
Computer Software 
in Science and Mathematics 

Computation offers a new means of describing and investigating 
scientific and mathematical systems. Simulation by computer may 
be the only way to predict how certain complicated systems evolve 

Scientific laws give algorithms, or 
procedures, for determining how 
systems behave. The computer 

program is a medium in which the algo­
rithms can be expressed and applied. 
Physical objects and mathematical 
structures can be represented as num­
bers and symbols in a computer, and a 
program can be written to manipulate 
them according to the algorithms. When 
the computer program is executed, it 
causes the numbers and symbols to be 
modified in the way specified by the sci­
entific laws. It thereby allows the conse­
quences of the laws to be deduced. 

Executing a computer program is 
much like performing an experiment. 
Unlike the physical objects in a conven­
tional experiment, however, the objects 
in a computer experiment are not bound 
by the laws of nature. Instead they fol­
low the laws embodied in the computer 
program, which can be of any consistent 
form. Computation thus extends the 
realm of experimental science: it allows 
experiments to be performeq in a hypo­
thetical universe. Computation also ex­
tends theoretical science. Scientific laws 
have conventionally been constructed in 
terms of a particular set of mathemati­
cal functions and constructs, and they 
have often been developed as much 
for their mathematical simplicity as for 
their capacity to model the salient fea­
tures of a phenomenon. A scientific law 
specified by an algorithm, however, can 
have any consistent form. The study of 
many complex systems, which have re­
sisted analysis by traditional mathemat­
ical methods, is consequently being 
made possible through computer exper­
iments and computer models. Compu­
tation is emerging as a major new ap­
proach to science, supplementing the 
long-standing methodologies of theory 
and experiment. 

There are many scientific calcula­
tions, of course, that can be done by con­
ventional mathematical means, without 
the aid of the computer. For example, 
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given the equations that describe the 
motion of electrons in an arbitrary mag­
netic field, it is possible to derive a sim­
ple mathematical formula that gives the 
trajectory of an electron in a uniform 
magnetic field (one whose strength is 
the same at all positions). For more 
complicated magnetic fields, however, 
there is no such simple mathematical 
formula. The equations of motion still 
yield an algorithm from which the 
trajectory of an electron can be deter­
mined. In principle the trajectory could 
be worked out by hand, but in prac­
tice only a computer can go through the 
large number of steps necessary to ob­
tain accurate results. 

A computer program that embodies 
the laws of motion for an electron in a 
magnetic field can be used to perform 
computer experiments. Such experi­
ments are more flexible than conven­
tional laboratory experiments. For ex­
ample, a laboratory experiment could 
readily be devised to study the trajecto­
ry of an electron moving under the influ­
ence of the magnetic field in a television 
tube. No laboratory experiment, how­
ever, could reproduce the conditions en­
countered by an electron moving in the 
magnetic field surrounding a neutron 
star. The computer program can be ap­
plied in both cases. 

The magnetic field under investiga-

tion is specified by a set of numbers 
stored in a computer. The computer 
program applies an algorithm that sim­
ulates the motion of the electron by 
changing the numbers representing its 
position at successive times. Computers 
are now fast enough for the simulations 
to be carried out quickly, and so it is 
practical to explore a large number 
of cases. The investigator can interact 
directly with the computer, modifying 
various aspects of a phenomenon as new 
results are obtained. The usual cycle of 
the scientific method, in which hypothe­
ses are formulated and then tested, can 
be followed much faster with the aid of 
the computer. 

Computer experiments are not limit­
ed to processes that occur in nature. 

For example, a computer program can 
describe the motion of magnetic mono­
poles in magnetic fields, even though 
magnetic monopoles have not been de­
tected in physical experiments. More­
over, the program can be modified to 
embody various alternative laws for the 
motion of magnetic monopoles. Once 
again, when the program is executed, 
the consequences of the hypothetical 
laws can be determined. The comput­
er thus enables the investigator to ex­
periment with a range of hypothetical 
natural laws. 

COMPUTER SIMULATION has made it practical to consider many new kinds of models for 
natural phenomena. Here the stages in the formation of a snowflake are generated by a com­
puter program that embodies a model called a cellular automaton. According to the model, the 
plane is divided into a lattice of small, regular hexagonal cells. Each cell is assigned the value 0, 
which corresponds to water vapor (black), or the value 1,  which corresponds to ice (color). Be­
ginning with a single red cell in the center of the illustration, the simulated snowflake grows in 
a series of steps. At each step the subsequent value of any cell on the boundary of the snow­
flake depends on the total value of the six cells that surround it. If the total value is an odd num­
ber, the cell becomes ice and takes on the value 1; otherwise the cell remains vapor and keeps 
the value O. The successive layers of ice formed in this way are shown as a sequence of colors, 
ranging from red to blue every time the number of layers doubles. The calculation required for 
each cell is simple, but for the pattern shown more than 1 0,000 calculations were needed. The 
only practical way to generate the pattern is by computer simulation. The illustration was made 
with the aid of a program written by Norman H. Packard of the Institute for Advanced Study. 

© 1984 SCIENTIFIC AMERICAN, INC

This content downloaded from 
������������130.126.162.126 on Tue, 08 Oct 2019 17:21:16 UTC������������ 

All use subject to https://about.jstor.org/terms



The computer can also be used to 
study the properties of abstract math­
ematical systems. Mathematical exper­
iments carried out by computer can of­
ten suggest conjectures that are sub­
sequently established by conventional 
mathematical proof. Consider a math­
ematical system that can be introduced 
to model the path of a beam of elec-

trons traveling through the magnetic 
fields in a circular particle accelerator. 
The transverse displacement of an elec­
tron as it passes a point on one of its 
revolutions around the accelerator ring 
is given by some fraction x between 0 
and 1. The value of the fraction corre­
sponding to the electron's displacement 
on the next revolution is then ax(1 - x), 

where a is a number that can range be­
tween 0 and 4. The formula gives an 
algorithm from which the sequence of 
values for the electron's displacement 
can be worked out. 

A few trials show how the properties 
of the sequence depend on the value of 
a. If a is equal to 2 and the initial value 
of x is equal to .8, the next value of x, 

© 1984 SCIENTIFIC AMERICAN, INC

This content downloaded from 
������������130.126.162.126 on Tue, 08 Oct 2019 17:21:16 UTC������������ 

All use subject to https://about.jstor.org/terms



PHYSICAL PROCESS ALGORITHMIC DESCRIPTION 

COMPUTER E X PERIMENT (40 STEPS) 
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MATHEMATICAL AND COMPUTATIONAL METHODS are 
applied in various ways in the study of random walks. A random walk 
is a model for such physical processes as the Brownian motion of a 
small particle suspended in a liquid. The particle undergoes random 
deflections as it is bombarded by the molecules in the liquid; its path 
can thus be described as a sequence of steps, each taken in a random 
direction. The most direct way to deduce the consequences of the 
model is by a computer experiment. Many random walks are simulat­
ed on a computer and their average properties are measured. The dia­
gram shows a histogram in which the height of each bin records the 
number of simulated random walks that were found to have reached 
a particular range of positions after a certain time. As more trials are 
included, the shape of the histogram approaches that of the exact dis­
tribution of positions. For an ordinary random walk it is possible to 
derive the exact distribution directly. A differential equation can be 

190 

UJ« 
�� 
::::lI-
Z 

-15 -10 -5 0 5 10 15 
POSITION 

.,. TIME 40 

10 15 -15 -10 -5 0 5 15 

POSITION POSITION 

ORDER2 � (A2X') � 40" 2x40' 

� , \ 

0 5 10 15 -15 -10 -5 5 10 15 
POSITION POSITION 

constructed for the distribution, and the equation is simple enough 
for an exact solution to be given. For most differential equations, 
however, no such exact solution can be obtained, and approximations 
must be made. In numerical approximations the smooth variation of 
quantities in the differential equation is approximated by a large 
number of small increments. The results shown in the diagram were 
obtained by a computer program in which the spatial and temporal 
increments were small fractions of the lengths and times for individ­
nal steps in the random walk. Algebraic approximations to the differ­
ential equation are found as a series of algebraic terms. The diagram 
shows the first three terms in such a series. The contribution of each 
term is shown as a solid black line or curve. The line or curve is add­
ed by superposition to the broken black line or curve that represents 
the previous order in the approximation. The result of the superposi­
tion is the current order in the approximation (solid colored curves). 
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which is given by ax(l - x), is equal to 
. 32. If the formula is applied again, the 
value of x obtained is .4352. After sev­
eral iterations the sequence of values 
for x converges to . 5. Indeed, when a 
is small and x is any fraction between 
o and 1, the sequence quickly settles 
down to give the same value of x for 
each revolution of the electron. 

As a increases, however, a phenome­
non called period doubling can be ob­
served. When a reaches 3, the sequence 
begins to alternate between two values 
of x. As a continues to increase, first 
four, then eight and finally, when it 
reaches about 3.57, an entire range 
of values for x appear. This behavior 
could not readily be guessed from the 
construction of the mathematical sys­
tem, but it is immediately suggested by 
the computer experiment. The detailed 
properties of the system can then be es­
tablished by a conventional proof. 

The mathematical processes that can 
be described by a computer program 
are not limited to the operations and 
functions of conventional mathematics. 
For example, there is no conventional 
mathematical notation for the function 
that reverses the order of the digits in a 
number. Nevertheless, it is possible to 
define and apply the function in a com­
puter program. The computer makes 
it practical to introduce scientific and 
mathematical laws that are intrinsical­
ly algorithmic in nature. Consider the 
chain of events set up when an electron 
accelerated to a high energy is fired into 
a block of lead. There is a certain proba­
bility that the electron emits a photon of 
a particular energy. If a photon is emit­
ted, there is a certain probability that it 
gives rise to a second electron and a pos­
itron (the antiparticle of the electron). 
Each member of the pair can in turn 
emit more photons, so that a cascade of 
particles is eventually generated. There 
is no simple mathematical formula that 
can describe even the elements of the 
process. Nevertheless, an algorithm for 
the process can be incorporated into a 
computer program, and the outcome of 
the process can be deduced by executing 
the program. The algorithm serves as 
the basic law that describes the process. 

The mathematical basis of most con­
ventional models of natural phe­

nomena is the differential eq uation. 
Such an equation gives relations be­
tween certain quantities and their rates 
of change. For example, a chemical re­
action proceeds at a rate proportional to 
the concentrations of the reacting chem­
icals, and that relation can be expressed 
by a differential equation. A solution to 
the equation would give the concentra­
tion of each reactant as a function of 
time. In some simple cases it is possible 
to find a complete solution to the equa­
tion in terms of standard mathematical 
functions. In most cases, however, no 

such exact solution can be obtained, and 
one must resort to approximation . 

The commonest approximations are 
numerical. Suppose one term of a differ­
ential equation gives the instantaneous 
rate of change of a quantity with time. 
The term can be approximated by the 
total change in the quantity over some 
small interval and then substituted into 
the differential equation. The resulting 
equation is in effect an algorithm that 
determines the approximate value of the 
quantity at the end of an interval, given 
its value at the beginning of the interval. 
By applying the algorithm repeatedly 
for successive intervals, the approxi­
mate variation of the quantity with time 
can be found. Smaller intervals yield 
more accurate results. The calculation 
required for each interval is quite sim­
ple, but in most cases it must be repeat­
ed many times to achieve an acceptable 
level of accuracy. Such an approach is 
practical only with a computer. 

The numerical methods embodied 
in computer programs have been em­
ployed to find approximate solutions 
to differential eq uations in a wide varie­
ty of disciplines. In some cases the so­
lutions have a simple form. In many 
cases, however, the solutions show com­
plicated, almost random behavior, even 
though the differential equations from 
which they arise are quite simple. For 
such cases experimental mathematics 
must be used. 

In practical applications one often 
finds not only that differential equations 
are complicated but also that there are 
many of them. For example, the theoret­
ical models of nuclear explosions em­
ployed in the design of weapons and the 
study of supernovas involve hundreds 
of differential equations that describe 
the interactions of many isotopes. In 
practice such models are always used 
in the form of computer programs: only 
a computer can follow the interrelations 
among so many quantities. 

The results of some numerical calcu­
lations, such as the abundance of 

helium in the universe, can be stated as 
single numbers. In most cases, however, 
one is concerned with the variation of 
certain quantities as the parameters of 
a calculation are changed. When the 
number of parameters is only one or 
two, the results can be displayed as a 
graph. When there are more than two 
parameters, however, the results often 
can be stated succinctly only as a mathe­
matical formula. Exact formulas usual­
ly cannot be found, but it is often possi­
ble to derive approximate formulas. 
Such formulas are particularly conve­
nient because, unlike graphs or tables 
of numbers, they can be inserted direct­
ly into other calculations. 

A common form for an approximate 
formula is a series of terms. Each term 
includes a variable raised to some pow-
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er; the power is larger in each successive 
term. When the value of the variable is 
small, the terms in the series become 
progressively smaller; thus for small 
values of x the sum of the first few terms 
in an infinite series such as 1 - x 
+ x2 - x$ + ' "  gives an accurate ap­
proximation to the sum of the entire 
series, which is 11(1 + x). The first few 
terms in a series are usually easy to eval­
uate, but the complexity of the terms in­
creases rapidly thereafter. In order to 
evaluate terms that include large pow­
ers of x the computer becomes essential. 

In principle computer programs can 
operate with any well-defined mathe­
matical construct. In practice, however, 
the kinds of construct that can be used 
in a particular program are largely de­
termined by the computer language in 
which the program is written. N umeri­
cal methods require only a limited set of 
mathematical constructs, and the pro­
grams that embody such methods can 
be written in general-purpose computer 
languages such as c, FORTRAN or BASIC. 
The derivation and manipulation of for­
mulas require operations on higher-lev­
el mathematical constructs such as alge­
braic expressions, for which new com­
puter languages are needed. Among the 
languages of this kind now in use is the 
SMP language that I have developed. 

SMP is a language for manipulating 
symbols. It operates not only with num­
bers but also with symbolic expressions 
that can represent mathematical formu-

PHYSICAL PROCESS 

COMPUTER EXPERIMENT 

TRIAL 1 

las. For example, in SMP the algebraic 
expression 2x - 3y + 5x - y would be 
simplified to the form 7x - 4y. This 
transformation is a general one, valid 
for any possible numerical values of x 
and y. The standard operations of al­
gebra and mathematical analysis are 
among the fundamental instructions in 
SMP [see illustration on page 196]. 

The SMP language also incl udes opera­
tions that allow higher-level mathemat­
ical constructs to be defined and ma­
nipulated, much as they are in ordi­
nary mathematical work. Real numbers 
(which include all rational and irratio­
nal values) as well as complex numbers 
(which have both a real and an imagi­
nary part) are fundamental in SMP. The 
mathematical constructs known as qua­
tern ions, which are generalizations of 
the complex numbers, are not funda­
mental. They can nonetheless be defined 
in SMP, and rules can be specified for 
their addition and mUltiplication. In this 
way the mathematical knowledge of SMP 
can be extended. 

Some of the advantages of a language 
such as SMP can be compared to the ad­
vantages of using a calculator instead of 
a table of logarithms. By now the wide­
spread availability of electronic calcula­
tors and computers has made such ta­
bles obsolete: it is far more convenient 
to call on an algorithm in a computer to 
obtain a logarithm than it is to look up 
the result in a table. Similarly, with a 
language such as SMP it has become pos-
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COMPUTATIONAL METHODS alone are used in the study of self-avoiding random walks. 
Self-avoiding random walks, which arise as models for physical processes such as the folding 
of polymer molecnles, differ from ordinary random walks in that each step mnst avoid all pre­
vious steps. The complication makes it impossible to construct a simple differential equation 
that describes the average properties of the walk. Conventional 'mathematical approaches are 
thus ineffective. Properties of the self-avoiding random walk are found by direct simulation. 
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sible to make the entire range of mathe­
matical knowledge available in algorith­
mic form. For example, the calculation 
of integrals, conventionally done with 
the aid of a book of tables, can increas­
ingly be left to a computer. The comput­
er not only carries out the final calcula­
tions quickly and without error but also 
automates the process of finding the rel­
evant formulas and methods. 

In SMP an expanding collection of defi­
nitions is being assembled in order to 
provide for a wide variety of mathemat­
ical calculations. One can now find in 
SMP the definition of variance in statis­
tics, and one can immediately apply the 
definition to calculate the variance in a 
particular case. Such definitions enable 
programs written in the SMP language to 
call on increasingly sophisticated math­
ematical knowledge. 

Differential equations give adequate 
models for the overall properties of 

physical processes such as chemical re­
actions. They describe, for example, the 
changes in the total concentration of 
molecules; they do not, however, ac­
count for the motions of individual mol­
ecules. These motions can be modeled 
as random walks: the path of each mole­
cule is like the path that might be taken 
by a person in a milling crowd. In the 
simplest version of the model the mole­
cule is assumed to travel in a straight 
line until it collides with another mole­
cule; it then recoils in a random direc­
tion. All the straight-line steps are as­
sumed to be of equal length. It turns out 
that if a large number of molecules are 
following random walks, the average 
change in the concentration of mole­
cules with time can in fact be described 
by a differential equation called the dif­
fusion equation. 

There are many physical processes, 
however, for which no such average de­
scription seems possible. In such cases 
differential equations are not available 
and one must resort to direct simulation. 
The motions of many individual mole­
cules or components must be followed 
explicitly; the overall behavior of the 
system is estimated by finding the aver­
age properties of the results. The only 
feasible way to carry out such simula­
tions is by computer experiment: essen­
tially no analysis of the systems for 
which analysis is necessary could be 
made without the computer. 

The self-avoiding random walk is an 
example of a process that can apparent­
ly be studied only by direct simulation. 
It can be described by a simple algo­
rithm that is similar to the ordinary ran­
dom walk. It differs in that the succes­
sive steps in the self-avoiding random. 
walk must not cross the path taken by 
any previous steps. The folding of long 
molecules such as DNA can be mod­
eled as a self-avoiding random walk. 

The introd uction of the single con-
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Who does a 12-Iear-old turn to 
when his daas on drugs? 
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01984 In Corporo!ltlon. 320 Park Avenue, New York, NY 10022 

193 
© 1984 SCIENTIFIC AMERICAN, INC

This content downloaded from 
������������130.126.162.126 on Tue, 08 Oct 2019 17:21:16 UTC������������ 

All use subject to https://about.jstor.org/terms



straint makes the self-avoiding random 
walk much more complicated than the 
ordinary random walk. Indeed, there is 
no simple average description, analo­
gous to the diffusion equation, that is 
known for the self-avoiding random 
walk. In order to investigate its prop-
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erties it seems one has no choice but 
to carry out a direct computer experi­
ment. The procedure is to generate a 
large number of sample random walks, 
choosing a random direction at each 
step. The properties of all the walks are 
then averaged. Such a procedure is an 
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CHAOTIC BEHAVIOR is seen in many natural systems. A familiar example is the dripping 
faucet, described by a mathematical model formulated in terms of a differential equation by 
Robert Shaw of the Institute for Advanced Study. When the rate at which water flows through 
the faucet is very low, drops of equal size are formed at regular intervals (left). The model im­
plies that if the position of the top of each drop that forms (arrows) is plotted against the mass 
of the drop, a simple closed curve called a limit cycle is obtained (right). The evolution of the 
system is represented by a point that traces the curve with time. If the flow is increased, the 
behavior of the system suddenly becomes more complicated. A phenomenon known as period 
doubling occurs, and pairs of drops, often of different sizes, are formed in each cycle. If the 
flow is further increased, there is a sequence of additional period doublings. Finally, just be­
fore the water flowing from the faucet becomes continuous an irregular stream of drops is 
produced. The drops have an entire range of sizes, and the intervals between the formation of 
consecntive drops appear to be random. The behavior of the system is then described by an ir­
regular curve called a strange or chaotic attractor. The form of the curve is implied by the differ­
ential equation, but in practice it can be found only by numerical-approximation techniques. 
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example of the Monte Carlo method, so 
called because its application depends 
on the element of chance. 

Several examples have been given of 
systems whose construction is quite 

simple but whose behavior is extremely 
complicated. The study of such systems 
is leading to a new field called complex­
systems theory, in which the computa­
tional method plays a central role. The 
archetypal example is fluid turbulence, 
which develops, for example, when wa­
ter flows rapidly around an obstruction. 
The set of differential eq uations satisfied 
by the fluid can easily be stated. Nev­
ertheless, the patterns of fluid flow to 
which the equations give rise have large­
ly defied mathematical analysis or de­
scription. In practice the patterns are 
found either through observation of the 
actual physical system or, as far as pos­
sible, through computer experiment. 

It is suspected there is a set of mathe­
matical mechanisms common to many 
systems that give rise to complicated 
behavior. The mechanisms can best be 
studied in systems whose construction is 
as simple as possible. Such studies have 
recently been done for a class of mathe­
matical systems known as cellular au­
tomata. A cellular automaton is made 
up of many identical components; each 
component evolves according to a sim­
ple set of rules. Taken together, how­
ever, the components generate behavior 
of essentially arbitrary complexity. 

The components of a cellular automa­
ton are mathematical "cells," arranged 
in one dimension at a seq uence of eq ual­
ly spaced points along a line or in two 
dimensions on a regular grid of squares 
or hexagons. Each cell carries a value 
chosen from a small set of possibilities, 
often just 0 and 1. The val ues of all 
the cells in the cell ular automaton are 
simultaneously updated at each "tick" 
of a clock according to a definite rule. 
The rule specifies the new value of a cell, 
given its previous value and the previ­
ous values of its nearest neighbors or 
some other nearby set of cells. 

Consider a one-d imensional cell ular 
automaton in which each cell can have 
the value 0 or 1. Even in such a simple 
case the overall behavior of the cellular 
automaton can be quite complex; the 
most effective way to investigate the be­
havior is by computer experiment. Most 
of the properties of cellular automata 
have in fact been conjectured on the ba­
sis of patterns generated in computer ex­
periments. In some cases they have later 
been established by conventional math­
ematical arguments. 

Cellular automata can serve as explic­
it models for a wide variety of physical 
processes. Suppose ice is represented on 
a two-dimensional hexagonal grid by 
cells with the value 1 and water vapor is 
represented by cells with the value O. 
A cellular-automaton rule can then be 
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Load the 5W' disk into your computer and the simulation of a clinical encounter begins to unfold in real time. 
At the touch of a key; you can interview the "patient" and obtain a detailed history, perform diagnostic proce­
dures, carry out the therapeutic regimen you've selected and instantly receive details on the "patient's" pro­
gress. At the moment you complete the test, while the details of the case are still fresh in your mind, the 
computer generates your score and a full critique of your answers. 

20 RE-USE THE PROBLEM TO TRY OUT AL TERNATE THERAPEUTIC PATHWAYS 

Unlike a paper CME program or a revieyv course, DISCOTESpM is truly a continuing education tool that you or 
a colleague can use again and again, whether you immediately want to strengthen your understanding and 
improve your score, or months later, review patient management techniques. 

30 ECONOMICAL AND FLEXIBLE WAY TO EARN VALUABLE CME CREDITS 

Accredited by the Stanford University School of M edicine, the program provides eight tests per year (two per 
disk) worth up to 32 Category 1 or prescribed credits.* You complete the tests when you choose, without 
sacrificing valuable patient-care time. And, you can save the time and expense of review courses. 

1..0 AN ENJOYABLE, USER-FRIENDLY PROGRAM 

DISCOTEST 's interactive, user-friendly software makes it easy and enjoyable to earn CME credits on your 
personal computer. Available on 5 W' floppy disks, DISCOTEST'M can be run on an IBM PC® or Apple® lIe or II + 
(or compatible models); it requires a minimum of 64K RAM , a single disk drive, and an 80-column screen. 

SO IF .0, 20, 30,1..0 = YOUR NEEDS, GO TO bO 

bO HERE'S HOW IT WORKS 
Your first year's subscription includes four disks, containing two patient management problems each; a hand­
some binder to store your disks; and a printed user's manual. giving an introduction to DISCOTEST TM, step-by­
step operating instructions, and answers to common questions. Disks are sent on a quarterly schedule. In 
addition, we will send you a bonus review disk, with a sample test similar to those you will be taking for credit. 

DISCOTESpM costs a modest $148, or less than $5 per credit. T he software is backed by a money-back guaran­
tee, with free replacement of defective disks. Take this opportunity to subscribe to DISCOTEST'M and combine 
the advantages of high-caliber CME instruction with the immediate interaction of the computer. 

70 END 

1- - ----- ----- - --- - - ----- --- - - --- --- -- - - - -7;-1 
I SCIENTIFIC MEDICINE I 
I AMERICAN 415 MADISON AVENUE, NEW YORK, N.Y. 10017 I 
I 0 Yes, please enroll me in DISCOTESTTM at a price of $148 DISCOTEST™ will be compatible with several personal I 
I per year. My one-year subscription includes: computer operating systems. Please indicate which one of I 
I • A bonus review disk the following personal computers you would use or with I 
I . Four disks containing two CME tests each which your system is compatible. I 

• A comprehensive user's manual 0 IBM PC with DOS 2.0, or compatible I I
I 

• A handsome binder for the disks and manual 0 Apple IIe with Apple DOS 3.3, or compatible I 
• 8 certification cards (one per test) to record and submit 0 Apple II + with Apple DOS 3.3, or compatible 

I my computer-generated code for CME credit Name 
I 

I . A total of up to 32 Category 1 or prescribed credits Address I 
I 0 Check enclosed" 0 Bill me 0 MasterCard 0 VISA City State Zip I 
I Account No. Exp. Date Medical Specialty I 'Please add applicable sales lax if resident of California, Il linois, Michigan, Mas sachu-
I selts, or New York. Al l payments mus t  be in U.S. dol l ar s. Signature t 
L __________ _________________ _____________ � 
;���������

i
:s
a
:�Oc:t����'ifo�OEd��!!?���rMa�;f:lsf���h�iPhyl��i�_:��;�����:��rv���o:t�h� �:��:�aendM��i�:�eA�����?�������id���tla���

i
����\��a ����d:�������f:���\��O:' 

This program h as been reviewed and is acceptable for 32 prescribed hour s by the American Academy of Family Physicians. 
Apple II + and Apple IIe are registered trademarks of Apple Computer, Inc. 
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INPUT 
6+17 

6/7+8/9 

2x-3x+l 

Ex[{x-l) (x+l)] 

Ex[{x-aY'2 {x+2aY'5] 

Fac[x"2 -1] 

Fac[x"6 -6x"4 + 4x"3 + 9x"2 -12x+ 4] 

Sol [x"2 -3x+ 1 =O,x] 

Sol [{x+ 3a y= 4,y-15x= 6b).{x,Yl] 

Ps[{1 + x"3) E"x,x,0,6] 

t:x-2a 
t"2-2t+l 

[[2]:6x+l 
[[3]:4-x 
a 1[2]+b 1[3]+c 1[1] 

I 

1[1]:7 
I 

1"2-8 

l[p]:5x 
I (p"2]:6x 
I 

I [$x]:$x"2 
I 

1[P] + 1[2] + I[a] 

g[$x_ = Natp[$x]]:$x g[$x-l] 
g[l]:l 
9 

g[5] 

Abs[3] 
Abs[ -3] 
Abs[ -x] 

Abs[$x $$x] : Abs[$x] Abs[$$x] 

Abs[$x"($n _ = Nalp[$n])]:Abs[$x]"$n 

Abs[a b"2 c] 

Graph[Sin[E"x],x, -3,3] 

OUTPUT 
23 

110/63 

l-x 

-1+x2 

8a x6+21a2 x"+ 10a3 x4-40a4 x"- 48a5 X2 
+ 16a6 x+32a7+x7 

(-l+x) (1+x) 

{-1 +X)4 (2 + x)' 

3_5'12 3+51'2 {x->-2-' x->-2-1 

{x 4 18a b y-> 60 + 6b I -> t + 45a 
-

1 + 45a' 1 + 45a 1 + 45a 

1 + x+ x\ 7x3 + 25)[' + 61x5 + 121x" 
2 6 24 120 720 

1+4a-2x+( -2a+x)2 

a {l+6x)+b (4-x)+c 1[1] 

{[2]:1 + 6x,[3]:4 -xl 

{7,1+6x,4-xl 

{41, -8+{1 +6X)2, -8+{4-x),1 

{[P2]:6x,[p]:5x,[l]:7,[2]:1 + 6x,[3]:4 -xl 

{[P2]:6x,[p]:5x,[l]: 7,[2]:1 + 6x,[3]:4 -x,[$x]:$x"l 

1 + 11x+a2 

{[l]:l,[$x-= Nalp[$x]]:$x g[$x-l]l 

120 

3 
3 
Abs[x] 

Abs[a] AbS[b]2 Abs[c] 

� D � 
-

- 3 

��O -VVV 

COMMENT 
Evaluate a numerical expression. 

Evaluate a numerical expression with exact 
fractions. 

Simplify an algebraic expression. 

Expand algebraic expressions made up of prod-
ucts of terms. The notation x"y stands for x raised 
to the power of y. A space between two non-
numerical expressions stands for multiplication. 

Factor algebraic expressions. 

Solve an equation for the variable x. 

Solve a pair of simultaneous equations for the 
variables x and y. 

Find a power-series approximation for the expres-
sion e'(1 + X)3 for x close to 0, keeping terms up 
to order x". 
Assign the value x- 2a to the symbol t; simplify 
the expression t2-2t+ 1 for this value. 

Assign the value 6x+ 110 f[2] and the value 4 -x 
to f[3]; evaluate an expression involving f[1], f[2] 
and f[3], where f[1] is not yet specified. 

Print the object f, which is a list whose elements 
are indexed by the numbers shown in the 
brackets. 

Assign the value 7 to f[1] ; print the object f, which 
is now given as a vector, or ordered list of 
elements. 

Find the square and then subtract 8 from each 
element of the vector f; the result is a new vector. 

Assign values for elements of f that have non-
numerical indexes; print the object f. 

Assign a value for f[$x], where $x is any expres-
sion; the general definition is placed at the end of 
the list f and is used only when none of the pre-
ceding special cases apply. Print the object f. 

Evaluate the expression f[p] + f[2] + f[a]; the 
general definition for f[$x] is applied in order to 
evaluate f[a]. 

Define the factorial function g [x] for natural num-
bers x, where g[ N] is equal to 1 x 2 x ... x N. The 
definition is given by a recursive formula in which 
g[x] is specified in terms of g[$x-1] . The expres-
sion $x_ = Natp[$x] indicates that $x must be a 
natural, or positive whole, number. 

Evaluate g[5 ], the factorial of 5 .  

Find the absolute values of -3, 3 and - x. 

Define the absolute value of the product of two 
arbitrary expressions $x and $$x to be the prod-
uct of their absolute values. 

Define the absolute value of the arbitrary expres-
sion $x raised to the natural-number power $n to 
be the absolute value of $x to the power $n. 

Find the absolute value of the product a x b2 x c 
according to the standard rules of algebra and the 
definitions given for the absolute-value function. 

Plot a graph of the function sin(e') for values of x 
from -3t03. 

MATHEMATICAL CALCULATIONS are carried out by a com­
puter in this example of a dialogue in the SMP computer language de­
veloped by the author. The computer manipulates algebraic formulas 
and other symbolic constructs as well as numbers. The commands in 

the language include all the operations of standard mathematics. The 
last few panels show how new operations can be defined. Properties 
of the absolute-value function are defined and then are applied by 
the computer to simplify any expression that includes the function. 
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used to simulate the successive stages in 
the freezing of a snowflake. The rule 
states that once a cell is frozen it does 
not thaw. Cells exposed at the edge of 
the growing pattern freeze unless they 
have so many ice neighbors that they 
cannot dissipate enough heat to freeze. 
Snowflakes grown in a computer experi­
ment from a single frozen cell according 
to this rule show intricate treelike pat­
terns, which bear a close resemblance 
to real snowflakes. A set of differential 
eq uations can also describe the growth 
of snowflakes, but the much simpler 
model given by the cellular automaton 
seems to preserve the essence of the 
process by which complex patterns are 
created. Similar models appear to work 
for biological systems: intricate patterns 
of growth and pigmentation may be ac­
counted for by the simple algorithms 
that generate cellular automata. 

Simulation by computer is the only 
method now used for investigating 

many of the systems discussed so far. It 
is natural to ask whether simulation, as a 
matter of principle, is the most efficient 
possible procedure or whether there is a 
mathematical formula that could lead 
more directly to the results. In order to 
address the question the correspondence 
between physical and computational 
processes must be studied more closely. 

It is presumably true that any physical 
process can be described by an algo­
rithm, and so any physical process can 
be represented as a computational proc­
ess. One must determine how compli­
cated the latter process is. In cellular 
automata the correspondence between 
physical and computational processes is 
particularly clear. A cellular automaton 
can be regarded as a model of a physical 
system, but it can also be regarded as 
a computational system closely analo­
gous to an ordinary digital computer. 
The sequence of initial cell values in a 
cellular automaton can be understood 
as abstract data or information, much 
like the sequence of binary digits in the 
memory of a digital computer. During 
the evolution of a cellular automaton 
the information is processed: the values 
of the cells are modified according to 
definite rules. Similarly, the digits stored 
in the memory of the digital computer 
are modified by rules built into the cen­
tral processing unit of the computer. 

The evolution of a cellular automaton 
from some initial configuration may 
thus be viewed as a computation that 
processes the information carried by the 
configuration. For cellular automata ex­
hibiting simple behavior the computa­
tion is a simple one. For example, it 
may serve only to pick out sequences of 
three consecutive cells whose initial val­
ues are equal to 1. On the other hand, 
the evolution of cellular automata that 
show complicated behavior may corre­
spond to a complicated computation. 

It is always possible to determine the 
outcome of a given number of steps in 
the evolution of a cellular automaton 
by explicitly simulating each step. The 
problem is whether or not there can be a 
more efficient procedure. Can there be a 
short cut to step-by-step simulation, an 
algorithm that finds the outcome after 
many steps in the evolution of a cellular 
automaton without effectively tracing 
through each step? Such an algorithm 
could be executed by a computer, and it 
would predict the evolution of a cellular 
automaton without explicitly simulat­
ing it. The basis of its operation would 
be that the computer could carry out 
a more sophisticated computation than 
the cellular automaton could and so 

0--70 2 

- . • 

2 ---7 1 

achieve the same result in fewer steps. It 
would be as if the cellular automaton 
were to calculate 7 times 18 by explicitly 
finding the sum of seven 18's, while the 
computer found the same product ac­
cording to the standard method for mul­
tiplication. Such a short cut is available 
only if the computer is able to carry out 
a calculation that is intrinsically more 
sophisticated than the calculation em­
bodied in the evollJtion of the cellular 
automaton. 

One can define a certain class of prob­
lems called computable problems that 
can be solved in a finite time by fol­
lowing definite algorithms. A simple 
computer such as an adding machine 
can solve only a small subset of these. 

b, 20 1 1 2 0 

CODE NUMBER 12011203 

STEP 1 

.. 
STEP 2 

STEP 3 

STEP 4 

STEPS 

� � 
CELLULAR AUTOMATA are simple models that appear to capture the essential features of 
a wide variety of natural systems. A one-dimensional cellular automaton is made up of a line 
of cells, shown in the diagram as colored squares. Each cell can take on a number of possi­
ble values, represented by different colors. The cellular automaton evolves in a series of steps, 
shown as a sequence of rows of squares progressing down the page. At each step the values of 
all the cells are updated according to a fixed rule. In the case illustrated the rule specifies the 
new value of a cell in terms of the sum of its previous value and the previous values of its im­
mediate neigbbors. Such rules are conveniently specified by code numbers defined as shown in 
the diagram; the subscript 3 is given because each cell can take on one of three possible values. 
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RULE 

EXPERIMENTAL MATHEMATICS is an exploratory technique made possible largely 
through the use of computers. Any set of mathematical rules can be applied repeatedly by a 
computer and their consequences explored in an experimental fashion. For example, in order 
to study a pattern generated by the cellular automaton defined by the rule shown, one begins 
by explicitly simulating on a computer many steps in the evolution of the cellular automaton. 
Inspection of .the pattern obtained then leads to the conjecture that it is fractal, or self-similar, 
in the sense that parts of it, when enlarged, have the same overall form as the whole. The con­
jecture, once made, is comparatively easy to prove by conventional mathematical techniques. 
The proof can be based on the fact that the initial conditions for growth from certain cells 
in the pattern are the same as the conditions for growth from the very first cell. There are 
an increasing number of mathematical results that were discovered in computer experiments. 
Some of them have subsequently been reproduced by conventional mathematical arguments. 

198 

problems. There exist universal, or gen­
eral-purpose, computers, however, that 
can solve any computable problem. A 
real digital computer is essentially such 
a universal machine. The instructions 
that can be executed by the central proc­
essing unit of the computer are rich 
enough to serve as the elements of a 
computer program that can embody any 
algorithm. A number of systems in addi­
tion to the digital computer have been 
shown to be capable of universal com­
putation. Several cellular automata are 
among them: for example, universal 
computation has been proved for a sim­
ple two-dimensional cellular automaton 
with a 0 or a 1 in each cell. It is strongly 
suspected that several one-dimension­
al cellular automata are also universal 
computers. The simplest candidates 
have three possible values at each cell 
and rules of evolution that take account 
only of the nearest-neighbor cells. 

Cellular automata that are capable of 
universal computation can mimic 

the behavior of any possible computer; 
since any physical process can be repre­
sented as a computational process, they 
can mimic the action of any possible 
physical system as well. If there were an 
algorithm that could work out the be­
havior of these cellular automata faster 
than the automata themselves evolve, 
the algorithm would allow any compu­
tation to be speeded up. Because this 
conclusion would lead to a logical con­
tradiction, it follows there can be no 
general short cut that predicts the evo­
lution of an arbitrary cellular automa­
ton. The calculation corresponding to 
the evolution is irreducible: its outcome 
can be found effectively only by simu­
lating the evolution explicitly. Thus di­
rect simulation is indeed the most effi­
cient method for determining the be­
havior of some cellular automata. There 
is no way to predict their evolution; one 
must simply watch it happen. 

It is not yet known how widespread 
the phenomenon of computational irre­
d ucibility is among cell ular automata 
or among physical systems in general. 
Nevertheless, it is clear that the ele­
ments of a system need not be very com­
plicated for the overall evolution of the 
system to be computationally irreduci­
ble. It may be that computational irre­
ducibility is almost always present when 
the behavior of a system appears com­
plicated or chaotic. General mathemati­
cal formulas that describe the overall 
behavior of such systems are not known, 
and it is possible no such formulas can 
ever be found. In that case, explicit sim­
ulation in a computer experiment is the 
only available method of investigation. 

Much of physical science has tradi­
tionally focused on the study of com­
putationally reducible phenomena, for 
which simple overall descriptions can be 
given. In real physical systems, however; 
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221 33 1 0, 420041 0, . = 0 

331 240, 20243 1 0, . ,= 1 

. = 2 
1 1 00400, 2231 000, . = 3 

1 3 1 2 1 0, 321 1 31 0, 0 = 4 
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COMPLEX BEHAVIOR can develop even in systems with simple components. The eight cellular 
automata shown in the photographs are made up of lines of cells that take on one of five possible 
values. The value of each cell is determined by a simple rule based on the values of its neighbors on 
the previous line. Each pattern is generated by the rule whose code number is given in the key 
(see illustration on page 197). The patterns in the upper four photographs are grown from a sin­
gle colored cell. Even in this case the patterns generated can be complex, and they sometimes ap­
pear quite random. The complex patterns formed in such physical processes as the ftow of a tur­
bulent ftuid may well arise from the same m echanism. Complex patterns generated by cellular 
automata can also serve as a source of effectively random numbers, and they can be applied to en­
crypt messages by converting a text into an apparently random form. The patterns in the lower 
four photographs begin with disordered states. Even though the values of the cells in these initial 
states are chosen at random, the evolution of the cellular automata gives rise to structures of four 
basic classes. In the two classes shown in the third row of photographs the long-term behavior of 
the cellular automata is comparatively simple; in the two classes shown in the bottom row it can 
be highly complex. The behavior of many natural systems may well conform to this classification. 
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computational reducibility may well be 
the exception rather than the rule. Fluid 
turbulence is probably one of many ex­
amples of computational irreducibility. 
In biological systems computational ir­
reducibility may be even more wide­
spread: it may turn out that the form of a 
biological organism can be determined 
from its genetic code essentially only by 
following each step in its development. 
When computational irreducibility is 
present, one must adopt a methodology 
that depends heavily on computation. 

One of the consequences of computa­
tional irred ucibility is that there 

are questions that can be asked about 
the ultimate behavior of a system but 
.that cannot be answered in full generali­
ty by any finite mathematical or compu­
tational process. Such questions must 
therefore be considered undecidable. 
An example of such a question is wheth­
er a particular pattern ever dies out in 
the evolution of a cellular automaton. It 
is straightforward to answer the ques­
tion for some definite number of steps, 
say 1,000: one need only simulate 1,000 
steps in the evolution of the cellular au­
tomaton. In order to determine the an­
swer for any number of steps, however, 
one must simulate the evolution of the 
cellular automaton for a potentially infi­
nite number of steps. If the cellular au­
tomaton is computationally irreducible, 
there is no effective alternative to such 
direct simulation. 

The upshot is that no calculation of 
any fixed length can be guaranteed to 
determine whether a pattern will ulti­
mately die out. It may be possible to tell 
the fate of a particular pattern after 
tracing only a few steps in its evolution, 
but there is no general way to tell in 
advance how many steps will be re-

UNDECIDABLE PROBLEMS can arise in 
the mathematical analysis of models of physi­
cal systems. For example, consider the prob­
lem of determining whether a pattern gener­
ated by the evolution of a cellular automaton 
will ever die out, so that all the cells become 
black. The patterns generated by the cellular 
automaton shown above are so complicated 
that the only possible general approach to the 
solution of the problem is to explicitly simu­
late the evolution of the cellular automaton. 
The pattern obtained from the initial state 
shown at the left is found to die out after just 
16 steps. The initial state in the center yields 
a pattern that takes 1,016 steps to die out. The 
initial state at the right gives rise to a pattern 
whose fate remains unclear even after a sim­
ulation carried out over many thousands of 
steps. In general no finite simulation of a fixed 
number of steps can be guaranteed to deter­
mine the ultimate behavior of the cellular au­

tomaton. Hence the problem of whether or 
not a particular pattern ultimately dies out, or 
halts, is said to be formally undecidable. The 
cellular automaton shown here follows a rule 
specified by the code number 331 1 1 003204, 
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Try to find software that 
solves your problem. 

Or call BOEING. 
Acquiring mainframe and micro 
software that best fits your needs isn't 
easy. Today's software landscape 
seems unending. So to obtain software 
that actually achieves your specific 
objectives, you need programs with 
proven problem-solving capabilities. 
Like software from Boeing. 

Every software package from Boeing 
Computer Services is backed by Boeing 
expertise and experience. That's why 
both users and data processing 
professionals appreciate our solutions to 
a myriad of computing needs. Executives 
in many industries depend on our 
fmancial modeling and decision support 
software for accurate, up-to-the-minute 
pictures of business activity and for 
reliable forecasts. Production managers 
turn to Boeing for on-line manufacturing 
software that can keep track of all 
elements in the production cycle . . . 

even in exacting make-to-order plants. 
Engineers increase their productivity 
with dynamic analysis and simulation 
using Boeing software. Boeing 
computer-based instruction software 
and courseware is central to the 
education and training programs of 
many companies, large and small. It is 
used cross-company and cross-discipline. 

One of the newest relational data base 
management systems on the scene 
comes from Boeing. Its cost is low; its 
function is extensive. It runs on IBM, 
CDC, DEC V AX, Data General and 
Prime computers, and interfaces with 
a micro version. 

For more information about Boeing 
software solutions, call (206) 763-5000. 
Or write BOEING COMPUTER 
SERVICES, MI S 7K- l l ,  P.O. Box 
24346, Seattle, WA 98 124. Ask about 
our "TRY IT" evaluations. 

For information about Boeing's other 
integrated information services -includ­
ing enhanced remote computing, distrib­
uted processing, network services, office 
automation, consulting, and education 
and training - call toll free 
1-800-447-4700. Or write BOEING 
mMPUIERSERVlCES, M/S CV-26-18C, 
7980 Gallows Court, Vienna, VA 22180. 
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Casio's solar-powered scientif ic cal­
culators put space-age technology 
easily within you r reach .  

O u r  FX-91 0 i s  the logical 
choice for students and engineers 
al ike. At only $24.95,  it gives you 
algebraic logic, 48 functions and an 
8-digit + 2-digit exponent display­
in a size that wil l  fit as easily in you r  
pocket as its price wi l l  suit your 
pocketbook. 

At the same time, our credit 
card-size FX-90 ($29. 95) has 
members of the scientific commu­
nity f l ipping-over its 49-function 
f l ip-open keyboard . Made possible 

by Casio's innovative sheet key 
technology, this handy feature 
makes compl icated scientif ic equa­
tions easier to solve because the 
major function keys are displayed 
oversize on their own keyboard . 

Plank's constant and atomic mass. 
It also makes computer math calcu­
lations and conversions in binary, 
octal and hex equally easy to use. 

Casio has more space-age 
instruments at down-to-earth 
prices than there is space for here. 
However your Casio dealer wi l l  
gladly let you get your hands on 
technology that ,  unti l  now, only the 
future held . 

Like our FX-90, our FX-450 
($34.95) has a 1 0 +  2-digit LCD 
display and a keyboard with touch­
sensitive keys . But the keys are 
double size and the n umber of 
functions increases to 68. Most im­
portantly, it  lets you calculate with CAS I 0 the speed of l ight-and eight other 
commonly used physical Wh · I ® 
constants , i ncluding ere mlrac es never cease 

Casio, Inc. Consumer Products Division: 1 5  Gardner Road, Fairfield , N.J. 07006 New Jersey (201 ) 575-7400 , Los Angeles (21 3) 803-341 1 . 
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q uired. The ultimate form of a pattern is 
the result of an infinite number of steps, 
corresponding to an infinite computa­
tion; unless the evolution of the pat­
tern is computationally reducible, its 
consequences cannot be reproduced by 
any finite computational or mathemat­
ical process. 

The possibility of undecidable ques­
tions in mathematical models for physi­
cal systems can be viewed as a manifes­
tation of Godel's theorem on undecida­
bility in mathematics, which was proved 
by Kurt Godel in 1931. The theorem 
states that in all but the simplest mathe­
matical systems there may be proposi­
tions that cannot be proved or disproved 
by any finite mathematical or logical 
process. The proof of a given proposi­
tion may call for an indefinitely large 
number of logical steps. Even proposi­
tions that can be stated succinctly can 
require an arbitrarily long proof. In 
practice there are many simple mathe­
matical theorems for which the only 
known proofs are very long. In addition 
the cases that must be examined to 
prove or refute conjectures are often 
quite complicated. In number theory, 
for example, there are many cases in 
which the smallest number having some 
special property is extremely large; the 
number can often be found only by test­
ing each whole number in turn. Such 
phenomena are making the computer 
an essential tool in many mathematical 
investigations. 

Computational irreducibility implies 
many fundamental limitations on 

the scope of theories for 'physical sys­
tems. It may be possible to model a sys­
tem at many levels, from simulating 
the motions of individual molecules to 
solving differential equations for over­
all properties. Computational irreduc­
ibility implies there is a highest level 
at which abstract models can be made; 
above that level results can be found 
only by explicit simulation. 

When the level " of description be­
comes computationally irreducible, un­
decidable questions also begin to ap­
pear. Such questions must be avoided in 
the formulation of a theory, much as the 
simultaneous measurement of the posi­
tion and velocity of an electron-impos­
sible according to the uncertainty prin­
ciple-is avoided in quantum mechan­
ics. Even if such questions are eliminat-' 
ed, there is still the practical difficulty 
of answering questions that in principle ' 
can be answered. The degree of difficul­
ty depends strongly on the nature of the 
objects involved in the simulation. If the 
only way to predict the weather were to 
simulate the motions of every molecule 
in the atmosphere, no practical calcula­
tions could be carried out. Nevertheless, 
the relevant features of the weather can 
probably be studied by considering the 
interactions of large volumes of the 

COMPUTATIONAL IRREDUCIBILITY is a phenomenon that seems to arise in many 

physical and mathematical systems. The behavior of any system can be found by explicit simu­
lation of the steps in its evolution. When the system is simple enough, however, it is always pos­
sible to find a short cut to the procedure: once the initial state of the system is given, its state at 
any subsequent step can be found directly from a mathematical formula. For the system shown 
schematically at the left, the formula merely requires that one" find the remainder when the 
number of steps in the evolution is divided by 2. Such a system is said to be computationally 
reducible. For a system such as the one shown schematically "at the 'right, however, the behavior 
is so complicated thaUn general no short-cut description of the evolution can be given. Such a 
system is computationally irreducible, and its evolution can effectively be determined only by 
the explicit simulation of each step. It seems likely that many physical and mathematical sys­
tems for which no simple description is now known are in fact computationally irreducible. Ex­
periment, either physical or computational, is effectively' the only way to study such systems. 

atmosphere, and so useful simulations 
should be possible. 

The efficiency with which a computa­
tionally irreducible system can be simu­
lated depends on the computational so­
phistication of each step in its evolution. 
The steps in the evolution of the sys­
tem can be simulated by instructions 
in a computer program. The fewer the 
instructions needed to reproduce each 
step, the more efficient the simulation. 
Higher-level descriptions of physical 
systems typically call for more sophisti­
cated steps, much as single instructions 
in higher-level computer languages cor­
respond to many instructions in lower­
level ones. One " time step in the nu­
merical approximation of a differential 
equation that describes a jet of gas re­
quires a computation more sophisticat­
ed than the one needed to follow a colli­
sion between two molecules in the gas. 
On the other hand, each step in the high­
er-level description given by a differen­
tial equation accounts for an immense 
number of steps in the lower-level de­
scription of molecular collisions. The 
resulting gain in efficiency more than 
makes up for the fact that the individual 
steps are more sophisticated. 
, In general the efficiency of a simu­
lation increases with higher levels of 
description, until the operations need­
ed for the higher-level description are 
matched with the operations carried out 
directly by the computer doing the sim­
ulation. It is most efficient for the com­
puter to be as close an analogue to the 
system being simulated as possible. 

There is one major difference between 
most existing computers and physical 
systems or models of them: computers 
process information serially, whereas 

physical systems process information in 
parallel. In a physical system modeled 
by a cellular automaton the values of all 
the cells are updated together at each 
time step. In a standard computer pro­
gram, however, the simulation of the 
cellular automaton is carried out by a 
loop that updates the value of each cell 
in turn. In such a case it is straightfor­
ward to write a computer program that 
performs a fundamentally parallel proc­
ess with a serial algorithm. There is a 
well-established framework in which al­
gorithms for the serial processing of in­
formation can be described. Many phys­
ical systems, however, seem to require 
descriptions that are essentially parallel 
in nature. A general framework for par­
allel processing does not yet exist, but 
when it is developed, more effective 
high-level descriptions of physical phe­
nomena should become possible. 

The introduction of the computer in 
science is comparatively recent. Al­

ready, however, computation is estab­
lishing a new approach to many prob­
lems. It is making possible the study of 
phenomena far more complex than the 
ones that could previously be consid­
ered, and it is changing the direction 
and emphasis of many fields of science. 
Perhaps most significant, it is introduc­
ing a new way of thinking iri science. Sci­
entific laws are now being viewed as al­
gorithms. Many of them are studied 
in computer experiments. Physical sys­
tems are viewed as .computational sys­
tems, processing information much the 
way computers do. New aspects of. nat­
ural"ppenomena have been· made acces­
sible to investigation. A new paradigm 
has been born. 
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