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The Foundations for a 
New Kind of Science

An Outline of Basic Ideas

Three centuries ago science was transformed by the dramatic new idea

that rules based on mathematical equations could be used to describe

the natural world. My purpose in this book is to initiate another such

transformation, and to introduce a new kind of science that is based on

the much more general types of rules that can be embodied in simple

computer programs.

It has taken me the better part of twenty years to build the

intellectual structure that is needed, but I have been amazed by its

results. For what I have found is that with the new kind of science I

have developed it suddenly becomes possible to make progress on a

remarkable range of fundamental issues that have never successfully

been addressed by any of the existing sciences before. 

If theoretical science is to be possible at all, then at some level

the systems it studies must follow definite rules. Yet in the past

throughout the exact sciences it has usually been assumed that these

rules must be ones based on traditional mathematics. But the crucial

realization that led me to develop the new kind of science in this book

is that there is in fact no reason to think that systems like those we see

in nature should follow only such traditional mathematical rules. 

Earlier in history it might have been difficult to imagine what

more general types of rules could be like. But today we are surrounded
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by computers whose programs in effect implement a huge variety of

rules. The programs we use in practice are mostly based on extremely

complicated rules specifically designed to perform particular tasks. But

a program can in principle follow essentially any definite set of rules.

And at the core of the new kind of science that I describe in this book

are discoveries I have made about programs with some of the very

simplest rules that are possible.

One might have thought—as at first I certainly did—that if the

rules for a program were simple then this would mean that its behavior

must also be correspondingly simple. For our everyday experience in

building things tends to give us the intuition that creating complexity is

somehow difficult, and requires rules or plans that are themselves

complex. But the pivotal discovery that I made some eighteen years ago is

that in the world of programs such intuition is not even close to correct.

I did what is in a sense one of the most elementary imaginable

computer experiments: I took a sequence of simple programs and then

systematically ran them to see how they behaved. And what I found—

to my great surprise—was that despite the simplicity of their rules, the

behavior of the programs was often far from simple. Indeed, even some

of the very simplest programs that I looked at had behavior that was as

complex as anything I had ever seen.

It took me more than a decade to come to terms with this result,

and to realize just how fundamental and far-reaching its consequences

are. In retrospect there is no reason the result could not have been found

centuries ago, but increasingly I have come to view it as one of the more

important single discoveries in the whole history of theoretical science.

For in addition to opening up vast new domains of exploration, it implies

a radical rethinking of how processes in nature and elsewhere work. 

Perhaps immediately most dramatic is that it yields a resolution

to what has long been considered the single greatest mystery of the

natural world: what secret it is that allows nature seemingly so

effortlessly to produce so much that appears to us so complex. 

It could have been, after all, that in the natural world we would

mostly see forms like squares and circles that we consider simple. But

in fact one of the most striking features of the natural world is that
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across a vast range of physical, biological and other systems we are

continually confronted with what seems to be immense complexity.

And indeed throughout most of history it has been taken almost for

granted that such complexity—being so vastly greater than in the works

of humans—could only be the work of a supernatural being.

But my discovery that many very simple programs produce great

complexity immediately suggests a rather different explanation. For all

it takes is that systems in nature operate like typical programs and then

it follows that their behavior will often be complex. And the reason that

such complexity is not usually seen in human artifacts is just that in

building these we tend in effect to use programs that are specially

chosen to give only behavior simple enough for us to be able to see that

it will achieve the purposes we want.

One might have thought that with all their successes over the

past few centuries the existing sciences would long ago have managed

to address the issue of complexity. But in fact they have not. And indeed

for the most part they have specifically defined their scope in order to

avoid direct contact with it. For while their basic idea of describing

behavior in terms of mathematical equations works well in cases like

planetary motion where the behavior is fairly simple, it almost

inevitably fails whenever the behavior is more complex. And more or

less the same is true of descriptions based on ideas like natural selection

in biology. But by thinking in terms of programs the new kind of

science that I develop in this book is for the first time able to make

meaningful statements about even immensely complex behavior.

In the existing sciences much of the emphasis over the past

century or so has been on breaking systems down to find their

underlying parts, then trying to analyze these parts in as much detail as

possible. And particularly in physics this approach has been sufficiently

successful that the basic components of everyday systems are by now

completely known. But just how these components act together to

produce even some of the most obvious features of the overall behavior

we see has in the past remained an almost complete mystery. Within

the framework of the new kind of science that I develop in this book,

however, it is finally possible to address such a question.
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From the tradition of the existing sciences one might expect that

its answer would depend on all sorts of details, and be quite different for

different types of physical, biological and other systems. But in the

world of simple programs I have discovered that the same basic forms of

behavior occur over and over again almost independent of underlying

details. And what this suggests is that there are quite universal

principles that determine overall behavior and that can be expected to

apply not only to simple programs but also to systems throughout the

natural world and elsewhere.

In the existing sciences whenever a phenomenon is encountered

that seems complex it is taken almost for granted that the phenomenon

must be the result of some underlying mechanism that is itself

complex. But my discovery that simple programs can produce great

complexity makes it clear that this is not in fact correct. And indeed in

the later parts of this book I will show that even remarkably simple

programs seem to capture the essential mechanisms responsible for all

sorts of important phenomena that in the past have always seemed far

too complex to allow any simple explanation.

It is not uncommon in the history of science that new ways of

thinking are what finally allow longstanding issues to be addressed. But

I have been amazed at just how many issues central to the foundations

of the existing sciences I have been able to address by using the idea of

thinking in terms of simple programs. For more than a century, for

example, there has been confusion about how thermodynamic behavior

arises in physics. Yet from my discoveries about simple programs I have

developed a quite straightforward explanation. And in biology, my

discoveries provide for the first time an explicit way to understand just

how it is that so many organisms exhibit such great complexity. Indeed,

I even have increasing evidence that thinking in terms of simple

programs will make it possible to construct a single truly fundamental

theory of physics, from which space, time, quantum mechanics and all

the other known features of our universe will emerge.

When mathematics was introduced into science it provided for

the first time an abstract framework in which scientific conclusions

could be drawn without direct reference to physical reality. Yet despite
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all its development over the past few thousand years mathematics itself

has continued to concentrate only on rather specific types of abstract

systems—most often ones somehow derived from arithmetic or

geometry. But the new kind of science that I describe in this book

introduces what are in a sense much more general abstract systems,

based on rules of essentially any type whatsoever.

One might have thought that such systems would be too diverse

for meaningful general statements to be made about them. But the

crucial idea that has allowed me to build a unified framework for the

new kind of science that I describe in this book is that just as the rules

for any system can be viewed as corresponding to a program, so also its

behavior can be viewed as corresponding to a computation.

Traditional intuition might suggest that to do more sophisticated

computations would always require more sophisticated underlying

rules. But what launched the whole computer revolution is the

remarkable fact that universal systems with fixed underlying rules can

be built that can in effect perform any possible computation.

The threshold for such universality has however generally been

assumed to be high, and to be reached only by elaborate and special

systems like typical electronic computers. But one of the surprising

discoveries in this book is that in fact there are systems whose rules are

simple enough to describe in just one sentence that are nevertheless

universal. And this immediately suggests that the phenomenon of

universality is vastly more common and important—in both abstract

systems and nature—than has ever been imagined before.

But on the basis of many discoveries I have been led to a still

more sweeping conclusion, summarized in what I call the Principle of

Computational Equivalence: that whenever one sees behavior that is

not obviously simple—in essentially any system—it can be thought of

as corresponding to a computation of equivalent sophistication. And

this one very basic principle has a quite unprecedented array of

implications for science and scientific thinking.

For a start, it immediately gives a fundamental explanation for

why simple programs can show behavior that seems to us complex. For

like other processes our own processes of perception and analysis can be
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thought of as computations. But though we might have imagined that

such computations would always be vastly more sophisticated than

those performed by simple programs, the Principle of Computational

Equivalence implies that they are not. And it is this equivalence

between us as observers and the systems that we observe that makes

the behavior of such systems seem to us complex.

One can always in principle find out how a particular system will

behave just by running an experiment and watching what happens. But

the great historical successes of theoretical science have typically

revolved around finding mathematical formulas that instead directly

allow one to predict the outcome. Yet in effect this relies on being able

to shortcut the computational work that the system itself performs.

And the Principle of Computational Equivalence now implies

that this will normally be possible only for rather special systems with

simple behavior. For other systems will tend to perform computations

that are just as sophisticated as those we can do, even with all our

mathematics and computers. And this means that such systems are

computationally irreducible—so that in effect the only way to find their

behavior is to trace each of their steps, spending about as much

computational effort as the systems themselves.

So this implies that there is in a sense a fundamental limitation

to theoretical science. But it also shows that there is something

irreducible that can be achieved by the passage of time. And it leads to

an explanation of how we as humans—even though we may follow

definite underlying rules—can still in a meaningful way show free will.

One feature of many of the most important advances in science

throughout history is that they show new ways in which we as humans

are not special. And at some level the Principle of Computational

Equivalence does this as well. For it implies that when it comes to

computation—or intelligence—we are in the end no more sophisticated

than all sorts of simple programs, and all sorts of systems in nature.

But from the Principle of Computational Equivalence there also

emerges a new kind of unity: for across a vast range of systems, from
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simple programs to brains to our whole universe, the principle implies

that there is a basic equivalence that makes the same fundamental

phenomena occur, and allows the same basic scientific ideas and

methods to be used. And it is this that is ultimately responsible for the

great power of the new kind of science that I describe in this book.

Relations to Other Areas

Mathematics. It is usually assumed that mathematics concerns itself

with the study of arbitrarily general abstract systems. But this book

shows that there are actually a vast range of abstract systems based on

simple programs that traditional mathematics has never considered.

And because these systems are in many ways simpler in construction

than most traditional systems in mathematics it is possible with

appropriate methods in effect to go further in investigating them. 

Some of what one finds are then just unprecedentedly clear

examples of phenomena already known in modern mathematics. But

one also finds some dramatic new phenomena. Most immediately

obvious is a very high level of complexity in the behavior of many

systems whose underlying rules are much simpler than those of most

systems in standard mathematics textbooks.

And one of the consequences of this complexity is that it leads to

fundamental limitations on the idea of proof that has been central to

traditional mathematics. Already in the 1930s Gödel’s Theorem gave

some indications of such limitations. But in the past they have always

seemed irrelevant to most of mathematics as it is actually practiced. 

Yet what the discoveries in this book show is that this is largely

just a reflection of how small the scope is of what is now considered

mathematics. And indeed the core of this book can be viewed as

introducing a major generalization of mathematics—with new ideas

and methods, and vast new areas to be explored. 

The framework I develop in this book also shows that by viewing

the process of doing mathematics in fundamentally computational

terms it becomes possible to address important issues about the

foundations even of existing mathematics. 
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Physics. The traditional mathematical approach to science has

historically had its great success in physics—and by now it has become

almost universally assumed that any serious physical theory must be

based on mathematical equations. Yet with this approach there are still

many common physical phenomena about which physics has had

remarkably little to say. But with the approach of thinking in terms of

simple programs that I develop in this book it finally seems possible to

make some dramatic progress. And indeed in the course of the book we

will see that some extremely simple programs seem able to capture the

essential mechanisms for a great many physical phenomena that have

previously seemed completely mysterious.

Existing methods in theoretical physics tend to revolve around

ideas of continuous numbers and calculus—or sometimes probability.

Yet most of the systems in this book involve just simple discrete

elements with definite rules. And in many ways it is the greater

simplicity of this underlying structure that ultimately makes it possible

to identify so many fundamentally new phenomena.

Ordinary models for physical systems are idealizations that

capture some features and ignore others. And in the past what was most

common was to capture certain simple numerical relationships—that

could for example be represented by smooth curves. But with the new

kinds of models based on simple programs that I explore in this book it

becomes possible to capture all sorts of much more complex features

that can only really be seen in explicit images of behavior.

In the future of physics the greatest triumph would undoubtedly

be to find a truly fundamental theory for our whole universe. Yet

despite occasional optimism, traditional approaches do not make this

seem close at hand. But with the methods and intuition that I develop

in this book there is I believe finally a serious possibility that such a

theory can actually be found.

Biology. Vast amounts are now known about the details of biological

organisms, but very little in the way of general theory has ever emerged.

Classical areas of biology tend to treat evolution by natural selection as
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a foundation—leading to the notion that general observations about

living systems should normally be analyzed on the basis of evolutionary

history rather than abstract theories. And part of the reason for this is

that traditional mathematical models have never seemed to come even

close to capturing the kind of complexity we see in biology. But the

discoveries in this book show that simple programs can produce a high

level of complexity. And in fact it turns out that such programs can

reproduce many features of biological organisms—and for example

seem to capture some of the essential mechanisms through which

genetic programs manage to generate the actual biological forms we see.

So this means that it becomes possible to make a wide range of new

models for biological systems—and potentially to see how to emulate

the essence of their operation, say for medical purposes. And insofar as

there are general principles for simple programs, these principles should

also apply to biological organisms—making it possible to imagine

constructing new kinds of general abstract theories in biology.

Social Sciences. From economics to psychology there has been a

widespread if controversial assumption—no doubt from the success of

the physical sciences—that solid theories must always be formulated in

terms of numbers, equations and traditional mathematics. But I suspect

that one will often have a much better chance of capturing fundamental

mechanisms for phenomena in the social sciences by using instead the

new kind of science that I develop in this book based on simple

programs. No doubt there will quite quickly be all sorts of claims about

applications of my ideas to the social sciences. And indeed the new

intuition that emerges from this book may well almost immediately

explain phenomena that have in the past seemed quite mysterious. But

the very results of the book show that there will inevitably be

fundamental limits to the application of scientific methods. There will

be new questions formulated, but it will take time before it becomes

clear when general theories are possible, and when one must instead

inevitably rely on the details of judgement for specific cases. 
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Computer Science. Throughout its brief history computer science has

focused almost exclusively on studying specific computational systems

set up to perform particular tasks. But one of the core ideas of this book

is to consider the more general scientific question of what arbitrary

computational systems do. And much of what I have found is vastly

different from what one might expect on the basis of existing computer

science. For the systems traditionally studied in computer science tend

to be fairly complicated in their construction—yet yield fairly simple

behavior that recognizably fulfills some particular purpose. But in this

book what I show is that even systems with extremely simple

construction can yield behavior of immense complexity. And by

thinking about this in computational terms one develops a new

intuition about the very nature of computation.

One consequence is a dramatic broadening of the domain to

which computational ideas can be applied—in particular to include all

sorts of fundamental questions about nature and about mathematics.

Another consequence is a new perspective on existing questions in

computer science—particularly ones related to what ultimate resources

are needed to perform general types of computational tasks. 

Philosophy. At any period in history there are issues about the universe

and our role in it that seem accessible only to the general arguments of

philosophy. But often progress in science eventually provides a more

definite context. And I believe that the new kind of science in this book

will do this for a variety of issues that have been considered

fundamental even since antiquity. Among them are questions about

ultimate limits to knowledge, free will, the uniqueness of the human

condition and the inevitability of mathematics. Much has been said

over the course of philosophical history about each of these. Yet

inevitably it has been informed only by current intuition about how

things are supposed to work. But my discoveries in this book lead to

radically new intuition. And with this intuition it turns out that one

can for the first time begin to see resolutions to many longstanding

issues—typically along rather different lines from those expected on the

basis of traditional general arguments in philosophy. 
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Art. It seems so easy for nature to produce forms of great beauty. Yet in

the past art has mostly just had to be content to imitate such forms. But

now, with the discovery that simple programs can capture the essential

mechanisms for all sorts of complex behavior in nature, one can

imagine just sampling such programs to explore generalizations of the

forms we see in nature. Traditional scientific intuition—and early

computer art—might lead one to assume that simple programs would

always produce pictures too simple and rigid to be of artistic interest.

But looking through this book it becomes clear that even a program that

may have extremely simple rules will often be able to generate pictures

that have striking aesthetic qualities—sometimes reminiscent of

nature, but often unlike anything ever seen before. 

Technology. Despite all its success, there is still much that goes on in

nature that seems more complex and sophisticated than anything

technology has ever been able to produce. But what the discoveries in

this book now show is that by using the types of rules embodied in

simple programs one can capture many of the essential mechanisms of

nature. And from this it becomes possible to imagine a whole new kind

of technology that in effect achieves the same sophistication as nature.

Experience with traditional engineering has led to the general

assumption that to perform a sophisticated task requires constructing a

system whose basic rules are somehow correspondingly complicated.

But the discoveries in this book show that this is not the case, and that

in fact extremely simple underlying rules—that might for example

potentially be implemented directly at the level of atoms—are often all

that is needed. My main focus in this book is on matters of basic

science. But I have little doubt that within a matter of a few decades

what I have done will have led to some dramatic changes in the

foundations of technology—and in our basic ability to take what the

universe provides and apply it for our own human purposes. 
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Some Past Initiatives

My goals in this book are sufficiently broad and fundamental that there

have inevitably been previous attempts to achieve at least some of

them. But without the ideas and methods of this book there have been

basic issues that have eventually ended up presenting almost

insuperable barriers to every major approach that has been tried. 

Artificial Intelligence. When electronic computers were first invented,

it was widely believed that it would not be long before they would be

capable of human-like thinking. And in the 1960s the field of artificial

intelligence grew up with the goal of understanding processes of human

thinking and implementing them on computers. But doing this turned

out to be much more difficult than expected, and after some spin-offs,

little fundamental progress was made. At some level, however, the

basic problem has always been to understand how the seemingly simple

components in a brain can lead to all the complexities of thinking. But

now finally with the framework developed in this book one potentially

has a meaningful foundation for doing this. And indeed building on

both theoretical and practical ideas in the book I suspect that dramatic

progress will eventually be possible in creating technological systems

that are capable of human-like thinking.

Artificial Life. Ever since machines have existed, people have wondered

to what extent they might be able to imitate living systems. Most

active from the mid-1980s to the mid-1990s, the field of artificial life

concerned itself mainly with showing that computer programs could be

made to emulate various features of biological systems. But normally it

was assumed that the necessary programs would have to be quite

complex. What the discoveries in this book show, however, is that in

fact very simple programs can be sufficient. And such programs make

the fundamental mechanisms for behavior clearer—and probably come

much closer to what is actually happening in real biological systems. 

Catastrophe Theory. Traditional mathematical models are normally

based on quantities that vary continuously. Yet in nature discrete

changes are often seen. Popular in the 1970s, catastrophe theory was
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concerned with showing that even in traditional mathematical models,

certain simple discrete changes could still occur. In this book I do not

start from any assumption of continuity—and the types of behavior I

study tend to be vastly more complex than those in catastrophe theory. 

Chaos Theory. The field of chaos theory is based on the observation

that certain mathematical systems behave in a way that depends

arbitrarily sensitively on the details of their initial conditions. First

noticed at the end of the 1800s, this came into prominence after

computer simulations in the 1960s and 1970s. Its main significance is

that it implies that if any detail of the initial conditions is uncertain,

then it will eventually become impossible to predict the behavior of the

system. But despite some claims to the contrary in popular accounts,

this fact alone does not imply that the behavior will necessarily be

complex. Indeed, all that it shows is that if there is complexity in the

details of the initial conditions, then this complexity will eventually

appear in the large-scale behavior of the system. But if the initial

conditions are simple, then there is no reason for the behavior not to be

correspondingly simple. What I show in this book, however, is that

even when their initial conditions are very simple there are many

systems that still produce highly complex behavior. And I argue that it

is this phenomenon that is for example responsible for most of the

obvious complexity we see in nature.

Complexity Theory. My discoveries in the early 1980s led me to the

idea that complexity could be studied as a fundamental independent

phenomenon. And gradually this became quite popular. But most of the

scientific work that was done ended up being based only on my earliest

discoveries, and being very much within the framework of one or

another of the existing sciences—with the result that it managed to

make very little progress on any general and fundamental issues. One

feature of the new kind of science that I describe in this book is that it

finally makes possible the development of a basic understanding of the

general phenomenon of complexity, and its origins.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

14

Computational Complexity Theory. Developed mostly in the 1970s,

computational complexity theory attempts to characterize how

difficult certain computational tasks are to perform. Its concrete results

have tended to be based on fairly specific programs with complicated

structure yet rather simple behavior. The new kind of science in this

book, however, explores much more general classes of programs—and

in doing so begins to shed new light on various longstanding questions

in computational complexity theory.

Cybernetics. In the 1940s it was thought that it might be possible to

understand biological systems on the basis of analogies with electrical

machines. But since essentially the only methods of analysis available

were ones from traditional mathematics, very little of the complex

behavior of typical biological systems was successfully captured.

Dynamical Systems Theory. A branch of mathematics that began

roughly a century ago, the field of dynamical systems theory has been

concerned with studying systems that evolve in time according to

certain kinds of mathematical equations—and in using traditional

geometrical and other mathematical methods to characterize the

possible forms of behavior that such systems can produce. But what I

argue in this book is that in fact the behavior of many systems is

fundamentally too complex to be usefully captured in any such way. 

Evolution Theory. The Darwinian theory of evolution by natural

selection is often assumed to explain the complexity we see in

biological systems—and in fact in recent years the theory has also

increasingly been applied outside of biology. But it has never been at all

clear just why this theory should imply that complexity is generated.

And indeed I will argue in this book that in many respects it tends to

oppose complexity. But the discoveries in the book suggest a new and

quite different mechanism that I believe is in fact responsible for most

of the examples of great complexity that we see in biology. 

Experimental Mathematics. The idea of exploring mathematical

systems by looking at data from calculations has a long history, and has

gradually become more widespread with the advent of computers and
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Mathematica. But almost without exception, it has in the past only been

applied to systems and questions that have already been investigated by

other mathematical means—and that lie very much within the normal

tradition of mathematics. My approach in this book, however, is to use

computer experiments as a basic way to explore much more general

systems—that have never arisen in traditional mathematics, and that

are usually far from being accessible by existing mathematical means. 

Fractal Geometry. Until recently, the only kinds of shapes widely

discussed in science and mathematics were ones that are regular or

smooth. But starting in the late 1970s, the field of fractal geometry

emphasized the importance of nested shapes that contain arbitrarily

intricate pieces, and argued that such shapes are common in nature. In

this book we will encounter a fair number of systems that produce such

nested shapes. But we will also find many systems that produce shapes

which are much more complex, and have no nested structure.

General Systems Theory. Popular especially in the 1960s, general

systems theory was concerned mainly with studying large networks of

elements—often idealizing human organizations. But a complete lack

of anything like the kinds of methods I use in this book made it almost

impossible for any definite conclusions to emerge.

Nanotechnology. Growing rapidly since the early 1990s, the goal of

nanotechnology is to implement technological systems on atomic

scales. But so far nanotechnology has mostly been concerned with

shrinking quite familiar mechanical and other devices. Yet what the

discoveries in this book now show is that there are all sorts of systems

that have much simpler structures, but that can nevertheless perform

very sophisticated tasks. And some of these systems seem in many

ways much more suitable for direct implementation on an atomic scale.

Nonlinear Dynamics. Mathematical equations that have the property

of linearity are usually fairly easy to solve, and so have been used

extensively in pure and applied science. The field of nonlinear

dynamics is concerned with analyzing more complicated equations. Its

greatest success has been with so-called soliton equations for which
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careful manipulation leads to a property similar to linearity. But the

kinds of systems that I discuss in this book typically show much more

complex behavior, and have no such simplifying properties.

Scientific Computing. The field of scientific computing has usually

been concerned with taking traditional mathematical models—most

often for various kinds of fluids and solids—and trying to implement

them on computers using numerical approximation schemes. Typically

it has been difficult to disentangle anything but fairly simple

phenomena from effects associated with the approximations used. The

kinds of models that I introduce in this book involve no approximations

when implemented on computers, and thus readily allow one to

recognize much more complex phenomena.

Self-Organization. In nature it is quite common to see systems that start

disordered and featureless, but then spontaneously organize themselves

to produce definite structures. The loosely knit field of self-organization

has been concerned with understanding this phenomenon. But for the

most part it has used traditional mathematical methods, and as a result

has only been able to investigate the formation of fairly simple structures.

With the ideas in this book, however, it becomes possible to understand

how vastly more complex structures can be formed.

Statistical Mechanics. Since its development about a century ago, the

branch of physics known as statistical mechanics has mostly concerned

itself with understanding the average behavior of systems that consist

of large numbers of gas molecules or other components. In any specific

instance, such systems often behave in a complex way. But by looking

at averages over many instances, statistical mechanics has usually

managed to avoid such complexity. To make contact with real

situations, however, it has often had to use the so-called Second Law of

Thermodynamics, or Principle of Entropy Increase. But for more than a

century there have been nagging difficulties in understanding the basis

for this principle. With the ideas in this book, however, I believe that

there is now a framework in which these can finally be resolved. 
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The Personal Story of the Science in This Book

I can trace the beginning of my serious interest in the kinds of scientific

issues discussed in this book rather accurately to the summer of 1972,

when I was twelve years old. I had bought a copy of the physics

textbook on the right, and had become very curious about the process of

randomization illustrated on its cover. But being far from convinced by

the mathematical explanation given in the book, I decided to try to

simulate the process for myself on a computer.

The computer to which I had access at that time was by modern

standards a very primitive one. And as a result, I had no choice but to

study a very simplified version of the process in the book. I suspected

from the start that the system I constructed might be too simple to

show any of the phenomena I wanted. And after much programming

effort I managed to convince myself that these suspicions were correct.

Yet as it turns out, what I looked at was a particular case of one of

the main kinds of systems—cellular automata—that I consider in this

book. And had it not been for a largely technical point that arose from

my desire to make my simulations as physically realistic as possible, it

is quite possible that by 1974 I would already have discovered some of

the principal phenomena that I now describe in this book.

As it was, however, I decided at that time to devote my energies

to what then seemed to be the most fundamental area of science:

theoretical particle physics. And over the next several years I did indeed

manage to make significant progress in a few areas of particle physics

and cosmology. But after a while I began to suspect that many of the

most important and fundamental questions that I was encountering

were quite independent of the abstruse details of these fields.

And in fact I realized that there were many related questions even

about common everyday phenomena that were still completely

unanswered. What for example is the fundamental origin of the

complicated patterns that one sees in turbulent fluids? How are the

intricate patterns of snowflakes produced? What is the basic mechanism

that allows plants and animals to grow in such complex ways?

The book cover that originally
sparked my interest in some
of the issues discussed in
this book.
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To my surprise, very little seemed to have been done on these

kinds of questions. At first I thought it might be possible to make

progress just by applying some of the sophisticated mathematical

techniques that I had used in theoretical physics. But it soon became

clear that for the phenomena I was studying, traditional mathematical

results would be very difficult, if not impossible, to find.

So what could I do? It so happened that as an outgrowth of my

work in physics I had in 1981 just finished developing a large software

system that was in some respects a forerunner to parts of Mathematica.

And at least at an intellectual level the most difficult part of the project

had been designing the symbolic language on which the system was

based. But in the development of this language I had seen rather clearly

how just a few primitive operations that I had come up with could end up

successfully covering a vast range of sophisticated computational tasks.

So I thought that perhaps I could do something similar in natural

science: that there might be some appropriate primitives that I could

find that would successfully capture a vast range of natural phenomena.

My ideas were not so clearly formed at the time, but I believe I

implicitly imagined that the way this would work is that such

primitives could be used to build up computer programs that would

simulate the various natural systems in which I was interested. 

There were in many cases well-established mathematical models

for the individual components of such systems. But two practical issues

stood in the way of using these as a basis for simulations. First, the

models were usually quite complicated, so that with realistic computer

resources it was very difficult to include enough components for

interesting phenomena to occur. And second, even if one did see such

phenomena, it was almost impossible to tell whether in fact they were

genuine consequences of the underlying models or were just the result

of approximations made in implementing the models on a computer.

But what I realized was that at least for many of the phenomena I

wanted to study, it was not crucial to use the most accurate possible

models for individual components. For among other things there was

evidence from nature that in many cases the details of the components

did not matter much—so that for example the same complex patterns
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of flow occur in both air and water. And with this in mind, what I

decided was that rather than starting from detailed realistic models, I

would instead start from models that were somehow as simple as

possible—and were easy to set up as programs on a computer. 

At the outset, I did not know how this would work, and how

complicated the programs I would need would have to be. And indeed

when I looked at various simple programs they always seemed to yield

behavior vastly simpler than any of the systems I wanted to study.

But in the summer of 1981 I did what I considered to be a fairly

straightforward computer experiment to see how all programs of a

particular type behaved. I had not really expected too much from this

experiment. But in fact its results were so surprising and dramatic that

as I gradually came to understand them, they forced me to change my

whole view of science, and in the end to develop the whole intellectual

structure of the new kind of science that I now describe in this book. 

The picture on the right shows a reproduction of typical output

from my original experiment. The graphics are primitive, but the

elaborate patterns they contain were like nothing I had ever seen before.

At first I did not believe that they could possibly be correct. But after a

while I became convinced that they were—and I realized that I had seen

a sign of a quite remarkable and unexpected phenomenon: that even

from very simple programs behavior of great complexity could emerge.

But how could something as fundamental as this never have been

noticed before? I searched the scientific literature, talked to many

people, and found out that systems similar to the ones I was studying

had been named “cellular automata” some thirty years earlier. But

despite a few close approaches, nobody had ever actually tried anything

quite like the type of experiment I had. 

Yet I still suspected that the basic phenomenon I had seen must

somehow be an obvious consequence of some known scientific principle.

But while I did find that ideas from areas like chaos theory and fractal

geometry helped in explaining some specific features, nothing even close

to the phenomenon as a whole seemed to have ever been studied before.

My early discoveries about the behavior of cellular automata

stimulated a fair amount of activity in the scientific community. And

A reproduction of the computer
printout that first gave me a
hint of some of the central
phenomena in this book. 
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by the mid-1980s, many applications had been found in physics,

biology, computer science, mathematics and elsewhere. And indeed

some of the phenomena I had discovered were starting to be used as the

basis for a new area of research that I called complex systems theory.

Throughout all this, however, I had continued to investigate

more basic questions, and by around 1985 I was beginning to realize

that what I had seen before was just a hint of something still much

more dramatic and fundamental. But to understand what I was

discovering was difficult, and required a major shift in intuition. 

Yet I could see that there were some remarkable intellectual

opportunities ahead. And my first idea was to try to organize the

academic community to take advantage of them. So I started a research

center and a journal, published a list of problems to attack, and worked

hard to communicate the importance of the direction I was defining. 

But despite growing excitement—particularly about some of the

potential applications—there seemed to be very little success in

breaking away from traditional methods and intuition. And after a while

I realized that if there was going to be any dramatic progress made, I was

the one who was going to have to make it. So I resolved to set up the

best tools and infrastructure I could, and then just myself pursue as

efficiently as possible the research that I thought should be done.

In the early 1980s my single greatest impediment had been the

practical difficulty of doing computer experiments using the various

rather low-level tools that were available. But by 1986 I had realized that

with a number of new ideas I had it would be possible to build a single

coherent system for doing all kinds of technical computing. And since

nothing like this seemed likely to exist otherwise, I decided to build it.

The result was Mathematica. 

For five years the process of building Mathematica and the

company around it absorbed me. But in 1991—now no longer an

academic, but instead the CEO of a successful company—I was able to

return to studying the kinds of questions addressed in this book.

And equipped with Mathematica I began to try all sorts of new

experiments. The results were spectacular—and within the space of a

few months I had already made more new discoveries about what
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simple programs do than in all the previous ten years put together. My

earlier work had shown me the beginnings of some unexpected and very

remarkable phenomena. But now from my new experiments I began to

see the full force and generality of these phenomena.

As my methodology and intuition improved, the pace of my

discoveries increased still more, and within just a couple of years I had

managed to take my explorations of the world of simple programs to the

point where the sheer volume of factual information I had accumulated

would be the envy of many long-established fields of science. 

Quite early in the process I had begun to formulate several rather

general principles. And the further I went, the more these principles were

confirmed, and the more I realized just how strong and general they were. 

When I first started at the beginning of the 1980s, my goal was

mostly just to understand the phenomenon of complexity. But by the

mid-1990s I had built up a whole intellectual structure that was capable

of much more, and that in fact provided the foundations for what could

only be considered a fundamentally new kind of science. 

It was for me a most exciting time. For everywhere I turned there

were huge untouched new areas that I was able to explore for the first

time. Each had its own particular features. But with the overall

framework I had developed I was gradually able to answer essentially all

of what seemed to be the most obvious questions that I had raised.

At first I was mostly concerned with new questions that had never

been particularly central to any existing areas of science. But gradually I

realized that the new kind of science I was building should also provide a

fundamentally new way to address basic issues in existing areas. 

So around 1994 I began systematically investigating each of the

various major traditional areas of science. I had long been interested in

fundamental questions in many of these areas. But usually I had tended to

believe most of the conventional wisdom about them. Yet when I began

to study them in the context of my new kind of science I kept on seeing

signs that large parts of this conventional wisdom could not be correct.

The typical issue was that there was some core problem that

traditional methods or intuition had never successfully been able to

address—and which the field had somehow grown to avoid. Yet over
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and over again I was excited to find that with my new kind of science I

could suddenly begin to make great progress—even on problems that in

some cases had remained unanswered for centuries.

Given the whole framework I had built, many of the things I

discovered seemed in the end disarmingly simple. But to get to them

often involved a remarkable amount of scientific work. For it was not

enough just to be able to take a few specific technical steps. Rather, in

each field, it was necessary to develop a sufficiently broad and deep

understanding to be able to identify the truly essential features—that

could then be rethought on the basis of my new kind of science.

Doing this certainly required experience in all sorts of different

areas of science. But perhaps most crucial for me was that the process

was a bit like what I have ended up doing countless times in designing

Mathematica: start from elaborate technical ideas, then gradually see

how to capture their essential features in something amazingly simple.

And the fact that I had managed to make this work so many times in

Mathematica was part of what gave me the confidence to try doing

something similar in all sorts of areas of science.

Often it seemed in retrospect almost bizarre that the conclusions

I ended up reaching had never been reached before. But studying the

history of each field I could in many cases see how it had been led astray

by the lack of some crucial piece of methodology or intuition that had

now emerged in the new kind of science I had developed.

When I made my first discoveries about cellular automata in the

early 1980s I suspected that I had seen the beginning of something

important. But I had no idea just how important it would all ultimately

turn out to be. And indeed over the past twenty years I have made more

discoveries than I ever thought possible. And the new kind of science

that I have spent so much effort building has seemed an ever more

central and critical direction for future intellectual development. 
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NOTES FOR CHAPTER 1

The Foundations for a New Kind of Science

An Outline of Basic Ideas

â Mathematics in science. The main event usually viewed as
marking the beginning of the modern mathematical
approach to science was the publication of Isaac Newton’s
1687 book Mathematical Principles of Natural Philosophy (the
Principia). The idea that mathematics might be relevant to
science nevertheless had long precursors in both practical
and philosophical traditions. Before 500 BC the Babylonians
were using arithmetic to describe and predict astronomical
data. And by 500 BC the Pythagoreans had come to believe
that all natural phenomena should somehow be reducible to
relationships between numbers. Many Greek philosophers
then discussed the general concept that nature should be
amenable to abstract reasoning of the kind used in
mathematics. And at a more practical level, the results and
methodology of Euclid’s work on geometry from around 300
BC became the basis for studies in astronomy, optics and
mechanics, notably by Archimedes and Ptolemy. In medieval
times there were some doubts about the utility of
mathematics in science, and in the late 1200s, for example,
Albertus Magnus made the statement that “many of the
geometer’s figures are not found in natural bodies, and many
natural figures, particularly those of animals and plants, are
not determinable by the art of geometry”. Roger Bacon
nevertheless wrote in 1267 that “mathematics is the door and
key to the sciences”, and by the 1500s it was often believed
that for science to be meaningful it must somehow follow the
systematic character of mathematics. (Typical of the time was
the statement of Leonardo da Vinci that “no human inquiry
can be called science unless it pursues its path through
mathematical exposition and demonstration”.) Around the
end of the 1500s Galileo began to develop more explicit
connections between concepts in mathematics and in
physics, and concluded that the universe could be
understood only in the “language of mathematics”, whose
“characters are triangles, circles and other geometric figures”.

What Isaac Newton then did was in effect to suggest that
natural systems are at some fundamental level actually
governed by purely abstract laws that can be specified in
terms of mathematical equations. This idea has met with its
greatest success in physics, where for the past three centuries
essentially every major theory has been formulated in terms
of mathematical equations. Starting in the mid-1800s, it has
also had increasing success in chemistry. And in the past
century, it has had a few scattered successes in dealing with
simpler phenomena in fields like biology and economics. But
despite the vast range of phenomena in nature that have
never successfully been described in mathematical terms, it
has become quite universally assumed that, as David Hilbert
put it in 1900, “mathematics is the foundation of all exact
knowledge of natural phenomena”. There continue to be
theories in science that are not explicitly mathematical—
examples being continental drift and evolution by natural
selection—but, as for example Alfred Whitehead stated in
1911, it is generally believed that “all science as it grows
toward perfection becomes mathematical in its ideas”.

â Definition of mathematics. When I use the term
“mathematics” in this book what I mean is that field of
human endeavor that has in practice traditionally been called
mathematics. One could in principle imagine defining
mathematics to encompass all studies of abstract systems,
and indeed this was in essence the definition that I had in
mind when I chose the name Mathematica. But in practice
mathematics has defined itself to be vastly narrower, and to
include, for example, nothing like the majority of the
programs that I discuss in this book. Indeed, in many
respects, what is called mathematics today can be seen as a
direct extension of the particular notions of arithmetic and
geometry that apparently arose in Babylonian times. Typical
dictionary definitions reflect this by describing mathematics
as the study of number and space, together with their
abstractions and generalizations. And even logic—an
abstract system that dates from antiquity—is not normally
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considered part of mainstream mathematics. Particularly
over the past century the defining characteristic of research in
mathematics has increasingly been the use of theorem and
proof methodology. And while some generalization has
occurred in the types of systems being studied, it has usually
been much limited by the desire to maintain the validity of
some set of theorems (see page 793). This emphasis on
theorems has also led to a focus on equations that statically
state facts rather than on rules that define actions, as in most
of the systems in this book. But despite all these issues, many
mathematicians implicitly tend to assume that somehow
mathematics as it is practiced is universal, and that any
possible abstract system will be covered by some area of
mathematics or another. The results of this book, however,
make it quite clear that this is not the case, and that in fact
traditional mathematics has reached only a tiny fraction of all
the kinds of abstract systems that can in principle be studied.

â Reasons for mathematics in science. It is not surprising that
there should be issues in science to which mathematics is
relevant, since until about a century ago the whole purpose
of mathematics was at some level thought of as being to
provide abstract idealizations of aspects of physical reality
(with the consequence that concepts like dimensions above 3
and transfinite numbers were not readily accepted as
meaningful even in mathematics). But there is absolutely no
reason to think that the specific concepts that have arisen so
far in the history of mathematics should cover all of science,
and indeed in this book I give extensive evidence that they
do not. At times the role of mathematics in science has been
used in philosophy as an indicator of the ultimate power of
human thinking. In the mid-1900s, especially among
physicists, there was occasionally some surprise expressed
about the effectiveness of mathematics in the natural
sciences. One explanation advanced by Albert Einstein was
that the only physical laws we can recognize are ones that are
easy to express in our system of mathematics. 

â History of programs and nature. Given the idea of using
programs as a basis for describing nature, one can go back in
history and find at least a few rough precursors of this idea.
Around 100 AD, for example, following earlier Greek
thinking, Lucretius made the somewhat vague suggestion
that the universe might consist of atoms assembled according
to grammatical rules like letters and words in human
language. From the Pythagoreans around 500 BC through
Ptolemy around 150 AD to the early work of Johannes Kepler
around 1595 there was the notion that the planets might
follow definite geometrical rules like the elements of a
mechanical clock. But following the work of Isaac Newton in
the late 1600s it increasingly came to be believed that systems

could only meaningfully be described by the mathematical
equations they satisfy, and not by any explicit mechanism or
rules. The failure of the concept of ether and the rise of
quantum mechanics in the early 1900s strengthened this view
to the point where at least in physics mechanistic
explanations of any kind became largely disreputable.
(Starting in the 1800s systems based on very simple rules
were nevertheless used in studies of genetics and heredity.)
With the advent of electronics and computers in the 1940s
and 1950s, models like neural networks and cellular
automata began to be introduced, primarily in biology (see
pages 876 and 1099). But in essentially all cases they were
viewed just as approximations to models based on traditional
mathematical equations. In the 1960s and 1970s there arose in
the early computer hacker community the general idea that
the universe might somehow operate like a program. But
attempts to engineer explicit features of our universe using
constructs from practical programming were unsuccessful,
and the idea largely fell into disrepute (see page 1026).
Nevertheless, starting in the 1970s many programs were
written to simulate all sorts of scientific and technological
systems, and often these programs in effect defined the
models used. But in almost all cases the elements of the
models were firmly based on traditional mathematical
equations, and the programs themselves were highly
complex, and not much like the simple programs I discuss in
this book. (See also pages 363 and 992.)

â Extensions of mathematics. See page 793. 

â The role of logic. In addition to standard mathematics, the
formal system most widely discussed since antiquity is logic
(see page 1099). And starting with Aristotle there was in fact
a long tradition of trying to use logic as a framework for
drawing conclusions about nature. In the early 1600s the
experimental method was suggested as a better alternative.
And after mathematics began to show extensive success in
describing nature in the late 1600s no further large-scale
efforts to do this on the basis of logic appear to have been
made. It is conceivable that Gottfried Leibniz might have
tried in the late 1600s, but when his work was followed up in
the late 1800s by Gottlob Frege and others the emphasis was
on building up mathematics, not natural science, from logic
(see page 1149). And indeed by this point logic was viewed
mostly as a possible representation of human thought—and
not as a formal system relevant to nature. So when computers
arose it was their numerical and mathematical rather than
logical capabilities that were normally assumed relevant for
natural science. But in the early 1980s the cellular automata
that I studied I often characterized as being based on logical
rules, rather than traditional mathematical ones. However, as
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we will see on page 806, traditional logic is in fact in many
ways very narrow compared to the whole range of rules
based on simple programs that I actually consider in this
book. 

â Complexity and theology. Both complexity and order in the
natural world have been cited as evidence for an intelligent
creator (compare page 1195). Early mythologies most often
assume that the universe started in chaos, with a
supernatural being adding order, then creating a series of
specific complex natural systems. In Greek philosophy it was
commonly thought that the regularities seen in astronomy
and elsewhere (such as the obvious circular shapes of the Sun
and Moon) were reflections of perfect mathematical forms
associated with divine beings. About complexity Aristotle
did note that what nature makes is “finer than art”, though
this was not central to his arguments about causes of natural
phenomena. By the beginning of the Christian era, however,
there is evidence of a general belief that the complexity of
nature must be the work of a supernatural being—and for
example there are statements in the Bible that can be read in
this way. Around 1270 Thomas Aquinas gave as an argument
for the existence of God the fact that things in nature seem to
“act for an end” (as revealed for example by always acting in
the same way), and thus must have been specifically
designed with that end in mind. In astronomy, as specific
natural laws began to be discovered, the role of God began to
recede somewhat, with Isaac Newton claiming, for example,
that God must have first set the planets on their courses, but
then mathematical laws took over to govern their subsequent
behavior. Particularly in biology, however, the so-called
“argument by design” became ever more popular. Typical
was John Ray’s 1691 book The Wisdom of God Manifested in the
Works of the Creation, which gave a long series of examples
from biology that it claimed were so complex that they must
be the work of a supernatural being. By the early 1800s, such
ideas had led to the field of natural theology, and William
Paley gave the much quoted argument that if it took a
sophisticated human watchmaker to construct a watch, then
the only plausible explanation for the vastly greater
complexity of biological systems was that they must have
been created by a supernatural being. Following the
publication of Charles Darwin’s Origin of Species in 1859
many scientists began to argue that natural selection could
explain all the basic phenomena of biology, and although
some religious groups maintained strong resistance, it was
widely assumed by the mid-1900s that no other explanation
was needed. In fact, however, just how complexity arises was
never really resolved, and in the end I believe that it is only
with the ideas of this book that this can successfully be done. 

â Artifacts and natural systems. See page 828.

â Complexity and science. Ever since antiquity science has
tended to see its main purpose as being the study of
regularities—and this has meant that insofar as complexity is
viewed as an absence of regularities, it has tended to be
ignored or avoided. There have however been occasional
discussions of various general aspects of complexity and
what can account for them. Thus, for example, by 200 BC the
Epicureans were discussing the idea that varied and complex
forms in nature could be made up from arrangements of
small numbers of types of elementary atoms in much the
same way as varied and complex written texts are made up
from small numbers of types of letters. And although its
consequences were remarkably confused, the notion of a
single underlying substance that could be transmuted into
anything—living or not—was also a centerpiece of alchemy.
Starting in the 1600s successes in physics and discoveries like
the circulation of blood led to the idea that it should be
possible to explain the operation of almost any natural
system in essentially mechanical terms—leading for example
René Descartes to claim in 1637 that we should one day be
able to explain the operation of a tree just like we do a clock.
But as mathematical methods developed, they seemed to
apply mainly to physical systems, and not for example to
biological ones. And indeed Immanuel Kant wrote in 1790
that “it is absurd to hope that another Newton will arise in
the future who will make comprehensible to us the
production of a blade of grass according to natural laws”. In
the late 1700s and early 1800s mathematical methods began
to be used in economics and later in studying populations.
And partly influenced by results from this, Charles Darwin
in 1859 suggested natural selection as the basis for many
phenomena in biology, including complexity. By the late
1800s advances in chemistry had established that biological
systems were made of the same basic components as physical
ones. But biology still continued to concentrate on very
specific observations—with no serious theoretical discussion
of anything as general as the phenomenon of complexity. In
the 1800s statistics was increasingly viewed as providing a
scientific approach to complex processes in practical social
systems. And in the late 1800s statistical mechanics was then
used as a basis for analyzing complex microscopic processes
in physics. Most of the advances in physics in the late 1800s
and early 1900s in effect avoided complexity by
concentrating on properties and systems simple enough to be
described by explicit mathematical formulas. And when
other fields tried in the early and mid-1900s to imitate
successes in physics, they too generally tended to concentrate
on issues that seemed amenable to explicit mathematical
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formulas. Within mathematics itself—especially in number
theory and the three-body problem—there were calculations
that yielded results that seemed complex. But normally this
complexity was viewed just as something to be overcome—
either by looking at things in a different way, or by proving
more powerful theorems—and not as something to be
studied or even much commented on in its own right.

In the 1940s, however, successes in the analysis of logistical
and electronic systems led to discussion of the idea that it
might be possible to set up some sort of general approach to
complex systems—especially biological and social ones. And
by the late 1940s the cybernetics movement was becoming
increasingly popular—with Norbert Wiener emphasizing
feedback control and stochastic differential equations, and
John von Neumann and others emphasizing systems based
on networks of elements often modelled after neurons. There
were spinoffs such as control theory and game theory, but
little progress was made on core issues of complexity, and
already by the mid-1950s what began to dominate were
vague discussions involving fashionable issues in areas such
as psychiatry and anthropology. There also emerged a
tradition of robotics and artificial intelligence, and a few of
the systems that were built or simulated did show some
complexity of behavior (see page 879). But in most cases this
was viewed just as something to be overcome in order to
achieve the engineering objectives sought. Particularly in
the 1960s there was discussion of complexity in large
human organizations—especially in connection with the
development of management science and the features of
various forms of hierarchy—and there emerged what was
called systems theory, which in practice typically involved
simulating networks of differential equations, often
representing relationships in flowcharts. Attempts were for
example made at worldwide models, but by the 1970s their
results—especially in economics—were being discredited.
(Similar methods are nevertheless used today, especially in
environmental modelling.)

With its strong emphasis on simple laws and measurements
of numbers, physics has normally tended to define itself to
avoid complexity. But from at least the 1940s, issues of
complexity were nevertheless occasionally mentioned by
physicists as important, most often in connection with fluid
turbulence or features of nonlinear differential equations.
Questions about pattern formation, particularly in biology
and in relation to thermodynamics, led to a sequence of
studies of reaction-diffusion equations, which by the 1970s
were being presented as relevant to general issues of
complexity, under names like self-organization, synergetics
and dissipative structures. By the late 1970s the work of

Benoit Mandelbrot on fractals provided an important
example of a general approach to addressing a certain kind of
complexity. And chaos theory—with its basis in the
mathematics of dynamical systems theory—also began to
become popular in the late 1970s, being discussed
particularly in connection with fluid turbulence. In
essentially all cases, however, the emphasis remained on
trying to find some aspect of complex behavior that could be
summarized by a single number or a traditional
mathematical equation.

As discussed on pages 44–50, there were by the beginning of
the 1980s various kinds of abstract systems whose rules were
simple but which had nevertheless shown complex behavior,
particularly in computer simulations. But usually this was
considered largely a curiosity, and there was no particular
sense that there might be a general phenomenon of
complexity that could be of central interest, say in natural
science. And indeed there remained an almost universal
belief that to capture any complexity of real scientific
relevance one must have a complex underlying model. My
work on cellular automata in the early 1980s provided strong
evidence, however, that complex behavior very much like
what was seen in nature could in fact arise in a very general
way from remarkably simple underlying rules. And starting
around the mid-1980s it began to be not uncommon to hear
the statement that complex behavior can arise from simple
rules—though often there was great confusion about just
what this was actually saying, and what, for example, should
be considered complex behavior, or a simple rule.

That complexity could be identified as a coherent
phenomenon that could be studied scientifically in its own
right was something I began to emphasize around 1984. And
having created the beginnings of what I considered to be the
necessary intellectual structure, I started to try to develop an
organizational structure to allow what I called complex
systems research to spread. Some of what I did had fairly
immediate effects, but much did not, and by late 1986 I had
started building Mathematica and decided to pursue my own
scientific interests in a more independent way (see page 20).
By the late 1980s, however, there was widespread discussion
of what was by then being called complexity theory. (I had
avoided this name to prevent confusion with the largely
unrelated field of computational complexity theory). And
indeed many of the points I had made about the promise of
the field were being enthusiastically repeated in popular
accounts—and there were starting to be quite a number of
new institutions devoted to the field. (A notable example was
the Santa Fe Institute, whose orientation towards complexity
seems to have been a quite direct consequence of my efforts.)
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But despite all this, no major new scientific developments
were forthcoming—not least because there was a tremendous
tendency to ignore the idea of simple underlying rules and of
what I had discovered in cellular automata, and instead to set
up computer simulations with rules far too complicated to
allow them to be used in studying fundamental questions.
And combined with a predilection for considering issues in
the social and biological sciences that seem hard to pin down,
this led to considerable skepticism among many scientists—
with the result that by the mid-1990s the field was to some
extent in retreat—though the statement that complexity is
somehow an important and fundamental issue has continued
to be emphasized especially in studies of ecological and
business systems. 

Watching the history of the field of complexity theory has
made it particularly clear to me that without a major new
intellectual structure complexity cannot realistically be
studied in a meaningful scientific way. But it is now just such
a structure that I believe I have finally been able to set up in
this book. 

Relations to Other Areas

â Page 7 · Mathematics. I discuss the implications of this book
for the foundations of mathematics mainly on pages 772–821
and in the rather extensive corresponding notes. With a
sufficiently general definition of mathematics, however, the
whole core of the book can in fact be viewed as a work of
experimental mathematics. And even with a more traditional
definition, this is at least true of much of my discussion of
systems based on numbers in Chapter 4. The notes to almost
all chapters of the book contain a great many new
mathematical results, mostly emerging from my analysis of
some of the simpler behavior considered in the book. Pages
606–620 and 737–750 discuss in general the capabilities of
mathematical analysis, while pages 588–597 address the
foundations of statistics. Note that some ideas and results
highly relevant to current frontiers in mathematics appear in
some rather unexpected places in the book. Specific examples
include the parameter space sets that I discuss in connection
with shapes of plant leaves on page 407, and the minimal
axioms for logic that I discuss on page 810. A more general
example is the issue of smooth objects arising from
combinatorial data that I discuss in Chapter 9 in connection
with the nature of space in fundamental physics.

â Page 8 · Physics. I discuss general mechanisms and models
relevant for physical systems in Chapter 7, specific types of
everyday physical systems in Chapter 8, and applications to
basic foundational problems in physics in Chapter 9. I

mention some further fundamental issues in physics around
page 730 and in chemistry on page 1193. 

â Page 8 · Biology. The main place I discuss applications to
biology is on pages 383–429 of Chapter 8, where I consider
first general questions about biology and evolution, and then
more specific issues about growth and pattern in biological
organisms. I consider visual and auditory perception on
pages 577–588, and the operation of brains on pages 620–631.
I also discuss the definition of life on pages 823 and 1178, as
well as mentioning protein folding and structure on pages
1003 and 1184. 

â Page 9 · Social and related sciences. I discuss the particular
example of financial systems on pages 429–432, and make
some general comments on page 1014. The end of Chapter 10,
as well as some parts of Chapter 12, also discuss various
issues that can be viewed as foundational questions.

â Page 10 · Computer science. Chapter 11 as well as parts of
Chapter 12 (especially pages 753–771) address foundational
issues in computer science. Chapter 3 uses standard
computer science models such as Turing machines and
register machines as examples of simple programs. In many
places in the book—especially these notes—I discuss all sorts
of specific problems and issues of direct relevance to current
computer science. Examples include cryptography (pages
598–606), Boolean functions (pages 616–619 and 806–814),
user interfaces (page 1102) and quantum computing
(page 1147). 

â Page 10 · Philosophy. Chapter 12 is the main place I address
traditional philosophical issues. On pages 363–369 of Chapter
8, however, I discuss some general issues of modelling, and
in Chapter 10 I consider at length not only practical but also
foundational questions about perception and to some extent
general thinking and consciousness. (See page 1196.)

â Page 11 · Technology. The notes to this book mention many
specific technological connections, and I expect that many of
the models and methods of analysis that I use in the book can
be applied quite directly for technological purposes. I discuss
foundational questions about technology mainly on
pages 840–843. 

â Scope of existing sciences. One might imagine that physics
would for example concern itself with all aspects of physical
systems, biology with all aspects of biological systems, and
so on. But in fact as they are actually practiced most of the
traditional sciences are much narrower in scope. Historically
what has typically happened is that in each science a certain
way of thinking has emerged as the most successful. And
then over the course of time, the scope of the science itself has
come to be defined to encompass just those issues that this
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way of thinking is able to address. So when a new
phenomenon is observed, a particular science will typically
tend to focus on just those aspects of the phenomenon that
can be studied by whatever way of thinking has been
adopted in that science. And when the phenomenon involves
substantial complexity, what has in the past usually
happened is that simpler and simpler aspects are
investigated until one is found that is simple enough to
analyze using the chosen way of thinking.

The Personal Story of the Science in This Book

â Page 17 · Statistical physics cover. The pictures show disks
representing idealized molecules bouncing around in a box,
and the book claims that as time goes on there is almost
inevitably increasing randomization. The pictures were made
in about 1964 by Berni Alder and Frederick Reif from
oscilloscope output from the LARC computer at what was
then Lawrence Radiation Laboratory. A total of 40 disks were
started with positions and velocities determined by a middle-
square random number generator (see page 975), and their
motion was followed for about 10 collision times—after
which roundoff errors in the 64-bit numbers used had grown
too big. From the point of view of this book the
randomization seen in these pictures is in large part just a
reflection of the fact that a random sequence of digits were
used in the initial conditions. But what the discoveries in this
book show is that such randomness can also be generated

without any such random input—finally clarifying some
very basic issues in statistical physics. (See page 441.)

â Page 17 · My 1973 computer experiments. I used a British
Elliott 903 computer with 8 kilowords of 18-bit ferrite core
memory. The assembly language program that I wrote filled
up a fair fraction of the memory. The system that I looked at
was a 2D cellular automaton with discrete particles colliding
on a square grid. Had I not been concerned with physics-like
conservation laws, or had I used something other than a
square grid, the teleprinter output that I generated would
have shown randomization. (See page 999.)

â Page 19 · Computer printouts. The printouts show a series of
elementary cellular automata started from random initial
conditions (see page 232). I generated them in 1981 using a C
program running on a VAX 11/780 computer with an early
version of the Unix operating system. (See also page 880.) 

â Timeline. Major periods in my work have been:

ä 1974–1980: particle physics and cosmology

ä 1979–1981: developing SMP computer algebra system

ä 1981–1986: cellular automata etc.

ä 1986–1991: intensive Mathematica development 

ä 1991–2001: writing this book
(Wolfram Research, Inc. was founded in 1987; Mathematica 1.0
was released June 23, 1988; the company and successive
versions of Mathematica continue to be major parts of my life.)

â Detailed history. See pages 880–882. 




