
EXCERPTED FROM

The Validity of the
Principle

SECTION 12.4

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

726

In a pattern like the one obtained from rule 30 above different

computations are presumably not arranged in any such straightforward

way. But I strongly suspect that even though it may be quite impractical

to find particular computations that one wants, it is still the case that

essentially any possible computation exists somewhere in the pattern.

Much as in the case of universality for complete systems,

however, the Principle of Computational Equivalence does not just say

that a sophisticated computation will be found somewhere in a pattern

produced by a system like rule 30. Rather, it asserts that unless it is

obviously simple essentially any behavior that one sees should

correspond to a computation of equivalent sophistication.

And in a sense this can be viewed as providing a new way to

define the very notion of computation. For it implies that essentially

any piece of complex behavior that we see corresponds to a kind of

lump of computation that is at some level equivalent.

It is a little like what happens in thermodynamics, where all

sorts of complicated microscopic motions are identified as

corresponding in some uniform way to a notion of heat.

But computation is both a much more general and much more

powerful notion than heat. And as a result, the Principle of

Computational Equivalence has vastly richer implications than the

laws of thermodynamics—or for that matter, than essentially any single

collection of laws in science.

The Validity of the Principle

With the intuition of traditional science the Principle of Computational

Equivalence—and particularly many of its implications—might seem

almost absurd. But as I have developed more and more new intuition

from the discoveries in this book so I have become more and more

certain that the Principle of Computational Equivalence must be valid.

But like any principle in science with real content it could in the

future always be found that at least some aspect of the Principle of

Computational Equivalence is not valid. For as a law of nature the

principle could turn out to disagree with what is observed in our

T H E P R I N C I P L E O F C O M P U T A T I O N A L E Q U I V A L E N C E C H A P T E R 1 2

727

universe, while as an abstract fact it could simply represent an incorrect

deduction, and even as a definition it could prove not useful or relevant.

But as more and more evidence is accumulated for phenomena

that would follow from the principle, so it becomes more and more

reasonable to expect that at least in some formulation or another the

principle itself must be valid.

As with many fundamental principles the most general

statement of the Principle of Computational Equivalence may at first

seem quite vague. But almost any specific application of the principle

will tend to suggest more specific and precise statements.

Needless to say, it will always be possible to come up with

statements that might seem related to the Principle of Computational

Equivalence but are not in fact the same. And indeed I suspect this will

happen many times over the years to come. For if one tries to use

methods from traditional science and mathematics it is almost

inevitable that one will be led to statements that are rather different

from the actual Principle of Computational Equivalence.

Indeed, my guess is that there is basically no way to formulate an

accurate statement of the principle except by using methods from the

kind of science introduced in this book. And what this means is that

almost any statement that can, for example, readily be investigated by

the traditional methods of mathematical proof will tend to be largely

irrelevant to the true Principle of Computational Equivalence.

In the course of this book I have made a variety of discoveries

that can be interpreted as limited versions of the Principle of

Computational Equivalence. And as the years and decades go by, it is

my expectation that many more such discoveries will be made. And as

these discoveries are absorbed, I suspect that general intuition in

science will gradually shift, until in the end the Principle of

Computational Equivalence will come to seem almost obvious.

But as of now the principle is far from obvious to most of those

whose intuition is derived from traditional science. And as a result all

sorts of objections to the principle will no doubt be raised. Some of

them will presumably be based on believing that actual systems have

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

728

less computational sophistication than is implied by the principle,

while others will be based on believing that they have more.

But at an underlying level I suspect that the single most common

cause of objections will be confusion about various idealizations that

are made in traditional models for systems. For even though a system

itself may follow the Principle of Computational Equivalence, there is

no guarantee that this will also be true of idealizations of the system.

As I discussed at the beginning of Chapter 8, finding a good model

for a system is mostly about finding idealizations that are as simple as

possible, but that nevertheless still capture the important features of

the system. And the point is that in the past there was never a clear idea

that computational capabilities of systems might be important, so these

were usually not captured correctly when models were made.

Yet one of the characteristics of the kinds of models based on

simple programs that I have developed in this book is that they do

appear successfully to capture the computational capabilities of a wide

range of systems in nature and elsewhere. And in the context of such

models what I have discovered is that there is indeed all sorts of

evidence for the Principle of Computational Equivalence.

But if one uses the kinds of traditional mathematical models that

have in the past been common, things can seem rather different.

For example, many such models idealize systems to the point

where their complete behavior can be described just by some simple

mathematical formula that relates a few overall numerical quantities.

And if one thinks only about this idealization one almost inevitably

concludes that the system has very little computational sophistication.

It is also common for traditional mathematical models to

suggest too much computational sophistication. For example, as I

discussed at the end of Chapter 7, models based on traditional

mathematical equations often give constraints on behavior rather

than explicit rules for generating behavior.

And if one assumes that actual systems somehow always manage

to find ways to satisfy such constraints, one will be led to conclude that

these systems must be computationally more sophisticated than any of

T H E P R I N C I P L E O F C O M P U T A T I O N A L E Q U I V A L E N C E C H A P T E R 1 2

729

the universal systems I have discussed—and must thus violate the

Principle of Computational Equivalence.

For as I will describe in more detail later in this chapter, an

ordinary universal system cannot in any finite number of steps

guarantee to be able to tell whether, say, there is any pattern of black

and white squares that satisfies some constraint of the type I discussed

at the end of Chapter 5. Yet traditional mathematical models often in

effect imply that systems in nature can do things like this.

But I explained at the end of Chapter 7 this is presumably just an

idealization. For while in simple cases complicated molecules may for

example arrange themselves in configurations that minimize energy,

the evidence is that in more complicated cases they typically do not.

And in fact, what they actually seem to do is instead to explore different

configurations by an explicit process of evolution that is quite

consistent with the Principle of Computational Equivalence.

One of the features of cellular automata and most of the other

computational systems that I have discussed in this book is that they

are in some fundamental sense discrete. Yet traditional mathematical

models almost always involve continuous quantities. And this has in

the past often been taken to imply that systems in nature are able to do

computations that are somehow fundamentally more sophisticated

than standard computational systems.

But for several reasons I do not believe this conclusion.

For a start, the experience has been that if one actually tries to

build analog computers that make use of continuous physical processes

they usually end up being less powerful than ordinary digital

computers, rather than more so.

And indeed, as I have discussed several times in this book, it is in

many cases clear that the whole notion of continuity is just an

idealization—although one that happens to be almost required if one

wants to make use of traditional mathematical methods.

Fluids provide one obvious example. For usually they are thought

of as being described by continuous mathematical equations. But at an

underlying level real fluids consist of discrete particles. And this means

that whatever the mathematical equations may suggest, the actual

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

730

ultimate computational capabilities of fluids must be those of a system

of discrete particles.

But while it is known that many systems in nature are made up

of discrete elements, it is still almost universally believed that there are

some things that are fundamentally continuous—notably positions in

space and values of quantum mechanical probability amplitudes.

Yet as I discussed in Chapter 9 my strong suspicion is that at a

fundamental level absolutely every aspect of our universe will in the

end turn out to be discrete. And if this is so, then it immediately

implies that there cannot ever ultimately be any form of continuity in

our universe that violates the Principle of Computational Equivalence.

But what if one somehow restricts oneself to a domain where

some particular system seems continuous? Can one even at this level

perform more sophisticated computations than in a discrete system?

My guess is that for all practical purposes one cannot. Indeed, it is

my suspicion that with almost any reasonable set of assumptions even

idealized perfectly continuous systems will never in fact be able to

perform fundamentally more sophisticated computations.

In a sense the most basic defining characteristic of continuous

systems is that they operate on arbitrary continuous numbers. But just

to represent every such number in general requires something like an

infinite sequence of digits. And so this implies that continuous systems

must always in effect be able to operate on infinite sequences.

But in itself this is not particularly remarkable. For even a

one-dimensional cellular automaton can be viewed as updating an

infinite sequence of cells at every step in its evolution. But one feature

of this process is that it is fundamentally local: each cell behaves in a

way that is determined purely by cells in a local neighborhood around it.

Yet even the most basic arithmetic operations on continuous

numbers typically involve significant non-locality. Thus, for example,

when one adds two numbers together there can be carries in the digit

sequence that propagate arbitrarily far. And if one computes even a

function like almost any digit in will typically have an effect on

almost any digit in the result, as the pictures on the facing page indicate.

1�x x

T H E P R I N C I P L E O F C O M P U T A T I O N A L E Q U I V A L E N C E C H A P T E R 1 2

731

But can this detailed kind of phenomenon really be used as the

basis for doing fundamentally more sophisticated computations? To

compare the general computational capabilities of continuous and

discrete systems one needs to find some basic scheme for constructing

inputs and decoding outputs that one can use in both types of systems.

And the most obvious and practical approach is to require that this

always be done by finite discrete processes.

But at least in this case it seems fairly clear that none of the

simple functions shown above can for example ever lead to results that

go beyond ones that could readily be generated by the evolution of

ordinary discrete systems. And the same is presumably true if one

works with essentially any of what are normally considered standard

mathematical functions. But what happens if one assumes that one can

set up a system that not only finds values of such functions but also

finds solutions to arbitrary equations involving them?

With pure polynomial equations one can deduce from results in

algebra that no fundamentally more sophisticated computations

become possible. But as soon as one even allows trigonometric

functions, for example, it turns out that it becomes possible to

construct equations for which finding a solution is equivalent to finding

x 1/x x2 �!!!!x

x 1/x x2 �!!!!x

Results from mathematical operations on numbers with similar digit sequences. Each successive line in each picture gives the digit
sequence obtained by using a value of in which one successive digit has been reversed. The top row of pictures start from the
repetitive base 2 digit sequence of ; the bottom row of pictures from . The lack of coherence between successive
digit sequences in each picture reflects the non-locality of mathematical operations when applied to digit sequences.

x

x = 3/5 x = p /4

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

732

the outcome of an infinite number of steps in the evolution of a system

like a cellular automaton.

And while these particular types of equations have never

seriously been proposed as idealizations of actual processes in nature or

elsewhere, it turns out that a related phenomenon can presumably

occur in differential equations—which represent the most common

basis for mathematical models in most areas of traditional science.

Differential equations of the kind we discussed at the end of

Chapter 4 work at some level a little like cellular automata. For given

the state of a system, they provide rules for determining its state at

subsequent times. But whereas cellular automata always evolve only in

discrete steps, differential equations instead go through a continuous

process of evolution in which time appears just as a parameter.

And by making simple algebraic changes to the way that time

enters a differential equation one can often arrange, as in the pictures

below, that processes that would normally take an infinite time will

actually always occur over only a finite time.

� �

$tt u[t, x] Ð $xx u[t, x] (1 - t)4 ($tt u[t, x] - 2 $t u[t, x] / (1 - t)) Ð $xx u[t, x]

Indications of how an infinite amount of computational work can in principle be performed in a finite
time in continuous systems like partial differential equations. The top left picture shows a solution to
the wave equation. The top right picture shows a solution to an equation obtained from the wave
equation by transforming the time variable according to . The bottom row shows what the
same transformation does to patterns of the kind that are generated by simple cellular automata. It
is presumably possible to construct partial differential equations that give both the original and
transformed versions of these patterns.

t ! 1 - 1/ t

T H E P R I N C I P L E O F C O M P U T A T I O N A L E Q U I V A L E N C E C H A P T E R 1 2

733

So if such processes can correspond to the evolution of systems

like cellular automata, then it follows at least formally that differential

equations should be able to do in finite time computations that would

take a discrete system like a cellular automaton an infinite time to do.

But just as it is difficult to make an analog computer faithfully

reproduce many steps in a discrete computation, so also it seems likely

that it will be difficult to set up differential equations that for arbitrarily

long times successfully manage to emulate the precise behavior of

systems like cellular automata. And in fact my suspicion is that to

make this work will require taking limits that are rather similar to

following the evolution of the differential equations for an infinite time.

So my guess is that even within the formalism of traditional

continuous mathematics realistic idealizations of actual processes will

never ultimately be able to perform computations that are more

sophisticated than the Principle of Computational Equivalence implies.

But what about the process of human thinking? Does it also

follow the Principle of Computational Equivalence? Or does it

somehow manage to do computations that are more sophisticated than

the Principle of Computational Equivalence implies?

There is a great tendency for us to assume that there must be

something extremely sophisticated about human thinking. And

certainly the fact that present-day computer systems do not emulate

even some of its most obvious features might seem to support this

view. But as I discussed in Chapter 10, particularly following the

discoveries in this book, it is my strong belief that the basic

mechanisms of human thinking will in the end turn out to correspond

to rather simple computational processes.

So what all of this suggests is that systems in nature do not

perform computations that are more sophisticated than the Principle of

Computational Equivalence allows. But on its own this is not enough to

establish the complete Principle of Computational Equivalence. For the

principle also implies a lower limit on computational sophistication—

making the assertion that almost any process that is not obviously

simple will tend to be equivalent in its computational sophistication.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

734

And one of the consequences of this is that it implies that most

systems whose behavior seems complex should be universal. Yet as of

now we only know for certain about fairly few systems that are

universal, albeit including ones like rule 110 that have remarkably

simple rules. And no doubt the objection will be raised that other

systems whose behavior seems complex may not in fact be universal.

In particular, it might be thought that the behavior of systems

like rule 30—while obviously at least somewhat computationally

sophisticated—might somehow be too random to be harnessed to allow

complete universality. And although in Chapter 11 I did give a few

pieces of evidence that point towards rule 30 being universal, there can

still be doubts until this has been proved for certain.

And in fact there is a particularly abstruse result in mathematical

logic that might be thought to show that systems can exist that exhibit

some features of arbitrarily sophisticated computation, but which are

nevertheless not universal. For in the late 1950s a whole hierarchy of

systems with so-called intermediate degrees were constructed with the

property that questions about the ultimate output from their evolution

could not in general be answered by finite computation, but for which

the actual form of this output was not flexible enough to be able to

emulate a full range of other systems, and thus support universality.

But when one examines the known examples of such systems—

all of which have very intricate underlying rules—one finds that even

though the particular part of their behavior that is identified as output

is sufficiently restricted to avoid universality, almost every other part of

their behavior nevertheless does exhibit universality—just as one

would expect from the Principle of Computational Equivalence.

So why else might systems like rule 30 fail to be universal? We

know from Chapter 11 that systems whose behavior is purely repetitive

or purely nested cannot be universal. And so we might wonder whether

perhaps some other form of regularity could be present that would

prevent systems like rule 30 from being universal.

When we look at the patterns produced by such systems they

certainly do not seem to have any great regularity; indeed in most

T H E P R I N C I P L E O F C O M P U T A T I O N A L E Q U I V A L E N C E C H A P T E R 1 2

735

respects they seem far more random than patterns produced by systems

like rule 110 that we already know are universal.

But how can we be sure that we are not being misled by

limitations in our powers of perception and analysis—and that an

extraterrestrial intelligence, for example, might not immediately

recognize regularity that would show that universality is impossible?

For as we saw in Chapter 10 the methods of perception and

analysis that we normally use cannot detect any form of regularity

much beyond repetition or at most nesting. So this means that even if

some higher form of regularity is in fact present, we as humans might

never be able to tell.

In the history of science and mathematics both repetition and

nesting feature prominently. And if there was some common higher

form of regularity its discovery would no doubt lead to all sorts of

important new advances in science and mathematics.

And when I first started looking at systems like cellular automata

I in effect implicitly assumed that some such form of regularity must

exist. For I was quite certain that even though I saw behavior that

seemed to me complex the simplicity of the underlying rules must

somehow ultimately lead to great regularity in it.

But as the years have gone by—and as I have investigated more

and more systems and tried more and more methods of analysis—I have

gradually come to the conclusion that there is no hidden regularity in

any large class of systems, and that instead what the Principle of

Computational Equivalence suggests is correct: that beyond systems

with obvious regularities like repetition and nesting most systems are

universal, and are equivalent in their computational sophistication.

Explaining the Phenomenon of Complexity

Early in this book I described the remarkable discovery that even

systems with extremely simple underlying rules can produce behavior

that seems to us immensely complex. And in the course of this book, I

have shown a great many examples of this phenomenon, and have

