STEPHEN WOLFRAM A NEW KIND OF SCIENCE

EXCERPTED FROM

SECTION 10.3

Defining the Notion of Randomness

Defining the Notion of Randomness

Many times in this book I have said that the behavior of some system or another seems random. But so far I have given no precise definition of what I mean by randomness. And what we will discover in this section is that to come up with an appropriate definition one has no choice but to consider issues of perception and analysis.

One might have thought that from traditional mathematics and statistics there would long ago have emerged some standard definition of randomness. But despite occasional claims for particular definitions, the concept of randomness has in fact remained quite obscure. And indeed I believe that it is only with the discoveries in this book that one is finally now in a position to develop a real understanding of what randomness is.

At the level of everyday language, when we say that something seems random what we usually mean is that there are no significant regularities in it that we can discern—at least with whatever methods of perception and analysis we use.

We would not usually say, therefore, that either of the first two pictures at the top of the facing page seem random, since we can readily recognize highly regular repetitive and nested patterns in them. But the third picture we would probably say does seem random, since at least at the level of ordinary visual perception we cannot recognize any significant regularities in it.

So given this everyday notion of randomness, how can we build on it to develop more precise definitions? The first step is to clarify what it means not to be able to recognize regularities in something. Following the discussion in the previous section, we know that whenever we find regularities, it implies that redundancy is present, and this in turn means that a shorter description can be given. So when we say that we cannot recognize any regularities, this is equivalent to saying that we cannot find a shorter description.

The three pictures on the facing page can always be described by explicitly giving a list of the colors of each of the 6561 cells that they contain. But by using the regularities that we can see in the first two

Pictures exhibiting different degrees of apparent randomness. Pictures (a) and (b) have obvious regularities, and would never be considered particularly random. But picture (c) has almost no obvious regularities, and would typically be considered quite random. As it turns out, picture (c), like (a) and (b), can actually be generated by a quite simple process. But the point is that the simplicity of this process does not affect the fact that with our standard methods of perception and analysis picture (c) is for practical purposes random.

pictures, we can readily construct much shorter—yet still complete— descriptions of these pictures.

The repetitive structure of picture (a) implies that to reproduce this picture all we need do is to specify the colors in a 49×2 block, and then say that this block should be repeated an appropriate number of times. Similarly, the nested structure of picture (b) implies that to reproduce this picture, all we need do is to specify the colors in a 3×3 block, and then say that as in a two-dimensional substitution system each black cell should repeatedly be replaced by this block.

But what about picture (c)? Is there any short description that can be given of this picture? Or do we have no choice but just to specify explicitly the color of every one of the cells it contains?

Our powers of visual perception certainly do not reveal any significant regularities that would allow us to construct a shorter description. And neither, it turns out, do any standard methods of mathematical or statistical analysis. And so for practical purposes we have little choice but just to specify explicitly the color of each cell.

But the fact that no short description can be found by our usual processes of perception and analysis does not in any sense mean that no such description exists at all. And indeed, as it happens, picture (c) in fact allows a very short description. For it can be generated just by starting with a single black cell and then applying a simple two-dimensional cellular automaton rule 250 times.

But does the existence of this short description mean that picture (c) should not be considered random? From a practical point of view the fact that a short description may exist is presumably not too relevant if we can never find this description by any of the methods of perception and analysis that are available to us. But from a conceptual point of view it may seem unsatisfactory to have a definition of randomness that depends on our methods of perception and analysis, and is not somehow absolute.

So one possibility is to define randomness so that something is considered random only if no short description whatsoever exists of it. And before the discoveries in this book such a definition might have seemed not far from our everyday notion of randomness. For we would probably have assumed that anything generated from a sufficiently short description would necessarily look fairly simple. But what we have discovered in this book is that this is absolutely not the case, and that in fact even from rules with very short descriptions it is easy to generate behavior in which our standard methods of perception and analysis recognize no significant regularities.

So to say that something is random only if no short description whatsoever exists of it turns out to be a highly restrictive definition of randomness. And in fact, as I mentioned in Chapter 7, it essentially implies that no process based on definite rules can ever manage to generate randomness when there is no randomness before. For since the rules themselves have a short description, anything generated by following them will also have a correspondingly short description, and will therefore not be considered random according to this definition.

And even if one is not concerned about where randomness might come from, there is still a further problem: it turns out in general to be impossible to determine in any finite way whether any particular thing can ever be generated from a short description. One might imagine that one could always just try running all programs with progressively longer descriptions, and see whether any of them ever generate what one wants. But the problem is that one can never in general tell in advance how many steps of evolution one will need to look at in order to be sure that any particular piece of behavior will not occur. And as a result, no finite process can in general be used to guarantee that there is no short description that exists of a particular thing.

By setting up various restrictions, say on the number of steps of evolution that will be allowed, it is possible to obtain slightly more tractable definitions of randomness. But even in such cases the amount of computational work required to determine whether something should be considered random is typically astronomically large. And more important, while such definitions may perhaps be of some conceptual interest, they correspond very poorly with our intuitive notion of randomness. In fact, if one followed such a definition most of the pictures in this book that I have said look random—including for example picture (c) on page 553—would be considered not random. And following the discussion of Chapter 7, so would at least many of the phenomena in nature that we normally think of as random.

Indeed, what I suspect is that ultimately no useful definition of randomness can be based solely on the issue of what short descriptions of something may in principle exist. Rather, any useful definition must, I believe, make at least some reference to how such short descriptions are supposed to be found.

Over the years, a variety of definitions of randomness have been proposed that are based on the absence of certain specific regularities. Often these definitions are presented as somehow being fundamental. But in fact they typically correspond just to seeing whether some particular process—and usually a rather simple one—succeeds in recognizing regularities and thus in generating a shorter description.

A common example—to be discussed further two sections from now—involves taking, say, a sequence of black and white cells, and then counting the frequency with which each color and each block of colors occurs. Any deviation from equality among these frequencies represents a regularity in the sequence and reveals nonrandomness. But despite some confusion in the past it is certainly not true that just checking equality of frequencies of blocks of colors—even arbitrarily long ones—is sufficient to ensure that no regularities at all exist. This procedure can indeed be used to check that no purely repetitive pattern exists, but as we will see later in this chapter, it does not successfully detect the presence of even certain highly regular nested patterns.

So how then can we develop a useful yet precise definition of randomness? What we need is essentially just a precise version of the statement at the beginning of this section: that something should be considered random if none of our standard methods of perception and analysis succeed in detecting any regularities in it. But how can we ever expect to find any kind of precise general characterization of what all our various standard methods of perception and analysis do?

The key point that will emerge in this chapter is that in the end essentially all these methods can be viewed as being based on rather simple programs. So this suggests a definition that can be given of randomness: something should be considered to be random whenever there is essentially no simple program that can succeed in detecting regularities in it.

Usually if what one is studying was itself created by a simple program then there will be a few closely related programs that always succeed in detecting regularities. But if something can reasonably be considered random, then the point is that the vast majority of simple programs should not be able to detect any regularities in it.

So does one really need to try essentially all sufficiently simple programs in order to determine this? In my experience, the answer tends to be no. For once a few simple programs corresponding to a few standard methods of perception and analysis have failed to detect regularities, it is extremely rare for any other simple program to succeed in detecting them.

So this means that the everyday definition of randomness that we discussed at the very beginning of this section is in the end already quite unambiguous. For it typically will not matter much which of the standard methods of perception and analysis we use: after trying a few of them we will almost always be in a position to come to a quite definite conclusion about whether or not something should be considered random.