
Building large software systems in Mathematica should follow the general principles that apply to building any large
software system. The details may be unique to Mathematica but many of the principles are quite general. In
addition, there are some extra techniques for which Mathematica is particularly suitable. You should be aware of
these and take advantage of them.

These principles are relevant for any development other than quick prototyping of tools for rapid exploration.
Systems for which these principles are relevant include the following:

Ë a system to be used by other people, for example, in a commercial setting

Ë a system to be developed by more than one developer

Ë a system to be used over any length of time

Much of this document describes the development process for a system and how the system should be organized
internally. End-users, of course, do not really care how something is developed, or how it is organized internally.
Sometimes developers follow this philosophy as well: "if the user does not care~why should I?" But users do care
about consequences that stem from good development practices. They care that a system has fewer bugs, performs
better, has more features, and is delivered more quickly. They also care that they do not have to pay as much for it.

These principles have been derived in part from our experiences in building large Mathematica projects. A major
example is Mathematica itself, much of which is implemented in the Mathematica language.

Divide the System into Components
You should divide your system into components; this is probably the most important principle to follow. If you have
a satisfactory and natural division, then many benefits will follow without a lot of effort. There is nearly always a
natural way to divide things up into different components. You should identify these components and build each as
an independent sub-system.

Here are some reasons why building things as components is useful:

Components Can Be Developed Faster
Individual components are simpler to understand, have fewer goals, and require less implementation. Thus, there is
less code to write to start with and less code to work with later. This is particularly useful for new developers starting
on the project; they will have less to learn to become effective.

Components Can Be Developed Independently
If you have a team of developers, you can divide the components around the team and take advantage of any
specific knowledge and expertise they have. You can make sure that a database component is given to someone
who knows about databases, and ensure that those who do not know about differential equations are not exposed
to code that requires knowledge about differential equations.

Components Can Be Tested Independently

Components Can Be Tested Independently
Testing~as an integrated element of the development process~is a key part of successful software development.
Working with components helps the testing process enormously. Some components, such as user interfaces, are very
hard to test, but others are easier. Thus, testing is much easier if the system is broken down into components. In
addition, testing individual components helps to quickly identify which component is causing an error when there is
a test failure, and this speeds up resolving the problem.

Components Can Be Replaced
Development is often a continuous process. It is quite common for changes to occur, such as new requirements being
produced or new technology becoming available. Working with components helps to switch over to a new way of
doing something. For example, a new type of database becomes available. If all the connectivity is put into a
database component, this will make it much easier to replace the component with a new one.

Components Can Be Used in Unforeseen Ways
A division into components gives much more flexibility. For example, if you have a special way to do interpolation,
another application might want to use it. If this is in its own component, then it is easy to provide to the other
application. Alternatively, for a badly segmented application you might be tempted simply to copy the
implementation. This would be bad since you would end up with two copies of the same thing, requiring bug fixes
or new features to be added in two places. Yet another problem would come if you provided your entire application
simply to give the functionality from just one part. This would also be bad: there might be intellectual property,
trade secrets, or licensing problems. The best way is just to provide the component that is wanted.

Another positive aspect to using components is that you could much more easily switch your system to a web
delivery system using webMathematica.

Think of the Architecture, Not the Code
This is closely related to the principle of dividing into components. It means that you should try to think about the
large granularity of the system, in particular its components, rather than all the details of the code. If you have a
good architecture for your project, then the code will follow quite easily. It is much harder to create a good
architecture than it is to write code. Many people can write code, even without a lot of training or experience. In
addition, the consequences of bad code are much easier to deal with than bad architecture.

One principle says that the last thing to do when building a system is to write any code. You should do everything
you can to avoid actual coding. Instead you should focus on your architecture, making tests, and writing
documentation. Too many developers take the attitude that they should "dive in and start to code furiously"; often
they would do better to stop and think about what they are building.

Use Mathematica Code Packaging
Mathematica has a number of features for dividing code into packages and applications. It is important that you
make full use of these. In many cases you should put all your code into a package, one that starts with
BeginPackage and ends with EndPackage. Your packages should be bundled into an application: this is the way
that your application will be delivered. An exception to this is the bundling mechanism for Mathematica
Demonstrations.

2 Building Large Software Systems in Mathematica.nb

It takes a little bit of time to set things up as packages and applications, but Mathematica provides tools such as
Wolfram Workbench that are designed exactly for this purpose. They give many productivity features that greatly
facilitate working with Mathematica for software development.

Keep Things Simple
This principle relates mostly to the actual implementation. It suggests that it is better to write small functions and to
use simple syntax to express things. This can be particularly important with Mathematica, which has an extremely
rich syntax. It is also a good idea to benefit from the extremely literate programming style that Mathematica
supports.

Another thing to avoid is creating strange control structures, for example overloading BeginPackage and EndPackÖ
age. It is an interesting feature of Mathematica that you can do this, but such things are nearly always to be
avoided. These are just going to be an impediment to anyone else who wants to look at the system; they will also
limit the utility of your code.

Use Source Control
Any system that you want to use and work on for more than one day should be in source control. This is a critical
issue if there is more than one developer or if the project is developed over any lifetime longer than a few months.

Examples of source code control systems include CVS, SVN, and Rational ClearCase. They provide general features
such as storing different versions of component files, recording a description of the reasons for a change to a file,
tagging groups of files for a released version, comparing different versions of files, and merging changes. Source
code control is essential for teams of developers, but is still extremely useful for a project developed by a single
developer.

Wolfram Workbench contains a client for CVS, and is being updated to contain a client for SVN. It can be updated to
hold client support for most other source code control systems.

Building Large Software Systems in Mathematica.nb 3

Wolfram Workbench contains a client for CVS, and is being updated to contain a client for SVN. It can be updated to
hold client support for most other source code control systems.

To use source code control you need to have access to a source code server or repository. These can be set up
without too much effort on your own machines. Alternatively, there are a number of public systems. Note that these
are only suitable for applications where it does not matter if the source code can be seen publicly. In addition, many
organizations provide source control as part of their standard IT infrastructure.

In addition to source control, there are also build systems and configuration management tools. These work with
your source control to build released versions of your application that you could give to end users.

Write Documentation
There are a number of different ways to document your application, depending on the audience.

End-User Documentation
Mathematica provides a documentation system that works with Mathematica applications and integrates with the
Mathematica Documentation Center, and also can generate HTML documentation. Alternatively, your system might
have its own documentation.

Good end-user documentation will help your system to seem more professional, and make it easier to use. But it can
also help with the development process. It is often true that something difficult or awkward to document is not
designed properly. Thus end-user documentation should be done as an integrated part of development.

Developer Documentation
This is documentation designed for developers, and it can take a number of different forms. You can provide
comments in the code, and use names that describe the functionality. In addition, when you use source control you
can describe the reasons for making changes as you commit changes. Other opportunities include storing documents
in your projects. You can easily do this with Mathematica notebooks, and Wolfram Workbench provides a system for
hyperlinking from source code into a notebook.

If you have written your code and then later change the way it works, for example, by using a different algorithm,
you should definitely take the time to update the names that are used. It is very much preferred to use names that
describe the actual implementation. Wolfram Workbench has tools available to help with renaming. You also should
not be afraid to change the names of files that are used for implementation or even the name of the whole system.

4 Building Large Software Systems in Mathematica.nb

If you have written your code and then later change the way it works, for example, by using a different algorithm,
you should definitely take the time to update the names that are used. It is very much preferred to use names that
describe the actual implementation. Wolfram Workbench has tools available to help with renaming. You also should
not be afraid to change the names of files that are used for implementation or even the name of the whole system.

One naming rule is to avoid using "new" as a prefix. If you introduce a new way to do interpolation you should not
call the function "newInterpolation". The reason is that this will not be new forever and might end up as the
oldest part of the system, but with a completely inappropriate name. Even worse, you might replace the
functionality again, and then you cannot use "new" again.

Typically, at Wolfram Research we put a lot of effort into naming of our internal code, and we are quite willing to
rename functions, variables, files, etc. when it is required.

Write and Use Unit Tests
Testing should be a key element of the modern development process. An older view of testing is that it was only
done by a separate group of people whose purpose was to test the system. While a software quality department
plays an essential role, testing should play an integrated role in development and should be done by developers as
they produce code.

Mathematica code lends itself well to unit testing for a number of reasons, such as the ease with which data can be
saved and restored, and the ease with which different Mathematica functions can be called. It also provides a very
nice unit testing package called MUnit, which is often run through Wolfram Workbench.

You should develop tests as you work, making sure that any new feature is covered. If you find any bugs or
weaknesses in your code, then you should immediately write tests when you fix them. You should run the tests
frequently; for example, you should always run them before you commit to source control. You should also maintain
the tests so that they always all pass with 100% success. To make good use of tests you should ensure that your
system is broken into different components. Then you can have a different suite of tests for each component.

Building Large Software Systems in Mathematica.nb 5

You will get a number of benefits from continuous testing.

Bug Fixing Is Easier
Running the tests frequently will let you catch bugs much more quickly. Generally, if you find a bug as soon as it is
introduced then it is much faster to fix. A bug that you find six months after it is introduced is harder to fix. So
running tests helps to boost your development productivity.

Refactoring Is Easier
Refactoring means changing the implementation of your application without really changing what it does. This
might mean renaming, it might mean breaking the system up differently, or it might mean using a different
algorithm. For all of these, if you have a good set of tests that all work after your changes, you will have more
confidence that your changes are good.

Updating to a New Version Is Easier
When you update to a new version of Mathematica, you can run your tests with the new version. This will give you
confidence that you can upgrade to the new system.

Training for New Developers
When new developers join a project, working on improving and enhancing unit tests is often a good way for them
to learn about the project.

Use Wolfram Workbench

Wolfram Workbench is an integrated development environment for Mathematica. It is based on a widely used IDE
platform called Eclipse, one that is used in many commercial environments. You can use Workbench directly or you
can install the Mathematica tools into Eclipse.

Workbench provides many useful tools for building large applications. It contains a debugger, a profiler, and a unit
tester. It also supports projects that contain different types of resources, such as code, documentation, Java classes,
and notebook documents. This project view on your work fits nicely with breaking your system up into different
components, which is one of the important ways you can boost development productivity.

Workbench also contains a special editor for Mathematica code and has a lot of knowledge about Mathematica
packages and applications. This all helps you to develop and work in this way. It also contains good integration with
CVS and can easily be extended to work with other source control systems.

6 Building Large Software Systems in Mathematica.nb

Workbench also contains a special editor for Mathematica code and has a lot of knowledge about Mathematica
packages and applications. This all helps you to develop and work in this way. It also contains good integration with
CVS and can easily be extended to work with other source control systems.

It has a lot of support for developing in other languages, such as Java, Python, or C and C++. So if your system needs
to integrate these with Mathematica, you can do so very readily.

One interesting feature of Workbench is that it gives you tools that help in working with parallel computation in
Mathematica. You debug and profile parallel programs, helping you to add parallel programming to your system.

Here are some specific features of Workbench that help with large projects.

Project Organization
All your work in Workbench is collected into projects, each of which contains different types of resources, such as
Mathematica code, documentation, Java classes, and notebook documents. Unlike some project-based systems,
projects in Workbench are particularly simple and easy to maintain. Workbench has many special tools for working
with projects, such as special editors for opening documents, specialized searching, and reports for different
components. It also integrates tightly with the Mathematica notebook front end.

Launching and Running Code
Workbench provides a sophisticated interface for launching and running the Mathematica code from the project. It
allows you to initialize Mathematica especially for your project, picking up all the different types of resources such as
code, Java classes, notebook stylesheets, and palettes that you are developing. If you have divided your work into a
set of related projects, the launch can also be made aware of these. There is also a very convenient way to switch
between different versions of Mathematica.

Debugger/Profiler
Workbench provides an interface to the Mathematica debugger and profiler. You can inspect many types of
Mathematica programs, including parallel and user interface code. If you have Java source code in your project, you
can debug the Mathematica and Java code at the same time~quite a unique feature.

Building Large Software Systems in Mathematica.nb 7

Unit Tester
Workbench provides an interface to MUnit, the Mathematica unit tester. You can run individual test files, or whole
suites of test files.

8 Building Large Software Systems in Mathematica.nb

Refactoring
Workbench provides a number of refactoring tools for renaming variables and other tasks. It also has specialized
search/replace tools that use Mathematica pattern language to find and modify code. They work on the actual
expression tree with patterns, rather than on the text of the source code with string search/replace tools.

Errors/Warnings
Workbench finds and reports many classes of errors and warnings in all the Mathematica source files in the project.
This applies whether the source file has been opened or not. The ability to get a quick overview of problems in the
source is a tremendous boost of productivity, especially if you have many source files.

TODO Code Documentation
Workbench finds and reports TODO comments in all Mathematica source files in the project. This applies whether
the source file has been opened or not. This is a simple and powerful way to document and track tasks that need to
be carried out in the source.

Source Control
Workbench provides a client to CVS; it can be extended to most other forms of source control.

Take Advantage of Mathematica
Mathematica provides a number of features that are particularly useful for software development, but which are
often overlooked. Nonetheless, they are all powerful advantages and you should use them frequently.

Easy Serialization of Data
The fundamental building block of Mathematica is an expression. Everything, including programs and data, is an
instance of an expression. Since expressions can easily be written to a file and then loaded back into Mathematica,
this makes it very easy to save the state of your system and then load it back again.

This gives an easy way to test and develop your system as components. For example, suppose that you need data
from a database; you could develop a Database component and then use this to prepare some data files. Then when
you develop your Computation component, you would just load the data and run the calculation. Alternatively, you
can write unit tests that load these data files. It is important to make sure you only test one component, and this is a
great way to do so.

Saving data is a simple process, literally one line such as Save@ file, dataD. If you were working in Java or C++ you
would have to write many lines of code, which would have to be rewritten if your data changed. The same applies to
loading back into Mathematica where a simple data = Get@ fileD restores the data.

Easy Access to Code Points
You can easily call different functions in your packages directly by entering their names into the Mathematica
notebook front end. This uses Mathematica's interpreted nature and significantly reduces the amount of preparation
that is done, for example, before a debugging session as you develop your code.

Use Visualization Tools
Mathematica contains many visualization tools for plotting data and surfaces. Some of the tools are quite
specialized, such as plotting graphs. All of these can be very useful to give some insight into the running of your
application. You can make plots of running time to see if it scales with increasing input size, or you can study the
distribution of transformed data looking for unexpected features that might indicate something to investigate.

Building Large Software Systems in Mathematica.nb 9

Explore Interactively
You can use the Mathematica interactive tools to explore your functions. For example, in one line you can use the
Manipulate function to create a tool that will call your function. This might help uncover strange unexpected
behavior.

Build Random Models
If your application needs special data to run, you can of course read this from a database. You could use the
serialization techniques to store and retrieve the data for developing and testing some of your components. An
alternative, especially relevant for structured data, would be to use Mathematica's random number generation
techniques to build random data. This can have an additional advantage that the generated data has no real
content, so it could be distributed in ways that the real data might be more restricted.

10 Building Large Software Systems in Mathematica.nb

Think of Other Developers
Every developer should always think of other developers. You should follow principles such as documenting code
and keeping it simple. This is the case even if you are the only person who ever works on the system. While that
might be true at any instant in time, it might not always be the case. Eventually, another developer might be
involved. A manager should never let developers treat a part of the code as their own private area where they can
suspend the rules of good development practice.

Upgrading Your System
It might be that your project does not follow any of these principles. This can happen if your work grew
incrementally from a small start, and you never stopped to rethink how you did development. Perhaps, you would
like to change your practices but have not (maybe you are concerned with the cost of a change). Alternatively, you
might not see any point in changing, believing that it is all a bit abstract and "does not really apply to me".

Just as hardware and software technologies constantly and rapidly evolve and change, so do software development
practices. If you spend any significant time developing software, it is worth spending some of it on a regular basis
thinking about how you do this and what new techniques and ideas you can pick up and learn. This document gives
some ideas on how you can do this for the case of Mathematica development, and it is never too late to improve the
way you work and gain a benefit.

If you want to try and apply some of the ideas in this document, you should probably first think about the
architecture and component nature of your system. Deciding if your system is already split in components requires a
certain amount of judgment. An extreme case would be one large application entirely written in one cell in a
Mathematica notebook document. In this case your application is probably completely monolithic, with no division
into components.

Whatever your actual implementation, you should first review your system and identify its components. Often this
will be relatively obvious: for example, your application might have parts that provide a user interface, it might work
with a database, and it might carry out some computations. The computations might have some special features: for
example, they might need some special way to do interpolation. Each one of these is a potential component.

Once you have identified your components, you can refactor the system to divide it into these components. First, it
would be very good to develop a suite of tests so that you can compare your system before and after refactoring.
However, the lack of a component nature might be a big impediment. For example, if your application can only be
run through the user interface and always has to connect to the database, this will make tests much harder to write
and to run. Whatever you do, as you split up your application, you can also make sure that the code uses the
appropriate package format if it does not already. You could also locate and use a source code repository.

Moving in this way should get your system into a form where the ideas and practices in this document are useful and
relevant, and you can boost your productivity.

Summary
The principles described in this document are really common to all software engineering. But the goal is to show
how to do this with Mathematica, and so the discussion and the examples show the Mathematica side of things. This
helps to reinforce the case that Mathematica certainly fits into robust software engineering extremely well with up-
to-date tools, such as Wolfram Workbench, and practices, such as unit testing. Going beyond this, certain features of
Mathematica, such as expression serialization and graph visualization, lead to some innovative and unique ways to
carry out software development. We believe that Mathematica is a great system for large software development;
following rules and practices and using appropriate tools makes it even better.

Building Large Software Systems in Mathematica.nb 11

LEARN MORE ABOUT MATHEMATICA

Explore the features, functions, and applications
of Mathematica.

.

wolfram.com/mathematica

WATCH A VIDEO SCREENCAST

Brief screencasts show you how to incorporate
Mathematica into your everyday tasks immediately.

wolfram.com/screencasts

ATTEND A FREE SEMINAR

Free online seminars led by senior Wolfram
Research technical staff provide live answers

to your questions.

wolfram.com/seminars

GET MORE WORKBENCH RESOURCES

See videos, download example projects,
and search the Workbench documentation.

wolfram.com/workbench

READ ONE OF OUR TUTORIALS

Tutorials provide in-depth instruction on using

Mathematica and how it pertains to your work.

wolfram.com/tutorialcollection

OTHER WEB RESOURCES

. Access full Mathematica documentation at
reference.wolfram.com

. Explore the web’s most popular and extensive mathematics

. Package Development

. Mathematica Application Development Guide

. The Software Engineering of Mathematica

. The Structure of Mathematica

. Mathematica File Organization

. Post questions, announce sites, and share solutions
with fellow users at forums.wolfram.com

resource at mathworld.wolfram.com

© 2010 Wolfram Research, Inc. Mathematica is a registered trademark and MathWorld is a trademark of Wolfram Research, Inc.
All other trademarks are the property of their respective owners. Mathematica is not associated with Mathematica Policy Research, Inc.
or MathTech, Inc. 02.10HK

FIND INSTRUCTIONS IN OUR “HOW TOS”

“How tos” give simple step-by-step instructions
to solve specific problems in Mathematica.

reference.wolfram.com/howtos

FIND A MATHEMATICA-RELATED BOOK

The latest Mathematica-related books, covering
topics as diverse as programming, art, engineering,
finance, computer science, and much more.
wolfram.com/books

Explore Wolfram Online Resources
Let our website help you get started with Wolfram Mathematica and Workbench.

