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Universality in Turing Machines and Other Systems

From the results of the previous few sections, we now have some idea

where the threshold for universality lies in cellular automata. But what

about other kinds of systems—like Turing machines? How complicated

do the rules need to be in order to get universality?

In the 1950s and early 1960s a certain amount of work was done

on trying to construct small Turing machines that would be universal.

The main achievement of this work was the construction of the

universal machine with 7 states and 4 possible colors shown below.

The rule for a universal Turing machine with 7 states and 4 colors constructed in 1962. Until now, this was essentially the simplest
known universal Turing machine. Note that one element of the rule can be considered as specifying that the Turing machine
should “halt” with the head staying in the same location and same state. 

Turing machine evolution Turing machine evolution compressed

tag system evolution tag system evolution shifted

tag system rule:

An example of how the Turing machine above can emulate a tag system. A black element in the tag
system is set up to correspond to a block of four cells in the Turing machine, while a white element
corresponds to a single cell.
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The picture at the bottom of the facing page shows how universality

can be proved in this case. The basic idea is that by setting up appropriate

initial conditions on the left, the Turing machine can be made to emulate

any tag system of a certain kind. But it then turns out from the discussion

of page 667 that there are tag systems of this kind that are universal.

It is already an achievement to find a universal Turing machine as

comparatively simple as the one on the facing page. And indeed in the forty

years since this example was found, no significantly simpler one has been

found. So one might conclude from this that the machine on the facing

page is somehow at the threshold for universality in Turing machines.

But as one might expect from the discoveries in this book, this is

far from correct. And in fact, by using the universality of rule 110 it

turns out to be possible to come up with the vastly simpler universal

Turing machine shown below—with just 2 states and 5 possible colors. 

The rule for the simplest Turing machine currently known to be universal, based on discoveries in
this book. The machine has 2 states and 5 possible colors. 

Turing machine evolution compressed

Turing machine evolution

An example of how the Turing machine above manages to emulate rule 110.
The compressed picture is made by keeping only the steps indicated at
which the head is further to the right than ever before. To get the picture
shown requires running the Turing machine for a total of 5000 steps.
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As the picture at the bottom of the previous page illustrates, this

Turing machine emulates rule 110 in a quite straightforward way: its head

moves systematically backwards and forwards, at each complete sweep

updating all cells according to a single step of rule 110 evolution. And

knowing from earlier in this chapter that rule 110 is universal, it then

follows that the 2-state 5-color Turing machine must also be universal. 

So is this then the simplest possible universal Turing machine?

I am quite certain that it is not. And in fact I expect that there are

some significantly simpler ones. But just how simple can they actually be?

If one looks at the 4096 Turing machines with 2 states and 2 colors

it is fairly easy to see that their behavior is in all cases too simple to

support universality. So between 2 states and 2 colors and 2 states and 5

colors, where does the threshold for universality in Turing machines lie?

(a) (b) (c) (d)

(c) (d)

(a) (b)

(c) (d)

(a) (b)

Examples of Turing machines with 2 states and 4 colors that show
complex behavior. The compressed pictures above are based on
50,000 steps of evolution. In all cases, all cells are initially white. 
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The pictures at the bottom of the facing page give examples of

some 2-state 4-color Turing machines that show complex behavior. And

I have little doubt that most if not all of these are universal.

Among such 2-state 4-color Turing machines perhaps one in

50,000 shows complex behavior when started from a blank tape.

Among 4-state 2-color Turing machines the same kind of complex

behavior is also seen—as discussed on page 81—but now it occurs only

in perhaps one out of 200,000 cases. 

So what about Turing machines with 2 states and 3 colors? There

are a total of 2,985,984 of these. And most of them yield fairly simple

behavior. But it turns out that 14 of them—all essentially equivalent—

produce considerable complexity, even when started from a blank tape.

The picture below shows an example. 

And although it will no doubt be very difficult to prove, it seems

likely that this Turing machine will in the end turn out to be universal.

And if so, then presumably it will by most measures be the very

simplest Turing machine that is universal. 

One of the 14 essentially equivalent 2-state 3-color Turing machines that
yield complicated behavior when started from a blank tape. The
compressed picture above is made by taking the first 100,000 steps, and

keeping only those at which the head is further to the left than ever before. The interior of the pattern that emerges
is like an inverted version of the rule 60 additive cellular automaton; the boundary, however, is more complicated. In
the numbering scheme of page 761 this is machine 596,440 out of the total of 2,985,984 with 2 states and 3 colors. 
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With 3 states and 2 colors it turns out that with blank initial

conditions all of the 2,985,984 possible Turing machines of this type

quickly evolve to produce simple repetitive or nested behavior. With

more complicated initial conditions the behavior one sees can

sometimes be more complicated, at least for a while—as in the pictures

below. But in the end it still always seems to resolve into a simple form.

Yet despite this, it still seems conceivable that with appropriate

initial conditions significantly more complex behavior might occur—and

might ultimately allow universality in 3-state 2-color Turing machines. 

From the universality of rule 110 we know that if one just starts

enumerating cellular automata in a particular order, then after going

through at most 110 rules, one will definitely see universality. And

from other results earlier in this chapter it seems likely that in fact one

would tend to see universality even somewhat earlier—after going

through only perhaps just ten or twenty rules. 

Among Turing machines, the universal 2-state 5-color rule on

page 707 can be assigned the number 8,679,752,795,626. So this means

(a) (b) (c)

(a)

(b)

(c)

Examples of 3-state 2-color
Turing machines which behave
for a while in slightly complicated
ways. With more elaborate initial
conditions, these machines can
be made to exhibit complicated
behavior for longer. 
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that after going through perhaps nine trillion Turing machines one will

definitely tend to find an example that is universal. But presumably one

will actually find examples much earlier—since for example the 2-state

3-color machine on page 709 is only number 596,440. 

And although these numbers are larger than for cellular

automata, the fact remains that the simplest potentially universal

Turing machines are still very simple in structure, suggesting that the

threshold for universality in Turing machines—just like in cellular

automata—is in many respects very low. 

So what about other types of systems?

I suspect that in almost any case where we have seen complex

behavior earlier in this book it will eventually be possible to show that

there is universality. And indeed, as I will discuss at length in the next

chapter, I believe that in general there is a close connection between

universality and the appearance of complex behavior.

Previous examples of systems that are known to be universal

have typically had rules that are far too complicated to see this with any

clarity. But an almost unique instance where it could potentially have

been seen even long ago are what are known as combinators.

Combinators are a particular case of the symbolic systems that

we discussed on page 102 of Chapter 3. Originally intended as an

idealized way to represent structures of functions defined in logic,

combinators were actually first introduced in 1920—sixteen years

before Turing machines. But although they have been investigated

somewhat over the past eighty years, they have for the most part been

viewed as rather obscure and irrelevant constructs.

The basic rules for combinators are given below.

With short initial conditions, the pictures at the top of the next

page demonstrate that combinators tend to evolve quickly to simple

fixed points. But with initial condition (e) of length 8 the pictures show

Rules for symbolic systems known as combinators, first
introduced in 1920, and proved universal by the mid-1930s.

�[x_][y_][z_] ! x[z][y[z]]
�[x_][y_] ! x
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(a) �[�[�]][�][�][�] (b) �[�[�]][�][�][�]

( j) �[�[�[�][�]]][�][�][�] (k) �[�][�][�[�[�][�]]][�]

(h) �[�][�][�[�[�]]][�][�] ( i) �[�][�][�[�]][�][�[�]]

( f ) �[�][�][�[�[�[�]]]][�] (g) �[�][�][�[�[�]]][�][�]

(e) �[�[�]][�][�][�][�]

(e) �[�[�]][�][�][�][�]

(c) �[�[�]][�][�][�][�] (d) �[�][�][�[�[�]]][�]
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Examples of combinator evolution. The expression in case (e) is the shortest that leads to unlimited growth. The
plots at the bottom show the total sizes of expressions reached on successive steps. Note that the detailed
pattern of evolution—though not any final fixed point reached—can depend on the fact that the combinator rules
are applied at each step in Mathematica  order. /.
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that no fixed point is reached, and instead there is exponential growth

in total size—with apparently rather random internal behavior.

Other combinators yield still more complicated behavior—

sometimes with overall repetition or nesting, but often not. 

There are features of combinators that are not easy to capture

directly in pictures. But from pictures like the ones on the facing page it

is rather clear that despite their fairly simple underlying rules, the

behavior of combinators can be highly complex. 

And while issues of typical behavior have not really been studied

before, it has been known that combinators are universal almost since

the concept of universality was first introduced in the 1930s. 

One way that we can now show this is to demonstrate that

combinators can emulate rule 110. And as the pictures on the next page

illustrate, it turns out that just repeatedly applying the combinator

expression below reproduces successive steps in the evolution of rule 110. 

There has in the past been no overall context for understanding

universality in combinators. But now what we have seen suggests that such

universality is in a sense just associated with general complex behavior.

Yet we saw in Chapter 3 that there are symbolic systems with

rules even simpler than combinators that still show complex behavior.

And so now I suspect that these too are universal.

And in fact wherever one looks, the threshold for universality

seems to be much lower than one would ever have imagined. And this is

one of the important basic observations that led me to formulate the

Principle of Computational Equivalence that I discuss in the next chapter. 

�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�[�[�[�][�]][�[�[�]]]][�[�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�[

�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�][�]][�[�]]]]]][�[�[�]][�[�[�[�][�]][�[�[�]]]][�[�[�]]]]]]]]][�[�[�]][�[�[

�[�][�]][�[�[�]]]][�[�]]]]]]][�[�[�[�[�[�][�]][�[�[�[�[�][�]][�[�[�[�[�][�]][�[�]]][�[�]]]]][�[�]]]]]]][�[�[

�]][�[�[�[�[�[�][�]][�[�[�]]]][�[�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�[�][�]][�[�]]][�[�]]]]]][�[�[�]][

�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�][�]][�[�[�]]]]]]][�[�[�]][�[�[�[�[�[�][�]][�[�]]][�[�[�]]]][�[�[�[

�[�][�]][�[�]]][�[�]]][�[�[�]]]]][�[�[�[�[�[�[�][�]][�[�]]][�[�]]][�[�[�]]]][�[�[�]]]][�[�[�[�[�[�[�[�][

�]][�[�]]][�[�]]][�[�]]][�[�[�]]]][�[�[�]]]][�[�]]]]]]]]]]][�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�[�]][�[

�[�[�[�][�]]]][�[�[�]][�[�[�][�]][�[�]]]]]][�[�[�]]]]]]][�[�[�]]]]][�[�[�]]]]]]][�[�]]]]]][�[�[�]][�[�[�[�[

�[�]][�]]]][�[�[�][�]][�[�[�]]]]]]

A combinator expression that corresponds to the operation of doing one step of rule 110 evolution. 
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10 100 1000 10,000

10 100 1000 10,000 100,000

(459 steps) (664 steps)

step 1

step 2

step 3 step 4

Emulating the rule 110 cellular automaton using combinators. The rule 110 combinator from the previous page is applied once for
each step of rule 110 evolution. The initial state is taken to consist of a single black cell. 




