
EXCERPTED FROM

Emulating Other
Systems with Cellular

Automata

SECTION 11.5

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

656

Looking at the specific universal cellular automaton that we have

discussed in this section, however, we would probably be led to assume

that while the phenomenon of universality might be important in

principle, it would rarely be relevant in practice. For the rules of the

universal cellular automaton in this section are quite complicated—

involving 19 possible colors for each cell, and next-nearest as well as

nearest neighbors. And if such complication was indeed necessary in

order to achieve universality, then one would not expect that universality

would be common, for example, in the systems we see in nature.

But what we will discover later in this chapter is that such

complication in underlying rules is in fact not needed. Indeed, in the

end we will see that universality can actually occur in cellular

automata with just two colors and nearest neighbors. The operation of

such cellular automata is considerably more difficult to follow than the

operation of the universal cellular automaton discussed in this section.

But the existence of universal cellular automata with such simple

underlying rules makes it clear that the basic results we have obtained

in this section are potentially of very broad significance.

Emulating Other Systems with Cellular Automata

The previous section showed that a particular universal cellular

automaton could emulate any possible cellular automaton. But what

about other types of systems? Can cellular automata also emulate these?

With their simple and rather specific underlying structure one

might think that cellular automata would never be capable of

emulating a very wide range of other systems. But what I will show in

this section is that in fact this is not the case, and that in the end

cellular automata can actually be made to emulate almost every single

type of system that we have discussed in this book.

As a first example of this, the picture on the facing page shows

how a cellular automaton can be made to emulate a mobile automaton.

The main difference between a mobile automaton and a cellular

automaton is that in a mobile automaton there is a special active cell

that moves around from one step to the next, while in a cellular

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

657

automaton all cells are always effectively treated as being exactly the

same. And to emulate a mobile automaton with a cellular automaton it

turns out that all one need do is to divide the possible colors of cells in

the cellular automaton into two sets: lighter ones that correspond to

ordinary cells in the mobile automaton, and darker ones that

correspond to active cells. And then by setting up appropriate rules and

choosing initial conditions that contain only one darker cell, one can

produce in the cellular automaton an exact emulation of every step in

the evolution of a mobile automaton—as in the picture above.

The same basic approach can be used to construct a cellular

automaton that emulates a Turing machine, as illustrated on the next

page. Once again, lighter colors in the cellular automaton represent

ordinary cells in the Turing machine, while darker colors represent the

cell under the head, with a specific darker color corresponding to each

possible state of the head.

One might think that the reason that mobile automata and

Turing machines can be emulated by cellular automata is that they

both consist of fixed arrays of cells, just like cellular automata. So then

one may wonder what happens with substitution systems, for example,

where there is no fixed array of elements.

x
x

An example of a mobile automaton (see page 71) being emulated by a
cellular automaton. In the mobile automaton shown on the left each
cell has two possible colors. In the cellular automaton shown on the
right, the cells have four possible colors, with two darker colors
corresponding to the active cell in the mobile automaton. The rules for
the mobile automaton and the cellular automaton are shown below. In
the rules for the cellular automaton, indicates a cell of any color.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

658

The pictures on the facing page demonstrate that in fact these can

also be emulated by cellular automata. But while one can emulate each

step in the evolution of a mobile automaton or a Turing machine with a

single step of cellular automaton evolution, this is no longer in general

true for substitution systems.

That this must ultimately be the case one can see from the fact

that the total number of elements in a substitution system can be

multiplied by a factor from one step to the next, while in a cellular

automaton the size of a pattern can only ever increase by a fixed

amount at each step. And what this means is that it can take

progressively larger numbers of cellular automaton steps to reproduce

each successive step in the evolution of the substitution system—as

illustrated in the pictures on the facing page.

The same kind of problem occurs in sequential substitution

systems—as well as in tag systems. But once again, as the pictures on

page 660 demonstrate, it is still perfectly possible to emulate systems

like these using cellular automata.

But just how broad is the set of systems that cellular automata can

ultimately emulate? All the examples of systems that I have shown so far

can at some level be thought of as involving sequences of elements that

are fairly directly analogous to the cells in a cellular automaton.

x
x

An example of a Turing machine being
emulated by a cellular automaton. In the
Turing machine on the left each cell has
two possible colors, and the head has
three possible states. In the cellular
automaton, the cells have eight possible
colors, with the lightest two colors being
used for cells not at the position of the
head. The rules for the Turing machine
and the cellular automaton are shown
below. In the rules for the cellular
automaton, indicates a cell of any color.

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

659

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Examples of cellular automata that emulate substitution systems. The successive steps in the evolution of each substitution
system are obtained at the points indicated by arrows. Note that the sequences of elements generated by the cellular automata
are aligned at the right, while in the pictures of the substitution systems shown they are aligned at the left. The rules for the
three cellular automata involve only nearest neighbors, and allow 12 possible colors for each cell.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

660

But one example where there is no such direct analogy is a

register machine. And at the outset one might not imagine that such a

system could ever readily be emulated by a cellular automaton.

But in fact it turns out to be fairly straightforward to do so, as

illustrated at the top of the facing page. The basic idea is to have the

cellular automaton produce a pattern that expands and contracts on

each side in a way that corresponds to the incrementing and

decrementing of the sizes of numbers in the first and second registers of

A cellular automaton set up to emulate a sequential substitution system. The cellular automaton involves 28
colors and nearest-neighbor rules. The strings produced by the sequential substitution system appear on
successive diagonal stripes indicated by arrows in the evolution of the cellular automaton on the right.

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

661

the register machine. In the center of the cellular automaton is then a

cell whose possible colors correspond to possible points in the program

for the register machine. And as the cell makes transitions from one

color to another, it effectively emits signals that move to the left or

right modifying the pattern in the cellular automaton in a way that

follows each instruction in the register machine program.

So what about systems based on numbers? Can these also be

emulated by cellular automata? As one example the picture on the right

shows how a cellular automaton can be set up to perform repeated

multiplication by 3 of numbers in base 2. And the only real difficulty in

this case is that carries generated in the process of multiplication may

need to be propagated from one end of the number to the other.

So what about practical computers? Can these also be emulated

by cellular automata? From the examples just discussed of register

machines and systems based on numbers, we already know that cellular

automata can emulate some of the low-level operations typically found

in computers. And the pictures on the next two pages show how

cellular automata can also be made to emulate two other important

aspects of practical computers.

An example of a register machine being
emulated by a cellular automaton. The
cellular automaton has 12 possible colors
for each cell. Of these, 5 are used by the
center cell to represent the point that has
been reached in the register machine
program. The other 7 are used to
implement signals that propagate out to
the left and right to do the analog of
incrementing and decrementing each
register.

1
3

9

27

81

243

729

2187

Repeated multiplication
by 3 in base 2 being
performed by a cellular
automaton with 11
colors.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

662

The pictures below show how a cellular automaton can evaluate

any logic expression that is given in a certain form. And the picture on the

facing page then shows how a cellular automaton can retrieve data from a

numbered location in what is effectively a random-access memory.

0 0

0

0 1

1

1 0

1

1 1

1

p ª q

0 0

0

0 1

0

1 0

0

1 1

1

p © q

0 0

0

0 1

0

1 0

0

1 1

1

¨ ((¨ p) ª (¨ q))

00 0 0

1

0 1 0 1

0

10 1 0

0

11 1 1

1

(p © q) ª ((¨ p) © (¨ q))

A cellular automaton which emulates basic logic circuits. The underlying rules for the cellular automaton are exactly
the same in each case, and involve nearest neighbors and five possible colors for each cell. But the initial condition
can represent a logic expression that involves any number of variables together with the operations of AND, OR and
NOT. In the examples above, two variables, and , are used, and in each case the behavior obtained with all four
possible combinations of values for and are shown.

p q

p q

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

663

The details for any particular case are quite complicated, but in

the end it turns out that it is in principle possible to construct a cellular

automaton that emulates a practical computer in its entirety.

And as a result, one can conclude that any of the very wide

range of computations that can be performed by practical computers

can also be done by cellular automata.

From the previous section we know that any cellular automaton

can be emulated by a universal cellular automaton. But now we see that

a universal cellular automaton is actually much more universal than

we saw in the previous section. For not only can it emulate any cellular

automaton: it can also emulate any of a wide range of other systems,

including practical computers.

Operation 3: : read data at location 1 0 0 1 1 (19) Operation 4: : write a 0 at location 1 1 0 0 1 (25)

Operation 1: : write a 1 at location 1 0 0 1 1 (19) Operation 2: : write a 1 at location 1 1 0 1 (13)

A cellular automaton set up to emulate random-access memory in a computer. The memory is on the right, and can be of any size.
Instructions come in from the left, with memory locations specified by addresses consisting of binary digits.

