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Matching Paired Sets of
Space and Orientation Data

Why is this interesting ?? Because -
(a) It requires quaternions (I wrote a 498 page book Visualizing Quaternions).

(b) For half a century, all known solution methods for the 3D and 4D
matching problems have involved numerical approximations.

Exact algebraic solutions in 3D and 4D were known to involve 4th or-
der polynomials, and, so far as I know, were considered to be intractable.

I have used quaternions and Mathematica to produce the first exact
algebraic solutions of the full 3D and 4D eigenspectra

ever written down, and extended the method to orientation frames.
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. . . with a Few Caveats . . .

• There are algebraic formulas, both for Singular Value
Decomposition and for eigensystems, that in principle solve
this matching problem, but they are hugely complex com-
pared to the equivalent formulas we will exhibit.

• It is possible that our formulas were known, say, in the
19th century, and have been lost to current literature. I
would be thrilled to have someone point out this literature
if it exists. No one I know is aware of any such literature.

• Even if there are prior solutions to the 3D spatial RMSD
problem identical to ours, our 4D solutions are novel, and
so are our 3D and 4D orientation frame optimization for-
mulas.
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The RMSD Matching Problem

• Our input data are the reference data set {yk}
and one or more item-by-item matched test data

sets {xk} .

• The task is to PICK ONE ROTATION MATRIX
R that minimizes the Root-Mean-Square De-

viation measure

RMSD 2→ S 2 =
N∑
k=1
‖R · xk − yk‖2
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Refining the Optimization Problem
Method: Minimizing the RMSD is equivalent (dropping con-
stants, for any dimensionD) to maximizing the simpler cross-
term measure ∆:

∆D =
N∑
k=1

(RD · xk) · yk =
D∑

a=1,b=1
RD

baEab = tr [RD · E] ,

where the “data contents” all reduce to the Euclidean component-
wise averages,

Eab =
N∑
k=1

x ak y
b
k .

The raw form of the RMSD optimization task is thus to find
the rotation matrix R that maximizes ∆.

5



DEMO: Collections of ‖xk − yk‖2
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Left: Reference data {yk} are in red, noisy test data {xk} in
blue, before global rotation. Right: What happens to the incre-
mental distances after a global rotation of the noisy blue test
data around the mutual center of mass.
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Solving – how the optimization looks!
angle 0.753982

Match fcn: 55.6713

θ=43.2

θ0=81.5167

Partway through the rotation from mismatched state,
still lots of space between the blue and red points.
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At the Solution!
����� ������

Match fcn: 70.9554

θ=81.5147

θ0=81.5167

The matrix R0 rotates the blue points to optimal
alignment with red points.
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Quaternion Version of 3D Spatial
RMSD Problem

• It was discovered independently, in at least three dif-
ferent literatures, and at least four different non-co-citing
published papers, that the 3D problem reduces to a 4D
quaternion eigenvalue problem, and that finding that
numerical solution is relatively easy.

• We now show how to exploit quaternions in Mathe-
matica to algebraically solve this 4D problem, in prin-
ciple a very difficult quartic algebraic equation.
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First, We Need Some Quaternion Properties

• Quaternions are Unit four-vectors.
Take q = (q0, q1, q2, q3) = (q0, ~q) to obey the constraint

q · q = 1.

• They have a Multiplication Rule. The quaternion prod-

uct of q and p is

q ∗ p = (q0p0 − ~q · ~p, q0~p + p0~q + ~q× ~p),

or, alternatively,
[q ∗ p]0
[q ∗ p]1
[q ∗ p]2
[q ∗ p]3

 =


q0p0 − q1p1 − q2p2 − q3p3
q0p1 + q1p0 + q2p3 − q3p2
q0p2 + q2p0 + q3p1 − q1p3
q0p3 + q3p0 + q1p2 − q2p1


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3D Rotations Have a Quaternion Form
Any 3D rotation matrix has a quaternion quadratic form

R(q) =

 q
2
0 + q2

1 − q
2
2 − q

2
3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q

2
1 + q2

2 − q
2
3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q

2
1 − q

2
2 + q2

3

 .
R(q) converts ∆ = tr(R · E) → ∆(q) having this matrix

form

∆(q) =
3∑

i,j=0
qiMijqj = q ·M · q ,

where M is a novel linear combination of the Eab defined as
. . .
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. . . the 3D RMSD Profile Matrix M(E)
Exx + Eyy + Ezz Eyz − Ezy Ezx − Exz Exy − Eyx

Eyz − Ezy Exx − Eyy − Ezz Exy + Eyx Ezx + Exz
Ezx − Exz Exy + Eyx −Exx + Eyy − Ezz Eyz + Ezy
Exy − Eyx Ezx + Exz Eyz + Ezy −Exx − Eyy + Ezz


Observe that this 4D matrix is traceless and symmetric, which simpli-

fies some aspects of the 3D problem.

(It turns out we can also solve the 4D Euclidean RMSD problem an-

alytically, where the matrix M is completely general, with no constraints

whatever.)
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Eigenvalues of the Profile Matrix M
The maximum value of

∆ = tr (R · E) = q ·M · q
is given by the maximal eigenvalue εopt of M (corresponding
to the quaternion eigenvector qopt).

Thus we must solve det[M− eI4] = 0 , where e denotes a
generic eigenvalue and I4 is the 4D identity matrix. We can
write this in two ways:

e4 + e3p1 + e2p2 + ep3 + p4 = 0 ,

(e− ε1)(e− ε2)(e− ε3)(e− ε4) = 0 .

where εi are the eigenvalues, p1 = 0 is the trace, p4(E) is
the determinant, and p2(E) and p3(E) are polynomials in
the data averages Eab.
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Eigenvalues of the Profile Matrix M

Observe the following:

• The data coefficients {p1(E), p2(E), p3(E), p4(E)} are
known: they are just numbers.

• The equations above give the unknown eigenvalues εi
in terms of the known data coefficients:

p1(E) = −ε1 − ε2 − ε3 − ε4
p2(E) = ε1ε2 + ε1ε3 + ε2ε3 + ε1ε4 + ε2ε4 + ε3ε4
p3(E) = −ε1ε2ε3 − ε1ε2ε4 − ε1ε3ε4 − ε2ε3ε4
p4(E) = ε1ε2ε3ε4

.

• Therefore our task is to invert this equation for
εi(p1, p2, p3, p4) .
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Approach to Exact Quaternion Soln
Studying the apparently intractable algebraic expressions for
M’s symbolic eigensystem in Mathematica, I eventually dis-
covered that it was useful to change the variables in the
above (traceless) equation to express the 4 eigenvalues of
M in the following form:

ε1 = +
√
X +

√
Y +

√
Z

ε2 = +
√
X −

√
Y −

√
Z

ε3 = −
√
X +

√
Y −

√
Z

ε4 = −
√
X −

√
Y +

√
Z

This is a peculiarly advantageous form of the 4D symmetric,
traceless matrix M that is adapted to machine algebra.
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Approaching the Quaternion RMSD Solution

Now the equations for the eigenvalues reduce to the following
form, where of course knowing (X(p), Y (p), Z(p)) means
knowing the eigenvalues εi:

Eqns =


p4(E) = X2 − 2XY + Y 2 − 2XZ − 2Y Z + Z2

[p3(E)]2 = 64XY Z
p2(E) = −2(X + Y + Z)


Then Solve[ Eqns,{X, Y, Z}] runs for a minute,

giving 6 sets of solutions with this ByteCount[ ] list:

{{4584,19544,21552}, {4584,19448,21552}, {5224,22232,28640},

{5224,22400,28736}, {5224,22256,28632}, {5224,22392,28728}}
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Exact Quaternion Soln to 3D RMSD, contd

Each of the short expressions looks like this, e.g.,
for the first X(p), while the other expressions are pages of
algebra that do not respond to Simplify[] :

−p2
6

−
3

√
−p3

2+36p4p2+3
2

(√
−48p4p

4
2+12p2

3p
3
2+384p2

4p
2
2−432p2

3p4p2+81p4
3−768p3

4−9p2
3

)
12

− p2
2+12p4

12 3

√
−p3

3+36p2p4+3
2

(√
−48p4p

4
2+12p2

3p
3
2+384p2

4p
2
2−432p2

3p4p2+81p4
3−768p3

4−9p2
3

)
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Exact Quaternion Soln to 3D RMSD

So what happens is that 2/3 of every solution is pages
of impenetrable symbols, 20Kb each, but the FIRST
one is only 5Kb, as on the previous slide.

If you plug in random numbers, you find that each
of the short ones matches one of the long ones, so
if you assemble them like a puzzle, you have a com-
pletely usable algebraic solution.

THAT solution in turn breaks up magically into a sum
of cube roots of unity, hugely simplifying our task.
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The Solution
By comparing the numerical values to the assortment of al-

gebraic expressions using the tricks above, I was ultimately

able to reduce the algebra for the all eigenvalues of M to

the following form for (X(p), Y (p), Z(p)) = F(x,y,z):

Ff(p2, p3, p4) = 1
6

(
r(p2, p3, p4) cosf(p2, p3, p4)− p2

)
where we define

cosx(p2, p3, p4) = cos
(

arg(a+i b)
3

)
cosy(p2, p3, p4) = cos

(
arg(a+i b)

3 − 2π
3

)
cosz(p2, p3, p4) = cos

(
arg(a+i b)

3 + 2π
3

)
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Exact Quaternion Soln to 3D RMSD

In this expression arg(u+i v) = atan2(v, u) = ArcTan(u, v),

Ff(p) corresponds toX(p), Y (p), andZ(p) for f = {x, y, z},

and the utility functions reduce to

a(p2, p3, p4) = p2
3 + 1

2

(
27p3

2 − 72p2p4
)

n(p2, p3, p4) = p2
2 + 12p4

b(p2, p3, p4) =
√
n3 − a2

r(p2, p3, p4) =
6
√
a2 + b2 =

√
n .
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Exact Quaternion Soln to 3D RMSD
The (all real) 3D eigenvalues in order of descending magni-

tude are now written in terms of the three phases of Ff(p)

for f = {x, y, z} corresponding to {X,Y, Z}:

ε1 = +
√
X +

√
Y +

√
Z

ε2 = +
√
X −

√
Y −

√
Z

ε3 = −
√
X +

√
Y −

√
Z

ε4 = −
√
X −

√
Y +

√
Z .

21



Eigenvectors for 3D RMSD
The eigenvector formulas corresponding to εk can be gener-

ically computed by solving the bottom three rows of

[M(E) · v − ev] = 0

for the elements of v = (1, v1, v2, v3) as a function of
some eigenvalue e, so we just use the exact algebraic so-
lution for eopt = ε1 and we are done!

Caveat - rearrange v if any element of M is already diagonal!

DEMO of running the solutions if time permits...
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Summary: Quaternion RMSD Solns

• This solution is unknown to the best of our knowl-
edge. All previous literature solves numerically using,
e.g., Newton’s method, for the maximal quaternion eigen-
value, giving the quaternion solution for the optimal align-
ing rotation via the quadratic formula for R(q). In fact, we
get all four eigenvalues, not just the maximal one.

• Using similar methods, we have solved the 3D frame
alignment problem and the 6 DOF combined problem in
closed form as well.

• Using still further nontrivial quaternion-driven algebraic
manipulations, we have also solved the 4D spatial data
problem, the 4D orientation-frame problem, and the cor-
responding combined 10 DOF problem.
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Solving 2D Spatial RMSD is Easy

We can either differentiate with respect to θ and set ∆′2(θ) =

0, or simply observe directly that ∆2(θ) is largest when the
vector (cos θ, sin θ) is parallel to its coefficients, both argu-
ments leading to the solution

tan θ0 =
E12 − E21

E11 + E22
≡
N

M

(cos θ0, sin θ0) =

 M√
M2 +N2

,
N√

M2 +N2


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2D Demo
A single rotation matrix moves the test blue points back

and forth, reaching the closest “RMSD” alignment at the

angle

θ0 = arctan

E12 − E21

E11 + E22


that we solved for algebraically !
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Not So Fast!
This was too easy: This θ0 solution works only in 2D! For
a method that extends to 3D, we must replace ∆′(θ) = 0 by
a quaternion-compatible linear algebra problem.

Weirdly, this is easy if we replace the angle θ by its half-
angles, that is

cos θ = a2 − b2 sin θ = 2ab

a = cos θ2 b = sin θ
2

.

So
R2(θ) =

[
cos θ − sin θ
sin θ cos θ

]
=

[
a2 − b2 −2ab

2ab a2 − b2

]

Amazing fact: This lets us break apart the ∆2 optimization
function into a matrix eigenvalue problem.
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2D RMSD as an Eigensystem
Alternative, generalizable, approach: Start with the half-

angle unit vector (a, b) and quadratic form for the rotation

matrix R2(θ) = R2(a, b). Then

∆̃2(a, b) = tr

 a2 − b2 −2ab
2ab a2 − b2

 ·
 E11 E12
E21 E22


= a2 (E11 + E22)− b2 (E11 + E22)

+ 2ab (E12 − E21)

= [a b]

 E11 + E22 E12 − E21
E12 − E21 − (E11 + E22)

  a
b


= [a b]

 M N
N −M

  a
b

 = a ·M · a .
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2D Eigensystem, contd
Key new element is the traceless, symmetric “profile”
matrix M, built of data components

M = E11 + E22 and N = E12 − E21

with eigenvalues λ± = ±
√
M2 +N2. From standard linear

algebra, the maximal value of ∆̃2(a, b) occurs when a =
(a0, b0) is the eigenvector of λ+. These are exactly the half-
angle objects corresponding to our earlier
θ0 = arctan(N/M) !

a0 = cos(θ0/2) =
√
λ+M

2λ

b0 = sin(θ0/2) = sign(N)
√
λ−M

2λ .

No, the sign(N) is not a typo...
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2D Spatial RMSD summary
The solutions cos θ0 = M/λ and sin θ0 = N/λ, from direct
maximization of ∆2(θ), are the same as the solutions

a0
2 − b02 and 2a0b0

from the eigenvector (a0, b0) of the data matrix M.

This technique extends to 3D, using quaternions q instead of
(a, b), and is the basis of the conventional numerical method
for finding the 3D rotation that minimizes the 3D RMSD.

We will write down an analogous but previously unknown,
nontrivial, algebraic solution to the 3D translational RMSD
matching problem.
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Remark: Quaternion Frames: the QRMSD
Problem

The spatial matching problem can be generalized to
orientation frames.

Why is this interesting? Example: Proteins contain hun-
dreds of amino acid residues, and the unique orientations of
each residue can be encoded efficiently as QUATERNION
FRAMES.

We have also solved the closed form quaternion frame match-
ing problem, aka the QRMSD problem, using our methods.
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Outline: Generalizing to 3D Quaternion Frames

The spatial matching problem can be generalized to

a frame orientation problem.

Why is this interesting? Example: Proteins contain hun-

dreds of amino acid residues, and the unique orientations

of each residue can be encoded efficiently as Quaternion

Frames.

We next briefly outline the closed form quaternion frame
matching aka QRMSD problem.

33



Quaternions as 3D Frames
If we take a quaternion q and write the 3D rotation matrix as

R(q) =

 q
2
0 + q2

1 − q
2
2 − q

2
3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q

2
1 + q2

2 − q
2
3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q

2
1 − q

2
2 + q2

3


the columns are the axes of a 3D orthonormal frame triad.

Taking a set of almost-aligned quaternion-valued test frames
{pk} and reference frames {rk}, we can write the chord-
distance measure as

∆f =
N∑
k=1

(q ∗ pk) · rk ,

where the quaternion product of q and p is

q ∗ p = (q0p0 − ~q · ~p, q0~p + p0~q + ~q× ~p),
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. . . Solution for 3D Frames
Rearrange in Quaternion Form:
We see the quaternion analog of the profile matrix emerge
as Eab =

∑N
k=1 p

(a)
k r

(b)
k , and

∆f = q · V

where V is the column vector

V =


E00 + E11 + E22 + E33
−E01 + E10 − E23 + E32
−E02 + E20 − E31 + E13
−E03 + E30 − E12 + E21


exactly analogous to the spatial profile matrix.
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. . . Exact Solution for 3D Frames
The exact solution (assuming resolved quaternion sign am-
biguities in the data) is just

q0 =
V

‖V ‖

and the “cost” of the alignment at the optimal q0 is therefore
very simple:

∆f(q0) = q0 · V = ‖V ‖ .
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Slides of Quaternion Frame Analysis
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Slides of Quaternion Frame Analysis, contd.
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Remark on the 4D Data Problem
It turns out that while 3D data, with a 3 × 3 data
matrix E3ab, can be optimized with a quaternion-
based symmetric, traceless 4 × 4 profile matrix
M(E3), a slight extension of the 3D quaternion
method expresses the 4D Euclidean data problem,
with a 4×4 data matrix E4ab, in terms of a quater-
nion eigenvalue problem with a non-traceless, non-
symmetric 4× 4 profile matrix M(E4).
We have an extension of the method given here
that solves both the 4D spatial data and the 4D
quaternion frame data problems exactly.
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Summary

• Defined RMSD Spatial Matching Problem.
Find a rotation that best aligns a pair of matched
lists of spatial, orientation frame, or combined
data. Used the 2D system to build intuition.

• Presented the exact solutions of both spa-
tial and frame data matching for the 3D prob-
lem. The expression in terms of a triple of cube
roots of unity was unknown and unexpected.

• Also solved the 4D spatial and orientation
frame RMSD problems in terms of exact al-
gebraic eigenvalues of completely general
4D real matrices.
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REPEAT with 2D Orientation Frames
Orientation Frames can be adjoined to each point (this
happens for amino acids in proteins, for example). Since they
also can be misaligned by a global rotation, we can
repeat the entire matching procedure for orientation: first in
2D, then extending to quaternion-based frame representa-
tions in 3D.

A 2D frame can be represented as a single unit-norm com-
plex number eiθ = cos θ + i sin θ, interpreted as a pair of
orthonormal vectors representing the frame:

û = (cos θ, sin θ)

v̂ = (− sin θ, cos θ) .
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Visualizing a 2D Frame

 Cos -Sin

Sin Cos


[Cos,Sin]

In 2D, an angle θ represents an orthonormal frame (u, v).
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Visualizing 2D Orientation Collections
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Our 2D frame data sets can then be represented as points
on the unit circle.
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Simplest version: 2D Frame Matching
Suppose we have a data set with a test set of 2D coordinate
frames represented by angles {αk} to be compared with a
reference set of frame angles {βk}. A close analog of the
translational cumulative measure of the distances between
frames is just the sum of squared angular distances

Sf
2 =

N∑
k=1

(αk − βk)2 .

45



2D Frame Minimizer
Since rotating a 2D frame (represented by αk) by an angle θ
is just complex multiplication of the form

eiθeiαk = ei(θ+αk) ,

a rotation of the entire set of test frames by the same angle
has a cumulative measure of

Sf
2(θ) =

N∑
k=1

(θ + αk − βk)2

= Nθ2 + 2θ
N∑
k=1

(αk − βk) + const .
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. . . minimizing 2D frame match
Differentiating with respect to θ, we see the optimal angle is
essentially the center of mass of the differences,

θ0 = −
1

N

N∑
k=1

(αk − βk) .

This news is too good to be true: only in 2D do the angular
variables behave exactly like a linear Euclidean space.

Nothing like this appears in higher dimensions.
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As before: Need a double-valued 2D Frame

[a, b]

a
2- b 2 -2 a b

2 a b a
2- b 2

Extendability to 3D requires half-angles:
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. . . double-valued 2D Frame

That is

(a, b) = (cos(θ/2), sin(θ/2)) ,

so the frame denoted by (a, b) = eiθ/2 is our old friend

 a2 − b2 −2ab
2ab a2 − b2

 .
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Visualizing 2D Orientation Collections

-1.0 -0.5 0.0 0.5 1.0
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In 2D quaternions, the points (a, b) and (−a,−b) on the
unit circle now represent ONE orthonormal frame

u = (a2 − b2,2ab), v = (−2ab, a2 − b2).
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Tricky Part of Quaternion Distances

chord

wro
ng c

hord

−q

q

p
arc−length

wro
ng a

rc
le

ngth

π −
 θ

θ

θ

Because of sign ambiguity – the vectors q and −q give the
same rotation matrix — you need to choose | cos θ| or the
minimum of the chord distances to get the right arc-length
or chord measure.
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Frame distance with 2D chords
The chord distance on the previous slide is in fact the key to
making the angular distance work like the spatial distance.
It is an approximation, but it is a very good approximation.
If we simply use ‖ (R2(θ/2) · p) − r‖ as the fundamental
minimizing measure, where p and r are unit vectors in the
2D complex plane, the optimal maximizing chord distance
can be written

∆f =
N∑
k=1

cos (θ/2 + bk/2− ck/2)

Here p = (cos(b/2), sin(b/2)), etc., to be quaternion-like.
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Frame distance with 2D chords
After some manipulation with trigonometric arithmetic, the
measure ∆f can be written in essentially the same form as
the Euclidean measure,

∆f(a, b) = a(θ)(E00+E11)+b(θ)(E01−E10) = aM̃+bÑ,

where Eij =
∑N
k=1 pk

irk
j. This is a linear equation in (a, b)

and can be solved exactly as before.

Remarkably, this situation repeats in exactly the same
way for the closed form solution of the 3D quaternion
frame problem with the chord-measure approximation.
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Space+Frame distance
Note: In fact, if one uses

(
∆̃f

)2 as a measure, the angular
optimization problem can be written in terms of a quadratic
form in (a, b), and thus can be folded directly into the spatial
optimization, with a few caveats (one needs dimensional
constants), to solve the composite translational-rotational
optimization problem as well.
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