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Abstract

We examine the general problem of finding a global rotation that transforms a given set of points and/or
coordinate frames into the best possible alignment with a corresponding set of reference data. This
“orthogonal Procrustes problem” is often phrased in terms of minimizing a root-mean-square deviation or
RMSD corresponding to a distance measure relating the two sets of coordinates. We employ methods based
on quaternion eigensystems that have been exploited for decades in several different bodies of literature
where they were discovered independently. Our first contribution is to present an exact algebraic solution to
the RMSD optimization problem for 3D spatial data collections, a problem that can in principle be solved
algebraically, using matrix eigenvalue or symbolic singular-value-decomposition methods, but has proven so
impractical in practice that existing usage relies exclusively on numerical methods. Our compact algebraic
forms for solutions to the RMSD problem provide heretofore unavailable insights into the structure of the
entire eigensystem. Our second result is to exploit quaternions to express the problem of matching sets of 3D
coordinate frames (e.g., collections of orthogonal triads representing the spatial orientations of the amino
acid residues in a protein), and to present exact algebraic solutions for the chord measure, an attractive
approximation to the more rigorous nonlinear arc measure approach to the orientation optimization problem.
This pair of solutions, for the 3D spatial data and the 3D orientation data, can be combined to formulate a
solution to the full 6DOF combined matching problem. Among ancillary results, we present a compact
algebraic solution to the eigenvalue system for arbitrary real 4D matrices, and extend the quaternion context
to the 4D spatial and orientation frame matching problems, along with providing some insights into the
problem of converting numerical 3D and 4D rotation matrices into their equivalent quaternion forms.

1 Context

We are concerned with the general mathematical problem known variously as the “Orthogonal Procrustes
Problem” [1], Wahba’s problem (1965) [2], the Kabsch algorithm (1976) [3], and likely a number of others.
One is given a D ×D matrix E that typically corresponds to the cross-covariance matrix of a pair (A,B) of
N rows of D-dimensional vectors, making E = At ·B, though E could have almost any origin. Then the
fundamental mathematical problem is to find the optimal D-dimensional orthogonal matrix R that
maximizes tr(R · E). One solution to this problem in any dimension D is Ropt = (Et · E)1/2 · E−1 (see,
e.g., [4, 5]). Solutions may also be found using singular-value-decomposition (SVD) methods (see, e.g., [6, 7]),
starting with the decomposition E = U · S · V t, and defining D = diagonal (1, . . . , 1, sign (det(U · V t))), to
give the result Ropt = V ·D · U t. In addition to these general methods based on traditional matrix
approaches, a significant literature exists for D = 3 that exploits the relationship between 3D rotation
matrices and quaternions, and rephrases the task of finding Ropt as a quaternion eigensystem problem. This
approach notes that, using the quadratic quaternion form R(q) for the rotation matrix, one can rewrite
tr(R · E)→ q ·M(E) · q, with M(E) a traceless symmetric 4× 4 matrix consisting of linear combinations of
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the elements of the 3× 3 matrix E. Finding the largest eigenvalue εopt of M(E), usually by numerical
Newton’s methods, determines the optimal quaternion eigenvector qopt, and so R(qopt) solves the RMSD
problem. At least five authors are known to have published this approach, possibly starting in 1968 with
Davenport [8] in the context of Wahba’s problem, rediscovered in 1987 by Horn [9], and soon rediscovered
again by others, including Diamond (1988) [10], Kearsley (1989) [11], and Kneller (1991) [12]; it appears that
none of the later authors cite the work of any earlier author.

While evaluation of the singular-value decompositions and quaternion eigensystems in terms of algebraic
symbols for the elements of E is possible in principle, the results from symbolic algebra programs become
unintelligible beyond dimension D = 2, with individual SVD symbolic matrix elements being on the order of
two megabytes for D = 3 and fifteen megabytes for D = 4, while initial symbolic solutions for the quaternion
eigensystem can approach several gigabytes. Nearly all applications in the current literature use D = 3
Euclidean spatial data and evaluate Ropt numerically, using a variety of methods, starting from a numerical
3× 3 data matrix E. No explicit compact algebraic solutions are known to appear in the literature for any
dimension higher than D = 2. In this paper, we exploit the quaternion eigensystem methods to derive and
present one-line closed-form algebraic solutions for all the eigenvalues and eigenvectors for the cases that are
amenable to quaternion methods, which include the standard case D = 3, its extension to D = 4, and
additional extensions using orientation data in a quaternion context to incorporate 3D frames (6 DOF in the
combined problem) and 4D frames (10 DOF in the combined problem).

2 Introduction

We explore the problem of finding global rotations that optimally align pairs of corresponding lists of spatial
and/or orientation data. This issue is significant in diverse application domains. Among these are aligning
spacecraft (see, e.g., [8, 13,14]), obtaining correspondence of registration points in aerial imagery (see,
e.g., [5, 9, 15–18]), and matching of molecular and biochemical structures (see. e.g, [10–12,19–24]). Here we
critically examine the quaternion eigensystem decomposition approach to studying the rotation matrices
appearing in the optimization formula, and present exact compact algebraic solutions to the RMSD
optimization problem in 3D and 4D, along with corresponding orientation frame solutions. Our results are of
course (as they must be) algebraically equivalent to the results of symbolic eigensystem calculations and the
symbolic singular value decomposition (SVD) method; however, our formulas reduce those computable but
extremely complex algebraic expressions, which have generally been thought intractable to simplification, to
a single line.

Our extension of the quaternion approach to orientation data exploits the fact that 3D and 4D
orientation frames can themselves be expressed as quaternions, e.g., amino acid 3D orientation frames
written as quaternions (see Hanson and Thakur [25]), and we refer to the corresponding matching task as the
QRMSD problem. Various proximity measures for such orientation data have been explored in the
literature [26–28], and the general consensus is that the most rigorous measure minimizes the sums of squares
of angles between pairs of quaternions. This ideal QRMSD proximity measure is highly nonlinear compared
to the spatial RMSD measure, but fortunately there is an often-justifiable linearization, the chord angular
distance measure; we exhibit two related but distinct exact algebraic solutions to this approximation that
closely parallel our RMSD formulation. In addition, we show how to generalize our methods to treat the
problem of optimally aligning combined 3D spatial and quaternion 3D-frame-triad data. Combined
rotational-translational measures similar to the ones we employ have appeared mainly in the molecular
entropy literature [29,30], where, after some confusion, it was recognized that the spatial and rotational
measures are dimensionally incompatible, and an arbitrary context-dependent dimensional constant must
appear in any combined measure for the RMSD+QRMSD problem.

In the following, we organize our thoughts by first summarizing the fundamentals of quaternions, which
will be our main computational tool. We next introduce the spatial and rotational measures that will
underlie our studies of the matching problems, and then derive our exact solutions to the 3D spatial
matching problem, the 3D frame triad matching problem, and the combined 6 degree-of-freedom matching
problem. Appendix A explores some features of the 2D version of the RMSD problem, and in Appendix B
we give the details of our approach to the 4D RMSD problem using double quaternions (which, curiously,
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was the eigensystem we actually solved first, before obtaining as a special case the elegant 3D solution given
in the body of the text). Finally, in Appendix C we summarize Bar-Itzhack’s singularity-free 3D
matrix-to-quaternion method [31], which is a novel application of the quaternion RMSD framework, and
generalize it to 4D orthogonal matrices.

3 Foundations of Quaternions

For the purposes of this paper, we take a quaternion to be a point q = (q0, q1, q2, q3) = (q0, q) in 4D
Euclidean space with unit norm, q · q = 1, and so geometrically it is a point on the unit 3-sphere S3 (see, e.g.,
Hanson [32] for further details about quaternions). The last three terms, q, play the role of a generalized
imaginary number, and so are treated differently from the first, and in particular the conjugation operation
is taken to be q̄ = (q0,−q). Quaternions obey a multiplication operation denoted by ? and defined as follows:

q ? p = [Q(q)] · p =


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

 ·

p0
p1
p2
p3

 = (q0p0 − q · p, q0p + p0q + q× p) , (1)

where Q(q) is a matrix form of quaternion multiplication that we will find useful.
Choosing exactly one of the three imaginary components in both q and p to be nonzero gives back the

classic complex algebra (q0 + iq1)(p0 + ip1) = (q0p0 − q1p1) + i (q0p1 + p0q1), so there are three copies of the
complex numbers embedded in the quaternion algebra; the difference is that in general the final term q× p
changes sign if one reverses the order, making the quaternion product order-dependent, unlike the complex
product. It can be shown that, although a purely imaginary quaternion (0,q) is technically not a vector as
Hamilton claimed (see Altmann [33,34]), the result of a quadratic conjugation by quaternion multiplication
is isomorphic to the construction of a 3D Euclidean rotation R(q) generating all possible elements of the
orthogonal group SO(3). If we write

q ? (0, x, y, z) ? q̄ = R(q) · x , (2)

we find that the result of collecting coefficients is an orthonormal 3D matrix quadratic in the quaternion
elements

R(q) =

 q20 + q21 − q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q20 − q21 + q22 − q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q20 − q21 − q22 + q23

 . (3)

The formula for R(q) is technically a two-to-one mapping from quaternion space to the 3D rotation group
because R(q) = R(−q); changing the sign of the quaternion preserves the rotation matrix. Note also that the
identity quaternion qID = (1, 0, 0, 0) corresponds to the identity rotation matrix, as does −qID = (−1, 0, 0, 0).
This 3× 3 matrix R(q) is fundamental not only to the quaternion formulation of the spatial RMSD matching
problem, but will also be essential to the orientation-frame problem because the columns of R(q) are exactly
the needed (double-valued) quaternion representation of the frame triad describing the orientation of a body
in 3D space, i.e., the columns are the vectors of the frame’s local x, y, and z axes relative to an initial
identity frame.

Multiplying a quaternion p by the quaternion q to get a new quaternion p′ = q ? p simply rotates the
frame corresponding to p by the matrix Eq. (3) written in terms of q. This is non-trivial, and tells us that
quaternion multiplication corresponds exactly to multiplication of two independent 3× 3 orthogonal rotation
matrices, and in fact R(q) ·R(p) = R(q ? p).

If we choose the following specific 3-variable parameterization of the quaternion q preserving q · q = 1,

q = (cos(θ/2), n̂1 sin(θ/2), n̂2 sin(θ/2), n̂3 sin(θ/2)) (4)

(with n̂ · n̂ = 1), then R(q) = R(θ, n̂) is precisely the “axis-angle” 3D spatial rotation by an angle θ leaving
the direction n̂ fixed, so n̂ is the lone real eigenvector of R(q).
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Relationships among quaternions can be studied using the slerp, or “spherical linear interpolation” [35],
that smoothly parameterizes the points on the shortest quaternion path between two constant quaternions,
Q0 and Q1, as

slerp(Q0, Q1, s) ≡ q(s)[Q0, Q1] = Q0
sin((1− s)φ)

sinφ
+Q1

sin(s φ)

sinφ
. (5)

Here cosφ = Q0 ·Q1 defines the angle φ between the two given quaternions, while q(s = 0) = Q0 and
q(s = 1) = Q1. For small φ, this reduces to the standard linear interpolation (1− s)Q0 + sQ1. The unit
norm q(s) · q(s) = 1 is preserved for all s, so q(s) is always a valid quaternion and R(q(s)) defined by Eq. (3)
is always a valid 3D rotation matrix.

In the following we will make little further use of the quaternion’s algebraic properties, but we will
extensively exploit Eq. (3) to formulate elegant approaches to RMSD problems, along with employing Eq. (5)
to study the behavior of our data under smooth variations of rotation matrices.

Remark on 4D. A less frequently explored property of quaternions is the extension of Eq. (3) to four
Euclidean dimensions by choosing two distinct quaternions in Eq. (2), producing a 4D Euclidean rotation
matrix. Analogously to 3D, the columns of this matrix correspond to the axes of a 4D Euclidean orientation
frame. The 4D extension of the quaternion RMSD eigensystem is in fact what we used to derive the 3D
exact solutions that are the main results of the paper. For those interested in these details, the particulars of
the 4D approach for both spatial and orientation-frame data are given in Appendix B.

4 The 3D Spatial Matching Problem

We review the basic ideas of spatial data matching, and then specialize to 3D, where we obtain the exact
algebraic solutions of the entire four-part eigensystem, including the maximal eigenvalue whose quaternion
eigenvector gives the optimal global rotation solving the RMSD problem.

4.1 Matching Data in Euclidean Space.

We begin with the general RMSD problem, taking one column with N rows of D-dimensional points {yk} as
the reference structure, and a second column of N rows of points {xk} as the test structure that must be
rotated in space by an SO(D) rotation matrix RD to achieve the minimum value of the cumulative quadratic
distance

RMSD 2
D → S 2

D =

N∑
k=1

‖RD · xk − yk‖2 , (6)

where we assume that any overall translational components have been eliminated. When this measure is
minimized with respect to the rotation RD, the optimal RD will rotate the set {xk} to be as close as possible
to the set {yk}. Here we will focus on 2D, 3D, and 4D data sets because those are the dimensions that are
easily adaptable to our targeted quaternion approach. One could in fact start with the quaternion methods
for 4D data described in Appendix B, and then study the lower dimensions by taking appropriate limits
starting from the more general 4D solution, or even avoid quaternions altogether using singular value
decomposition or other linear algebra approaches (see, e.g., [4–7,19,20]).

Expanding the measure given in Eq. (6) (see e.g., [8, 9, 11–17,19–24]), we can show that the RMSD
minimization problem is equivalent to maximizing the cross-term expression

∆D =

N∑
k=1

(RD · xk) · yk =

D∑
a=1,b=1

RD
baEab = trRD · E, (7)

where

Eab =

N∑
k=1

x a
k y

b
k =

[
Xt ·Y

]
ab

, (8)
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is the cross-covariance matrix of the data, and the range of (a, b) is the dimension D. (We refer to the
original literature for the treatment of issues such as center-of-mass alignment, scaling, and point weighting,
which, though essential in some problems, provide no additional insights into our current arguments.)

3D Case. We now restrict our attention to the case of 3D data. The key step is to substitute Eq. (3) for
R(q) into Eq. (7), and pull apart the pairs of qiqj terms so that the 3D expression is transformed remarkably
into the 4× 4 profile matrix M(E) sandwiched between two identical quaternions (not a conjugate pair),
that is

∆(q) = (q0, q1, q2, q3) ·M(E) · (q0, q1, q2, q3)t ≡ q ·M(E) · q , (9)

where the traceless, symmetric profile matrix is

M(E)=


Exx + Eyy + Ezz Eyz − Ezy Ezx − Exz Exy − Eyx

Eyz − Ezy Exx − Eyy − Ezz Exy + Eyx Ezx + Exz
Ezx − Exz Exy + Eyx −Exx + Eyy − Ezz Eyz + Ezy
Exy − Eyx Ezx + Exz Eyz + Ezy −Exx − Eyy + Ezz

 . (10)

The bottom line is that if one decomposes Eq. (9) into its eigensystem, it is maximized when the
unit-length vector q is the eigenvector of M(E)’s largest eigenvalue [5, 9, 11,12,15–17,19–24]. The RMSD
optimization problem thus reduces to finding the maximal eigenvalue εopt of M(E) (which depends only on
the numerical data) and plugging the corresponding eigenvector qopt into Eq. (3) to obtain the rotation
matrix R(qopt) that solves the RMSD problem. The resulting proximity measure relating {xk} and {yk} is
simply

∆opt = qopt ·M · qopt
= qopt ·

(
εopt qopt

)
= εopt

 , (11)

and does not require us to actually compute qopt or R(qopt) explicitly.

Illustrative Example. In Fig 1(A), we show a simulated 3D reference data set lying inside a spherical
boundary, with Fig 1(B) illustrating the displacements of the noisy test data from the reference data due to a
global rotation; Eq. (6) corresponds to the sums of the squares of the lengths of the blue line segments. After
solving for qopt, we can use the slerp of Eq. (5) to interpolate smoothly from the initial state with R in
Eqs. (6) and (7) being the identity matrix produced by the identity quaternion qID (corresponding to
Fig 1(B)) to the optimal alignment at R(qopt). Applying

q(t) = slerp(qID, qopt, t)

to the normalized profile matrix to get a smoothly changing measure ∆(t) = q(t) ·M(E)/εopt · q(t) generates
a sequence of figures like Fig 2 and 3 . Here Fig 2 shows the alignment midway in the process of evolving
from the initial misaligned state at t = 0 shown in Fig 1(B) to the final best-possible alignment at t = 1 in
Fig 3. Note that if we continue on to t = 2, we are essentially in the mirror-image state of the initial identity
matrix state.

4.2 Solving the 3D Spatial RMSD Problem

We now solve the 3D spatial RMSD optimization problem that is the subject of extensive literature in
aeronautical, molecular, and photogrammetric matching. Given the data for the 3D test and reference
variables, we know from Eq. (8) that there are nine (distinct, not symmetric) components of the 3× 3
cross-covariance matrix Eab that enter into our optimization measure ∆; expanding the measure in terms of
the coefficients of quaternions using Eq. (3) for R(q) allowed us to rewrite our fundamental form in terms of
the profile matrix M(E) defined in Eq. (10). We now proceed to work out the exact algebraic solution to the
3D RMSD problem.
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(A) (B)

Fig 1. fig3DRef.pdf, fig3D2Tgt.pdf. (A) A typical 3D spatial reference data set. (B) The reference
data in red alongside the test data in blue, with the Euclidean distances connecting each test data point with
its corresponding reference point. We can actually see the axis of the global rotation that relates the pairs of
points in the data sets.

Fig 2. fig3DRotMatch3.pdf. Applying a rotation to the test data that is partway to closest alignment
with the reference data.

Eigenvalue Expansions. We begin by writing down the eigenvalue expansion det[M − eI4] = 0 , where e
denotes a generic eigenvalue and I4 is the 4D identity matrix. The 3D RMSD profile matrix is traceless, so
we can assume tr[M ] = 0 here (both the conditions on tracelessness and symmetry are relaxed in Appendix
B). Writing the family of equations to be solved for the unknown variable e in terms of both the known
components of the matrix M and the unknown eigenvalues εk, that is

e4 + e3p1 + e2p2 + ep3 + p4 = 0 (12)

(e− ε1)(e− ε2)(e− ε3)(e− ε4) = 0 (13)
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Fig 3. fig3DRotMatch4.pdf. Applying the optimal rotation R(qopt) to the test data maximizes the
similarity measure and produces an image that clearly shows that this is an optimal alignment.

allows us to eliminate e and write the unknown eigenvalues elegantly in terms of the matrix data as

p1(E) = −ε1 − ε2 − ε3 − ε4
p2(E) = ε1ε2 + ε1ε3 + ε2ε3 + ε1ε4 + ε2ε4 + ε3ε4
p3(E) = −ε1ε2ε3 − ε1ε2ε4 − ε1ε3ε4 − ε2ε3ε4
p4(E) = ε1ε2ε3ε4

 . (14)

The coefficients pk are natural polynomials of degree k in either E or M , and can be written in general as
follows:

p1(E) = − tr[M ] = 0 (15)

p2(E) = −1

2
tr[M ·M ] = −2 tr[E · Et]

= −2
(
E2
xx + E2

xy + E2
xz + E2

yx + E2
yy + E2

yz + E2
zx + E2

zy + E2
zz

)
(16)

p3(E) = −1

3
tr [M ·M ·M ] = −8 det[E]

= 8 (ExxEyzEzy + EyyExzEzx + EzzExyEyx)− 8 (ExxEyyEzz + ExyEyzEzx + ExzEzyEyx)(17)

p4(E) = det[M ] . (18)

The data coefficients {p1(E), p2(E), p3(E), p4(E)} are known: they are just numbers. Equation 14 above
thus gives us the unknown eigenvalues εk in terms of the known data collections. Therefore our task is to
invert Eq. (14) to get εk(p1, p2, p3, p4) = εk(E). Unfortunately, this direct approach is intractable, and
generally fails to complete in a machine algebra program such as Mathematica before running out of memory.
Computing the solution to the equations in the special case p1 = 0 on a large computer runs for nearly 5
hours, and initially produces 24 triples of solutions totaling 8 gigabytes of apparently unsimplifiable algebraic
expressions.

To resolve this difficulty, we found it useful to express the eigenvalues of M (which are necessarily all real)
in a form that can be made to correspond to a descending magnitude order using this three-parameter
representation of a traceless 4D matrix, that is

ε1 = +
√
X +

√
Y +

√
Z

ε2 = +
√
X −

√
Y −

√
Z

ε3 = −
√
X +

√
Y −

√
Z

ε4 = −
√
X −

√
Y +

√
Z

 . (19)

The next step is to substitute our expression Eq. (19) for εk in terms of the {X,Y, Z} parameters into
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Eq. (14), yielding

p1 = 0 (20)

p2 = −2 (X + Y + Z) (21)

p3 = −8
√
X Y Z (22)

p4 = X2 + Y 2 + Z2 − 2 (Y Z + ZX +XY ) . (23)

Interesting things now start to happen if we try to determine formulas for εk(E) by using Eqs. (21), (22),
and (23) to solve for X(p2, p3, p4), Y (p2, p3, p4), and Z(p2, p3, p4) using a machine algebra environment such
as Mathematica. We obtain six sets of {X,Y, Z} expressions, with one of each set relatively simple, and the
rest incomprehensibly complex, which, as in the general case, fail to respond to the standard
expression-simplification utilities. Taking the key step of examining what happens when random numbers are
substituted for the data matrix elements, we find that the {X,Y, Z} each correspond to two of the simple
expressions, and the numerical values of the other twelve are also partitioned among the same values. By
rearranging the simple-looking solutions to take their places in the jigsaw puzzle of closed-form solutions, we
find a first draft of what the algebraic solutions to the eigenvalue problem for M could look like. After many
attempts at reducing the complexity of the solutions and looking for symmetric expressions that could
correspond to a single universal formula for X , Y , and Z, an expression emerged that showed that the
{X,Y, Z} expressions essentially corresponded to different cube roots of unity in otherwise identical
expressions, which we examine next.

Algebraic Properties of the Quaternion Eigenvalues in 3D. We now present our closed-form
algebraic solution to the quaternion version of the 3D RMSD optimization problem, which has traditionally
been examined only numerically. The basic function arising in the solution for all three of the {X,Y, Z}
determining the eigenvalues in Eq. (19) is only one line long:

Ff (p2, p3, p4) =
1

6

(
r(p) cosf (p)− p2

)
where

cosx(p)=cos
(

arg(a+ib)
3

)
, cosy(p)=cos

(
arg(a+ib)

3 − 2π
3

)
, cosz(p)=cos

(
arg(a+ib)

3 + 2π
3

)
.

(24)
Here Ff (p) corresponds to X(p), Y (p), and Z(p) for f = {x, y, z}, and, in the notation of the C math library,
arg(u+ iv) = atan2(v, u) (or ArcTan[u, v] in Mathematica). The utility functions reduce to

a(p2, p3, p4) = p2
3 + 1

2

(
27p3

2 − 72p2p4
)

r2(p2, p3, p4) = p2
2 + 12p4

b2(p2, p3, p4) = r6 − a2

 . (25)

Accuracy and Performance. Substituting the resulting values for X(p), Y (p), and Z(p) into Eq. (19)
produces the four eigenvalues εk of the matrix M typically in descending numerical order. Taking 100,000
randomized pairs of test and reference data with size N = 10, generating the corresponding 4× 4 profile
matrices M , and comparing the 4-tuples of numerical eigenvalues computed by traditional methods, sorted in
descending numerical order, to the outcome of plugging the numerical values of M into the algebraic
expressions for the eigenvalues in Eq. (19), we find exact matches to approximately machine precision for
every single case examined. Out of 400,000 individual (numeric minus algebraic) eigenvalue differences, the
maximum difference was 10−13 relative to a machine precision of 10−16, and 40,000 were exactly zero, with
the algebraic solutions matching the machine precision of the numerical solutions with no error whatsoever.
We make no claims comparing performance because the efficiency of algebraic expression evaluation is
strongly dependent upon idiosyncrasies of individual compilers and their usage. Using compiled
Mathematica, the algebraic:numeric timing ratio was about 4:1, but with some analysis one can probably
improve that significantly as well as reducing the sources of numerical error in the algebraic evaluation.
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Eigenvectors for 3D Data. The eigenvector formulas corresponding to εk can be generically computed
by solving any three rows of [M · v − ev] = 0 for the elements of v, e.g., v = (1, v1, v2, v3), as a function of
some eigenvalue e (of course, one must account for special cases, e.g., if some element of M is already
diagonal). The desired unit quaternion for the optimization problem can then be obtained from the
normalized eigenvector

q(e, E) =
v

‖v‖
. (26)

Note that this can often have q0 < 0, and that in those cases any exploration that depends on the sign of q0,
such as a slerp from qID, should choose the sign of Eq. (26) appropriately; in some applications, one may also
want an element of statistical randomness, in which case one might randomly pick a sign for q0. In the
general well-behaved case, the form of v in the eigenvector solution for any eigenvalue e = εk may be written
explicitly as

q(e, E) =
1

‖v‖
×


2ABC +A2ex +B2ey + C2ez − exeyez

A(aA− bB − cC)− cBey − bCez − a eyez

B(bB − cC − aA)− aCez − cAex − b ezex

C(cC − aA− bB)− bAex − aBey − c exey

 , (27)

where for convenience we define {ex = (e− x+ y + z), ey = (e+ x− y + z), ez = (e+ x+ y − z)} with
x = Exx, cyclic, a = Eyz − Ezy, cyclic, and A = Eyz + Ezy, cyclic. We substitute the maximal eigenvector
q(ε1, E) into Eq. (3) to give the sought-for optimal 3D rotation matrix R(q(ε1, E)) that solves the RMSD
problem with ∆(q(ε1, E)) = ε1, as we noted in Eq. (11).

5 The 3D Orientation Frame Matching Problem.

We turn next to the orientation-frame problem, assuming that the data are like lists of orientations of roller
coaster cars, or lists of residue orientations in a protein, without considering any spatial location or
nearest-neighbor ordering information. In D-dimensional space, the columns of any SO(D) orthonormal
D×D rotation matrix RD are what we mean by an orientation frame, since these columns are the directions
pointed to by the axes of the identity matrix after rotating something from its defining identity frame to a
new attitude; note that no spatial location information whatever is contained in RD, though one may wish to
choose a local center for the rotation if the frame construction involves coordinates, e.g., protein atom
locations [25].

In 2D, 3D, and 4D, there exist two-to-one quadratic maps from the topological spaces S1, S3, and
S3 × S3 to the rotation matrices R2, R3, and R4. These are the quaternion-related objects that we will use
to obtain elegant representations of the frame data-matching problem. In 2D, our frame data element can be
expressed as a complex phase, in 3D the frame is a unit quaternion (see [25,32]), and in 4D (see
Appendix B), the frame is described by a pair of unit quaternions; higher dimensions may possibly be
addressed with Clifford algebras.

What is a Quaternion Frame? We will first present a bit of intuition about coordinate frames that may
help some readers with our terminology. If we take the special case of a quaternion representing a rotation in
the 2D (x, y) plane, the 3D rotation matrix Eq. (3) reduces to the standard right-handed 2D rotation

R2(θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (28)

As shown in Fig 4, we can use θ to define a unit direction in the complex plane defined by z = exp iθ, and
then the columns of the matrix R2(θ) naturally correspond to a unique associated 2D coordinate frame diad,
with an entire collection of points z and their corresponding frame diads depicted in Fig 5.
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Fig 4. One2DFrame.pdf. A standard 2D
coordinate frame corresponds to the columns of
ordinary rotation, and is associated to the point
(cos θ, sin θ) on a unit circle.

Fig 5. lotsof2DFrames.pdf. The standard 2D
coordinate frames associated with a sampling of the
entire circle of points (cos θ, sin θ).

Starting from this context, we can get a clear intuitive picture of what we mean by a “quaternion frame”
before diving into the quaternion RMSD problem. The essential step is to look again at Eq. (3) for nx = 1,
and write the corresponding quaternion as (a, b, 0, 0) with a2 + b2 = 1, so this is a “2D quaternion,” and is
indistinguishable from a complex phase like z that we just introduced. There is one significant difference,
however, and that is that Eq. (3) shows us that R2(θ) takes a new form, quadratic in a and b,

R2(a, b) =

[
a2 − b2 −2ab

2ab a2 − b2
]
. (29)

Using either the formula Eq. (4) for q(θ, n̂) or just exploiting the trigonometric double angle formulas, we see
that Eq. (28) and Eq. (29) correspond and that

(a, b) = (cos(θ/2), sin(θ/2)) (30)

u = (a+ i b) =
√
z = eiθ/2 . (31)

Our simplified 2D quaternion thus describes the square root of the usual Euclidean frame given by the
columns of R2(θ). Thus the pair (a, b) (the reduced quaternion) itself corresponds to a frame. In Fig 6, we
show how a given “quaternion frame,” i.e., the columns of R2(a, b), corresponds to a point u = a+ i b in the
complex plane. Diametrically opposite points (a, b) and (−a,−b) now correspond to the same frame! Fig 7
shows the corresponding frames for a large collection of points (a, b) in the complex plane, and we see the
new and unfamiliar feature that the frames make two full rotations on the complex circle instead of just one
as in Fig 5.

This is what we have to keep in mind as we now pass to using a full quaternion to represent an arbitrary
3D frame triad via Eq. (3). The last step is to notice that in Fig 7 we can represent the set of frames in one
half of the complex circle, a ≥ 0 shown in magenta, as distinct from those in the other half, a < 0 shown in
dark blue, where all opposite pairs have the same value of the b coordinate. In the quaternion case, we will
display quaternion frames inside one single sphere, like displaying only the b coordinates in Fig 7 on a line,
realizing that if one knows the opposite-sign coloring, we can determine both the magnitude of the dependent
variable a = ±

√
1− b2 as well as its sign. The same holds true in the general case: if we display only the

3-vector part q = (qx, qy, qz) along with a color specifying the sign of q0, we implicitly know both the
magnitude and sign of q0 = ±

√
1− qx2 − qy2 − qz2, and such a plot therefore accurately depicts any

quaternion.
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Fig 6. One2DabFrame.pdf. The quaternion
point (a, b), in contrast, corresponds via the
double-angle formula to coordinate frames that
rotate twice as rapidly as (a, b) progresses around
the unit circle that is a simplified version of
quaternion space.

Fig 7. lotsof2DabFrames.pdf. The set of 2D
frames associated with the entire circle of
quaternion points (a, b); each diametrically opposite
point corresponds to an identical frame. For later
use in displaying full quaternions, we show how
color coding can be used to encode the sign of one
of the coordinates on the circle.

Example. We illustrate all this in Fig 8(A), which shows a typical collection of quaternion reference-frame
data displaying only the q components; the q0 ≥ 0 data are mixed with the q0 < 0 data, but are
distinguished by the color coding. In Fig 8(B), we show the frame triads resulting from applying Eq. (3) to
each quaternion point and plotting it at the associated point in the display.

(A) (B)

Fig 8. fig3DFrmAxes1.pdf, fig3DFrmRef2.pdf. (A) The 3D portions of the quaternion reference-frame
data q = (q0, qx, qy, qz), using different colors for q0 ≥ 0 and q0 < 0 in the unseen direction. Since
|q0| =

√
qx2 + qy2 + qz2, the complete quaternion can in principle be determined from the figure. (B) The 3D

orientation frame triads for each reference point (q0, qx, qy, qz) displayed at their associated q = (qx, qy, qz).
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The Arc-Length Distance. We focus now on the 3D orientation-frame case. We might assume we could
just define the “QRMSD problem” by converting our list of frame matrices to quaternions (see [25,32] and
also Appendix C), and writing down the quaternion equivalents of the RMSD treatment in Eq. (6) and
Eq. (7). However, there are some complications related to the fact that, while the Euclidean center of mass of
a cluster of (possibly weighted) points is linear and is easily solved by computing the average, the preferred
quaternion equivalent of computing the center of mass technically requires a non-linear minimization of the
sums of geodesic arc-lengths connecting the points on the hypersphere S3, and its non-triviality is the subject
of its own branch of the literature [36,37]. The rigorous form of the arc-length measure problem (see,
e.g., [26–28]) can be expressed by minimization of the sums of squared arc-length differences,

QRMSD2 → S 2
arclength =

N∑
k=1

(2 arccos |(q ? pk) · rk|)2 , (32)

where q, {pk}, and {rk} are quaternions, and the absolute value ensures that the correct cosine will be
chosen regardless of any quaternion sign. q corresponds to the rotation R(q) in Eq. (3), p similarly refers to
the test orientation-frame data, r represents the reference frame data, and “?” denotes the quaternion
multiplication by q acting on the entire set {pk} to rotate it to a new orientation that we want to align
optimally with the reference frames {rk}. The task is to find q that minimizes this sum.

We can understand this expression by observing that the alignment of two unit vectors in any dimension
is quantified by the Euclidean dot product a · b = ‖a‖‖b‖ cos θa,b = cos θa,b. Thus the arccosine is just the
angle between the directions, and Eq. (32) produces the angular measure in dimensionless units such as
radians. In the specific quaternion context, one may introduce a factor of 2 that comes formally from the 1/2
in the relation of quaternion-space angles to 3D rotation angles in Eq. (4),
arccos q0 = arccos (cos(θ/2)) = θ/2; this scaling can be omitted. The behavior of Eq. (32) is highly nonlinear
for 3D frames, and minimization can typically only be achieved by numerical methods, in parallel to the
spherical averaging problem [37], though in 2D space the problem linearizes to an equivalent 1D Euclidean
center-of-mass problem and is normally trivial.

The Linear Chord Distance. However, in the common situation that corresponding pairs of frames are
“not too far apart,” there is another viable option, the Euclidean chord measure using the Euclidean distance
between the end points, which can be written

QRMSD2 → S 2
chord =

N∑
k=1

‖q ? pk − rk‖2 , (33)

and now looks exactly like Eq. (6). The basic differences between an individual term in the arc-measure
distance and the chord-measure distance, including the implications of quaternion sign ambiguity, are
illustrated in Fig 9 .

Observing that squared distances resembling single terms in Eq. (33) can be written as

‖a− b‖2 = a · a− 2a · b+ b · b
= 2− 2 cos(θ) (34)

cos θ = θ2
(

1− θ2

12
+

θ4

360
− · · ·

)
,

we see that, to within errors of order θ2/12, we could thus effectively replace minimizing the cumulative
squared geodesic angular differences by maximizing the cumulative cosines related to the angular differences.
However, as noted in Fig 9, defining cos θ = a · b using quaternions depends on the signs of the two
quaternions, either of which can change sign without affecting its corresponding 3D frame triad, so we have
to do something that corrects for this sign ambiguity. One way that often is sufficient is to modify the signs
of the test quaternions individually to force all the local inner products with their corresponding reference
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Fig 9. arcvschord.pdf. Because the vectors q and −q give the same rotation matrix, one must choose
| cos θ| or the minimum of the chord distances to get the right arc-length or chord measure.

quaternions to be positive, and use only such corrected terms in the distance measure. If there are no
sign-ambiguity-induced issues, we can then take our measure to be

∆chord(q) =

N∑
k=1

(q ? pk) · rk

=

3∑
a=0,b=0

Q(q)ba

N∑
k=1

pk
ark

b

= trQ(q) ·W , (35)

where Q(q) is defined by Eq. (1), and Wab =
∑N
k=1 pk

ark
b, in parallel to the Euclidean-space

cross-covariance matrix Eab, except that the range of (a, b) is (0 . . . 3) instead of (1 . . . 3), and the data are
unit vectors instead of free vectors. Note also that Q(q) is linear in q, while R(q) was quadratic in q. Pulling
out the (linear) coefficients of (q0, q1, q2, q3), we find

∆chord(q) = q · V , (36)

where the frame data have collapsed to a single column vector V , analogous to the profile matrix M , of the
form

V =


+W00 +W11 +W22 +W33

+W01 −W10 +W23 −W32

+W02 −W20 +W31 −W13

+W03 −W30 +W12 −W21

 . (37)

With the caveat that we cannot guarantee with absolute certainty the absence of sign issues in Eq. (35), the
solution for the optimal unit quaternion trivializes to

qopt =
V

‖V ‖
, (38)

since that immediately maximizes the value of ∆chord in Eq. (36). This gives the cost at maximum to be

∆chord(qopt) = ‖V ‖ , (39)

and thus ‖V ‖ is the exact orientation frame analog of the spatial RMSD maximal eigenvalue εopt, except it
is far easier to compute.
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Geometrically, the relationship of the arc and chord distances for a set of orientation-frame test and
reference data can be displayed as in Fig 10 , which depicts both the quaternion arc and chord distances for
each point pair in the 4D quaternion space corresponding to the 2D schematic presentation in Fig 9 . In
Fig 11 and 12, we show the quaternion-space analog of the progress from the initial state of the QRMSD
problem in Fig 10 , corresponding to the identity quaternion in Eq. (35), through an intermediate rotation in
Fig 11 , and finally reaching the optimal alignment of test and reference frames in Fig 12 corresponding to
qopt from Eq. (38).

Fig 10. fig3DFrmArcChord3.pdf. Plot of the 3D components of an orientation data set comparing the
quaternion arc-length distances between the test and reference points to the approximate chord-length
distances.

Match fcn: -0.389349

t =0.34
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Fig 11. fig3FRotMatch4.pdf. Partial rotation of the test set from the quaternion identity state towards
the optimal alignment.

Matrix Form of the Linear Vector Chord Distance. While Eq. (36) does not immediately fit into
the eigensystem-based RMSD matrix method used in the previous section, it can in fact be easily
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Fig 12. fig3FRotMatch5.pdf. The optimal alignment at t = 1 showing the best match of the test
quaternion frame set to its reference set of orientation frames.

transformed from a system linear in q to an equivalent matrix system quadratic in q. Since any power of
optimization measure will yield the same extremal solution, we can simply square the right-hand side of
Eq. (36) and write the result in the form

∆chord-sq = (q · V )(q · V )

=

3∑
a=0,b=0

qa VaVb qb

= q · Ω · q , (40)

where Ωab = VaVb is a 4× 4 symmetric matrix with det Ω = 0, and tr Ω =
∑
a Va

2 6= 0. The eigensystem of Ω
can be solved either numerically or algebraically with the extensions of our method to the tr 6= 0 case in
Appendix B . The process differs dramatically from what we did with ∆chord, but the eigenvectors are
necessarily identical. Thus it is in fact possible to merge the ∆chord QRMSD system into the matrix method
of the spatial RMSD using Eq. (40) if desired.

Quadratic Rotation Matrix Chord Distance. However, there is another approach that has a very
natural way to incorporate manifestly sign-independent chord distances into our general context, and which
has a very close relationship to ∆chord. The method begins with the observation that full 3D rotation
matrices like Eq. (3) can be arranged to rotate the set of frames of the {pk} to be as close as possible to the
reference frame {rk} by employing a measure that is a particular product of rotation matrices (see, e.g., [27]).
The essence is to notice that the trace of any 3D rotation matrix expressed in axis-angle form (rotation about
a fixed axis n̂ by θ) can be expressed in two equivalent forms:

trR(θ, n̂) = 1 + 2 cos θ (41)

trR(q) = 3q0
2 − q12 − q22 − q32 . (42)

We thus examine the following alternative, which, remarkably, produces an explicitly symmetric and traceless
profile matrix in the quaternions even though there is a constant in the expression Eq. (41). We ignore
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constant factors, and begin with this form of the orientation-frame measure [27]:

∆RRR =

N∑
k=1

tr
[
R(q) ·R(pk) ·R−1(rk)

]
(43)

=

N∑
k=1

tr [R(q) ·R(pk) ·R(r̄k)] (44)

=

N∑
k=1

tr [R(q) ·R(pk ? r̄k)] (45)

=

N∑
k=1

tr [R(q ? pk ? r̄k)] , (46)

where r̄ denotes the complex conjugate or inverse quaternion. We note that due to the correspondence of
∆RRR with a cosine measure (via Eq. (41)), this must be maximized to find the optimal q, so both ∆chord
and ∆RRR correspond naturally to the cross-term measure we used for Euclidean point data, which we will
now refer to as ∆x when necessary to distinguish it.

We next observe that the formulas for ∆RRR and the pre-summation arguments of ∆chord are related as
follows:

N∑
k=1

tr [R(q) ·R(pk) ·R(r̄k)] =

N∑
k=1

(
4 ((q ? pk) · rk)

2 − (q · q)(pk · pk)(rk · rk)
)
, (47)

where of course the last term is essentially just a constant if one applies the unit-length constraint to all the
quaternions, but is algebraically essential to the construction. The odd form of Eq. (47) is not a
typographical error: the conjugate r̄ of the reference data must be used in the R ·R ·R expression, and the
ordinary r must be used in both terms on the right-hand. We conclude that using the R ·R ·R measure and
replacing the argument of ∆chord by its square before summing over k are equivalent maximizing measures
that eliminate the quaternion sign dependence.

Choosing Eq. (43) has the remarkable feature of producing, via Eq. (3) for R(q), a symmetric, traceless
profile matrix U(p, r) that is quartic in the quaternion elements pk and rk. This variant of the chord-based
QRMSD problem thus falls into the same category as the standard RMSD problem, and permits the
application of the same exact solution (or, indeed, the traditional numerical solution method if that is more
efficient). The profile matrix equation is unwieldy to write down explicitly in terms of the quaternion
elements quartic in {p, r}, but we actually have several options for expressing the content in a simpler form.
One is to write the matrices in abstract canonical 3× 3 form, e.g.,

R(p) = [P ] =

 pxx pxy pxz
pyx pyy pyz
pzx pzy pzz

 , (48)

where the columns of this matrix are just the three axes of each data element’s frame triad. This is often
exactly what our original data look like, for example, if the residue orientation frames of a protein are
computed from cross-products of atom-atom vectors [25]. Then we can define for each data element the 3× 3
matrix

[Sk] = [Pk] · [R−1k ] ≡ R(pk) ·R(r̄k)] = R(pk ? r̄k) = R(sk) ,

so we can write S either in terms of a 3× 3 matrix like Eq. (48) derived from the actual frame-column data,
or in terms of Eq. (3) and the quaternion frame data sk = pk ? r̄k. We then may write the frame measure in
general as

∆RRR =

N∑
k=1

tr (R(q) · Sk) =

3∑
a=1,b=1

Rba(q)Sab , (49)
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where the frame-based cross-covariance matrix is simply Sab =
∑N
k=1 [Sk]ab. As before, we can easily expand

R(q) using Eq. (3) to convert the measure to a 4D linear algebra problem of the form

∆RRR =

3∑
a=0,b=0

qa · Uab · qb = q · U · q . (50)

Now we can write the profile matrix U =
∑
k Uk appearing in ∆RRR either in terms of the individual k-th

components of the numerical 3D rotation matrix [S] = [P ] · [R−1] or using the composite quaternion
s = p ? r̄ :

Uk([S]) ≡ U(sk)

=


Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Sxz + Szx
Szx − Sxz Sxy + Syx −Sxx + Syy − Szz Syz + Szy
Sxy − Syx Sxz + Szx Syz + Szy −Sxx − Syy + Szz


k

(51)

=


3s0

2 − s12 − s22 − s32 −4s0s1 −4s0s2 −4s0s3
−4s0s1 −s02 + 3s1

2 − s22 − s32 4s1s2 4s1s3
−4s0s2 4s1s2 −s02 − s12 + 3s2

2 − s32 4s2s3
−4s0s3 4s1s3 4s2s3 −s02 − s12 − s22 + 3s3

2


k

.(52)

Both Eq. (51) and Eq. (52) are quartic (and identical) when expanded in terms of the quaternion data
{pk, rk}. To compute the necessary 4× 4 numerical profile matrix U , one need only substitute the
appropriate 3D frame triads or their corresponding quaternions for the kth frame pair and sum over k .
Since the orientation-frame profile matrix U is symmetric and traceless just like the Euclidean profile matrix
M , the same solution methods for the optimal quaternion rotation qopt will work without alteration.

Evaluation. The validity of our approximate chord-measures for determining the optimal global frame
rotation can be evaluated by comparing their outcomes to the precise angular arc-length measure of Eq. (32).
The latter is tricky to optimize, but choosing appropriate techniques, e.g., in the Mathematica
FindMinimum[ ] utility, it is possible to determine good numerical solutions without writing custom code; in
our experiments, fluctuations due to numerical precision limitations were noticeable, but presumably
conventional conditioning techniques, which we have not attempted to explore, could improve that
significantly. We employed a collection of 1000 simulated quaternion data sets of length 100 for the reference
cases, then imposed a normal distribution of random noise on the reference data, followed by a global
rotation of all those noisy data points distributed around 45◦ to produce a corresponding collection of
corresponding quaternion test data sets to be matched. (Observe that we do not expect the optimal rotation
angles to match the exact global rotations, though they will be nearby.)

We then collected the optimal quaternions for the following cases:

(a) Arc-Length (numerical). This is the “gold standard,” modulo the occasional data pair that seems
to challenge the numerical stability of the computation (which was to be expected). We obtained the
data set (a) of quaternions that numerically minimized the nonlinear geodesic arc-length-squared
measure of Eq. (32); this is in principle the best estimate one can possibly get for the optimal
quaternion rotations to align a set of 3D test-frame triads with a corresponding set of reference-frame
triads. There is no known way to find this set of optimal quaternions using our linear algebra methods.

(b) Chord-Length (numerical and algebraic). This approach determines the data set (b) based on
the approximation to Eq. (6) illustrated in Fig 9 , replacing the arc-length by the chord-length, which
amounts to removing the arccosine and using the effective cosine to define the measure. The form given
in Eq. (33) is a minimization problem that is exactly the quaternion analog of the RMSD problem
definition in Eq. (6) for spatial data, with the additional constraint that all the spatial data must be
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unit-length 4-vectors (which have only 3 degrees of freedom) instead of arbitrary 3-vectors. In addition,
the sign ambiguity of quaternions must be resolved for Eq. (33) to be valid: if for some k the sign of rk
relative to pk is inconsistent with the previous pair, Eq. (33) will become nonsense. In the simulations
used in our evaluation study, we have used the reference set as the starting point for moderate
pertubations to get the test set; in real life, enforcing this constraint is feasible but not necessarily
trivial. Just as Eq. (6) and its cross-term form Eq. (7) give exactly the same results for spatial data
when the measures are minimized and maximized, respectively, the orientation-problem equations
Eq. (33) and Eq. (35) do the same for the quaternion measure. Finally, the two cross-term forms
Eq. (36) and Eq. (40) give the same optimal quaternions, with the interesting fact that Eq. (36) yields
the optimal quaternion from a linear equation, and Eq. (40) gives an identical result from a quadratic
matrix equation that works the same way as the RMSD matrix optimization, except that the
symmetric profile matrix is no longer traceless.

Thus there are in fact four ways of looking at the chord-length measure and obtaining exactly the same
optimal quaternions, and we have checked these using two numerical optimizations and two algebraic
optimizations. These options are:

– Minimizing Euclidean Chord-Length Squared. Here we write the chord-approximation to
the QRMSD problem using Eq. (33), which is exactly parallel to the RMSD problem employing
Eq. (6), modulo the sign ambiguity issue. We test this by performing a numerical minimization.

– Maximizing Chord-Length Cross-Term. Just as the RMSD cross-term maximization
problem Eq. (7) is equivalent to the RMSD minimization problem of Eq. (6), we can use
maximization of the quaternion cross-term Eq. (35) equivalently with the minimization of the
chord-length Eq. (33). We test this by performing a numerical maximization.

– Linear Reduction of Chord-Length Cross-Term. Pulling out the linear coefficients of the
each quaternion component in Eq. (35) generates Eq. (36), where the 4-vector Va(W ) of Eq. (37)
plays the role of the RMSD profile matrix Mab(E) in Eq. (9). Here we test the optimization by
algebraically solving the linear expression Eq. (36).

– Quadratic Equivalent Matrix Form of the Chord-Length Cross-Term. Finally, there is
in fact a maximal matrix eigenvalue problem Eq. (40) that works like Eq. (9) by squaring Eq. (36)
to get a matrix problem q · Ω · q with Ωab = VaVb. Despite the presence of a nonvanishing trace,
the maximal quaternion eigenvectors are the same as the other three cases above. This produces
the same optimal quaternion solutions as solving the (much, much simpler) linear problem of
Eq. (36). This can also be checked algebraically.

(c) (tr R(q) ·R(p) ·R(r̄)) Chord-Length (algebraic). Finally, the most rigorous method if consistency
of quaternion signs cannot be guaranteed is to use a measure in which algebraic squares occur
throughout and enforce rigorous sign-independence. This is our (c) data set. Such measures must of
necessity be quartic in the quaternion test and reference data, and thus are distinct from the measures
of (b) that are quadratic in the data elements. This (trR(q) ·R(p) ·R(r̄)) measure is the form that is
most easily integrated into the combined rotational-translational problem treated in the next section,
because the combined matrices are both symmetric and traceless like the original RMSD profile
matrices. Furthermore, it is obvious from Eq. (47) that this measure is exactly the same as the one
obtained from Eq. (35) if we squared each term in k before summing the cross-term data elements in
option (b). Thus, whichever actual formula we choose, we appear to have exhausted the options for
quaternion-sign-independent quartic measures for the orientation data problem.

The task now is simply to evaluate how close the optimal quaternion solutions for the arc-length measure
(a) are to the quadratic chord-length measures (b) and the quartic chord-length measures (c). In addition, we
would like to know how close the fragile but very elegant quadratic measures (b) are to the rigorously
sign-insensitive quartic measures (c); we expect them to be similar, but we do not expect them to be
identical.

To quantify the closeness of the measures, we took the magnitude of the inner products between
competing optimal quaternions for the same data set, which is essentially a cosine measure, took the
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Fig 13. aab1Histogram.pdf, aac3Histogram.pdf, b1c3Histogram.pdf. Spectrum in degrees of
angular differences between optimal quaternion alignment rotations for quaternion frames. (a:b): (a) vs (b),
true arc-length vs approximate quadratic chord-length measure. (a:c): (a) vs (c), true arc-length vs
approximate quartic chord-length measure. (b:c): (b) vs (c), approximate quadratic vs approximate quartic
chord-length measure.

arccosines, and converted to degrees. The results were histogrammed for 1000 random samples consisting of
N = 100 data points, and are presented in Fig 13. The means and standard deviations of the optimal total
rotations relative to the identity frame for the three cases are:

Measure Type Mean(deg) Std Dev(deg)
(a) arc-length 44.8062 11.2307
(b) chord quadratic 44.8063 11.2308
(c) chord quartic 44.8065 11.2310

.

One can see that our simulated data set involved a large range of global rotations, and that all three methods
produced a set of rotations back to the optimal alignment that are not significantly different statistically. We
thus expect very little difference in the histograms of the case-by-case optimal quaternions produced by the
three methods. The mean differences illustrated in the Figures are summarized as follows:

Figure:(Pair) Mean(deg) Std Dev(deg)

Figure 13 (a:b) 0.0021268 0.0011284
Figure 13 (a:c) 0.0084807 0.0044809
Figure 13 (b:c) 0.0063539 0.0033526

.

We emphasize that these numbers are in degrees for 1000 simulated samples with a distribution of global
angles having a standard deviation of 11◦. Thus we should have no issues using the chord approximation,
though it does seem that the q · V measure is significantly better both in accuracy and simplicity of
computation (modulo the ever-present need to resolve sign ambiguity).

6 The 3D Combined Point+Frame Matching Problem.

Since we now have precise matching procedures for both 3D spatial coordinates and 3D frame triad data
(using the exact measure for the former and the approximate chord measure for the latter), we can consider
the full 6 degree-of-freedom matching problem for combined data from a single structure. In fact this
problem can also be solved in closed algebraic form given the eigensystem formulation of the orientation
matching problem already presented in the previous section. While there are clearly appropriate domains of
this type, e.g., any protein structure in the PDB database can be converted to a list of residue centers and
their local frame triads [25], little is known at this time about the potential value of combined matching. To
establish the most complete possible picture, we now proceed to describe the details of our solution to the
matching problem for combined translational and rotational data, but we remark at the outset that the
results of the combined system are not obviously very interesting.
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In our treatment, we will assume the ∆RRR measure since its profile matrix is traceless and manifestly
independent of any random flipping of the quaternion signs, but there is no obstacle to using ∆frame-sq if

the data are properly prepared and one prefers the simpler measure. For notational simplicity, we will let ∆f

stand for whatever orientation frame measure we have chosen, corresponding to ∆x for the spatial measure,
and thus we will denote the combined measure by ∆xf .

The Combined Optimization Measure. A significant aspect of establishing a combined measure
including the point measure ∆x and the frame orientation measure ∆f is the fact that the measures are
dimensionally incompatible. We cannot directly combine the corresponding data minimization measures
∆x(qx) = εx:max and ∆f (qf ) = εf :max because the spatial measure has dimensions of (length)

2
and the frame

measure is essentially a dimensionless trigonometric function (the arc-distance measure produces (radians)
2
,

which is still incompatible).
While it should be obvious that a combined measure requires an arbitrary, problem-specific, interpolating

constant with dimensions of length to produce a compatible measure, there has been some confusion in the
molecular entropy literature, where such measures seem first to have been employed. These issues were
resolved and dimensionful constants introduced, e.g., in the work of Fogolari, et al. [29, 30]. Our approach to
defining a valid heuristic combined measure has three components:

• Normalize the Profiles. The numerical sizes of the maximal eigenvalues of the ∆x and the ∆f

systems can easily differ by orders of magnitude. Since scaling the profile matrices changes the
eigenvalues but not the eigenvectors, it is perfectly legitimate to start by dividing the profiles by their
maximal eigenvalues before beginning the combined optimization, since this accomplishes the sensible
effect of assigning maximal eigenvalues of exactly unity to both of our scaled profile matrices.

• Interpolate between the Profiles. To allow an arbitrary sensible weighting distinguishing between
a location-dominated measure and an orientation-dominated measure, we simply incorporate a linear
interpolation parameter t ∈ [0, 1], with t = 0 singling out ∆x and the pure (unit eigenvalue)
location-based RMSD, and t = 1 singling out ∆f and the pure orientation (unit eigenvalue) QRMSD
solution.

• Scale the Frame Profile. Finally, we incorporate the mandatory dimensional scaling adjustment by
incorporating one additional (nominally dimensional) parameter σ that scales the orientation
parameter space described by ∆f to be more or less important than the “canonical” spatial dimension
component ∆x, which we leave unscaled. That is, with σ = 0 only the spatial measure survives, with
σ = 1, the normalized measures have equal contributions, and with σ > 1, the orientation measure
dominates (this effectively undoes the original frame profile eigenvalue scaling).

We thus start with a combined spatial-rotational measure of the form

∆initial = (1− t)
3∑

a=1,b=1

Rba(q)Eab + t σ

3∑
a=1,b=1

Rba(q)Sab

= (1− t) tr (R(q) · E) + t σ tr (R(q) · S)

=

3∑
a=0,b=0

qa [(1− t)Mab(E) + t σ Uab(S)] qb

= q · [(1− t)M(E) + t σ U(S)] · q , (53)

and then impose the unit-eigenvalue normalization on M(E) and U(S), giving our final measure as

∆xf (t, σ) = q ·
[
(1− t)M(E)

εx
+ t σ

U(S)

εf

]
· q . (54)

Because of the dimensional incompatibility of ∆x and ∆f , we have to treat the ratio

λ2 =
tσ

1− t
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as a dimensional constant such as that adopted by Fogolari et al. [30] in their entropy calculations, so if t is
dimensionless, then σ carries the dimensional scale information.

From the profile matrix of Eq. (54), we now extract our optimal rotation solution using the same
equations as always, Eqs. (24), (27), and (11), that we used to solve the standard RMSD maximal eigenvalue
problem. The result is a parameterized eigensystem

εopt(t, σ)
qopt(t, σ)

}
(55)

yielding the optimal values R(qopt(t, σ)), ∆xf = εopt(t, σ) based on the data {E,S} no matter what we take
as the values of the two variables (t, σ).

Properties of the Combined Optimization. Substantially different features arise in the solutions
depending on how close the optimal rotations were for the initial, separate, systems ∆x and ∆f . We now
choose a selection of simulated data sets with the following choices of approximate initial global rotations of
the test data sets relative to the reference data:

DATA ID Initial(Space, Orientation) Offset Measured Eigenvector Offset

Data Set 1 (22◦,−22◦) 44.60
Data Set 2 (22◦,−11◦) 21.98
Data Set 3 (22◦,0◦) 11.15
Data Set 4 (22◦,11◦) 11.15
Data Set 5 (22◦,21◦) 1.20

Table 1. Offsets of sample data for the spatial vs orientation data used in exploring the properties of
combined measures.

In Fig 14, we plot the trajectory of the maximal combined similarity measure for Data Set 1 as a function
of t, showing the behavior for σ = 1.0, 0.80, and 1.15. Figure 15 shows a more comprehensive representation
of the continuous behavior with σ, and in both figures, we see that the true optima are at the end points,
t = 0, 1, the locations associated with the pure profile eigenvector solutions qx(opt) and qf (opt). There is no
better optimal eigenvector (i.e., global rotation) for any intermediate value of t. In some circumstances,
however, it might be argued that it is appropriate to choose the distinguished value of t at the minimum of
the curve ∆xf (t, σ = 1). As we shall see in a moment, just as in Fig 14 for σ = 1, this point is generally
within a few percent of t = 0.5. As the spatial and orientation optima get closer and closer, the curves in t
become much flatter and less distinguished, while the variation in σ is qualitatively the same as in Fig 15 .

Finally, we examine one more amusing visualization of the properties of the composite solutions,
restricting ourselves to σ = 1 for simplicity, and examining the “sideways warp” in the quaternion eigenvector
qopt(t, σ = 1) in Eq. (55). We examine what happens to the combined similarity measure Eq. (54) if we
smoothly interpolate from the identity matrix (that is, the quaternion qID = (1, 0, 0, 0)) through the optimal
solution for each t and beyond the optimum by the same amount, using the slerp interpolation defined in
Eq. (5), i.e., q(s) = slerp(qID, qopt(t, σ = 1), s). Figure 16 shows Data Set 1, with the largest relative spatial
vs orientation angular differences, Figure 17 corresponds to the intervening Data Sets 2, 3, 4, and 5, with the
Data Set parameters in Table 1 ; Data Set 5 in particular is perhaps the most realistic example, having
nearly identical spatial and angular rotations, and we see negligible differences between the spatial and
angular structures. These graphics also show how the local, non-optimal, neighboring quaternion values peak
in s at the optimal ridge going from t = 0 to t = 1. The red dot is the maximum of ∆x at t = 0, the green
dot is the maximum of ∆f at t = 1, and the blue dot, specific to each data set, is the distinguished point at
the minimum of ∆xf (t, σ = 1) in t, which for our data sets are always within 1% of t = 0.5. We observe that
for equal and opposite rotations, the midpoint coincides almost exactly with the identity quaternion that
occurs at the left and right boundaries of the plot. In other respects, the data in these figures show that we
do not have maxima in the middle of the interpolation in t, but we do have a distinguished value, always
very near t = 0.5, that could be used as a baseline for a hybrid translational-rotational rotation choice.
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Fig 14. combinedSimpleTcurves1.pdf. The blue curve is the path of the composite eigenvalue for
Data Set 1 (the value of the similarity measure ∆xf (t, 1)) in the interpolation variable t with equally
weighted space and orientation data, i.e., σ = 1. It has maxima only at the “pure” extremes at t = 0, 1, but
there is a minimum that occurs, for these data, not at t = 1/2, but very nearby at t = 0.49728. Increasing
the influence of the spatial data by taking σ = 0.8 gives the red curve, and increasing the influence of the
orientation data by taking σ = 1.15 gives the green curve.

Fig 15. combinedTSigsurf1.pdf. The ∆(t, σ) similarity-measure surface for Data Set 1 as a function of
the interpolation parameter t and the relative scaling of the orientation term with σ, with the slightly
concave curve at σ = 1 in the middle. The other data sets look very much like this one.
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(Set 1)

Fig 16. combinedTSlerp1.pdf . The ∆xf (t, 1) similarity-measure surface for Data Set 1, x-angle 22◦,
f-angle −22◦, and fixed σ = 1 showing the deviation with the quaternion varying perpendicularly around the
solution q(t), starting at the identity quaternion at s = 0, as a function of the interpolation parameter t.
Since q(t) is the maximal eigenvector, all variations in q peak there. Both have distinguished central points
at t ≈ 0.5.

(Set 2) (Set 3) (Set 4) (Set 5)

Fig 17. combinedTS2345.pdf . The ∆xf (t, 1) similarity-measures with q(s) interpolated from the
identity through the optimum for ∆xf and past to the identity-mirror point, for Data Sets 2, 3, 4, and 5,
where Data Set 5 has the x-angle and the f-angle only one degree apart, as we might have for real
experimental data.
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Fig 18. combinedQQSlerpOffset.pdf. Here we see how close a simple slerp(t) between the extremal
optimal eigenvectors qopt(t = 0, σ = 1) = qx(opt) and qopt(t = 1, σ = 1) = qf (opt) is to the rigorous result
where we optimized qopt(t, σ = 1) for all t. The differences are relative to the unit eigenvalue, and thus are of
order thousandths of a percent, decreasing significantly as the global rotations applied to the space and
orientation data approach one another. The largest deviation is for Data Set 1, which interestingly has a
third minimum near the center in t; for the highly similar data in Data Set 5, the difference shown in red had
to be magnified by 100 even to show up on the graph.
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The Simple Approximation. Having now observed that it is possible to construct and solve a rigorous
combined RMSD-QRMSD problem (with the chord-distance approximation in the angular measure of
course), one might ask how that compares to the very simplest idea one might use to interpolate between the
measures: what if we take the rigorous combined profile matrix defined by Eq. (54), along with the slerp
relating the two optimal eigenvectors of the independent spatial and orientation frame problems, that is

q(t) = slerp(qx:opt, qf :opt, t) . (56)

Given the individual optimal eigenvectors, if we simply plug this trivial q(t) into Eq. (54) for any t (and
σ = 1), we find negligible difference between the results we found above in this Section and Eq. (54)
evaluated with q(t) in Eq. (56).

In Fig 18, we plot the continuous differences of the similarity functions, which we recall are scaled to have
a maximal eigenvalue equal to unity. These scaled differences are on the order of one thousandth of a percent
or less as the global rotations applied to the spatial and rotational data become close to one another. We
conclude that for all practical purposes, we might as well use Eq. (56), in the context of Eq. (54), to estimate
the combined similarities.

Conclusion

Our objective was to explore quaternion-based treatments of the RMSD data-comparison problem as
developed in the work of Davenport [8], Horn [9], Diamond [10], Kearsley [11], and Kneller [12], among
others, and to study its exact solutions, as well as extending it to handle wider problems. We studied the
intrinsic properties of the RMSD problem for translational, rotational, and rotational-translational data
comparison in quaternion-accessible domains, and we obtained exact algebraic solutions for the eigensystems
of the 3D and 4D spatial RMSD problem, as well as solutions for a family of attractive approximations to the
quaternion form of the corresponding orientation-frame problems (QRMSD). We also found closed-form
solutions for the combined translational and orientation-frame RMSD problem, but the results were
essentially indistinguishable from those obtained using a simple interpolation between the optimal spatial
and the optimal orientation-frame eigenvectors.
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Appendices

A Two-Dimensional Limit of 3D Problem

All rotations of the type we have been trying to optimize reduce to a rotation in a 2D plane, which in 3D is
defined by the plane perpendicular to the eigenvector n̂ of the rotation matrix Eq. (3). Data sets that are
highly linear, determining a robust straight line from least squares, can even circumvent the RMSD problem
entirely: a very good rotation matrix can be calculated from the direction x̂ determined by the line fitted to
the data set {xi}, and the similar direction ŷ corresponding to the reference data set {yi}. An optimal
rotation matrix in 3D is then simply

R(θ, n̂) = R(arccos (x̂ · ŷ),̂̂x× ŷ) ,

which is easily generalized to any dimension by isolating just the projections of vectors to the plane
determined by x̂ and ŷ, and rotating in that 2D basis. Thus we conclude that, in general, if we had access to
a prescient preconditioning rotation of the proper form, the entire RMSD problem would reduce to a very
simple rotation in some {x̂, ŷ} plane parameterized by a single angle. We can simulate this, giving a
massively simpler set of expressions, by assuming the data are coplanar, all having z = 0 (or more conditions
in higher dimensions) and thus lying in the {x̂, ŷ} plane, for example. This reduces our fundamental RMSD
profile matrix Eq. (10) for M to

Mz=0 =


x+ y 0 0 c

0 x− y C 0
0 C −x+ y 0
c 0 0 −x− y

 , (57)

where x = Exx, y = Eyy, c = Exy − Eyx, and C = Exy + Eyx. Then p2 = −c2 − C2 − 2(x2 + y2), p3 = 0,
and p4 = (c2 + (x+ y)2)(C2 + (x− y)2), and similarly for the other cyclic cases, x = 0 and y = 0. These are
obviously functions of only two variables, u = c2 + (x+ y)2 and v = C2 + (x− y)2, so we can write in general
p2 = −u− v and p4 = uv. Equation (12) reduces to e4 + e2p2 + p4 = 0 and the eigenvalues become
ε = (

√
u,
√
v,−
√
v,−
√
u ), while the normalized (quaternion) eigenvectors become

q =




x+y+

√
u√

c2+(x+y+
√
u)

2

0
0
c√

c2+(x+y+
√
u)

2

 ,


0
x−y+

√
v√

C2+(x−y+
√
v)

2

C√
C2+(x−y+

√
v)

2

0

 ,


0
x−y−

√
v√

C2+(x−y−
√
v)

2

C√
C2+(x−y−

√
v)

2

0

 ,


x+y−
√
u√

c2+(x+y−
√
u)

2

0
0
c√

c2+(x+y−
√
u)

2


 .

(58)
The leading eigenvalue and its eigenvector produce this optimal rotation in the {x̂, ŷ} plane:

R2D =

 (x+y+
√
u)

2−c2

c2+(x+y+
√
u)

2 − 2c(x+y+
√
u)

c2+(x+y+
√
u)

2

2c(x+y+
√
u)

c2+(x+y+
√
u)

2

(x+y+
√
u)

2−c2

c2+(x+y+
√
u)

2

 . (59)

Yet Another Form. However, we have neglected something. How does this look if we simply go back to

the data matrices for 2D? Let us first write down the 2D version of Eq. (6), taking Eab =
∑N
k=1 x

a
k y

b
k for

a, b = {1, 2}, so the raw form for the spatial RMSD task is to find the rotation matrix

R2(θ) =

[
cos θ − sin θ
sin θ cos θ

]
maximizing

∆2 =

N∑
k=1

(R2 · xk) · yk =

2∑
a=1,b=1

R2
baEab = (Exx + Eyy) cos θ + (Exy − Eyx) sin θ . (60)
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We can either differentiate with respect to θ and set ∆′2(θ) = 0, or simply observe directly that ∆2(θ) is
largest when the vector (cos θ, sin θ) is parallel to its coefficients; both arguments lead to the solution

tan θ =
Exy − Eyx
Exx + Eyy

=
N

M
(61)

(cos θ, sin θ) =

(
M√

M2 +N2
,

N√
M2 +N2

)
. (62)

Now we can see that

x+ y = Exx + Eyy = M
c = Exy − Eyx = N

u = (Exx + Eyy)2 + (Exy − Eyx)2 = M2 +N2

ε = λ =
√
M2 +N2 ,

(63)

and c2 + (x+ y +
√
u)

2
= 2λ(M + λ). Thus in fact the profile matrix becomes

M2 =

[
M N
N −M

]
(64)

and this has eigenvalues exactly ε = ±
√
u = ±

√
M2 +N2, and the eigenvectors are the first and last

columns of Eq. (58) expressed in terms of Eq. (63), so the maximal eigenvector is (a, b), where

a = cos(θ/2) =
λ+M√

2λ(λ+M)
=

√
λ+M

2λ

b = sin(θ/2) =
N√

2λ(λ+M)
= signN

√
λ−M

2λ
.

(65)

(Note the crucial (signN) factor.) Going back to our original 2D rotation matrix in Eq. (59) and substituting
Eq. (63), we recover our optimal result, namely

R2(θ) =

[
M√

M2+N2
− N√

M2+N2

N√
M2+N2

M√
M2+N2

]
(66)

=

[
cos θ − sin θ
sin θ cos θ

]
. (67)

These results are interesting to study because, despite the complexity of the general solution, the intrinsic
algebraic structure of any RMSD problem is entirely characterized by a planar rotation such as that
described by Eq. (59) and Eq. (66).

B Double-Quaternion Approach to 4D RMSD Formula

This Appendix presents the nontrivial steps needed to understand and solve the 4D spatial and
orientation-frame RMSD optimization problems in the quaternion framework. Here we extend our solutions
for the 4× 4 symmetric, traceless profile matrix M3 arising from 3D Euclidean data (see Eqs. (24, 25)) to the
case of unconstrained 4× 4 matrices M4, which arise naturally for 4D Euclidean data. While we might
expect this solution to allow us to solve the 4D RMSD problems in exactly the same fashion as in 3D, this is,
interestingly, false. We will need several stages of analysis to actually find the correct way to apply our
solutions to solve the 4D RMSD context.
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B.1 Double Quaternions and 4D Rotations.

We start with a more general property of quaternions that we have not seen so far, extending Eq. (3) from
three Euclidean dimensions to four Euclidean dimensions by choosing two distinct quaternions in Eq. (2),
and writing

p ? (w, x, y, z) ? q̄ = R4(p, q) · x4 . (68)

Here R4 turns out to be an orthonormal 4D matrix that is quadratic in the pair (p, q) of unit quaternion
elements, which together have exactly the six degrees of freedom required for the most general 4D Euclidean
rotation in the special orthogonal group SO(4). The algebraic form of this 4D rotation matrix is

R4(p, q) =


p0q0 + p1q1 + p2q2 + p3q3 −p1q0 + p0q1 + p3q2 − p2q3
p1q0 − p0q1 + p3q2 − p2q3 p0q0 + p1q1 − p2q2 − p3q3
p2q0 − p3q1 − p0q2 + p1q3 p3q0 + p2q1 + p1q2 + p0q3
p3q0 + p2q1 − p1q2 − p0q3 −p2q0 + p3q1 − p0q2 + p1q3
−p2q0 − p3q1 + p0q2 + p1q3 −p3q0 + p2q1 − p1q2 + p0q3
−p3q0 + p2q1 + p1q2 − p0q3 p2q0 + p3q1 + p0q2 + p1q3
p0q0 − p1q1 + p2q2 − p3q3 −p1q0 − p0q1 + p3q2 + p2q3
p1q0 + p0q1 + p3q2 + p2q3 p0q0 − p1q1 − p2q2 + p3q3

 .

(69)

Since this is a quadratic form in p and q, the rotation is unchanged under (p, q)→ (−p,−q), and the
quaternions are again a double covering. If we set p = q, we recover a matrix that leaves the w component
invariant, and is just the rotation Eq. (3) for the x3 = (x, y, z) component. Rotations can be composed in
quaternion form similarly to the 3D case, with R4(p, q) ·R4(p′, q′) = R4(p ? p′, q ? q′). We observe that the
4D columns of Eq. (69) can be used to define 4D Euclidean orientation frames in the same fashion as the 3D
columns of Eq. (3), and we will return to this at the end of the Appendix.

B.2 Starting Point for the 4D RMSD Problem.

The 4D double quaternion matrix Eq. (69) provides the most general quaternion context that we know of for
expressing an RMSD problem. This RMSD minimization problem for 4D Euclidean point data is equivalent
to maximizing the cross-term expression

∆4 =

N∑
i=1

(R4 · xi) · yi =

3∑
a=0,b=0

R4
baE4:ab = trR4 · E4, (70)

where as usual

E4:ab =

N∑
i=1

x a
i y

b
i =

[
Xt ·Y

]
ab

, (71)

and we define the range of (a, b) to be (0, . . . , 3).
Using Eq. (69) in Eq. (70) to perform the now-familiar rearrangement of the similarity function, we can

rewrite our measure as

∆4 = trR4 · E4 = (p0, p1, p2, p3) ·M4(E4) · (q0, q1, q2, q3)t ≡ p ·M4(E4) · q , (72)

where the extended profile matrix now becomes

M4(E) =


Eww + Exx + Eyy + Ezz +Eyz − Ezy − Ewx + Exw

+Eyz − Ezy + Ewx − Exw Eww + Exx − Eyy − Ezz
+Ezx − Exz + Ewy − Eyw +Exy + Eyx + Ewz + Ezw
+Exy − Eyx + Ewz − Ezw +Ezx + Exz − Ewy − Eyw

+Ezx − Exz − Ewy + Eyw +Exy − Eyx − Ewz + Ezw
+Exy + Eyx − Ewz − Ezw +Ezx + Exz + Ewy + Eyw
Eww − Exx + Eyy − Ezz +Eyz + Ezy − Ewx − Exw

+Eyz + Ezy + Ewx + Exw Eww − Exx − Eyy + Ezz

 . (73)
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B.3 The 4D Eigensystem

We now study the general algebraic solution to the eigenvalue problem for 4× 4 real matrices M4. In the
special case where M4 is symmetric and traceless, we will find that our results reduce to Eqs. (24) and (25).

We have in the back of our mind that we will be working with a linear algebra problem of the form

(p0, p1, p2, p3) ·M4 · (q0, q1, q2, q3)t ≡ p ·M4 · q , (74)

where there can be both left and right eigenvectors p and q for a single eigenvalue of the profile matrix M4 if
it is completely general, with a trace and no symmetry: q represents eigenvectors of M4, and p represents
eigenvectors of the transpose M4

t. Warning: these facts are important, but it will turn out that the
eigensystem of M4 that we will now solve is insufficient by itself to solve the 4D RMSD optimization
problem; nevertheless, the equations that we obtain are highly applicable to the actual solution.

For some types of calculations, we may find it useful to decompose M4 in a way that isolates particular
features using the form

M4(w, x, y, z, . . .) =


w + x+ y + z a− aw b− bw c− cw

a+ aw w + x− y − z C − Cw B +Bw
b+ bw C + Cw w − x+ y − z A−Aw
c+ cw B −Bw A+Aw w − x− y + z

 , (75)

where tr(M4) = 4w, the (x, y, z) combinations are manifestly traceless, the symmetric components are
(a, b, c) and (A,B,C), and the antisymmetric components (aw, bw, cw) and (Aw, Bw, Cw) of course disappear
for the symmetric cases.

We next expand det[M4 − eI4] = 0 (where I4 denotes the 4D identity matrix, and transposing M4 does
not change the problem), along with the corresponding polynomial in the unknown eigenvalues εk, as a power
series in e to obtain our familiar pair of fundamental equations and the result of eliminating e:

e4 + e3p1 + e2p2 + ep3 + p4 = 0
(e− ε1)(e− ε2)(e− ε3)(e− ε4) = 0

}
(76)

p1(E) = (−ε1 − ε2 − ε3 − ε4)
p2(E) = (ε1ε2 + ε1ε3 + ε2ε3 + ε1ε4 + ε2ε4 + ε3ε4)
p3(E) = (−ε1ε2ε3 − ε1ε2ε4 − ε1ε3ε4 − ε2ε3ε4)
p4(E) = ε1ε2ε3ε4

 . (77)

The difference now is that the data coefficients pk of degree k include a trace term 4w = −p1 as well as
possible antisymmetric components throughout the new explicit form that follows from the expansion of
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det[M4 − eI4]:

p1(E) = − tr [M4] = −4w (78)

p2(E) =
1

2
(tr [M4])

2 − 1

2
tr [M4] · [M4]

= 6w2 − 2(x2 + y2 + z2)− a2 −A2 − b2 −B2 − c2 − C2

+Aw
2 + aw

2 +Bw
2 + bw

2 + Cw
2 + cw

2 (79)

p3(E) = − 1

6
(tr [M4])

3
+

1

2
(tr [M4] · [M4]) tr [M4]− 1

3
tr [M4] · [M4] · [M4]

= − 8xyz + 4w(x2 + y2 + z2)

− 2ABC − 2Abc− 2aBc− 2abC

+ 2A2x− 2a2x+ 2B2y − 2b2y + 2C2z − 2c2z

− 2ABwCw + 2Abwcw − 2aBwcw + 2abwCw

− 2AwBCw + 2awBcw − 2awbCw + 2Awbcw

− 2AwBwC + 2awbwC − 2Awbwc+ 2awBwc

+ 2a2w + 2A2w − 2A2
ww − 2A2

wx− 2a2ww + 2a2wx

+ 2b2w + 2B2w − 2B2
ww − 2B2

wy − 2b2ww + 2b2wy

+ 2c2w + 2C2w − 2C2
ww − 2C2

wz − 2c2ww + 2c2wz (80)

p4(E) = det [M4] . (81)

Using a computer algebra tool such as Mathematica to examine these sets of equations, we find that
surprising simplifications similar to those found from Eq. (19) persist in 4D when we include the trace
component in the Ansatz for the eigenvalues as follows:

ε1 = −p14 +
√
X +

√
Y +

√
Z

ε2 = −p14 +
√
X −

√
Y −

√
Z

ε3 = −p14 −
√
X +

√
Y −

√
Z

ε4 = −p14 −
√
X −

√
Y +

√
Z

 . (82)

From Eq. (77), we see that we can generalize Eq. (22) and write the pk for the completely general 4D case as

p1 = p1 (83)

p2 =
3p1

2

8
− 2 (X + Y + Z) (84)

p3 =
p1

3

16
− 8
√
X Y Z − p1(X + Y + Z) (85)

p4 =
p1

4

256
+X2 + Y 2 + Z2− 2 (Y Z + ZX +XY )− p1

√
X Y Z − p1

2

8
(X + Y + Z) . (86)

Exploring the structure of Eqs. (83), (84), (85), and (86) as before, we obtained explicit algebraic solutions
for εk in terms of the X(p), Y (p), and Z(p) in the following form:

Ff (p) =
p1

2

16
− p2

6
− 1

12

φ(f)
(
a(p) +

√
−b(p)2

)1/3
+

n(p)

φ(f)
(
a(p) +

√
−b(p)2

)1/3
 (87)

where Ff (p) with f = (x, y, z) represents X(p), Y (p), or Z(p) corresponding to one of the three values of the
cube roots φ(f) of (−1) given by

φ(x) = −1 , φ(y) = 1
2

(
1 + i
√

3
)
, φ(z) = 1

2

(
1− i

√
3
)
. (88)
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The utility functions are defined as

a(p1, p2, p3, p4) = p2
3 + 1

2

(
27
(
p3

2 + p1
2p4
)
− 9p2(p1p3 + 8p4)

)
n(p1, p2, p3, p4) = 3

√
a2 + b2 = p2

2 − 3p1p3 + 12p4
b(p1, p2, p3, p4)2 = n(p)3 − a(p)2

 . (89)

Remark: the traceful symmetric case is simple. There are several situations in which we encounter
the intermediate case, where tr(M4) 6= 0 but M4 is symmetric, so w 6= 0, while (aw, bw, cw) and (Aw, Bw, Cw)
all vanish. In this case, provided the pk are evaluated with the internal inclusion of w, and Eq. (89) is used in
place of Eq. (25) to include the value of p1 explicitly throughout, one can express the eigenvalues in terms of
the simpler formula Eq. (24) (with no complex phase issues) that we used in the main text by simply adding
the p1

2/16 term appearing in Eq. (87).

Discussion. From Eq. (87), we now know the solutions for the list of eigenvalues εk of M4, and we can
determine their corresponding left and right eigenvectors by solving M4 · vλ = εkvλ or M4

t · vρ = εkvρ as
usual. Although it turns out that understanding the 4D RMSD solution requires further work, this is still a
very interesting general result in its own right. Equations (82) typically consist of one real maximal
eigenvalue, and three others that may be complex, so numerical computations based on Eq. (87) involve
complex numbers and choices of signs and phases. Computing εk from Eq. (87)) using Mathematica and its
default phase choices (which are the typically principal roots of the square roots and cube roots when the
arguments are less than zero), we found that numerical comparisons of thousands of randomized 4D data sets
agreed with all four eigenvalues found by numerical methods. We note that small imaginary numbers near
the machine accuracy limit may appear that need to be dropped; a handful of the algebraic results differed
from the numerical results by values of the order of 10−8, somewhat larger than the expected machine
accuracy limit. We suspect these are due to accidental numerical instabilities of our random matrices; deeper
understanding of these rare anomalies is beyond our scope. Data sets in 3D are much better behaved, since
symmetric real matrices have strictly real eigenvalues. We presented those 3D solutions involving traceless
symmetric 4× 4 profile matrices in the main text as a special simplified form of Eq. (87), observing that our
algebraic expressions are manifestly real and highly suitable for efficient numerical evaluation, though in
practice traditional numerical approximation methods might well be more efficient.

B.4 Issues with the Simplest 4D Approach

To summarize, we previously found that we can maximize ∆ = tr(R3 · E3) over the 3D rotation matrices R3

by mapping E3 to the profile matrix M3, with ∆3 = q ·M3 · q, solving for the maximal eigenvalue εopt, and
choosing Ropt = R3(qopt) with qopt the normalized quaternion eigenvector corresponding to ∆3(opt) = εopt.
The obvious 4D extension of the 3D quaternion RMSD problem would be to examine
∆4 = tr (R4 · E4) = qλ ·M4 · qρ over the 4D rotation matrices R4, where M4 turns out no longer to be
symmetric, so we must split the eigenvector space into a separate left-quaternion qλ and right-quaternion qρ.
Just as in the 3D case, M4 has a maximal eigenvalue εopt, and we find that the optimal eigenvectors qλ:opt
and qρ:opt are easily obtained as the corresponding eigenvectors of M4 and M4

t, so we would suppose that

∆4(opt)
?
= qλ:opt ·M4 · qρ:opt = (qλ:opt · qρ:opt) εopt . (90)

Unfortunately, this is wrong. Not only is it typically much smaller than the actual maximum of
tr(R4(qλ, qρ) · E4) over the space of 4D rotation matrices (or their equivalent representations in terms of qλ
and qρ), but even a simple slerp through qID and just beyond the apparent optimal eigenvectors qλ:opt and
qρ:opt can yield larger values of ∆4! And, to add insult to injury, qλ:opt and qρ:opt are in general not even a
basis for some normalized linear combination that yields the optimal result. What is going wrong, and what
is the path to our hoped-for algebraic solution to the 4D RMSD problem, which seems so close to the 3D
RMSD problem, but then fails so spectacularly to correspond to the obvious hypothesis?
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B.5 Connecting to the Singular Value Decomposition

The quaternion formulations of the 3D RMSD problem and the 4D RMSD problem differ, with 3D being a
special case due to the symmetry of the 4× 4 profile matrix. In 4D, a more general approach is required to
express the optimization of the RMSD in terms of quaternions, and we now approach that in the context of
the general singular-value-decomposition (SVD) method associated with Kabsch [3, 19,20], whose approach
minimizes a Fröbenius norm corresponding to our RMSD cross-term measure.

We start with a 4D cross-covariance matrix Eab (noting that the SVD method holds for any dimension),
where the SVD decomposition is written as

{U, S, V } = SingularValueDecomposition (E4) (91)

where (92)

E4(U, S, V ) = U · S · V t (93)

R4:opt(U,D, V ) = V ·D · U t . (94)

These expressions are related to the decomposition of the symmetric matrices F = E · Et and F ′ = Et · E,
with the row-wise list v of eigenvectors of F and the corresponding eigenvectors v′ of F ′ diagonalizing E4 as

v · E4 · vt = S̃ ,

where S̃ is the (signed) list of eigenvalues of E4; this differs from S, which is the list of positive square roots
of the eigenvectors of F or F ′, which is then the list of absolute values of E4’s eigenvalues. In effect, the SVD
decomposition changes the signs of relevant rows of the eigenvectors v and v′ that diagonalize E4 to
transform them to the almost-identical matrices U and V that make all the signs of S̃ positive, transforming
it into S = U t · E4 · V , which is the (positive) list of the square roots of the eigenvalues of the symmetric
matrices F or F ′ built from E4 and its transpose.

The critical step for our procedure is to encode how this transforms into the quaternion language in 4D,
where we know the following map from any data-derived matrix E4 to the profile matrix M4(E4) as given in
Eq. (73):

tr(R4(p, q) · E4) = p ·M4(E4) · q .

We are not aware of a source for an existing general theorem, but it is easy to show symbolically in simple
cases, and numerically in general cases, that the largest eigenvalue of A = M4 ·M4

t is just the square of the
trace of S, so we can write

εopt = tr(S) =
√

max eigenvalue
(
M4 ·M4

t
)
.

But using the optimal value of the 4D rotation R4:opt(U,D, V ) = V ·D · U t that is known to maximize the
Fröbenius measure of Kabsch, we conclude that, in fact, after decomposing this rotation into its underlying
quaternion pair,

tr
(
R4:opt · E4

)
= tr(S) = popt ·M4 · qopt = εopt .

We will complete the argument now by showing how to find popt and qopt independently using quaternion
eigenvalue expressions without explicitly writing down the SVD.

Summary: Solving the 4D RMSD problem. Here now is a summary of how we can rephrase the
SVD approach for maximizing the 4D RMSD measure in terms of quaternion methods:

• Compute the profile matrix. Using the quaternion decomposition Eq. (69) of the general 4D
rotation matrix R4(p, q), extract the 4D profile matrix M4(E4) of Eq. (73) from the initial proximity
measure

∆4(opt) = tr(R4(popt, qopt) · E4) = popt ·M4 · qopt . (95)

So far all we know is the numerical value of M4.
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• Extract the optimal eigenvalue. The value of ∆4(opt) is just the square root of the maximal
eigenvalue of the 4× 4 symmetric matrix A = M4 ·M4

t, which is itself easily obtained from Eq. (87), or
the symmetric version Eq. (24) extended to handle the non-vanishing trace. If the relative optima for a
series of data sets are all we need, we are done,

∆4(opt) =
√

max eigenvalueA = ε(opt) .

• Use the eigenvalue to compute the eigenvectors p and q. We have in fact two distinct
symmetric matrices,

A = M4 ·M4
t

A′ = M4
t ·M4

that have their own eigenvectors, both corresponding to the maximal eigenvalue ε(opt)2 shared by A
and A′, so we can easily solve (

A− ε(opt)2I4
)
· p = 0(

A′ − ε(opt)2I4
)
· q = 0

for popt and qopt, and this in turn yields the required 4D rotation matrix

R4:opt
(
popt, qopt

)
from Eq. (69). This solves for the explicit rotation matrix in algebraic form, as well as its
corresponding quaternion-pair, and also provides a cross-check from Eq. (95),

popt ·M4 · qopt = ε(opt) ,

which follows from the expansion of ∆4(opt). (Note that popt and qopt are absolutely not eigenvectors
of M4, but of A and At, which define a distinct eigensystem; of course, since the eigenvectors of M4

span the space, there is in principle a relationship. We already noted above that, in 4D, the maximal
eigenvectors of M4 itself yield values of ∆4 that are typically significantly smaller than the maximum
we have just computed.)

• Remark on the solving for the SVD matrices. It is perhaps significant to note that our results
permit the algebraic calculation not just of a single eigenvalue and its associated eigenvector, but of the
entire four-part eigensystem. Thus we could even choose to work only with the (nonsymmetric,
traceful) 4D cross-covariance matrix Eab, and find the pair of eigensystems corresponding to

F = E4 · E4
t

F ′ = E4
t · E4 .

Computing the four shared (square root) eigenvalues εk for F and F ′, we can solve for the eight
corresponding 4D eigenvectors from (

F − εk2I4
)
· pk = 0(

F ′ − εk2I4
)
· qk = 0 .

Up to signs, these are simply the vectors Ũ with columns [p1, p2, p3, p4] and Ṽ with columns
[q1, q2, q3, q4] diagonalizing the E4 matrix

Ũ t · E4 · Ṽ = S̃ ,

where S̃ has the same elements as the SVD diagonal matrix S except that the elements of S are all
positive. By simply changing the signs of the pk and qk eigenvectors required to make S̃ ≡ S, we
achieve the SVD matrices U and V , and thus from the closed-form algebraic solutions for εk, we can
compute a fairly compact algebraic form for the general 4D SVD solution. That information provides
an equivalent solution to the 4D RMSD problem via the Kabsch algorithm.
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B.6 Remark on 4D Frames

Orientation frames in four dimensions have axes that are the columns of a 4D rotation matrix taking the
identity frame to the new orientation frame. Therefore, in parallel with the 3D case, such frames can be
represented either as 4D rotation matrices (the action on a 4D identity frame to get a new set of 4
orthogonal axes), or as the pair of quaternions (p, q) used in Eq. (69) to define R4(p, q). As in the 3D frame
case, we will take advantage of the chord-distance linearization of the gold-standard angular measure, and we
shall present two alternative approaches to the optimization measure.

Quadratic Form. In 3D, with Eqs. (36) and (37) having a single quaternion involved in the rotation, we
were able to write down ∆chord = q · V (W ) in terms of a simple expression linear in the quaternion q and

the cumulative data V , and we observed that a quadratic expression (q · V )
2

would also produce the same
optimal value q = V/‖V ‖. The optimal frame problem in 4D, in contrast, already requires a pair of
quaternions, and one strategy is to split the analogs of the 3D quadratic expression into two parts, yielding

∆4:chord = (q · V ) (q′ · V ′) = qa (VaV
′
b ) q′b = q · Ω · q′ (96)

as the generalization from 3D to 4D. Here V is built from Wab =
∑N
k=1 pk

ark
b, and V ′ is built from

W ′ab =
∑N
k=1 p

′
k
a
r′k
b

according to Eq. (37), where each 4D test frame consists of frames denoted by the
quaternion pair (p, p′), and each reference frame employs a pair (r, r′). Modulo the usual issue with
consistent quaternion signs, now for the 4D frame pairs, the solution for the optimal quaternions must
achieve the maximum for both elements of the pair, and so we obtain as a solution maximizing Eq. (96)

qopt =
V

‖V ‖

q′opt =
V ′

‖V ′‖

∆4:chord(opt) = ‖V ‖‖V ′‖


. (97)

Remark: Various other polynomials in (q · V ) and (q′ · V ′) will produce the same pair of solutions.
There is a particular reason to prefer Eq. (96): in the next section, we will see that the pre-summation
arguments for V and V ′, gathered together, are exactly equal to the 4D triple rotation pre-summation
arguments, following the pattern seen in Eq. (47) for the 3D orientation-frame analysis.

Quartic Triple Rotation Form. One can also define a 4D frame similarity measure that is the exact
analog of Eq. (46) in 3D as follows:

∆RRR4 =

N∑
k=1

tr
[
R4(q, q′) ·R4(pk, p

′
k) ·R−1(rk, r

′
k)
]

(98)

=

N∑
k=1

tr [R(q, q′) ·R(pk ? r̄k, p
′
k ? r̄

′
k)] (99)

=

N∑
k=1

tr [R(q ? pk ? r̄k, q
′ ? p′k ? r̄

′
k)] (100)

= q · U4(p, p′; r̄, r̄′) · q′ . (101)

Remarkably, there is a 4D version of the 3D identity Eq. (47) relating the triple rotation measure to the
quadratic realizations of the linear quaternion rotation measures, namely

N∑
k=1

tr [R(q, q′) ·R(pk, p
′
k) ·R(r̄k, r̄

′
k)] = 4

N∑
k=1

((q ? pk) · rk) ((q′ ? p′k) · r′k) . (102)
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Thus the pre-summation version of the arguments in the (q · V )(q · V ′) version of the 4D chord measure turns
out to be exactly the same as the triple-matrix product measure without the additional trace term that is
present in 3D. We now use Eq. (69) for R(q, q′) to decompose the measure Eq. (99) into the form

∆RRR4 = tr [R(q, q′) · S(p, p′; r, r′)] (103)

= q · U(S) · q′ , (104)

where S(p, p′; r, r′) =
∑N
k=1R(pk ? r̄k, p

′
k ? r̄

′
k) and U(S) has the same relationship to S as the 4D profile

matrix M(E) in Eq. (73) does to the cross-correlation matrix E. In the next section, Appendix C, we will
see that the singleton version of this map is unusually degenerate, with rank one, though that feature does
not persist for data sets with N > 1.

Now, as in the 4D spatial RMSD analysis, we might naturally assume that we could follow the 3D case by
determining the maximal eigenvalue ε0 of U and its left and right eigenvectors qλ and qρ, which would give

∆RRR4 = qλ · U · qρ = (qλ · qρ) ε0 .

As before, this is not a maximal value for the measure ∆RRR4 over the possible range of R(q, q′). To solve the
optimization correctly, we must again be very careful, and work with the maximal eigenvalue of A = U · U t
and A′ = U t · U , which we can get from our closed form solution for symmetric 4× 4 matrices with a trace,
yielding

∆RRR4(opt) =
√

max eigenvalue U · U t = ε(RRR4:opt) .

If we need the actual optimal rotation matrix solving

∆RRR4(opt) = tr
(
R4:opt(popt, qopt) · S

)
= popt · U · qopt = ε(RRR4:opt) ,

then we just use our optimal eigenvalue to solve(
A− ε(RRR4:opt)2I4

)
· p = 0(

A′ − ε(RRR4:opt)2I4
)
· q = 0

for popt and qopt, and that gives the desired 4D rotation matrix explicitly via Eq. (69).

C On Obtaining Quaternions from Rotation Matrices

The quaternion RMSD profile matrix method can be used to implement a singularity-free algorithm to
obtain the (sign-ambiguous) quaternions corresponding to numerical 3D and 4D rotation matrices. There are
many existing approaches to the 3D problem in the literature (see, e.g., [38], [39], or Section 16.1 of [32]). In
contrast to these approaches, Bar-Itzhack [31] has observed, in essence, that if we simply replace the data
matrix Eab by a numerical 3D orthogonal rotation matrix R, the optimization problem becomes one of
finding the quaternion q that corresponds to the rotation of Eq. (3) that is the inverse of R. That quaternion
can then be shown to correspond to the targeted numerical rotation matrix, solving the problem. To see this,
we replace the elements Eab in Eq. (10) by a general orthonormal rotation matrix with columns
X = (x1, x2, x3), Y, and Z, scaling by 1/3, thus obtaining the special 4× 4 profile matrix K whose elements
in terms of a known numerical matrix R = [X|Y|Z] are

K(R) =
1

3


x1 + y2 + z3 z2 − y3 x3 − z1 y1 − x2
z2 − y3 x1 − y2 − z3 x2 + y1 x3 + z1
x3 − z1 x2 + y1 −x1 + y2 − z3 y3 + z2
y1 − x2 x3 + z1 y3 + z2 −x1 − y2 + z3

 . (105)
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However, as we know, any orthogonal 3D rotation matrix R can also be expressed as in terms of quaternions
via Eq. (3), and this yields an alternate useful algebraic form

K(q) =
1

3


3q0

2 − q12 − q22 − q32 −4q0q1 −4q0q2 −4q0q3
−4q0q1 −q02 + 3q1

2 − q22 − q32 4q1q2 4q1q3
−4q0q2 4q1q2 −q02 − q12 + 3q2

2 − q32 4q2q3
−4q0q3 4q1q3 4q2q3 −q02 − q12 − q22 + 3q3

2

 .

(106)
This equation then allows us to quickly prove that K has the correct properties to solve for the appropriate
quaternion corresponding to R. First we note that the coefficients pn of the eigensystem are simply constants,

p1 = 0 p2 = − 2
3 p3 = − 8

27 p4 = 1
27 .

Computing the eigenvalues and eigenvectors now using the symbolic quaternion form, we see that the
eigenvalues are constant, with maximal eigenvalue exactly one, and the eigenvectors are almost trivial, with
the maximal eigenvector being the inverse of the quaternion q that corresponds to the (numerical) rotation
matrix:

ε = {1, −1

3
, −1

3
, −1

3
} (107)

v =




q0
−q1
−q2
−q3

 ,

q1
q0
0
0

 ,

q2
0
q0
0

 ,

q3
0
0
q0


 . (108)

Unfortunately, the remainder of our techniques are irrelevant, because the maximal eigenvalue is always
known in advance to be unity for any valid rotation matrix; however, as noted by Bar-Itzhack, if there are
errors in the matrix, then one can use the eigenvalue to determine the closest quaternion to an errorful
rotation matrix, which can be very useful since the quaternion always produces a valid rotation matrix. It is
possible that there are unexploited special properties of the fact that the K matrix is based on an
orthonormal matrix, very different from our usual RMSD problem. In any case, the best that one can do
seems to be to insert the desired numerical rotation matrix R into Eq. (105) to compute K = 1

3M(R), and
solve the equations [K.v = v] with unit eigenvalue for (1, v1, v2, v3) (or context-appropriate variants) as usual
to get the numerical maximal eigenvector, normalize, and take its inverse by changing the signs of the vector
part to obtain the desired quaternion q (up to an overall sign) corresponding to the target rotation matrix.
(In some circumstances, one is looking for a uniform statistical distribution of quaternions, in which case the
overall sign of q should be chosen randomly.) This solves the problem of extracting the quaternion of an
arbitrary 3D rotation matrix in a fashion that involves no singularities and only trivial testing for special
cases, thus essentially making the traditional methods obsolete.

Extracting Quaternions from 4D Rotation Matrices. For completeness, we briefly outline the 4D
case, starting with Eq. (69), which is the 4D generalization of the 3D quadratic form Eq. (3). First we extend
Eq. (105) to correspond to a general 4D orthonormal rotation matrix with columns W = (w0, w1, w2, w3),
etc., so the matrix takes the form R4 = [W|X|Y|Z], producing a numerical data matrix of the form

K(R4) =
1

4


w0 + x1 + y2 + z3 w1 − x0 − y3 + z2 w2 + x3 − y0 − z1 w3 − x2 + y1 − z0
−w1 + x0 − y3 + z2 w0 + x1 − y2 − z3 −w3 + x2 + y1 − z0 w2 + x3 + y0 + z1
−w2 + x3 + y0 − z1 w3 + x2 + y1 + z0 w0 − x1 + y2 − z3 −w1 − x0 + y3 + z2
−w3 − x2 + y1 + z0 −w2 + x3 − y0 + z1 w1 + x0 + y3 + z2 w0 − x1 − y2 + z3

 .

(109)
Now, from Eq. (69), we know that we also have an analog to Eq. (106), and, unexpectedly, for R4(p, p′) this
takes the remarkably simple alternate form

K(p, p′) =


p0p
′
0 −p0p′1 −p0p′2 −p0p′3

−p1p′0 p1p
′
1 p1p

′
2 p1p

′
3

−p2p′0 p2p
′
1 p2p

′
2 p2p

′
3

−p3p′0 p3p
′
1 p3p

′
2 p3p

′
3

 . (110)
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This matrix is exactly the outer product of of p̄ and p̄′, and it has vanishing determinant, rank 1, and trace
p · p′, which makes it extremely simple. The eigensystem is just

ε = {p · p′, 0, 0, 0} (111)

vright =




p0
−p1
−p2
−p3

 ,

p′1
p′0
0
0

 ,

p′2
0
p′0
0

 ,

p′3
0
0
p′0


 (112)

vleft =




p′0
−p′1
−p′2
−p′3

 ,

p1
p0
0
0

 ,

p2
0
p0
0

 ,

p3
0
0
p0


 , (113)

so in fact the sole non-vanishing eigenvalue is just ε = trK(p, p′). Thus the left and right eigenvectors can be
easily computed numerically from Eq. (109) using the eigenvalue extracted from the trace, remembering to
conjugate them to get correspondence with R4(p, p′). Again, if a statistical distribution in the double
quaternion space is desired, the signs can be chosen randomly, consistent with the sign of trK(p, p′) = p · p′.
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