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respects they seem far more random than patterns produced by systems

like rule 110 that we already know are universal.

But how can we be sure that we are not being misled by

limitations in our powers of perception and analysis—and that an

extraterrestrial intelligence, for example, might not immediately

recognize regularity that would show that universality is impossible?

For as we saw in Chapter 10 the methods of perception and

analysis that we normally use cannot detect any form of regularity

much beyond repetition or at most nesting. So this means that even if

some higher form of regularity is in fact present, we as humans might

never be able to tell.

In the history of science and mathematics both repetition and

nesting feature prominently. And if there was some common higher

form of regularity its discovery would no doubt lead to all sorts of

important new advances in science and mathematics.

And when I first started looking at systems like cellular automata

I in effect implicitly assumed that some such form of regularity must

exist. For I was quite certain that even though I saw behavior that

seemed to me complex the simplicity of the underlying rules must

somehow ultimately lead to great regularity in it.

But as the years have gone by—and as I have investigated more

and more systems and tried more and more methods of analysis—I have

gradually come to the conclusion that there is no hidden regularity in

any large class of systems, and that instead what the Principle of

Computational Equivalence suggests is correct: that beyond systems

with obvious regularities like repetition and nesting most systems are

universal, and are equivalent in their computational sophistication.

Explaining the Phenomenon of Complexity

Early in this book I described the remarkable discovery that even

systems with extremely simple underlying rules can produce behavior

that seems to us immensely complex. And in the course of this book, I

have shown a great many examples of this phenomenon, and have
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argued that it is responsible for much of the complexity we see in

nature and elsewhere. 

Yet so far I have given no fundamental explanation for the

phenomenon. But now, by making use of the Principle of Computational

Equivalence, I am finally able to do this. 

And the crucial point is to think of comparing the computational

sophistication of systems that we study with the computational

sophistication of the systems that we use to study them.

At first we might assume that our brains and mathematical

methods would always be capable of vastly greater computational

sophistication than systems based on simple rules—and that as a result

the behavior of such systems would inevitably seem to us fairly simple.

But the Principle of Computational Equivalence implies that this

is not the case. For it asserts that essentially any processes that are not

obviously simple are equivalent in their computational sophistication.

So this means that even though a system may have simple underlying

rules its process of evolution can still computationally be just as

sophisticated as any of the processes we use for perception and analysis.

And this is the fundamental reason that systems with simple

rules are able to show behavior that seems to us complex.

At first, one might think that this explanation would depend on

the particular methods of perception and analysis that we as humans

happen to use. But one of the consequences of the Principle of

Computational Equivalence is that it does not. For the principle asserts

that the same computational equivalence exists for absolutely any

method of perception and analysis that can actually be used.

In traditional science the idealization is usually made that

perception and analysis are in a sense infinitely powerful, so that they

need not be taken into account when one draws conclusions about a

system. But as soon as one tries to deal with systems whose behavior is

anything but fairly simple one finds that this idealization breaks down,

and it becomes necessary to consider perception and analysis as explicit

processes in their own right.

If one studies systems in nature it is inevitable that both the

evolution of the systems themselves and the methods of perception and
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analysis used to study them must be processes based on natural laws.

But at least in the recent history of science it has normally been

assumed that the evolution of typical systems in nature is somehow

much less sophisticated a process than perception and analysis.

Yet what the Principle of Computational Equivalence now

asserts is that this is not the case, and that once a rather low threshold

has been reached, any real system must exhibit essentially the same

level of computational sophistication. So this means that observers will

tend to be computationally equivalent to the systems they observe—

with the inevitable consequence that they will consider the behavior of

such systems complex.

So in the end the fact that we see so much complexity can be

attributed quite directly to the Principle of Computational Equivalence,

and to the fact that so many of the systems we encounter in practice

turn out to be computationally equivalent.

Computational Irreducibility

When viewed in computational terms most of the great historical

triumphs of theoretical science turn out to be remarkably similar in

their basic character. For at some level almost all of them are based on

finding ways to reduce the amount of computational work that has to

be done in order to predict how some particular system will behave.

Most of the time the idea is to derive a mathematical formula

that allows one to determine what the outcome of the evolution of the

system will be without explicitly having to trace its steps. 

And thus, for example, an early triumph of theoretical science

was the derivation of a formula for the position of a single idealized

planet orbiting a star. For given this formula one can just plug in

numbers to work out where the planet will be at any point in the

future, without ever explicitly having to trace the steps in its motion.

But part of what started my whole effort to develop the new kind

of science in this book was the realization that there are many common

systems for which no traditional mathematical formulas have ever been

found that readily describe their overall behavior.




