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11
The Notion of Computation

Computation as a Framework

In earlier parts of this book we saw many examples of the kinds of

behavior that can be produced by cellular automata and other systems

with simple underlying rules. And in this chapter and the next my goal

is to develop a general framework for thinking about such behavior.

Experience from traditional science might suggest that standard

mathematical analysis should provide the appropriate basis for any such

framework. But as we saw in the previous chapter, such analysis tends to

be useful only when the overall behavior one is studying is fairly simple.

So what can one do when the behavior is more complex? 

If traditional science was our only guide, then at this point we

would probably be quite stuck. But my purpose in this book is precisely

to develop a new kind of science that allows progress to be made in

such cases. And in many respects the single most important idea that

underlies this new science is the notion of computation.

Throughout this book I have referred to systems such as cellular

automata as simple computer programs. So now the point is actually to

think of these systems in terms of the computations they can perform.

In a typical case, the initial conditions for a system like a cellular

automaton can be viewed as corresponding to the input to a

computation, while the state of the system after some number of steps

corresponds to the output. And the key idea is then to think in purely
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abstract terms about the computation that is performed, without

necessarily looking at all the details of how it actually works.

Why is such an abstraction useful? The main reason is that it

potentially allows one to discuss in a unified way systems that have

completely different underlying rules. For even though the internal

workings of two systems may have very little in common, the

computations the systems perform may nevertheless be very similar.

And by thinking in terms of such computations, it then becomes

possible to imagine formulating principles that apply to a very wide

variety of different systems—quite independent of the detailed

structure of their underlying rules. 

Computations in Cellular Automata

I have said that the evolution of a system like a cellular automaton can

be viewed as a computation. But what kind of computation is it, and

how does it compare to computations that we typically do in practice?

The pictures below show an example of a cellular automaton whose

evolution can be viewed as performing a particular simple computation. 

If one starts this cellular automaton with an even number of

black cells, then after a few steps of evolution, no black cells are left.

But if instead one starts it with an odd number of black cells, then a

single black cell survives forever. So in effect this cellular automaton

can be viewed as computing whether a given number is even or odd.
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output:

A simple cellular automaton whose evolution effectively computes the remainder
after division of a number by 2. Starting from a row of  black cells, 0 black cells
survive if  is even, and 1 black cell survives if  is odd. The cellular automaton
follows elementary rule 132, as shown on the left.
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One specifies the input to the computation by setting up an appropriate

number of initial black cells. And then one determines the result of the

computation by looking at how many black cells survive in the end.

Testing whether a number is even or odd is by most measures a

rather simple computation. But one can also get cellular automata to

do more complicated computations. And as an example the pictures

below show a cellular automaton that computes the square of any

number. If one starts say with 5 black squares, then after a certain

number of steps the cellular automaton will produce a block of

exactly  black squares.

At first it might seem surprising that a system with the simple

underlying structure of a cellular automaton could ever be made to perform

such a computation. But as we shall see later in this chapter, cellular

automata can in fact perform what are in effect arbitrarily sophisticated

computations. And as one example of a somewhat more sophisticated

computation, the picture on the next page shows a cellular automaton that

computes the successive prime numbers: 2, 3, 5, 7, 11, 13, 17, etc.

5�5 � 25
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output:

A cellular automaton that computes the square of any number. The cellular automaton effectively works by adding the original
number  together  times. The underlying rule used here involves eight possible colors for each cell. n n
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The rule for this cellular automaton is somewhat

complicated—it involves a total of sixteen colors possible for each

cell—but the example demonstrates the point that in principle a

cellular automaton can compute the primes.

A cellular automaton constructed to compute the prime numbers. The system generates a dark gray stripe on the left at all positions
that correspond to any product of numbers other than 1. White gaps then remain at positions that correspond to the prime numbers 2,
3, 5, 7, 11, 13, 17, etc. The cellular automaton effectively does its computation using the standard sieve of Eratosthenes method. The
structures on the right bounce backwards and forwards with repetition periods corresponding to successive odd numbers. Once in each
period they produce a gray stripe which propagates to the left, so that in the end there is a gray stripe corresponding to every multiple of
every number. The rule for the cellular automaton shown here involves 16 possible colors for each cell.

2 3 5 7 11 13 17 19 23 29 31
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So what about the cellular automata that we discussed earlier in

this book? What kinds of computations can they perform?

At some level, any cellular automaton—or for that matter, any

system whatsoever—can be viewed as performing a computation that

determines what its future behavior will be. 

But for the cellular automata that I have discussed in this section,

it so happens that the computations they perform can also conveniently

be described in terms of traditional mathematical notions.

And this turns out to be possible for some of the cellular automata

that I discussed earlier in this book. Thus, for example, as shown below,

rule 94 can effectively be described as enumerating even numbers.

Similarly, rule 62 can be thought of as enumerating numbers that are

multiples of 3, while rule 190 enumerates numbers that are multiples of

4. And if one looks down the center column of the pattern it produces,

rule 129 can be thought of as enumerating numbers that are powers of 2.

But what kinds of computations are cellular automata like the

ones on the right performing? If we compare the patterns they produce

to the patterns we have seen so far in this section, then immediately we

suspect that we cannot describe these computations by anything as

simple as saying, for example, that they generate primes.

So how then can we ever expect to describe these computations?

Traditional mathematics is not much help, but what we will see is that

there are a collection of ideas familiar from practical computing that

provide at least the beginnings of the framework that is needed.

rule 94 rule 62 rule 190 rule 129

Examples of simple cellular automata whose evolution corresponds to computations that can easily be described in traditional
mathematical terms. In analogy to the previous page, the positions of white cells at the bottom of the rule 94 picture correspond to
even numbers, on the left in rule 62 to multiples of 3, in rule 190 to multiples of 4, and in the center column of rule 129 to powers of 2.

rule 30

rule 45

rule 73

Examples of cellular automata that have simple underlying rules but whose
overall behavior does not seem to correspond to computations with any
kind of simple description in standard mathematical or other terms. 
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The Phenomenon of Universality

In the previous section we saw that it is possible to get cellular

automata to perform some fairly sophisticated computations. But for

each specific computation we wanted to do, we always set up a cellular

automaton with a different set of underlying rules. And indeed our

everyday experience with mechanical and other devices might lead us

to assume that in general in order to perform different kinds of tasks we

must always use systems that have different underlying constructions. 

But the remarkable discovery that launched the computer

revolution is that this is not in fact the case. And instead, it is possible

to build universal systems whose underlying construction remains

fixed, but which can be made to perform different tasks just by being

programmed in different ways. 

And indeed, this is exactly how practical computers work: the

hardware of the computer remains fixed, but the computer can be

programmed for different tasks by loading different pieces of software.

The idea of universality is also the basis for computer languages. For

in each language, there are a certain set of primitive operations, which are

then strung together in different ways to create programs for different tasks.

The details of a particular computer system or computer language

will certainly affect how easy it is to perform a particular task. But the

crucial fact that is by now a matter of common knowledge is that with

appropriate programming any computer system or computer language

can ultimately be made to perform exactly the same set of tasks.

One way to see that this must be true is to note that any

particular computer system or computer language can always be set up

by appropriate programming to emulate any other one.

Typically the way this is done is by having each individual

action in the system that is to be emulated be reproduced by some

sequence of actions in the other system. And indeed this is ultimately

how, for example, Mathematica works. For when one enters a

command such as , what actually happens is that the program

which implements the Mathematica language interprets this command

Log�15�
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by executing the appropriate sequence of machine instructions on

whatever computer system one is using.

And having now identified the phenomenon of universality in the

context of practical computing, one can immediately see various

analogs of it in other areas of common experience. Human languages

provide an example. For one knows that given a single fixed underlying

language, it is possible to describe an almost arbitrarily wide range of

things. And given any two languages, it is for the most part always

possible to translate between them.

So what about natural science? Is the phenomenon of

universality also relevant there? Despite its great importance in

computing and elsewhere, it turns out that universality has in the past

never been considered seriously in relation to natural science.

But what I will show in this chapter and the next is that in fact

universality is for example quite crucial in finding general ways to

characterize and understand the complexity we see in natural systems.

The basic point is that if a system is universal, then it must

effectively be capable of emulating any other system, and as a result it

must be able to produce behavior that is as complex as the behavior of

any other system. So knowing that a particular system is universal

thus immediately implies that the system can produce behavior that

is in a sense arbitrarily complex.

But now the question is what kinds of systems are in fact universal. 

Most present-day mechanical devices, for example, are built only

for rather specific tasks, and are not universal. And among electronic

devices there are examples such as simple calculators and electronic

address books that are not universal. But by now the vast majority of

practical electronic devices, despite all their apparent differences, are

based on computers that are universal.

At some level, however, these computers tend to be extremely

similar. Indeed, essentially all of them are based on the same kinds of

logic circuits, the same basic layout of data paths, and so on. And

knowing this, one might conclude that any system which was universal

must include direct analogs of these specific elements. But from
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experience with computer languages, there is already an indication that

the range of systems that are universal might be somewhat broader.

Indeed, Mathematica turns out to be a particularly good example,

in which one can pick very different sets of operations to use, and yet

still be able to implement exactly the same kinds of programs.

So what about cellular automata and other systems with simple

rules? Is it possible for these kinds of systems to be universal?

At first, it seems quite implausible that they could be. For the

intuition that one gets from practical computers and computer

languages seems to suggest that to achieve universality there must be

some fundamentally fairly sophisticated elements present.

But just as we found that the intuition which suggests that

simple rules cannot lead to complex behavior is wrong, so also the

intuition that simple rules cannot be universal also turns out to be

wrong. And indeed, later in this chapter, I will show an example of a

cellular automaton with an extremely simple underlying rule that can

nevertheless in the end be seen to be universal.

In the past it has tended to be assumed that universality is

somehow a rare and special quality, usually possessed only by systems

that are specifically constructed to have it. But one of the results of this

chapter is that in fact universality is a much more widespread

phenomenon. And in the next chapter I will argue that for example it

also occurs in a wide range of important systems that we see in nature.

A Universal Cellular Automaton

As our first specific example of a system that exhibits universality, I

discuss in this section a particular universal cellular automaton that

has been set up to make its operation as easy to follow as possible.

The rules for this cellular automaton itself are always the same.

But the fact that it is universal means that if it is given appropriate

initial conditions it can effectively be programmed to emulate for

example any possible cellular automaton—with any set of rules. 

The next three pages show three examples of this. 
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rule 254

The universal cellular automaton emulating elementary rule 254. Each cell in rule 254 is
represented by a block of 20 cells in the universal cellular automaton. Each of these
blocks encodes both the color of the cell it represents, and the rule for updating this color.
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rule 90

The universal cellular automaton emulating elementary rule 90. The underlying rules for
the universal cellular automaton are exactly the same as on the previous page. But each
block in the initial conditions now contains a representation of rule 90 rather than rule 254. 
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rule 30

The universal cellular automaton emulating rule 30. A total of 848 steps in the
evolution of the universal cellular automaton are shown, corresponding to 16
steps in the evolution of rule 30. 
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On each page the underlying rules for the universal cellular

automaton are exactly the same. But on the first page, the initial

conditions are set up so as to make the universal cellular automaton

emulate rule 254, while on the second page they are set up to make it

emulate rule 90, and on the third page rule 30. 

The pages that follow show how this works. The basic idea is

that a block of 20 cells in the universal cellular automaton is used to

represent each single cell in the cellular automaton that is being

emulated. And within this block of 20 cells is encoded both a

specification of the current color of the cell that is being represented, as

well as the rule by which that color is to be updated. 
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The rules for the universal cellular automaton. There are 19 possible colors for each cell, represented here by 19 different icons.
Since the new color of each cell depends on the previous colors of a total of five cells, there are in principle 2,476,099 cases to
cover. But by using  to stand for a cell with any possible color, many cases are combined. Note that the cases shown are in a
definite order reading down successive columns, with special cases given before more general ones. With the initial conditions
used, there are some combinations of cells that can never occur, and these are not covered in the rules shown. 
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1 1 1 1 1 1 1 0 = 254
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Details of how the universal cellular automaton emulates rule
254. Each of the blocks in the universal cellular automaton
represents a single cell in rule 254, and encodes both the current
color of the cell and the form of the rule used to update it.
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0 1 0 1 1 0 1 0 = 90

Details of how the universal cellular automaton emulates
rule 90. The only difference in initial conditions from the
picture on the previous page is that each block now encodes
rule 90 instead of rule 254.
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0 0 0 1 1 1 1 0 = 30

Details of how the universal cellular automaton emulates
rule 30. Once again, the only difference in initial conditions
from the facing page is that each block now encodes rule 30
instead of rule 90.
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In the examples shown, the cellular automata being emulated

have 8 cases in their rules, with each case giving the outcome for one of

the 8 possible combinations of colors of a cell and its immediate

neighbors. In every block of 20 cells in the universal cellular

automaton, these rules are encoded in a very straightforward way, by

listing in order the outcomes for each of the 8 possible cases.

To update the color of the cell represented by a particular block,

what the universal cellular automaton must then do is to determine

which of the 8 cases applies to that cell. And it does this by successively

eliminating cases that do not apply, until eventually only one case

remains. This process of elimination can be seen quite directly in the

pictures on the previous pages. Below each large black or white triangle,

there are initially 8 vertical dark lines. Each of these lines corresponds to

one of the 8 cases in the rule, and the system is set up so that a particular

line ends as soon as the case to which it corresponds has been eliminated.

It so happens that in the universal cellular automaton discussed

here the elimination process for a given cell always occurs in the block

immediately to the left of the one that represents that cell. But the

process itself is not too difficult to understand, and indeed it works in

much the way one might expect of a practical electronic logic circuit.

There are three basic stages, visible in the pictures as three stripes

moving to the left across each block. The first stripe carries the color of the

left-hand neighbor, and causes all cases in the rule where that neighbor does

not have the appropriate color to be eliminated. The next two stripes then

carry the color of the cell itself and of its right-hand neighbor. And after all

three stripes have passed, only one of the 8 cases ever survives, and this case

is then the one that gives the new color for the cell.

The pictures on the last few pages have shown how the universal

cellular automaton can in effect be programmed to emulate any cellular

automaton whose rules involve nearest neighbors and two possible

colors for each cell. But the universal cellular automaton is in no way

restricted to emulating only rules that involve nearest neighbors. And

thus on the facing page, for example, it is shown emulating a rule that

involves next-nearest as well as nearest neighbors.
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The universal cellular automaton emulating one step in the evolution of the rule shown above,
which involves next-nearest as well as nearest-neighbor cells. The rule now covers a total of 32
cases, corresponding to the possible arrangements of colors of a cell and its nearest and
next-nearest neighbors. The picture shows the evolution of five cells according to the rule shown,
with each cell now being represented by a block of 70 cells in the universal cellular automaton. 
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The blocks needed to represent each cell are now larger, since they

must include all 32 cases in the rule. There are also five elimination

stages rather than three. But despite these differences, the underlying rule

for the universal cellular automaton remains exactly the same.

What about rules that have more than two possible colors for

each cell? It turns out that there is a general way of emulating such

rules by using rules that have just two colors but a larger number of

neighbors. The picture on the facing page shows an example. The idea is

that each cell in the three-color cellular automaton is represented by a

block of three cells in the two-color cellular automaton. And by

looking at neighbors out to distance five on each side, the two-color

cellular automaton can update these blocks at each step in direct

correspondence with the rules of the three-color cellular automaton.

The same basic scheme can be used for rules with any number of

colors. And the conclusion is therefore that the universal cellular

automaton can ultimately emulate a cellular automaton with

absolutely any set of rules, regardless of how many neighbors and how

many colors they may involve. 

This is an important and at first surprising result. For among other

things, it implies that the universal cellular automaton can emulate

cellular automata whose rules are more complicated than its own. If one

did not know about the basic phenomenon of universality, then one

would most likely assume that by using more complicated rules one

would always be able to produce new and different kinds of behavior.

But from studying the universal cellular automaton in this section,

we now know that this is not in fact the case. For given the universal

cellular automaton, it is always in effect possible to program this cellular

automaton to emulate any other cellular automaton, and therefore to

produce whatever behavior the other cellular automaton could produce. 

In a sense, therefore, what we can now see is that nothing

fundamental can ever be gained by using rules that are more

complicated than those for the universal cellular automaton. For given

the universal cellular automaton, more complicated rules can always be

emulated just by setting up appropriate initial conditions.
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An example of how a cellular automaton with three possible colors and
nearest-neighbor rules can be emulated by a cellular automaton with only two

possible colors but a larger number of neighbors (in this case five on each side). The basic idea is to represent each cell in
the three-color rule by a block of three cells in the two-color rule, according to the correspondence given on the left. The
three-color rule illustrated here is totalistic code 1599 from page 70. 
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Looking at the specific universal cellular automaton that we have

discussed in this section, however, we would probably be led to assume

that while the phenomenon of universality might be important in

principle, it would rarely be relevant in practice. For the rules of the

universal cellular automaton in this section are quite complicated—

involving 19 possible colors for each cell, and next-nearest as well as

nearest neighbors. And if such complication was indeed necessary in

order to achieve universality, then one would not expect that universality

would be common, for example, in the systems we see in nature.

But what we will discover later in this chapter is that such

complication in underlying rules is in fact not needed. Indeed, in the

end we will see that universality can actually occur in cellular

automata with just two colors and nearest neighbors. The operation of

such cellular automata is considerably more difficult to follow than the

operation of the universal cellular automaton discussed in this section.

But the existence of universal cellular automata with such simple

underlying rules makes it clear that the basic results we have obtained

in this section are potentially of very broad significance. 

Emulating Other Systems with Cellular Automata

The previous section showed that a particular universal cellular

automaton could emulate any possible cellular automaton. But what

about other types of systems? Can cellular automata also emulate these?

With their simple and rather specific underlying structure one

might think that cellular automata would never be capable of

emulating a very wide range of other systems. But what I will show in

this section is that in fact this is not the case, and that in the end

cellular automata can actually be made to emulate almost every single

type of system that we have discussed in this book.

As a first example of this, the picture on the facing page shows

how a cellular automaton can be made to emulate a mobile automaton. 

The main difference between a mobile automaton and a cellular

automaton is that in a mobile automaton there is a special active cell

that moves around from one step to the next, while in a cellular
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automaton all cells are always effectively treated as being exactly the

same. And to emulate a mobile automaton with a cellular automaton it

turns out that all one need do is to divide the possible colors of cells in

the cellular automaton into two sets: lighter ones that correspond to

ordinary cells in the mobile automaton, and darker ones that

correspond to active cells. And then by setting up appropriate rules and

choosing initial conditions that contain only one darker cell, one can

produce in the cellular automaton an exact emulation of every step in

the evolution of a mobile automaton—as in the picture above.

The same basic approach can be used to construct a cellular

automaton that emulates a Turing machine, as illustrated on the next

page. Once again, lighter colors in the cellular automaton represent

ordinary cells in the Turing machine, while darker colors represent the

cell under the head, with a specific darker color corresponding to each

possible state of the head. 

One might think that the reason that mobile automata and

Turing machines can be emulated by cellular automata is that they

both consist of fixed arrays of cells, just like cellular automata. So then

one may wonder what happens with substitution systems, for example,

where there is no fixed array of elements. 

x
x

An example of a mobile automaton (see page 71) being emulated by a
cellular automaton. In the mobile automaton shown on the left each
cell has two possible colors. In the cellular automaton shown on the
right, the cells have four possible colors, with two darker colors
corresponding to the active cell in the mobile automaton. The rules for
the mobile automaton and the cellular automaton are shown below. In
the rules for the cellular automaton,  indicates a cell of any color. 
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The pictures on the facing page demonstrate that in fact these can

also be emulated by cellular automata. But while one can emulate each

step in the evolution of a mobile automaton or a Turing machine with a

single step of cellular automaton evolution, this is no longer in general

true for substitution systems. 

That this must ultimately be the case one can see from the fact

that the total number of elements in a substitution system can be

multiplied by a factor from one step to the next, while in a cellular

automaton the size of a pattern can only ever increase by a fixed

amount at each step. And what this means is that it can take

progressively larger numbers of cellular automaton steps to reproduce

each successive step in the evolution of the substitution system—as

illustrated in the pictures on the facing page.

The same kind of problem occurs in sequential substitution

systems—as well as in tag systems. But once again, as the pictures on

page 660 demonstrate, it is still perfectly possible to emulate systems

like these using cellular automata.

But just how broad is the set of systems that cellular automata can

ultimately emulate? All the examples of systems that I have shown so far

can at some level be thought of as involving sequences of elements that

are fairly directly analogous to the cells in a cellular automaton.

x
x

An example of a Turing machine being
emulated by a cellular automaton. In the
Turing machine on the left each cell has
two possible colors, and the head has
three possible states. In the cellular
automaton, the cells have eight possible
colors, with the lightest two colors being
used for cells not at the position of the
head. The rules for the Turing machine
and the cellular automaton are shown
below. In the rules for the cellular
automaton,  indicates a cell of any color. 
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(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Examples of cellular automata that emulate substitution systems. The successive steps in the evolution of each substitution
system are obtained at the points indicated by arrows. Note that the sequences of elements generated by the cellular automata
are aligned at the right, while in the pictures of the substitution systems shown they are aligned at the left. The rules for the
three cellular automata involve only nearest neighbors, and allow 12 possible colors for each cell.
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But one example where there is no such direct analogy is a

register machine. And at the outset one might not imagine that such a

system could ever readily be emulated by a cellular automaton. 

But in fact it turns out to be fairly straightforward to do so, as

illustrated at the top of the facing page. The basic idea is to have the

cellular automaton produce a pattern that expands and contracts on

each side in a way that corresponds to the incrementing and

decrementing of the sizes of numbers in the first and second registers of

A cellular automaton set up to emulate a sequential substitution system. The cellular automaton involves 28
colors and nearest-neighbor rules. The strings produced by the sequential substitution system appear on
successive diagonal stripes indicated by arrows in the evolution of the cellular automaton on the right.
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the register machine. In the center of the cellular automaton is then a

cell whose possible colors correspond to possible points in the program

for the register machine. And as the cell makes transitions from one

color to another, it effectively emits signals that move to the left or

right modifying the pattern in the cellular automaton in a way that

follows each instruction in the register machine program.

So what about systems based on numbers? Can these also be

emulated by cellular automata? As one example the picture on the right

shows how a cellular automaton can be set up to perform repeated

multiplication by 3 of numbers in base 2. And the only real difficulty in

this case is that carries generated in the process of multiplication may

need to be propagated from one end of the number to the other.

So what about practical computers? Can these also be emulated

by cellular automata? From the examples just discussed of register

machines and systems based on numbers, we already know that cellular

automata can emulate some of the low-level operations typically found

in computers. And the pictures on the next two pages show how

cellular automata can also be made to emulate two other important

aspects of practical computers.

An example of a register machine being
emulated by a cellular automaton. The
cellular automaton has 12 possible colors
for each cell. Of these, 5 are used by the
center cell to represent the point that has
been reached in the register machine
program. The other 7 are used to
implement signals that propagate out to
the left and right to do the analog of
incrementing and decrementing each
register. 

1
3

9

27

81

243

729

2187

Repeated multiplication
by 3 in base 2 being
performed by a cellular
automaton with 11
colors. 
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The pictures below show how a cellular automaton can evaluate

any logic expression that is given in a certain form. And the picture on the

facing page then shows how a cellular automaton can retrieve data from a

numbered location in what is effectively a random-access memory.

0 0

0

0 1

1

1 0

1

1 1

1

p ª q

0 0

0

0 1

0

1 0

0

1 1

1

p © q

0 0

0

0 1

0

1 0

0

1 1

1

¨ ( (¨ p) ª (¨ q))

00 0 0

1

0 1 0 1

0

10 1 0

0

11 1 1

1

(p © q) ª ( (¨ p) © (¨ q))

A cellular automaton which emulates basic logic circuits. The underlying rules for the cellular automaton are exactly
the same in each case, and involve nearest neighbors and five possible colors for each cell. But the initial condition
can represent a logic expression that involves any number of variables together with the operations of AND, OR and
NOT. In the examples above, two variables,  and , are used, and in each case the behavior obtained with all four
possible combinations of values for  and  are shown. 

p q

p q
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The details for any particular case are quite complicated, but in

the end it turns out that it is in principle possible to construct a cellular

automaton that emulates a practical computer in its entirety. 

And as a result, one can conclude that any of the very wide

range of computations that can be performed by practical computers

can also be done by cellular automata. 

From the previous section we know that any cellular automaton

can be emulated by a universal cellular automaton. But now we see that

a universal cellular automaton is actually much more universal than

we saw in the previous section. For not only can it emulate any cellular

automaton: it can also emulate any of a wide range of other systems,

including practical computers.

Operation 3: : read data at location 1 0 0 1 1 (19) Operation 4: : write a 0 at location 1 1 0 0 1 (25)

Operation 1: : write a 1 at location 1 0 0 1 1 (19) Operation 2: : write a 1 at location 1 1 0 1 (13)

A cellular automaton set up to emulate random-access memory in a computer. The memory is on the right, and can be of any size.
Instructions come in from the left, with memory locations specified by addresses consisting of binary digits.
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Emulating Cellular Automata with Other Systems

In the previous section we discovered the rather remarkable fact that

cellular automata can be set up to emulate an extremely wide range of

other types of systems. But is this somehow a special feature of cellular

automata, or do other systems also have similar capabilities?

In this section we will discover that in fact almost all of the

systems that we considered in the previous section—and in Chapter 3—

have the same capabilities. And indeed just as we showed that each of

these various systems could be emulated by cellular automata, so now

we will show that these systems can emulate cellular automata.

As a first example, the pictures below show how mobile automata

can be set up to emulate cellular automata. The basic idea is to have the

active cell in the mobile automaton sweep backwards and forwards,

updating cells as it goes, in such a way that after each complete sweep it

has effectively performed one step of cellular automaton evolution.

(a) (b)

(a)

(b)

Examples of mobile automata emulating cellular automata. In case (a) the rules for the mobile automaton are set
up to emulate the rule 90 elementary cellular automaton; in case (b) they are set up to emulate rule 30. The
pictures on the right are obtained by keeping only the steps indicated by arrows on the left, corresponding to
times when the active cell in the mobile automaton is further to the left than it has ever been before. The mobile
automata used here involve 7 possible colors for each cell. 
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The specific pictures at the bottom of the facing page are for

elementary cellular automata with two possible colors for each cell and

nearest-neighbor rules. But the same basic idea can be used for cellular

automata with rules of any kind. And this implies that it is possible to

construct for example a mobile automaton which emulates the

universal cellular automata that we discussed a couple of sections ago.

Such a mobile automaton must then itself be universal, since the

universal cellular automaton that it emulates can in turn emulate a

wide range of other systems, including all possible mobile automata.

A similar scheme to the one for mobile automata can also be used

for Turing machines, as illustrated in the pictures below. And once

again, by emulating the universal cellular automaton, it is then possible

to construct a universal Turing machine.

But as it turns out, a universal Turing machine was already

constructed in 1936, using somewhat different methods. And in fact

that universal Turing machine provided what was historically the very

first clear example of universality seen in any system.

(a) (b)

(a)

(b)

(a)

(b)

Examples of Turing machines that emulate cellular automata with rules 90 and 30. The pictures on the right are obtained by
keeping only the steps indicated by arrows on the left. The Turing machines have 6 states and 3 possible colors for each cell. 
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Continuing with the types of systems from the previous section,

we come next to substitution systems. And here, for once, we find that

at least at first we cannot in general emulate cellular automata. For as

we discussed on page 83, neighbor-independent substitution systems

can generate only patterns that are either repetitive or nested—so they

can never yield the more complicated patterns that are, for example,

needed to emulate rule 30.

But if one generalizes to neighbor-dependent substitution systems

then it immediately becomes very straightforward to emulate cellular

automata, as in the pictures below.

What about sequential substitution systems? Here again it turns

out to be fairly easy to emulate cellular automata—as the pictures at

the top of the facing page demonstrate.

Perhaps more surprisingly, the same is also true for ordinary tag

systems. And even though such systems operate in an extremely simple

underlying way, the pictures at the bottom of the facing page

demonstrate that they can still quite easily emulate cellular automata. 

What about symbolic systems? The structure of these systems is

certainly vastly different from cellular automata. But once again—as

the picture at the top of page 668 shows—it is quite easy to get these

systems to emulate cellular automata. 

Neighbor-dependent substitution systems that emulate cellular automata with rules 90 and 30. The
systems shown are simple examples of neighbor-dependent substitution systems with highly
uniform rules always yielding just one cell and corresponding quite directly to cellular automata.
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(a)

(b)

(a) (b)

Sequential substitution systems that emulate cellular automata with rules 90
and 30. The pictures at the top above are obtained by keeping only the steps
indicated by arrows on the left. The sequential substitution systems involve
elements with 3 possible colors.

rule 90 rule 90 shifted

(a)

rule 30 rule 30 shifted

(b)

rule 90 rule 90 shifted

(a)

rule 30 rule 30 shifted

(b)

(a) (b)

(a)

(b)

Tag systems that emulate the rule 90 and rule 30 cellular automata. The pictures
at the top above are obtained by keeping only the steps indicated by arrows on
the left. Both tag systems involve 6 colors.
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And as soon as one knows that any particular type of system is

capable of emulating any cellular automaton, it immediately follows

that there must be examples of that type of system that are universal.

So what about the other types of systems that we considered in

Chapter 3? One that we have not yet discussed here are cyclic tag

systems. And as it turns out, we will end up using just such systems later

in this chapter as part of establishing a dramatic example of universality.

But to demonstrate that cyclic tag systems can manage to

emulate cellular automata is not quite as straightforward as to do this

for the various kinds of systems we have discussed so far. And indeed

we will end up doing it in several stages. The first stage, illustrated in

the picture at the top of the facing page, is to get a cyclic tag system to

emulate an ordinary tag system with the property that its rules depend

only on the very first element that appears at each step.
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p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � p � � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � p � � q � � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � p � � q � � p � � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � p � � q � � p � � q � � � p � � p � � r �

(a)

(a) (b)

rule 90 shifted rule 30 shifted

(a)
ï[x_][ï][ï][ï] ! ï[x[ï]][ï][ï], ï[x_][ï][ï][ð] ! ï[x[ð]][ï][ð], ï[x_][ï][ð][ï] ! ï[x[ï]][ð][ï], ï[x_][ï][ð][ð] ! ï[x[ð]][ð][ð], ï[x_][ð][ï][ï] ! ï[x[ð]][ï][ï],
ï[x_][ð][ï][ð] ! ï[x[ï]][ï][ð], ï[x_][ð][ð][ï] ! ï[x[ð]][ð][ï], ï[x_][ð][ð][ð] ! ï[x[ï]][ð][ð], ñ[x_] ! ï[ñ[ï][ï]][x], ï[x_][ï][ï][ñ] ! x[ï][ï][ñ]

Symbolic systems set up to emulate cellular automata that have rules 90 and 30. Unlike the examples of symbolic systems in
Chapter 3, which involve only one symbol, these symbolic systems involve three symbols, ,  and . ï ð ñ

(b)
ï[x_][ï][ï][ï] ! ï[x[ï]][ï][ï], ï[x_][ï][ï][ð] ! ï[x[ð]][ï][ð], ï[x_][ï][ð][ï] ! ï[x[ð]][ð][ï], ï[x_][ï][ð][ð] ! ï[x[ð]][ð][ð], ï[x_][ð][ï][ï] ! ï[x[ð]][ï][ï],
ï[x_][ð][ï][ð] ! ï[x[ï]][ï][ð], ï[x_][ð][ð][ï] ! ï[x[ï]][ð][ï], ï[x_][ð][ð][ð] ! ï[x[ï]][ð][ð], ñ[x_] ! ï[ñ[ï][ï]][x], ï[x_][ï][ï][ñ] ! x[ï][ï][ñ]
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And having done this, the next stage is to get such a tag system to

emulate a Turing machine. The pictures on the next page illustrate how

this can be done. But at least with the particular construction shown,

the resulting Turing machine can only have cells with two possible

colors. The pictures below demonstrate, however, that such a Turing

tag system evolution tag system expanded evolution

tag system rule

cyclic tag system rule

A cyclic tag system
emulating a tag system that
depends only on the first
element at each step. In the
expanded tag system
evolution, successive colors
of elements are encoded by
having a black cell at
successive positions inside a
fixed block of white cells. 

cyclic tag system evolution

Turing machines with two
colors emulating ones with
more colors. 
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tag system ruletag system evolution (150 steps)

tag system compressed evolution (1500 steps)

Turing machine evolution

Turing machine rule

Turing machine left and right numbers

Emulating a Turing machine with a tag system that depends only on the first element at each step. The configuration of cells on each
side of the head in the Turing machine is treated as a base 2 number. At the steps indicated by arrows the tag system yields
sequences of dark cells with lengths that correspond to each of these numbers.
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machine can readily be made to emulate a Turing machine with any

number of colors. And through the construction of page 665 this then

finally shows that a cyclic tag system can successfully emulate any

cellular automaton—and can thus be universal.

This leaves only one remaining type of system from Chapter 3:

register machines. And although it is again slightly complicated, the

pictures on the next page—and below—show how even these systems

can be made to emulate Turing machines and thus cellular automata.

So what about systems based on numbers, like those we

discussed in Chapter 4? As an example, one can consider a

generalization of the arithmetic systems discussed on page 122—in

which one has a whole number , and at each step one finds the

remainder after dividing by a constant, and based on the value of this

remainder one then applies some specified arithmetic operation to .

register 1
digits

(reversed)

(203,205 steps)

register 2
digits

Turing machine evolution

Turing machine rule

A register machine emulating a
slightly more complicated Turing
machine than on the next page. 

register machine program

n

n
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Turing machine rule

register machine program

register 1
digits

(reversed)

(10,000 steps)

register 2
digits

Turing machine evolution

register machine evolution (300 steps)

register 1 register 2 register 3

register machine compressed evolution (1800 steps)

register 1 register 2

An example of a register machine set up to emulate a Turing machine. The Turing machine used
here has two states for the head; the register machine program has 72 instructions and uses
three registers. The register machine compressed evolution keeps only steps corresponding to
every other time the third register gets incremented from zero. 
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The picture below shows that such a system can be set up to

emulate a register machine. And from the fact that register machines

are universal it follows that so too are such arithmetic systems. 

And indeed the fact that it is possible to set up a universal system

using essentially just the operations of ordinary arithmetic is closely

related to the proof of Gödel’s Theorem discussed on page 784. 

But from what we have learned in this chapter, it no longer seems

surprising that arithmetic should be capable of achieving universality.

Indeed, considering all the kinds of systems that we have found can

exhibit universality, it would have been quite peculiar if arithmetic had

somehow not been able to support it.

5 = 0 + 5 20 30

11 = 1+ 5 21 30

12 = 2 + 5 21 30

33 = 3 + 5 21 31

17 = 2 + 5 20 31

48 = 3 + 5 20 32

49 = 4 + 5 20 32

15 = 0 + 5 20 31

31 = 1+ 5 21 31

10 = 0 + 5 21 30

21 = 1+ 5 22 30

22 = 2 + 5 22 30

63 = 3 + 5 22 31

32 = 2 + 5 21 31

93 = 3 + 5 21 32

47 = 2 + 5 20 32

138 = 3 + 5 20 33

139 = 4 + 5 20 33

45 = 0 + 5 20 32

91 = 1+ 5 21 32

30 = 0 + 5 21 31

61 = 1+ 5 22 31

20 = 0 + 5 22 30

41 = 1+ 5 23 30

42 = 2 + 5 23 30

123 = 3 + 5 23 31

62 = 2 + 5 22 31

183 = 3 + 5 22 32

92 = 2 + 5 21 32

273 = 3 + 5 21 33

137 = 2 + 5 20 33

408 = 3 + 5 20 34

409 = 4 + 5 20 34

135 = 0 + 5 20 33

271 = 1+ 5 21 33

90 = 0 + 5 21 32

181 = 1+ 5 22 32

60 = 0 + 5 22 31

121 = 1+ 5 23 31

40 = 0 + 5 23 30

81 = 1+ 5 24 30

82 = 2 + 5 24 30

243 = 3 + 5 24 31

122 = 2 + 5 23 31

363 = 3 + 5 23 32

182 = 2 + 5 22 32

543 = 3 + 5 22 33

272 = 2 + 5 21 33

813 = 3 + 5 21 34

407 = 2 + 5 20 34

1218 = 3 + 5 20 35

1219 = 4 + 5 20 35

405 = 0 + 5 20 34

811 = 1+ 5 21 34

270 = 0 + 5 21 33

541 = 1+ 5 22 33

180 = 0 + 5 22 32

361 = 1+ 5 23 32

120 = 0 + 5 23 31

241 = 1+ 5 24 31

80 = 0 + 5 24 30

2 n + 1

0

(n�-�1) /3

1

3 (n�-�1)

2

(n + 1) /2

3

(n�-�4) /3

4

2 n + 1

5

n + 1

6

3 (n�-�1)

7

n + 1

8

n + 1

9

2 n + 1

10

n + 1

11

3 (n�-�1)

12

(n + 1) /2

13

n + 1

14

2 n + 1

15

(n�-�1) /3

16

3 (n�-�1)

17

n + 1

18

(n�-�4) /3

19

2 n + 1

20

n + 1

21

3 (n�-�1)

22

(n + 1) /2

23

n + 1

24

2 n + 1

25

n + 1

26

3 (n�-�1)

27

n + 1

28

n + 1

29

An example of how a simple arithmetic
system can emulate a register machine.
The arithmetic system takes the value 
that it obtains at each step, computes

, and then depending on the
result applies to  one of the arithmetic
operations specified by the rule on the
left below. The rule is set up so that if the
value of  is written in the form , ,

 then the values of ,  and  on
successive steps correspond
respectively to the position of the
register machine in its program, and to
the values of the two registers (2 and 3
appear because they are the first two
primes; 5 appears because it is the
length of the register machine program).
The values of  in the pictures on the left
are indicated on a logarithmic scale. 

n

Mod[n, 30]

n

n i + 5 2a

3b i a b

n
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Implications of Universality

When we first discussed cellular automata, Turing machines,

substitution systems, register machines and so on in Chapter 3, each of

these kinds of systems seemed rather different. But already in Chapter 3

we discovered that at the level of overall behavior, all of them had

certain features in common. And now, finally, by thinking in terms of

computation, we can begin to see why this might be the case.

The main point, as the previous two sections have

demonstrated, is that essentially all of these various kinds of

systems—despite their great differences in underlying structure—can

ultimately be made to emulate each other. 

This is a very remarkable result, and one which will turn out to

be crucial to the new kind of science that I develop in this book. 

In a sense its most important consequence is that it implies that

from a computational point of view a very wide variety of systems, with

very different underlying structures, are at some level fundamentally

equivalent. For one might have thought that every different kind of

system that we discussed for example in Chapter 3 would be able to

perform completely different kinds of computations. 

But what we have discovered here is that this is not the case. And

instead it has turned out that essentially every single one of these systems

is ultimately capable of exactly the same kinds of computations.

And among other things, this means that it really does make sense to

discuss the notion of computation in purely abstract terms, without

referring to any specific type of system. For we now know that it ultimately

does not matter what kind of system we use: in the end essentially any

kind of system can be programmed to perform the same computations. And

so if we study computation at an abstract level, we can expect that the

results we get will apply to a very wide range of actual systems.

But it should be emphasized that among systems of any

particular type—say cellular automata—not all possible underlying

rules are capable of supporting the same kinds of computations.

Indeed, as we saw at the beginning of this chapter, some cellular

automata can perform only very simple computations, always yielding
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for example purely repetitive patterns. But the crucial point is that as

one looks at cellular automata with progressively greater

computational capabilities, one will eventually pass the threshold of

universality. And once past this threshold, the set of computations that

can be performed will always be exactly the same.

One might assume that by using more and more sophisticated

underlying rules, one would always be able to construct systems with ever

greater computational capabilities. But the phenomenon of universality

implies that this is not the case, and that as soon as one has passed the

threshold of universality, nothing more can in a sense ever be gained.

In fact, once one has a system that is universal, its properties are

remarkably independent of the details of its construction. For at least as

far as the computations that it can perform are concerned, it does not

matter how sophisticated the underlying rules for the system are, or

even whether the system is a cellular automaton, a Turing machine, or

something else. And as we shall see, this rather remarkable fact forms

the basis for explaining many of the observations we made in Chapter 3,

and indeed for developing much of the conceptual framework that is

needed for the new kind of science in this book.

The Rule 110 Cellular Automaton

In previous sections I have shown that a wide variety of different kinds

of systems can in principle be made to exhibit the phenomenon of

universality. But how complicated do the underlying rules need to be in

a specific case in order actually to achieve universality?

The universal cellular automaton that I described earlier in this

chapter had rather complicated underlying rules, involving 19 possible

colors for each cell, depending on next-nearest as well as nearest

neighbors. But this cellular automaton was specifically constructed so

as to make its operation easy to understand. And by not imposing this

constraint, one might expect that one would be able to find universal

cellular automata that have at least somewhat simpler underlying rules.

Fairly straightforward modifications to the universal cellular

automaton shown earlier in this chapter allow one to reduce the number
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of colors from 19 to 17. And in fact in the early 1970s, it was already

known that cellular automata with 18 colors and nearest-neighbor rules

could be universal. In the late 1980s—with some ingenuity—examples of

universal cellular automata with 7 colors were also constructed.

But such rules still involve 343 distinct cases and are by almost

any measure very complicated. And certainly rules this complicated

could not reasonably be expected to be common in the types of systems

that we typically see in nature. Yet from my experiments on cellular

automata in the early 1980s I became convinced that very much simpler

rules should also show universality. And by the mid-1980s I began to

suspect that even among the very simplest possible rules—with just two

colors and nearest neighbors—there might be examples of universality. 

The leading candidate was what I called rule 110—a cellular

automaton that we have in fact discussed several times before in this

book. Like any of the 256 so-called elementary rules, rule 110 can be

specified as below by giving the outcome for each of the eight possible

combinations of colors of a cell and its nearest neighbors.

Looking just at this very simple specification, however, it seems

at first quite absurd to think that rule 110 might be universal. But as

soon as one looks at a picture of how rule 110 actually behaves, the idea

that it could be universal starts to seem much less absurd. For despite

the simplicity of its underlying rules, rule 110 supports a whole variety

of localized structures—that move around and interact in many

complicated ways. And from pictures like the one on the facing page, it

begins to seem not unreasonable that perhaps these localized structures

could be arranged so as to perform meaningful computations.

The underlying rules for the rule 110 cellular automaton discussed in this section. As elsewhere in the
book, each of the eight cases shows what the new color of a cell should be based on its own previous
color, and on the previous colors of its neighbors. Despite the extreme simplicity of its underlying rules,
what this section will demonstrate is that the rule 110 cellular automaton is in fact universal, and is thus
in a sense capable of arbitrarily complex behavior. If the values of the cells in each block are labelled , 
and , then rule 110 can be written as  or . 

p q

r Mod[(1+ p) q r + q + r, 2] ¨ (p © q © r) © (q ª r)
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In the universal cellular automaton that we discussed earlier in

this chapter, each of the various kinds of components involved in its

operation had properties that were explicitly built into the underlying

rules. Indeed, in most cases each different type of component was

simply represented by a different color of cell. But in rule 110 there are

only two possible colors for each cell. So one may wonder how one

could ever expect to represent different kinds of components. 

A typical example of the behavior of rule 110 with random initial conditions. From looking at pictures like these one can begin to imagine
that it could be possible to arrange localized structures in rule 110 so as to be able to perform meaningful computations. Note that page
292 already showed many of the types of localized structures that can occur in rule 110.
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The crucial idea is to build up components from combinations of

localized structures that the rule in a sense already produces. And if this

works, then it is in effect a very economical solution. For it potentially

allows one to get a large number of different kinds of components without

ever needing to increase the complexity of the underlying rules at all.

But the problem with this approach is that it is typically very

difficult to see how the various structures that happen to occur in a

particular cellular automaton can be assembled into useful components.

And indeed in the case of rule 110 it took several years of work to

develop the necessary ideas and tools. But finally it has turned out to be

possible to show that the rule 110 cellular automaton is in fact universal.

It is truly remarkable that a system with such simple underlying

rules should be able to perform what are in effect computations of

arbitrary sophistication, but that is what its universality implies.

So how then does the proof of universality proceed?

The basic idea is to show that rule 110 can emulate any possible

system in some class of systems where there is already known to be

universality. And it turns out that a convenient such class of systems

are the cyclic tag systems that we introduced on page 95. 

Earlier in this chapter we saw that it is possible to construct a

cyclic tag system that can emulate any given Turing machine. And

since we know that at least some Turing machines are universal, this

fact then establishes that universal cyclic tag systems are possible. 

So if we can succeed in demonstrating that rule 110 can emulate

any cyclic tag system, then we will have managed to prove that rule 110

is itself universal. The sequence of pictures on the facing page shows

the beginnings of what is needed. The basic idea is to start from the

usual representation of a cyclic tag system, and then progressively to

change this representation so as to get closer and closer to what can

actually be emulated directly by rule 110.

Picture (a) shows an example of the evolution of a cyclic tag

system in the standard representation from pages 95 and 96. Picture (b)

then shows another version of this same evolution, but now rearranged

so that each element stays in the same position, rather than always

shifting to the left at each step.
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(a) (b)

(c)

(d)

summary:

Four views of a cyclic tag system
with rules as shown above, drawn
so as to be progressively closer to
what can be emulated directly in
rule 110. Picture (a) shows the
cyclic tag system in the same form
as on pages 95 and 96. Picture (b)
shows the system with sequences
on successive steps rearranged so
that they do not shift to the left
when the first element is removed.
Picture (c) is a skewed version of
(b) in which the way information is
used from the underlying rules at
each step is explicitly indicated.
Picture (d) shows a more definite
mechanism for the evolution of the
system in which different lines
effectively indicate the motions of
different pieces of information. 
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A cyclic tag system in general operates by removing the first

element from the sequence that exists at each step, and then adding a

new block of elements to the end of the sequence if this element is

black. A crucial feature of cyclic tag systems is that the choice of what

block of elements can be added does not depend in any way on the form

of the sequence. So, for example, on the previous page, there are just

two possibilities, and these possibilities alternate on successive steps.

Pictures (a) and (b) on the previous page illustrate the consequences

of applying the rules for a cyclic tag system, but in a sense give no

indication of an explicit mechanism by which these rules might be applied.

In picture (c), however, we see the beginnings of such a mechanism. 

The basic idea is that at each step in the evolution of the system,

there is a stripe that comes in from the left carrying information about

the block that can be added at that step. Then when the stripe hits the

first element in the sequence that exists at that step, it is allowed to pass

only if the element is black. And once past, the stripe continues to the

right, finally adding the block it represents to the end of the sequence.

But while picture (c) shows the effects of various lines carrying

information around the system, it gives no indication of why the lines

should behave in the way they do. Picture (d), however, shows a much

more explicit mechanism. The collections of lines coming in from the

left represent the blocks that can be added at successive steps. The

beginning of each block is indicated by a dashed line, while the

elements within the block are indicated by solid black and gray lines. 

When a dashed line hits the first element in the sequence that

exists at a particular step, it effectively bounces back in the form of a

line propagating to the left that carries the color of the first element. 

When this line is gray, it then absorbs all other lines coming from

the left until the next dashed line arrives. But when the line is black, it

lets lines coming from the left through. These lines then continue until

they collide with gray lines coming from the right, at which point they

generate a new element with the same color as their own.

By looking at picture (d), one can begin to see how it might be

possible for a cyclic tag system to be emulated by rule 110: the basic
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a black element ready to be added a white element ready to be added

the initial form of a separator between blocks the later form of a separator between blocks

a black element in a block a white element in a block

a black element in the sequence a white element in the sequence

Objects constructed from localized structures in rule 110, used for the emulation of cyclic tag systems. Each of the pictures
shown is 500 cells wide. The objects in the top two pictures correspond to the thick vertical black and gray lines in picture (d)
on page 679. The objects in the next two pictures correspond to the dark and light gray lines that come in from the left in
picture (d). (Note that all the structures are left-right reversed in rule 110.) The third pair of pictures correspond to two versions
of the dashed lines in picture (d). And the fourth pair of pictures correspond to right-going lines on the right-hand side of
picture (d). All the localized structures involved in the pictures above were shown individually on page 292. Note that the
spacings between structures are crucial in determining the objects they represent.
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idea is to have each of the various kinds of lines in the picture be

emulated by some collection of localized structures in rule 110.

But at the outset it is by no means clear that collections of

localized structures can be found that will behave in appropriate ways.

With some effort, however, it turns out to be possible to find the

necessary constructs, and indeed the previous page shows various

objects formed from localized structures in rule 110 that can be used to

emulate most of the types of lines in picture (d) on page 679.

The first two pictures show objects that correspond to the black

and white elements indicated by thick vertical lines in picture (d). Both of

these objects happen to consist of the same four localized structures, but

the objects are distinguished by the spacings between these structures.

The second two pictures on the previous page use the same idea

of different spacings between localized structures to represent the black

and gray lines shown coming in from the left in picture (d) on page 679.

Note that because of the particular form of rule 110, the objects

in the second two pictures on the previous page move to the left

rather than to the right. And indeed in setting up a correspondence

with rule 110, it is convenient to left-right reverse all pictures of

cyclic tag systems. But using the various objects from the previous

page, together with a few others, it is then possible to set up a

complete emulation of a cyclic tag system using rule 110. 

The diagram on the facing page shows schematically how this

can be done. Every line in the diagram corresponds to a single localized

structure in rule 110, and although the whole diagram cannot be drawn

completely to scale, the collisions between lines correctly show all the

basic interactions that occur between structures.

The next several pages then give details of what happens in each

of the regions indicated by circles in the schematic diagram. 

Region (a) shows a block separator—corresponding to a dashed

line in picture (d) on page 679—hitting the single black element in the

sequence that exists at the first step. Because the element hit is black,

an object must be produced that allows information from the block at

this step to pass through. Most of the activity in region (a) is concerned

with producing such an object. But it turns out that as a side-effect two
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A schematic diagram of how rule 110 can be made to emulate a cyclic tag system. Each line in this diagram corresponds to one localized
structure in rule 110. Note that the relative slopes of the structures are reproduced faithfully here, but their spacings are not. Note also
that lines shown in different colors here often correspond to the same structure in rule 110. 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)
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(a) (b) (c)

Close-ups of circled regions shown schematically on the previous page. Each picture is 320 cells wide and shows 1200 evolution steps.
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(d) (e) (f )

Close-ups (continued).
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(g) (h) ( i)

Close-ups (continued).
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additional localized structures are produced that can be seen

propagating to the left. These structures could later cause trouble, but

looking at region (b) we see that in fact they just pass through other

structures that they meet without any adverse effect.

Region (c) shows what happens when the information

corresponding to one element in a block passes through the kind of

object produced in region (a). The number of localized structures that

represent the element is reduced from twelve to four, but the spacings

of these structures continue to specify its color. Region (d) then shows

how the object in region (c) comes to an end when the beginning of the

block separator from the next step arrives.

Region (e) shows how the information corresponding to a black

element in a block is actually converted to a new black element in the

sequence produced by the cyclic tag system. What happens is that the

four localized structures corresponding to the element in the block

collide with four other localized structures travelling in the opposite

direction, and the result is four stationary structures that correspond to

the new element in the sequence. 

Region (f) shows the same process as region (e) but for a white

element. The fact that the element is white is encoded in the wider

spacing of the structures coming from the right, which results in

narrower spacing of the stationary structures.

Region (g) shows the analog of region (a), but now for a white

element instead of a black one. The region begins much like region (a),

except that the four localized structures at the top are more narrowly

spaced. Starting around the middle of the region, however, the behavior

becomes quite different from region (a): while region (a) yields an object

that allows information to pass through, region (g) yields one that stops

all information, as shown in regions (h) and (i). 

Note that even though they begin very differently, regions (d) and

(i) end in the same way, reflecting the fact that in both cases the system

is ready to handle a new block, whatever that block may be.

The pictures on the last few pages were all made for a cyclic tag

system with a specific underlying rule. But exactly the same principles
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can be used whatever the underlying rule is. And the pictures below

show schematically what happens with a few other choices of rules.

The way that the lines interact in the interior of each picture is

always exactly the same. But what changes when one goes from one

rule to another is the arrangement of lines entering the picture.

In the way that the pictures are drawn below, the blocks that

appear in each rule are encoded in the pattern of lines coming in from the

left edge of the picture. But if each picture were extended sufficiently far

to the left, then all these lines would eventually be seen to start from the

top. And what this means is that the arrangement of lines can therefore

always be viewed as an initial condition for the system.

Schematic diagrams of how cyclic tag systems with four different underlying rules can be emulated. The lines in each diagram
correspond essentially to collections of localized structures in rule 110. The processes that occur in the interior of each picture are
always the same; the different cyclic tag system rules are implemented by different arrangements of lines entering each picture.
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This is then finally how universality is achieved in rule 110. The

idea is just to set up initial conditions that correspond to the blocks that

appear in the rule for whatever cyclic tag system one wants to emulate.

The necessary initial conditions consist of repetitions of blocks of

cells, where each of these blocks contains a pattern of localized

structures that corresponds to the block of elements that appear in the

rule for the cyclic tag system. The blocks of cells are always quite

complicated—for the cyclic tag system discussed in most of this section

they are each more than 3000 cells wide—but the crucial point is that

such blocks can be constructed for any cyclic tag system. And what this

means is that with suitable initial conditions, rule 110 can in fact be

made to emulate any cyclic tag system.

It should be mentioned at this point however that there are a few

additional complications involved in setting up appropriate initial

conditions to make rule 110 emulate many cyclic tag systems. For as

the pictures earlier in this section demonstrate, the way we have made

rule 110 emulate cyclic tag systems relies on many details of the

interactions between localized structures in rule 110. And it turns out

that to make sure that with the specific construction used the

appropriate interactions continue to occur at every step, one must put

some constraints on the cyclic tag systems being emulated.

In essence, these constraints end up being that the blocks that

appear in the rule for the cyclic tag system must always be a multiple of

six elements long, and that there must be some bound on the number of

steps that can elapse between the addition of successive new elements

to the cyclic tag system sequence.

Using the ideas discussed on page 669, it is not difficult, however,

to make a cyclic tag system that satisfies these constraints, but that

emulates any other cyclic tag system. And as a result, we may therefore

conclude that rule 110 can in fact successfully emulate absolutely any

cyclic tag system. And this means that rule 110 is indeed universal.
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The Significance of Universality in Rule 110

Practical computers and computer languages have traditionally been

the only common examples of universality that we ever encounter. And

from the fact that these kinds of systems tend to be fairly complicated

in their construction, the general intuition has developed that any

system that manages to be universal must somehow also be based on

quite complicated underlying rules.

But the result of the previous section shows in a rather

spectacular way that this is not the case. It would have been one thing if

we had found an example of a cellular automaton with say four or five

colors that turned out to be universal. But what in fact we have seen is

that a cellular automaton with one of the very simplest possible 256

rules manages to be universal.

So what are the implications of this result? Most important is

that it suggests that universality is an immensely more common

phenomenon than one might otherwise have thought. For if one knew

only about practical computers and about systems like the universal

cellular automaton discussed early in this chapter, then one would

probably assume that universality would rarely if ever be seen outside

of systems that were specifically constructed to exhibit it.

But knowing that a system like rule 110 is universal, the whole

picture changes, and now it seems likely that instead universality

should actually be seen in a very wide range of systems, including many

with rather simple rules.

A couple of sections ago we discussed the fact that as soon as one

has a system that is universal, adding further complication to its rules

cannot have any fundamental effect. For by virtue of its universality the

system can always ultimately just emulate the behavior that would be

obtained with any more complicated set of rules. 

So what this means is that if one looks at a sequence of systems with

progressively more complicated rules, one should expect that the overall

behavior they produce will become more complex only until the threshold

of universality is reached. And as soon as this threshold is passed, there

should then be no further fundamental changes in what one sees.
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The practical importance of this phenomenon depends greatly

however on how far one has to go to get to the threshold of universality. 

But knowing that a system like rule 110 is universal, one now

suspects that this threshold is remarkably easy to reach. And what this

means is that beyond the very simplest rules of any particular kind, the

behavior that one sees should quickly become as complex as it will ever be.

Remarkably enough, it turns out that this is essentially what we

already observed in Chapter 3. Indeed, not only for cellular automata but

also for essentially all of the other kinds of systems that we studied, we

found that highly complex behavior could be obtained even with rather

simple rules, and that adding further complication to these rules did not

in most cases noticeably affect the level of complexity that was produced.

So in retrospect the results of Chapter 3 should already have

suggested that simple underlying rules such as rule 110 might be able to

achieve universality. But what the elaborate construction in the

previous section has done is to show for certain that this is the case.

Class 4 Behavior and Universality

If one looks at the typical behavior of rule 110 with random initial

conditions, then the most obvious feature of what one sees is that there

are a large number of localized structures that move around and interact

with each other in complicated ways. But as we saw in Chapter 6, such

behavior is by no means unique to rule 110. Indeed, it is in fact

characteristic of all cellular automata that lie in what I called class 4.

The pictures on the next page show a few examples of such class

4 systems. And while the details are different in each case, the general

features of the behavior are always rather similar.

So what does this mean about the computational capabilities of

such systems? I strongly suspect that it is true in general that any

cellular automaton which shows overall class 4 behavior will turn

out—like rule 110—to be universal.

We saw at the end of Chapter 6 that class 4 rules always seem to

yield a range of progressively more complicated localized structures.

And my expectation is that if one looks sufficiently hard at any



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

692

particular rule, then one will always eventually be able to find a set of

localized structures that is rich enough to support universality.

The final demonstration that a given rule is universal will no

doubt involve the same kind of elaborate construction as for rule 110.

(c)

(c) totalistic 2-color next-nearest-neighbor code 52 (d) totalistic 3-color code 1815

(a) rule 110 (b) second-order rule 37

(a)
(b)

(d)

Examples of cellular automata with class 4 overall behavior, as discussed in Chapter 6. I strongly suspect that all class 4 rules,
like rule 110, will turn out to be universal. 
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But the point is that all the evidence I have so far suggests that for any

class 4 rule such a construction will eventually turn out to be possible.

So what kinds of rules show class 4 behavior?

Among the 256 so-called elementary cellular automata that allow

only two possible colors for each cell and depend only on nearest

neighbors, the only clear immediate example is rule 110—together with

rules 124, 137 and 193 obtained by trivially reversing left and right or

black and white. But as soon as one allows more than two possible

colors, or allows dependence on more than just nearest neighbors, one

immediately finds all sorts of further examples of class 4 behavior.

In fact, as illustrated in the pictures on the facing page, it is

sufficient in such cases just to use so-called totalistic rules in which the

new color of a cell depends only on the average color of cells in its

neighborhood, and not on their individual colors.

In two dimensions class 4 behavior can occur with rules that

involve only two colors and only nearest neighbors—as shown on page

249. And indeed one example of such a rule is the so-called Game of

Life that has been popular in recreational computing since the 1970s.

The strategy for demonstrating universality in a two-dimensional

cellular automaton is in general very much the same as in one

dimension. But in practice the comparative ease with which streams of

localized structures can be made to cross in two dimensions can reduce

some of the technical difficulties involved. And as it turns out there

was already an outline of a proof given even in the 1970s that the Game

of Life two-dimensional cellular automaton is universal. 

Returning to one dimension, one can ask whether among the 256

elementary cellular automata there are any apart from rule 110 that

show even signs of class 4 behavior. As we will see in the next section,

one possibility is rule 54. And if this rule is in fact class 4 then it is my

expectation that by looking at interactions between the localized

structures it supports it will in the end—with enough effort—be

possible to show that it too exhibits the phenomenon of universality.
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The Threshold of Universality in Cellular Automata

By showing that rule 110 is universal, we have established that

universality is possible even among cellular automata with the very

simplest kinds of underlying rules. But there remains the question of

what is ultimately needed for a cellular automaton—or any other kind

of system—to be able to achieve universality. 

In general, if a system is to be universal, then this means that by

setting up an appropriate choice of initial conditions it is possible to get the

system to emulate any type of behavior that can occur in any other system.

And as a consequence, cellular automata like the ones in the pictures below

are definitely not universal, since they always produce just simple uniform

or repetitive patterns of behavior, whatever initial conditions one uses.

In a sense the fundamental reason for this—as we discussed on

page 252—is that such class 1 and class 2 cellular automata never allow

any transmission of information except over limited distances. And the

result of this is that they can only support processes that involve the

correlated action of a limited number of cells.

In cellular automata like the ones at the top of the facing page

some information can be transmitted over larger distances. But the way

this occurs is highly constrained, and in the end these systems can only

produce patterns that are in essence purely nested—so that it is again

not possible for universality to be achieved.

What about additive rules such as 90 and 150? 

With simple initial conditions these rules always yield very

regular nested patterns. But with more complicated initial conditions,

they produce more complicated patterns of behavior—as the pictures at

rule 4 rule 51 rule 108 rule 250

Examples of elementary cellular automata which only ever show purely uniform or purely repetitive behavior, and which
therefore definitely cannot be universal. These cellular automata are necessarily all class 1 or class 2 systems. 
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the bottom of this page illustrate. As we saw on page 264, however,

these patterns never in fact really correspond to more than rather

simple transformations of the initial conditions. Indeed, even after say

1,048,576 steps—or any number of steps that is a power of two—the

array of cells produced always turns out to correspond just to a simple

superposition of two or three shifted copies of the initial conditions.

rule 184

rule 14 rule 62

Examples of cellular automata that do allow information to be transmitted over large distances, but only in
very restricted ways. The overall patterns produced by such cellular automata are essentially nested. No
cellular automata of this kind can ever be universal.

rule 90

rule 150 rule 90 rule 150

Examples of cellular automata with additive rules. The repetitive occurrence of states that correspond to
simple transformations of the initial conditions prevent such cellular automata from ever being universal.
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And since there are many kinds of behavior that do not return to

such predictable forms after any limited number of steps, one must

conclude that additive rules cannot be universal.

At the end of the last section I mentioned rule 54 as another

elementary cellular automaton besides rule 110 that might be class 4.

The pictures below show examples of the typical behavior of rule 54.

Two views of the evolution of rule 54 from typical random initial conditions. The top view shows
the color of every cell at every step. The bottom groups together pairs of cells, and shows only
every other step. There are various localized structures—and hints of class 4 behavior. 
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Some localized structures are definitely seen. But are they enough

to support class 4 behavior and universality? The pictures below show

what happens if one starts looking in turn at each of the possible initial

conditions for rule 54. At first one sees only simple repetitive behavior.

At initial condition 291 one sees a very simple form of nesting. And as

one continues one sees various other repetitive and nested forms. But at

least up to the hundred millionth initial condition one sees nothing

that is fundamentally any more complicated.

So can rule 54 achieve universality? I am not sure. It could be that

if one went just a little further in looking at initial conditions one

would see more complicated behavior. And it could be that even the

structures shown above can be combined to produce all the richness

that is needed for universality. But it could also be that whatever one

does rule 54 will always in the end just show purely repetitive or nested

behavior—which cannot on its own support universality.

What about other elementary cellular automata?

1 3 75 259 291 787 803 56549

Forms of behavior seen in the first 100 million initial conditions for rule 54. With initial condition 291 the th new stripe on the
right is produced at step . Even in the last case shown, the arrangement of stripes eventually becomes completely
regular, with the th new stripe being produced at step . Pairs of cells are grouped
together in each picture, as at the bottom of the facing page.

n

2 n2 + 8 n - 9

n n2 + 21 n/2 - {6, 5, -4, 3}0Mod[n, 4] + 11 /2
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As I will discuss in the next chapter, my general expectation is that

more or less any system whose behavior is not somehow fundamentally

repetitive or nested will in the end turn out to be universal. But I suspect

that this fact will be very much easier to establish for some systems than

for others—with rule 110 being one of the easiest cases.

In general what one needs to do in order to prove universality is to

find a procedure for setting up initial conditions in one system so as to

make it emulate some general class of other systems. And at some level

the main challenge is that our experience from programming and

engineering tends to provide us with only a limited set of methods for

coming up with such a procedure. Typically what we are used to doing is

constructing things in stages. Usually we start by building components,

and then we progressively assemble these into larger and larger

structures. And the point is that at each stage, we need think directly

only about the scale of structures that we are currently handling—and

not for example about all the pieces that make up these structures.

In proving the universality of rule 110, we were able to follow

essentially the same basic approach. We started by identifying various

localized structures, and then we used these structures as components

in building up the progressively larger structures that we needed.

What was in a sense crucial to our approach was therefore that

we could readily control the transmission of information in the system.

For this is what allowed us to treat different localized structures as

being separate and independent objects.

And indeed in any system with class 4 behavior, things will

typically always work in more or less the same way. But in class 3

systems they will not. For what usually happens in such systems is that

a change made even to a single cell will eventually spread to affect all

other cells. And this kind of uncontrolled transmission of information

makes it very difficult to identify pieces that could be used as definite

components in a construction.

So what can be done in such cases? The most obvious possibility

is that one might be able to find special classes of initial conditions in

which transmission of information could be controlled. And an

example where this can be potentially done is rule 73. 
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The pictures below show the typical behavior of rule 73—first

with completely random initial conditions, and then with initial

conditions in which no run of an even number of black squares occurs.

In the second case rule 73 exhibits typical class 3 behavior—with

the usual uncontrolled transmission of information. In the first case,

however, the black walls that are present seem to prevent any

long-range transmission of information at all. 

So can one then achieve something intermediate in rule 73—in

which information is transmitted, but only in a controlled way? 

The pictures at the top of the next page give some indication of how

this might be done. For they show that with an appropriate background rule

73 supports various localized structures, some of which move. And while

these structures may at first seem more like those in rule 54 than rule 110,

I strongly suspect that the complexity of the typical behavior of rule 73 will

be reflected in more sophisticated interactions between the structures—and

will eventually provide what is needed to allow universality to be

demonstrated in much the same way as in rule 110.

Two examples of rule 73. The top example uses completely random initial conditions; the bottom
example uses initial conditions in which no run of an even number of black squares ever occurs. The
bottom example is actually part of the pattern obtained from a single black cell—just to the right of
the center column, starting with step 1000.
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So what about a case like rule 30? With strictly repetitive initial

conditions—like any cellular automaton—this must yield purely

repetitive behavior. But as soon as one perturbs such initial conditions,

one normally seems to get only complicated and seemingly random

behavior, as in the top row of pictures below. 

Yet it turns out still to be possible to get localized structures—as

the bottom row of pictures above demonstrate. But these structures

Examples of localized structures in rule 73. Note that in the last case shown, the background patterns on either side are mirror images.

Examples of patterns produced by rule 30 with repetitive backgrounds. The top row shows the effect of inserting a single extra
black cell into various backgrounds. The bottom row shows all localized structures involving up to 25 cells supported by rule 30 on
repetitive backgrounds with blocks of up to 25 cells. Note that these localized structures always move one cell to the right at each
step—making it impossible for them to interact in non-trivial ways.
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always seem to move at the same speed, and so can never interact. And

even after searching many billions of cases, I have never succeeded in

finding any useful set of localized structures in rule 30.

The picture below shows what happens in rule 45. Many possible

perturbations to repetitive initial conditions again yield seemingly

random behavior. But in one case a nested pattern is produced. And

structures that remain localized are now fairly common—but just as in

rule 30 always seem to move at the same speed.

So although this means that the particular type of approach we

used to demonstrate the universality of rule 110 cannot immediately be

used for rule 30 or rule 45, it certainly does not mean that these rules

are not in the end universal. And as I will discuss in the next chapter, it

is my very strong belief that in fact they will turn out to be.

So how might we get evidence for this?

If a system is universal, then this means that with a suitable

encoding of initial conditions its evolution must emulate the evolution

of any other system. So this suggests that one might be able to get

evidence about universality just by trying different possible encodings,

and then seeing what range of other systems they allow one to emulate.

In the case of the 19-color universal cellular automaton on page

645 it turns out that encodings in which individual black and white

cells are represented by particular 20-cell blocks are sufficient to allow

the universal cellular automaton to emulate all 256 possible elementary

cellular automata—with one step in the evolution of each of these

corresponding to 53 steps in the evolution of the original system. 

Examples of patterns produced by inserting a single extra black cell into repetitive backgrounds for rule 45. Note the appearance of a
slanted version of the nested pattern from rule 90. In rule 45, localized structures turn out to be fairly common—but as in rule 30 they
always seem to move at the same speed, and so presumably cannot interact to produce any kind of class 4 behavior. 
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rule 146

rule 90

rule 0

rule 204

rule 170

rule 240

rule 146

rule 90

rule 22

rule 50

rule 51

rule 170

rule 204

rule 240

rule 254

rule 0

rule 50

rule 170

rule 204

rule 240

rule 254

rule 54

rule 90

rule 90

rule 45

rule 148

rule 176

rule 184

rule 170

rule 0

rule 128

rule 136

rule 240

rule 15

rule 204

rule 48

rule 41

rule 90

rule 0

rule 204

rule 51

rule 192

rule 238

rule 128

rule 94

rule 0

rule 240

rule 170

rule 204

rule 110

rule 240

rule 128

rule 170

rule 240

rule 184

rule 0

rule 184

Examples of using various specific elementary cellular automata to emulate other elementary
cellular automata. In each case single cells are encoded as blocks of cells, and all distinct such
encodings with blocks up to length 20 are shown. 
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So given a particular elementary cellular automaton one can then

ask what other elementary cellular automata it can emulate using

blocks up to a certain length. 

The pictures on the facing page show a few examples. 

The results are not particularly dramatic. No single rule is able to

emulate many others—and the rules that are emulated tend to be rather

simple. An example of a slight surprise is that rule 45 ends up being

able to emulate rule 90. But at least with blocks up to length 25, rule 30

for example is not able to emulate any non-trivial rules at all.

From the proof of universality that we gave it follows that rule

110 must be able to emulate any other elementary cellular automaton

with blocks of some size—but with the actual construction we

discussed this size will be quite astronomical. And certainly in the

picture on the facing page rule 110 does not seem to stand out.

But although it seems somewhat difficult to emulate the

complete evolution of one cellular automaton with another, it turns out

to be much easier to emulate fragments of evolution for limited

numbers of steps. And as an example the picture below shows how rule

30 can be made to emulate the basic action of one step in rule 90.

The idea is to set up a configuration in rule 30 so that if one

inserts input at particular positions the output from the underlying rule

30 evolution corresponds exactly to what one would get from a single

step of rule 90 evolution. And in the particular case shown, this is

achieved by having blocks 3 cells wide between each input position.

But as the picture on the next page indicates, by having

appropriate blocks 5 cells wide rule 30 can actually be made to emulate

Rule 30 set up to emulate a single XOR operation—as used in a step of rule 90 evolution. The initial
conditions for rule 30 are fixed except at the two positions indicated, where input can effectively be
given. The picture shows that for each possible combination of inputs, the result from the rule 30
evolution corresponds exactly to the output from the XOR. 
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one step in the evolution of every single one of the 256 possible

elementary cellular automata.

So what about other underlying rules?

The picture on the facing page shows for several different

underlying rules which of the 256 possible elementary rules can

successfully be emulated with successively wider blocks. In cases where

the underlying rules have only rather simple behavior—as with rules 90

and 184—it turns out that it is never possible to emulate more than a

rule 0

rule 1

rule 2

rule 30

rule 45

rule 90

rule 110

rule 255

Illustrations of how rule 30 can be set up to emulate a single step in the evolution of all elementary cellular automata. 
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few of the 256 possible elementary rules. But for underlying rules that

have more complex behavior—like rules 22, 30, or 110—it turns out

that in the end it is always possible to emulate all 256 elementary rules.

The emulation here is, however, only for a single step. So the fact

that it is possible does not immediately establish universality in any

ordinary sense. But it does once again support the idea that almost any

cellular automaton whose behavior seems to us complex can be made

to do computations that are in a sense as sophisticated as one wants. 

And this suggests that such cellular automata will in the end turn

out to be universal—with the result that out of the 256 elementary

rules one expects that perhaps as many as 27 will in fact be universal.
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rule 184

block width

Summaries of how various underlying cellular automata do in emulating a single step in the evolution of each of the 256
possible elementary cellular automata using the scheme from the facing page with blocks of successively greater widths.
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Universality in Turing Machines and Other Systems

From the results of the previous few sections, we now have some idea

where the threshold for universality lies in cellular automata. But what

about other kinds of systems—like Turing machines? How complicated

do the rules need to be in order to get universality?

In the 1950s and early 1960s a certain amount of work was done

on trying to construct small Turing machines that would be universal.

The main achievement of this work was the construction of the

universal machine with 7 states and 4 possible colors shown below.

The rule for a universal Turing machine with 7 states and 4 colors constructed in 1962. Until now, this was essentially the simplest
known universal Turing machine. Note that one element of the rule can be considered as specifying that the Turing machine
should “halt” with the head staying in the same location and same state. 

Turing machine evolution Turing machine evolution compressed

tag system evolution tag system evolution shifted

tag system rule:

An example of how the Turing machine above can emulate a tag system. A black element in the tag
system is set up to correspond to a block of four cells in the Turing machine, while a white element
corresponds to a single cell.
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The picture at the bottom of the facing page shows how universality

can be proved in this case. The basic idea is that by setting up appropriate

initial conditions on the left, the Turing machine can be made to emulate

any tag system of a certain kind. But it then turns out from the discussion

of page 667 that there are tag systems of this kind that are universal.

It is already an achievement to find a universal Turing machine as

comparatively simple as the one on the facing page. And indeed in the forty

years since this example was found, no significantly simpler one has been

found. So one might conclude from this that the machine on the facing

page is somehow at the threshold for universality in Turing machines.

But as one might expect from the discoveries in this book, this is

far from correct. And in fact, by using the universality of rule 110 it

turns out to be possible to come up with the vastly simpler universal

Turing machine shown below—with just 2 states and 5 possible colors. 

The rule for the simplest Turing machine currently known to be universal, based on discoveries in
this book. The machine has 2 states and 5 possible colors. 

Turing machine evolution compressed

Turing machine evolution

An example of how the Turing machine above manages to emulate rule 110.
The compressed picture is made by keeping only the steps indicated at
which the head is further to the right than ever before. To get the picture
shown requires running the Turing machine for a total of 5000 steps.
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As the picture at the bottom of the previous page illustrates, this

Turing machine emulates rule 110 in a quite straightforward way: its head

moves systematically backwards and forwards, at each complete sweep

updating all cells according to a single step of rule 110 evolution. And

knowing from earlier in this chapter that rule 110 is universal, it then

follows that the 2-state 5-color Turing machine must also be universal. 

So is this then the simplest possible universal Turing machine?

I am quite certain that it is not. And in fact I expect that there are

some significantly simpler ones. But just how simple can they actually be?

If one looks at the 4096 Turing machines with 2 states and 2 colors

it is fairly easy to see that their behavior is in all cases too simple to

support universality. So between 2 states and 2 colors and 2 states and 5

colors, where does the threshold for universality in Turing machines lie?

(a) (b) (c) (d)

(c) (d)

(a) (b)

(c) (d)

(a) (b)

Examples of Turing machines with 2 states and 4 colors that show
complex behavior. The compressed pictures above are based on
50,000 steps of evolution. In all cases, all cells are initially white. 
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The pictures at the bottom of the facing page give examples of

some 2-state 4-color Turing machines that show complex behavior. And

I have little doubt that most if not all of these are universal.

Among such 2-state 4-color Turing machines perhaps one in

50,000 shows complex behavior when started from a blank tape.

Among 4-state 2-color Turing machines the same kind of complex

behavior is also seen—as discussed on page 81—but now it occurs only

in perhaps one out of 200,000 cases. 

So what about Turing machines with 2 states and 3 colors? There

are a total of 2,985,984 of these. And most of them yield fairly simple

behavior. But it turns out that 14 of them—all essentially equivalent—

produce considerable complexity, even when started from a blank tape.

The picture below shows an example. 

And although it will no doubt be very difficult to prove, it seems

likely that this Turing machine will in the end turn out to be universal.

And if so, then presumably it will by most measures be the very

simplest Turing machine that is universal. 

One of the 14 essentially equivalent 2-state 3-color Turing machines that
yield complicated behavior when started from a blank tape. The
compressed picture above is made by taking the first 100,000 steps, and

keeping only those at which the head is further to the left than ever before. The interior of the pattern that emerges
is like an inverted version of the rule 60 additive cellular automaton; the boundary, however, is more complicated. In
the numbering scheme of page 761 this is machine 596,440 out of the total of 2,985,984 with 2 states and 3 colors. 
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With 3 states and 2 colors it turns out that with blank initial

conditions all of the 2,985,984 possible Turing machines of this type

quickly evolve to produce simple repetitive or nested behavior. With

more complicated initial conditions the behavior one sees can

sometimes be more complicated, at least for a while—as in the pictures

below. But in the end it still always seems to resolve into a simple form.

Yet despite this, it still seems conceivable that with appropriate

initial conditions significantly more complex behavior might occur—and

might ultimately allow universality in 3-state 2-color Turing machines. 

From the universality of rule 110 we know that if one just starts

enumerating cellular automata in a particular order, then after going

through at most 110 rules, one will definitely see universality. And

from other results earlier in this chapter it seems likely that in fact one

would tend to see universality even somewhat earlier—after going

through only perhaps just ten or twenty rules. 

Among Turing machines, the universal 2-state 5-color rule on

page 707 can be assigned the number 8,679,752,795,626. So this means

(a) (b) (c)

(a)

(b)

(c)

Examples of 3-state 2-color
Turing machines which behave
for a while in slightly complicated
ways. With more elaborate initial
conditions, these machines can
be made to exhibit complicated
behavior for longer. 
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that after going through perhaps nine trillion Turing machines one will

definitely tend to find an example that is universal. But presumably one

will actually find examples much earlier—since for example the 2-state

3-color machine on page 709 is only number 596,440. 

And although these numbers are larger than for cellular

automata, the fact remains that the simplest potentially universal

Turing machines are still very simple in structure, suggesting that the

threshold for universality in Turing machines—just like in cellular

automata—is in many respects very low. 

So what about other types of systems?

I suspect that in almost any case where we have seen complex

behavior earlier in this book it will eventually be possible to show that

there is universality. And indeed, as I will discuss at length in the next

chapter, I believe that in general there is a close connection between

universality and the appearance of complex behavior.

Previous examples of systems that are known to be universal

have typically had rules that are far too complicated to see this with any

clarity. But an almost unique instance where it could potentially have

been seen even long ago are what are known as combinators.

Combinators are a particular case of the symbolic systems that

we discussed on page 102 of Chapter 3. Originally intended as an

idealized way to represent structures of functions defined in logic,

combinators were actually first introduced in 1920—sixteen years

before Turing machines. But although they have been investigated

somewhat over the past eighty years, they have for the most part been

viewed as rather obscure and irrelevant constructs.

The basic rules for combinators are given below.

With short initial conditions, the pictures at the top of the next

page demonstrate that combinators tend to evolve quickly to simple

fixed points. But with initial condition (e) of length 8 the pictures show

Rules for symbolic systems known as combinators, first
introduced in 1920, and proved universal by the mid-1930s.

�[x_][y_][z_] ! x[z][y[z]]
�[x_][y_] ! x



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

712

� [ � [ � ] ] [ � ] [ � ] [ � ]
� [ � ] [ � ] [ � [ � ] ] [ � ]
� [ � [ � ] ] [ � [ � [ � ] ] ] [ � ]
� [ � ] [ � ] [ � [ � [ � ] ] [ � ] ]
� [ � [ � [ � ] ] [ � ] ] [ � [ � [ � [ � ] ] [ � ] ] ]
� [ � [ � ] ] [ � ]
� [ � ]
� [ � ]
� [ � ]
� [ � ]
� [ � ]

� [ � [ � ] ] [ � ] [ � ] [ � ]
� [ � ] [ � ] [ � [ � ] ] [ � ]
� [ � [ � ] ] [ � [ � [ � ] ] ] [ � ]
� [ � ] [ � ] [ � [ � [ � ] ] [ � ] ]
� [ � [ � [ � ] ] [ � ] ] [ � [ � [ � [ � ] ] [ � ] ] ]
� [ � [ � [ � ] ] [ � ] ] [ � [ � [ � [ � ] ] [ � ] ] ]
� [ � [ � [ � ] ] [ � ] ] [ � [ � [ � [ � ] ] [ � ] ] ]
� [ � [ � [ � ] ] [ � ] ] [ � [ � [ � [ � ] ] [ � ] ] ]
� [ � [ � [ � ] ] [ � ] ] [ � [ � [ � [ � ] ] [ � ] ] ]
� [ � [ � [ � ] ] [ � ] ] [ � [ � [ � [ � ] ] [ � ] ] ]
� [ � [ � [ � ] ] [ � ] ] [ � [ � [ � [ � ] ] [ � ] ] ]

(a) �[�[�]][�][�][�] (b) �[�[�]][�][�][�]

( j) �[�[�[�][�]]][�][�][�] (k) �[�][�][�[�[�][�]]][�]

(h) �[�][�][�[�[�]]][�][�] ( i) �[�][�][�[�]][�][�[�]]

( f ) �[�][�][�[�[�[�]]]][�] (g) �[�][�][�[�[�]]][�][�]

(e) �[�[�]][�][�][�][�]

(e) �[�[�]][�][�][�][�]

(c) �[�[�]][�][�][�][�] (d) �[�][�][�[�[�]]][�]

0
100
200
300
400

0 50 100 150 200

(f )

0
200
400

0 50 100 150 200

(g)

0
500

1000
1500

0 20 40 60 80

(h)

0

5000

0 20 40 60 80

( i)

0
500

1000
1500

0 50 100

( j)

0
5000

10000

0 200 400 600 800 1000

(k)

Examples of combinator evolution. The expression in case (e) is the shortest that leads to unlimited growth. The
plots at the bottom show the total sizes of expressions reached on successive steps. Note that the detailed
pattern of evolution—though not any final fixed point reached—can depend on the fact that the combinator rules
are applied at each step in Mathematica  order. /.



T H E  N O T I O N  O F  C O M P U T A T I O N C H A P T E R  1 1

713

that no fixed point is reached, and instead there is exponential growth

in total size—with apparently rather random internal behavior.

Other combinators yield still more complicated behavior—

sometimes with overall repetition or nesting, but often not. 

There are features of combinators that are not easy to capture

directly in pictures. But from pictures like the ones on the facing page it

is rather clear that despite their fairly simple underlying rules, the

behavior of combinators can be highly complex. 

And while issues of typical behavior have not really been studied

before, it has been known that combinators are universal almost since

the concept of universality was first introduced in the 1930s. 

One way that we can now show this is to demonstrate that

combinators can emulate rule 110. And as the pictures on the next page

illustrate, it turns out that just repeatedly applying the combinator

expression below reproduces successive steps in the evolution of rule 110. 

There has in the past been no overall context for understanding

universality in combinators. But now what we have seen suggests that such

universality is in a sense just associated with general complex behavior.

Yet we saw in Chapter 3 that there are symbolic systems with

rules even simpler than combinators that still show complex behavior.

And so now I suspect that these too are universal.

And in fact wherever one looks, the threshold for universality

seems to be much lower than one would ever have imagined. And this is

one of the important basic observations that led me to formulate the

Principle of Computational Equivalence that I discuss in the next chapter. 

�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�[�[�[�][�]][�[�[�]]]][�[�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�[

�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�][�]][�[�]]]]]][�[�[�]][�[�[�[�][�]][�[�[�]]]][�[�[�]]]]]]]]][�[�[�]][�[�[

�[�][�]][�[�[�]]]][�[�]]]]]]][�[�[�[�[�[�][�]][�[�[�[�[�][�]][�[�[�[�[�][�]][�[�]]][�[�]]]]][�[�]]]]]]][�[�[

�]][�[�[�[�[�[�][�]][�[�[�]]]][�[�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�[�][�]][�[�]]][�[�]]]]]][�[�[�]][

�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�][�]][�[�[�]]]]]]][�[�[�]][�[�[�[�[�[�][�]][�[�]]][�[�[�]]]][�[�[�[

�[�][�]][�[�]]][�[�]]][�[�[�]]]]][�[�[�[�[�[�[�][�]][�[�]]][�[�]]][�[�[�]]]][�[�[�]]]][�[�[�[�[�[�[�[�][

�]][�[�]]][�[�]]][�[�]]][�[�[�]]]][�[�[�]]]][�[�]]]]]]]]]]][�[�[�[�]][�[�[�[�[�][�]]]][�[�[�]][�[�[�[�]][�[

�[�[�[�][�]]]][�[�[�]][�[�[�][�]][�[�]]]]]][�[�[�]]]]]]][�[�[�]]]]][�[�[�]]]]]]][�[�]]]]]][�[�[�]][�[�[�[�[

�[�]][�]]]][�[�[�][�]][�[�[�]]]]]]

A combinator expression that corresponds to the operation of doing one step of rule 110 evolution. 



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

714

10 100 1000 10,000

10 100 1000 10,000 100,000

(459 steps) (664 steps)

step 1

step 2

step 3 step 4

Emulating the rule 110 cellular automaton using combinators. The rule 110 combinator from the previous page is applied once for
each step of rule 110 evolution. The initial state is taken to consist of a single black cell. 
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NOTES FOR CHAPTER 11

The Notion of Computation

Computation as a Framework

â History of computing. Even in prehistoric times there were
no doubt schemes for computation based for example on
making specific arrangements of pebbles. Such schemes
were somewhat formalized a few thousand years ago with
the invention of the abacus. And by about 200 BC the
development of gears had made it possible to create devices
(such as the Antikythera device from perhaps around 90
BC) in which the positions of wheels would correspond to
positions of astronomical objects. By about 100 AD Hero
had described an odometer-like device that could be driven
automatically and could effectively count in digital form.
But it was not until the 1600s that mechanical devices for
digital computation appear to have actually been built.
Around 1621 Wilhelm Schickard probably built a machine
based on gears for doing simplified multiplications
involved in Johannes Kepler’s calculations of the orbit of
the Moon. But much more widely known were the
machines built in the 1640s by Blaise Pascal for doing
addition on numbers with five or so digits and in the 1670s
by Gottfried Leibniz for doing multiplication, division and
square roots. At first, these machines were viewed mainly
as curiosities. But as the technology improved, they
gradually began to find practical applications. In the mid-
1800s, for example, following the ideas of Charles Babbage,
so-called difference engines were used to automatically
compute and print tables of values of polynomials. And
from the late 1800s until about 1970 mechanical calculators
were in very widespread use. (In addition, starting with
Stanley Jevons in 1869, a few machines were constructed for
evaluating logic expressions, though they were viewed
almost entirely as curiosities.)

In parallel with the development of devices for digital
computation, various so-called analog computers were also
built that used continuous physical processes to in effect
perform computations. In 1876 William Thomson (Kelvin)

constructed a so-called harmonic analyzer, in which an
assembly of disks were used to sum trigonometric series and
thus to predict tides. Kelvin mentioned that a similar device
could be built to solve differential equations. This idea was
independently developed by Vannevar Bush, who built the
first mechanical so-called differential analyzer in the late
1920s. And in the 1930s, electrical analog computers began to
be produced, and in fact they remained in widespread use for
finding approximate solutions to differential equations until
the late 1960s.

The types of machines discussed so far all have the feature
that they have to be physically rearranged or rewired in
order to perform different calculations. But the idea of a
programmable machine already emerged around 1800, first
with player pianos, and then with Marie Jacquard’s
invention of an automatic loom which used punched cards to
determine its weaving patterns. And in the 1830s, Charles
Babbage described what he called an analytical engine,
which, if built, would have been able to perform sequences of
arithmetic operations under punched card control. Starting at
the end of the 1800s tabulating machines based on punched
cards became widely used for commercial and government
data processing. Initially, these machines were purely
mechanical, but by the 1930s, most were electromechanical,
and had units for carrying out basic arithmetic operations.
The Harvard Mark I computer (proposed by Howard Aiken
in 1937 and completed in 1944) consisted of many such units
hooked together so as to perform scientific calculations.
Following work by John Atanasoff around 1940, electronic
machines with similar architectures started to be built. The
first large-scale such system was the ENIAC, built between
1943 and 1946. The focus of the ENIAC was on numerical
computation, originally for creating ballistics tables. But in
the early 1940s, the British wartime cryptanalysis group
(which included Alan Turing) constructed fairly large
electromechanical machines that performed logical, rather
than arithmetic, operations. 
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All the systems mentioned so far had the feature that they
performed operations in what was essentially a fixed
sequence. But by the late 1940s it had become clear,
particularly through the writings of John von Neumann, that
it would be convenient to be able to jump around instead of
always having to follow a fixed sequence. And with the idea
of storing programs electronically, this became fairly easy to
do, so that by 1950 more than ten stored-program computers
had been built in the U.S. and in England. Speed and
memory capacity have increased immensely since the 1950s,
particularly as a result of the development of semiconductor
chip technology, but in many respects the basic hardware
architecture of computers has remained very much the same. 

Major changes have, however, occurred in software. In the
late 1950s and early 1960s, the main innovation was the
development of computer languages such as FORTRAN,
COBOL and BASIC. These languages allowed programs to be
specified in a somewhat abstract way, independent of the
precise details of the hardware architecture of the computer.
But the languages were primarily intended only for
specifying numerical calculations. In the late 1960s and early
1970s, there developed the notion of operating systems—
programs whose purpose was to control the resources of a
computer—and with them came languages such as C. And
then in the late 1970s and early 1980s, as the cost of computer
memory fell, it began to be feasible to manipulate not just
purely numerical data, but also data representing text and
later pictures. With the advent of personal computers in the
early 1980s, interactive computing became common, and as
the resolution of computer displays increased, concepts such
as graphical user interfaces developed. In more recent years
continuing increases in speed have made it possible for more
and more layers of software to be constructed, and for many
operations previously done with special hardware to be
implemented purely in software.

â Practical computers. At the lowest level the hardware of a
practical computer consists of digital electronic circuits. In
these circuits, lumps of electric charge (in 2001 about half a
million electrons each) flow through channels which cross to
form various kinds of gates. Each gate performs a simple
logic operation; for example, letting charge pass in one
channel only if charge is present in the other channel. From
circuits containing millions of such gates are built the two
main elements of the computer: the processor which
actually performs computations, and the memory which
stores data. The memory consists of an array of cells, with
the presence or absence of a lump of charge at gates in each
cell representing a 1 or 0 value for the bit of data associated
with that cell.

One of the crucial ideas of a general-purpose computer is that
sequences of such bits of data in memory can represent
information of absolutely any kind. Numbers for example are
typically represented in base 2 by sequences of 32 or more
bits. Similarly, characters of text are usually represented by
sequences of 8 or more bits. (The character “a” is typically
01100001.) Images are usually represented by bitmaps
containing thousands or millions of bits, with each bit
specifying for example whether a pixel at a particular
location should, say, be black or white. Every possible
location in memory has a definite address, independent of its
contents. The address is typically represented as a number
which itself can be stored in memory.

What makes possible essential universality in a practical
computer is that the data which is stored in memory can be a
program. At the lowest level, a program consists of a
sequence of instructions to be executed by the processor. Any
particular kind of processor is built to support a certain fixed
set of possible kinds of instructions, each represented by a
specific number or opcode. There are typically a few tens of
possible instructions, each executed by a certain part of the
circuit in the processor. A typical one of these instructions
might add two numbers together; a program would specify
which numbers to add by giving their addresses in memory.

What practical computers always basically do is to repeat
millions of times a second a simple cycle, in which the
processor fetches an instruction from memory, then executes
the instruction. The address of the instruction to be fetched at
each point is specified by the current value of the program
counter—a number stored in memory that is incremented by
the processor, or can be modified by instruction in the
program. At any given time, there are usually several
programs stored in the memory of a computer, all organized
by an operating system program which determines when
other programs should run. Devices like keyboards, mice and
microphones convert input into data that is inserted into
memory at certain fixed locations. The operating system
periodically checks these locations, and if necessary runs
programs to respond to the input that is given.

A crucial achievement in practical computing over the past
several decades has been the creation of more and more
sophisticated software. Often the programs that make up
this software are several million instructions long. They
usually contain many subprograms that perform parts of
their task. Some programs are set up to perform very
specific applications, say word processing. But an important
class of programs are languages. A language provides a
fixed set of constructs that allow one to specify
computations. The set of instructions performed by the
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processor in a computer constitutes a low-level “machine”
language. In practice, however, programs are rarely written
at such a low level. More often, languages like C, FORTRAN,
Java or Mathematica are used. In these languages, each
construct represents what is often a large number of
machine instructions. There are two basic ways that
languages can operate: compiled or interpreted. In a
compiled language like C or FORTRAN, the source code of
the program must always first be translated by a compiler
program into object code that essentially consists of machine
instructions. Once compiled, a program can be executed any
number of times. In an interpreted language, each piece of
input effectively causes a fixed subprogram to be executed
to perform an operation specified by that input.

â Intuition from practical computing. See page 872.

Computations in Cellular Automata

â Page 639 · Other examples. Rule 152 and rule 144, which
effectively compute  and ,
respectively, are shown below with  initial black cells. 

As discussed on page 989 rule 184 effectively determines
whether its initial conditions correspond to a balanced
sequence of open and close parentheses. (Rule 132 can be
viewed as being like a syntax checker for a regular language;
rule 184 for a context-free language.)

â Page 639 · Squaring cellular automaton. The rules are 

and the initial conditions consist of 
surrounded by ’s. The rules can be implemented using

 as given on page 867. (See also page 1186.)

â Page 640 · Primes cellular automaton. The rules are 

and the initial conditions consist of  surrounded
by ’s. The right-hand region in the pattern grows like .
(See also page 132.)

â Random initial conditions. The pictures below show the
squaring and primes cellular automata starting from
random initial conditions. Note that for both systems the
majority of cases in their rules are not used in the specific
computations for which they were constructed. Changing
these cases can lead to different behavior with random
initial conditions.

â Efficiency of computations. Present-day practical computers
almost always process data in a basically sequential manner.
Cellular automata, however, intrinsically operate in parallel,
and can thus presumably perform at least some
computations in fundamentally fewer steps. (Compare the
discussion of P completeness on page 1149.) 

â Minimal programs for sequences. See page 1186.

The Phenomenon of Universality

â History of universality. In Greek times it was noted as a
philosophical matter that any single human language can be
used to describe the same basic range of facts and processes.
And with logic introduced as a way to formalize arguments
(see page 1099), Gottfried Leibniz in the 1600s considered the
idea of setting up a universal language based on logic that
would provide a precise description analogous to a
mathematical proof of any fact or process. But while Leibniz
considered the possibility of checking his descriptions by
machine, he apparently did not imagine setting up the analog
of a computation in which something is explicitly generated
from input that has been given.

The idea of having an abstract procedure that can be fed a
range of different inputs had precursors in antiquity in the
use of letters to denote objects in geometrical constructions,
and in the 1500s in the introduction of symbolic formulas
and algebraic variables. But the notion of abstract functions

Ceiling[n/2] Ceiling[n/4]
n = 18

rule 152 rule 144

{{0, _, 3} ! 0, {_, 2, 3} ! 3, {1, 1, 3} ! 4, {_, 1, 4} ! 4, {1 Ï 2, 3,
_} ! 5, {p : (0 Ï 1), 4, _} ! 7 - p, {7, 2, 6} ! 3, {7, _, _} ! 7,

{_, 7, p : (1 Ï 2)} ! p, {_, p : (5 Ï 6), _} ! 7 - p, {5 Ï 6, p : (1 Ï 2), _} !
7 - p, {5 Ï 6, 0, 0} ! 1, {_, p : (1 Ï 2), _} ! p, {_, _, _} ! 0}

Append[Table[1, {n}], 3]
0

GeneralCARule

{{13, 3, 13} ! 12, {6, _, 4} ! 15, {10, _, 3 Ï 11} ! 15, {13, 7, _} !
8, {13, 8, 7} ! 13, {15, 8, _} ! 1, {8, _, _} ! 7, {15, 1, _} ! 2,

{_, 1, _} ! 1, {1, _, _} ! 8, {2 Ï 4 Ï 5, _, _} ! 13, {15, 2, _} ! 4,
{_, 4, 8} ! 4, {_, 4, _} ! 5, {_, 5, _} ! 3, {15, 3, _} ! 12,
{_, x : (2 Ï 3 Ï 8), _} ! x, {_, x : (11 Ï 12), _} ! x - 1, {11, _, _} ! 13,
{13, _, 1 Ï 2 Ï 3 Ï 5 Ï 6 Ï 10 Ï 11} ! 15, {13, 0, 8} ! 15,
{14, _, 6 Ï 10} ! 15, {10, 0 Ï 9 Ï 13, 6 Ï 10} ! 15, {6, _, 6} ! 0,
{_, _, 10} ! 9, {6 Ï 10, 15, 9} ! 14, {_, 6 Ï 10, 9 Ï 14 Ï 15} ! 10,
{_, 6 Ï 10, _} ! 6, {6 Ï 10, 15, _} ! 13, {13 Ï 14, _, 9 Ï 15} ! 14,
{13 Ï 14, _, _} ! 13, {_, _, 15} ! 15, {_, _, 9 Ï 14} ! 9, {_, _, _} ! 0}

{10, 0, 4, 8}
0 �!!!t
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in mathematics reached its modern form only near the end
of the 1800s.

At the beginning of the 1800s practical devices such as the
player pianos and the Jacquard loom were invented that
could in effect be fed different inputs using analogs of
punched cards. And in the 1830s Charles Babbage and Ada
Lovelace noted that a similar approach could be used to
specify the mathematical procedure to be followed by a
mechanical calculating machine (see page 1107). But it was
somehow assumed that the specification of the procedure
must be done quite separately from the specification of the
data to which the procedure was to be applied.

Starting in the 1880s attempts to build up both numbers and
the operations of arithmetic from logic and set theory began
to suggest that both data and procedures could potentially be
described in common terms. And in the 1920s work by Moses
Schönfinkel on combinators and by Emil Post on string
rewriting systems provided fairly concrete examples of this.

In 1930 Kurt Gödel used the same basic idea to set up Gödel
numbers to encode logical and other procedures as numbers.
(Leibniz had in fact already done this for basic logic
expressions in 1679.) But Gödel then took the crucial step of
showing that the process of finding outputs from all such
procedures could in effect be viewed as equivalent to
following relations of logic and arithmetic—thus establishing
that these relations are in a certain sense universal (see page
784). This fact, however, was embedded inside the rather
technical proof of Gödel’s Theorem, and it was at first not at
all clear how specific it might be to the particular
mathematical systems considered.

But in 1935 Alonzo Church constructed a system in lambda
calculus that he showed could be made to emulate any other
system in lambda calculus if given appropriate input, and in
1936 Alan Turing did the same thing for Turing machines. As
discussed on page 1125, both Church and Turing argued that
the systems they set up would be able to perform any
reasonable computation. In both cases, their original
motivation was to use this fact to construct an argument that
the so-called decision problem (Entscheidungsproblem) of
mathematical logic was undecidable (see page 1136). But
Turing in particular gradually realized that his notion of
universality could be applied to practical computers.

Turing’s results were used in the 1940s—notably in the work
of Warren McCulloch and Walter Pitts—as a basis for the
assertion that electric circuit analogs of neural networks
could achieve the sophistication of brains, and this appears to
have influenced John von Neumann’s thinking about the
general programmability of electronic computers.

Nevertheless, by the late 1940s, practical computer
engineering had also been led to the idea of storing
programs—like data—electronically, and in the 1950s it
became widely understood that general-purpose practical
computers could be viewed as universal systems.

Many theoretical investigations of universality were made in
the 1950s and 1960s, but gradually the emphasis shifted more
towards issues of languages and algorithms.

â Universality in Mathematica. As an example of how
different primitive operations can be used to do the same
computation, the following are a few ways that the factorial
function can be defined in Mathematica:

A Universal Cellular Automaton

â Page 648 · Universal cellular automaton. The rules for the
universal cellular automaton are

f [n_] := n!

f [n_] := n f [n - 1]; f [1] = 1

f [n_] := Product[ i, {i, n}]

f [n_] := Module[{t = 1}, Do[t = t i, {i, n}]; t]

f [n_] := Module[{t = 1, i}, For[ i = 1, i < n, i ++, t *= i]; t]

f [n_] := Apply[Times, Range[n]]

f [n_] := Fold[Times, 1, Range[n]]

f [n_] := If[n 2 1, 1, n f [n - 1]]

f [n_] := Fold[#2[#1] &, 1, Array[Function[t, #1 t] &, n]]

f = If[#1 2 1, 1, #1 #0[#1 - 1]] &

{{_, 3, 7, 18, _} ! 12, {_, 5, 7 Ï 8, 0, _} ! 12, {_, 3, 10, 18, _} ! 16,
{_, 5, 10 Ï 11, 0, _} ! 16, {_, 5, 8, 18, _} ! 7, {_, 5, 14, 0 Ï 18, _} !
12, {_, _, 8, 5, _} ! 7, {_, _, 14, 5, _} ! 12, {_, 5, 11, 18, _} ! 10,
{_, 5, 17, 0 Ï 18, _} ! 16, {_, _, x : (11 Ï 17), 5, _} ! x - 1,
{_, 0 Ï 9 Ï 18, x : (7 Ï 10 Ï 16), 3, _} ! x + 1, {_, 0 Ï 9 Ï 18, 12, 3, _} !
14, {_, _, 0 Ï 9 Ï 18, 7 Ï 10 Ï 12 Ï 16, x : (3 Ï 5)} ! 8 - x,
{_, _, _, 8 Ï 11 Ï 14 Ï 17, x : (3 Ï 5)} ! 8 - x, {_, 13, 4, _, x : (0 Ï 18)} !
x, {18, _, 4, _, _} ! 18, {_, _, 18, _, 4} ! 18, {0, _, 4, _, _} ! 0,
{_, _, 0, _, 4} ! 0, {4, _, 0 Ï 18, 1, _} ! 3, {4, _, _, _, _} ! 4,
{_, _, 4, _, _} ! 9, {_, 4, 12, _, _} ! 7, {_, 4, 16, _, _} ! 10,
{x : (0 Ï 18), _, 6, _, _} ! x, {_, 2, 6, 15, x : (0 Ï 18)} ! x, {_, 12 Ï 16,
6, 7, _} ! 0, {_, 12 Ï 16, 6, 10, _} ! 18, {_, 9, 10, 6, _} ! 16,

{_, 9, 7, 6, _} ! 12, {9, 15, 6, 7, 9} ! 0, {9, 15, 6, 10, 9} ! 18,
{9, _, 6, _, _} ! 9, {_, 6, 7, 9, 12 Ï 16} ! 12, {_, 6, 10, 9, 12 Ï 16} !
16, {12 Ï 16, 6, 7, 9, _} ! 12, {12 Ï 16, 6, 10, 9, _} ! 16,
{6, 13, _, _, _} ! 9, {6, _, _, _, _} ! 6, {_, _, 9, 13, 3} ! 9,
{_, 9, 13, 3, _} ! 15, {_, _, _, 15, 3} ! 3, {_, 3, 15, 0 Ï 18, _} ! 13,
{_, 13, 3, _, 0 Ï 18} ! 6, {x : (0 Ï 18), 15, 9, _, _} ! x,
{_, 6, 13, _, _} ! 15, {_, 4, 15, _, _} ! 13, {_, _, _, 15, 6} ! 6,
{_, _, 2, 6, 15} ! 1, {_, _, 1, 6, _} ! 2, {_, 1, 6, _, _} ! 9, {_, 3, 2,
_, _} ! 1, {3, 2, _, _, _} ! 3, {_, _, 3, 2, _} ! 3, {_, 1, 9, 1, 6} ! 6,

{_, _, 9, 1, 6} ! 4, {_, 4, 2, _, _} ! 1, {_, _, _, _, x : (3 Ï 5)} ! x,
{_, _, 3 Ï 5, _, x : (0 Ï 18)} ! x, {_, _, x : (1 Ï 2 Ï 7 Ï 8 Ï 9 Ï 10 Ï 11 Ï

12 Ï 13 Ï 14 Ï 15 Ï 16 Ï 17), _, _} ! x, {_, _, 18, 7 Ï 10, 18} ! 18,
{_, _, 0, 7 Ï 10, 0} ! 0, {_, _, 0 Ï 18, _, _} ! 9, {_, _, x_, _, _} ! x}
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where the numbers correspond to the icons shown in the
main text according to 

The block in the initial conditions for the universal cellular
automaton corresponding to a cell with color  is given by

where  is the range of the rule to be emulated (  for
elementary rules) and  is the list of outcomes for that rule
(starting with the outcome for ). In general, there
are  cases in the rule to be emulated; each block in the
universal cellular automaton is  cells wide,
and each step in the rule to be emulated corresponds to

 steps in the evolution of the
universal cellular automaton.

â Page 655 · More colors. Given a rule that involves three
colors and nearest neighbors, the following converts each
case of the rule to a collection of cases for a rule with two
colors:

The problem of encoding cells with several colors by blocks
of black and white cells is related to standard problems in
coding theory (see page 560). One approach is to use  to
indicate the boundary of each block, and then within each
block to use all possible digit sequences which do not contain

, as in the Fibonacci number system discussed on page
892. Note that the original rule with  colors and  neighbors
involves  bits of information; the two-color rule
that emulates it involves  bits. As a result, the
minimum possible  for ,  is about 2.2; in the
specific example shown in the main text it is 5. 

Emulating Other Systems with Cellular Automata

â Page 657 · Mobile automata. Given a mobile automaton with
rules in the form used on page 887, a cellular automaton
which emulates it can be constructed using

This specific definition assumes that the mobile automaton
has two possible colors for each cell; it yields a cellular
automaton with four possible colors for each cell. An initial

condition with a single 2 surrounded by 0’s corresponds to
all cells being white in the mobile automaton. 

â Page 658 · Turing machines. Given any Turing machine
with rules in the form used on page 888 and  possible colors
for each cell, a cellular automaton which emulates it can be
constructed using

If the Turing machine has  states for its head, then the
cellular automaton has  colors for each cell. An
initial condition with a single cell of color  surrounded by
0’s corresponds to being in state 1 with a blank tape in the
Turing machine.

â Page 659 · Substitution systems. Given a substitution system
with rules in the form such as  used on
page 889, the rules for a cellular automaton which emulates it
are obtained from

where specific values for cells can be obtained from 

An initial condition consisting of a single element with color
 in the substitution system is represented by 

surrounded by ’s in the cellular automaton. The specific
definition given above works for neighbor-independent
substitution systems whose elements have two possible
colors, and in which each element is replaced at each step by
at most two new elements. 

â Page 660 · Sequential substitution systems. Given a
sequential substitution system with rules in the form used on
page 893, the rules for a cellular automaton which emulates it
can be obtained from

 

0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a
Flatten[{Transpose[{Join[{4, 18 (1 - a), 6}, Table[9,

{22 r+1 - 3}]], 10 - 3 rtab}], Table[{9, 1}, {r}], 9, 13}]

r r = 1
rtab

{1, 1, (1) ...}
22 r+1

2 (22 r+1 + r + 1)

(3 r + 2) 22 r+1 + 3 r 2 + 7 r + 3

CA3ToCA2[{a_, b_, c_} ! d_] := Union[Flatten[Table[Thread[
Partition[Flatten[{l, a, b, c, r} /. coding], 11, 1]0{2,

3, 4}1 ! ( d /. coding)], {l, 0, 2}, {r, 0, 2}], 2]]
coding = {0 ! {0, 0, 0}, 1 ! {0, 0, 1}, 2 ! {0, 1, 1}}

{1, 1}

{1, 1}
k r

Log[2, kk2 r+1

]

Log[2, 222 s+1

]

s k = 3 r = 1

MAToCA[rules_] :=
Append[Flatten[Map[g, rules]], {_, _, x_, _, _} ! x]

g[{a_, b_, c_} ! {d_, e_}] := {{_, a, b + 2, c, _} ! d, If[e 2 1,
{a, b + 2, c, _, _} ! c + 2, {_, _, a, b + 2, c} ! a + 2]}

k

TMToCA[rules_, k_ : 2] :=
Flatten[{Map[g[#, k] &, rules], {_, x_, _} ! x}]

g[{s_, a_} ! {sp_, ap_, d_}, k_] := {If[d 2 1, Identity,
Reverse][{k s + a, x_, _}] ! k sp + x, {_, k s + a, _} ! ap}

s
k (s + 1)

k

{1 ! {0}, 0 ! {0, 1}}

SSToCA[rules_] := {{b, b, p[x_, _]} ! s[x],
{_, s[v : (0 Ï 1)], p[x_, _]} ! p[v, x], {_, p[_, y_], _} ! s[y],
{_, s[v : (0 Ï 1)], _m} ! m[v], {s[0 Ï 1], m[v : (0 Ï 1)], _} !
s[v], {b, m[v : (0 Ï 1)], _} ! r[v], {_, r[v : (0 Ï 1)], _} "
(Replace[v, rules] /. {{x_} ! s[x], {x_, y_} ! p[x, y]}),
{_r, s[v : (0 Ï 1)], _} ! r[v], {_r, b, _} ! m[b],
{s[0 Ï 1], m[b], _} ! b, {_, v_, _} ! v}

{b ! 0, s[0] ! 1, m[0] ! 2, p[0, 0] ! 3,
r[0] ! 4, p[0, 1] ! 5, p[1, 0] ! 6, r[1] ! 7,
p[1, 1] ! 8, m[1] ! 9, m[b] ! 10, s[1] ! 11}

i m[ i]
b

SSSToCA[rules_] := Flatten[{{v[_, _, _], u, _} ! u, {_, v[rn_,
x_, _], u} ! r[rn+ 1, x], {_, v[_, x_, _], _} ! x, MapIndexed[
With[{rn = #2011, rs = #1011, rr = #1021}, {If [Length[rs] 2
1, {u, r[rn, First[rs]], _} ! q[0, rr], {u, r[rn, First[rs]], _} !
v[rn, First[rs], Take[rs, 1]]], {u, r[rn, x_], _} ! v[rn, x, {}],
{v[rn, _, Drop[rs, -1]], Last[rs], _} ! q[Length[rs] - 1, rr],
Table[{v[rn, _, Flatten[{___, Take[rs, i - 1]}]], rs0i1, _} ! v[
rn, rs0i1, Take[rs, i]], {i, Length[rs] - 1, 1, -1}], {v[rn, _, _],
y_, _} ! v[rn, y, {}]}] &, rules /. s ! List], {_, q[0, {x__, _}],
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The initial condition is obtained by applying the rule
 and then padding with ’s. 

â Page 661 · Register machines. Given the program for a
register machine in the form used on page 896, the rules for a
cellular automaton that emulates it can be obtained from

If  is the length of the register machine program, then the
resulting cellular automaton has  possible colors for
each cell. If the initial numbers in the two registers are 
and , then the initial conditions for the cellular automaton
are  surrounded
by 0’s.

â Page 661 · Multiplication systems. The rules for the cellular
automaton shown here are

and the initial condition consists of a single  surrounded by
’s. The idea used is that multiplication by 3 can be achieved

by scanning digits from right to left, adding to each digit the
value of the digit on its immediate right, as well as a carry
that can propagate any distance but cannot be larger than 1.
Note that as discussed on page 614 multiplication by some
multipliers in some bases (such as by 3 in base 6) can be
achieved by a single step in the evolution of a suitable
cellular automaton. After  steps, the width of the pattern
shown here is about . (See also page 119.)

â Continuous systems. See page 1128.

â Page 662 · Logic circuits. The rules for the cellular automaton
shown here are 

The initial conditions are given by

and in terms of these initial conditions the cellular automaton
must be run for  steps in order
to find the result. 

â Page 663 · RAM. The rules for the cellular automaton shown
here are

The initial conditions are divided into two parts: instructions
on the left and memory on the right. Given a list of  and 
values for successive memory locations, the right-hand initial
conditions are . To access
location  the left-hand initial conditions must contain

inserted in a repetitive  background. If  is , a  will be
written to location ; if it is , a  will be written; and if it is ,
the contents of location  will be read and sent back to the left. 

Emulating Cellular Automata with Other Systems

â Page 664 · Mobile automata. Given the rules for an
elementary cellular automaton in the form used on page 867, the
following will construct a mobile automaton which emulates it:

The ordering in  defines a mapping of symbolic cell
values onto colors. Given a list of initial cell colors for the
cellular automaton, the initial conditions for the mobile
automaton are given by 
surrounded by ’s, with the active cell being placed initially
just before the first . 

_} ! q[0, {x}], {_, q[0, {x_}], _} ! r[1, x], {_, q[0, {}], x_} !
r[1, x], {_, q[_, {___, x_}], _} ! x, {_, q[_, {}], x_} ! x,
{_, x_, q[0, _]} ! x, {_, _, q[n_, {}]} ! q[n - 1, {}],
{_, _, q[n_, {x___, _}]} ! q[n - 1, {x}], {q[_, {}], _, _} ! w,
{q[0, {__, x_}], p[y_, _], _} ! p[x, y], {q[0, {__, x_}], y_, _} !
p[x, y], {p[_, x_], p[y_, _], _} ! p[x, y], {p[_, x_], u, _} ! x,
{p[_, x_], y_, _} ! p[x, y], {_, p[x_, _], _} ! x, {w, u, _} ! u,
{w, x_, _} ! w, {_, w, x_} ! x, {_, r[rn_, x_], _} ! x,
{_, u, r[_, _]} ! u, {_, x_, r[rn_, _]} ! r[rn, x], {_, x_, _} ! x}]

s[x_, y__] ! {r[1, x], y} u

g[ i[1], p_, m_] :=
{{_, p, _} ! p + 1, {_, 0, p} ! m+ 2, {_, _, p} ! m+ 3}

g[ i[2], p_, m_] :=
{{_, p, _} ! p + 1, {p, 0, _} ! m+ 5, {p, _, _} ! m+ 6}

g[d[1, q_], p_, m_] := {{m+ 2 Ï m+ 3, p, _} ! q, {m+ 1,
p, _} ! p, {0, p, _} ! p + 1, {_, m+ 2 Ï m+ 3, p} ! m+ 1}

g[d[2, q_], p_, m_] := {{_, p, m+ 5 Ï m+ 6} ! q, {_, p,
m+ 4} ! p, {_, p, 0} ! p + 1, {p, m+ 5 Ï m+ 6, _} ! m+ 4}

RMToCA[prog_] := With[{m = Length[prog]}, Flatten[
{MapIndexed[g[#1, First[#2], m] &, prog], {{0, 0 Ï m+ 1,

m+ 3} ! m+ 2, {0, m+ 1, _} ! 0, {0, 0, m+ 1} ! 0,
{_, _, x : (m+ 1 Ï m+ 3)} ! x, {_, m+ 1 Ï m+ 3, _} ! m+ 2,
{m+ 6, 0 Ï m+ 4, 0} ! m+ 5, {_, m+ 4, 0} ! 0,
{m+ 4, 0, 0} ! 0, {x : (m+ 4 Ï m+ 6), _, _} ! x,
{_, m+ 4 Ï m+ 6, _} ! m+ 5, {_, x_, _} ! x}}]]

m
m+ 7

a
b
Join[Table[m+ 2, {a}], {1}, Table[m+ 5, {b}]]

{{_, 0, 3 Ï 8} ! 5, {_, 0, 2 Ï 7} ! 8, {_, 1, 4 Ï 9} ! 9,
{_, 1, 3 Ï 8} ! 4, {_, 1, 2 Ï 7} ! 8, {_, 10, 4 Ï 9} ! 3,
{_, 10, 3 Ï 8} ! 7, {_, 10, 2 Ï 7} ! 2, {5 Ï 6, 1, 0} ! 9,
{5 Ï 6, 10, 0} ! 3, {5 Ï 6, 1, _} ! 6, {5 Ï 6, 10, _} ! 5,
{_, 2 Ï 3 Ï 4 Ï 5, _} ! 10, {_, 6 Ï 7 Ï 8 Ï 9, _} ! 1, {_, x_, _} ! x}

3
0

t
Sqrt[Log[2, 3] t]

{{0, 1, 1 Ï 3} ! 1, {0, 3, 3} ! 3, {1, 0, 0 Ï 1 Ï 3} ! 1,
{1, 1, 3} ! 4, {1, 3, 0} ! 3, {1, 3, 3} ! 2, {2, 1, 3} ! 3,
{2, 3, 0} ! 2, {2, 0, _} ! 4, {3, 3, 0} ! 3, {4, 0, 0 Ï 1 Ï 2 Ï 4} ! 2,
{4, 3, 3} ! 3, {4, 1, 3} ! 1, {4, 3, 0} ! 4, {_, _, _} ! 0}

Flatten[Block[{And, Or}, Map[{0, 2 (# + 1)} &, expr, {-1}] //.
{! x_ " {0, x, 0}, And[x__] " {0, 0, 1, 0, x, 1, 3, 0, 0},

Or[x__] " {0, 0, 1, 0, x, 0, 1, 3, 0}}]]

Length[ list //. {0, x__} ! {x}] - 1

{{2, 4 Ï 8, 2 Ï 11, _, _} ! 2, {11 Ï 10, 4 Ï 8, 2 Ï 11, _, _} ! 11,
{2, 4 Ï 8, _, _, _} ! 10, {11 Ï 10, 4 Ï 8, _, _, _} ! 2,
{2, 0, _, _, _} ! 2, {11, 0, _, _, _} ! 11,
{3 Ï 7 Ï 6, _, 10, _, _} ! 1, {x : (3 Ï 7 Ï 6), _, _, _, _} ! x,
{_, _, 6, 4, 10} ! 5, {_, _, 6, 8, 10} ! 9, {_, 3, _, 10, _} ! 4,
{_, 7, _, 10, _} ! 8, {_, _, 1, _, x : (5 Ï 9)} ! x, {1, _, _, _, _} ! 1,
{_, _, 1, _, _} ! 1, {_, _, _, _, 1} ! 1, {_, _, x : (4 Ï 8 Ï 0), _, _} ! x}

0 1

Flatten[ list /. {1 ! {8, 1}, 0 ! {4, 1}}]
n

Flatten[{0, i, IntegerDigits[n, 2] /. {1 ! {0, 11}, 0 ! {0, 2}}}]
{0, 1} i 7 1

n 3 0 6
n

vals = {x, p[0], q[0, 0], q[0, 1], q[1, 0], q[1, 1], p[1]}

CAToMA[rules_] := Table[(# ! Replace[#, {{q[a_, b_], p[c_],
p[d_]} " {q[c, {a, c, d} /. rules], 1}, {q[a_, b_], p[c_], x} "
{q[c, {a, c, 0} /. rules], 1}, {q[_, _], x, x} ! {p[0], -1},
{q[_, _], q[_, a_], p[_]} ! {p[a], -1}, {x, q[_, a_], p[_]} !
{p[a], -1}, {x, x, p[_]} ! {q[0, 0], 1}, {_, _, _} !
{x, 0}}] &)[vals0IntegerDigits[ i, 7, 3] + 11], {i, 0, 73 - 1}]

vals

Flatten[{p[0], Map[p, list], p[0]}]
x

p[0]
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â Page 665 ·  Turing machines. Given the rules for an
elementary cellular automaton in the form used on page 867,
the following will construct a Turing machine which
emulates it:

Given a list of initial cell colors for the cellular automaton, the
initial tape for the Turing machine consists of

 surrounded by ’s, with the head of
the Turing machine on the first  in state . 

For specific cellular automata it is often possible to
construct smaller Turing machines, as on pages 707 and
1119. By combining identical cases in rules and writing
rules as compositions of ones with smaller neighborhoods
one can for example readily construct Turing machines
with 4 states and 3 colors that emulate 166 of the
elementary cellular automata.

â Page 667 · Sequential substitution systems. Given the rules
for an elementary cellular automaton in the form used on
page 867, the following will construct a sequential
substitution system which emulates it:

The initial condition  for the sequential
substitution system corresponds to a single black cell
surrounded by white cells in the cellular automaton. 

â Page 667 · Tag systems. Given the rules for an elementary
cellular automaton in the form used on page 867, the
following will construct a tag system which emulates it:

The initial condition for the tag system that corresponds to a
single black cell in the cellular automaton is

. Given a list of all steps in the
evolution of the tag system,  picks out
successive steps in the cellular automaton evolution.

â Page 668 · Symbolic systems. Given the rules for an
elementary cellular automaton in the form used on page 867
(with ), the following will construct a symbolic
system which emulates it:

The initial condition for the symbolic system is given by

Step  in the cellular automaton corresponds to step
 in the symbolic system.

Note that the succession of states shown here depends on the
detailed order in which rules are applied (see page 898). It is
also possible to construct symbolic systems with the so-called
confluence property, in which results from any fixed number
of steps of cellular automaton evolution can be found by
applying rules in any possible order (see page 1036). 

â Page 669 · Cyclic tag systems. From a tag system which
depends only on its first element, with rules given as in the
note below, the following constructs a cyclic tag system
emulating it:

The initial condition for the tag system can be converted
using . The list representing the complete history of
the resulting cyclic tag system can then be interpreted
using

This construction is relevant to the proof of the universality
of rule 110 starting on page 678.

â Page 669 · Multicolor Turing machines. Given rules in the
form on page 888 for a Turing machine with  states and 
colors the following yields an equivalent Turing machine
with  states
(always less than ) and 2 colors:

Some of these states are usually unnecessary, and in the
main text such states have been pruned. Given an initial
condition  the initial condition for the 2-color
Turing machine is

CAToTM[rules_] :=
{{q[a_, b_], c : ( 0 Ï 1)} " {q[b, c], {a, b, c} /. rules, 1},
{q[_, _], x} ! {p[0], 0, -1}, {p[a_], b : ( 0 Ï 1)} !
{p[b], a, -1}, {p[_], x} ! {q[0, 0], 0, 1}}

Join[{0, 0}, list, {0, 0}] x
0 q[0, 0]

CAToSSS[rules_] := Join[rules /.
( {a_, b_, c_} ! d_) ! {1, 2 a, 2 b, 2 c} ! {2 d, 1, 2 b, 2 c},

{{1, 0, 0} ! {0, 0}, {0} ! {1, 0, 0, 0}}]

{0, 0, 2, 0, 0}

CAToTS[rules_] := {2, {{s[x_], s[y_]} "
{d[x, y], d[x, y]}, {d[w_, x_], d[y_, z_]} "
{s[{w, x, y} /. rules], s[{x, y, z} /. rules]},

{s[x_], d[y_, z_]} " {s[0], s[0], s[{0, y, z} /. rules]},
{d[x_, y_], s[z_]} " {s[{x, y, 0} /. rules], s[0], s[0]}}}

{s[0], s[0], s[1], s[0], s[0]}
Cases[ list, {__s}]

{0, 0, 0} ! 0

Flatten[{Array[p[x_][#1][#2][#3] !
p[x[{##} /. rules]][#2][#3] &, {2, 2, 2}, 0] /. {0 ! p, 1 ! q},

{r[x_] ! p[r[p][p]][x], p[x_][p][p][r] ! x[p][p][r]}}]

Fold[#1[#2] &, r[p][p], init /. {0 ! p, 1 ! q}][p][p][r]

t
t ( t + Length[ init] + 3)

TS1ToCT [{n_, subs_}] := With[{k = Length[subs]},
Join[Map[v[Last[#], k] &, subs], Table[{}, {k (n - 1)}]]]

u[ i_, k_] := Table[If[ j 2 i + 1, 1, 0], { j , k}]

v[ list_, k_] := Flatten[Map[u[#, k] &, list]]

v[ list, k]

Map[Map[Position[#, 1]01, 11 - 1 &, Partition[#, k]] &,
Take[history, {1, -1, n k}]]

s k

With[{c = Ceiling[Log[2, k]]}, ( ( 3 2c) + 2 c - 7) s]
6.03 k s

TMToTM2[rule_, s_, k_] := (# /. MapIndexed[
#1 ! First[#2] &, Union[Map[#01, 11 &, #]]] &)[

With[{b = Ceiling[Log[2, k]] - 1}, Flatten[Table[
{Table[{Table[{{m, i, n, d}, c} ! {{m, Mod[ i, 2n-1], n - 1,

d}, Quotient[ i, 2n-1], 1}, {n, 2, b}, {i, 0, 2n - 1}], Table[
{{m, i, 1, d}, c} ! {{m, -1, 1, d}, i, d}, {i, 0, 1}], Table[
{{m, -1, n, d}, c} ! {{m, -1, n+ 1, d}, c, d}, {n, b - 1}],
{{m, -1, b, d}, c} ! {{0, 0, m}, c, d}}, {d, -1, 1, 2}],

Table[{{i, n, m}, c} ! {{i + 2n c, n+ 1, m}, c, -1},
{n, 0, b - 1}, {i, 0, 2n - 1}], With[{r = 2b}, Table[
If[ i + r c > k, {}, Cases[rule, ( {m, i + r c} ! {x_, y_, z_}) !
{{i, b, m}, c} ! {{x, Mod[y, r], b, z}, Quotient[y, r],
1}]], {i, 0, r - 1}]]}, {m, s}, {c, 0, 1}]]]]

{i, list, n}

With[{b = Ceiling[Log[2, k]]},
{i, Flatten[IntegerDigits[ list, 2, b]], b n}]
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â Page 670 · One-element-dependence tag systems. Writing the
rule  from page 895
as  the evolution of a tag
system that depends only on its first element is obtained from

Given a Turing machine in the form used on page 888 the
following will construct a tag system that emulates it:

A Turing machine in state  with a blank tape corresponds to
initial condition  for the tag system. The
configuration of the tape on each side of the head in the
Turing machine evolution can be obtained from the tag
system evolution using

â Page 672 · Register machines. Given the rules for a Turing
machine in the form used on page 888, a register machine
program to emulate the Turing machine can be obtained by
techniques analogous to those used in compilers for practical
computer languages. Here  creates a program
segment for each element of the Turing machine rule, and

 resolves addresses and links the segments together. 

A blank initial tape for the Turing machine corresponds to
initial conditions  for the register machine.
(Assuming that the Turing machine starts in state 1, with a 0
under its head, other initial conditions can be encoded just by
taking the values of cells on the left and right to give the
digits of the numbers that are initially in the first two

registers.) Given the list of successive configurations of the
register machine, the steps that correspond to successive
steps of Turing machine evolution can be obtained from

The program given above works for Turing machines with any
number of states, but it requires some simple extensions to
handle more than two possible colors for each cell. Note that
for a Turing machine with  states, the length of the register
machine program generated is between  and .

â Register machines with many registers. It turns out that a
register machine with any number of registers can always be
emulated by a register machine with just two registers. The
basic idea is to encode the list of values of all the registers in
the multiregister machine in the single number given by

and then to have this number be the value at appropriate
steps of the first register in the 2-register machine. The
program in the multiregister machine can be converted to a
program for the 2-register machine according to

The initial conditions for the 2-register machine are given by
 and the results corresponding to each

step in the evolution of the multiregister machine appear whenever
register 2 in the 2-register machine is incremented from 0. 

â Computations with register machines. As an example, the
following program for a 3-register machine starting with
initial condition  will compute :

â Page 673 · Arithmetic systems. Given the program for a
register machine with  registers in the form on page 896, an
arithmetic system which emulates it can be obtained from

{3, {{0, _, _} ! {0, 0}, {1, _, _} ! {1, 1, 0, 1}}}
{3, {0 ! {0, 0}, 1 ! {1, 1, 0, 1}}}

TS1EvolveList[rule_, init_, t_] :=
NestList[TS1Step[rule, #] &, init, t]

TS1Step[{n_, subs_}, {}] = {}

TS1Step[{n_, subs_}, list_] :=
Drop[Join[ list, First[ list] /. subs], n]

TMToTS1[rules_] :=
{2, Union[Flatten[rules /. ( {i_, u_} ! { j_, v_, r_}) "

{Map[#[ i] ! {#[ i, 1], #[ i, 0]} &, {a, b, c, d}], If[r 2 1,
{a[ i, u] ! {a[ j], a[ j]}, b[ i, u] ! Table[b[ j], {4}], c[ i, u] !
Flatten[{Table[b[ j], {2 v}], Table[c[ j], {2 - u}]}],
d[ i, u] ! {d[ j]}}, {a[ i, u] ! Table[a[ j], {2 - u}],
b[ i, u] ! {b[ j]}, c[ i, u] ! Flatten[{c[ j], c[ j],

Table[d[ j], {2 v}]}], d[ i, u] ! Table[d[ j], {4}]}]}]]}

i
{a[ i], a[ i], c[ i]}

Cases[history, x : {a[_], ___} "
Apply[{#1, Reverse[#2]} &, Map[

Drop[IntegerDigits[Count[x, #], 2], -1] &, {_b, _d}]]]

TMCompile

TMToRM

TMToRM[rules_] := Module[{segs, adrs}, segs =
Map[TMCompile, rules]; adrs = Thread[Map[First, rules] !
Drop[FoldList[Plus, 1, Map[Length, segs]], -1]];

MapIndexed[#1 /. {dr[r_, n_] " d[r, n+ First[#2]],
dm[r_, z_] " d[r, z /. adrs]} &, Flatten[segs]]]

TMCompile[_ ! z : {_, _, 1}] := f [z, {1, 2}]

TMCompile[_ ! z : {_, _, -1}] := f [z, {2, 1}]

f [{s_, a_, _}, {ra_, rb_}] := Flatten[{i[3], dr[ra, -1],
dr[3, 3], i[ra], i[ra], dr[3, -2], If[a 2 1, i[ra], {}], i[3],
dr[rb, 5], i[rb], dr[3, -1], dr[rb, 1], dm[rb, {s, 0}],
dr[rb, -6], i[rb], dr[3, -1], dr[rb, 1], dm[rb, {s, 1}]}]

{1, {0, 0, 0}}

( Flatten[Partition[Complement[#, # - 1], 1, 2]] &)[
Position[ list, {_, {_, _, 0}}]]

s
34 s 36 s

RMEncode[ list_] :=
Product[Prime[ j]^ list0j1, { j , Length[ list]}]

RMToRM2[prog_] :=
Module[{segs, adrs}, segs = MapIndexed[seg, prog];

adrs = FoldList[Plus, 1, Map[Length, segs]];
MapIndexed[#1 /. {ds[r_, s_] " d[r, adrs0s1],

dr[r_, j_] " d[r, j + First[#2]]} &, Flatten[segs]]]
seg[ i[r_], {a_}] := With[{p = Prime[r]},

Flatten[{Table[ i[2], {p}], dr[1, -p], i[1],
dr[2, -1], Table[dr[1, 1], {p + 1}]}]]

seg[d[r_, n_], {a_}] := With[{p = Prime[r]}, Flatten[{i[2], dr[
1, 5], i[1], dr[2, -1], dr[1, 1], ds[1, n], Table[{If[m 2 p - 1,
ds[1, a], dr[1, 3 p + 2 -m]], Table[ i[1], {p}], dr[2, -p],
Table[dr[1, 1], {2 p -m - 1}], ds[1, a + 1]}, {m, p - 1}]}]]

{1, {RMEncode[ list], 0}}

{n, 0, 0} {Round[�!!!!n ], 0, 0}
{d[1, 4], i[1], d[1, 15], i[2], d[1, 6], d[1, 11], i[1],

d[2, 7], d[3, 7], d[1, 15], d[3, 4], i[3], d[2, 12], d[3, 4]}

nr

RMToAS[prog_, nr_] := With[{p = Length[prog], g =
Product[Prime[ j], { j , nr}]}, {p g, Sort[Flatten[MapIndexed[
With[{n = First[#2] - 1}, #1 /. {i[r_] " Table[n+ j p !

( 1+ n+Prime[r] ( -n+#) &), { j , 0, g - 1}], d[r_, k_] "
Table[n+ j p ! If[Mod[ j , Prime[r]] 2 0, -1+ k + ( -n+

#) /Prime[r] &, # + 1 &], { j , 0, g - 1}]}] &, prog]]]}]
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The rules for the arithmetic system are represented so that the
system from page 122 becomes for example

. If the register machine
starts at instruction  with values  in its registers, then the
corresponding arithmetic system starts with the number

 where .
The evolution of the arithmetic system is given by 

Given a value  obtained in the evolution of the arithmetic
system, the state of the register machine to which it
corresponds is 

Note that it is possible to have each successive step involve
only multiplication, with no addition, at the cost of using
considerably larger numbers overall. 

â History. The correspondence between arithmetic systems and
register machines was established (using a slightly different
approach) by Marvin Minsky in 1962. Additional work was
done by John Conway, starting around 1971. Conway
considered fraction systems based on rules of the form

With the choice 

starting at  the result for  is as shown below,
where  gives
exactly the primes. 

(Compare the discussion of universality in integer equations
on page 786.)

â Multiway systems. It is straightforward to emulate a -color
multiway system with a 2-color one, just by encoding
successive colors by strings like ,  and

 that have no overlaps. (Compare page 1033.)

The Rule 110 Cellular Automaton

â History. The fact that 1D cellular automata can be universal
was discussed by Alvy Ray Smith in 1970—who set up an 18-
color nearest-neighbor cellular automaton rule capable of
emulating Marvin Minsky’s 7-state 4-color universal Turing
machine (see page 706). (Roger Banks also mentioned in 1970

a 17-color cellular automaton that he believed was universal.)
But without any particular reason to think it would be
interesting, almost nothing was done on finding simpler
universal 1D cellular automata. In 1984 I suggested that
cellular automata showing what I called class 4 behavior
should be universal—and I identified some simple rules
(such as ,  totalistic code 20) as explicit candidates.
A piece published in Scientific American in 1985 describing
my interest in finding simple 1D universal cellular automata
led me to receive a large number of proofs of the fact (already
well known to me) that 1D cellular automata can in principle
emulate Turing machines. In 1989 Kristian Lindgren and
Mats Nordahl constructed a 7-color nearest-neighbor cellular
automaton that could emulate Minsky’s 7,4 universal Turing
machine, and showed that in general a rule with 
colors could emulate an -state -color Turing machine
(compare page 658). Following my ideas about class 4
cellular automata I had come by 1985 to suspect that rule 110
must be universal. And when I started working on the
writing of this book in 1991, I decided to try to establish this
for certain. The general outline of what had to be done was
fairly clear—but there were an immense number of details to
be handled, and I asked a young assistant of mine named
Matthew Cook to investigate them. His initial results were
encouraging, but after a few months he became increasingly
convinced that rule 110 would never in fact be proved
universal. I insisted, however, that he keep on trying, and
over the next several years he developed a systematic
computer-aided design system for working with structures in
rule 110. Using this he was then in 1994 successfully able to
find the main elements of the proof. Many details were filled
in over the next year, some mistakes were corrected in 1998,
and the specific version in the note below was constructed in
2001. Like most proofs of universality, the final proof he
found is conceptually quite straightforward, but is filled with
many excruciatingly elaborate details. And among these
details it is certainly possible that a few errors still remain.
But if so, I believe that they can be overcome by the same
general methods that have been used in the proof so far.
Quite probably a somewhat simpler proof can be given, but
as discussed on page 722 it is essentially inevitable that
proofs of universality must be at least somewhat
complicated. In the future it should be possible to give a
proof in a form that can be checked completely by computer.
(The initial conditions in the note below quite soon become
too large to run explicitly on any existing computer.) And in
addition, with sufficient effort, I believe one should be able to
construct an automated system that will allow many
universality proofs of this general kind to be found almost
entirely by computer (compare page 810). 

{2, {0 " ( 3 # /2 &), 1 " ( 3 (# + 1)/2 &)}}
n regs

n+ Table[Prime[ i]^reg0i1, {i, nr}] p - 1 p = Length[prog]

ASEvolveList[{n_, rules_}, init_, t_] :=
NestList[(Mod[#, n] /. rules)[#] &, init, t]

m

{Mod[m, p] + 1, Map[Last, FactorInteger[
Product[Prime[ i], {i, nr}]Quotient[m, p]]] - 1}

FSEvolveList[fracs_, init_, t_] :=
NestList[First[Select[fracs #, IntegerQ, 1]] &, init, t]

fracs = {17 /91, 78 /85, 19/51, 23/38, 29/33, 77 /29, 95/
23, 77 /19, 1/17, 11/13, 13/11, 15/14, 15/2, 55/1}

2 Log[2, list]
Rest[Log[2, Select[ list, IntegerQ[Log[2, #]] &]]]

0
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â Page 683 · Initial conditions. The following takes the rules
for a cyclic tag system in the form used on page 895 (with the
restrictions in the note below), together with the initial
conditions for the tag system, and yields a specification of
initial conditions in rule 110 which will emulate it. This
specification gives a list of three blocks  and the
final initial conditions consist of an infinite repetition of 
blocks, followed by , followed by an infinite repetition of

 blocks. The  blocks act like “clock pulses”,  encodes
the initial conditions for the tag system and the  blocks
encode the rules for the tag system.

 yields blocks of lengths .
But even 
already yields blocks of lengths . The
picture below shows what happens if one chops these blocks
into rows and arranges these in 2D arrays. In the first two
blocks, much of what one sees is just padding to prevent clock
pulses on the left from hitting data in the middle too early on
any given step. The part of the middle block that actually
encodes an initial condition grows like . The
core of the right-hand block grows approximately like

, but to make a
block that can just be repeated without shifts, between 1 and
30 repeats of this core can be needed.

â Page 689 · Tag systems. The discussion in the main text and
the construction above require a cyclic tag system with
blocks that are a multiple of 6 long, and in which at least
one block is added at some point in each complete cycle. By
inserting  in the definition of

 from page 1113 one can construct a cyclic tag
system of this kind to emulate any one-element-dependence
tag system.

Class 4 Behavior and Universality

â 2-neighbor rules. Among 3-color 2-neighbor rules class 4
behavior seems to be comparatively rare; the picture at the top
of the facing page shows an example with rule number 2144.
 
 
 
 
 

{b1, b2, b3}

b1

b2

b3 b1 b2

b3

CTToR110[rules_ /;
Select[rules, Mod[Length[#], 6] 9 0 &] 2 {}, init_] :=

Module[{g1, g2, g3, nr = 0, x1, y1, sp}, g1 = Flatten[
Map[If[# === {}, {{{2}}}, {{{1, 3, 5 - First[#]}}, Table[

{4, 5 - #0n1}, {n, 2, Length[#]}]}] &, rules] /. a_Integer "
Map[{d[#011, #021], s[#031]} &, Partition[c[a], 3]], 4];

g2 = g1 = MapThread[If[#1 === #2 === {d[22, 11], s3}, {d[
20, 8], s3}, #1] &, {g1, RotateRight[g1, 6]}]; While[Mod[

Apply[Plus, Map[#01, 21 &, g2]], 30] 9 0, nr ++; g2 = Join[
g2, g1]]; y1 = g201, 1, 21 - 11; If[y1 < 0, y1 += 30]; Cases[

Last[g2]021, s[d[x_, y1], _, _, a_] " ( x1 = x + Length[a])];
g3 = Fold[sadd, {d[x1, y1], {}}, g2]; sp = Ceiling[5 Length[

g3021] / ( 28 nr) + 2]; {Join[Fold[sadd, {d[17, 1], {}},
Flatten[Table[{{d[sp 28 + 6, 1], s[5]}, {d[398, 1], s[5]},
{d[342, 1], s[5]}, {d[370, 1], s[5]}}, {3}], 1]]021, bg[

4, 11]], Flatten[Join[Table[bgi, {sp 2 + 1+ 24 Length[ init]}],
init /. {0 ! init0, 1 ! init1}, bg[1, 9], bg[6, 60 - g201, 1, 11+
g301, 11+ If[g201, 1, 21 < g301, 21, 8, 0]]]], g3021}]

s[1] = struct[{3, 0, 1, 10, 4, 8}, 2];

s[2] = struct[{3, 0, 1, 1, 619, 15}, 2];

s[3] = struct[{3, 0, 1, 10, 4956, 18}, 2];

s[4] = struct[{0, 0, 9, 10, 4, 8}];

s[5] = struct[{5, 0, 9, 14, 1, 1}];

{c[1], c[2]} = Map[Join[{22, 11, 3, 39, 3, 1}, #] &,
{{63, 12, 2, 48, 5, 4, 29, 26, 4, 43, 26, 4, 23, 3, 4, 47, 4, 4},
{87, 6, 2, 32, 2, 4, 13, 23, 4, 27, 16, 4}}];

{c[3], c[4], c[5]} = Map[Join[#, {4, 17, 22, 4,
39, 27, 4, 47, 4, 4}] &, {{17, 22, 4, 23, 24, 4, 31, 29},
{17, 22, 4, 47, 18, 4, 15, 19}, {41, 16, 4, 47, 18, 4, 15, 19}}]

{init0, init1} = Map[IntegerDigits[216 (# + 432 1049), 2] &,
{246005560154658471735510051750569922628065067661,
1043746165489466852897089830441756550889834709645 }]

bgi = IntegerDigits[9976, 2]

bg[s_, n_] := Array[bgi01+Mod[# - 1, 14]1 &, n, s]

ev[s[d[x_, y_], pl_, pr_, b_]] := Module[{r, pl1, pr1}, r =
Sign[BitAnd[2^ListConvolve[{1, 2, 4}, Join[bg[pl - 2, 2], b,

bg[pr, 2]]], 110]]; pl1 = (Position[r - bg[pl + 3, Length[r]],
1 Ï -1] /. {} ! {{Length[r]}})01, 11; pr1 = Max[pl1,

(Position[r - bg[pr + 5 - Length[r], Length[r]], 1 Ï -1] /. {} !
{{1}})0-1, 11]; s[d[x + pl1 - 2, y + 1], pl1+Mod[pl + 2, 14],

1+Mod[pr + 4, 14] + pr1 - Length[r], Take[r, {pl1, pr1}]]]

struct[{x_, y_, pl_, pr_, b_, bl_}, p_Integer : 1] := Module[
{gr = s[d[x, y], pl, pr, IntegerDigits[b, 2, bl]], p2 = p + 1},
Drop[NestWhile[Append[#, ev[Last[#]]] &, {gr},
If[Rest[Last[#]] === Rest[gr], p2--]; p2 > 0 &], -1]]

sadd[{d[x_, y_], b_}, {d[dx_, dy_], st_}] :=
Module[{x1 = dx - x, y1 = dy - y, b2, x2, y2}, While[y1 > 0,
{x1, y1} += If[Length[st] 2 30, {8, -30}, {-2, -3}]];

b2 = First[Cases[st, s[d[x3_, -y1], pl_, _, sb_] "
Join[bg[pl - x1 - x3, x1 + x3], x2 = x3 + Length[sb];
y2 = -y1; sb]]]; {d[x2, y2], Join[b, b2]}]

CTToR110[{{}}, {1}] {7204, 1873, 7088}

CTToR110[{{0, 0, 0, 0, 0, 0}, {}, {1, 1, 1, 1, 1, 1}, {}}, {1}]
{105736, 34717, 95404}

180 Length[ init]

500 (Length[Flatten[rules]] + Length[rules])

k = 6 Ceiling[Length[subs] /6]
TS1ToCT
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â Totalistic rules. It is straightforward to show that totalistic
cellular automata can be universal. Explicit simple
candidates include ,  rules with codes 20 and 52, as
well as the various ,  class 4 rules shown in
Chapter 3. 

â Page 693 · 2D cellular automata. Universality was essentially
built in explicitly to the underlying rules for the 2D cellular
automaton constructed by John von Neumann in 1952 as a
model for self-reproduction. For among the 29 possible states
allowed for each cell were ones set up to behave quite
directly like components for practical electronic computers
like the EDVAC—as well as to grow new memory areas and
so on. In the mid-1960s Edgar Codd showed that a system
similar to von Neumann’s could be constructed with only 8
possible states for each cell. Then in 1970 Roger Banks
managed to show that the 2-state 5-neighbor symmetric 2D
rule 4005091440 was able to reproduce all the same logical
elements. (This system, like rule 110, requires an infinite
repetitive background in order to support universality.)
Following the invention of the Game of Life, considerable
work was done in the early 1970s to identify structures that
could be used to make the analog of logic circuits. John
Conway worked on an explicit proof of universality based on
emulating register machines, but this was apparently never
completed. Yet by the 1980s it had come to be generally
believed that the Game of Life had in fact been proved
universal. No particularly rigorous treatments of the system
were given, and the mere existence of configurations that can
act for example like logic gates was often assumed
immediately to imply universality. From the discoveries I
have made, I have no doubt at all that the Game of Life is in
the end universal, and indeed I believe that the kind of
elaborate behavior needed to support various components is
in fact good evidence for this. But the fact remains that a
complete and rigorous proof of universality has apparently
still never been given for the Game of Life. Particularly in
recent years elaborate constructions have been made of for
example Turing machines. But so far they have always had

only a fixed number of elements on their tape, which is not
sufficient for universality. Extending constructions is often
very tricky; much as in rule 110 it is easy for there to be subtle
bugs associated with rare mismatches in the placement of
structures and timing of interactions. The pictures below
nevertheless show a rather simple implementation of a NAND

gate in Life. The input comes from the left encoded as the
presence or absence of spaceships 92 cells apart. The
spaceships are converted to gliders. When only one glider is
present, a new spaceship emerges on the right as the output.
But when two gliders are present, their collision forms a wall,
which prevents output of the spaceship.

If one considers rules with more than two colors, it becomes
straightforward to emulate standard logic circuits. The
pictures below show how 1D cellular automata can be
implemented in the 4-color WireWorld cellular automaton of
Brian Silverman from 1987, whose rules find the new value of
a cell from its old value  and the number  of its 8 neighbors
that are 1’s according to

k = 2 r = 2
k = 3 r = 1

a u

a /. {0 ! 0, 1 ! 2, 2 ! 3, 3 " If[0 < u < 3, 1, 3]}

rule 30

rule 90 rule 110
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The Threshold of Universality in Cellular Automata

â Claims of non-universality. Over the years, there have been
a few erroneous claims of proofs that universality is
impossible in particular kinds of simple cellular automata.
The basic mistake is usually to make the implicit assumption
that computation must be done in some rather specific way—
that does not happen to be consistent with the way we have
for example seen that it can be done in rule 110. 

â Page 700 · Rule 73.  on a white background yields a
pattern that contains the last structure shown here.

â Page 700 · Rule 30. For the first background shown, no initial
region up to size 25 yields a truly localized structure, though
for example  starts off growing quite slowly.

â Rule 41. Various rules like rule 41 below can perhaps be
viewed as having localized structures—though ones that
apparently always travel in the same direction at the same
speed. None of the first million initial conditions for rule 41
yield unbounded growth, though some can still generate
fairly wide patterns, as in the pictures below. (The initial
condition consisting  repeated, followed by ,
followed by  repeated nevertheless yields a region
that grows forever.)

â Page 702 · Rule emulations. The network below shows
which quiescent symmetric elementary rules can emulate
which with blocks of length 8 or less. (Compare page 269.)

In all cases things are set up so that several steps in one rule
emulate a single step in another. The examples shown in
detail in the main text all have the feature that the block size

 and number of steps  are matched, so that  (where

the range  for elementary rules). It is also possible to set
up emulations where this equality does not hold—and
indeed some of the cases listed in the main text and shown in
the picture above are of this type. In those where  there
are more cells that are in principle determined by a given set
of initial blocks—but the outermost of these cells are ignored
when the outcome for a particular cell is deduced. In cases
where  there are more initial cells whose values are
specified—but the outermost of these turn out to be
irrelevant in determining the outcome for a particular cell.
This lack of dependence makes it somewhat inevitable that
the only rules that end up being emulated in this way are
ones with very simple behavior. 

In any 1D cellular automaton the color of a particular cell can
always be determined from the colors  steps back of a block
of  cells (compare pages 605 and 960). But such a block
corresponds in a sense to a horizontal slice through the cone
of previous cell colors. And it turns out also to be possible to
determine the color of a particular cell from slices at
essentially any rational angle corresponding to a propagation
speed less than . So this means that one can consider
encodings based on blocks that have a kind of staircase
shape—as in the rule 45 example shown.

â Encodings. Generalizing the setup in the main text one can say
that a cellular automaton  can emulate  if there is some
encoding function  that encodes the initial conditions  for 
as initial conditions for , and which has an inverse that decodes
the outcome for  to give the outcome for . With evolution
functions  and  the requirement for the emulation to work is

In the main text the encoding function is taken to have the form
—where  are say —

with the result that the decoding function for emulations that
work is . 

An immediate generalization is to allow  to have a form
like  in which several blocks
are in effect allowed to serve as possible encodings for a
single cell value. Another generalization is to allow blocks at
a variety of angles (see above). In most cases, however,
introducing these kinds of slightly more complicated
encodings does not fundamentally seem to expand the set of
rules that a given rule can emulate. But often it does allow the
emulations to work with smaller blocks. And so, for example,
with the setup shown in the main text, rule 54 can emulate
rule 0 only with blocks of length . But if either multiple
blocks or  are allowed,  can be reduced to 4, with 
being  and

 in the two cases.

1 73 1097 7407

150

20072
36

232
132104

4

18

126
122

164

32
160

54
50

178

108
76

204

22

94

146

90

0

128

b t r t = b

r = 1

r t < b

r t > b

t
2 r t + 1

r

i j
f aj j

i
i j

fi fj

fj [aj ] 2 InverseFunction[f][fi[f[aj ]]]

Flatten[a /. rules] rules {1 ! {1, 1}, 0 ! {0, 0}}

Partition[a" , b] /. Map[Reverse, rules]

rules
{1 ! {1, 1}, 1 ! {1, 0}, 0 ! {0, 0}}

b = 6
d = 1 b rules
{1 ! {1, 1, 1, 1}, 0 ! {0, 0, 0, 0}, 0 ! {0, 1, 1, 1}}

{0 ! {0, 1, 0, 0}, 1 ! {0, 0, 1, 0}}
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Various questions about encoding functions  have been
studied over the past several decades in coding theory. The
block-based encodings discussed so far here correspond to
block codes. Convolutional codes (related to sequential
cellular automata) are the other major class of codes studied
in coding theory, but in their usual form these do not seem
especially useful for our present purposes.

In the most general case the encoding function can involve an
arbitrary terminating computation (see page 1126). But types of
encoding functions that are at least somewhat powerful yet can
realistically be sampled systematically may perhaps include
those based on neighbor-dependent substitution systems, and
on formal languages (finite automata and generalizations). 

â Logic operations and universality. Knowing that the circuits
in practical computers use only a small set of basic logic
operations—often just —it is sometimes assumed that if
a particular system could be shown to emulate logic
operations like , then this would immediately establish
its universality. But at least on the face of it, this is not correct.
For somehow there also has to be a way to store arbitrarily
large amounts of data—and to apply suitable combinations
of  operations to it. Yet while practical computers have
elaborate circuits containing huge numbers of 
operations, we now know that for example simple cellular
automata that can be implemented with just a few 
operations (see page 619) are enough. And from what I have
discovered in this book, it may well be that in fact most
systems capable of supporting even a single  operation
will actually turn out to be universal. But the point is that in
any particular case this will not normally be an easy matter to
demonstrate. (Compare page 807.) 

Universality in Turing Machines and Other Systems

â Page 706 ·  Minsky’s Turing machine. The universal Turing
machine shown was constructed by Marvin Minsky in 1962.
If the rules for a one-element-dependence tag system are
given in the form  (compare page 1114),
the initial conditions for the Turing machine are

surrounded by ’s, with the head on the leftmost , in state
. An element  in the tag system corresponds to halting of

the Turing machine. The different cases in the rules for the
tag system are laid out on the left in the Turing machine. Each
step of tag system evolution is implemented by having the

head of the Turing machine scan as far to the left as it needs
to get to the case of the tag system rule that applies—then
copy the appropriate elements to the end of the sequence on
the right. Note that although the Turing machine can emulate
any number of colors in the tag system, it can only emulate
directly rules that delete exactly 2 elements at each step. But
since we know that at least with sufficiently many colors
such tag systems are universal, it follows that the Turing
machine is also universal.

â History. Alan Turing gave the first construction for a
universal Turing machine in 1936. His construction was
complicated and had several bugs. Claude Shannon showed
in 1956 that 2 colors were sufficient so long as enough states
were used. (See page 669; conversion of Minsky’s machine
using this method yields a  machine.) After Minsky’s
1962 result, comparatively little more was published about
small universal Turing machines. In the 1980s and 1990s,
however, Yurii Rogozhin found examples of universal Turing
machines for which the number of states and number of
colors were: , , , , , , and

. The smallest product of these numbers is 24
(compare note below), and the rule he gave in this case is:

Note that these results concern Turing machines which can
halt (see page 1137); the Turing machines that I consider do
not typically have this feature. 

â Page 707 ·  Rule 110 Turing machines. Given an initial
condition for rule 110, the initial condition for the Turing
machine shown here is obtained as  with ’s
on the left and ’s on the right. The Turing machine

with  states and  possible colors also emulates rule
110 when started from  surrounded by ’s.
The ,  Turing machine

started from  with ’s on the left and ’s on
the right generates a shifted version of rule 110. Note that this
Turing machine requires only 8 out of the 12 possible cases in
its rules to be specified.

â Rule 60 Turing machines. One can emulate rule 60 using
the 8-case ,  Turing machine (with initial condition

 surrounded by ’s)

f

Nand

Nand

Nand
Nand

Nand

Nand

{2, {{0, 1}, {0, 1, 1}}}

TagToMTM[{2, rule_}, init_] :=
With[{b = FoldList[Plus, 1, Map[Length, rule] + 1]},
Drop[Flatten[{Reverse[Flatten[{1, Map[{Map[

{1, 0, Table[0, {b0# + 11}]} &, #], 1} &, rule], 1}]],
0, 0, Map[{Table[2, {b0# + 11}], 3} &, init]}], -1]]

0 2
1 -1

{43, 2}

{24, 2} {10, 3} {7, 4} {5, 5} {4, 6} {3, 10}
{2, 18}

Prepend[4 list, 0] 1
0

{{1, 2} ! {2, 2, -1}, {1, 1} ! {1, 1, -1}, {1, 0} ! {3, 1, 1},
{2, 2} ! {4, 0, -1}, {2, 1} ! {1, 2, -1}, {2, 0} ! {2, 1, -1},
{3, 2} ! {3, 2, 1}, {3, 1} ! {3, 1, 1}, {3, 0} ! {1, 0, -1},
{4, 2} ! {2, 2, 1}, {4, 1} ! {4, 1, 1}, {4, 0} ! {2, 2, -1}}

s = 4 k = 3
Prepend[ list + 1, 1] 0

s = 3 k = 4
{{1, 0} ! {1, 2, 1}, {1, 1} ! {2, 3, 1},
{1, 2} ! {1, 0, -1}, {1, 3} ! {1, 1, -1}, {2, 0} ! {1, 3, 1},
{2, 1} ! {3, 3, 1}, {3, 0} ! {1, 3, 1}, {3, 1} ! {3, 2, 1}}

Append[ list, 0] 0 2

s = 3 k = 3
Append[ list + 1, 1] 0

{{1, 2} ! {2, 2, 1}, {1, 1} ! {1, 1, 1},
{1, 0} ! {3, 1, -1}, {2, 2} ! {2, 1, 1}, {2, 1} ! {1, 2, 1},
{3, 2} ! {3, 2, -1}, {3, 1} ! {3, 1, -1}, {3, 0} ! {1, 0, 1}}
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or by using the 6-case ,  Turing machine (with
initial condition  with ’s on the left and ’s
on the right)

This second Turing machine is directly analogous to the one
for rule 110 on page 707. Random searches suggest that
among ,  Turing machines roughly one in 25 million
reproduce rule 60 in the same way as the machines discussed
here. (See also page 665.) 

â Turing machine enumeration. Of the 4096 ,  Turing
machines (see page 888) 560 are distinct after taking account
of obvious symmetries and equivalences. Ignoring machines
which cannot escape from one of their possible states or
which yield motion in only one direction or cells of only one
color leaves a total of 237 cases. If one now ignores machines
that do not allow the head to move more than one step in one
of the two directions, that always yield the same color when
moving in a particular direction, or that always leave the tape
unchanged, one is finally left with just 25 distinct cases.

Of the 2,985,984 ,  machines, 125,294 survive after
taking account of obvious symmetries and equivalences,
while imposing analogs of the other conditions above yields
in the end 16,400 distinct cases. For ,  machines, the
first two numbers are the same, but the final number of
distinct cases is 48,505.

â States versus colors. The total number of possible Turing
machines depends on the product . The number of distinct
machines that need to be considered increases as  increases
for given  (see note above).  or  always yield
trivial behavior. The fraction of machines that show non-
repetitive behavior seems to increase roughly like

 (see page 888). More complex behavior—and
presumably also universality—seems however to occur
slightly more often with larger  than with larger . 

â s=2, k=2 Turing machines. As illustrated on page 761, even
extremely simple Turing machines can have behavior that
depends in a somewhat complicated way on initial
conditions. Thus, for example, with the rule

the head moves to the right whenever the initial condition
consists of odd-length blocks of 1’s separated by single 0’s;
otherwise it stays in a fixed region.

â Page 709 · Machine 596440. For any list of initial colors ,
it turns out that successive rows in the first  steps of the
compressed evolution pattern turn out to be given by
 

 
 

Inside the right-hand part of this pattern the cell values can
then be obtained from an upside-down version of the rule 60
additive cellular automaton, and starting from a sequence of

’s the picture below shows that a typical rule 60 nested
pattern can be produced, at least in a limited region. 

The presence of glitches on the right-hand edge of the whole
pattern means, however, that overall there is nothing as
simple as nested behavior—making it conceivable that
(possibly with analogies to tag systems) behavior complex
enough to support universality can occur. The plot below
shows the distances between successive outward glitches on
the right-hand side; considerable complexity is evident. 

â Page 710 · s=3, k=2 Turing machines. Compare page 763 and
particularly the discussion of machine 600720 on page 1145. 

â Tag systems. Marvin Minsky showed in 1961 that one-
element-dependence tag systems (see page 670) can be
universal. Hao Wang in 1963 constructed an example that
deletes just 2 elements at each step and adds at most 3
elements—but has a large number of colors. I suspect that
universal examples with blocks of the same size exist with
just 3 colors.

â Encoding sequences by integers. In many constructions it is
useful to be able to encode a list of integers of any length by a
single integer. (See e.g. page 1127.) One way to do this is by using
the Gödel number .
An alternative is to use the Chinese Remainder Theorem. Given

 or any list
of integers that are all relatively prime and above  (the
integers in  are assumed positive)

yields a number  such that . Based on this 

s = 2 k = 4
Append[3 list, 0] 0 1

{{1, 3} ! {2, 2, 1}, {1, 2} ! {1, 3, -1}, {1, 1} ! {1, 0, -1},
{1, 0} ! {1, 1, 1}, {2, 3} ! {2, 1, 1}, {2, 0} ! {1, 2, 1}}

s = 3 k = 3

s = 2 k = 2

s = 3 k = 2

s = 2 k = 3

s k
k

s k s = 1 k = 1

(s - 1) ( k - 1)

k s

{{1, 0} ! {1, 1, -1}, {1, 1} ! {2, 1, 1},
{2, 0} ! {1, 0, -1}, {2, 1} ! {1, 0, 1}}

init
t

NestList[Join[{0}, Mod[1+Rest[FoldList[Plus, 0, #]], 2],
{{0}, {1, 1, 0}}0Mod[Apply[Plus, #], 2] + 11] &, init, t]

1

0
5

10
15
20
25

50 100 150 200 250 300 350

Product[Prime[ i]^ list0i1, {i, Length[ list]}]

p = Array[Prime, Length[ list], PrimePi[Max[ list]] + 1]
Max[ list]

list

CRT[ list_, p_] :=
With[{m = Apply[Times, p]}, Mod[Apply[Plus,

MapThread[#1 (m/#2)^EulerPhi[#2] &, {list, p}]], m]]

x Mod[x, p] 2 list

LE[ list_] := Module[{n = Length[ list], i = Max[MapIndexed[
#1 - #2 &, PrimePi[ list]]] + 1}, CRT[PadRight[

list, n+ i], Join[Array[Prime[ i +#] &, n], Array[Prime, i]]]]
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will yield a number  that can be decoded into a list of length
 using essentially the so-called Gödel  function

â Register machines. The results of page 100 suggest that with
2 registers and up to 8 instructions no universal register
machines (URMs) exist. Using the method of page 672 one
can construct a URM with 3 registers and 175 instructions (or
2 registers and 4694 instructions) that emulates the universal
Turing machine on page 706. Using work by Ivan Korec from
the 1980s and 1990s one can also construct URMs which
directly emulate other register machines. An example with 8
registers and 41 instructions is:

or

Given any register machine, one first applies the function
 from page 1114, then takes the resulting program

and initial condition and finds an initial condition for the
URM using

For the first example on page 98 this gives
. The process of emulation is quite

slow, with each emulated step in this example taking about
20 million URM steps. 

â Recursive functions. The general recursive functions from
page 907 provided an early example of universality (see page
907). That such functions are universal can be demonstrated
by showing for example that they can emulate any tag
system. With the state of a 2-color tag system encoded as an
integer according to  the
following takes the rule for any such tag system (in the first
form from page 894) and yields a primitive recursive function
that emulates a single step in its evolution:

 
 

(For tag system (a) from page 94 this yields a primitive
recursive function of size 325.) The result of  steps of
evolution is in general given in terms of this function  by

, or equivalently . Any fixed
number of steps of evolution can thus be emulated by
applying a primitive recursive function. But if one wants to
find out what happens after an arbitrarily large number of
steps, one needs to use the  operator, yielding a general
recursive function. (So for example  returns
the smallest  for which the tag system reaches state —and
never returns if the tag system does not halt.) Note that the
same basic approach can be used to emulate Turing machines
with recursive functions; the Turing machine configuration

 can be encoded by a integer such as

â Lambda calculus. Formulations of recursive function theory
from the 1920s and before tended to be based on making explicit
definitions like those in the note above. But in the so-called
lambda calculus of Alonzo Church from around 1930 what were
instead used were pure functions such as 
and —of
just the kind now familiar from Mathematica. Note that the
explicit names of (“bound”) variables in such pure functions are
never significant—which is why in Mathematica one can for
example use . (See page 907.) 

The definitions in the note above involve both symbolic
functions and literal integers. In the so-called pure lambda
calculus integers are represented by symbolic expressions.
The typical way this is done is to say that a function 
corresponds to an integer  if  yields 
(see note below).

â Page 711 · Combinators. After it became widely known in
the 1910s that  could be used to build up any expression
in basic logic (see page 1173) Moses Schönfinkel introduced
combinators in 1920 with the idea of providing an analogous
way to build up functions—and to remove any mention of
variables—particularly in predicate logic (see page 898).
Given the combinator rules

the setup was that any function  would be written as some
combination of  and —which Schönfinkel referred to
respectively as “fusion” and “constancy”—and then the
result of applying the function to an argument  would be

x
n Β

Mod[x, Prime[Rest[NestList[NestWhile[# + 1 &,
# + 1, Mod[x, Prime[#]] 2 0 &] &, 0, n]]]]

{d[4, 40], i[5], d[3, 9], i[3], d[7, 4], d[5, 14], i[6],
d[3, 3], i[7], d[6, 2], i[6], d[5, 11], d[6, 3], d[4, 35],
d[6, 15], i[4], d[8, 16], d[5, 21], i[1], d[3, 1], d[5, 25],
i[2], d[3, 1], i[6], d[5, 32], d[1, 28], d[3, 1], d[4, 28],
i[4], d[6, 29], d[3, 1], d[5, 24], d[2, 28], d[3, 1],
i[8], i[6], d[5, 36], i[6], d[3, 3], d[6, 40], d[4, 3]}

RMToRM2

R2ToURM[prog_, init_] := Join[ init, With[
{n = Length[prog]}, {1+ LE[Reverse[prog] /. {i[x_] ! x,

d[x_, y_] ! 4+ 2 n+ x - 2 y}], n+ 1, 0, 0, 0, 0}]]

{0, 0, 211680, 3, 0, 0, 0, 0}

FromDigits[Reverse[ list] + 1, 3]

TSToPR[{n_, rule_}] := Fold[Apply[c, Flatten[{#1, Array[p, #
2], c[r[z, c[r[p[1], s], c[r[z, p[2]], c[r[z, r[c[s, z], c[r[c[s,
c[s, z]], z], p[2]]]], p[2]]], p[1]]], p[#2]]}]] &, c[c[r[p[1],
s], p[1], c[r[p[1], r[z, c[s, c[s, s]]]], c[c[r[z, c[r[p[1], s],
c[r[z, c[s, z]], c[r[p[1], r[z, c[r[p[1], s], c[r[z, p[2]], c[
r[z, r[c[s, z], c[r[c[s, c[s, z]], z], p[2]]]], p[2]]], p[1]]]],
p[2], p[3]]], p[1]]], p[1], p[1]], p[1]], p[2]]], p[n+ 1],

MapIndexed[c[r[z, c[r[p[1], p[4]], p[2], p[3], p[4]]], c[r[z,
r[c[s, z], c[r[c[s, c[s, z]], z], p[2]]]], p[Length[#2] + 1]], #
1011, #1021] &, Nest[Partition[#, 2] &, Table[Nest[c[s, #] &
z, FromDigits[Reverse[IntegerDigits[ i, 2, n] /. rule] + 1, 3]],
{i, 0, 2�n - 1}], n - 1], {0, n - 1}]], Range[n, 1, -1]]

t
f

Nest[f , init, t] r[p[1], f][t, init]

Μ
m[r[p[1], f]][ init]

t {}

{s, list, n}
2^FromDigits[Reverse[Take[ list, n - 1]]]

3^FromDigits[Take[ list, {n+ 1, -1}]] 5^ list0n17s

s = Function[x, x + 1]
plus = Function[{x, y}, If[x 2 0, y, s[plus[x - 1, y]]]]

s = # + 1 &

fn

n fn[a][b] Nest[a, b, n]

Nand

crules = {�[x_][y_][z_] ! x[z][y[z]], �[x_][y_] ! x}

f
� �

x
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given by . (Multiple arguments were handled
for example as  in what became known as
“currying”.) A very simple example of a combinator is

, which corresponds to the identity function, since
 yields  for any . (In general any combinator

of the form  will also work.) Another example of a
combinator is , for which 
yields . 

With the development of lambda calculus in the early 1930s it
became clear that given any expression  such as

 with a list of variables  such as  one can
always find a combinator equivalent to a lambda function
such as , and
it turns out that this can be done simply using

So this shows that any lambda function can in effect be written
in terms of combinators, without anything analogous to
variables ever explicitly having to be introduced. And based
on the result that lambda functions can represent recursive
functions, which can in turn represent Turing machines (see
note above), it has been known since the mid-1930s that
combinators are universal. The rule 110 combinator on page
713 provides however a much more direct proof of this. 

The usual approach to working with combinators involves
building up arithmetic constructs from them. This typically
begins by using so-called Church numerals (based on work
by Alonzo Church on lambda calculus), and defining a
combinator  to correspond to an integer  if

 yields . (The  on page 103
can thus be considered a Church numeral for 2 since

 is .) This can be achieved by taking  to be
 where

With this setup one then finds

(Note that  is , and that by analogy
 corresponds to ,  to ,  to ,

and so on.) 

Another approach involves representing integers directly as
combinator expressions. As an example, one can take  to be

represented just by . And one can then convert
any Church numeral  to this representation by applying

. To go the other way, one uses the
result that for all Church numerals  and ,

 is also a Church numeral—as can be seen
recursively by noting its equality to ,
where as above  is . And from this it follows
that  can be converted to the Church numeral for

 by applying 

Using this one can find from the corresponding results for
Church numerals combinator expressions for , 
and —with sizes 377, 378 and 382 respectively. It
seems certain that vastly simpler combinator expressions
will also work, but searches indicate that if  has size less
than 4,  must have size at least 8. (Searches based on
other representations for integers have also not yielded
much. With  represented by , however,

 serves as a decrement function, and with 
represented by , 
serves as a doubling function.

â Page 712 · Combinator properties. The size of a combinator
expression is conveniently measured by its . If the
evolution of a combinator expression reaches a fixed point,
then the expression generated is always the same (Church-
Rosser property). But the behavior in the course of the
evolution can depend on how the combinator rules are
applied; here  is used at each step, as in the
symbolic systems of page 896. The total number of
combinator expressions of successively greater sizes is

 (or in general
; see page 897). Of these,

 are themselves fixed
points. Of combinator expressions up to size 6 all evolve to
fixed points, in at most  steps respectively
(compare case (a)); the largest fixed points have sizes

 (compare case (b)). At size 7, all but 2 of the
16,896 possible combinator expressions evolve to fixed
points, in at most 12 steps (case (c)). The largest fixed point
has size 41 (case (d)).  (case (e)) and

 lead to expressions that grow like .
The maximum number of levels in these expressions (see

f [x] //. crules
f [x][y][z]

id = �[�][�]

id[x] //. crules x x
�[�][_]

b = �[�[�]][�] b[x][y][z] //. crules
x[y[z]]

expr
x[y[x][z]] vars {x, y, z}

Function[x, Function[y, Function[z, x[y[x][z]]]]]

ToC[expr_, vars_] := Fold[rm, expr, Reverse[vars]]

rm[v_, v_] = id

rm[f_[v_], v_] /; FreeQ[f , v] = f

rm[h_, v_] /; FreeQ[h, v] = �[h]

rm[f_[g_], v_] := �[rm[f , v]][rm[g, v]]

en n
en[a][b] //. crules Nest[a, b, n] −

−[a][b] a[a[b]] en

Nest[ inc, zero, n]

zero = �[�]

inc = �[�[�[�]][�]]

plus = �[�[�]][�[�[�[�[�]]]][�[�[�]]]]

times = �[�[�]][�]

power = �[�[�[�[�][�]]]][�]

power[x][y] //. crules y[x]
x[x[y]] y x2

x[y[x]] xx y x[y][x] xy x

n

Nest[�, �, n]
x

�[�[�[�][�]][�[�]]][�[�]]

x y
Nest[�, �, n][x][y]

Nest[�, �, n - 1][y][x[y]]
x[y] power[y][x]

Nest[�, �, n]
n

�[�[�[�[�[�][�]][�[�[�[�[�]][�]][�[�][�]]]]][
�[�[�[�[�]][�]][�[�[�[�]][�]][�[�][�]]]]]][�[�[�[�]][
�[�[�[�]][�[�[�[�[�[�[�[�[�[�][�]][�[�]]][�[�]]][�[�[�[
�[�]][�]][�[�][�]]]]][�[�[�[�[�]][�]][�[�[�[�]][�]][�[�][
�]]]]]][�[�[�[�[�[�][�]][�[�[�[�[�]][�[�[�[�[�][�]]]][�[
�[�]][�[�[�[�[�[�]][�]]]][�[�[�][�]][�[�]]]]]]][�[�[�]][�[
�[�][�]][�[�]]]]]]][�[�[�[�[�][�]][�[�[�]]]][�[�[�]]]]]][
�[�[�]]]]]]]][�[�[�]][�[�[�[�][�]][�[�[�[�[�]][�]][�[�][
�]]]]][�[�[�[�[�]][�]][�[�[�[�]][�]][�[�][�]]]]]]]]][
�[�[�[�]][�[�[�[�]][�]]]]]]][�[�[�][�]]]]][�[�[�]]]

plus times
power

inc
plus

n Nest[�, �[�][�], n]
�[�[�[�]][�]][�] n

Nest[�[�], �[�], n] �[�[�][�]][�[�[�[�]]]]

LeafCount

expr /. crules

{2, 4, 16, 80, 448, 2688, 16896, 109824, ?}

2n Binomial[2 n - 2, n - 1] /n
{2, 4, 12, 40, 144, 544, 2128, 8544, ?}

{1, 1, 2, 3, 4, 7}

{1, 2, 3, 4, 6, 10}

�[�[�]][�][�][�][�]

�[�][�][�[�]][�][�] 2t/2
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page 897) grows roughly linearly, although 
reaches 14 after 26 and 25 steps, then stays there. At size 8,
out of all 109,824 combinator expressions it appears that 49
show exponential growth, and many more show roughly
linear growth.  goes to a fixed point of
size 80.  (case (i)) increases rapidly to
size 7050 but then repeats with period 3.

 (case (j)) grows to a maximum size of
1263, but then after 98 steps evolves to a fixed point of size
17. For  (case (k)) the size at step  is
given by

Examples with similar behavior are ,
 and . Among

those with roughly exponential growth but seemingly
random fluctuations are ,

 and .

â Single combinators. As already noted by Moses Schönfinkel
in 1920, it is possible to set up combinator systems with just a
single combinator. In such cases, combinator expressions can
be viewed as binary trees without labels, equivalent to
balanced strings of parentheses (see page 989) or sequences
of 0’s and 1’s. One example of a single combinator system can
be found using , and has combinator
rules (whose order matters):

The smallest initial conditions in this case that lead to
unbounded growth are of size 14; two are versions of those
for ,  combinators above, while the third is

.

The forms  and  appear to be the simplest that can
be used for  and ;  and , for example, do not work.

â Page 714 ·  Cellular automaton combinators. With  and
 representing respectively cell values  and , a

combinator  for which  gives the new value of
a single cell in an elementary cellular automaton with rule
number  can be constructed as

where

The resulting combinator has size 61, but for specific rules
somewhat smaller combinators can be found—an example
for rule 90 is 
with size 16.

To emulate cellular automaton evolution one starts by
encoding a list of cell values by the single combinator

where 

One can recover the original list by using

In terms of the combinator  a single complete step of cellular
automaton evolution can be represented by

where there is padding with  on either side. With this setup
 steps of evolution are given simply by . With

an initial condition of  cells, this then takes roughly
 steps of combinator evolution. 

â Testing universality. One can tell that a symbolic system is
universal if one can find expressions that act like the  and 
combinators, so that, for example, for some expression ,

 evolves to x[z][y[z]]. 

â Criteria for universality. See page 1126. 

â Classes of systems. This chapter has shown that various
individual systems with fixed rules exhibit universality when
suitable initial conditions are chosen. One can also consider
whole classes of systems in which rules as well as initial
conditions can be chosen. And then one can say for example
that as a class of systems cellular automata are universal, but
neighbor-independent substitution systems are not.

Depth[expr]

�[�][�][�[�[�]][�]][�]

�[�[�]][�][�][�][�[�]]

�[�[�[�][�]]][�][�][�]

�[�][�][�[�[�][�]]][�] t - 7

h[1] = h[2] = h[3] = 12

h[t_] := If[Mod[t, 4] 2 2, 2, 1] ( h[Ceiling[t /2] - 1] + t) +
{3, 5, -7, -1}0Mod[t, 4] + 11

�[�[�][�]][�][�[�][�]]

�[�[�]][�][�[�][�]][�] �[�[�][�]][�][�[�][�]]

�[�[�[�]]][�][�][�][�]

�[�[�]][�][�[�][�]][�] �[�[�[�]][�][�]][�][�]

{� ! �[�], � ! �[�[�]]}

{�[�][x_][y_][z_] ! x[z][y[z]], �[�[�]][x_][y_] ! x}

� �

�[�][�[�]][�[�]][�[�][�[�][�]]][�[�][�]]

�[�] �[�[�]]

� � � �[�]

�

�[�] 0 1
f f [a-1][a0][a1]

m
Apply[p[p[p[#1][#2]][p[#3][#4]]][p[p[#5][#6]][p[#7][
#8]]] /. {0 ! �, 1 ! �[�]} &, IntegerDigits[m, 2, 8]] //. crules

p = ToC[z[y][x], {x, y, z}] //. crules

�[�[�]][�[�][�[�[�[�[�][�]][�[�[�]]]][�[�]]]]]

p[num[Length[ list]]][
Fold[p[Nest[�, �, #2]][#1] &, p[�][�], list]] //. crules

num[n_] := Nest[ inc, �[�], n]

inc = �[�[�[�]][�]]

Extract [expr, Map[Reverse[IntegerDigits[#, 2]] &,
3 + 59/15 (16^Range[Depth[expr[�[�]][�][�] //. crules] -

1, 1, -1] - 1)]] /. {� ! 0, �[�] ! 1}

f

w = cr[p[ inc[ inc[x[�[�]]]]][
inc[x[�[�]]][cr[p[y[�[�]][�]][p[y[�[�]][�[�]]][y[�]]],
{y}]][p[x[�[�]][cr[p[p[f [y[�][�][�][�[�]]][

y[�][�][�[�]]][y[�][�[�]]]][y[�[�]]]][y[�][�]], {y}]][
p[p[�][�]][p[�][x[�]]]][�[�]]][p[�][p[�][�]]]][�]], {x}]

cr[expr_, vars_] := ToC[expr //. crules, vars]

0
t Nest[w, init, t]

n
(100 + 35 n) t + 33 t2

� �

e
e[x][y][z]




