18 2 (2) 4 (4) 18 (18) 35 (26) 140 (108) 90 2 (2) 2 (2) 8 (8) 2 (2) 8 (8) 
19 2 (2) 8 (5) 3 (3) 8 (5) 3 (3) 91 3 (3) 9 (6) 26 (19) 82 (47) 255 (107) 
22 3 (3) 7 (7) 27 (26) 80 (62) 308 (206) 94 3 (3) 8 (8) 26 (19) 106 (46) 276 (106) 
23 3 (3) 8 (5) 7 (7) 33 (9) 11(11) 95 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 
24 2 (2) 4 (4) 4 (4) 4 (4) 4 (4) 104 3 (3) 6 (6) 15 (14) 27 (26) 49 (45) 
25 2 (2) 4 (4) 8 (8) 20 (16) 42 (27) 105 4 (4) 4 (4) 16 (16) 4 (4) 256 (256) 
26 2 (2) 6 (6) 21 (17) 56 (43) 192 (100) 106 3 (3) 5 (5) 25 (2 1) 46 (37) 192 (126) 
27 3 (2) 4 (4) 7 (5) 7 (6) 15 (7) 107 4 (4) 10 (9) 37 (28) 108 (70) 390 (2 10) 
28 2 (2) 4 (4) 11 (7) 15 (11) 30 (12) 108 3 (3) 5 (5) 9 (8) 5 (5) 9 (8) 
29 3 (2) 4 (4) 3 (2) 4 (4) 3 (2) 109 4 (4) 10 (8) 31 (20) 91 (54) 268(118) 
30 3 (3) 9 (7) 23 (17) 76 (41) 185 (lOS) 110 3 (3) 7 (6) 15 (15) 40 (28) 95 (60) 
31 2 (2) 6 (4) 7 (6) 12 (10) 11 (9) 111 3 (3) 7 (6) 21 (14) 57 (25) 139 (56) 
32 1 (I) 1 (I) 1 (I) 1 (1) 1 (1) 122 3 (3) 9 (8) 27 (20) 88 (48) 264 (136) 
33 2 (2) 7 (7) 12 (12) 44 (23) 38 (24) 123 3 (3) 8 (8) 22 (13) 51 (28) 81 (30) 
34 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 126 3 (3) 8 (8) 22 (19) 103 (67) 221 (116) 
35 2 (2) 4 (3) 8 (4) 13 (8) 30 (11) 127 3 (3) 3 (3) 3 (3) 3 (3) 3 (3) 
36 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 128 1 (1) 1 (I) 1 (1) 1 (I) 1 (I) 

37 2 (2) 8 (7) 25 (17) 75 (47) 238 (109) 129 2 (2) 9 (8) 26 (20) 93 (78) 250 (120) 
38 2 (2) 4 (3) 4 (4) 4 (3) 4 (4) 130 2 (2) 2 (2) 5 (4) 5 (4) 8 (6) 
39 3 (2) 3 (3) 6 (5) 5 (5) 15 (7) 131 2 (2) 6 (5) 13 (10) 36 (25) 88 (45) 
40 2 (2) 3 (3) 5 (5) 8 (8) 13 (13) 132 2 (2) 3 (3) 4 (4) 5 (5) 6 (6) 
41 3 (3) 8 (8) 26 (24) 92 (69) 283 (218) 133 2 (2) 8 (7) 23 (17) 74 (41) 216(111) 
42 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 134 3 (3) 6 (6) 20 (17) 46 (34) 174 (90) 
43 3 (3) 7 (6) 24 (12) 62 (27) 176 (55) 135 3 (3) 9 (7) 22 (17) 66(41) 202 (107) 
44 2 (2) 3 (3) 4 (4) 8 (5) 10 (6) 136 1 (I) 1 (I) 1 (1) 1 (I) 1 (I) 

45 3 (3) 9 (8) 24 (20) 72 (53) 219 (118) 137 2 (2) 8 (6) 14 (14) 39 (25) 111 (60) 
46 3 (2) 6 (4) 6 (4) 6 (4) 6 (4) 138 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 

47 2 (2) 5 (4) 13 (6) 28 (8) 64 (16) 139 2 (2) 5 (4) 6 (4) 6 (4) 6 (4) 

50 2 (2) 6 (4) 15 (6) 31 (8) 64 (10) 140 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 
51 1 (I) 1 (1) 1 (1) 1 (I) 1 (I) 141 2 (2) 7 (4) 10 (6) 22 (8) 28 (9) 
54 3 (3) 7 (6) 18 (IS) 59 (38) 165 (85) 142 3 (3) 7 (6) 18 (12) 52 (27) 151 (55) 
55 2 (2) 5 (3) 5 (5) 5 (3) 5 (5) 143 2 (2) 5 (4) 12 (8) 32 (IS) 86 (34) 
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rule t = I t=2 t=3 t=4 t =5 rule t = I t=2 t=3 
146 3 (3) 6 (6) 29 (29) 61 (48) 224 (193) 184 2 (2) 5 (5) 15 (13) 
147 3 (3) 8 (7) 21 (18) 69 (39) 207 (79) 185 3 (3) 5 (5) 24 (10) 
150 4 (4) 4 (4) 16 (16) 4 (4) 256 (256) 186 3 (2) 8 (3) 20 (4) 
151 4 (4) 10 (7) 33 (29) 104 (63) 372 (201) 187 2 (2) 2 (2) 2 (2) 
152 2 (2) 4 (4) 7 (7) 12 (II) 20 (19) 188 3 (3) 6 (5) 24 (10) 
153 2 (2) 2 (2) 8 (8) 2 (2) 8 (8) 189 3 (3) 10 (5) 8 (5) 
154 3 (3) 4 (4) 28 (15) 6 (6) 42 (19) 190 4 (3) 5 (4) 23 (6) 
155 3 (3) 7 (4) 8 (5) 8 (4) 8 (5) 191 3 (3) 3 (3) 3 (3) 
156 3 (3) 3 (3) 14 (8) 12 (8) 43 (13) 200 2 (2) 2 (2) 2 (2) 
157 3 (3) 7 (4) II (7) 24 (8) 23 (10) 201 3 (3) 10 (5) 23 (10) 
158 4 (4) 12 (8) 34 (20) 106 (37) 330 (92) 202 2 (2) 4 (4) 7 (6) 
159 3 (3) 9 (7) 18 (14) 63 (24) 139 (55) 203 3 (3) 7 (5) 17 (9) 
160 I (I) I (I ) I (I) I (I) I (I) 204 1 (I) 1 (I) 1 (I) 
161 2 (2) 6 (6) 20 (18) 65 (43) 236 (140) 205 3 (2) 3 (2) 3 (2) 
162 2 (2) 3 (3) 4 (4) 5 (5) 6 (6) 206 3 (2) 5 (3) 8 (4) 
163 2 (2) 5 (5) 15 (9) 32 (15) 73 (25) 207 2 (2) 2 (2) 2 (2) 
164 2 (2) 5 (4) 10 (10) 16 (13) 27 (21) 218 3 (3) 9 (6) 40 (16) 
165 2 (2) 2 (2) 8 (8) 2 (2) 8 (8) 219 3 (3) 10 (5) 10 (5) 
166 3 (3) 4 (4) 24 (15) 6 (6) 32 (19) 222 4 (3) 10 (5) 19 (7) 
167 3 (3) 8 (7) 26 (19) 82 (43) 218 (104) 223 3 (3) 3 (3) 3 (3) 
168 2 (2) 5 (4) 10 (8) 23 (16) 49 (32) 232 3 (3) 8 (5) 19 (7) 
169 3 (3) 6 (5) 28 (21) 76 (37) 244 (124) 233 4 (4) 10 (7) 39 (20) 
170 I (I) I (I) 1 (I) 1 (1) 1 (1) 234 2 (2) 6 (4) 17 (7) 
171 3 (2) 3 (2) 3 (2) 3 (2) 3 (2) 235 4 (3) 11 (6) 28 (10) 
172 2 (2) 4 (3) 6 (4) 7 (5) 9 (6) 236 3 (2) 3 (2) 3 (2) 
173 3 (3) 10 (7) 32 (14) 70 (27) 206 (46) 237 4 (3) 7 (5) 7 (5) 
174 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 238 2 (2) 4 (3) 6 (4) 
175 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 239 3 (3) 1 (I) 1 (I) 
178 3 (3) 7 (5) 16 (7) 32 (9) 65 (II) 250 2 (2) 3 (3) 4 (4) 
179 2 (2) 4 (4) 8 (6) 15 (8) 31 (10) 251 3 (3) 6 (5) 10 (7) 
182 4 (4) 11 (9) 47 (33) 103 (55) 466 (162) 254 4 (3) 11 (5) 24 (7) 
183 3 (3) 7 (7) 24 (22) 55 (22) 203 (69) 255 I (I) I (I) 1 (I) 

Sizes of Boolean expressions representing functions corresponding to iterations 
of cellular automaton rules. 

Cellular automaton rules with k = 2 and r = 1 can be expressed as Boolean functions 
of three variables, as in table 1. Iterations of these rules for t steps correspond to 
functions of 2t + 1 variables, which may be expressed as Boolean expressions. 

The minimal Boolean expressions obtained after one step were given in table I. 
This table gives the numbers of terms in Boolean expressions obtained after t time 
steps. An increase in these numbers potentially reflects increasing difficulty of 
computing the outcome of more steps of cellular automaton evol.ution. 

The first number in each case gives the number of prime implicants in the corre
sponding Boolean expression. The possible values of a set of n Boolean variables 
correspond to the vertices of a Boolean n-cube. The cases in which a Boolean func
tion has value 1 then correspond to a region of the Boolean n-cube. The number 
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t=4 t=5 
48 (37) 161(111) 
51 (22) 149 (45) 

43 (5) 88 (6) 
2 (2) 2 (2) 

39 (15) 125 (23) 
8 (5) 8 (5) 

21 (7) 91 (9) 
3 (3) 3 (3) 
2 (2) 2 (2) 

10 (5) 23 (10) 
11 (8) 16 (10) 

41 (13) 66 (19) 
1 (1) 1 (1) 
3 (2) 3 (2) 

11 (5) 15 (6) 
2 (2) 2 (2) 

92 (24) 158 (38) 
10 (5) 10 (5) 
31 (9) 46 (II) 

3 (3) 3 (3) 
33 (9) 58 (II) 

112 (34) 307 (63) 
44 (12) 106 (21) 
62 (14) 134 (19) 

3 (2) 3 (2) 
7 (5) 7 (5) 
9 (5) 12 (6) 
1 (I) I (1) 
5 (5) 6 (6) 

19 (9) 28 (II) 
45 (9) 76 (11) 

1 (I) 1 (I) 
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of prime implicants is essentially the number of hyperplanes of various dimensions 
which must be combined to form this region. 

Boolean expressions can conveniently be stated in a disjunctive normal form 
(DNF), in which they are written as a disjunction (OR) of conjunctions (ANDs). The 
number of prime implicants gives an upper bound on the number of terms needed in 
such a form. 

Notice that complementation of a function has no simple effect on its DNF 
expression. As a result, the table includes minimal representatives for all rules from 
table 1 not related by reflection. 

The general problem of finding an absolutely minimal DNF representation for a 
function appears to be computationally intractable. The table gives in parentheses 
the numbers of terms in minimal DNF expressions found by the espresso computer 
program (R. Rudell, Computer Science Department, University of California, Berke
ley, 1985) which incorporates known algebraic and heuristic techniques. In most 
cases, the results given are probably absolutely minimal. 
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Table 13: Finite LaHice State Transition Diagrams 
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State transition diagrams for cellular automata on fi nite size lattices. 

A k = 2 cellular automaton on a finite lattice with N sites has a total of 2N possible 
states. The complete evolution of such a cellular automaton can be represented by a 
finite diagram which shows the possible transitions between these states. Each node 
in the diagram corresponds to a complete configuration or state of the fini te cellular 
automaton. A directed arc leads from each such node to its successor under one time 
step of cellular automaton evolution. The possible time sequences of configurations 
in the complete evolution of the cellular automaton then correspond to possible paths 
through the directed graph thus formed. 

After a time of at most 2N steps, a finite cellular automaton must always enter 
a cycle, periodically visiting a fixed set of states. In general, the complete state 
transition diagram contains a number of distinct cycles. 
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The table shows the fragment of the state transition diagram associated with the 
longest cycle, for all inequivalent k = 2, r = 1 rules. Results are given for lattices of 
sizes N = 9, N = 10 and N = 11. In all cases, the lattices are taken to have periodic 
boundary conditions, as if their sites were arrranged in a circle. 

The table also gives the lengths and multiplicities of all the cycles for each rule. 
(The notation used is g x L, representing g cycles of length L.) Notice that the state 
transition diagram fragments associated with different cycles of the same length may 
not be identical. When there are several cycles of maximal length, the fragment 
shown is the one involving the largest total number of states. 

State transition diagram fragments have the general form of cycles fed by trees. 
The cellular automaton always reaches the cycle after a sufficiently long time. The 
trees represent transients, and contain states which can occur only after a limited 
number of time steps. Such transient phenomena are a manifestation of irreversibility 
in the cellular automaton evolution. 

Some finite cellular automata, such as rule 13, are reversible, so that their state 
transition diagrams contain no transients, and all states are on cycles. 

In some other cases, such as rule 90, highly regular state transition diagrams are 
obtained, containing for example only balanced trees (see pages 159-202 in this 
book). Many rules, however, yield complicated state transition diagrams. 

In the pictures given, individual nodes are not indicated. Nevertheless, the arcs 
joining nodes are all of equal length in a particular diagram. The overall scale of 
each diagram can be deduced from the total cycle length given. 

The constraint of equal length in some cases forces arcs to intersect in the diagram. 
In some cases, there are dense areas containing large numbers of arcs. For highly 
irreversible rules, such as rule 0, large numbers of arcs converge on a single node, 
and appear essentially as a filled black circle. 

Notice that the results given here and in table 14 for cellular automata on finite 
lattices with periodic boundary conditions also apply to infinite cellular automata in 
which only spatially periodic configurations are considered. 

Table by Holly Peck (Los Alamos National Laboratory). 
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Table 14: Global Properties for Finite Lattices 
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Global properties of cellular automata on finite lattices. 

This table gives some properties of state transition diagrams for finite cellular au
tomata. Each picture shows values plotted as a function of lattice size N, varying 
from 3 to 16. (Periodic boundary conditions are assumed for the cellular automaton 
evolution.) 

The quantities shown are as follows. (In all cases, values for integer sizes N are 
shown joined by lines.) 

"Mean transient length" represents the average number of steps necessary for any 
particular state to evolve to a cycle. "Maximum transient length" gives the maximum 
number of steps needed. 

"Mean cycle length" gives the average length of the cycle on to which any 
particular state evolves. (Each cycle is thus weighted in the average with the number 
of states which evolve to it.) "Maximum cycle length" gives the longest cycle for 
each value of N. Some such cycles are shown in table 13. 

"Fraction on cycles" (given in logarithmic form) represents the fraction of all 2N 
possible states which appear on cycles, and thus can occur after a long time. This 
quantity is related to the set (topological) entropy for invariant set of the evolution. 

The last picture for each rule gives the total number of distinct cycles (in loga
rithmic form). This can be considered as the number of possible distinct attractors 
for the evolution. 

Table by Holly Peck (Los Alamos National Laboratory). (Original program by 
S. Wolfram.) 
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Table 15: Structures in Rule 110 
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Structures in rule 110. 

The previous two pages show patterns produced by evolution according to rule 110, 
starting from a disordered initial configuration. The first picture shows all sites on 
a size 400 lattice. The second picture shows every other site in space and time on a 
size 800 lattice. 

The configurations produced after many steps can be represented in terms of 
particle-like structures superimposed on a periodic background. The background is 
found to have spatial period 14 and temporal period 7, and corresponds to repeti
tions of the block B = 100 11 a 11111 000. The configurations are then of the form 
... BBBBPBBB , where the particles P that have been found so far are: 

velocity 

- 6/ 12 
-2/4 

-14/ 42 
-8/ 30 
-4/ 15 
-4/ 36 
-8/ 20 

0/7 
0/7 
0/7 
2/ 10 
2/ 10 
2/ 3 

p 

1000110011101111111000 
11111000 
II 10000 III 01111111111000 
100110011000111111000 
00000 
111011111111000 
1111000011000 
11111111000 
100011000 
10011011111111000 
11101011000 
1110100011011111000 
111000 

The "velocity" is written as (spatial period)/(temporal period). 
One may speculate that the behaviour of rule 110 is sophisticated enough to 

support universal computation. 

Table of particles by Doug Lind (Mathematics Department, University o/Washington , 
Seattle). 
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Table 16: PaHerns Generated by Second-Order Rules 

11111111 Uillllllll1llllll 
rul. 0 (00000000) rul. I (000e0001) rul.2 (e0000010) rul. 3 (00000011) 

1IIIIIIIIil ~Ii !~I~i~lri ~'.M_~.'C<''''j 
I - ~ 1:,= t~ rfl::jmi !j. 

rule 4 (ee000100) rul.5 (0000e101) rul.6 (00000110) rul.7 (00000111) 

1111111;1 i lll~llli 1111::, < III1 
rul. 8 (00001000) rule 9 (00001001) rul. 10 (00001010) rul. II (00001011) 

!ili'II:I'~!' I'YII'-I~" I
i: i!li :: '~~ :',' ,,,::: 
, "II' ' i: '" ", 

Iii ~i i Ii I' 'f}':: ::: : :: I: , " " " 
iii Ii ':, i::" , ' I _i: Ii :L ~ ,:;i; :, ' l 

rul. 12 (00001100) ru l e 13 (00001101) rul. 14 (eee01110) rul. 15 (00001111) 

I1III1 
= 

rule 18 (0001e010) rule 19 (00010011) rul. 22 (00010110) rule 23 (00010111) 

rul. 24 (00011000) rul. 25 (00011001) rul. 26 (00011010) rul. 27 (00011011) 

rul. 28 (00011100) rul. 29 (00011101) rul. 30 (00011110) rul. 32 (00100000) 
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.1 •• 11111 
rule 33 (00100001) rule 34 (00100010) rule 35 (0010001 1) rule 36 (00 100100) 

• ···· .... :·:I.···"i:i.··· . : '. : r' , " .. . l ... : ". ~ 

.. .' '. , : - i .~~. '. ; 
- . .. . .. ..., ' ~~~ .. 

rul. 37 (00100101) rule 38 (00100110) rule 40 (00101000) rule 41 (00101001) 

111&1 -II" 11~11 ~ .. .! • . I~ 
rule 42 (00101010) rul. 43 (00101011) rule 44 (00101100) rule 45 ( 00101101) 

--------rul. 46 (00101110) rul. 50 (00110010) rule 51 (00110011) rule 54 (00110110) 

• '-.' ~ , ... B.S _ ~_ 
rul. 56 (00111000) rul.57 (00111001) rule 58 (00111010) rule 60 (00111100) 

•• 

S·, ;-·IIII·l i 

, " , , Ii! I" I .1 I ' • 
rul.61 (00111101) rule 62 (00111110) rul. 72 (01001000) rule 73 (01001001) 

•
. ,. . I'Z'·;;'I · I'I~ II· 'U'SI~II- f.' ~~"~.l~ . :: '." i2i :::i i: I ',:,. ';.! ~':' ~~ , 

.' . < liS: :::: :: :. ,', ... I ..«~.. I • 

, . • . . 4. ,Ii, :,., ': I .,."... ',~.....,:, ~ , 
a.. . ': ,. : : iii @ iii ;,:~: ,':~~:',.: .' ': ~" . ' 

1. . : ~ : i :1: :::: : i i $' :'~'.' '. ' , ",: ~: ::' 
~ . • . .~ :1: :::: :: I f '~' "~' '. : ,;:.!: : ' ~, . ' ,' , ;,;.;i; 11. ",:,,:,', ~~1 1m" 

rule 74 (01001010) ru l e 76 ( 01001100) rule 77 ( 01001 10 1) rule 78 (0100 1110) 
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-11·1···· •. ' .... : ..... ........ ::.:. 
~i~~ 
t'1~m~~~~ 

rule 90 (01011010 ) rule 94 (01011118) rule 104 ( 01101000) rule 105 (0',01001) 

~ ~I··· III,' ' .. ' II' .-" 
~ ••• A • 

rule 106 (01101010) rule 108 (01101100) rule 110 (01101110) rule 122 (01111010) 

• I!IIIIII' 11111 U ; 1IIIIilili 
rule 126 (01111110) rule 128 (10000000 ) rule 130 ( 10000010) rule 132 (10000100 ) 

• • .' Ie · • • • :~ • ., I , i i : < i< · : II:: I I··~·· .~.' illil:illI ;. !I:: IIIIII!!IZI'I!I!IZIII . ~t, < - :,~ III! : ~":. Ii !!ili ! 
rule 134 (1 0000110) rule 136 (10001000) rule 138 (10001018) rule 148 (18001100 ) 

rule 142 (10001110) rule 146 (10010010) rule 150 (10010118) rule 152 ( 10011000) 

1 ,111111 a 
rule 154 ( 100 1 1010) rule 156 (10011100) rule 160 (10100000) rule 162 (10100010) 

I~.l <.. ... -I· II""""" - ·111'1 mr~t ~ ~". ~ ~ L, ~" 
• ~ f&£, . _. " . ~ 

rule 164 (10100100) rule 168 (10101000) rule 170 (10101010) rule 172 (10101100) 
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•
. ''''' .111.0

1:'

0

0, 

r. • • ( 
o 0 [0 
. ", 

• J 

o 0 0 _ ~. ~ 

rulo 178 (10110010) rulo 184 (10111000) rule 188 (10111100) rulo 200 (11001000) 

II I III 
rulo 204 ( 11001100 ) rulo 232 (11101000) 

• ru I, 0 (00000000) ru I. 1 (00000001 ) ru 10 2 (00000010) rule :3 (00000011 ) 

f~ 
===:-.=.-:=:=:: ~ -----= 

rule .. (00000100) rule 5 (00000101) rulo 6 (00000110) rulo 7 (00000111) 

I' ~¥1:}?§ ~ •• ru I, 8 (00001000) ru Ie 9 ( 00001001 ) rulo 10 (00001010) rule 11 (00001011) 

~ ,. 
rule 12 (ee001100) rule 13 (00001101 ) rulo 14 (000011 10) rule 15 (00001111 ) 

ru 10 18 (00010010) rulo 19 (00010011) ru l e 22 ( 000101 10 ) rulo 23 ( 00010111) 
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rulo 24 (00011000) ru l o 25 (00011001) rulo 26 (00011010) rulo 27 (00011011) 

rulo 28 (00011100) rulo 29 (00011101) rulo 30 (00011110) rulo 32 (00100000) 

• rulo 33 (00100001) rulo 34 (00100010) rulo 35 (00100011) rulo 36 (00100100) 

rulo 37 (00100101) rulo 38 (00100110) rulo 40 (00101000) rulo 41 (00101001) 

rulo 42 (00101010) rulo 43 (00101011) rulo 44 (00101100) rulo 45 (001011 01) 

rulo 46 (00101110) rulo 50 (00110010) rulo 51 (00110011) rulo 54 (00110110) 

• rulo 56 (00111000) rulo 57 (00111001) rulo 58 (00111010) rulo 60 (00111100) 

rulo 61 (00111101) rulo 62 (00111110) rulo 72 (01001000) rulo 73 (01001001) 

ru 10 74 (01001010) rulo 76 (01001100) rulo 77 (01001101) rulo 78 (01001110 ) 

rulo 90 (01011010) rulo 94 (01011110) rulo 104 (01101000) rulo 105 (01101001) 
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~ ~ 
rul. 1'6 (111'1'1') rule 188 ('11'11") rul. 11, ('11'111') rule 122 ('111101') 

• ~ 
rul. 126 ('111111') rule 128 (1000"00) rul. 130 (1000001') rule 132 (10000100) 

~ .. A 
rul. 134 (1""11') rul. 136 (1"'1"') rul. 138 (1"'1'1') rule 140 (100011'0) 

A A I ~ 6 ~ \ ~ 
rul. 142 (1 000111') rule 146 (1001'01') rule 150 (1"1'11') rule 152 (10011000) 

A ~ o o~~ ~~~~~ ~ 
rul, 154 (10011010) rule 156 (1"111") rule 160 ( 10100000) rul. 162 (10100010) 

~ 
rule 164 (1'1001'0) rule 168 (10101000) ru I, 170 (10101010) rul. 172 (10101100) 

A ~ ~ 
rule 178 (10110010) ru I, 184 (10111"0) rule 188 (10111100) rul, zee (1100 1000) 

rul. 204 (1100110') rul. 232 (11101000) 
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Patterns generated by second-order reversible rules. 

This table shows patterns produced by second-order generalizations of the k = 2, 
r = 1 cellular automata considered above. The rules are of the form 

a(t+i) = A.(a(t) a(t) a (t» + a(t- i) mod 2 
I '+' 1-1' 1 '1+ 1 I ' 

where ¢ is a standard k = 2, r = 1 function, as listed in table 1. Such rules determine 
the configuration at time t + 1 in terms of the confi·gurations both at time t and time 
t - 1. The rules have the special feature that they are reversible: given configurations 
at times t and t + 1, the configuration at time t - 1 can be deduced uniquely according 
to the rule 

a(t-i) = A.(a(t) . a(t) a(t» + a(t+i) mod 2 
I 'of' I - I' , '1+1 I • 

The first set of patterns were generated with disordered initial configurations at 
times 0 and -1. In the second set of patterns, the configurations at time 0 and -1 
were both taken to be 1. 

The forms of behaviour produced by these reversible rules are qualitatively similar 
to those from standard k = 2, r = 1 cellular automata, shown in tables 2 and 5. 
Evolution to a homogeneous, fixed, pattern is however impossible for reversible 
systems. 
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Phase transitions , 33 
Phases, 190,234,467,530 
Phenotypes, 314 
Physica D, 115,309 
Physical laws, 411 , 439 
Physical Review Letters, 203,251 
Physical systems 

computation in, 203 
modelled by cellular automata, 6 

Pi, digits of, 254, 299 
PLAs, 320 
Platonic solids, 377 
Poincare recurrence time, 41 
Point groups, 378 
Polymers, conformation of, 207 
Polynomial time computations, 168 
Polynomials 

for cellular automaton configurations, 75 
over finite fields, 108 

Polytopes, 227,377 
Porous media, 402 
Power spectra, 24, 463 
Predecessors 

in one dimension, 78, 148, 180 
in rule 30, 291 
in two dimensions, 242 

Prediction, general problem of, 203 
Pressure, 467 
Prime numbers , 7,85,91,453 
Probabilistic behavior, 251 
Probabilistic cellular automata, 33 
Probability measures, 36, 132 
Production rules, 163 
Propagator, 139 
Pseudorandom generators, 254, 267 
PSPACE-completeness, 197,204,293,48 1 
Psychology, 325 



Quantum field theory, 208 
Quantum mechanics, 257 
Quasicrystals, 383 
Quiescence condition, 8 

Random cellular automata, 32 
Random mappings, 45, 106, 290 
Random number generators, 13 
Random walks, 22, 279, 331 
Randomness 

in computations, 504 
in rule 30, 267 
origins of, 251, 345 

Reaction-diffusion equations, 211, 469 
Real numbers, 208 
Recursive sets , 473 
Reflection symmetry, 225 
Regular languages, 142, 163,313,554 
Renormalization group, 48, 190, 435,466,547 
Repeatability, of experiments, 254 
Reversible cellular automata, 41, 98, 260, 303, 

332, 464, 584 
Reviews of Modern Physics , 3 
Reynolds number, 261,503 
Rice's theorem, 479 
Rotational symmetry, 226, 229, 377 
Roulette, 269, 312 
Round-off errors, 469 
Rule 4, density in, 20 
Rule 18 

correlations in, 25 
density in, 22 
domains in, 22 
global evolution of, 37, 101 
grammar for, 172,186 
temporal sequences in, 149 

Rule 22 
density in, 23 
grammar for, 187 

Rule 30 
encryption with, 487 
randomness in, 252,267,487, 505 

Rule 36, density in, 20 
Rule 45, randomness in, 274 
Rule 50, density in, 9, 19 
Rule 72, grammar for, 188 
Rule 76, grammar for, 169 
Rule 90 

cycles in, 43, 71, 85 
density in, 20 
form of, 9 
geometrical construction in, 13,20 
global evolution of, 37 , 73 
sensitive dependence in, 35 

Rule 94, grammar for, 187 
Rule 110, structures in, 577 
Rule 126 

cycles in, 42 
global evolution of, 37, 46 
grammar for, 185 
sensitive dependence in, 35 
triangle density in, 28 

Rule 128, grammar for, 184 
Rule 150, 13,21 

cycles in, 86 
density in, 21 
geometrical construction in , 13, 21 

Rule 182, density in, 18, 22 
Rule 204, density in, 19 
Rule 254, density in, 19 
Rules 

additive, 9, 73,147, 451 
asynchronous, 471 
bijective, 303, 584 
Boolean form of, 8,273, 521 
deduction from data, 471 
elementary, 8, 513 
factorization of, 549 
finding minimal , 330 
illegal, 14 
inhomogeneous, 315 
injective, 148, 180 
legal , 8, 118, 521 
linear, 9,90 
multidimensional , 96 
multiscale, 315 
numbering of, 8,117, 212,521 
outer totalistic , 213 
particle, 259, 359 
reversible, 41,98,260, 303, 332, 464, 584 
second-order, 41 , 98, 584 
solidification, 221 
space of, 466 
surjective, 180 
symmetry of, 8,521 
totalistic, 117, 212, 419 
two-dimensional , 59,96,211,259 

Salem, James, 259 
Sampling, in entropy computations, 134 
Santa Fe Institute, 491 
Satisfiability, 168, 312, 482 
Scale invariance, 13, 143, 466 
Scattering processes, 386 
Scientific American , 439 
Search processes, 322, 506 
Second law of thermodynamics, 3, 329, 508 
Self-organization, 4, 38 
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Self-reproduction, 61, 207, 433, 479 
Self-similarity, 13 ,26, 133, 144,220,258,451 
Sensitive dependence, 5,35, 139,233 
Shapes, from two-dimensional cellular automata, 

221 
Shell, 416 
Shift map, 251 
Shift registers, 15 , 44,73,487 
Shift rules, 522 
Shock waves, 371 
Short cuts, computational, 199,203 
Simulated annealing, 322 
Simulation, of one cellular automaton by another, 

48, 190,435,465, 547 
Slow growth, 231 
SMP, 404, 443 
Snowflakes, 493 
Sofic system, 142 
Solidification, 221, 493 
Solitons, 469 
sord function, I 10 
Sound, in cellular automaton fluids , 260, 371 
Spatial chaos, 140 
Spatial entropy, 126, 145,542 

computation of, 178 
in two dimensions, 224 

Speed of information propagation, 140 
Sphere packing, 380 
Spin glasses, 207, 314 
Square roots, digits of, 254, 299 
Stack, 166 
State transition graphs, 73, 291, 564 
Statistical mechanics, 330 

of cellular automata, 3 
Statistical tests of randomness, 255, 296 
Stochastic systems, 469 
Strange attractors, 15, 148 
String manipulation, 167,204 
Subadditivity, 131 
Subset construction, 170 
Subshifts of finite type, 180, 190 
Supercomputing, 499 
Superposition principles, 9,49 
Supersonic flow, 371 
Surface tension, 239 
Surjectivity, 180 

in two dimensions, 243 
of rule 30, 276 

Symbolic dynamics, 33, 160 
Symbolic representations, 285, 325,483 
Symmetry 

in cellular automaton fluids , 369 
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Symmetry (continued) 
of rules, 8, 213 

Synchronous updating, 471 
Systolic arrays, 318 

Tapestry design, 7 
Temporal chaos, 140 
Temporal entropy, 136, 149,277, 542 
Tensors, 373 
Textile design, 7 
Thermodynamic limit, 480 
Thermodynamics, 3,259,329, 363,464, 504 
Tiling problem, 243 
Time series, 136, 149 
Topological defects , 247 
Topological entropy, 131 
Topological invariants, 179 
Totalistic rules, 117 
Totient function, 109,292 
Transitions, in space of possible ru les, 466 
Transport coefficient, 390 
Transport equations, 365 
Tree searching, 322 
Trees, 81,29 1 
Triangles, density of, 25, 143 
Turbulent fl uids, 253, 262 
Turing machines, 47,63,204,243 
Two-dimensional cellular automata, 59,96,2 11 , 

259 
Two-point functions, 25 

Undecidability, 167,197, 203,478 
in two dimensions, 242 

Unit cells, 379 
Universal cellular automata, 63, 152,205, 477 
Universal computation, 63, 152, 166,255 
Universality, in cellular automata, 115 
Unix system, random generator in, 13,299 
Unpredictability, 25 1,267 
Unreachable configurations, 38,78 

Viscosity, 26 1, 370 
Visual system, 310 
Voronoi polyhedra, 380 
Vortex street, 503 

Walsh transforms, 463 
Wigner-Seitz cell, 380 

Zeta functions, 182, 463 


	Cover and Front Matter
	Table of Contents
	Part One: Primary Papers
	Statistical Mechanics of Cellular Automata, 1983
	Algebraic Properties of Cellular Automata, 1984
	Universality and Complexity in Cellular Automata, 1984
	Computation Theory of Cellular Automata, 1984
	Undecidability and Intractability in Theoretical Physics, 1985
	Two-Dimensional Cellular Automata, 1985
	Origins of Randomness in Physical Systems, 1985
	Thermodynamics and Hydrodynamics of Cellular Automata, 1985
	Random Sequence Generation by Cellular Automata, 1986
	Approaches to Complexity Engineering, 1986
	Minimal Cellular Automaton Approximations to Continuum Systems, 1986
	Cellular Automaton Fluids:  Basic Theory, 1986
	Part Two:  Additional and Survey Papers
	Cellular Automata, 1983
	Computers in Science and Mathematics, 1984
	Geometry of Binomial Coefficients, 1984
	Twenty Problems in the Theory of Cellular Automata, 1985
	Cryptography with Cellular Automata, 1986
	Complex Systems Theory, 1988
	Cellular Automaton Supercomputing, 1988
	Part Three:  Appendices
	Tables of Cellular Automaton Properties, 1986
	Scientific Bibliography of Stephen Wolfram
	Index

