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Abstract

Designing and analyzing large cable-driven parallel robots (CDPRs) for precision tasks is challenging because
their position kinematics are governed by kineto-statics and cable sag equations. Our aim is to find all
equilibria for a given set of unstrained cable lengths. The Irvine sagging cable model contains both non-
algebraic and multi-valued functions. The former removes the guarantee that the number of solutions will be
finite, making homotopy start system construction less clear. The latter introduces branch cuts, which should
be minded during path tracking to avoid numerical failures. We reformulate the Irvine model to eliminate
multi-valued functions and propose a heuristic numerical continuation method based on monodromy, which
does not rely on sophisticated start systems. We demonstrate this approach on an eight-cable spatial CDPR,
resulting in a non-algebraic system with a dimension of 31. Our findings show an increase of up to 50% in
the number of solutions compared to existing data sets. This is expected to enhance the quality of these
data sets for training neural network models in CDPR kineto-statics.
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1. Introduction

Cable-driven parallel robots (CDPRs) are a class of parallel manipulators in which an end-effector plat-
form is controlled by multiple cables, whose lengths are adjusted to control its movements. These robots
have proven effective for various applications, including visual sensing and manipulation in vast environments
such as agricultural fields, sports stadiums, and theaters. Recently, there has been a resurgence of interest
in designing CDPRs for precision tasks, such as 3D printing of large models [I} 2], construction robotics [3],
and search and rescue missions [4]. Designing CDPRs for such tasks poses an ongoing research challenge
due to the inherent complexity of their kinematics compared to traditional parallel robots with rigid legs.
To ensure stability, cable-driven systems often require redundant cables to fully constrain the end-effector
platform [5l 6], which complicates their analysis and design.

Unlike rigid links, cables are elastic and subject to sagging, making kinematic analysis inherently coupled
with static equilibrium analysis, falling under the category of kineto-statics problems. The widely used
Irvine cable model, which accounts for elasticity and sagging under self-weight [7, [§], is more realistic than
simplified models that assume inelasticity and negligible mass [0, [I0, 11]. Recent experimental research
has highlighted the inadequacy of such simplified models for designing and analyzing large CDPRs [4]
12]. Consequently, many recent studies address kineto-static problems in cable-driven robots using the
comprehensive Irvine cable model [13]. Unfortunately, this model involves multi-valued inverse hyperbolic
and square-root functions which introduce branch cuts. At branch cuts, the system is non-analytic. If
ignored, these branch cuts will lead to numerical failures during homotopy path tracking. By analytic, we
refer to complez-analytic functions which are complex differentiable in a neighbourhood of every point in the
entire complex domain [I4, p. 69]. In contrast to the algebraic form of the simplified models, the nature of
the Irvine cable model precludes the use of powerful algorithms specialized to algebraic systems.

Our goal is to solve the forward (a.k.a. direct) kineto-static equilibrium problem for CDPRs to find
all solutions. That is, given a specific CDPR, architecture with prescribed unstrained cable lengths, we
seek to find all possible static equilibrium configurations . This is significantly harder than finding a single
equilibrium configuration, which can be achieved using Newton’s method with appropriate initial guesses.
Solving the global forward kinematics is crucial for characterizing the comprehensive workspace of these
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systems, which consists of numerous input modes separated by special configurations known as input singu-
larities [I5], sometimes called Type II singularities [16] or direct kinematic singularities [I7, [I8]. In parallel
linkage systems, inverse kinematic problems involve determining the actuator inputs for a given end-effector
pose. These problems are often simpler to solve, providing a quick means to sample and characterize the
workspace. However, this approach is not straightforward in cable-driven parallel systems. The presence
of redundant cables in CDPRs leads to a positive dimensional family of solutions to the inverse kinematic
problem, introducing additional challenges in characterizing the workspace.

Finding all equilibria over a set of input sample points is necessary to have representatives of all input
modes. The input modes may change over the input space, so we solve each sample in a sample set. Once
a sufficient sample set has been created, local methods may be used to continue the solutions to nearby
points. This process generates an extensive data set representing the workspace, which serves as the basis
for training neural network models in the field of kineto-statics [I9) [20]. Thus, solving the global forward
kinematic problem is a key step in generating such data sets and is the focus of this research.

While one expects the roots to be isolated, i.e., zero-dimensional, it cannot be assumed in general that
the total number of roots is finite due to the non-algebraic nature of the Irvine cable model. This is especially
evident in the case of roots over the complex field. However, certain non-algebraic systems are known to
yield a finite number of isolated roots over the real field when they contain Pfaff functions [21] (also called
Pfaffian functions). Pfaff functions are a class of functions that can be written as polynomial functions of
their own derivatives and other Pfaff functions. Polynomials, exponentials, and trigonometric functions are
Pfaff functions that give rise to Pfaff manifolds over some open real domain. The inverse of a Pfaff function
is also a Pfaff function if it does not vanish anywhere within the domain. The kineto-static equations of
CDPRs with sagging cables give rise to these manifolds and, hence, the number of real roots must be finite
even though the Irvine cable model is non-algebraic.

In the past, interval search methods which exploit appropriately chosen bounds on end-effector configu-
ration and cable tension have been employed to solve the global forward kinematic problem in cable-driven
robots [T} 22]. While interval search methods have demonstrated effectiveness in finding multiple instances,
they face challenges as the number of cables controlling the end-effector increases. For instance, in a spatial
system with eight cables, explored in [22], the search space encompassed 36 dimensions, and a single case
required approximately 24 hours to solve. Additionally, it remains nearly impossible to ascertain whether
all feasible configurations have been identified, even within predefined boundaries.

Alternatively, numerical algebraic geometry techniques have been employed by researchers to solve for-
ward kinematics for rigid-legged parallel manipulators, involving the resolution of multivariate polynomial
systems [23] 24]. In [25], kineto-statics of a compliant parallel manipulator with spring elements was ad-
dressed by solving a large polynomial system in a similar manner. Typically, numerical polynomial contin-
uation techniques operate through a continuous transformation from a known starting polynomial system
to a target polynomial system where the endpoints need to be determined. This is achieved through path
tracking which defines paths one must track from the start points of the starting system to the endpoints
of the target system. This method effectively addresses the challenge of solving moderately large polyno-
mial systems completely. Numerical continuation techniques are often compared to other less sophisticated
analytical methods, such as the multi-start Newton’s method, which may identify numerous distinct root
instances. Numerous studies involving large systems of nonlinear equations [26, [27] demonstrate that numer-
ical continuation methods more efficiently exploit complex-analytic functions in comparison to multi-start
Newton approaches. This efficiency is attributed to the guarantee that distinct starting points will lead to
distinct endpoints, particularly when path crossings are absent.

To effectively employ numerical continuation techniques, a global assumption of complex-analyticity
in functions is essential. However, in the case of the Irvine cable model, analyticity breaks down at the
branch cuts introduced by inverse hyperbolic sines and square-roots. These multi-valued functions require
the introduction of branch cuts, necessary discontinuities chosen by convention to yield a principal value
over the complex domain [I4] pp. 69-71]. In the absence of specific measures, such as switching branches
when required, these discontinuities in function definitions can cause numerical continuation paths to fail
when encountered. An additional challenge is constructing an appropriate start system for non-algebraic
systems that may not possess a finite upper bound on the total number of roots. In particular in [2§], a
parameter continuation technique was used to progressively transform an inelastic taut cable system, which
can be modeled as a polynomial system, into a sagging cable system. However, limited success was achieved
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Figure 1: Schematic of a cable-driven parallel robot

due to significant failures reported during path tracking. Another shortcoming stems from the fact that a
starting system constructed based on a simplified model cannot guarantee the capture of all roots of a full
model target system, even if all paths were to be successful. Because of these two shortcomings, numerical
continuation was considered insufficient for solving the global CDPR forward kinematic problem.

In this work, we propose a new continuation methodology that overcomes the two faults described above.
First, we reformulate the Irvine cable model to remove multi-valued functions through a change of variables.
This adaptation enables the utilization of numerical continuation as a viable solution technique. In theory,
the occurrence of path failures can be almost completely avoided by conducting parameter continuation over
the complex field [23]. Secondly, for solving non-algebraic systems, especially Pfaff equations, we introduce
a heuristic root accumulation strategy using monodromy loops, eliminating the necessity for a start system.
Using this algorithm, we demonstrate that the forward kinematics of large CDPRs with sagging cables can
be solved more effectively, resulting in an increase of up to 50% in the number of equilibrium configurations
compared to existing interval search and sampling methods. We present numerical examples and benchmark
the results against an existing data set from the literature for an eight-cable spatial CDPR system [22] [29].
This method holds significant potential for generating comprehensive workspace data sets for CDPRs, which
can be utilized for both training and testing neural networks of the kineto-static model.

2. Mathematical model of kineto-statics of a generic CDPR with n cables

Consider the schematic of a generic spatial CDPR with n cables as shown in Fig. [[a] Gravity acts
downwards along the z-direction, k = {0,0,1}". The end-effector is operated by n-cables, j = 1,2,...,n.
Let P = (P, Py, P.)T be the position of the end-effector platform’s center of mass in the global coordinate
frame. The weight of the platform is W = Mg, where M is the mass of the end-effector platform and g
the acceleration due to gravity. We assume no other external load in this work. The local frame of the
end-effector is affixed to P. Position vector p; represents cable j connection point on the end-effector in
the local frame of the end-effector. Let the orientation of the end-effector in the global coordinate frame be
given by a 3 x 3 rotation matrix [Q]. We use quaternion parameters {qo, q1,g2,q3} to represent the 3 x 3



rotation matrix [Q] as follows:

q00% + q1° — 2% — q3? 2(q192 + qog3) 2(—qoq2 + q193)
Q] = 2(q1q2 — qoqs) 90 — @12 + g2 — q3? 2 (qoq1 + g2q3) ,
2(q0q2 + q1G3) 2 (—qoq1 + q293) q00% — 1% — @* + ¢3*

along with a normalization constraint:
0+’ +e’+e’=1 (1)

2.1. Position loop-closure equations

The j** cable’s fixed point is located at A ;. Each cable can be assumed to lie in a vertical plane X;Z
under static equilibrium conditions. Let the cable plane be at a z-rotation of ¢; which is represented
as [Z(¢;)] with respect to the global coordinate plane X Z. Note that a z-rotation of ¢; + 7 also represents
the same cable vertical plane with opposing 2 axes. The span of the j* cable from its fixed point to the
moving platform is represented by a local vector within the cable plane named b;. The position loop-closure
equation associated with cable j =1,2,... n is:

P +[Q] p; — [Z(¢;)] b; — A; =0, (2)

where by is of the form (b, ;,0,b. j)T and given by the Irvine cable model in the local vertical cable plane in
terms of the corresponding tension force F; of the form (F;, 0, F. j)T. In the following, we revisit this model
in detail and derive an equivalent representation made of complex-analytic functions which are amenable for
numerical continuation methods.

Irvine cable model

Consider the schematic of a cable in the vertical plane X Z as shown in Fig. Let the coiling system of the
cable be assumed at the origin of the cable vertical plane. Acceleration due to gravity g is downwards along
the z-direction. We neglect all lateral static forces on the cable, so the cable lies in a vertical plane. The cable
stretches under tension and sags under self-weight. Let p, A and E be the properties of the cables, namely,
linear density, cross sectional area, and Young’s modulus, respectively. According to the Irvine model [7],
the kineto-statics equations for a cable of unstrained length L are:

b, F, (ﬁ ] é (sinh_1 [%] — sinh™* [FZ%ZQLD>
b=|o|= 0 : (3)

2 2
o)\ (VETR R R (= el

where F = (F,, F,) " is the tension in the cable at its end, resolved into horizontal and vertical components in
the cable vertical plane. The y-coordinates of tension and position are both zero by assumption. Here, F,, > 0
is a necessary operating condition of the Irvine model for the cable to be in tension and hence, b, > 0. A
mirrored configuration with b, < 0 can be ignored, because it is already accounted for in a z-rotation of the
cable vertical plane by 7 as noted earlier.

Eq. contains branch cuts because of the presence of the inverse hyperbolic sine and square-root
functions which are multi-valued over the complex domain. Branch cuts are defined by convention for
a principal definition. See Fig. [2| for one possible such definition for these functions involving branch-
cuts (shown in blue). In the case of the square-root function, a branch cut is conventionally defined in
most programming libraries along the negative real axis (—oo,0), while it is defined along the imaginary
axis (—ioo, —%) and (4,700) for the inverse hyperbolic sine function. (Note that the apparent discontinuity
along the negative real axis in Fig. 2D is not a branch cut: it arises due to limitations in visualizing the
complex argument.) If these standard definitions are used, the branch cuts cause failures during numerical
continuation whenever a path crosses one of these discontinuities. Unless special branch switching logic
is implemented, any robust predictor-corrector path-tracking algorithm slows down indefinitely upon the
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Figure 2: Principal branch of multi-valued functions of a complex variable w defined using branch cuts

approach of such cuts and eventually grinds to a halt upon reaching the maximum number of steps. These
failures do not manifest in the form of ill-conditioning.

Illustration: Consider a simple homotopy equation, H(w[t],t) := w[t] — Ve?™ =0, fromt =0tot =1
with a start point w[0] = 1, where /- is the principal square-root function. Solving this equation using any
certified predictor-corrector tracking algorithm fails as ¢t — 0.5~ where the path encounters a branch-cut of
the principal square-root function along the negative real axis at —1. Note that lim;_,o5- w'[t] = —7 # 0.
Thus it is not a path crossing failure which are typically caused by system singularities where at least two
solution branches of w merge. One way to circumvent this implementation problem is by keeping track of the
sheet of the multi-valued function we are on currently by introducing additional variables. In the square-root
example, it can also be achieved by modifying the homotopy via squaring as H(w[t],t) := w[t]? — 2™ = 0.
While this resolves the analyticity issue allowing us to track until ¢ = 1, it introduces a second branch with
a corresponding start point w[0] = —1. This is an unavoidable cost of resolving analyticity.

In a previous work on the kinematics of cable-driven parallel robots using a numerical continuation ap-
proach [28], several path failures were reported which could not be adequately explained by the condition
number of the local Jacobian matrix. The illustration above explains one such scenario caused by branch
cuts. The presence of multi-valued functions must be addressed before effective numerical homotopy path
tracking can proceed. Numerical continuation carried out over the real parameter space does not resolve the
analyticity issue either for the following reasons: 1) While the hyperbolic sine function is béjective over the
real domain, the square-root function has a branch point at the origin to contend with even over the reals.
2) Path crossings due to system singularities bog down real parameter continuation computations.

Change of variables

To effectively apply numerical continuation, we need to reformulate the Irvine cable model to get rid of the
square-root function and the inverse hyperbolic sine function. To do so, we introduce a change of variables
from F, F, to new real variables «, 3:

F, F, —pgL
i = sinh [o], Tpg

Assuming p > 0 and L > 0, F, and F, can be expressed in terms of the new variables o and 3:

= sinh [3]. (4)

_ pgL _ pgLsinh [a] (5)
~ sinh[a] —sinh [8]” ©°  sinh[a] —sinh [8]"
The next-step is to re-write the square-root functions in the Irvine model given by Eq. in terms of the
new variables. First consider the following expression:

p*g*L%cosh? [a] .
(sinh [o] — sinh [8])*

F? 4+ F? =



The numerator is always a square of a positive number (*. cosh[a] > 1, V a € R), but the same is not
generically true for the denominator. However, Irvine cable model requires F, > 0 which translates to
sinh [a] > sinh [5] based on the definition in Eq. . Since the hyperbolic sine function is strictly increasing
over R, this condition reduces to a > 5. With this assumption, it follows that the real positive square-root:

2 2 pyLcosh[a]
VI b = o o — s [B (6)

Similarly, it can be easily shown that the real positive square-root:

pgLcosh [f]
sinh [a] — sinh [3] @

\/sz + (F, — ng)2 =
Substituting Eqgs. (4{{7) into Eq. :
sinh[aﬁ])g—ls/inh[,@] (ﬁ + i (blnh71 [blnh [Oé” - Sinh71 [blnh [/8”))
b= 0

sinh[a] pgL? pgL? Lcosh[a]fcosh[ﬁ]
sinh[a]—sinh[f] EA =~ 2EA + sinh[a]—sinh|[]

Since hyperbolic sine function is bijective over R,

L L
sinh[a]—sinh[A] (% toa-— ﬁ)

b= 0

sinh[a]+sinh[B] pgL? cosh[a]—cosh[3]
sinh[a]—sinh[3] 2EA + L sinh[a]—sinh[A]

It can be observed that this modified kineto-static equation is a function of v = £%, a combined material

constant of the cable with units of reciprocal length. It defines the strain of a vertically hung cable under
its self-weight normalized by its unstrained length.

Reformulated sagging cable model
In summary, through a change of variables from F,, F, to «, f under the assumption that p > 0 and L > 0,
we propose an equivalent sagging cable model:

by vL+a-p

L
b=101~= sinh [a] — sinh [5] 0 ’ ®

b, (sinh [o] 4 sinh [8]) v £ + cosh [a] — cosh 5]

where v = £%. The corresponding cable tension in the vertical plane is given in Eq. . Equations
define the Irvine model in terms of the new real variables «, 8 with a necessary operating condition that o >
8. In some systems with metallic cables, it may be a reasonable approximation to neglect elasticity by
setting v — 0 as F — oo. This system is complex-analytic disregarding the inequality condition o > £.
Note that hyperbolic sine and cosine functions are single-valued over the complex domain. The equations
cannot be made algebraic as they contain both algebraic and exponential forms of o and 5. However, as
noted earlier, this system defines Pfaff manifolds.

Note from Eq. that the magnitudes of « and 3 grow in a slow logarithmic manner with respect to the ratio
numerically solving CDPR systems subjected to large magnitude forces. In particular, when the payload is
suspended between horizontally taut cables so that |F,,| > |F.|, the new variables a and 8 remain small in

In addition to removing multi-valued functions, this new formulation may offer an advantage when




magnitude. Although for brevity we omit a derivation, we note that the cable profile in the vertical plane
can be derived in terms of the new variables, following [7], in parametric form ¢ € [0, 1]:

cv L +sinh™! [ sinh[a] + (1 — ¢) sinh[3]] — 3

L
sinh [a] — sinh [f]

0 ;9

(csinh[a] + (2—¢) sinh [B])cv & + \/1 + (¢ sinh[a] 4 (1 — ¢) sinh[])* — cosh [3]

where ¢ = 0 corresponds to the origin of the cable and ¢ = 1 corresponds to the end-effector connection
point given by Eq. (8).

2.2. Force and torque equilibrium equations

With the relation between tension forces and cable displacement in hand, our next task is to form
equations for force and torque balance. Let F; = (F};,0, F. Z]) represent the tension force in cable j at the
end-effector point. F}, and F,, are written in terms of the modified variables a;; and §; following Eq. .
Expressed in the World coordmate system, the sum of all forces on the end-effector including each cable
reaction force —F; and the weight of the platform W = Mg acting along the negative z-direction gives the
condition for force equilibrium:

> [2(¢)] (-F;) - Wk =0, (10)

j=1

The torque equilibrium equations with respect to P are written as:

> (Q [Z(¢;)] (—F;)) = 0. (11)

Jj=1

Assuming all cables have identical linear density, p, the force and the torque equilibrium equations can be
simplified slightly by dividing out the constant pg. Equations (/1] 11)) amount to 1 +3n+3+3=3n+7
kineto-statics equations. For the forward kinematic problem, the variables are {a;, 3;,¢;} for j =1,2,...,n
along with the position of the center of mass P of the platform and the quaternion parameters {qo, q1, 92, q3},
which also totals to 3n 4+ 7 in number. For generic architecture parameters, this leads to a well-posed system
of equations defining the forward kinematics.

2.8. Discussions

The following discussions on the mathematical model are pertinent:

1. The material constants of the kineto-statics system appear only as the ratios v = 2% and \ = p— = M.

EA g

2. Over the complex field with imaginary unit i, one may see that if {«;, 8;, ¢;} satisfy Egs.
so does {aj +imNy, B; + im N1, ¢; + (N1 + 2N2)} for any two integers Ny, No. These group actlons
derive from our reformulation to eliminate branch cuts in favor of many-to-one functions and the fact
that every vertical plane has two z-rotational representations with respect to the global coordinate
frame. Similar to the examples in [30} BI], these group actions also apply to the homotopy paths we
consider, so we only track one member of each group. When recording roots, we consider subsequent
occurrences of members of the same group as repeat instances, and in particular, for real roots, we
record the principal representation with real-valued «;, 8; and ¢; € (—m, 7).

3. The quaternion parameters admit two representations for any given [Q], namely, {qo, q1, 42,93} and
{=q0,—q1, —q2, —q3}. Group action can be exploited in a similar manner as before.

4. A question remains on how best to involve the necessary inequality constraint, o;; > §;, V j. Handling
this inequality upfront is cumbersome for an n-cable system because there arise n such inequalities
and they cannot be evaluated over the complex field. More importantly, numerical continuation paths
starting from a real root which violates these inequalities can result in a valid real root and vice versa.
Hence, we ignore them during computations and compute all possible roots of the system including
those which violate these inequalities. During post-processing, an additional check must be undertaken
to identify the valid roots. Only those real roots which abide by the condition a; > B;, V j are the
valid ones.



Remark on the planar case. When one applies this model to planar n-cable CDPRs, the number of
variables can be reduced. For a system lying in the X Z-plane, the [Q] simplifies to only a y-rotation. The y-
components of the position loop-closure equations as well as the force equilibrium equations identically
vanish. The same is true for the  and z components of the torque equilibrium equations. Further, ¢; can
only admit 0 or 7 for all j = 1,2,...,n in the planar case. This results in 2" sub-systems considering all
combinations. Unexpectedly, these 2" sub-systems are equivalent to each other because of the group action
associated to Ny. For instance, a real solution with cable j in the form {c;, 5, 7} also occurs as a complex
one {a; + imNy,B; + imN1,0} for odd N;. Hence, it is sufficient to solve one of the 2" sub-systems, for
example, the one with ¢; = 0, V 7, in order to obtain all of the valid configurations.

3. Solving non-algebraic, complex-analytic systems via monodromy loops

In preparation for solving the global forward kinematic problem of CDPRs with sagging cables, we
next propose a heuristic numerical continuation algorithm that exploits monodromy to solve non-algebraic,
complex-analytic systems.

Numerical continuation is an effective technique to solve nonlinear system of equations which are complex-
analytic in nature [32]. This technique works through predictor-corrector path tracking which continuously
deforms the start point(s) of a known system into the end point(s) associated with a target system of interest.
Specifically for finding all isolated roots of polynomial system of equations, theory on the construction of
efficient start systems is well-developed exploiting the Bézout bounds [23][24] as well as the sparse structure of
these polynomial systems [33] [34]. For non-algebraic systems without any theoretical bounds on the number
of roots, construction of efficient start systems for numerical continuation is an open research question. Start
systems constructed through a simplified polynomial approximation of the original system is an option as
done in [28] in the context of kinematics of CDPRs. However, if a simplified start system were to be used,
there is no guarantee that all the target points of interest may be found.

In many polynomial systems which arise in kinematic design and analysis, it is noted that the actual
number of roots is only a small fraction of the number of start points of a well-constructed start system,

g., [35]. Most of the paths in such a homotopy diverge, making such methods computationally expensive
in disproportion to the actual root-count. An increasingly popular approach for countering this effect is
to abandon the construction of exhaustive start systems and instead implement heuristics that involve
random processes with the goal of obtaining most or all solutions probabilistically [36], such as monodromy
methods [31], 37, 38, 39]. Monodromy describes how roots of a parameterized system of equations change as
loops are traced in the parameter space around branch points. Specifically, in a polynomial system that has
a finite root-count, monodromy is a group action that permutes the set of all isolated roots as homotopy
loops are traced along smooth paths in a parameter space. Given at least one root of the target system,
one may seek to accumulate additional roots by tracking nontrivial monodromy loops, but it is difficult to
know ahead of time which loops in parameter space will land on new roots versus which ones will return
to roots already known. A well-tested root accumulation strategy is to execute random monodromy loops
[39, 40]. Under certain assumptions of independence, the accumulation of roots follows the Lincoln-Petersen
mark-and-recapture model, where the computational expense is roughly proportional to the total number of
finite roots. This strategy does not generally extend to non-algebraic systems, as the total root count cannot
be assumed finite, leading to a non-terminating algorithm. However, if such non-algebraic systems define
Pfaff manifolds, the real root count is finite. Hence, modifications to the root accumulation strategy of the
original random monodromy loops algorithm can be made by limiting it to finding and accepting only real
roots while rejecting complex roots when they are encountered.

3.1. Random monodromy loops

In this section, we propose an algorithm that uses random monodromy loops with a heuristic root
accumulation strategy to solve non-algebraic, complex-analytic systems. A common strategy in treating
non-algebraic systems is to use a homotopy in which the parameter space is an array of constants added to
the given system, for example, see the so-called Newton homotopies in [26], 41].

Consider a nonlinear complex-analytic system of equations f(w) = 0 of n equations in n unknowns,
w, for which numerical approximations of many or all real roots w are sought. We construct a parameter



homotopy with parameter array 7 of dimension n and path parameter ¢ € R:
H(wli],t) := f(w(t]) — 7(t), (12)
where 7(t) is defined such that 7(0) = 0. A random monodromy loop may be constructed then as:
() = v(1 - *™), (13)

where - is a random vector of non-zero complex numbers of dimension n. This circular monodromy loop
is chosen for ease of implementation. (There exist other multi-nodal constructions such as a triangular
segmented loop, petal shaped loop made of two different segments, etc., which may be equally preferable [42].)
As t moves along the real line, every integer value gives 7(t) = 0, thereby leading w to a root of f(w) = 0.
All solutions of f(w) = 0, including all real solutions, lie in the fiber over 7 = 0, but for a fixed ~, one
cannot be assured that they all lie on one connected component. We may increase the chances of connecting
to all real solutions by repeating the procedure using different random vectors ~.
With this construction, we propose an algorithm for solving the problem, outlined as follows:

1. Initialization: We start by finding an initial starting solution w[0] = w* using a local Newton’s
method with an initial guess over the complex field. Note that finding a real starting root using
Newton’s method, while preferable, is non-trivial, especially in large systems. Hence we rely on complex
starting roots. Care must be taken to ensure that the starting root satisfies the system of equations
within a small tolerance, say 108, and is also a non-singular root of the system with a singular value
no smaller than, say 107'6. To ensure robustness, we may repeat this step for up to 200 trials as
required until a non-singular complex root is found. The algorithm allows for the possibility of starting
with a user-defined initial point if it represents a good numerical approximation of a root.

2. Monodromy Loop Tracking: A random vector - is initialized to define a monodromy loop for the
current iteration. Using an adaptive step-size mixed precision (up to 32 decimal digits of precision)
predictor-corrector tracking algorithm, we perform monodromy loops starting from ¢ = 0 marching
forward along the homotopy path. We employ a tracker similar to the ones proposed in [43] [44]. Tt
uses a Padé predictor with numerator order 2 and denominator order 1, effective at navigating near
path crossing scenarios, and a certified Newton’s corrector with some adaptations to reduce step-size
aggressively in case of step rejection. As the path variable ¢ crosses a positive integer, we record the
corresponding root and append only the real distinct ones among them to the list of start points.
Retaining all the complex roots would quickly become unmanageable, because these tend to vastly
outnumber the real roots. Care must be taken to ensure that duplicate instances are rejected, taking
into account alternative representations according to group actions if any. Each path continues until
one of the following criteria is met:

e A circuit is completed, meaning that we return to the initial root w*.

e A previously known real start point or an alternate member of its group is recorded.

A path fails due to numerical issues.

A path proceeds without yielding any real roots for m successive instances of ¢ crossing a positive
integer.

The truncation parameter m may be tuned specific to the system for addressing cases when paths
proceed indefinitely picking up complex roots especially in non-algebraic systems. Paths which are
curtailed for the latter two reasons may be pursued along the negative ¢ direction as well before
initiating the next iteration.

3. Iterative Refinement: The above steps are repeated with different randomly generated ~ and an
updated list of real start points after each iteration. Hence, as more roots are found through the
iterations, the number of paths tracked in an iteration also increases progressively. These paths can
be tracked simultaneously in a parallel implementation. This process continues until either very few
or no new real roots are found for p successive iterations, or a maximum limit of iterations/roots set
is reached. For better exploration of the variable space, we reseed a new random complex start point
for each iteration using the Newton’s method, along with the current set of real start points. We may
also tune the magnitude of the elements of the randomly generated vector v as a hyper-parameter to
increase the yield. Our numerical experiments demonstrate that increasing the loop size may sometimes
improve the yield but at the cost of slower path tracking.



The algorithm proposed here employs a simple strategy for terminating the algorithm based on negligible or
zero returns. This approach is computationally efficient but lacks sophistication, yet no better alternatives
exist for non-algebraic systems at this time. In the case of polynomial systems with a finite set of isolated
roots, a computationally inexpensive second-order local linear trace test [45] exists, which proves sufficient
to conclude if all the roots belonging to a numerically irreducible set have been discovered. A termination
criterion based on the mark-and-recapture model [39], utilizing likelihood estimates based on diminishing
returns, also exists for polynomial systems. Another validation method for determining if all roots within a
given variable bound have been found is through the application of multi-variate generalizations of Rouché’s
theorem [I4] p. 153]. For an illustration of this technique in polynomial systems, refer to [4G]. However, the
challenge lies in the generalization of any such termination criteria to non-algebraic systems while maintaining
computational affordability. This is beyond the scope of this work.

3.2. Illustration
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Figure 3: Illustration of random monodromy loops algorithm in a 1D root-finding problem

Let us consider a root-finding problem of a non-algebraic equation:

1 10 10w
=084 - — — - — — | =0.
f(w) -~ cos [w] 5 cos [ 3 ]
This equation represents the stationary points of an objective function taken from [47]. For solving this
equation, we construct a homotopy as given by Eq. (12f13). The algorithm is initiated from a real start
point w = 2.261490 found through Newton’s method with an initial guess. During the first iteration, the
algorithm uses a randomly generated complex number v; = —44.6510 4 22.5008; of magnitude 50. The
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corresponding monodromy loop 71 = 71 (1 — €*™%) is shown as an Argand diagram in Fig. When t € Z,
71 = 0. The path proceeds from ¢t = 0; picks up a new root w = 1.411244 at ¢ = 1; and completes a circuit by
returning to the start point at t = 2. This progression is illustrated in Fig. The real-valued function f(w)
is shown as an overlay on the same plot, with scale on the right, for correspondence of the roots of f(w)
when ¢t € Z. The next iteration is initiated with a different random complex number v, = 22.1502 4 44.8260¢,
see Fig. In this case, the two start points found already are seen to follow distinct circuits, each picking
up new roots in process before completing the respective circuits as shown in Fig. [3dl Note that the
quantity of unique roots within a circuit can vary widely depending on the system and may not be known a
priori. Furthermore, these roots need not all be real. The supplementary material contains two animations
visualizing these iterations. This example showcases that two roots which belong in the same circuit in one
monodromy may belong in different circuits in another. Such randomly permuted maps allow the algorithm
to proceed and compute new roots efficiently with subsequent iterations. It is worth noting that the function
considered has a pole at w = 0. Numerical continuation approaches may even be used in some non-analytic
functions with isolated poles because the probability of any random path reaching an isolated pole is nearly
zero. This is unlike a branch cut, which is not isolated. In the following section, we apply this technique to
solve the forward kinematics of CDPRs and benchmark our results against the existing ones from literature.

4. Numerical examples

We solve the forward kinematic problem of an eight-cable system taken from the published data set [29].
This system has an end-effector platform with six DOF which is controlled by eight cables.

4.1. System Specifications and Material Properties

The cable properties are as follows:
p=0.079kgm™, E=100GPa, A =0.1256637062-10"* m>.

Acceleration due to gravity is assumed a constant g = 9.81 m s~2. The coordinate points of the cable
base points in the global frame and the end-effector points in the local frame are listed in Table The
end-effector center of mass is assumed to coincide with the origin of the local frame and it carries M = 1 kg.
Based on these specifications, the material constants of this system evaluate to v = 0.616717 - 1076 m~!
and A = 12.658228 m. We analyze four distinct data sets, specifically Data Sets A, B, C, and D, which
contain unstrained cable lengths for the forward kinematic problem, as listed in Table

Table 1: Coordinate Points for an Eight-Cable Cable-Driven Parallel Robot (CDPR) System

Base Points (A, Global Frame) End-Effector Points (p;, Local Frame)
Label x (m) y (m) z (m) Label x (m) y (m) z (m)

A, | -7.175120 | -5.243980 | 5.462460 p1 0.503210 | -0.492830 | 0.000000
A, -7.315910 | -5.102960 | 5.472220 P2 -0.509740 | 0.350900 0.997530
A; -7.302850 | 5.235980 | 5.476150 P3 -0.503210 | -0.269900 0.000000
Ay 7.182060 | 5.347600 | 5.488300 ps | -0.503210 | 0.492830 | 0.000000
As | -7.160980 | 5.372810 | 5.485390 ps 0.496070 | 0.355620 | 0.999540
Ag 7.323310 | 5.205840 | 5.499030 Ps 0.499640 | -0.340280 | 0.999180
Az 7.301560 | -5.132550 | 5.489000 p7 0.502090 | 0.274900 | -0.000620
Ag 7.161290 | -5.269460 | 5.497070 Ps -0.504540 | -0.346290 0.997520

4.2. Key Considerations and Methodology Details

The forward kinematic problem as per the formulation proposed results in a non-algebraic system of 31
equations in 31 unknowns. For performing monodromy loops, we select the constant parameter space of all
the position equations, force and torque equilibrium equations amounting to a dimension of 30, leaving the
unit quaternion constraint, Eq. . This ensures that the choice of the parameter space coincides with the
natural parameter space of the system preserving regularity assumptions of the system as monodromy loops
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Table 2: Unstrained Lengths (m) of Eight Cables (Lj,j =1,2,...,8) - Four Data Sets (A, B, C, D)

Data Set L1 L2 Lg L4 L5 LG L7 Lg
A 10.538225 | 11.963397 | 10.135355 | 7.703723 | 10.615617 | 8.537152 | 9.969606 | 8.555879
B 8.306209 | 7.608231 | 11.163294 | 12.406223 | 11.380175 | 11.947601 | 9.495229 | 8.985027
C 12.192125 | 11.247648 | 9.199310 | 7.929109 | 8.596630 | 7.311818 | 10.839055 | 10.721407
D 12.924710 | 11.785460 | 10.720089 | 8.037326 | 10.425254 | 6.715571 | 10.163088 | 9.316678

Table 3: Computational Summary of forward kinematics for a CDPR with eight cables

# Valid Roots | # Valid Roots of
Data Set | # Iterations | # Real Roots | (o; > §; V j) | Benchmark [29] | Compute Time (hr)

A 207 4306 14 11 2.64
B 117 6717 22 21 3.33
C 105 7301 28 19 3.22
D 394 6119 12 8 3.46

are performed. We do not use the parameter space associated with unstrained cable lengths or the material
constant v for performing monodromy loops as they do not appear in a linear manner in the kineto-static
equations. Performing monodromy loops in a parameter space that appears linear can help improve the local
conditioning of the system during path tracking.

For the randomly generated numbers used in constructing monodromy loops, we use a magnitude limit
of 0.5 for the parameter space corresponding to the position equations and 5 for those corresponding to the
force and torque equilibrium equations. These limits were determined through tuning via trial and error.
These limits may not be suitable for other problems of varying scales and platform masses and must be
tuned accordingly.

Initial guesses for the Newton’s method used to find start points are also crucial. The position coordinates
of the end-effector can be chosen as complex values within a magnitude limit appropriate for the CDPR
operating range’s scale. Complex-valued guesses are selected for o and § with a magnitude limit of 1073,
while ¢ is set within a magnitude of 7 for all cables. Quaternion parameters are chosen to have a unit
magnitude.

During monodromy path tracking, as described earlier, we truncate a path if no real root is found for
four consecutive instances of the homotopy parameter ¢ crossing an integer. While it is possible that the
path might still find a real root if pursued further, we have determined through trial and error that the
trade-off between computation time and yield is poor beyond four. The total number of complex roots for
this non-algebraic system is theoretically unbounded, and some paths are observed to proceed indefinitely,
always landing on complex roots, necessitating this truncation limit.

As for overall algorithm termination criteria, we define the algorithm to terminate when both the yield
(percentage increase of real roots) from successive iterations falls below 1% and the number of valid roots
remains constant for 10 consecutive iterations. To prevent premature termination, we set a minimum limit
of 1000 real roots initially.

4.8. Results

Table 3| reports a summary of the computations performed in the four data sets chosen from [29]. All the
computations for each of the four data sets were carried out using the Wolfram Language in Mathematica
software [48] on a dual 24-core Intel® Xeon™ 2.30 GHz system in the Center for Research Computing at the
University of Notre Dame. In all four cases, the algorithm converged with both the yield of real roots dimin-
ishing below 1% and the number of valid roots stalling for 10 consecutive iterations. In all cases, monodromy-
based numerical continuation found all the valid roots reported in the existing benchmark set [29] and more.
Notably, in Data Sets C and D, the yield increased by up to 50%. All the valid configurations found are made
available to the reader via supplementary material along with their visualizations. For each configuration,
the numerical values are reported in the following order: P,, Py, P, qo, ¢1,92,93, {c;, 85, &5}, 7=1,2,...,8.
Figure [4a] illustrates the algorithm’s progression across iterations in all four data sets. The initial iterations
are computationally inexpensive, and a critical mass of start points is reached before the algorithm acceler-
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Figure 4: Progression of the number of roots plotted against the iterations for the kineto-statics of an eight-cable CDPR

ates in finding real roots as seen in[fa] The point at which this critical mass is reached can vary between runs
due to the randomness associated with the technique, and it is not guaranteed to occur at the same iteration
number or close. However, because of the low computational cost of the initial iterations, this variability
does not pose a significant issue.

Figure 5: A previously unreported equilibrium configuration (#14) to the forward kinematic problem associated with Data
Set B

As mentioned earlier, during the monodromy runs, the inequality condition a; > §; V j is disregarded.
While post-processing after each iteration, we check for this condition to identify the valid roots among
the real roots found. Figure [4b] records the progression of the number of valid roots against the number of
iterations. It illustrates that in Data Set B, all the valid roots are found in just a few iteration sequences.
This is because all 22 roots found represent well-behaved configurations close to each other in the variable
space, with relatively small tension forces in all the sagging cables. For example, see Fig. [5| for one such
configuration. The cable profiles are drawn using Eq. (9). In the other data sets, which contain taut cable
configurations with large cable tension forces (see Fig besides well-behaved ones, the number of valid
roots increases in steps with batches of configurations occurring in iteration sequences. This has implications
for computation time incurred. For instance, we selected an intensive termination criterion resulting in
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taut cables

Figure 6: An equilibrium configuration (#16) to the forward kinematic problem associated with Data Set C with four high
tension taut cables

approximately three hours of computation time in each case (see Table . However, the majority of well-
behaved configurations are discovered within the first hour of computation. Thus, it is important to note
that the reported computation time depends on the desired level of diminishing returns.

In Fig. [7] we present a breakdown of all the real roots based on the number of cables in each root that
satisfy the valid cable condition @ > . The numbers indicated correspond to the observed distribution,
which is depicted as a histogram in red. The last bar in the histogram signifies the valid roots where all eight
cables satisfy this condition. The histogram reveals an intriguing trend: as more real roots are discovered,
we observe the emergence of an approximate binomial distribution in all four cases. If one assumes an equal
probability o € [0,1] for satisfying each valid cable inequality condition in a real root, then the expected
binomial probability mass function for a real root having k valid cables is given by

P(X—k;)—87!- Fol-o0)® T k=01 8 (14)

=R =T e o o , =0,1,...,8.

The binomial distribution in Fig. [7] is not symmetric; in other words, o skews slightly lower than 0.5 in all
four cases, approximately around 0.45. The corresponding expected binomial distributions, derived using
a maximum likelihood estimator are shown side-by-side in green in the respective figures. However, it is
important to note that a Pearson chi-square goodness-of-fit test yielded significant results, indicating a bad
distribution fit, in three out of the four cases, except for the first one when using a one-sided significance level
of 0.05 and seven degrees of freedom. This choice of seven degrees of freedom for the chi-square goodness-
of-fit test is appropriate due to the estimation of a single parameter, o, using the maximum likelihood
estimator in a scenario with nine categories. It remains to be studied whether this binomial distribution
trend occurs across various CDPR systems and whether it can be employed to establish a goodness-of-fit-
based termination criterion for the random monodromy loops algorithm applied in the context of global
kineto-statics for CDPRs.

5. Properties and Relations

Numerical continuation via monodromy proves to be an effective alternative to interval search-based
methods for solving the global kineto-statics of large CDPRs. This method does not require the construc-
tion of starting systems, which is typical in classical continuation approaches [28], and can be initiated using
a local Newton’s method. In terms of computation time, nearly 100% of it is spent on path tracking, with a
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negligible amount allocated to data processing. Therefore, improving path tracking routines and implement-
ing efficiency enhancements can further reduce computation time. Smarter root accumulation strategies that
promptly discard sufficiently explored start points as the iterations progress may also be considered. This
approach can help reduce computation time instead of retaining all the real roots indiscriminately.

The primary focus of this method is not to provide a real-time routine but to offer a robust way to discover
all possible configurations for a handful of unstrained cable lengths. This will facilitate the generation of
training and test data sets of workspace points in conjunction with local parameter continuation methods.
Ultimately, this will aid in the creation of large neural network models that may be useful for real-time
implementation [20]. In this regard, the current work is similar in scope to previous studies [22] 28].

Interval search methods in these large cable systems encounter the ‘curse of dimensionality’, especially
when expanding the search bounds. Unlike these methods, the numerical continuation approach we present
here does not face this issue because monodromy loops can seamlessly traverse the variable space. The
dimensionality problem takes a different form in the shape of invalid real roots which violate the cable
inequality condition o > . As a rule of thumb, for an n-cable system, one can generally expect that only a
small fraction of 27" of the real roots will be valid when assuming a 0.5 probability for a real root to satisfy
each valid cable inequality condition. However, this is a trade-off we must accept because during monodromy
runs, real roots may transition from invalid to valid and vice versa. While observing diminishing returns in
the total number of real roots, including invalid ones, found over the iterations can provide some insights
into the near completeness of the solution set, determining the data set’s completeness requires further
investigation. In any case, our benchmarking demonstrates that numerical continuation uncovers up to 50%
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more valid roots than previously reported in literature. Consequently, our approach has the potential to
enhance the quality of the data sets needed to construct large neural network models for the kineto-statics
of CDPRs.

6. Conclusion

We present a numerical continuation method to solve the global forward kineto-statics of large CDPRs
with sagging cables. As a first step, we reformulate the popular Irvine cable model to remove all multi-
valued functions, enabling effective analytical continuation for studying these systems. This new kineto-static
model depends on two consolidated material constants, in addition to the geometric parameters, and offers
computational advantages for modeling and solving CDPR systems with large tension forces in the cables.
Next, we propose a novel heuristic strategy for root accumulation, utilizing random monodromy loops in an
iterative approach to find roots in nonlinear, non-algebraic, and complex-analytic systems. This strategy
involves tracking circuits while performing monodromy loops instead of following lone paths, potentially
identifying multiple roots in the process. The rationale behind this approach is that multiple valid roots
are often closely located in the variable space, and this approach can efficiently uncover them. We employ
a termination criterion based on diminishing returns across iterations. With this approach, we successfully
solve the global kineto-static problem of an eight-cable spatial CDPR system. In some numerical examples,
we observe an increase in yields of up to 50% compared to existing data sets in literature. This method is
expected to augment existing local parameter continuation methods, improving the quality of data sets used
to train and test large neural network models for the kineto-statics of CDPRs with sagging cables.
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