## Life (Data Science) Doesn't Have to be Hard

Mark Kotanchek Evolved Analytics LLC www.evolved-analytics.com



### I never guess. It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts.

– Sir Arthur Conan Doyle (1859 - 1930), The Sign of Four, A Scandal in Bohemia

### AI ⇒ Augmented Intelligence

- Recognized ~20 years ago that we needed better tools to extract actionable insight from real-world multivariate data
- The human needs to be in the loop with the machine serving not the converse
- If an analysis component can be automated, it should be automated!

## **Real-World Data**

- Multivariate
- Correlated variables
- Unbalanced (closed-loop)
- Nonlinear
- Missing Data
- Wrong Data

### **Questions & Needs**

- Exploratory Data Analysis
- Which variables matter?
- Are there important metavariables?
- What variable combinations are useful?
- How to handle extrapolation and system changes
- How to deploy models?

# GUI and/or Notebook

|             | DataModeler Tutorials – Wolfram Mathematica 11.2 |        |   |
|-------------|--------------------------------------------------|--------|---|
| < > ▼ _ ♠   | DataModeler/tutorial/00Overview                  | ۹      | S |
| DataModeler |                                                  |        |   |
|             |                                                  | LIPL - |   |

### - DataModeler Tutorials

- Preliminaries
  - Preface Release Notes Introduction
- Getting Started
  - An Overview of the Modeling Process FAQ: Frequently Asked Questions (and some illustrations) Symbolic Regression is Not Enough — Context Matters A Meandering Journey through DataModeler Overview of the Function Taxonomy
- Data Exploration & Selection
  - Data Exploration Function Taxonomy Data Visualization Functions Data Statistics Functions Data Subset Selection Functions
- Symbolic Regression Modeling
  - Symbolic Regression Function Taxonomy GPModel Data Structure and Accessor Methods GPModel Creation Evaluating Model Quality Selecting Models Introducing Diversity into the Model Set Evolving Models
- Exploring Models & Model Sets
   Reviewing Model Sets
   Exploring Models
  - Genetic Engineering (Model Optimization)
  - Building Trustable Models (Model Ensembles) Model Response Exploration
  - Model Prediction Performances

### DataModeler Design

 User can choose between a GUI or the classic Mathematica notebook interface

 The functions used by the GUI are exposed for power users and custom workflows

### ~450 functions are exposed and (well)

|                | Detailed and Malfred Methods to 2 | Evolved Analytics |
|----------------|-----------------------------------|-------------------|
| <>• A          | DataModeler/guide/DataModeler     | Abort Search      |
| lfram Language | Func                              | Contact Support   |

### - DataModeler

DataModeler is an incredibly powerful tool. The best way to get started is to explore the tutorials (which include a number of case studies illustrating key features using industrial data). In the short-term, the function overview, quick start and FAQ are good places to get started as well as see some of the capabilities.

Finally, www.evolved-analytics.com is a good source for publications and additional information.

#### Data Exploration

#### Data Adjustments

MakeDataNumeric = MakeDataNumericMapping = MergeInputResponseData = SplitInputResponseData = RescaleData = AugmentData

#### Data Visualization

SmallPlot • CorrelationChart • UnivariatePlot • BivariatePlot • CorrelationMatrixPlot • DataSummaryTable • DataDistributionPlot • DataCompletenessPlot • DataCompletenessMap

#### Statistics

RobustCorrelationMatrix • ConfidenceEllipsoid • AbsCorrelation • MedianAverage • NoisePower • ScaleInvariantNoisePower • SummaryStatistics • WeightedMean • WeightedStandardDeviation

#### Data Subset Selection

NearestDataRecord = ExtractDataSubset = UncorrelatedVariables = SubSample = ConfidenceEllipsoidSelection = ConfidenceEllipsoidSelectionIndices = NumericDataRecords = NumericDataRecordIndices = NonNumericDataRecords = NonNumericDataRecordIndices

#### Outlier Detection

DataStrangeness • DataOutlierAnalysis • DataOutliers • DataOutlierIndices • DataOutlierTable

Model Development (Symbolic Regression)

#### Model Creation

- BuildFunctionPatterns RandomModels CreateModelFromExpression RandomGenomes CreateModelFromGenome • ExtractGenomeSubtrees • MetaVariableModels
- Ensemble Creation
- CreateModelEnsemble
- Evaluating Model and Ensemble Quality

EvaluateModelQuality = UpdateModelQuality = RearrangeModelQuality = EvaluateModelQualityVsMultipleDataSets =

DataModeler.nb

DataModeler

Version Information

Functions

Tutorials

Launch GUI

New Notebook

# GUI used for Demo



### Project co-located with data



## Choose a Target

2 Continent

6 AMRadioStations

14 CellularPhones

18 CropsLandArea

22 ElderlyPopula

Elec

126

130 Male Tobacco Ferce
134 Boys Cigarette Use
138 Gun Homicides
142 Guns per 100 reside

146 Subregion 150 Total 154 Wine (%)

158 Prisoner Rate
162 Iodized Salt Consumption
166 Household Health Fract

170 Health expenditure, priv
174 Hospital Stay Duration
178 Contraception Met Rate

 182
 Female Adult Obesity

 186
 Female Smoking Rate

 190
 Tuberculosis Death Ra

 194
 Male Unemployment R

 198
 Urban Population

 202
 Income share held by I

 206
 Income share held by I

 210
 Government Effectiven

 214
 Voice and Accountabili

 215
 Ilitercy Percent Female

222 Secondary School Exp

226 Education Fraction of G

230 Secondary per Pupil Pe

10 ArableLandFraction

Generate Models Analyze Models Test & Validate What If? Reports

All Variables Selected Data

🜻 DataModeler 9.3 - [Death Age Gap

3 AdultPopulation

15 ChildPopulation

19 CropsLandFraction

7 AnnualBirths

11 Area

Selected Variables

Predictive Analytics – response target is selected for modeling

Select Variables Explore Data

Variable Sets

Data Record Label

232 Death Age Gap

👩 Sele.

÷

Variables

1 1 Country

2 5 Airports

3 9 ArableLandArea

6 21 EconomicAid

7 25 ElectricityImports

4 13 Boundaryl enoth

5 17 ConstructionValueAdde

Launch Project

Advanced Search & Selection

Response

Target Response

Multiple response targets can be selected within a given project

|   | 8  | 29  | ExternalDebt                              |
|---|----|-----|-------------------------------------------|
|   | 9  | 33  | FemaleInfantMortalityFraction             |
|   | 10 | 37  | FemalePopulation                          |
| 1 | 11 | 41  | GDPAtParity                               |
|   | 5  | 45  | GovernmentExpenditures                    |
|   |    | 49  | HighestElevation                          |
|   |    | 53  | IndustrialValueAdded                      |
|   |    | 57  | InternetUsers                             |
|   |    | 61  | LifeExpectancy                            |
|   |    | 65  | MaleChildPopulation                       |
|   |    | 69  | MaleLiteracyFraction                      |
|   |    | 73  | MedianAge                                 |
|   |    | 77  | MilitaryExpenditureFraction               |
|   |    | 81  | MilitaryFitPopulation                     |
|   |    | 85  | NaturalGasExports                         |
|   | 23 | 89  | OilConsumption                            |
|   | 24 | 93  | OilReserves                               |
|   | 25 | 97  | Population                                |
|   | 26 | 101 | RoadLength                                |
|   | 27 | 105 | TotalFertilityRate                        |
|   | 28 | 109 | UNNumber                                  |
|   | 29 | 117 | LaborFraction+Agriculture                 |
|   | 35 | .17 | ExpenditureFraction+GovernmentConsumption |
|   | 1  | 121 | ExpenditureFraction•ImportValue           |
| ľ | 32 | 125 | Male Smoking Deaths                       |
|   | 33 | 129 | Male Cigarette Smoker Percent             |
|   | 34 | 133 | Total Smoking Prevaence                   |
|   | 35 | 137 | Firearm Death Rate                        |
|   | 36 | 141 | Gun Deaths TBD                            |
|   | 37 | 145 | Region                                    |
|   | 38 | 149 | NonReligiosity                            |
|   | 39 | 153 | Beer (%)                                  |
|   | 40 | 157 | 2015 projection                           |
|   | 41 | 161 | Non-communicable Death Fraction           |
|   | 42 | 165 | Breastfeeding Percent                     |
|   | 43 | 169 | Health expenditure per capita             |
|   | 44 | 173 | Hospital Bed Rate                         |
|   | 45 | 177 | Female Labor Fraction                     |
|   | 46 | 181 | Male Adult Obesity                        |
|   | 47 | 185 | Female-Male Literacy Ratio                |
|   | 48 | 189 | Teen Pregnancy Rate                       |
|   | 49 | 193 | Female Unemployment Rate                  |
|   | 50 | 197 | Urban Population Percent                  |
|   | 51 | 201 | GINI index                                |
|   | 52 | 205 | Income share held by lowest 10%           |
|   | 53 | 209 | Control of Corruption                     |
|   | 54 | 213 | Rule of Law                               |
|   | 55 | 217 | Adult Illiterate Population               |
|   | 56 | 221 | Primary School Expense Fraction           |

57 225 Education Fraction of GDP

58 229 Primary per Pupil Percent of GDP

The GUI implicitly supports a workflow moving from data insights to variable selection to model development and selection to definition of trustable models and creation of deployable models

4 AgriculturalValueAdded

8 AnnualDeaths

12 BirthRateFraction

16 CoastlineLength

20 DeathRateFraction

|               | Tot Tomaio organosto Forcons              |                                         |
|---------------|-------------------------------------------|-----------------------------------------|
|               | 135 Girls Cigarette Use                   | 136 Youth Cigarette Use                 |
|               | 139 Gun Suicides                          | 140 Gun Deaths Accidental               |
| (2014)        | 143 Rate                                  | 144 Count                               |
|               | 147 Year listed                           | 148 Religiosity                         |
|               | 151 Recorded consumption                  | 152 Unrecorded consumption              |
|               | 155 Spirits (%)                           | 156 Other (%)                           |
|               | 159 Communicable Disease Death Rate       | 160 Injury Death Percent                |
| n             | 163 Contraceptive Prevalence              | 164 Diabetes Prevalence                 |
| ion           | 167 Female-Headed Households              | 168 GNI per capita                      |
| ate (GDP)     | 171 Health expenditure, private (total)   | 172 Health expenditure, total (GDP)     |
|               | 175 Improved Sanitation Access            | 176 Improved Water Access               |
| 1             | 179 Physician Availability                | 180 Male Childhood Obesity              |
|               | 183 Female Childhood Obesity              | 184 Childhood Obesity                   |
|               | 187 Male Smoking Rate                     | 188 Tuberculosis Detection Rate         |
| e             | 191 Tuberculosis Prevalence Rate          | 192 Turberculosis Treament Success Rate |
| ite           | 195 Total Unemployment Rate               | 196 Unmet Contraception Need            |
|               | 199 Vitamin A Coverage                    | 200 Wanted Fertility Rate               |
| ourth 20%     | 203 Income share held by highest 10%      | 204 Income share held by highest 20%    |
| owest 20%     | 207 Income share held by second 20%       | 208 Income share held by third 20%      |
| ISS           | 211 Political Stability                   | 212 Regulatory Quality                  |
| у             | 215 Female Illiterate Population          | 216 Male Illiterate Population          |
|               | 219 Education Expenditure Percent         | 220 Compulsory Education Duration       |
| ense Fraction | 223 Tertiary School Expense Fraction      | 224 Preschool Expense Fraction          |
| DP (I)        | 227 Public Education Expenditure Fraction | 228 Total per Pupil Percent of GDP      |
| rcent of GDP  | 231 Tertiany per Pupil Percent of GDP     | 232 Death Age Gap                       |

### Analysis now supports loworder categoricals

|              |                |                  |                   |       |                                           |      |            | 🧶 Data | Model    | er 9.3 -          | [Fisher    | lris]  |            |           |            |
|--------------|----------------|------------------|-------------------|-------|-------------------------------------------|------|------------|--------|----------|-------------------|------------|--------|------------|-----------|------------|
| Launch       | Project        | Select Variables | Explore Data      | Gene  | erate Models                              | A    | nalyze M   | odels  | Te       | st & Validate     | What If?   | Rep    | oorts      |           |            |
|              |                |                  | 0                 | ▶ (   | 7                                         |      |            |        | Datas    | SummaryTable      |            |        |            |           | X          |
| Target Respo | nse            |                  | Species of iris 5 | Col   | Label                                     | Туре | Uniformity | Class  | Unique   | Distribution Plot | Zero-Cross | Min    | Mean       | Median    | Max        |
| Variable Set |                | All              | 0                 | 1     | Sepal length in cm.<br>Sepal width in cm. | 123  | 100%       | ~<br>~ | 29<br>20 |                   | . <b>₽</b> | 4.4    | 5.8<br>3.0 | 5.7       | 7.7<br>4.4 |
| Data File    | Summary        |                  |                   | 3     | Petal length in cm.                       | 123  | 100%       | had    | 37       |                   | . →        | 1.0    | 3.7        | 4.4       | 6.9        |
| Exploring    | g Methods      |                  |                   |       | Potal width in cm                         | 123  | 100%       | A      | 21       |                   |            | 0.1    | 1.2        | 13        | 25         |
| Max Explor   | ers            | 1 🗘              |                   | -     |                                           | 120  | 100%       | ~      | 21       |                   | . "        |        | 1.2        | viselelee | - declates |
| 🗸 DataSu     | mmaryTable     |                  |                   | 5     | Species of iris                           | ABC  | 100%       | 111    | 3        |                   | ···        | setosa | virginica  | virginica | virginica  |
| View D       | ata to Explore | 9                |                   |       |                                           |      |            |        |          | virg              | ginica     |        |            |           |            |
| Import       | ed Data Repor  | rt               |                   |       |                                           |      |            |        |          |                   |            |        |            |           |            |
| Univari      | atePlot        |                  |                   |       |                                           |      |            |        |          |                   |            |        |            |           |            |
| DataDi       | stributionPlot |                  |                   |       |                                           |      |            |        |          |                   |            |        |            |           |            |
| DataCo       | mpletenessM    | lap              |                   |       |                                           |      |            |        |          |                   |            |        |            |           |            |
| DataCo       | mpletenessPl   | lot              |                   |       |                                           |      |            |        |          |                   |            |        |            |           |            |
| Bivaria      | tePlot         |                  | Nou               | i ki  | addad                                     | ic   | tha        |        |          |                   |            |        |            |           |            |
| Correla      | tionChart      |                  | INEV              | /IY   | auueu                                     | 15   | uie        |        |          |                   |            |        |            |           |            |
| Correla      | tionMatrixPlo  | t                | ability           | to    | autom                                     | at   | ically     |        |          |                   |            |        |            |           |            |
|              |                |                  |                   |       | rt low_                                   | orc  | lor        |        |          |                   |            |        |            |           |            |
|              |                |                  |                   |       |                                           |      |            |        |          |                   |            |        |            |           |            |
|              |                | als to r         | nur               | nerio | CS                                        |      |            |        |          |                   |            |        |            |           |            |
|              |                |                  |                   |       |                                           |      |            |        |          |                   |            |        |            |           |            |

## Getting the Zen of the Data



#### •••

DataModeler 9.3 - [Death Age Gap]

Launch Project Select Variables Explore Data Generate Models Analyze Models Test & Validate What If? Reports







The default rule for model development is that a model must be supported by having at least 75% of the data records be completely numeric in the variables used by the model. Incomplete records are not considered in the quality assessment.

| ▶ 🏹 |                               |      |            |        |         |                   |            |                       |                     |                     | X                    |
|-----|-------------------------------|------|------------|--------|---------|-------------------|------------|-----------------------|---------------------|---------------------|----------------------|
|     |                               |      |            |        | Page    | 1 Page 2          |            |                       |                     |                     |                      |
|     |                               |      |            |        | DataSun | nmaryTable        |            |                       |                     |                     |                      |
| Col | Label                         | Туре | Uniformity | Class  | Unique  | Distribution Plot | Zero-Cross | Min                   | Mean                | Median              | Max                  |
| 20  | DeathRateFraction             | 123  | 94%        | $\sim$ | 202     | Jan               | ↔          | 0.0                   | 0.0                 | 0.0                 | 0.0                  |
| 21  | EconomicAid                   | 123  | 98%        | $\sim$ | 213     |                   | . ↔        | -2.4×10 <sup>10</sup> | 3.6×10 <sup>7</sup> | 8.7×10 <sup>7</sup> | 2.2×10 <sup>10</sup> |
| 33  | FemaleInfantMortalityFraction | 123  | 92%        | $\sim$ | 214     |                   | ↔          | 0.0                   | 0.0                 | 0.0                 | 0.2                  |
| 35  | FemaleLiteracyFraction        | 123  | 86%        | $\sim$ | 142     |                   | ↔          | 0.1                   | 0.8                 | 0.9                 | 1.0                  |
| 42  | GDPPerCapita                  | 123  | 96%        | $\sim$ | 231     |                   | ↔          | 137.6                 | 15952.0             | 5514.7              | 211500.0             |
| 43  | GDPRealGrowth                 | 123  | 91%        | $\sim$ | 218     | <b>h</b>          | ↔          | -0.1                  | 0.0                 | 0.0                 | 0.2                  |
| 61  | LifeExpectancy                | 123  | 96%        | $\sim$ | 228     |                   | ↔          | 45.6                  | 71.5                | 74.0                | 84.4                 |
| 62  | LiteracyFraction              | 123  | 92%        | h      | 144     |                   |            | 0.2                   | 0.9                 | 0.9                 | 1.0                  |

Missing data is handled seamlessly for both modeling and data exploration and model development

|     |                                                    |      |            | DataS    | ummary | Table             |            |            |         |         |
|-----|----------------------------------------------------|------|------------|----------|--------|-------------------|------------|------------|---------|---------|
| Col | Label                                              | Туре | Uniformity | Class    | Unique | Distribution Plot | Zero-Cross | Min        | Mean    | Median  |
| 1   | cap-shape                                          | ABC  | 100%       | Ш        | 6      | 00                | II         | bell       | convex  | convex  |
| 2   | cap-surface                                        | ABC  | 100%       | 111      | 4      |                   | 11         | fibrous    | scaly   |         |
| 3   | cap-color                                          | ABC  | 100%       | л        | 10     | 00000             | II         | brown      | brow    |         |
| 4   | bruises?                                           | ABC  | 100%       | =        | 2      |                   | П          | False      | Fals    |         |
| 5   | odor                                               | ABC  | 100%       | л        | 9      |                   | 11         | almond     | non     |         |
| 6   | gill-attachment                                    | ABC  | 100%       |          | 2      |                   | П          | attached   | free    | A       |
| 7   | gill-spacing                                       | ABC  | 100%       | $\equiv$ | 2      |                   | П          | close      | clos    | is t    |
| 8   | gill-size                                          | ABC  | 100%       | $\equiv$ | 2      |                   | П          | broad      | broa    | ро      |
| 9   | gill-color                                         | ABC  | 100%       | л        | 12     | .0000_00_0_       | 11         | black      | buff    | Go      |
| 10  | stalk-shape                                        | ABC  | 100%       | $\equiv$ | 2      |                   | П          | enlarging  | taperi  | att     |
| 11  | stalk-root                                         | ABC  | 100%       | Ш        | 5      |                   | II         |            | bulbo   | pre     |
| 12  | stalk-surface-above-ring                           | ABC  | 100%       | 111      | 4      |                   | II         | fibrous    | smoo    |         |
| 13  | stalk-surface-below-ring                           | ABC  | 100%       | 111      | 4      |                   | II         | fibrous    | smoc    | We      |
| 14  | stalk-color-above-ring                             | ABC  | 100%       | л        | 9      | fibrous           | II         | brown      | whit    | ca      |
| 15  | stalk-color-below-ring                             | ABC  | 100%       | л        | 9      | O_O_              | II         | brown      | whit    | tho     |
| 16  | veil-type                                          | ABC  | 100%       | _        | 1      |                   | •          | partial    | parti   | 0+:     |
| 17  | veil-color                                         | ABC  | 100%       |          | 4      |                   | II         | brown      | whit    | rec     |
| 18  | ring-number                                        | ABC  | 100%       | _        | 3      | _ 🛛 _             | II         | none       | one     | nre     |
| 19  | ring-type                                          | ABC  | 100%       | Ш        | 5      |                   | II         | evanescent | penda   |         |
| 20  | spore-print-color                                  | ABC  | 100%       | Ш        | 9      | 00_00_            | II         | black      | white   |         |
| 21  | population                                         | ABC  | 100%       | л        | 6      |                   | II         | abundant   | several | several |
| 22  | habitat                                            | ABC  | 100%       | л        | 7      | D                 | II         | grasses    | woods   | woods   |
| 23  | edibility of mushroom (either edible or poisonous) | ABC  | 100%       | $\equiv$ | 2      |                   | П          | edible     | edible  | edible  |

► Ÿ

### **Categorical Analysis**

Max

sunken

- A purely textual data set is the mushroom edible or poisonous?
- Goal is to identify key attributes & develop predictive models
- We cap the number of categories converted with those not converted ignored
- Still doing symbolic regression to produce a predictive model

solitary

woods

poisonous

### Model Search



- The assumption is that not all variables are equal and that we can consolidate to a relative handful of inputs
  - Models are evolved rewarding those which are simple and accurate with breeding rights
- Developed models are simple algebraic
   expressions human interpretable!
- We can view the search as an automated hypothesis generation & refinement
- Lots of diverse accurate-but-simple models are developed from which we can extract insight.





www.evolved-analytics.com

| • • •                           |                     |            |                             |     |                      |              |                            |             |            | DataModeler                           | 9.3 - [Mushroo       | m Edibility]      |                |               |                                                                                            |             |                    |
|---------------------------------|---------------------|------------|-----------------------------|-----|----------------------|--------------|----------------------------|-------------|------------|---------------------------------------|----------------------|-------------------|----------------|---------------|--------------------------------------------------------------------------------------------|-------------|--------------------|
| Launch Project                  | Select Var          | iables     | Explore Data                | Ger | nerate Models        | Analyz       | e Models                   | Test        | & Valid    | ate What If? R                        | Reports              |                   |                |               |                                                                                            |             |                    |
| Target Response                 | edibility of mushr  | oom (eith  | her edible or poisonous) 23 | Þ   | <b>⊽</b>             | ec           | libility•of•mus            | shroom•eith | ner•edible | or•poisonous                          | X<br>-1              |                   | Н              | ere           | we look at the                                                                             |             |                    |
| Models Analyz                   | ze                  |            |                             |     | capsurface -         | a •          | <b>_</b> ,                 | •           |            |                                       |                      | varia             | able           | pre           | esence in each of th                                                                       | e           |                    |
| Select Models 307/3             | 2813                |            | Reset Filters               |     | bruises -            |              | •                          |             |            |                                       | -                    | indep<br>r        | ena<br>ours    | ent<br>ues    | their own path to                                                                          | acn         | /                  |
|                                 | Candidates Focu     | s Ense     | mbles                       |     | gillspacing -        | •            | -                          |             |            |                                       | 1                    |                   |                |               | success                                                                                    |             |                    |
| Quality Box                     |                     |            | All                         |     | gillsize -           |              |                            |             |            | •                                     | -                    |                   |                |               |                                                                                            |             |                    |
|                                 |                     |            | 1-R <sup>2</sup> 0.2        |     | stalkshape -         |              | -                          |             |            |                                       | -                    |                   |                |               | We                                                                                         |             |                    |
| Selection Fraction              |                     |            | 50% 🗘                       | st  | talksurfacebelowring |              |                            | _           |            |                                       | ]                    |                   | car            | n als         | so look for model                                                                          |             |                    |
| Variables<br>Required Variables |                     | b N        | Max                         |     | ringnumber -         |              |                            | •           |            |                                       |                      | sur<br>explo      | ostru<br>oitec | JOTU<br>1. Th | ires which have been here metavariables                                                    | en<br>can   |                    |
| Allowed Variables               |                     | ► A        |                             |     | ringtype -           |              |                            |             |            |                                       |                      | provid            | e in           | sigh          | it as well as be exp                                                                       | loited      |                    |
| Excluded Variables              |                     | ► N        | one                         |     | sporeprintcolor -    |              |                            |             |            | •                                     | -                    |                   | in s           | ubs           | equent rounds of                                                                           |             | ,<br>,             |
| Power Limit<br>Robust Models    |                     |            | 4 V<br>False                |     |                      | 0            | 20                         | 40          | 60         | 80 100                                |                      |                   |                |               | modeling                                                                                   |             |                    |
| ANOVA Trim                      |                     |            | Apply                       |     |                      |              |                            |             |            |                                       |                      |                   |                |               |                                                                                            |             |                    |
| Selected Model(s)               |                     |            | Save Model Set              |     | ► V                  | edibi        | lity•of•mush               | room•eith   | er•edible  | or•poisonous                          |                      | ► V               |                | edibil        | ity•of•mushroom                                                                            | onous       |                    |
| Model Ensemble                  |                     |            | Create                      |     | $num \Rightarrow \%$ | v            | ariables Used              |             | 0.20       | ParetoFrontPlot                       |                      |                   | Rank           | Count         | MetaVa riable                                                                              | 6 of models | % of MetaVariables |
| Explore Mode                    | lere we             | loo        | k at the                    |     |                      |              | ille le e                  |             | 0.15       | il in the second                      |                      | ++                | 1              | 53            | gillsize + √sporeprintcolor                                                                | 17.3        | 35.1               |
| Max Explor MO                   | ost preva           | alen       | t variable                  |     | 1 64 ⇒ 20.8 %        | y<br>ri<br>s | ngnumber<br>poreprintcolor |             | 0.10       |                                       |                      | ++                | 3              | 28            | $\sqrt{\text{gillsize}} + \sqrt{\text{sporeprintcolor}}$                                   | 9.1         | 18.5               |
| Model Di. ♥ Variable Pres.      | mbinatio<br>perfo   | ons<br>rma | and their ince              |     |                      | <b>-</b>     | ☑ +                        |             | 0.05       |                                       |                      | ++                | 4              | 22            | gillsize <sup>2</sup> stalksurfacebelowring                                                | 7.2         | 14.6               |
| VariablePresence                | Table               |            |                             |     |                      |              |                            |             | 0.00       | 40 50 60 70                           | 80 90 100            | ++                | 5              | 22            | $\left( \text{gillsize} + \text{ringnumber} + \sqrt{\text{sporeprintcolor}} \right)^{1/3}$ | 7.2         | 14.6               |
| VariablePresence                | DistributionChart   |            |                             |     |                      |              |                            |             | 0.20       | 12.                                   |                      |                   | 6              | 21            | gillsize ringtype                                                                          | 6.8         | 13.9               |
| VariablePresence                | Map                 |            |                             |     |                      | 9            | illsize<br>talkshape       |             | 0.15       |                                       |                      | ++                | 7              | 14            | 1<br>-1.03928+sporeprintcolor                                                              | 4.6         | 9.3                |
| ▼ Meta Variables (1)            |                     |            |                             |     | <b>2</b> 28 ⇒ 9.1 %  | ri           | ngnumber                   |             | 0.10       |                                       |                      | ++                | 8              | 14            | gillsize <sup>2</sup> + √sporeprintcolor                                                   | 4.6         | 9.3                |
| ModelBasisSetTa                 | ible*               |            |                             |     |                      |              | ⊠ +                        |             | 0.05       |                                       |                      |                   | 9              | 13            | $(\text{gillsize}^2 + \sqrt{\text{sporeprintcolor}})^{1/3}$                                | 4.2         | 8.6                |
| ModelBasisSetDis                | stributionTable*    |            |                             |     |                      |              |                            |             | 0.00       |                                       |                      |                   |                |               | (ginaizo + V aporoprintocolor )                                                            | 7.2         | 0.0                |
| ModelBasisSetDis                | stributionChart     |            |                             |     |                      |              |                            |             | 0.20       | 40 50 60 70                           | 80 90 100            | ++                | 10             | 12            | $\sqrt{\text{sporeprintcolor}^3}$                                                          | 3.9         | 7.9                |
| 🗸 MetaVariableTabl              | le*                 |            |                             |     |                      | g            | illsize                    |             | 0.15       |                                       |                      |                   |                |               |                                                                                            |             |                    |
| MetaVariableDist                | ributionTable*      |            |                             |     |                      | r            | ngnumber                   |             |            |                                       |                      |                   |                |               |                                                                                            |             |                    |
| MetaVariableDist                | ributionChart       |            |                             |     | 3 21 ⇒ 6.8 %         | s            | poreprintcolor             |             | 0.10       |                                       |                      |                   |                |               | _                                                                                          |             |                    |
| variable Combination            | s (1)<br>tionTable* |            |                             |     |                      | <b>-</b>     | ☑ +                        |             | 0.05       | 2.53 × 10 <sup>-3</sup> – 1.35 ringnu | mber + 0.37 gillsize | e ringtype + 0.95 | √ spore        | eprintco      | lor                                                                                        |             |                    |
| VariableCombinat                | tionMap             |            |                             |     |                      |              |                            |             | 0.00       | 40 50 60 70                           | 80 90 100            |                   |                |               |                                                                                            |             |                    |
|                                 |                     |            |                             |     |                      |              |                            |             |            |                                       | 50 50 100            |                   |                |               |                                                                                            |             |                    |
| www.evolved-an                  | ialytics.com        |            |                             |     |                      |              |                            |             |            |                                       |                      |                   |                |               |                                                                                            |             |                    |







0.5

0.0

0.2

Each graphic has controls which can be exposed and used to tweak the display

- Here we are looking at one of the candidate models
- Unfortunately, THE model does not typically exist in data-derived models
- We can use ensembles of models to create a trustable model to detect extrapolation or underlying system changes

edibility+of+mushroom+either+edible+or+poisonous Residual Plot



DataModeler 9.3 - [Mushroom Edibility]

Tooltips are used to show the variable mapping being used

-1.0-0.50.0 0.5 1.0 1.5

ringtype

ringtype

evanescent → -1 flaring → 0

> large  $\rightarrow$  1 pendant  $\rightarrow$  2

## Test & Validate



www.evolved-analytics.com





www.evolved-analytics.com



Instead of trying to find THE model, we can exploit the abundance of explored model forms and select a diverse set from the good-andsimple category to form a TRUSTABLE model



Expression

Ensemble

Quality

Model Quality

| Model | Complexity | 1-R <sup>2</sup> |
|-------|------------|------------------|
| 1     | 26         | 0.0229559        |
| 2     | 29         | 0.0212007        |
| 3     | 29         | 0.029529         |
| 4     | 33         | 0.0137302        |
| 5     | 34         | 0.0182884        |
| 6     | 34         | 0.0235753        |
| 7     | 38         | 0.0166514        |
| 8     | 38         | 0.02229          |
| 9     | 38         | 0.025075         |
| 10    | 41         | 0.0109854        |
| 11    | 41         | 0.0220358        |

### **Ensemble Performance**

The (algorithmically generated) ensemble gives pretty good composite results when asked
 DataModeler 9.3 - to extrapolate







Round 3 Ensemble (3 Vars) [DistTower\_training] [ ref = 0.66 ]







Since the variables in this case are coupled, changing one without a corresponding change of the others would venture into unknown regions of parameter space. This is detected by the ensemble since the constituent models (light gray lines) diverge if we try to change, for example, the tray temperature independently from the observed reference point (green dot)



Round 3 Ensemble (3 Vars) [DistTower\_test] [ ref = -0.11 ]

- Here we are looking at the model prediction in the lowest observed value in the test data set.
- The constituent models diverge when away from known data records which is the desired behavior — even though the actual prediction degrades reasonably gracefully.
- Graceful degradation for extrapolation is a unique benefit of symbolic regression since other datadriven modeling techniques tend to fail spectacularly when asked to extrapolate
- Since these data points were explicitly chosen to test the ensemble ability to detect extrapolation, we can conclude that the ensemble is, in fact, a trustable model



## Spiffy Feature





### AI ⇒ Augmented Intelligence

- DataModeler easily handles exploration and analysis of multivariate data with correlated inputs, missing values and (now) low-order categoricals
- Searching for simple & accurate models allows identifying driving variables as well as variable combinations useful for developing quality models for deployment
- Algebraic models allows for analyst inspection and insight development
- Ensembles of simple & accurate models can be used as trustable models and obviate the need for data set partitioning — which is important when data is sparse
- Ease-of-use is enhanced with graphical tools supporting an effective analysis workflow.

# For More Information

- www.evolved-analytics.com
- mark@evolved-analytics.com

- GUI Development Acknowledgement:
  - Ariel Sepúlveda
  - ariel.sepulveda@prontoanalytics.com
  - <u>www.prontoanalytics.com</u>

