
EXCERPTED FROM

Auditory Perception

SECTION 10.8



P R O C E S S E S  O F  P E R C E P T I O N  A N D A N A L Y S I S C H A P T E R  1 0

585

Auditory Perception

In the course of this book I have made extensive use of pictures. So why

not also sounds? One issue—beyond the obvious fact that sounds

cannot be included directly in a printed book—is that while one can

study the details of a picture at whatever pace one wants, a sound is in a

sense gone as soon as it has finished playing. 

But everyday experience makes it quite clear that one can still

learn a lot by listening to sounds. So what then are the features of

sounds that our auditory system manages to pick out?

At a fundamental level all sounds consist of patterns of rapid

vibrations. And the way that we hear sounds is by such vibrations

being transmitted to the array of hair cells in our inner ear. The

mechanics of the inner ear are set up so that each row of hair cells

ends up being particularly sensitive to vibrations at some specific

frequency. So what this means is that what we tend to perceive most

about sounds are the frequencies they contain.

Musical notes usually have just one basic frequency, while voiced

speech sounds have two or three. But what about sounds from systems

in nature, or from systems of the kinds we have studied in this book?

There are a number of ways in which one can imagine such

systems being used to generate sounds. One simple approach illustrated

on the right is to consider a sequence of elements produced by the

system, and then to take each element to correspond to a vibration for a

brief time—say a thousandth of a second—in one of two directions. 

So what are such sounds like? If the sequence of elements is

repetitive then what one hears is in essence a pure tone at a specific

frequency—much like a musical note. But if the sequence is random

then what one hears is just an amorphous hiss.

So what happens between these extremes? If the properties of a

sequence gradually change in a definite way over time then one can

often hear this in the corresponding sound. But what about sequences

that have more or less uniform properties? What kinds of regularities

does our auditory system manage to detect in these?

A sequence of discrete elements
and a possible corresponding
waveform for a sound.
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The answer, it seems, is surprisingly simple: we readily recognize

exact or approximate repetition at definite frequencies, and essentially

nothing else. So if we listen to nested sequences, for example, we have

no direct way to tell that they are nested, and indeed all we seem

sensitive to are some rather simple features of the spectrum of

frequencies that occur.

The pictures below show spectra obtained from nested sequences

produced by various simple one-dimensional substitution systems. The

diversity of these spectra is quite striking: some have simple nested

forms dominated by a few isolated peaks at specific frequencies, while

others have quite complex forms that cover large ranges of frequencies. 
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Frequency spectra of nested sequences generated by one-dimensional neighbor-independent substitution systems. The rules
are the same as shown on pages 83 and 84. Note the presence of both isolated peaks and complicated background patterns. If
a sequence corresponds to a pure tone and repeats every  elements then its spectrum will consist of  equally spaced
peaks. Sequences whose spectra contain no dominant peaks typically sound like random noise, although sometimes explicit
time variation can be heard, and indeed sequence (c) just sounds like a succession of idealized frog ribbets. Intensity or power
spectra are obtained by squaring the quantities shown. 

n n/2
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And given only the underlying rule for a substitution system, it

turns out to be fairly difficult to tell even roughly what the spectrum will

be like. But given the spectrum, one can immediately tell how we will

perceive the sound. When the spectrum is dominated by just one large

peak, we hear a definite tone. And when there are two large peaks we also

typically hear definite tones. But as the number of peaks increases it

rapidly becomes impossible to keep track of them, and we end up just

hearing random noise—even in cases where the peaks happen to have

frequencies that are in the ratios of common musical chords.

So the result is that our ears are not sensitive to most of the elaborate

structure that we see in the spectra of many nested sequences. Indeed, it

seems that as soon as the spectrum covers any broad range of frequencies

all but very large peaks tend to be completely masked, just as in everyday

life a sound needs to be loud if it is to be heard over background noise.

So what about other kinds of regularities in sequences? If a

sequence is basically random but contains some short-range

correlations then these will lead to smooth variations in the spectrum.

And for example sequences that consist of random successions of

specific blocks can yield any of the types of spectra shown below—and

can sound variously like hisses, growls or gurgles.

To get a spectrum with a more elaborate structure requires

long-range correlations—as exist in nested sequences. But so far as I can

Frequency spectra for long sequences obtained by concatenating blocks in random orders. Such
spectra can be calculated by fairly standard methods from stochastic analysis. The first case shown
corresponds to white noise. The second-to-last case always has a black element at every third
position, so exhibits a peak at the corresponding repetition frequency.
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tell, the only kinds of correlations that are ultimately important to our

auditory system are those that lead to some form of repetition.

So in the end, any features of the behavior of a system that go

beyond pure repetition will tend to seem to our ears essentially random.

Statistical Analysis

When it comes to studying large volumes of data the method almost

exclusively used in present-day science is statistical analysis. So what

kinds of processes does such analysis involve? What is typically done in

practice is to compute from raw data various fairly simple quantities

whose values can then be used to assess models which could provide

summaries of the data.

Most kinds of statistical analysis are fundamentally based on the

assumption that such models must be probabilistic, in the sense that

they give only probabilities for behavior, and do not specifically say

what the behavior will be. In different situations the reasons for using

such probabilistic models have been somewhat different, but before the

discoveries in this book one of the key points was that it seemed

inconceivable that there could be deterministic models that would

reproduce the kinds of complexity and apparent randomness that were

so often seen in practice.

If one has a deterministic model then it is at least in principle

quite straightforward to find out whether the model is correct: for all

one has to do is to compare whatever specific behavior the model

predicts with behavior that one observes. But if one has a probabilistic

model then it is a much more difficult matter to assess its validity—and

indeed much of the technical development of the field of statistics, as

well as many of its well-publicized problems, can be traced to this issue.

As one simple example, consider a model in which all possible

sequences of black and white squares are supposed to occur with equal

probability. By effectively enumerating all such sequences, it is easy to

see that such a model predicts that in any particular sequence the

fraction of black squares is most likely to be .1�2




