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Implications for Mathematics and Its Foundations

Much of what I have done in this book has been motivated by trying to

understand phenomena in nature. But the ideas that I have developed

are general enough that they do not apply just to nature. And indeed in

this section what I will do is to show that they can also be used to

provide important new insights on fundamental issues in mathematics. 

At some rather abstract level one can immediately recognize a

basic similarity between nature and mathematics: for in nature one

knows that fairly simple underlying laws somehow lead to the rich and

complex behavior we see, while in mathematics the whole field is in a

sense based on the notion that fairly simple axioms like those on the

facing page can lead to all sorts of rich and complex results.

So where does this similarity come from? At first one might

think that it must be a consequence of nature somehow intrinsically

following mathematics. For certainly early in its history mathematics

was specifically set up to capture certain simple aspects of nature.

But one of the starting points for the science in this book is that

when it comes to more complex behavior mathematics has never in

fact done well at explaining most of what we see every day in nature.

Yet at some level there is still all sorts of complexity in

mathematics. And indeed if one looks at a presentation of almost any

piece of modern mathematics it will tend to seem quite complex. But

the point is that this complexity typically has no obvious relationship

to anything we see in nature. And in fact over the past century what has

been done in mathematics has mostly taken increasing pains to

distance itself from any particular correspondence with nature.

So this suggests that the overall similarity between mathematics

and nature must have a deeper origin. And what I believe is that in the

end it is just another consequence of the very general Principle of

Computational Equivalence that I discuss in this chapter. 

For both mathematics and nature involve processes that can be

thought of as computations. And then the point is that all these

computations follow the Principle of Computational Equivalence, so
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a © b Ð b © a
a ª b Ð b ª a
a © (b ª ¨ b) Ð a
a ª (b ©¨ b) Ð a
a © (b ª c) Ð (a © b) ª (a © c)
a ª (b © c) Ð (a ª b) © (a ª c)

basic logic (standard axioms)

a ª b Ð b ª a
a ª (b ª c) Ð (a ª b) ª c
¨ (¨ a ª b) ª ¨ (¨ a ª ¨ b) Ð a

basic logic (Huntington axioms)

a ª b Ð b ª a
a ª (b ª c) Ð (a ª b) ª c
¨ (¨ (a ª b) ª ¨ (a ª ¨ b)) Ð a

basic logic (Robbins axioms)

(a Ñ a) Ñ (a Ñ a) Ð a
a Ñ (b Ñ (b Ñ b)) Ð a Ñ a

(a Ñ (b Ñ c)) Ñ (a Ñ (b Ñ c)) Ð

( (b Ñ b) Ñ a) Ñ ( (c Ñ c) Ñ a)

basic logic (Sheffer axioms)

(a Ñ a) Ñ (a Ñ b) Ð a
a Ñ (a Ñ b) Ð a Ñ (b Ñ b)
a Ñ (a Ñ (b Ñ c)) Ð b Ñ (b Ñ (a Ñ c))

basic logic (shorter axioms)

((a Ñ b) Ñ c) Ñ (a Ñ ( (a Ñ c) Ñ a)) Ð c

basic logic (shortest axioms)

´a_ (b_ ¶ c_) ¶ (´a_ b_ ¶ ´a_ c_)
a_ ¶ ´b_ a_ /; FreeQ[a, b]

µa_ a_ 2 b_ /; FreeQ[b, a]

a_ 2 b_ ¶ (c_ ¶ d_) /; FreeQ[c, ´_ _] &&

MatchQ[d, c /. a£a Ï b]

predicate logic

0 9 Ø�a
Ø�a 2Ø�b ¶ a 2 b
a+ 0 2 a
a+Ø�b 2Ø�(a+ b)
a60 2 0
a6Ø�b 2 (a6b) + a
a 9 0 ¶µb a 2Ø�b

reduced arithmetic
(Robinson axioms)

0 9 Ø�a
Ø�a 2Ø�b ¶ a 2 b
a+ 0 2 a
a+Ø�b 2Ø�(a+ b)
a60 2 0
a6Ø�b 2 (a6b) + a

(a�_ Ïa!0 ©´b (a�_ Ïa!b ¶ a�_ Ïa!Ø�b)) ¶

´b a�_ Ïa!b /; FreeQ[a, b]

arithmetic (Peano axioms)

aÞ (bÞc) 2 (aÞb) Þc

semigroup theory

aÞ (bÞc) 2 (aÞb) Þc
aÞ1 2 a
1Þa 2 a

monoid theory

aÞ (bÞc) 2 (aÞb) Þc
aÞ1 2 a

aÞa 2 1

group theory (standard axioms)

a Ç ( ( ( (a Ç a) Ç b) Ç c) Ç ( ( (a Ç a) Ç a) Ç c)) 2 b

group theory (shorter axioms)

aÞbÞ ( ( (c Þc) Þd Þb) Þa) 2 d

group theory (shorter axioms)

aÞ (bÞc) 2 (aÞb) Þc
aÞ1 2 a

aÞa 2 1
aÞb 2 bÞa

commutativegroup theory
(standard axioms)

a Ç (b Ç (c Ç (a Ç b))) 2 c

commutativegroup theory
(shorter axioms)

((aÞb) Þc) ÞaÞc 2 b

commutativegroup theory
(shorter axioms)

a« (b«c) 2 (a«b)«c
a«0 2 a

a«a 2 0
a«b 2 b«a
a» (b»c) 2 (a»b)»c
a» (b«c) 2 (a»b)« (a»c)
a»b 2 b»a

ring theory

a« (b«c) 2 (a«b)«c
a«0 2 a

a«a 2 0
a«b 2 b«a
a» (b»c) 2 (a»b)»c
a» (b«c) 2 (a»b)« (a»c)
a»b 2 b»a
a»1 2 a

a 9 0 ¶ a»a-1 2 1
0 9 1

field theory

a+ (b+ c) 2 (a+ b) + c a 9 0 ¶ a6a-1 2 1

a+ 0 2 a (a > b © b > c) ¶ a > c
a+ (-a) 2 0 a > b ¶ a 9 b
a+ b 2 b+ a a > b ª a 2 b ª b > a
a6 (b6c) 2 (a6b)6c a > b ¶ a+ c > b+ c

a6 (b+ c) 2 (a6b) + (a6c)

a6b 2 b6a

(a > b © c > 0) ¶

a6c > b6c

a61 2 a 1 > 0
(µa a�_ ©µb ´a (a�_ ¶ a > b)) ¶

µb ´c (c > b ¸µa (a�_ © c > a)) /; FreeQ[a, c Ï b]
real algebra (Tarski axioms)

basic logic, �x_ © y_£x_�, �x_£´y_ x_�,

�x_£x_ © # &�, and ...

predicate logic and ...

Axiom systems for traditional mathematics. It is from the axiom systems on this page and the next that most of the millions
of theorems in the literature of mathematics have ultimately been derived. Note that in several cases axiom systems are
given here in much shorter forms than in standard mathematics textbooks. (See also the definitions on the next page.) 
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(aâbâa) ¶ a 2 b
((aâbâc) © (bâd âc)) ¶ (aâbâd)
( (aâbâc) © (aâbâd) © a 9 b) ¶ ( (aâcâd) ª (aâd âc))

a�b
�

Ý b�a
�

a�b
�

Ý c�c�¶ a 2 b

( a�b
�

Ý c�d
�

© a�b
�

Ý e�f
�

) ¶ c�d
�

Ý e�f
�

µa ( ( (bâcâd) © (eâd â f )) ¶ ( (bâaâe) © ( f âcâa)))
µa µb (( (câd âe) © ( f âd âg) © c 9 d) ¶ ( (câgâa) © (câ f âb) © (aâeâb)))

( a�b
�

Ý c�d
�

© b�e
�

Ý d �f
�

© a�g� Ý c�h
�

© b�g
�

Ý d �h
�

© (aâbâe) © (câd â f ) © a 9 b) ¶

e�g� Ý f �h
�

µa ( (bâcâa) © c�a� Ý d �e
�

)
µa µb µc (¨ (aâbâc) ©¨ (bâcâa) ©¨ (câaâb))

( a�b
�

Ý a�c� © d �b
�

Ý d �c
�

© e�b
�

Ý e�c� © b 9 c) ¶ ( (aâd âe) ª (d âeâa) ª (eâaâd))

µa ´b ´c ( (a�_ © b�_) ¶ (aâbâc)) ¶

µd ´b ´c ( (a�_ © b�_) ¶ (bâd âc)) /; FreeQ[a, a Ï c Ï d] && FreeQ[b, a Ï b Ï d]

Euclidean plane geometry

aÞ (bÞc) 2 (aÞb) Þc
aÞ � a 2 a
� aÞa 2 a

aÞí 2 í

í Þa 2 í

� í 2 í

� í 2 í

(a 9 í © b 9 í) ¶ (aÞb 9 í ¸ � a 2 � b)

elementary category theory

´a (a À b ¸ a À c) ¶ b 2 c (extensionality)

¨ a À Ë (empty set)

a À {b, c} ¸ (a 2 b ª a 2 c) (pairing)

a À Äb ¸µc (c À b © a À c) (union)

µa ´b (b À a ¸´c (c À b ¶ c À d)) (power set)

µa ´b (b À a ¸ (b À c ©a�_)) /; FreeQ[a, a] (subset)

µa (Ë À a ©´b (b À a ¶Ä{b, {b}} À a)) ( infinity)

´a (a À b ¶´c ´d ((a�_ Ïe!c ©a�_ Ïe!d ) ¶ c 2 d)) ¶

µf ´g (g À f ¸µa (a À b ©a�_ Ïe!g)) /; FreeQ[a, c Ï d Ï f Ï g]
( replacement)

(¨ Ë À a ©´b ´c ( (b À a © c À a © b 9 c) ¶ bÅ c 2Ë)) ¶

µd ´b (b À a ¶µe d Å b 2 {e})
(choice)

a 9 Ë ¶ µb (b À a © aÅ b 2Ë) (regularity)

set theory

µa_ b_£¨ ´a ¨ b
a_ ¶ b_£¨ a ª b
a_ ¸ b_£ (a ¶ b) © (b ¶ a)

a_ Å b_ 2 c_£

´n (n À c ¸ (n À a © n À b))

{a_}£{a, a}
a_ Ïb_!c_£´b (b 2 c ¶ a)

a_ ¾ b_£´n (n À a ¶ n À b)
a_ 9 b_£¨ (a 2 b)

definitions

© and
ª or
¨ not
Ñ nand
´ for all
µ there exists
Ø next integer
Þ composition
Ç inverse composition

ò inverse

« generalized addition
» generalized multiplication

ò-1 reciprocal

� left identity morphism
� right identity morphism
í morphism mismatch

(òâòâò) is between

ò�ò
�

Ý ò�ò
� segments are congruent

À element of
Ë empty set

{ò, ò} pair
Ä union
Ì set of all points
Í set of all open sets
Î set of all real numbers

typical interpretations

a ÀÍ¶ a ¾ Ì

Ë À Í©Ì À Í

(a ÀÍ© b ÀÍ© aÅ b 2 c) ¶ c ÀÍ

a ¾Í¶ Äa ÀÍ

general topology

real algebra with all objects restricted to �Î

(a ¾ Î © a 9 Ë ©µb (b À Î ©´c (c À a ¶ c > b))) ¶

µb (b À Î ©´d (d À Î ¶ (d > b ¸µc (c À a © d > c))))

real analysis

predicate logic and ...

set theory and ...

Further axiom systems for traditional mathematics. The typical interpretations are relevant for applications, though not
for formal derivation of theorems. The last two axioms listed for set theory are usually considered optional. 
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that they ultimately tend to be equivalent in their computational

sophistication—and thus show all sorts of similar phenomena. 

And what we will see in this section is while some of these

phenomena correspond to known features of mathematics—such as

Gödel’s Theorem—many have never successfully been recognized.

But just what basic processes are involved in mathematics?

Ever since antiquity mathematics has almost defined itself as

being concerned with finding theorems and giving their proofs. And in

any particular branch of mathematics a proof consists of a sequence of

steps ultimately based on axioms like those of the previous two pages.

The picture below gives a simple example of how this works in

basic logic. At the top right are axioms specifying certain fundamental

equivalences between logic expressions. A proof of the equivalence

 between logic expressions is then formed by applying these

axioms in the particular sequence shown.

p | q � q | p

pÑ q

pÑ ( ( q Ñ q ) Ñ ( q Ñ q ) )

pÑ ( pÑ ( q Ñ q ) )

pÑ ( pÑ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( ( q Ñ q ) Ñ ( ( pÑ p ) Ñ ( q Ñ q ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( q Ñ q ) Ñ ( ( q Ñ q ) Ñ ( ( pÑ p ) Ñ ( q Ñ q ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( q Ñ q ) Ñ ( ( q Ñ q ) Ñ ( ( pÑ p ) Ñ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( pÑ p ) Ñ ( ( pÑ p ) Ñ ( ( q Ñ q ) Ñ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( pÑ p ) Ñ ( ( pÑ p ) Ñ ( ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) Ñ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( pÑ p ) Ñ ( ( pÑ p ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( pÑ p ) Ñ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( pÑ p ) Ñ ( q Ñ q ) ) ) )

pÑ ( pÑ ( q Ñ ( ( pÑ p ) Ñ ( ( pÑ p ) Ñ q ) ) ) )

q Ñ ( q Ñ ( pÑ ( ( pÑ p ) Ñ ( ( pÑ p ) Ñ q ) ) ) )

q Ñ ( q Ñ ( ( ( pÑ p ) Ñ ( pÑ p ) ) Ñ ( ( pÑ p ) Ñ ( ( pÑ p ) Ñ q ) ) ) )

q Ñ ( q Ñ ( pÑ p ) )

q Ñ ( ( pÑ p ) Ñ ( pÑ p ) )

q Ñ p

2

4

2

1

2

5

2

1

3

1

4

5

2

1

3

1

( a Ñ a ) Ñ ( a Ñ b )

a
1

a

( a Ñ a ) Ñ ( a Ñ b )
2

a Ñ ( a Ñ b )

a Ñ ( b Ñ b )
3

a Ñ ( b Ñ b )

a Ñ ( a Ñ b )
4

a Ñ ( a Ñ ( b Ñ c ) )

b Ñ ( b Ñ ( a Ñ c ) )
5

Proof of the theorem  on the basis of the
shorter set of axioms for logic from page 773. The symbol 
stands for NAND, sometimes known as Sheffer stroke. The
axioms given here do not immediately say whether NAND is
commutative (so that ). But the proof
demonstrates that in fact this follows from them. Note that the
proof uses the approach common in practical mathematics and
in Mathematica of doing direct structural substitutions for
terms—not the approach based on logical implications that has
traditionally been discussed in typical formal mathematical logic.

(p Ñ q) Ð (q Ñ p)

Ñ

(p Ñ q) Ð (q Ñ p)
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In most kinds of mathematics there are all sorts of additional

details, particularly about how to determine which parts of one or more

previous expressions actually get used at each step in a proof. But much

as in our study of systems in nature, one can try to capture the essential

features of what can happen by using a simple idealized model.

And so for example one can imagine representing a step in a proof

just by a string of simple elements such as black and white squares. And

one can then consider the axioms of a system as defining possible

transformations from one sequence of these elements to another—just

like the rules in the multiway systems we discussed in Chapter 5.

The pictures below show how proofs of theorems work with this

setup. Each theorem defines a connection between strings, and proving

the theorem consists in finding a series of transformations—each

associated with an axiom—that lead from one string to another.

But just as in the multiway systems in Chapter 5 one can also

consider an explicit process of evolution, in which one starts from a

Simple idealizations of proofs in mathematics. The rules on the left in effect correspond to axioms
that specify valid transformations between strings of black and white elements. The proofs above
then show how one string—say —can be transformed into another—say —by using the
axioms. Typically there are many different proofs that can be given of a particular theorem; here in
each case the ones shown are examples of the shortest possible proofs. The system shown is an
example of a general substitution system of the kind discussed on page 497. Note that the fifth
theorem  occurs in effect as a lemma in the second theorem .! !
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particular string, then at each successive step one applies all possible

transformations, so that in the end one builds up a whole network of

connections between strings, as in the pictures below. 

In a sense such a network can then be thought of as representing

the whole field of mathematics that can be derived from whatever set of

axioms one is using—with every connection between strings

corresponding to a theorem, and every possible path to a proof.

But can networks like the ones above really reflect mathematics

as it is actually practiced? For certainly the usual axioms in every

traditional area of mathematics are significantly more complicated than

any of the multiway system rules used above.

But just like in so many other cases in this book, it seems that

even systems whose underlying rules are remarkably simple are already

able to capture many of the essential features of mathematics.

An obvious observation in mathematics is that proofs can be

difficult to do. One might at first assume that any theorem that is easy

The result of applying the same transformations as on the facing page—but in all possible ways,
corresponding to the evolution of a multiway system that represents all possible theorems that can be
derived from the axioms. With the axioms used here, the total number of strings grows by a factor of
roughly 1.7 at each step; on the last steps shown there are altogether 237 and 973 strings respectively.
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Three examples of multiway systems
that show the analog of long proofs. In
each case a string consisting of a single
white element is eventually generated—
but this takes respectively 12, 28 and 34
steps to happen. The first multiway
system actually generates all strings in
the end (not least since it yields the
lemmas  and )—and in fact
strings of length  appear after at
most steps. The second multiway
system generates only the  strings
where black comes before white—and
all of these strings appear after at most

 steps. The third multiway system
generates a complicated collection of
strings; the numbers of lengths up to 8
are 1, 2, 4, 8, 14, 22, 34, 45. All the
strings generated have an even number
of black elements. 

! !

n > 2

2 n+ 7

n+ 1

7 n
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to state will also be easy to prove. But experience suggests that this is

far from correct. And indeed there are all sorts of well-known

examples—such as Fermat’s Last Theorem and the Four-Color

Theorem—in which a theorem that is easy to state seems to require a

proof that is immensely long.

So is there an analog of this in multiway systems? It turns out

that often there is, and it is that even though a string may be short it

may nevertheless take a great many steps to reach.

If the rules for a multiway system always increase string length

then it is inevitable that any given string that is ever going to be generated

must appear after only a limited number of steps. But if the rules can both

increase and decrease string length the story is quite different, as the

picture on the facing page illustrates. And often one finds that even a

short string can take a rather large number of steps to produce.

But are all these steps really necessary? Or is it just that the rule

one has used is somehow inefficient, and there are other rules that

generate the short strings much more quickly?

Certainly one can take the rules for any multiway system and

add transformations that immediately generate particular short strings.

But the crucial point is that like so many other systems I have discussed

in this book there are many multiway systems that I suspect are

computationally irreducible—so that there is no way to shortcut their

evolution, and no general way to generate their short strings quickly.

And what I believe is that essentially the same phenomenon

operates in almost every area of mathematics. Just like in multiway

systems, one can always add axioms to make it easier to prove

particular theorems. But I suspect that ultimately there is almost

always computational irreducibility, and this makes it essentially

inevitable that there will be short theorems that only allow long proofs.

In the previous section we saw that computational irreducibility

tends to make infinite questions undecidable. So for example the

question of whether a particular string will ever be generated in the

evolution of a multiway system—regardless of how long one waits—is

in general undecidable. And similarly it can be undecidable whether
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any proof—regardless of length—exists for a specific result in a

mathematical system with particular axioms.

So what are the implications of this?

Probably the most striking arise when one tries to apply

traditional ideas of logic—and particularly notions of true and false.

The way I have set things up, one can find all the statements that

can be proved true in a particular axiom system just by starting with an

expression that represents “true” and then using the rules of the axiom

system, as in the picture on the facing page.

In a multiway system, one can imagine identifying “true” with a

string consisting of a single black element. And this would mean that

every string in networks like the ones below should correspond to a

statement that can be proved true in the axiom system used.

But is this really reasonable? In traditional logic there is always

an operation of negation which takes any true statement, and makes it

into a false one, and vice versa. And in a multiway system, one possible

way negation might work is just to reverse the colors of the elements in

a string. But this then leads to a problem in the first picture above.

For the picture implies that both  and its negation  can be

proved to be true statements. But this cannot be correct. And so what

Multiway systems starting from a single black element that represents TRUE. All strings that appear can be thought of as statements
that are true according to the axioms represented by the multiway system rules. One can take negation to be the operation that
interchanges black and white. This then means that the first multiway system represents an inconsistent axiom system, since on
step 2, both  and its negation  appear. The other two multiway systems are consistent, so that they never generate both a string
and its negation. The third one, however, is incomplete, since for example it never generates either  or its negation . The second
one, however, is both complete and consistent: it generates all strings that begin with , but none that begin with . 
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this means is that with the setup used the underlying axiom system is

inconsistent. So what about the other multiway systems on the facing

page? At least with the strings one can see in the pictures there are no

inconsistencies. But what about with longer strings? For the particular

rules shown it is fairly easy to demonstrate that there are never

inconsistencies. But in general it is not possible to do this, for after

some given string has appeared, it can for example be undecidable

whether the negation of that particular string ever appears.

So what about the axiom systems normally used in actual

mathematics? None of those on pages 773 and 774 appear to be

inconsistent. And what this means is that the set of statements that can

be proved true will never overlap with the set that can be proved false.

But can every possible statement that one might expect to be true

or false actually in the end be proved either true or false? 

p Ñ (p Ñ p)

( (p Ñ p) Ñ (p Ñ q)) Ñ (p Ñ p) (p Ñ q) Ñ ( (p Ñ q) Ñ (p Ñ q)) p Ñ (p Ñ ( (p Ñ p) Ñ (p Ñ q))) p Ñ ( ( (p Ñ p) Ñ (p Ñ q)) Ñ p)

p Ñ (p Ñ ( (p Ñ p) Ñ q)) ( (p Ñ p) Ñ (p Ñ p)) Ñ (p Ñ p) (p Ñ p) Ñ ( (p Ñ p) Ñ (p Ñ p)) p Ñ ( ( (p Ñ p) Ñ (p Ñ p)) Ñ p) p Ñ (p Ñ ( (p Ñ p) Ñ (p Ñ p)))

(p Ñ p) Ñ p p Ñ (p Ñ ( (p Ñ p) Ñ p)) p Ñ (p Ñ (p Ñ (p Ñ p))) p Ñ (p Ñ ( (p Ñ p) Ñ (q Ñ r))) ( (p Ñ p) Ñ ( (p Ñ p) Ñ p)) Ñ (p Ñ p)

(p Ñ p) Ñ ( (p Ñ p) Ñ (p Ñ q)) ( (p Ñ q) Ñ (p Ñ q)) Ñ (p Ñ q) (p Ñ ( (p Ñ p) Ñ (p Ñ q))) Ñ p p Ñ (p Ñ ( (p Ñ p) Ñ (q Ñ p))) p Ñ (p Ñ ( (p Ñ p) Ñ (q Ñ q)))

(p Ñ ( (p Ñ p) Ñ q)) Ñ p (p Ñ p) Ñ ( (p Ñ q) Ñ (p Ñ q)) ( ( (p Ñ p) Ñ (p Ñ p)) Ñ p) Ñ p (p Ñ ( (p Ñ p) Ñ (p Ñ p))) Ñ p (p Ñ p) Ñ ( (p Ñ p) Ñ (p Ñ (q Ñ r)))

(p Ñ ( (p Ñ p) Ñ p)) Ñ p (p Ñ (p Ñ (p Ñ p))) Ñ p (p Ñ ( (p Ñ p) Ñ (q Ñ r))) Ñ p (p Ñ p) Ñ ( (p Ñ p) Ñ (p Ñ (p Ñ p))) (p Ñ p) Ñ ( (p Ñ p) Ñ (p Ñ (p Ñ q)))

(p Ñ ( (p Ñ p) Ñ (q Ñ p))) Ñ p (p Ñ ( (p Ñ p) Ñ (q Ñ q))) Ñ p (( (p Ñ p) Ñ (p Ñ (p Ñ p))) Ñ p) Ñ p (p Ñ ( (p Ñ p) Ñ (p Ñ (p Ñ p)))) Ñ p

(p Ñ ( (p Ñ p) Ñ ( (p Ñ p) Ñ q))) Ñ p (p Ñ ( (p Ñ p) Ñ ( (p Ñ q) Ñ r))) Ñ p (p Ñ ( (p Ñ p) Ñ ( (q Ñ p) Ñ r))) Ñ p (p Ñ ( (p Ñ p) Ñ (q Ñ (p Ñ r)))) Ñ p

(p Ñ ( (p Ñ p) Ñ ( (p Ñ q) Ñ p))) Ñ p (p Ñ ( (p Ñ p) Ñ ( (p Ñ q) Ñ q))) Ñ p (p Ñ ( (p Ñ p) Ñ ( (q Ñ p) Ñ p))) Ñ p (p Ñ ( (p Ñ p) Ñ (q Ñ (p Ñ p)))) Ñ p

?

?

?

?

?

?

?

?

?

The network of statements that can be proved true using the axiom system for logic from page 775.  is the simplest
representation for TRUE when logic is set up using the NAND operator . Each arrow indicates an equivalence established by applying a
single axiom. On each row only statements that have not appeared before are given. The statements are sorted so that the simplest are
first. Note that some fairly simple statements do not show up for at least several rows. The total number of statements on successive
rows grows faster than exponentially; for the first few it is 1, 6, 91, 2180, 76138. If continued forever the network would eventually
include all possible true statements (tautologies) of logic (see also page 818). Other simple axiom systems for logic like those on page
808 yield networks similar to the one shown.

p Ñ (p Ñ p)

Ñ
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In the early 1900s it was widely believed that this would

effectively be the case in all reasonable mathematical axiom systems.

For at the time there seemed to be no limit to the power of

mathematics, and no end to the theorems that could be proved. 

But this all changed in 1931 when Gödel’s Theorem showed that

at least in any finitely-specified axiom system containing standard

arithmetic there must inevitably be statements that cannot be proved

either true or false using the rules of the axiom system.

This was a great shock to existing thinking about the foundations

of mathematics. And indeed to this day Gödel’s Theorem has continued

to be widely regarded as a surprising and rather mysterious result.

But the discoveries in this book finally begin to make it seem

inevitable and actually almost obvious. For it turns out that at some

level it can be viewed as just yet another consequence of the very

general Principle of Computational Equivalence.

So what is the analog of Gödel’s Theorem for multiway systems?

Given the setup on page 780 one can ask whether a particular multiway

system is complete in the sense that for every possible string the

system eventually generates either that string or its negation.

And one can see that in fact the third multiway system is

incomplete, since by following its rules one can never for example

generate either  or its negation . But what if one extends the rules by

adding more transformations, corresponding to more axioms? Can one

always in the end make the system complete?

If one is not quite careful, one will generate too many strings, and

inevitably get inconsistencies where both a string and its negation

appear, as in the second picture on the facing page. But at least if one

only has to worry about a limited number of steps, it is always possible

to set things up so as to get a system that is both complete and

consistent, as in the third picture on the facing page.

And in fact in the particular case shown on the facing page it is

fairly straightforward to find rules that make the system always

complete and consistent. But knowing how to do this requires having

behavior that is in a sense simple enough that one can foresee every

aspect of it. 
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Yet if a system is computationally irreducible this will inevitably

not be possible. For at any point the system will always in effect be able

to do more things that one did not expect. And this means that in

general one will not be able to construct a finite set of axioms that can

be guaranteed to lead to ultimate completeness and consistency.

And in fact it turns out that as soon as the question of whether a

particular string can ever be reached is undecidable it immediately

follows that there must be either incompleteness or inconsistency. For

to say that such a question is undecidable is to say that it cannot in

general be answered by any procedure that is guaranteed to finish. 

But if one had a system that was complete and consistent then it

is easy to come up with such a procedure: one just runs the system until

either one reaches the string one is looking for or one reaches its

negation. For the completeness of the system guarantees that one must

always reach one or the other, while its consistency implies that

reaching one allows one to conclude that one will never reach the other.

So the result of this is that if the evolution of a multiway system

is computationally irreducible—so that questions about its ultimate

behavior are undecidable—the system cannot be both complete and

consistent. And if one assumes consistency then it follows that there

must be strings where neither the string nor its negation can be

The effect of adding transformations to the rules for a multiway system. The first multiway system is incomplete, in the sense that
for some strings, it generates neither the string nor its negation. The second multiway system yields more strings—but
introduces inconsistency, since it can generate both  and its negation . The third multiway system is however both
complete and consistent: for every string it eventually generates either that string or its negation.
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reached—corresponding to the fact that statements must exist that

cannot be proved either true or false from a given set of axioms.

But what does it take to establish that such incompleteness will

actually occur in a specific system? 

The basic way to do it is to show that the system is universal. 

But what exactly does universality mean for something like an

axiom system? In effect what it means is that any question about the

behavior of any other universal system can be encoded as a statement in

the axiom system—and if the answer to the question can be established

by watching the evolution of the other universal system for any finite

number of steps then it must also be able to be established by giving a

proof of finite length in the axiom system.

So what axiom systems in mathematics are then universal?

Basic logic is not, since at least in principle one can always

determine the truth of any statement in this system by the finite—if

perhaps exponentially long—procedure of trying all possible

combinations of truth values for the variables that appear in it. 

And essentially the same turns out to be the case for pure

predicate logic, in which one just formally adds “for all” and “there

exists” constructs. But as soon as one also puts in an abstract function

or relation with more than one argument, one gets universality.

And indeed the basis for Gödel’s Theorem is the result that the

standard axioms for basic integer arithmetic support universality.

Set theory and several other standard axiom systems can readily be

made to reproduce arithmetic, and are therefore also universal. And the

same is true of group theory and other algebraic systems like ring theory. 

If one puts enough constraints on the axioms one uses, one can

eventually prevent universality—and in fact this happens for

commutative group theory, and for the simplified versions of both real

algebra and geometry on pages 773 and 774.

But of the axiom systems actually used in current mathematics

research every single one is now known to be universal.

From page 773 we can see that many of these axiom systems can

be stated in quite simple ways. And in the past it might have seemed
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hard to believe that systems this simple could ever be universal, and

thus in a sense be able to emulate essentially any system.

But from the discoveries in this book this now seems almost

inevitable. And indeed the Principle of Computational Equivalence

implies that beyond some low threshold almost any axiom system

should be expected to be universal.

So how does universality actually work in the case of arithmetic?

One approach is illustrated in the picture on the next page. The idea

is to set up an arithmetic statement that can be proved true if the evolution

of a cellular automaton from a given initial condition makes a given cell be

a given color at a given step, and can be proved false if it does not. 

By changing numbers in this arithmetic statement one can then

in effect sample different aspects of the cellular automaton evolution.

And with the cellular automaton being a universal one such as rule 110

this implies that the axioms of arithmetic can support universality.

Such universality then implies Gödel’s Theorem and shows that

there must exist statements about arithmetic that cannot ever be

proved true or false from its normal axioms.

So what are some examples of such statements?

The original proof of Gödel’s Theorem was based on considering

the particular self-referential statement “this statement is unprovable”. 

At first it does not seem obvious that such a statement could ever

be set up as a statement in arithmetic. But if it could then one can see

that it would immediately follow that—as the statement says—it

cannot be proved, since otherwise there would be an inconsistency. 

And in fact the main technical difficulty in the original proof of

Gödel’s Theorem had to do with showing—by doing what amounted to

establishing the universality of arithmetic—that the statement could

indeed meaningfully be encoded as a statement purely in arithmetic.

But at least with the original encoding used, the statement would

be astronomically long if written out in the notation of page 773. And

from this result, one might imagine that unprovability would never be

relevant in any practical situation in mathematics.

But does one really need to have such a complicated statement in

order for it to be unprovable from the axioms of arithmetic? 
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(-3 x6 + x7 + x8 )2 + (21+x3 (1+x1+2 x3) x2 - 2 x4 - x10 + x11)2 + (-2 x8 - x9 + x10 + x11)2 + (1 - 2(1+x3) (x1+2 x3) + x4 + x12)2 +

(1 - 2x1 + x2 + x13)2 + (1 - 2x1 + x5 + x14)2 + (-x4 + 2x3 x5 + 2x1+2 x3 x6 + 2x1+x3 x15 + x16 )2 + (1 - 2x3 + x15 + x17 )2 +

(1 - 2x3 + x16 + x18 )2 + (-x6 - 2 x7 + x9 + x19)2 + (-(2 + 2x6 )x6 + (1+ 2x6 )x7 (1+ 2 x20 + (1+ 2x6 ) x21) + x22)2 + (1 - (1+ 2x6 )x7 + x22 + x23)2 +

(1 - 2x6 + 2 x20 + x24)2 + (-(2 + 4x6 )2 x6 + (1+ 4x6 )x7 (1+ 2 x25 + (1+ 4x6 ) x26 ) + x27 )2 + (1 - (1+ 4x6 )x7 + x27 + x28 )2 +

(1 - 4x6 + 2 x25 + x29)2 + (-(2 + 2x8 )x8 + (1+ 2x8 )x6 (1+ 2 x30 + (1+ 2x8 ) x31) + x32)2 + (1 - (1+ 2x8 )x6 + x32 + x33)2 +

(1 - 2x8 + 2 x30 + x34)2 + (-(2 + 2x8 )x8 + (1+ 2x8 )2 x6 (1+ 2 x35 + (1+ 2x8 ) x36 ) + x37 )2 + (1 - (1+ 2x8 )2 x6 + x37 + x38 )2 +

(1 - 2x8 + 2 x35 + x39)2 + (-(2 + 2x6 )x6 + (1+ 2x6 )x9 (1+ 2 x40 + (1+ 2x6 ) x41) + x42)2 + (1 - (1+ 2x6 )x9 + x42 + x43)2 +

(1 - 2x6 + 2 x40 + x44)2 + (-(2 + 4x7 )2 x7 + (1+ 4x7 )x9 (1+ 2 x45 + (1+ 4x7 ) x46 ) + x47 )2 + (1 - (1+ 4x7 )x9 + x47 + x48 )2 +

(1 - 4x7 + 2 x45 + x49)2 + (-(2 + 2x19 )x19 + (1+ 2x19 )x6 (1+ 2 x50 + (1+ 2x19 ) x51) + x52)2 + (1 - (1+ 2x19 )x6 + x52 + x53)2 +

(1 - 2x19 + 2 x50 + x54)2 + (-(2 + 2x19 )x19 + (1+ 2x19 )2 x7 (1+ 2 x55 + (1+ 2x19 ) x56 ) + x57 )2 + (1 - (1+ 2x19 )2 x7 + x57 + x58 )2 +

(1 - 2x19 + 2 x55 + x59)2 + (-(2 + 2x9 )x9 + (1+ 2x9 )x10 (1+ 2 x60 + (1+ 2x9 ) x61) + x62)2 + (1 - (1+ 2x9 )x10 + x62 + x63)2 + (1 - 2x9 + 2 x60 + x64)2 +

(-(2 + 4x8 )2 x8 + (1+ 4x8 )x10 (1+ 2 x65 + (1+ 4x8 ) x66 ) + x67 )2 + (1 - (1+ 4x8 )x10 + x67 + x68 )2 + (1 - 4x8 + 2 x65 + x69)2 +

(-(2 + 2x11 )x11 + (1+ 2x11 )x9 (1+ 2 x70 + (1+ 2x11 ) x71) + x72)2 + (1 - (1+ 2x11 )x9 + x72 + x73)2 + (1 - 2x11 + 2 x70 + x74)2 +

(-(2 + 2x11 )x11 + (1+ 2x11 )2 x8 (1+ 2 x75 + (1+ 2x11 ) x76 ) + x77 )2 + (1 - (1+ 2x11 )2 x8 + x77 + x78 )2 + (1 - 2x11 + 2 x75 + x79)2 Ð 0

x1 ( initial width) 1
x2 ( initial state) 1
x3 (steps) 1
x4 (evolution) 22
x5 1
x6 2
x7 0
x8 6
x9 0
x10 0
x11 12
x12 41
x13 0
x14 0
x15 1
�

x4 = 22 =
0 1 0
1 1 0

x1 ( initial width) 1
x2 ( initial state) 1
x3 (steps) 2
x4 (evolution) 4508
x5 1
x6 140
x7 8
x8 412
x9 0
x10 0
x11 824
x12 28259
x13 0
x14 0
x15 3
�

x4 = 4508 =
0 0 1 0 0
0 1 1 0 0
1 1 1 0 0

x1 ( initial width) 1
x2 ( initial state) 1
x3 (steps) 3
x4 (evolution) 17177704
x5 1
x6 134200
x7 2096
x8 400504
x9 32
x10 32
x11 801008
x12 251257751
x13 0
x14 0
x15 6
�

x4 = 17177704 =
0 0 0 1 0 0 0
0 0 1 1 0 0 0
0 1 1 1 0 0 0
1 1 0 1 0 0 0

x1 ( initial width) 1
x2 ( initial state) 1
x3 (steps) 4
x4 (evolution) 1105983545840
x5 1
x6 2160124112
x7 8437888
x8 6471934448
x9 32768
x10 32768
x11 12943868896
x12 34078388542991
x13 0
x14 0
x15 15
�

x4 = 1105983545840 =
0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0
0 1 1 0 1 0 0 0 0
1 1 1 1 1 0 0 0 0

x1 ( initial width) 3
x2 ( initial state) 5
x3 (steps) 4
x4 (evolution) 1409438147512048
x5 7
x6 688202220464
x7 940049184
x8 2063666612208
x9 805306880
x10 805306880
x11 4127333224416
x12 34619358871451919
x13 2
x14 0
x15 13
�

x4 = 1409438147512048 =
0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0
0 1 1 1 0 1 1 0 0 0 0
1 1 0 1 1 1 1 0 0 0 0

Universality in arithmetic, illustrated by an integer equation whose solutions in effect emulate the rule 110 universal cellular

automaton from Chapter 11. The equation has many solutions, but all of them satisfy the constraint that the variables through 

must encode possible initial conditions and evolution histories for rule 110. If one fills in fixed values for ,  and , then only one

value for  is ever possible—corresponding to the evolution history of rule 110 for  steps starting from a width  initial condition

given by the digit sequence of . In general any statement about the possible behavior of rule 110 can be encoded as a statement

in arithmetic about solutions to the equation. So for example if one fills in values for ,  and , but not , then the statement

that the equation has no solution for any  corresponds to a statement that rule 110 can never exhibit certain behavior, even after

any number of steps. But the universality of rule 110 implies that such statements must in general be undecidable. So from this it

follows that in at least some instances the axioms of arithmetic can never be used to give a finite proof of whether or not the

statement is true. The construction shown here can be viewed as providing a simple proof of Gödel’s Theorem on the existence of

unprovable statements in arithmetic. Note that the equation shown is a so-called exponential Diophantine one, in which some

variables appear in exponents. At the cost of considerably more complication—and using for example 2154 variables—it is possible

to avoid this. The equation above can however already be viewed as capturing the essence of what is needed to demonstrate the

general unsolvability of Diophantine equations and Hilbert’s Tenth Problem. 

x1 x4

x1 x2 x3

x4 x3 x1

x2

x1 x2 x4 x3

x3
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Over the past seventy years a few simpler examples have been

constructed—mostly with no obviously self-referential character.

But usually these examples have involved rather sophisticated

and obscure mathematical constructs—most often functions that are

somehow set up to grow extremely rapidly. Yet at least in principle

there should be examples that can be constructed based just on

statements that no solutions exist to particular integer equations.

If an integer equation such as  has a definite solution

such as ,  in terms of particular finite integers then this

fact can certainly be proved using the axioms of arithmetic. For it takes

only a finite calculation to check the solution, and this very calculation

can always in effect be thought of as a proof.

But what if the equation has no solutions? To test this explicitly

one would have to look at an infinite number of possible integers. But

the point is that even so, there can still potentially be a finite

mathematical proof that none of these integers will work.

And sometimes the proof may be straightforward—say being

based on showing that one side of the equation is always odd while the

other is always even. In other cases the proof may be more difficult—

say being based on establishing some large maximum size for a

solution, then checking all integers up to that size.

And the point is that in general there may in fact be absolutely no

proof that can be given in terms of the normal axioms of arithmetic.

So how can one see this?

The picture on the facing page shows that one can construct an

integer equation whose solutions represent the behavior of a system

like a cellular automaton. And the way this works is that for example

one variable in the equation gives the number of steps of evolution,

while another gives the outcome after that number of steps.

So with this setup, one can specify the number of steps, then

solve for the outcome after that number of steps. But what if for

example one instead specifies an outcome, then tries to find a solution

for the number of steps at which this outcome occurs?

If in general one was able to tell whether such a solution exists

then it would mean that one could always answer the question of

x2 � y3 � 12

x � 47 y � 13
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whether, say, a particular pattern would ever die out in the evolution of

a given cellular automaton. But from the discussion of the previous

section we know that this in general is undecidable.

So it follows that it must be undecidable whether a given integer

equation of some particular general form has a solution. And from the

arguments above this in turn implies that there must be specific integer

equations that have no solutions but where this fact cannot be proved

from the normal axioms of arithmetic.

So how ultimately can this happen?

At some level it is a consequence of the involvement of infinity.

For at least in a universal system like arithmetic any question that is

entirely finite can in the end always be answered by a finite procedure.

But what about questions that somehow ask, say, about infinite

numbers of possible integers? To have a finite way to address questions

like these is often in the end the main justification for setting up typical

mathematical axiom systems in the first place.

For the point is that instead of handling objects like integers

directly, axiom systems can just give abstract rules for manipulating

statements about them. And within such statements one can refer, say,

to infinite sets of integers just by a symbol like . 

And particularly over the past century there have been many

successes in mathematics that can be attributed to this basic kind of

approach. But the remarkable fact that follows from Gödel’s Theorem is

that whatever one does there will always be cases where the approach

must ultimately fail. And it turns out that the reason for this is

essentially the phenomenon of computational irreducibility.

For while simple infinite quantities like  or the total number

of integers can readily be summarized in finite ways—often just by

using symbols like  and —the same is not in general true of all

infinite processes. And in particular if an infinite process is

computationally irreducible then there cannot in general be any useful

finite summary of what it does—since the existence of such a summary

would imply computational reducibility.

s

1�0

� �0
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So among other things this means that there will inevitably be

questions that finite proofs based on axioms that operate within

ordinary computational systems will never in general be able to answer.

And indeed with integer equations, as soon as one has a general

equation that is universal, it typically follows that there will be specific

instances in which the absence of solutions—or at least of solutions of

some particular kind—can never be proved on the basis of the normal

axioms of arithmetic.

For several decades it has been known that universal integer

equations exist. But the examples that have actually been constructed

are quite complicated—like the one on page 786—with the simplest

involving 9 variables and an immense number of terms. 

Yet from the discoveries in this book I am quite certain that there

are vastly simpler examples that exist—so that in fact there are in the

end rather simple integer equations for which the absence of solutions

can never be proved from the normal axioms of arithmetic.

If one just starts looking at sequences of integer equations—as on

the next page—then in the very simplest cases it is usually fairly easy to

tell whether a particular equation will have any solutions. But this

rapidly becomes very much more difficult. For there is often no obvious

pattern to which equations ultimately have solutions and which do not.

And even when equations do have solutions, the integers involved can

be quite large. So, for example, the smallest solution to  is

, , while the smallest solution to

 is , , .

Integer equations such as  that have only linear

dependence on any variable were largely understood even in antiquity.

Quadratic equations in two variables such as  were

understood by the 1800s. But even equations such as  were

not properly understood until the 1980s. And with equations that have

higher powers or more variables questions of whether solutions exist

quickly end up being unsolved problems of number theory.

It has certainly been known for centuries that there are questions

about integer equations and other aspects of number theory that are

easy to state, yet seem very hard to answer. But in practice it has almost

x2 � 61 y2 � 1

x � 1766319049 y � 226153980

x3 � y3 � z3 � 2 x � 1214928 y � 3480205 z � 3528875

a x � b y � c z � d

x2 � a y2 � b

x2 � a y3 � b
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2 x + 3 y Ð 1 �

2 x + 3 y Ð 2 �

2 x + 3 y Ð 3 �

2 x + 3 y Ð 4 �

2 x + 3 y Ð 5 x Ð 1 y Ð 1

2 x + 3 y Ð 6 �

2 x + 3 y Ð 7 x Ð 2 y Ð 1

2 x + 3 y Ð 8 x Ð 1 y Ð 2

2 x + 3 y Ð 9 x Ð 3 y Ð 1

2 x + 3 y Ð 10 x Ð 2 y Ð 2

2 x + 3 y Ð 11 x Ð 1 y Ð 3

2 x + 3 y Ð 12 x Ð 3 y Ð 2

2 x + 3 y Ð 13 x Ð 2 y Ð 3

2 x + 3 y Ð 14 x Ð 1 y Ð 4

2 x + 3 y Ð 15 x Ð 3 y Ð 3

x2 Ð y2 + 1 �

x2 Ð y2 + 2 �

x2 Ð y2 + 3 x Ð 2 y Ð 1

x2 Ð y2 + 4 �

x2 Ð y2 + 5 x Ð 3 y Ð 2

x2 Ð y2 + 6 �

x2 Ð y2 + 7 x Ð 4 y Ð 3

x2 Ð y2 + 8 x Ð 3 y Ð 1

x2 Ð y2 + 9 x Ð 5 y Ð 4

x2 Ð y2 + 10 �

x2 Ð y2 + 11 x Ð 6 y Ð 5

x2 Ð y2 + 12 x Ð 4 y Ð 2

x2 Ð y2 + 13 x Ð 7 y Ð 6

x2 Ð y2 + 14 �

x2 Ð y2 + 15 x Ð 4 y Ð 1

x2 Ð y2 + 16 x Ð 5 y Ð 3

x2 Ð y2 + 1 �

x2 Ð 2 y2 + 1 x Ð 3 y Ð 2

x2 Ð 3 y2 + 1 x Ð 2 y Ð 1

x2 Ð 4 y2 + 1 �

x2 Ð 5 y2 + 1 x Ð 9 y Ð 4

x2 Ð 6 y2 + 1 x Ð 5 y Ð 2

x2 Ð 7 y2 + 1 x Ð 8 y Ð 3

x2 Ð 8 y2 + 1 x Ð 3 y Ð 1

x2 Ð 9 y2 + 1 �

x2 Ð 10 y2 + 1 x Ð 19 y Ð 6

x2 Ð 11 y2 + 1 x Ð 10 y Ð 3

x2 Ð 12 y2 + 1 x Ð 7 y Ð 2

x2 Ð 13 y2 + 1 x Ð 649 y Ð 180

x2 Ð 14 y2 + 1 x Ð 15 y Ð 4

x2 Ð 15 y2 + 1 x Ð 4 y Ð 1

x2 Ð 16 y2 + 1 �

x2 Ð 17 y2 + 1 x Ð 33 y Ð 8

x2 Ð 18 y2 + 1 x Ð 17 y Ð 4

x2 Ð 19 y2 + 1 x Ð 170 y Ð 39

x2 Ð 20 y2 + 1 x Ð 9 y Ð 2

x2 Ð y3 - 20 x Ð 14 y Ð 6

x2 Ð y3 - 19 x Ð 18 y Ð 7

x2 Ð y3 - 18 x Ð 3 y Ð 3

x2 Ð y3 - 17 �

x2 Ð y3 - 16 �

x2 Ð y3 - 15 x Ð 7 y Ð 4

x2 Ð y3 - 14 �

x2 Ð y3 - 13 x Ð 70 y Ð 17

x2 Ð y3 - 12 �

x2 Ð y3 - 11 x Ð 4 y Ð 3

x2 Ð y3 - 10 �

x2 Ð y3 - 9 �

x2 Ð y3 - 8 �

x2 Ð y3 - 7 x Ð 1 y Ð 2

x2 Ð y3 - 6 �

x2 Ð y3 - 5 �

x2 Ð y3 - 4 x Ð 2 y Ð 2

x2 Ð y3 - 3 �

x2 Ð y3 - 2 x Ð 5 y Ð 3

x2 Ð y3 - 1 �

x2 Ð y3 x Ð 1 y Ð 1

x2 Ð y3 + 1 x Ð 3 y Ð 2

x2 Ð y3 + 2 �

x2 Ð y3 + 3 x Ð 2 y Ð 1

x2 Ð y3 + 4 �

x2 Ð y3 + 5 �

x2 Ð y3 + 6 �

x2 Ð y3 + 7 �

x2 Ð y3 + 8 x Ð 3 y Ð 1

x2 Ð y3 + 9 x Ð 6 y Ð 3

x2 Ð y3 + 10 �

x2 Ð y3 + 11 �

x2 Ð y3 + 12 x Ð 47 y Ð 13

x2 Ð y3 + 13 �

x2 Ð y3 + 14 �

x2 Ð y3 + 15 x Ð 4 y Ð 1

x2 Ð y3 + 16 �

x2 Ð y3 + 17 x Ð 5 y Ð 2

x2 Ð y3 + 18 x Ð 19 y Ð 7

x2 Ð y3 + 19 x Ð 12 y Ð 5

x2 Ð y3 + 20 �

x2 Ð y3 + 1 x Ð 3 y Ð 2

x2 Ð 2 y3 + 1 �

x2 Ð 3 y3 + 1 x Ð 2 y Ð 1

x2 Ð 4 y3 + 1 �

x2 Ð 5 y3 + 1 �

x2 Ð 6 y3 + 1 x Ð 7 y Ð 2

x2 Ð 7 y3 + 1 �

x2 Ð 8 y3 + 1 x Ð 3 y Ð 1

x2 Ð 9 y3 + 1 �

x2 Ð 10 y3 + 1 x Ð 9 y Ð 2

x3 Ð y4 - 20 x y - 1 x Ð 10 y Ð 7

x3 Ð y4 - 19 x y - 1 x Ð 3 y Ð 4

x3 Ð y4 - 18 x y - 1 x Ð 75 y Ð 26

x3 Ð y4 - 17 x y - 1

x3 Ð y4 - 16 x y - 1

x3 Ð y4 - 15 x y - 1 x Ð 624 y Ð 125

x3 Ð y4 - 14 x y - 1

x3 Ð y4 - 13 x y - 1

x3 Ð y4 - 12 x y - 1 x Ð 3 y Ð 2

x3 Ð y4 - 11 x y - 1

x3 Ð y4 - 10 x y - 1

x3 Ð y4 - 9 x y - 1 x Ð 80 y Ð 27

x3 Ð y4 - 8 x y - 1 x Ð 12 y Ð 7

x3 Ð y4 - 7 x y - 1 x Ð 1 y Ð 2

x3 Ð y4 - 6 x y - 1 x Ð 15 y Ð 8

x3 Ð y4 - 5 x y - 1

x3 Ð y4 - 4 x y - 1 x Ð 30 y Ð 13

x3 Ð y4 - 3 x y - 1

x3 Ð y4 - 2 x y - 1

x3 Ð y4 - x y - 1

x3 Ð y4 - 1 �

x3 Ð y4 + x y - 1 x Ð 1 y Ð 1

x3 Ð y4 + 2 x y - 1 x Ð 3 y Ð 2

x3 Ð y4 + 3 x y - 1 x Ð 5 y Ð 3

x3 Ð y4 + 4 x y - 1 x Ð 2 y Ð 1

x3 Ð y4 + 5 x y - 1

x3 Ð y4 + 6 x y - 1

x3 Ð y4 + 7 x y - 1

x3 Ð y4 + 8 x y - 1 x Ð 20 y Ð 9

x3 Ð y4 + 9 x y - 1 x Ð 3 y Ð 1

x3 Ð y4 + 10 x y - 1

x3 Ð y4 + 11 x y - 1 x Ð 5 y Ð 2

x3 Ð y4 + 12 x y - 1

x3 Ð y4 + 13 x y - 1

x3 Ð y4 + 14 x y - 1

x3 Ð y4 + 15 x y - 1

x3 Ð y4 + 16 x y - 1 x Ð 4 y Ð 1

x3 Ð y4 + 17 x y - 1

x3 Ð y4 + 18 x y - 1 x Ð 8 y Ð 3

x3 Ð y4 + 19 x y - 1

x3 Ð y4 + 20 x y - 1

x2 Ð y5 + 3 x Ð 2 y Ð 1

x2 Ð y5 + y + 3 x Ð 2537 y Ð 23

x2 Ð y5 + 2 y + 3

x2 Ð y5 + 3 y + 3

x2 Ð y5 + 4 y + 3

x2 Ð y5 + 5 y + 3 x Ð 3 y Ð 1

x2 Ð y5 + 6 y + 3

x2 Ð y5 + 7 y + 3 x Ð 7 y Ð 2

x2 Ð y5 + 8 y + 3

x2 Ð y5 + 9 y + 3

x3 + y3 Ð z2 + 1 x Ð 1 y Ð 1 z Ð 1

x3 + y3 Ð z2 + 2 x Ð 107 y Ð 232 z Ð 3703

x3 + y3 Ð z2 + 3 x Ð 1 y Ð 3 z Ð 5

x3 + y3 Ð z2 + 4 x Ð 5 y Ð 12 z Ð 43

x3 + y3 Ð z2 + 5 x Ð 1 y Ð 2 z Ð 2

x3 + y3 Ð z2 + 6 x Ð 7 y Ð 24 z Ð 119

x3 + y3 Ð z2 + 7 x Ð 2 y Ð 2 z Ð 3

x3 + y3 Ð z2 + 8 x Ð 1 y Ð 2 z Ð 1

x3 + y3 Ð z2 + 9 x Ð 3 y Ð 7 z Ð 19

x3 + y3 Ð z2 + 10 x Ð 2 y Ð 3 z Ð 5

x3 + y3 Ð z3 - 20 x Ð 107 y Ð 137 z Ð 156

x3 + y3 Ð z3 - 19 x Ð 14 y Ð 16 z Ð 19

x3 + y3 Ð z3 - 18 x Ð 1 y Ð 2 z Ð 3

x3 + y3 Ð z3 - 17 x Ð 103 y Ð 111 z Ð 135

x3 + y3 Ð z3 - 16 x Ð 10 y Ð 12 z Ð 14

x3 + y3 Ð z3 - 15 x Ð 262 y Ð 265 z Ð 332

x3 + y3 Ð z3 - 14 �

x3 + y3 Ð z3 - 13 �

x3 + y3 Ð z3 - 12 x Ð 5725013 y Ð 9019406 z Ð 9730705

x3 + y3 Ð z3 - 11 x Ð 2 y Ð 2 z Ð 3

x3 + y3 Ð z3 - 10 x Ð 3 y Ð 3 z Ð 4

x3 + y3 Ð z3 - 9 x Ð 52 y Ð 216 z Ð 217

x3 + y3 Ð z3 - 8 x Ð 16 y Ð 12 z Ð 18

x3 + y3 Ð z3 - 7 x Ð 605809 y Ð 680316 z Ð 812918

x3 + y3 Ð z3 - 6 x Ð 1 y Ð 1 z Ð 2

x3 + y3 Ð z3 - 5 �

x3 + y3 Ð z3 - 4 �

x3 + y3 Ð z3 - 3

x3 + y3 Ð z3 - 2 x Ð 5 y Ð 6 z Ð 7

x3 + y3 Ð z3 - 1 x Ð 6 y Ð 8 z Ð 9

x3 + y3 Ð z3 �

x3 + y3 Ð z3 + 1 x Ð 1 y Ð 2 z Ð 2

x3 + y3 Ð z3 + 2 x Ð 1214928 y Ð 3480205 z Ð 3528875

x3 + y3 Ð z3 + 3 x Ð 4 y Ð 4 z Ð 5

x3 + y3 Ð z3 + 4 �

x3 + y3 Ð z3 + 5 �

x3 + y3 Ð z3 + 6 x Ð 10529 y Ð 60248 z Ð 60355

x3 + y3 Ð z3 + 7 x Ð 32 y Ð 104 z Ð 105

x3 + y3 Ð z3 + 8 x Ð 1 y Ð 2 z Ð 1

x3 + y3 Ð z3 + 9 x Ð 2097 y Ð 11305 z Ð 11329

x3 + y3 Ð z3 + 10 x Ð 130 y Ð 141 z Ð 171

x3 + y3 Ð z3 + 11 x Ð 297 y Ð 619 z Ð 641

x3 + y3 Ð z3 + 12 x Ð 7 y Ð 10 z Ð 11

x3 + y3 Ð z3 + 13 �

x3 + y3 Ð z3 + 14 �

x3 + y3 Ð z3 + 15 x Ð 2 y Ð 2 z Ð 1

x3 + y3 Ð z3 + 16 x Ð 2429856 y Ð 6960410 z Ð 7057750

x3 + y3 Ð z3 + 17 x Ð 25 y Ð 50 z Ð 52

x3 + y3 Ð z3 + 18 x Ð 94 y Ð 101 z Ð 123

x3 + y3 Ð z3 + 19 x Ð 26 y Ð 76 z Ð 77

x3 + y3 Ð z3 + 20 x Ð 1 y Ð 3 z Ð 2
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universally been assumed that with the continued development of

mathematics any of these questions could in the end be answered.

However, what Gödel’s Theorem shows is that there must always

exist some questions that cannot ever be answered using the normal

axioms of arithmetic. Yet the fact that the few known explicit examples

have been extremely complicated has made this seem somehow

fundamentally irrelevant for the actual practice of mathematics.

But from the discoveries in this book it now seems quite certain

that vastly simpler examples also exist. And it is my strong suspicion

that in fact of all the current unsolved problems seriously studied in

number theory a fair fraction will in the end turn out to be questions

that cannot ever be answered using the normal axioms of arithmetic.

If one looks at recent work in number theory, most of it tends to

be based on rather sophisticated methods that do not obviously depend

only on the normal axioms of arithmetic. And for example the elaborate

proof of Fermat’s Last Theorem that has been developed may make at

least some use of axioms that come from fields like set theory and go

beyond the normal ones for arithmetic. 

But so long as one stays within, say, the standard axiom systems

of mathematics on pages 773 and 774, and does not in effect just end up

implicitly adding as an axiom whatever result one is trying to prove, my

strong suspicion is that one will ultimately never be able to go much

further than one can purely with the normal axioms of arithmetic. 

And indeed from the Principle of Computational Equivalence I

strongly believe that in general undecidability and unprovability will

start to occur in practically any area of mathematics almost as soon as

one goes beyond the level of questions that are always easy to answer. 

But if this is so, why then has mathematics managed to get as far

as it has? Certainly there are problems in mathematics that have

remained unsolved for long periods of time. And I suspect that many of

these will in fact in the end turn out to involve undecidability and

 Smallest solutions for various sequences of integer (or so-called Diophantine) equations.  indicates
that it can be proved that no solution exists. A blank indicates that I know only that no solution exists
below a billion. Methods for resolving some of the equations in the first column were known in
antiquity; all had been resolved by the 1800s. Practical methods for resolving the so-called elliptic curve
equations in the second column were developed only in the 1980s. No general methods are yet known
for most of the other equations given—and some classes of them may in fact show undecidability.

�
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unprovability. But the issue remains why such phenomena have not

been much more obvious in everyday work in mathematics. 

At some level I suspect the reason is quite straightforward: it is

that like most other fields of human inquiry mathematics has tended to

define itself to be concerned with just those questions that its methods

can successfully address. And since the main methods traditionally

used in mathematics have revolved around doing proofs, questions that

involve undecidability and unprovability have inevitably been avoided.

But can this really be right? For at least in the past century

mathematics has consistently given the impression that it is concerned

with questions that are somehow as arbitrary and general as possible. 

But one of the important conclusions from what I have done in

this book is that this is far from correct. And indeed for example

traditional mathematics has for the most part never even considered

most of the kinds of systems that I discuss in this book—even though

they are based on some of the very simplest rules possible.

So how has this happened? The main point, I believe, is that in

both the systems it studies and the questions it asks mathematics is

much more a product of its history than is usually realized. 

And in fact particularly compared to what I do in this book the

vast majority of mathematics practiced today still seems to follow

remarkably closely the traditions of arithmetic and geometry that

already existed even in Babylonian times.

It is a fairly recent notion that mathematics should even try to

address arbitrary or general systems. For until not much more than a

century ago mathematics viewed itself essentially just as providing a

precise formulation of certain aspects of everyday experience—mainly

those related to number and space. 

But in the 1800s, with developments such as non-Euclidean

geometry, quaternions, group theory and transfinite numbers it began

to be assumed that the discipline of mathematics could successfully be

applied to any abstract system, however arbitrary or general.

Yet if one looks at the types of systems that are actually studied

in mathematics they continue even to this day to be far from as general

as possible. Indeed at some level most of them can be viewed as having
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been arrived at by the single rather specific approach of starting from

some known set of theorems, then trying to find systems that are

progressively more general, yet still manage to satisfy these theorems.

And given this approach, it tends to be the case that the questions

that are considered interesting are ones that revolve around whatever

theorems a system was set up to satisfy—making it rather likely that

these questions can themselves be addressed by similar theorems,

without any confrontation with undecidability or unprovability.

But what if one looks at other kinds of systems?

One of the main things I have done in this book is in a sense to

introduce a new approach to generalization in which one considers

systems that have simple but completely arbitrary rules—and that are

not set up with any constraint about what theorems they should satisfy.

But if one has such a system, how does one decide what questions

are interesting to ask about it? Without the guidance of known

theorems, the obvious thing to do is just to look explicitly at how the

system behaves—perhaps by making some kind of picture.

And if one does this, then what I have found is that one is usually

immediately led to ask questions that run into phenomena like

undecidability. Indeed, from my experiments it seems that almost as

soon as one leaves behind the constraints of mathematical tradition

undecidability and unprovability become rather common.

As the picture on the next page indicates, it is quite straightforward

to set up an axiom system that deals with logical statements about a

system like a cellular automaton. And within such an axiom system one

can ask questions such as whether the cellular automaton will ever

behave in a particular way after any number of steps.

But as we saw in the previous section, such questions are in

general undecidable. And what this means is that there will inevitably

be cases of them for which no proof of a particular answer can ever be

given within whatever axiom system one is using.

So from this one might conclude that as soon as one looks at

cellular automata or other kinds of systems beyond those normally

studied in mathematics it must immediately become effectively

impossible to make progress using traditional mathematical methods.
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But in fact, in the fifteen years or so since I first emphasized the

importance of cellular automata all sorts of traditional mathematical

work has actually been done on them. So how has this been possible?

The basic point is that the work has tended to concentrate on

particular aspects of cellular automata that are simple enough to avoid

undecidability and unprovability. And typically it has achieved this in

one of two ways: either by considering only very specific cases that

have been observed or constructed to be simple, or by looking at things

in so much generality that only rather simple properties ever survive.

So for example when presented with the 256 elementary cellular

automaton patterns shown on page 55 mathematicians in my

experience have two common responses: either to single out specific

patterns that have a simple repetitive or perhaps nested form, or to

generalize and look not at individual patterns, but rather at aggregate

properties obtained say by evolving from all possible initial conditions.

And about questions that concern, for example, the structure of a

pattern that looks to us complex, the almost universal reaction is that

such questions can somehow not be of any real mathematical interest.

Needless to say, in the framework of the new kind of science in

this book, such questions are now of great interest. And my results

Éa, b³c, dÊ 2 Éa, b, cÊ³ Éb, c, dÊ
Éa³b, c, dÊ 2 Éb, c, dÊ
Éa, b, c³dÊ 2 Éa, b, cÊ
a³ (b³c) 2 (a³b)³c

basic axioms

É � , � , �Ê 2 �
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rule 110 axioms

( áa)£É� , (� ³a)³ � , � Ê

definition
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advanced axioms
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An axiom system for statements about the rule
110 cellular automaton. The top statement above
makes the assertion that the outcome after one
step of evolution from a single black cell has a
particular form. A proof of this statement is
shown to the left. All the statements in the top
block above can be proved true from the axiom
system. The statement at the bottom, however,
cannot be proved either true or false. The axioms
given are set up using predicate logic.
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suggest that if one is ever going to study many important phenomena

that occur in nature one will also inevitably run into them. But to

traditional mathematics they seem uninteresting and quite alien.

As I said above, it is at some level not surprising that questions

will be considered interesting in a particular field only if the methods of

that field can say something useful about them. But this I believe is

ultimately why there have historically been so few signs of

undecidability or unprovability in mathematics. For any kinds of

questions in which such phenomena appear are usually not amenable to

standard methods of mathematics based on proof, and as a result such

questions have inevitably been viewed as being outside what should be

considered interesting for mathematics.

So how then can one set up a reasonable idealization for

mathematics as it is actually practiced? The first step—much as I

discussed earlier in this section—is to think not so much about systems

that might be described by mathematics as about the internal processes

associated with proof that go on inside mathematics.

A proof must ultimately be based on an axiom system, and one

might have imagined that over the course of time mathematics would

have sampled a wide range of possible axiom systems. But in fact in its

historical development mathematics has normally stuck to only rather

few such systems—each one corresponding essentially to some

identifiable field of mathematics, and most given on pages 773 and 774.

So what then happens if one looks at all possible simple axiom

systems—much as we looked, say, at all possible simple cellular

automata earlier in this book? To what extent does what one sees

capture the features of mathematics? With axiom systems idealized as

multiway systems the pictures on the next page show some results.

In some cases the total number of theorems that can ever be

proved is limited. But often the number of theorems increases rapidly

with the length of proof—and in most cases an infinite number of

theorems can eventually be proved. And given experience with

mathematics an obvious question to ask in such cases is to what extent

the system is consistent, or complete, or both.
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But to formulate such a question in a meaningful way one needs a

notion of negation. In general, negation is just some operation that

takes a string and yields another, giving back the original if it is applied

a second time. Earlier in this section we discussed cases in which

negation simply reverses the color of each element in a string. And as a

generalization of this one can consider cases in which negation can be

any operation that preserves lengths of strings.

And in this case it turns out that the criterion for whether a

system is complete and consistent is simply that exactly half the
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Plots showing which possible strings get generated in the first 15 steps of evolution in various multiway systems. Each string that is
generated can be thought of as a theorem derived from the set of axioms represented by the rules of the multiway system. A dot
shows at which step a given string first appears—and indicates the shortest proof of the theorem that string represents. In most cases,
many strings are never produced—so that there are many possible statements that simply do not follow from the axioms given. Thus
for example in first case shown only strings containing nothing but black elements are ever produced. 
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possible strings of a given length are eventually generated if one starts

from the string representing “true”. 

For if more than half the strings are generated, then somewhere

both a string and its negation would have to appear, implying that the

system must be inconsistent. And similarly, if less than half the strings

are generated, there must be some string for which neither that string

nor its negation ever appear, implying that the system is incomplete.

The pictures on the next page show the fractions of strings of

given lengths that are generated on successive steps in various multiway

systems. In general one might have to wait an arbitrarily large number

of steps to find out whether a given string will ever be generated. But in

practice after just a few steps one already seems to get a reasonable

indication of the overall fraction of strings that will ever be generated.

And what one sees is that there is a broad distribution: from cases

in which very few strings can be generated—corresponding to a very

incomplete axiom system—to cases in which all or almost all strings

can be generated—corresponding to a very inconsistent axiom system.

So where in this distribution do the typical axiom systems of

ordinary mathematics lie? Presumably none are inconsistent. And a

few—like basic logic and real algebra—are both complete and

consistent, so that in effect they lie right in the middle of the

distribution. But most are known to be incomplete. And as we

discussed above, this is inevitable as soon as universality is present.

But just how incomplete are they? The answer, it seems, is

typically not very. For if one looks at axiom systems that are widely

used in mathematics they almost all tend to be complete enough to

prove at least a fair fraction of statements either true or false.

So why should this be? I suspect that it has to do with the fact

that in mathematics one usually wants axiom systems that one can

think of as somehow describing definite kinds of objects—about which

one then expects to be able to establish all sorts of definite statements.

And certainly if one looks at the history of mathematics most

basic axiom systems have been arrived at by starting with objects—

such as finite integers or finite sets—then trying to find collections of

axioms that somehow capture the relevant properties of these objects.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

798

4

1

5

2

6

3
(p)

4

1

5

2

6

3
(q)

4

1

5

2

6

3
(r)

4

1

5

2

6

3
(m)

4

1

5

2

6

3
(n)

4

1

5

2

6

3
(o)

4

1

5

2

6

3
( j)

4

1

5

2

6

3
(k)

4

1

5

2

6

3
( l)

4

1

5

2

6

3
(g)

4

1

5

2

6

3
(h)

4

1

5

2

6

3
( i)

4

1

5

2

6

3
(d)

4

1

5

2

6

3
(e)

4

1

5

2

6

3
(f )

4

1

5

2

6

3
(a)

4

1

5

2

6

3
(b)

4

1

5

2

6

3
(c)

Examples of multiway systems that generate different fractions of possible strings, and in effect range from being highly incomplete
to highly inconsistent. The plots show what fraction of strings of a given length have been produced by each of the first 25 steps in
the evolution of each multiway system. If less than half the strings of a given length are ever produced, this means that there must
be some strings where neither the string nor its negation can be proved, indicating incompleteness. But if more than half the strings
are produced, there must be cases where both a string and its negation can be proved, indicating inconsistency. Rules (f) through (i),
however, produce exactly half the strings of any given length, and can be considered complete and consistent. 
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But one feature is that normally the resulting axiom system is in a

sense more general than the objects one started from. And this is why for

example one can often use the axiom system to extrapolate to infinite

situations. But it also means that it is not clear whether the axiom system

actually describes only the objects one wants—or whether for example it

also describes all sorts of other quite different objects.

One can think of an axiom system—say one of those listed on

pages 773 and 774—as giving a set of constraints that any object it

describes must satisfy. But as we saw in Chapter 5, it is often possible to

satisfy a single set of constraints in several quite different ways.

And when this happens in an axiom system it typically indicates

incompleteness. For as soon as there are just two objects that both

satisfy the constraints but for which there is some statement that is

true about one but false about the other it immediately follows that at

least this statement cannot consistently be proved true or false, and

that therefore the axiom system must be incomplete. 

One might imagine that if one were to add more axioms to an

axiom system one could always in the end force there to be only one

kind of object that would satisfy the constraints of the system. But as

we saw earlier, as soon as there is universality it is normally impossible

to avoid incompleteness. And if an axiom system is incomplete there

must inevitably be different kinds of objects that satisfy its constraints.

For given any statement that cannot be proved from the axioms there

must be distinct objects for which it is true, and for which it is false.

If an axiom system is far from complete—so that a large fraction

of statements cannot be proved true or false—then there will typically

be many different kinds of objects that are easy to specify and all satisfy

the constraints of the system but for which there are fairly obvious

properties that differ. But if an axiom system is close to complete—so

that the vast majority of statements can be proved true or false—then it

is almost inevitable that the different kinds of objects that satisfy its

constraints must differ only in obscure ways. 

And this is presumably the case in the standard axiom system for

arithmetic from page 773. Originally this axiom system was intended to

describe just ordinary integers. But Gödel’s Theorem showed that it is
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incomplete, so that there must be more than one kind of object that can

satisfy its constraints. Yet it is rather close to being complete—since as

we saw earlier one has to go through at least millions of statements

before finding ones that it cannot prove true or false.

And this means that even though there are objects other than the

ordinary integers that satisfy the standard axioms of arithmetic, they

are quite obscure—in fact, so much so that none have ever yet actually

been constructed with any real degree of explicitness. And this is why it

has been reasonable to think of the standard axiom system of

arithmetic as being basically just about ordinary integers.

But if instead of this standard axiom system one uses the reduced

axiom system from page 773—in which the usual axiom for induction

has been weakened—then the story is quite different. There is again

incompleteness, but now there is much more of it, for even statements

as simple as  and  cannot be proved true or false

from the axioms. And while ordinary integers still satisfy all the

constraints, the system is sufficiently incomplete that all sorts of other

objects with quite different properties also do. So this means that the

system is in a sense no longer about any very definite kind of

mathematical object—and presumably that is why it is not used in

practice in mathematics. 

At this juncture it should perhaps be mentioned that in their raw

form quite a few well-known axiom systems from mathematics are

actually also far from complete. An example of this is the axiom system

for group theory given on page 773. But the point is that this axiom

system represents in a sense just the beginning of group theory. For it

yields only those theorems that hold abstractly for any group.

Yet in doing group theory in practice one normally adds axioms

that in effect constrain one to be dealing say with a specific group rather

than with all possible groups. And the result of this is that once again

one typically has an axiom system that is at least close to complete.

In basic arithmetic and also usually in fields like group theory the

underlying objects that one imagines describing can at some level be

manipulated—and understood—in fairly concrete ways. But in a field

like set theory this is less true. Yet even in this case an attempt has

x � y � y � x x � 0 � x
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historically been made to get an axiom system that somehow describes

definite kinds of objects. But now the main way this has been done is by

progressively adding axioms so as to get closer to having a system that

is complete—with only a rather vague notion of just what underlying

objects one is really expecting to describe.

In studying basic processes of proof multiway systems seem to do

well as minimal idealizations. But if one wants to study axiom systems

that potentially describe definite objects it seems to be somewhat more

convenient to use what I call operator systems. And indeed the version

of logic used on page 775—as well as many of the axiom systems on

pages 773 and 774—are already set up essentially as operator systems.

The basic idea of an operator system is to work with expressions

such as  built up using some operator , and then to

consider for example what equivalences may exist between such

expressions. If one has an operator whose values are given by some finite

table then it is always straightforward to determine whether expressions

are equivalent. For all one need do, as in the pictures at the top of the next

page, is to evaluate the expressions for all possible values of each variable,

and then to see whether the patterns of results one gets are the same.

And in this way one can readily tell, for example, that the first

operator shown is idempotent, so that , while both the first two

operators are associative, so that , and all but the third

operator are commutative, so that . And in principle one can

use this method to establish any equivalence that exists between any

expressions with an operator of any specific form.

But the crucial idea that underlies the traditional approach to

mathematical proof is that one should also be able to deduce such

results just by manipulating expressions in purely symbolic form, using

the rules of an axiom system, without ever having to do anything like

filling in explicit values of variables.

And one advantage of this approach is that at least in principle it

allows one to handle operators—like those found in many areas of

mathematics—that are not based on finite tables. But even for operators

given by finite tables it is often difficult to find axiom systems that can

successfully reproduce all the results for a particular operator. 

�p�q�� ��q�r��p� �

p�p � p

�p�q��r � p��q�r�

p�q � q�p
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With the way I have set things up, any axiom system is itself just

a collection of equivalence results. So the question is then which

equivalence results need to be included in the axiom system in order

that all other equivalence results can be deduced just from these.

In general this can be undecidable—for there is no limit on how

long even a single proof might need to be. But in some cases it turns out

to be possible to establish that a particular set of axioms can

successfully generate all equivalence results for a given operator—and

indeed the picture at the top of the facing page shows examples of this

for each of the four operators in the picture above.

So if two expressions are equivalent then by applying the rules of

the appropriate axiom system it must be possible to get from one to the

other—and in fact the picture on page 775 shows an example of how

p pÆp pÆ (pÆp) pÆq q Æp pÆ (pÆq) pÆ (q Æp) (pÆq)Æ (pÆq) (pÆp)Æ (q Æq)

pÆ (q Æ r) (pÆq)Æ r q Æ (pÆ r)

p pÆp pÆ (pÆp) pÆq q Æp pÆ (pÆq) pÆ (q Æp) (pÆq)Æ (pÆq) (pÆp)Æ (q Æq)

pÆ (q Æ r) (pÆq)Æ r q Æ (pÆ r)

p pÆp pÆ (pÆp) pÆq q Æp pÆ (pÆq) pÆ (q Æp) (pÆq)Æ (pÆq) (pÆp)Æ (q Æq)

pÆ (q Æ r) (pÆq)Æ r q Æ (pÆ r)

p pÆp pÆ (pÆp) pÆq q Æp pÆ (pÆq) pÆ (q Æp) (pÆq)Æ (pÆq) (pÆp)Æ (q Æq)

pÆ (q Æ r) (pÆq)Æ r q Æ (pÆ r)

Values of expressions obtained by using operators of various forms. For each expression the sequence of values
for every possible combination of values of variables is shown. Two expressions are equivalent when this
sequence of values is the same. With black and white interpreted as TRUE and FALSE, the forms of operators
shown here correspond respectively to AND, EQUAL, IMPLIES and NAND. (The first argument to each operator is
shown on the left; the second on top.) The arrays of values generated can be thought of as being like truth tables. 
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this can be done for the fourth axiom system above. But if one removes

just a single axiom from any of the axiom systems above then it turns

out that they no longer work, and for example they cannot establish the

equivalence result stated by whichever axiom one has removed.

In general one can think of axioms for an operator system as

giving constraints on the form of the operator. And if one is going to

reproduce all the equivalences that hold for a particular form then these

constraints must in effect be such as to force that form to occur.

So what happens in general for arbitrary axiom systems? Do they

typically force the operator to have a particular form, or not?

The pictures on the next two pages show which forms of

operators are allowed by various different axiom systems. The

successive blocks of results in each case give the forms allowed with

progressively more possible values for each variable.

Indicated by stars near the bottom of the picture are the four

axiom systems from the top of this page. And for each of these only a

limited number of forms are allowed—all of which ultimately turn out

to be equivalent to just the single forms shown on the facing page.

But what about other axiom systems? Every axiom system must

allow an operator of at least some form. But what the pictures on the

next two pages show is that the vast majority of axiom systems actually

allow operators with all sorts of different forms.

And what this means is that these axiom systems are in a sense

not really about operators of any particular form. And so in effect they

are also far from complete—for they can prove only equivalence results

that hold for every single one of the various operators they allow.

( aÆa)Æ ( aÆb) Ð a aÆ ( aÆb) Ð aÆ (bÆb) aÆ ( aÆ (bÆc)) Ð bÆ (bÆ ( aÆc))

(aÆb)Æa Ð a aÆ (bÆc) Ð bÆ ( aÆc) (aÆb)Æb Ð (bÆa)Æa

(bÆb)Æa Ð a aÆb Ð bÆa (aÆb)Æc Ð aÆ (bÆc)

aÆa Ð a aÆb Ð bÆa (aÆb)Æc Ð aÆ (bÆc) Axiom systems that can be used to derive all the
equivalences between expressions that involve
operators with the forms shown. Each axiom can be
applied in either direction—as in the picture on page
775, with each variable standing for any expression, as
in a Mathematica pattern. The operators shown are
AND, EQUAL, IMPLIES and NAND. They yield respectively
junctional, equivalential, implicational and full
propositional or sentential calculus (ordinary logic).
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� (10) � (262)

� (16)

(0) � (16)

� (21) � (1022)

� (113) � (3492)

� (10) � (100)

� (216) � (335008)

� (146) � (168780)

� (2916) � (167772160)

(0) (0) (0)

(0) (0) (0)

� (298) � (1147649)

� (18)

� (27) � (10000)

� (64) � (10000)

� (136) � (46121)

� (10)

� (64) � (10000)

� (18)

� (10)

� (298) � (1147649)

� (136) � (46121)

� (27) � (10000)

� (3375) � (157351936)

� (3375) � (157351936)

� (729) � (1048576)

(0) (0) (0)

� (729) � (16777216)

(0) (0) (0)

� (19683) � (4294967296)

(aÆb) Æ (aÆ (bÆc)) Ð a ?

2 bÆ (c Æ (aÆ (bÆc))) Ð a ?

( (bÆ (aÆa)) Æa) Æb Ð a ?

( (bÆb) Æa) Æ (aÆb) Ð a ?

1 (aÆb) Æc Ð aÆ (bÆc) ?

(aÆb) Æ (bÆc) Ð a ?

(aÆa) Æ (aÆb) Ð a ?

aÆ ( (aÆa) Æb) Ð a ?

(aÆa) Æ (aÆa) Ð a ?

(bÆb) Æb Ð a ?

bÆ (bÆb) Ð a ?

(bÆb) Æa Ð a ?

(bÆa) Æb Ð a ?

(bÆa) Æa Ð a ?

(aÆb) Æb Ð a ?

(aÆb) Æa Ð a ?

(aÆa) Æb Ð a ?

bÆ (bÆa) Ð a ?

bÆ (aÆb) Ð a ?

bÆ (aÆa) Ð a ?

aÆ (bÆb) Ð a ?

aÆ (bÆa) Ð a ?

aÆ (aÆb) Ð a ?

(aÆa) Æa Ð a ?

aÆ (aÆa) Ð a ?

aÆb Ð bÆa ?

bÆb Ð a ?

bÆa Ð a ?

aÆb Ð a ?

aÆa Ð a ?

b Ð a ?

a Ð a ?
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(0) � (12)

� (16)

(0)

� (27) � (3072)

(0)

(0) � (12)

(0) � (12)

� (9) � (76)

� (16)

� (16)

(0) � (12)

(0) � (12)

� (16) � (2302)

(0) (0)

(0) � (12)

� (63) � (1140)

� (114) � (31104)

� (16)

� (68)

� (12) � (96)

(0) � (12)

(0) � (12)

(0) � (12)

� (108) � (40960)

� (104)

(0) � (24)

(0) � (24)

� 2 (aÆa) Æ (aÆb) Ð a aÆ (aÆb) Ð aÆ (bÆb) aÆ (aÆ (bÆc)) Ð bÆ (bÆ (aÆc)) ?

� 9 (aÆb) Æa Ð a aÆ (bÆc) Ð bÆ (aÆc) (aÆb) Æb Ð (bÆa) Æa ?

( (bÆb) Æ (c Æ (aÆ ( ( (c Æc) Æc) Æd)))) Æd Ð a aÆb Ð bÆa ?

(aÆa) Æ (aÆa) Ð a aÆ (aÆa) Ð bÆ (bÆb) aÆb Ð bÆa ?

� 8 (bÆb) Æa Ð a aÆb Ð bÆa (aÆb) Æc Ð aÆ (bÆc) ?

3 aÆ (bÆ (aÆc)) Ð ( (c Æb) Æb) Æa (aÆa) Æ (bÆa) Ð a ?

3 (bÆ (bÆ (aÆa))) Æ (aÆ (bÆc)) Ð a aÆb Ð bÆa ?

� 7 aÆa Ð a aÆb Ð bÆa (aÆb) Æc Ð aÆ (bÆc) ?

6 ( (bÆb) Æ (c Æ (aÆ ( ( (c Æc) Æc) Æd)))) Æd Ð a ?

6 bÆ ( ( ( (bÆb) Æa) Æc) Æ ( ( (bÆb) Æb) Æc)) Ð a ?

(aÆb) Æ (aÆ (bÆ (bÆb))) Ð a aÆb Ð bÆa ?

(aÆb) Æ (aÆ (bÆ (aÆb))) Ð a aÆb Ð bÆa ?

(aÆa) Æ (aÆb) Ð a aÆ (aÆb) Ð aÆ (bÆb) ?

5 bÆ ( (c Æ (c Æ ( ( (d Æd) Æa) Æd))) Æb) Ð a ?

3 (aÆb) Æ (aÆ (bÆc)) Ð a aÆb Ð bÆa ?

4 (aÆb) Æc Ð aÆ (bÆc) aÆb Ð bÆa ?

aÆ (aÆa) Ð bÆ (bÆb) aÆb Ð bÆa ?

2 ( (bÆb) Æ ( ( (c Æa) Æd) Æc)) Æd Ð a ?

(bÆ (aÆc)) Æa Ð a aÆa Ð bÆb ?

(aÆa) Æ (aÆb) Ð a aÆb Ð bÆa ?

3 ( (bÆc) Æa) Æ (bÆ ( (bÆa) Æb)) Ð a ?

3 (bÆ ( (aÆb) Æb)) Æ (aÆ (c Æb)) Ð a ?

(bÆ (bÆ (aÆa))) Æ (aÆ (bÆc)) Ð a ?

(aÆa) Æ (aÆa) Ð a aÆb Ð bÆa ?

(aÆb) Æa Ð a aÆa Ð bÆb ?

( ( (bÆc) Æd) Æa) Æ (aÆd) Ð a ?

( ( (bÆa) Æc) Æa) Æ (aÆc) Ð a ?

Forms of a binary operator satisfying the constraints of a series of different axiom systems. The successive blocks of results in each
case show forms of the operator allowed with 2, 3 and 4 possible elements. Note that with 3 and 4 elements, only forms inequivalent
under interchange of element labels are shown. Representations of notable systems in mathematics are: (1) semigroup theory, (2)
commutative group theory, (3) basic logic, (4) commutative semigroup theory, (5) squag theory, (6) group theory, (7) junctional calculus,
(8) equivalential calculus and (9) implicational calculus. In each case the operator forms shown correspond to possible semigroups,
commutative groups, systems of logic (Boolean algebras), etc. with 2, 3 and 4 possible elements. The operator forms shown can be
thought of as giving multiplication tables. In model theory, these forms are usually called the models of an axiom system. 
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So if one makes a list of all possible axiom systems—say starting

with the simplest—where in such a list should one expect to see axiom

systems that correspond to traditional areas of mathematics?

Most axiom systems as they are given in typical textbooks are

sufficiently complicated that they will not show up at all early. And in

fact the only immediate exception is the axiom system

 for what are known as semigroups—which

ironically are usually viewed as rather advanced mathematical objects. 

But just how complicated do the axiom systems for traditional

areas of mathematics really need to be? Often it seems that they can be

vastly simpler than their textbook forms. And so, for example, as page 773

indicates, interpreting the  operator as division,  is

known to be an axiom system for commutative group theory, and

 for general group theory.

So what about basic logic? How complicated an axiom system

does one need for this? Textbook discussions of logic mostly use axiom

systems at least as complicated as the first one on page 773. And such

axiom systems not only involve several axioms—they also normally

involve three separate operators: AND ( ), OR ( ) and NOT ( ).

But is this in fact the only way to formulate logic?

As the picture below shows, there are 16 different possible

operators that take two arguments and allow two values, say true and

false. And of these AND, OR and NOT are certainly the most commonly

used in both everyday language and most of mathematics. 

��a�b��c � a� �b�c��

� �a��b��c ��a�b��� � c�

�a� ����a�a��b��c�����a�a��a��c�� � b�

� 	 �

12 : First 13 : 14 : Or �( ª ) 15 : True

8 : And �( © ) 9 : Equal �( = ) 10 : Last 11 : Implies�( ¶ )

4 : 5 : Not�(¨ ) 6 : Xor �( Ò ) 7 : Nand �( Ñ )

0 : False 1 : Nor�( Ó ) 2 : 3 : Not�(¨ )

Logical functions of two arguments and their
common names. Black stands for TRUE; white for
FALSE. AND, OR, NOT, and IMPLIES are widely used in
traditional logic. EQUAL (if and only if) is common in
more mathematical settings, while XOR is
widespread in discrete mathematics. NAND and NOR

are mostly used only in circuit design and in a few
foundational studies of logic. The first argument for
each function appears on the left in the picture; the
second argument on top. The functions are
numbered like 2-neighbor analogs of the cellular
automaton rules of page 53. 
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But at least at a formal level, logic can be viewed simply as a

theory of functions that take on two possible values given variables

with two possible values. And as we discussed on page 616, any such

function can be represented as a combination of AND, OR and NOT.

But the table below demonstrates that as soon as one goes beyond

the familiar traditions of language and mathematics there are other

operators that can also just as well be used as primitives. And indeed it

has been known since before 1900 that both NAND and NOR on their

own work—a fact I already used on pages 617 and 775.

0 ¨ a © a 1 ¨ (a ª b) 2 ¨ a © b 3 ¨ a
4 ¨ b © a 5 ¨ b 6 ¨ (a © b) © (a ª b) 7 ¨ (a © b)
8 a © b 9 a © b ª ¨ (a ª b) 10 b 11 ¨ a ª b
12 a 13 ¨ b ª a 14 a ª b 15 ¨ a ª a

And
( © )

Or
( ª )

Not
(¨ )

0 ¨ a © a 1 ¨ a ©¨ b 2 ¨ a © b 3 ¨ a
4 ¨ b © a 5 ¨ b 6 ¨ (¨ a ©¨ b) ©¨ (a © b) 7 ¨ (a © b)
8 a © b 9 ¨ (¨ a © b) ©¨ (¨ b © a) 10 b 11 ¨ (¨ b © a)
12 a 13 ¨ (¨ a © b) 14 ¨ (¨ a ©¨ b) 15 ¨ (¨ a © a)

And
( © )

Not
(¨ )

0 ¨ (¨ a ª a) 1 ¨ (a ª b) 2 ¨ (¨ b ª a) 3 ¨ a
4 ¨ (¨ a ª b) 5 ¨ b 6 ¨ (¨ a ª b) ª ¨ (¨ b ª a) 7 ¨ a ª ¨ b
8 ¨ (¨ a ª ¨ b) 9 ¨ (¨ a ª ¨ b) ª ¨ (a ª b) 10 b 11 ¨ a ª b
12 a 13 ¨ b ª a 14 a ª b 15 ¨ a ª a

Or
( ª )

Not
(¨ )

0 ¨ (a ¶ a) 1 ¨ (¨ a ¶ b) 2 ¨ (b ¶ a) 3 ¨ a
4 ¨ (a ¶ b) 5 ¨ b 6 (a ¶ b) ¶ ¨ (b ¶ a) 7 a ¶ ¨ b
8 ¨ (a ¶ ¨ b) 9 ¨ ( (a ¶ b) ¶ ¨ (b ¶ a)) 10 b 11 a ¶ b
12 a 13 b ¶ a 14 ¨ a ¶ b 15 a ¶ a

Implies
( ¶ )

Not
(¨ )

0 a Ò a 1 (a ¶ b) Ò b 2 ((a ¶ b) ¶ b) Ò a 3 (a ¶ a) Ò a
4 ( (a ¶ b) ¶ b) Ò b 5 (a ¶ a) Ò b 6 a Ò b 7 (a ¶ b) Ò a
8 ( ( (a ¶ b) ¶ b) Ò a) Ò b 9 ((a ¶ a) Ò a) Ò b 10 b 11 a ¶ b
12 a 13 b ¶ a 14 (a ¶ b) ¶ b 15 a ¶ a

Xor
( Ò )

Implies
( ¶ )

0 aÆa 1 aÆ (a Ç b) 2 aÆb 3 aÆ (a Ç a)
4 bÆa 5 bÆ (a Ç a) 6 aÆb Ç (b Ç a) 7 aÆb Ç b
8 (aÆb)Æb 9 (aÆb)Æ (b Ç a) 10 b 11 b Ç a
12 a 13 a Ç b 14 a Ç (a Ç b) 15 a Ç a

2
( Æ)

13
( Ç )

0 ( (a Ñ a) Ñ a) Ñ ( (a Ñ a) Ñ a) 1 ( (a Ñ a) Ñ (b Ñ b)) Ñ ( (a Ñ a) Ñ a) 2 ( (a Ñ a) Ñ a) Ñ ( (a Ñ a) Ñ b) 3 a Ñ a
4 ( (a Ñ a) Ñ a) Ñ ( (a Ñ b) Ñ a) 5 b Ñ b 6 ((a Ñ a) Ñ b) Ñ ( (a Ñ b) Ñ a) 7 a Ñ b
8 (a Ñ b) Ñ (a Ñ b) 9 ( (a Ñ a) Ñ (b Ñ b)) Ñ (a Ñ b) 10 b 11 (a Ñ b) Ñ a
12 a 13 (a Ñ a) Ñ b 14 (a Ñ a) Ñ (b Ñ b) 15 (a Ñ a) Ñ a

Nand
( Ñ )

0 (a Ó a) Ó a 1 a Ó b 2 (a Ó b) Ó a 3 a Ó a
4 (a Ó a) Ó b 5 b Ó b 6 ((a Ó a) Ó (b Ó b)) Ó (a Ó b) 7 ( (a Ó a) Ó (b Ó b)) Ó ( (a Ó a) Ó a)
8 (a Ó a) Ó (b Ó b) 9 ( (a Ó a) Ó b) Ó ( (a Ó b) Ó a) 10 b 11 ( (a Ó a) Ó a) Ó ( (a Ó a) Ó b)
12 a 13 ( (a Ó a) Ó a) Ó ( (a Ó b) Ó a) 14 (a Ó b) Ó (a Ó b) 15 ( (a Ó a) Ó a) Ó ( (a Ó a) Ó a)

Nor
( Ó )

Functions that can be used to formulate logic. In each case the minimal combinations of primitive functions necessary
to reproduce each of the 16 logical functions of two arguments is given. From these any possible logical function with
any number of arguments can be obtained. Most textbook treatments of logic use AND, OR, and NOT as primitive
functions. NAND and NOR are the only primitive functions that work on their own.
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So this means that logic can be set up using just a single operator.

But how complicated an axiom system does it then need? The first box in

the picture below shows that the direct translation of the standard

textbook AND, OR, NOT axiom system from page 773 is very complicated.

But boxes (b) and (c) show that known alternative axiom systems

for logic reduce the size of the axiom system by about a factor of ten.

And some further reduction is achieved by manipulating the resulting

axioms—leading to the axiom system used above and given in box (d).

But can one go still further? And what happens for example if one

just tries to search simple axiom systems for ones that work?

One can potentially test axiom systems by seeing what operators

satisfy their constraints, as on page 805. The first non-trivial axiom

system that even allows the NAND operator is . And

the first axiom system for which NAND and NOR are the only operators

allowed that involve 2 possible values is .

But if one now looks at operators involving 3 possible values then

it turns out that this axiom system allows ones not equivalent to NAND

(a) (aÆb)Æ (aÆb) Ð (bÆa)Æ (bÆa) (aÆa)Æ (bÆb) Ð (bÆb)Æ (aÆa) (aÆ ( (bÆb)Æ ( (bÆb)Æ (bÆb))))Æ (aÆ ( (bÆb)Æ ( (bÆb)Æ (bÆb)))) Ð a
(aÆa)Æ ( ( (bÆ (bÆb))Æ (bÆ (bÆb)))Æ ( (bÆ (bÆb))Æ (bÆ (bÆb)))) Ð a aÆb Ð ( (aÆb)Æ (aÆb))Æ ( (aÆb)Æ (aÆb))

(aÆ ( (bÆb)Æ (cÆc)))Æ (aÆ ( (bÆb)Æ (cÆc))) Ð ( ( (aÆb)Æ (aÆb))Æ ( (aÆb)Æ (aÆb)))Æ ( ( (aÆc)Æ (aÆc))Æ ( (aÆc)Æ (aÆc)))
(aÆa)Æ ( ( (bÆc)Æ (bÆc))Æ ( (bÆc)Æ (bÆc))) Ð ( ( (aÆa)Æ (bÆb))Æ ( (aÆa)Æ (cÆc)))Æ ( ( (aÆa)Æ (bÆb))Æ ( (aÆa)Æ (cÆc)))

(b) (aÆa)Æ (aÆa) Ð a aÆb Ð bÆa aÆ ( (bÆc)Æ (bÆc)) Ð bÆ ( (aÆc)Æ (aÆc)) (aÆb)Æ (aÆ (bÆb)) Ð a

(c) (aÆa)Æ (aÆa) Ð a aÆ (bÆ (bÆb)) Ð aÆa (aÆ (bÆc))Æ (aÆ (bÆc)) Ð ( (bÆb)Æa)Æ ( (cÆc)Æa)

(d) (aÆa)Æ (aÆb) Ð a aÆ (aÆb) Ð aÆ (bÆb) aÆ (aÆ (bÆc)) Ð bÆ (bÆ (aÆc))

(e) aÆ (bÆ (aÆc)) Ð ( (cÆb)Æb)Æa (aÆa)Æ (bÆa) Ð a

(f ) (aÆb)Æ (aÆ (bÆc)) Ð a aÆb Ð bÆa

(g) ( (bÆc)Æa)Æ (bÆ ( (bÆa)Æb)) Ð a

(h) (bÆ ( (aÆb)Æb))Æ (aÆ (cÆb)) Ð a

Axiom systems for basic logic (propositional calculus) formulated in terms of
NAND ( ). The number of operators that occur in these axiom systems is
respectively 94, 17, 17, 13, 9, 6, 6, 6. System (a) is a translation of the standard
textbook one given on page 773 in terms of AND, OR and NOT. (b) is based on
the Robbins axioms from page 773. (c) is the Sheffer axiom system. (e) is the
Meredith axiom system. The other axiom systems were found for this book.
(d) was used on page 775. (g) and (h) are as short as is possible. Each axiom
system given applies equally well to NOR as well as NAND. 

Ñ

��a�a���a�a� � a�

���b�b��a���a�b� � a�



T H E  P R I N C I P L E  O F  C O M P U T A T I O N A L E Q U I V A L E N C E C H A P T E R  1 2

809

and NOR. And this means that it cannot successfully reproduce all the

results of logic. Yet if any axiom system with just a single axiom is

going to be able to do this, the axiom must be of the form . 

With up to 6 NANDs and 2 variables none of the 16,896 possible

axiom systems of this kind work even up to 3-value operators. But with

6 NANDs and 3 variables, 296 of the 288,684 possible axiom systems

work up to 3-value operators, and 100 work up to 4-value operators.

And of the 25 of these that are not trivially equivalent, it then

turns out that the two given as (g) and (h) on the facing page can actually

be proved as on the next two pages to be axiom systems for logic—thus

showing that in the end quite remarkable simplification can be

achieved relative to ordinary textbook axiom systems.

If one looks at axiom systems of the form  the

first one that one finds that allows only NAND and NOR with 2-value

operators is . But as soon as one uses a total

of just 6 NANDs, one suddenly finds that out of the 3402 possibilities

with 3 variables 32 axiom systems equivalent to case (f) above all end

up working all the way up to at least 4-value operators. And in fact it

then turns out that (f) indeed works as an axiom system for logic.

So what this means is that if one were just to go through a list of

the simplest few thousand axiom systems one would already be quite

likely to find one that represents logic.

In human intellectual history logic has had great significance. But

if one looks just at axiom systems is there anything obviously special

about the ones for logic? My guess is that unless one asks about very

specific details there is really not—and that standard logic is in a sense

distinguished in the end only by its historical context.

One feature of logic is that its axioms effectively describe a single

specific operator. But it turns out that there are all sorts of other axioms

that also do this. I gave three examples on page 803, and in the picture on

the right I give two more very simple examples. Indeed, given many forms

of operator there are always axiom systems that can be found to describe it.

�… � a�

�… � a, a�b � b�a�

��a�a���a�a� � a, a�b � b�a�

Axiom systems that
reproduce equivalence
results for the forms of
operators shown.

(aÆa)Æb Ð a

aÆb Ð a
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L�1 (a�( (a�a)�a))�(a�( (a�a)�a))
= A ( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�

a))))�(a�( (a�a)�a))
= A ( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�(a�( (a�a)�a))))�(a�( (a�a)�a))
= A ( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))�a)�(a�( (a�a)�a))
= A ( (a�(a�( (a�a)�a)))�a)�(a�( (a�a)�a))
= A a

L�2 (a�a)�( (a�( (a�a)�a))�a)
= A (a�a)�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= L�1 (a�a)�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�(a�( (a�a)�a))))�(a�( (a�a)�a))))
= L�1 ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�(a�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�

a))�( (a�( (a�a)�a))�(a�( (a�a)�a))))�(a�( (a�a)�a))))
= A (a�( (a�a)�a))�(a�( (a�a)�a))
= L�1 a

L�3 (a�b)�( (a�a)�( ( (a�a)�b)�(a�a)))
= L�2 ( ( (a�a)�( (a�( (a�a)�a))�a))�b)�( (a�a)�( ( (a�a)�b)�(a�a)))
= A b

L�4 ( (a�( (a�b)�a))�d)�(b�( (b�d)�b))
= A ( (a�( (a�b)�a))�d)�(b�( (b�d)�( ( (a�c)�b)�(a�( (a�b)�a)))))
= A ( (a�( (a�b)�a))�d)�(b�( ( ( ( (a�c)�b)�(a�( (a�b)�a)))�d)�( ( (a�c)�b)�(a�( (a�b)�a)))))
= A ( (a�( (a�b)�a))�d)�( ( ( (a�c)�b)�(a�( (a�b)�a)))�( ( ( ( (a�c)�b)�(a�( (a�b)�a)))�d)�( ( (a�c)�b)�(a�

( (a�b)�a)))))
= L�3 ( ( ( ( (a�c)�b)�(a�( (a�b)�a)))�( ( ( (a�c)�b)�( (a�c)�b))�( ( ( ( (a�c)�b)�( (a�c)�b))�(a�( (a�b)�

a)))�( ( (a�c)�b)�( (a�c)�b)))))�d)�( ( ( (a�c)�b)�(a�( (a�b)�a)))�( ( ( ( (a�c)�b)�(a�( (a�b)�a)))�d)�( ( (a�

c)�b)�(a�( (a�b)�a)))))
= A d

L�5 (a�( (a�a)�a))�( (a�( (a�a)�a))�a)
= A (a�( (a�a)�a))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= A ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�( ( ( (a�a)�a)�

(a�( (a�a)�a)))�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= A ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�(a�( (a�a)�

a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= A ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�a)�( (a�( (a�a)�a))�( ( (a�

( (a�a)�a))�a)�(a�( (a�a)�a))))
= A ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�

( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))))�a)�( (a�( (a�a)�a))�

( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= L�4 a

L�6 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�1 (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))
= A ( ( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�

a)))�(a�( (a�a)�a)))))�( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( ( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( (a�

( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= A (a�( (a�a)�a))�( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( ( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( (a�

( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�5 (a�( (a�a)�a))�(a�( ( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�

a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�5 (a�( (a�a)�a))�(a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�

( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�1 (a�( (a�a)�a))�(a�( (a�( (a�( (a�a)�a))�(a�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�1 (a�( (a�a)�a))�(a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�

( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�4 (a�( (a�a)�a))�(a�( ( ( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�

a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= A (a�( (a�a)�a))�(a�( (a�( (a�a)�a))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))

L�7 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�6 (a�( (a�a)�a))�(a�( (a�( (a�a)�a))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�5 (a�( (a�a)�a))�(a�( (a�( (a�a)�a))�a))
= A (a�( (a�a)�a))�(a�( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�a))
= A (a�( (a�a)�a))�(a�( (a�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�a))
= L�3 ( (a�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�(a�( (a�( (a�a)�( ( (a�a)�(a�( (a�a)�

a)))�(a�a))))�a))
= A (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))

L�8 ( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a)))
= L�7 ( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))�( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))
= L�1 ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�

a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))
= L�1 a�( (a�a)�a)

L�9 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�1 (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))
= L�8 ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�

a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�

( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�

( (a�a)�a))�(a�( (a�a)�a)))))
= L�1 (a�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�

a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�

a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))

L�10 (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))
= L�7 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�9 (a�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�

a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�

a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))
= L�1 (a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�

( (a�a)�a)))))�(a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�

(a�( (a�a)�a)))))

L�11 (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))
= L�10 (a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�

( (a�a)�a)))))�(a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�

(a�( (a�a)�a)))))
= L�1 (a�( (a�( (a�( (a�a)�a))�(a�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( (a�( (a�( (a�

a)�a))�(a�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))

= L�7 (a�( (a�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( (a�( (a�

a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))

L�12 (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))
= L�11 (a�( (a�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( (a�( (a�

a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))
= A (a�( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�

a)�a)))))�(a�( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�

( (a�a)�a)))))
= A (a�( (a�( (a�a)�a))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( (a�( (a�a)�a))�( (a�( (a�a)�a))�(a�( (a�

a)�a)))))
= L�1 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))

L�13 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�7 (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))
= L�12 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))

L�14 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))
= L�13 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�1 (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))
= A ( ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�

a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�

a)�a)))�(a�( (a�a)�a)))�( ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�

a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�

a)�a)))�(a�( (a�a)�a)))))
= A ( ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�

a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))))�(a�( (a�a)�a)))�

( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�

a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�

a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�

a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))))
= L�4 (a�( (a�a)�a))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( ( ( ( (a�

a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�

a)�a)))�(a�( (a�a)�a)))))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))))
= L�4 (a�( (a�a)�a))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�

a)�a))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))))
= A (a�( (a�a)�a))�( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( ( (a�a)�a)�( ( ( (a�

a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))))
= A (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�

a)�a)))�(a�( (a�a)�a)))))
= A (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))))

L�15 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))
= L�14 (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�

a)))))
= A (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�a)�a))�(a�(a�( (a�a)�a)))))
= L�13 (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))))

L�16 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))
= L�15 (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))))
= L�12 (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))
= L�3 (a�( (a�a)�a))�(a�( (a�a)�a))

L�17 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�13 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))
= L�16 (a�( (a�a)�a))�(a�( (a�a)�a))
= L�1 a

L�18 a�( (a�a)�a)
= L�1 ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�

a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))
= L�16 ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))�(a�( (a�a)�

a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))�(a�( (a�a)�a))))
= L�1 ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))�(a�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�

a)�a))�(a�(a�( (a�a)�a))))�(a�( (a�a)�a))))
= L�17 ( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))�( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))
= L�17 a�a

L�19 (a�a)�(a�(a�a))
= L�18 (a�a)�(a�(a�( (a�a)�a)))
= L�18 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�17 a

L�20 a�(a�( (a�( (a�a)�a))�a))
= L�18 a�(a�( (a�( (a�( (a�a)�a))�a))�a))
= L�2 ( (a�a)�( (a�( (a�a)�a))�a))�(a�( (a�( (a�( (a�a)�a))�a))�a))
= A (a�( (a�a)�a))�a

L�21 a�(a�a)
= L�18 a�(a�( (a�a)�a))
= L�18 a�(a�( (a�( (a�a)�a))�a))
= L�20 (a�( (a�a)�a))�a

L�22 (a�a)�(a�a)
= L�18 (a�( (a�a)�a))�(a�( (a�a)�a))
= L�1 a

T �1 (a�a)�(a�a)
= L�22 a

L�23 (a�a)�a
= L�18 (a�( (a�a)�a))�a
= L�21 a�(a�a)

L�24 ( (a�b)�a)�(a�a)
= L�18 ( (a�b)�a)�(a�( (a�a)�a))
= A a

L�25 a�( (a�( (a�b)�(a�b)))�a)
= A ( ( (a�b)�( (a�b)�(a�b)))�(a�( (a�( (a�b)�(a�b)))�a)))�( (a�b)�( ( (a�b)�(a�( (a�( (a�b)�(a�b)))�

a)))�(a�b)))
= A ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�( (a�( (a�b)�(a�b)))�a)))�(a�b)))
= L�19 ( (a�b)�(a�b))�( (a�b)�( ( ( ( (a�b)�(a�b))�( (a�b)�( (a�b)�(a�b))))�(a�( (a�( (a�b)�(a�b)))�a)))�

(a�b)))
= A ( (a�b)�(a�b))�( (a�b)�( ( ( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�b))))�

(a�( (a�( (a�b)�(a�b)))�a)))�(a�b)))
= L�24 ( (a�b)�(a�b))�( (a�b)�( ( ( ( ( ( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�

b))))�(a�( (a�(a�b))�a)))�( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�b)))))�( ( ( (a�

b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�b))))�( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�

( (a�(a�b))�a)))�( (a�b)�(a�b))))))�(a�( (a�( (a�b)�(a�b)))�a)))�(a�b)))

= A ( (a�b)�(a�b))�( (a�b)�( ( ( (a�( (a�(a�b))�a))�( ( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�

a)))�( (a�b)�(a�b))))�( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�b))))))�(a�( (a�

( (a�b)�(a�b)))�a)))�(a�b)))
= A ( (a�b)�(a�b))�( (a�b)�( ( ( (a�( (a�(a�b))�a))�( ( ( (a�b)�(a�b))�( (a�b)�( (a�b)�(a�b))))�( ( (a�b)�

(a�b))�( (a�b)�( (a�b)�(a�b))))))�(a�( (a�( (a�b)�(a�b)))�a)))�(a�b)))
= L�19 ( (a�b)�(a�b))�( (a�b)�( ( ( (a�( (a�(a�b))�a))�( (a�b)�(a�b)))�(a�( (a�( (a�b)�(a�b)))�a)))�(a�

b)))
= A ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b)))

L�26 a�( (a�( (a�b)�(a�b)))�a)
= L�25 ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b)))
= A ( (a�b)�(a�b))�( ( ( ( (a�b)�(a�b))�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b))))�( ( (a�b)�(a�b))�( ( ( (a�

b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b))))�( (a�b)�(a�b)))))
= A ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b))))�( (a�b)�

(a�b)))))
= L�12 ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�( ( (a�b)�( ( (a�b)�(a�b))�(a�b)))�(a�b)))�( (a�b)�( ( (a�b)�

( ( (a�b)�(a�b))�(a�b)))�(a�b)))))
= L�16 ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�( ( (a�b)�(a�b))�(a�b)))�( (a�b)�( ( (a�b)�(a�b))�(a�b)))))
= L�1 ( (a�b)�(a�b))�( (a�b)�(a�b))

L�27 a�( (a�( (a�b)�(a�b)))�a)
= L�26 ( (a�b)�(a�b))�( (a�b)�(a�b))
= L�22 a�b

L�28 a
= L�24 ( (a�b)�a)�(a�a)
= L�27 ( (a�b)�a)�( ( ( (a�b)�a)�( ( ( (a�b)�a)�(a�a))�( ( (a�b)�a)�(a�a))))�( (a�b)�a))
= L�24 ( (a�b)�a)�( ( ( (a�b)�a)�(a�a))�( (a�b)�a))

L�29 ( (a�b)�a)�(a�( (a�b)�a))
= L�24 ( (a�b)�a)�( ( ( (a�b)�a)�(a�a))�( (a�b)�a))
= L�28 a

L�30 (a�b)�(a�a)
= L�27 (a�( (a�( (a�b)�(a�b)))�a))�(a�a)
= L�29 (a�( (a�( (a�b)�(a�b)))�a))�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a)))�( ( (a�( (a�

b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a))))
= L�29 (a�( (a�( (a�b)�(a�b)))�a))�( ( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�

(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a)))�( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�

(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a))))
= A ( ( ( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a)))�( (a�( (a�b)�(a�

b)))�a)))�(a�( (a�( (a�b)�(a�b)))�a)))�( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�

(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a))))�( ( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�

b)�(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a)))�( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�

b)�(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a))))
= L�24 ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a)))�( (a�( (a�b)�(a�

b)))�a))
= L�29 ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a))
= L�29 a

L�31 b�( (a�b)�(a�b))
= L�3 ( (a�b)�( (a�a)�( ( (a�a)�b)�(a�a))))�( (a�b)�(a�b))
= L�30 a�b

L�32 a�( (a�b)�(a�b))
= L�30 ( (a�b)�(a�a))�( (a�b)�(a�b))
= L�30 a�b

L�33 a�( (a�b)�a)
= L�32 a�( (a�( (a�b)�(a�b)))�a)
= L�27 a�b

L�34 ( (a�b)�c)�(b�c)
= L�33 ( (a�b)�c)�(b�( (b�c)�b))
= L�33 ( (a�( (a�b)�a))�c)�(b�( (b�c)�b))
= L�4 c

L�35 b�a
= L�31 a�( (b�a)�(b�a))
= L�33 a�( (a�( (b�a)�(b�a)))�a)
= L�31 a�( (b�a)�a)

L�36 b�(b�(a�b))
= L�33 b�(b�(a�( (a�b)�a)))
= L�33 b�(b�( (b�(a�( (a�b)�a)))�b))
= A ( ( (a�( (a�b)�a))�b)�(a�( (a�b)�a)))�(b�( (b�(a�( (a�b)�a)))�b))
= A ( ( (a�( (a�b)�a))�( ( (a�( (a�b)�a))�b)�(a�( (a�b)�a))))�(a�( (a�b)�a)))�(b�( (b�(a�( (a�b)�a)))�

b))
= L�4 a�( (a�b)�a)
= L�33 a�b

L�37 (a�b)�a
= L�36 a�(a�( (a�b)�a))
= L�33 a�(a�b)

L�38 (b�a)�a
= L�36 a�(a�( (b�a)�a))
= L�35 a�(b�a)

L�39 (b�b)�(b�(a�b))
= L�38 (b�b)�( (a�b)�b)
= L�33 (b�b)�( (a�b)�( ( (a�b)�b)�(a�b)))
= L�3 (b�b)�( (a�b)�( ( (a�b)�( (a�b)�( (a�a)�( ( (a�a)�b)�(a�a)))))�(a�b)))
= L�3 ( ( (a�b)�( (a�a)�( ( (a�a)�b)�(a�a))))�( (a�b)�( (a�a)�( ( (a�a)�b)�(a�a)))))�( (a�b)�( ( (a�b)�( (a�

b)�( (a�a)�( ( (a�a)�b)�(a�a)))))�(a�b)))
= A (a�b)�( (a�a)�( ( (a�a)�b)�(a�a)))
= L�3 b

L�40 a
= L�39 (a�a)�(a�( (b�a)�a))
= L�38 (a�a)�(a�(a�(b�a)))
= L�36 (a�a)�(b�a)

L�41 a
= L�39 (a�a)�(a�( (a�b)�a))
= L�33 (a�a)�(a�b)

L�42 b�a
= L�41 b�( (a�a)�(a�b))
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= L�33 b�( (a�a)�(a�( (a�b)�a)))
= L�33 b�( (a�a)�( ( (a�a)�(a�( (a�b)�a)))�(a�a)))
= A ( ( (a�a)�b)�(a�( (a�b)�a)))�( (a�a)�( ( (a�a)�(a�( (a�b)�a)))�(a�a)))
= A a�( (a�b)�a)
= L�33 a�b

L�43 (a�c)�( (a�b)�c)
= L�42 ( (a�b)�c)�(a�c)
= L�33 ( (a�b)�c)�(a�( (a�c)�a))
= A c

L�44 (b�c)�( (a�b)�c)
= L�42 ( (a�b)�c)�(b�c)
= L�34 c

L�45 (b�a)�( (a�c)�b)
= L�42 (a�b)�( (a�c)�b)
= L�43 b

L�46 (b�a)�(a�(b�c))
= L�42 (b�a)�( (b�c)�a)
= L�43 a

L�47 b�c
= L�46 ( (a�b)�(b�c))�( (b�c)�( (a�b)�c))
= L�44 ( (a�b)�(b�c))�c
= L�42 c�( (a�b)�(b�c))

L�48 a�b
= L�45 ( (a�b)�(c�a))�( ( (c�a)�b)�(a�b))
= L�42 ( (a�b)�(c�a))�( (a�b)�( (c�a)�b))
= L�44 ( (a�b)�(c�a))�b

L�49 b�( (a�b)�(c�a))
= L�42 ( (a�b)�(c�a))�b
= L�48 a�b

L�50 (a�b)�c
= L�43 (a�( (a�b)�c))�( (a�c)�( (a�b)�c))
= L�43 (a�( (a�b)�c))�c
= L�42 c�(a�( (a�b)�c))

L�51 a�(b�(a�b))
= L�42 a�( (a�b)�b)
= L�42 ( (a�b)�b)�a
= L�50 a�( (a�b)�( ( (a�b)�b)�a))
= L�42 a�( (b�a)�( ( (a�b)�b)�a))
= L�44 a�a

L�52 (b�a)�(a�b)
= L�50 (a�b)�(b�( (b�a)�(a�b)))
= L�47 (a�b)�(a�b)

L�53 (a�a)�( (b�a)�(b�a))
= L�44 (a�a)�( (b�a)�( ( (a�a)�(b�a))�( ( ( (a�a)�(b�a))�(a�a))�(b�a))))
= L�50 (a�a)�( ( ( (a�a)�(b�a))�(a�a))�(b�a))
= L�42 (a�a)�( (b�a)�( ( (a�a)�(b�a))�(a�a)))
= L�42 (a�a)�( (b�a)�( (a�a)�( (a�a)�(b�a))))
= L�40 (a�a)�( (b�a)�( (a�a)�a))
= L�42 (a�a)�( (b�a)�(a�(a�a)))
= L�47 a�(a�a)

L�54 ( (a�b)�(a�b))�( (a�b)�(a�b))
= L�52 ( (b�a)�(a�b))�( (b�a)�(a�b))
= L�52 ( (a�b)�(b�a))�( (b�a)�(a�b))
= L�52 ( (a�b)�(b�a))�( (a�b)�(a�b))

L�55 a�b
= L�22 ( (a�b)�(a�b))�( (a�b)�(a�b))
= L�54 ( (a�b)�(b�a))�( (a�b)�(a�b))
= L�52 ( (b�a)�(b�a))�( (a�b)�(a�b))

L�56 a�(b�(b�b))
= L�53 a�( (b�b)�( (a�b)�(a�b)))
= L�42 a�( ( (a�b)�(a�b))�(b�b))
= L�40 a�( ( (a�b)�(a�b))�( ( (b�b)�(a�b))�( (b�b)�(a�b))))
= L�53 a�( (a�b)�( (a�b)�(a�b)))
= L�42 a�( ( (a�b)�(a�b))�(a�b))
= L�32 a�( ( (a�b)�(a�b))�(a�( (a�b)�(a�b))))
= L�51 a�a

T �2 a�(b�(b�b))
= L�56 a�a

L�57 ( (a�a)�( ( (a�b)�(a�b))�c))�( (a�a)�( ( (a�b)�(a�b))�c))
= L�56 ( (a�a)�( ( (a�b)�(d �(d �d)))�c))�( (a�a)�( ( (a�b)�(d �(d �d)))�c))
= L�56 ( (a�(d �(d �d)))�( ( (a�b)�(d �(d �d)))�c))�( (a�(d �(d �d)))�( ( (a�b)�(d �(d �d)))�c))
= L�56 ( (a�(d �(d �d)))�( ( (a�b)�(d �(d �d)))�c))�(d �(d �d))
= L�42 (d �(d �d))�( (a�(d �(d �d)))�( ( (a�b)�(d �(d �d)))�c))
= L�42 (d �(d �d))�( ( ( (a�b)�(d �(d �d)))�c)�(a�(d �(d �d))))
= L�42 ( ( ( (a�b)�(d �(d �d)))�c)�(a�(d �(d �d))))�(d �(d �d))
= L�46 ( ( ( (a�b)�(d �(d �d)))�c)�(a�(d �(d �d))))�( ( (a�b)�(d �(d �d)))�( (d �(d �d))�( (a�b)�(d �(d �

d)))))
= L�33 ( ( ( (a�b)�(d �(d �d)))�c)�(a�( (a�(d �(d �d)))�a)))�( ( (a�b)�(d �(d �d)))�( (d �(d �d))�( (a�b)�

(d �(d �d)))))

= A ( ( ( (a�b)�(d �(d �d)))�c)�(a�( (a�(d �(d �d)))�a)))�( ( (a�b)�(d �(d �d)))�( ( ( (a�b)�(d �(d �d)))�

(a�( (a�(d �(d �d)))�a)))�( (a�b)�(d �(d �d)))))

= A a�( (a�(d �(d �d)))�a)
= L�33 a�(d �(d �d))
L�58 (b�b)�( ( (b�c)�(b�c))�d)
= L�22 ( ( (b�b)�( ( (b�c)�(b�c))�d))�( (b�b)�( ( (b�c)�(b�c))�d)))�( ( (b�b)�( ( (b�c)�(b�c))�d))�

( (b�b)�( ( (b�c)�(b�c))�d)))

= L�57 (b�(a�(a�a)))�(b�(a�(a�a)))
= L�56 (b�b)�(b�b)
L�59 (a�a)�( ( (a�b)�(a�b))�c)
= L�58 (a�a)�(a�a)
= L�22 a
L�60 a
= L�59 (a�a)�( ( (a�( (b�a)�(c�b)))�(a�( (b�a)�(c�b))))�( (d �( (a�( (b�a)�(c�b)))�(a�( (b�a)�(c�

b)))))�(e�d)))
= L�49 (a�a)�(d �( (a�( (b�a)�(c�b)))�(a�( (b�a)�(c�b)))))

= L�49 (a�a)�(d �( (b�a)�(b�a)))
L�61 c�( (a�c)�( ( (a�b)�c)�( (a�b)�c)))
= L�42 c�( ( ( (a�b)�c)�( (a�b)�c))�(a�c))
= L�42 ( ( ( (a�b)�c)�( (a�b)�c))�(a�c))�c
= L�46 ( ( ( (a�b)�c)�( (a�b)�c))�(a�c))�( ( (a�b)�c)�(c�( (a�b)�c)))
= L�33 ( ( ( (a�b)�c)�( (a�b)�c))�(a�( (a�c)�a)))�( ( (a�b)�c)�(c�( (a�b)�c)))

= A ( ( ( (a�b)�c)�( (a�b)�c))�(a�( (a�c)�a)))�( ( (a�b)�c)�( ( ( (a�b)�c)�(a�( (a�c)�a)))�( (a�b)�c)))
= A a�( (a�c)�a)
= L�33 a�c

L�62 (a�a)�b
= L�61 b�( ( (a�a)�b)�( ( ( (a�a)�( ( (a�c)�(a�c))�d))�b)�( ( (a�a)�( ( (a�c)�(a�c))�d))�b)))
= L�59 b�( ( (a�a)�b)�( (a�b)�(a�b)))
= L�50 b�( ( (a�b)�(a�b))�( (a�a)�( ( (a�a)�b)�( (a�b)�(a�b)))))

= L�45 b�( ( (a�b)�(a�b))�( ( ( (a�b)�( (b�c)�a))�( (a�b)�( (b�c)�a)))�( ( (a�a)�b)�( (a�b)�(a�b)))))
= L�59 b�(a�b)
L�63 a�(a�b)
= L�42 a�(b�a)

= L�62 (b�b)�a
L�64 a�(b�c)
= L�45 ( (a�(b�c))�c)�( (c�a)�(a�(b�c)))
= L�42 ( (a�(b�c))�c)�( (c�a)�( (b�c)�a))

= L�44 ( (a�(b�c))�c)�a
L�65 a�(b�c)
= L�64 ( (a�(b�c))�c)�a
= L�42 a�( (a�(b�c))�c)

= L�42 a�(c�(a�(b�c)))
L�66 a�c
= L�59 ( (a�c)�(a�c))�( ( ( (a�c)�(c�a))�( (a�c)�(c�a)))�b)
= L�52 ( (a�c)�(a�c))�( ( ( (c�a)�(c�a))�( (c�a)�(c�a)))�b)
= L�22 ( (a�c)�(a�c))�( (c�a)�b)
L�67 (a�b)�(a�b)
= L�59 ( ( (a�b)�(a�b))�( (a�b)�(a�b)))�( ( ( ( (a�b)�(a�b))�( (b�a)�(b�a)))�( ( (a�b)�(a�b))�( (b�a)�

(b�a))))�c)
= L�55 ( ( (a�b)�(a�b))�( (a�b)�(a�b)))�( ( (b�a)�(b�a))�c)
= L�22 (a�b)�( ( (b�a)�(b�a))�c)

L�68 a�( ( (b�c)�(b�a))�( (b�c)�(b�a)))
= L�42 ( ( (b�c)�(b�a))�( (b�c)�(b�a)))�a
= L�63 a�(a�( (b�c)�(b�a)))
= L�33 a�(a�( (b�c)�(b�( (b�a)�b))))

= L�33 a�(a�( (b�c)�( ( (b�c)�(b�( (b�a)�b)))�(b�c))))
= A a�( ( ( (b�c)�a)�(b�( (b�a)�b)))�( (b�c)�( ( (b�c)�(b�( (b�a)�b)))�(b�c))))
= A a�(b�( (b�a)�b))
= L�33 a�(b�a)

= L�62 (b�b)�a
L�69 (b�c)�a
= L�22 ( ( (b�c)�(b�c))�( (b�c)�(b�c)))�a
= L�68 a�( ( ( ( (b�c)�(b�c))�( (c�b)�(c�b)))�( ( (b�c)�(b�c))�a))�( ( ( (b�c)�(b�c))�( (c�b)�(c�b)))�

( ( (b�c)�(b�c))�a)))

= L�55 a�( ( (c�b)�( ( (b�c)�(b�c))�a))�( (c�b)�( ( (b�c)�(b�c))�a)))
L�70 (b�c)�a
= L�69 a�( ( (c�b)�( ( (b�c)�(b�c))�a))�( (c�b)�( ( (b�c)�(b�c))�a)))
= L�67 a�( ( (c�b)�(c�b))�( (c�b)�(c�b)))

= L�22 a�(c�b)
L�71 ( (b�c)�(b�c))�a
= L�68 a�( ( ( (b�c)�(c�b))�( (b�c)�a))�( ( (b�c)�(c�b))�( (b�c)�a)))
= L�52 a�( ( ( (c�b)�(c�b))�( (b�c)�a))�( ( (c�b)�(c�b))�( (b�c)�a)))
= L�66 a�( (c�b)�(c�b))

L�72 (b�a)�( ( (b�c)�a)�( (b�c)�a))
= L�3 (a�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))�( (a�a)�( ( (a�a)�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))�(a�a)))
= L�33 (a�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))�( (a�a)�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))
= L�61 (b�a)�( (a�a)�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))

L�73 (b�a)�( ( (b�c)�a)�( (b�c)�a))
= L�72 (b�a)�( (a�a)�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))
= L�60 (b�a)�a
= L�70 a�(a�b)
= L�63 (b�b)�a
L�74 (a�a)�c
= L�73 (a�c)�( ( (a�b)�c)�( (a�b)�c))
= L�50 ( ( (a�b)�c)�( (a�b)�c))�(a�( (a�c)�( ( (a�b)�c)�( (a�b)�c))))
= L�73 ( ( (a�b)�c)�( (a�b)�c))�(a�( (a�a)�c))

= L�22 ( ( (a�b)�c)�( (a�b)�c))�( ( (a�a)�(a�a))�( (a�a)�c))
= L�41 ( ( (a�b)�c)�( (a�b)�c))�(a�a)
L�75 (a�a)�( (c�(a�b))�(c�(a�b)))
= L�71 ( ( (a�b)�c)�( (a�b)�c))�(a�a)
= L�74 (a�a)�c

L�76 (b�(a�c))�(a�a)
= L�22 ( ( (b�(a�c))�(b�(a�c)))�( (b�(a�c))�(b�(a�c))))�(a�a)
= L�63 (a�a)�( (a�a)�( (b�(a�c))�(b�(a�c))))
= L�75 (a�a)�( (a�a)�b)
L�77 ( (a�b)�(a�b))�(c�a)
= L�75 ( (a�b)�(a�b))�( ( (c�a)�( (a�b)�c))�( (c�a)�( (a�b)�c)))
= L�45 ( (a�b)�(a�b))�(c�c)

L�78 ( (b�c)�(b�c))�a
= L�45 ( (b�c)�(b�c))�( (a�b)�( (b�c)�a))
= L�70 ( ( (b�c)�a)�(a�b))�( (b�c)�(b�c))
= L�22 ( ( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b)))�( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b))))�( (b�c)�

(b�c))
= L�63 ( (b�c)�(b�c))�( ( (b�c)�(b�c))�( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b))))
= L�76 ( ( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b)))�( (b�c)�(a�b)))�( (b�c)�(b�c))
= L�70 ( (b�c)�(b�c))�( ( (b�c)�(a�b))�( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b))))
= L�73 ( (b�c)�(b�c))�( ( (b�c)�(b�c))�(a�b))
= L�63 ( (a�b)�(a�b))�( (b�c)�(b�c))
= L�47 ( (a�b)�(a�b))�( (c�( (a�b)�(b�c)))�(c�( (a�b)�(b�c))))
= L�75 ( (a�b)�(a�b))�c
= L�71 c�( (b�a)�(b�a))

L�79 a�(c�( (a�b)�(a�b)))
= L�42 a�(c�( (b�a)�(b�a)))
= L�78 a�( ( (b�c)�(b�c))�a)
= L�62 ( ( (b�c)�(b�c))�( (b�c)�(b�c)))�a
= L�22 (b�c)�a
L�80 a�( (b�a)�c)
= L�70 (c�(b�a))�a
= L�79 a�( (b�a)�( (a�c)�(a�c)))
= L�42 a�( ( (a�c)�(a�c))�(b�a))
= L�77 a�( ( (a�c)�(a�c))�(b�b))
= L�78 a�(c�( (a�(b�b))�(a�(b�b))))
= L�79 ( (b�b)�c)�a
L�81 ( (c�a)�(a�b))�( (c�a)�(a�b))
= L�40 ( ( ( (c�a)�(a�b))�( (c�a)�(a�b)))�( ( (c�a)�(a�b))�( (c�a)�(a�b))))�( (a�a)�( ( (c�a)�(a�b))�

( (c�a)�(a�b))))
= L�75 ( ( ( (c�a)�(a�b))�( (c�a)�(a�b)))�( ( (c�a)�(a�b))�( (c�a)�(a�b))))�( (a�a)�(c�a))
= L�22 ( (c�a)�(a�b))�( (a�a)�(c�a))
= L�70 ( (a�a)�(c�a))�( (a�b)�(c�a))
= L�40 a�( (a�b)�(c�a))
= L�70 ( (c�a)�(a�b))�a
= L�79 a�( (a�b)�( (a�(c�a))�(a�(c�a))))
= L�70 a�( ( (a�(c�a))�(a�(c�a)))�(b�a))
= L�77 a�( ( (a�(c�a))�(a�(c�a)))�(b�b))
= L�78 a�( (c�a)�( (a�(b�b))�(a�(b�b))))
= L�79 ( (b�b)�(c�a))�a
T �3 ( (b�b)�a)�( (c�c)�a)
= L�42 ( (b�b)�a)�(a�(c�c))
= L�42 (a�(c�c))�( (b�b)�a)
= L�22 ( ( (a�a)�(a�a))�(c�c))�( (b�b)�a)
= L�80 ( (b�b)�a)�( ( (a�a)�( (b�b)�a))�(c�c))
= L�70 ( (c�c)�( (a�a)�( (b�b)�a)))�( (b�b)�a)
= L�81 ( ( (a�a)�( (b�b)�a))�( ( (b�b)�a)�c))�( ( (a�a)�( (b�b)�a))�( ( (b�b)�a)�c))
= L�40 (a�( ( (b�b)�a)�c))�(a�( ( (b�b)�a)�c))
= L�80 ( ( ( (b�b)�(b�b))�c)�a)�( ( ( (b�b)�(b�b))�c)�a)
= L�42 ( (c�( (b�b)�(b�b)))�a)�( (c�( (b�b)�(b�b)))�a)
= L�40 ( ( ( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�b))))�( (b�b)�(c�( (b�b)�(b�b)))))�a)�( ( ( (c�( (b�b)�

(b�b)))�(c�( (b�b)�(b�b))))�( (b�b)�(c�( (b�b)�(b�b)))))�a)
= L�60 ( ( ( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�b))))�b)�a)�( ( ( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�

b))))�b)�a)
= L�42 ( (b�( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�b)))))�a)�( (b�( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�

b)))))�a)
= L�78 ( ( ( (c�b)�(c�b))�( (b�b)�(b�b)))�a)�( ( ( (c�b)�(c�b))�( (b�b)�(b�b)))�a)
= L�40 ( ( ( (c�b)�(c�b))�( (b�( (b�b)�(c�b)))�(b�( (b�b)�(c�b)))))�a)�( ( ( (c�b)�(c�b))�( (b�( (b�

b)�(c�b)))�(b�( (b�b)�(c�b)))))�a)
= L�65 ( ( ( (c�b)�(c�b))�( (b�( (c�b)�(b�( (b�b)�(c�b)))))�(b�( (c�b)�(b�( (b�b)�(c�b)))))))�a)�

( ( ( (c�b)�(c�b))�( (b�( (c�b)�(b�( (b�b)�(c�b)))))�(b�( (c�b)�(b�( (b�b)�(c�b)))))))�a)
= L�75 ( ( ( (c�b)�(c�b))�b)�a)�( ( ( (c�b)�(c�b))�b)�a)
= L�78 ( (b�( (c�b)�(c�b)))�a)�( (b�( (c�b)�(c�b)))�a)
= L�31 ( (c�b)�a)�( (c�b)�a)
= L�70 (a�(b�c))�(a�(b�c))

A proof that the axiom system  given as example (g) on page 808 can reproduce the Sheffer axiom
system (c), and is thus a complete axiom system for logic. The proof involves taking the original axiom  and using it to establish a
sequence of lemmas , from which it is eventually possible to prove the three Sheffer axioms . In each part of the proof each line
can be obtained from the previous one just as on page 775 by applying the axiom or lemma indicated. Explicit operators have been
omitted to allow expressions to be printed more compactly. The proof shown takes a total of 343 steps, and involves intermediate
expressions with as many as 128 NANDs. It is quite possible that the proof could be considerably shortened. Note that any proof can
always be recast without lemmas, but will usually then be much longer.

{( (b Æc) Æa) Æ (b Æ ( (b Æa) Æb)) Ð a}

A
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So what about patterns of theorems? Does logic somehow stand

out when one looks at these? The picture below shows which possible

simple equivalence theorems hold in systems from page 805.

And comparing with page 805 one sees that typically the more

forms of operator are allowed by the constraints of an axiom system,

the fewer equivalence results hold in that axiom system.

(pÆp)Æp Ð (pÆp)Æq

(pÆp)Æp Ð pÆ (pÆq)

pÆ (pÆp) Ð (pÆp)Æq

pÆ (pÆp) Ð pÆ (pÆq)

(pÆp)Æp Ð pÆ (pÆp)

pÆ (pÆp) Ð (pÆp)Æp

q Æq Ð (pÆq)Æq

q Æq Ð pÆ (q Æq)

q Æq Ð (pÆq)Æp

q Æq Ð pÆ (q Æp)

q Æq Ð (pÆp)Æq

q Æq Ð pÆ (pÆq)

q Æq Ð (pÆp)Æp

q Æq Ð pÆ (pÆp)

q Æp Ð (pÆq)Æq

q Æp Ð pÆ (q Æq)

q Æp Ð (pÆq)Æp

q Æp Ð pÆ (q Æp)

q Æp Ð (pÆp)Æq

q Æp Ð pÆ (pÆq)

q Æp Ð (pÆp)Æp

q Æp Ð pÆ (pÆp)

pÆq Ð (q Æq)Æq

pÆq Ð q Æ (q Æq)

pÆq Ð (q Æq)Æp

pÆq Ð q Æ (q Æp)

pÆq Ð (q Æp)Æq

pÆq Ð q Æ (pÆq)

pÆq Ð (q Æp)Æp

pÆq Ð q Æ (pÆp)

pÆq Ð (pÆq)Æq

pÆq Ð pÆ (q Æq)

pÆq Ð (pÆq)Æp

pÆq Ð pÆ (q Æp)

pÆq Ð (pÆp)Æq

pÆq Ð pÆ (pÆq)

pÆq Ð (pÆp)Æp

pÆq Ð pÆ (pÆp)

pÆp Ð (q Æq)Æq

pÆp Ð q Æ (q Æq)

pÆp Ð (q Æq)Æp

pÆp Ð q Æ (q Æp)

pÆp Ð (q Æp)Æq

pÆp Ð q Æ (pÆq)

pÆp Ð (q Æp)Æp

pÆp Ð q Æ (pÆp)

pÆp Ð (pÆq)Æq

pÆp Ð pÆ (q Æq)

pÆp Ð (pÆq)Æp

pÆp Ð pÆ (q Æp)

pÆp Ð (pÆp)Æq

pÆp Ð pÆ (pÆq)

pÆp Ð (pÆp)Æp

pÆp Ð pÆ (pÆp)

q Ð (pÆq)Æq

q Ð pÆ (q Æq)

q Ð (pÆq)Æp

q Ð pÆ (q Æp)

q Ð (pÆp)Æq

q Ð pÆ (pÆq)

q Ð (pÆp)Æp

q Ð pÆ (pÆp)

p Ð (q Æq)Æq

p Ð q Æ (q Æq)

p Ð (q Æq)Æp

p Ð q Æ (q Æp)

p Ð (q Æp)Æq

p Ð q Æ (pÆq)

p Ð (q Æp)Æp

p Ð q Æ (pÆp)

p Ð (pÆq)Æq

p Ð pÆ (q Æq)

p Ð (pÆq)Æp

p Ð pÆ (q Æp)

p Ð (pÆp)Æq

p Ð pÆ (pÆq)

p Ð (pÆp)Æp

p Ð pÆ (pÆp)

pÆq Ð q Æq

pÆq Ð q Æp

pÆp Ð q Æq

pÆp Ð q Æp

pÆp Ð pÆq

q Ð pÆq

q Ð pÆp

p Ð q Æq

p Ð q Æp

p Ð pÆq

p Ð pÆp

p Ð q

aÆa Ð a ?

aÆb Ð a ?

bÆa Ð a ?

bÆb Ð a ?

aÆb Ð bÆa ?

aÆ (aÆa) Ð a ?

(aÆa)Æa Ð a ?

aÆ (aÆb) Ð a ?

aÆ (bÆa) Ð a ?

aÆ (bÆb) Ð a ?

bÆ (aÆa) Ð a ?

bÆ (aÆb) Ð a ?

bÆ (bÆa) Ð a ?

(aÆa)Æb Ð a ?

(aÆb)Æa Ð a ?

(aÆb)Æb Ð a ?

(bÆa)Æa Ð a ?

(bÆa)Æb Ð a ?

(bÆb)Æa Ð a ?

bÆ (bÆb) Ð a ?

(bÆb)Æb Ð a ?

(aÆa)Æ (aÆa) Ð a ?

aÆ ( (aÆa)Æb) Ð a ?

(aÆa)Æ (aÆb) Ð a ?

(aÆb)Æ (bÆc) Ð a ?

(aÆb)Æc Ð aÆ (bÆc) ?

( (bÆb)Æa)Æ (aÆb) Ð a ?

( (bÆ (aÆa))Æa)Æb Ð a ?

bÆ (c Æ (aÆ (bÆc))) Ð a ?

(aÆb)Æ (aÆ (bÆc)) Ð a ?

( ( (bÆa)Æc)Æa)Æ (aÆc) Ð a ?

( ( (bÆc)Æd)Æa)Æ (aÆd) Ð a ?

(aÆb)Æa Ð a aÆa Ð bÆb ?

(aÆa)Æ (aÆa) Ð a aÆb Ð bÆa ?

(bÆ (bÆ (aÆa)))Æ (aÆ (bÆc)) Ð a ?

(bÆ ( (aÆb)Æb))Æ (aÆ (c Æb)) Ð a ?

( (bÆc)Æa)Æ (bÆ ( (bÆa)Æb)) Ð a ?

(aÆa)Æ (aÆb) Ð a aÆb Ð bÆa ?

(bÆ (aÆc))Æa Ð a aÆa Ð bÆb ?

Theorems that can be proved on the basis of simple axiom systems from page 805. A black square indicates that a particular theorem
holds in a particular axiom system. In general the question of whether a given theorem holds is undecidable, but the particular
theorems given here happen to be simple enough that results for them can with some effort be established with certainty. 
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So what happens if essentially just a single form of operator is

allowed? The pictures below show results for the 16 forms from page

806, and among these one sees that logic yields the fewest theorems.

(pÆp)Æp Ð (pÆp)Æq

(pÆp)Æp Ð pÆ (pÆq)

pÆ (pÆp) Ð (pÆp)Æq

pÆ (pÆp) Ð pÆ (pÆq)

(pÆp)Æp Ð pÆ (pÆp)

pÆ (pÆp) Ð (pÆp)Æp

q Æq Ð (pÆq)Æq

q Æq Ð pÆ (q Æq)

q Æq Ð (pÆq)Æp

q Æq Ð pÆ (q Æp)

q Æq Ð (pÆp)Æq

q Æq Ð pÆ (pÆq)

q Æq Ð (pÆp)Æp

q Æq Ð pÆ (pÆp)

q Æp Ð (pÆq)Æq

q Æp Ð pÆ (q Æq)

q Æp Ð (pÆq)Æp

q Æp Ð pÆ (q Æp)

q Æp Ð (pÆp)Æq

q Æp Ð pÆ (pÆq)

q Æp Ð (pÆp)Æp

q Æp Ð pÆ (pÆp)

pÆq Ð (q Æq)Æq

pÆq Ð q Æ (q Æq)

pÆq Ð (q Æq)Æp

pÆq Ð q Æ (q Æp)

pÆq Ð (q Æp)Æq

pÆq Ð q Æ (pÆq)

pÆq Ð (q Æp)Æp

pÆq Ð q Æ (pÆp)

pÆq Ð (pÆq)Æq

pÆq Ð pÆ (q Æq)

pÆq Ð (pÆq)Æp

pÆq Ð pÆ (q Æp)

pÆq Ð (pÆp)Æq

pÆq Ð pÆ (pÆq)

pÆq Ð (pÆp)Æp

pÆq Ð pÆ (pÆp)

pÆp Ð (q Æq)Æq

pÆp Ð q Æ (q Æq)

pÆp Ð (q Æq)Æp

pÆp Ð q Æ (q Æp)

pÆp Ð (q Æp)Æq

pÆp Ð q Æ (pÆq)

pÆp Ð (q Æp)Æp

pÆp Ð q Æ (pÆp)

pÆp Ð (pÆq)Æq

pÆp Ð pÆ (q Æq)

pÆp Ð (pÆq)Æp

pÆp Ð pÆ (q Æp)

pÆp Ð (pÆp)Æq

pÆp Ð pÆ (pÆq)

pÆp Ð (pÆp)Æp

pÆp Ð pÆ (pÆp)

q Ð (pÆq)Æq

q Ð pÆ (q Æq)

q Ð (pÆq)Æp

q Ð pÆ (q Æp)

q Ð (pÆp)Æq

q Ð pÆ (pÆq)

q Ð (pÆp)Æp

q Ð pÆ (pÆp)

p Ð (q Æq)Æq

p Ð q Æ (q Æq)

p Ð (q Æq)Æp

p Ð q Æ (q Æp)

p Ð (q Æp)Æq

p Ð q Æ (pÆq)

p Ð (q Æp)Æp

p Ð q Æ (pÆp)

p Ð (pÆq)Æq

p Ð pÆ (q Æq)

p Ð (pÆq)Æp

p Ð pÆ (q Æp)

p Ð (pÆp)Æq

p Ð pÆ (pÆq)

p Ð (pÆp)Æp

p Ð pÆ (pÆp)

pÆq Ð q Æq

pÆq Ð q Æp

pÆp Ð q Æq

pÆp Ð q Æp

pÆp Ð pÆq

q Ð pÆq

q Ð pÆp

p Ð q Æq

p Ð q Æp

p Ð pÆq

p Ð pÆp

p Ð q

False:0 ?

Nor:1 ?

2 ?

Not:3 ?

4 ?

Not:5 ?

Xor:6 ?

Nand:7 ?

And:8 ?

Equal:9 ?

Last:10 ?

Implies:11 ?

First:12 ?

13 ?

Or:14 ?

True:15 ?

(pÆq)Æq Ð (q Æq)Æq

(pÆq)Æq Ð q Æ (q Æq)

pÆ (q Æq) Ð (q Æq)Æq

pÆ (q Æq) Ð q Æ (q Æq)

(pÆq)Æq Ð (q Æq)Æp

(pÆq)Æq Ð q Æ (q Æp)

pÆ (q Æq) Ð (q Æq)Æp

pÆ (q Æq) Ð q Æ (q Æp)

(pÆq)Æq Ð (q Æp)Æq

(pÆq)Æq Ð q Æ (pÆq)

pÆ (q Æq) Ð (q Æp)Æq

pÆ (q Æq) Ð q Æ (pÆq)

(pÆq)Æq Ð (q Æp)Æp

(pÆq)Æq Ð q Æ (pÆp)

pÆ (q Æq) Ð (q Æp)Æp

pÆ (q Æq) Ð q Æ (pÆp)

(pÆq)Æq Ð pÆ (q Æq)

pÆ (q Æq) Ð (pÆq)Æq

(pÆq)Æp Ð (q Æq)Æq

(pÆq)Æp Ð q Æ (q Æq)

pÆ (q Æp) Ð (q Æq)Æq

pÆ (q Æp) Ð q Æ (q Æq)

(pÆq)Æp Ð (q Æq)Æp

(pÆq)Æp Ð q Æ (q Æp)

pÆ (q Æp) Ð (q Æq)Æp

pÆ (q Æp) Ð q Æ (q Æp)

(pÆq)Æp Ð (q Æp)Æq

(pÆq)Æp Ð q Æ (pÆq)

pÆ (q Æp) Ð (q Æp)Æq

pÆ (q Æp) Ð q Æ (pÆq)

(pÆq)Æp Ð (q Æp)Æp

(pÆq)Æp Ð q Æ (pÆp)

pÆ (q Æp) Ð (q Æp)Æp

pÆ (q Æp) Ð q Æ (pÆp)

(pÆq)Æp Ð (pÆq)Æq

(pÆq)Æp Ð pÆ (q Æq)

pÆ (q Æp) Ð (pÆq)Æq

pÆ (q Æp) Ð pÆ (q Æq)

(pÆq)Æp Ð pÆ (q Æp)

pÆ (q Æp) Ð (pÆq)Æp

(pÆp)Æq Ð (q Æq)Æq

(pÆp)Æq Ð q Æ (q Æq)

pÆ (pÆq) Ð (q Æq)Æq

pÆ (pÆq) Ð q Æ (q Æq)

(pÆp)Æq Ð (q Æq)Æp

(pÆp)Æq Ð q Æ (q Æp)

pÆ (pÆq) Ð (q Æq)Æp

pÆ (pÆq) Ð q Æ (q Æp)

(pÆp)Æq Ð (q Æp)Æq

(pÆp)Æq Ð q Æ (pÆq)

pÆ (pÆq) Ð (q Æp)Æq

pÆ (pÆq) Ð q Æ (pÆq)

(pÆp)Æq Ð (q Æp)Æp

(pÆp)Æq Ð q Æ (pÆp)

pÆ (pÆq) Ð (q Æp)Æp

pÆ (pÆq) Ð q Æ (pÆp)

(pÆp)Æq Ð (pÆq)Æq

(pÆp)Æq Ð pÆ (q Æq)

pÆ (pÆq) Ð (pÆq)Æq

pÆ (pÆq) Ð pÆ (q Æq)

(pÆp)Æq Ð (pÆq)Æp

(pÆp)Æq Ð pÆ (q Æp)

pÆ (pÆq) Ð (pÆq)Æp

pÆ (pÆq) Ð pÆ (q Æp)

(pÆp)Æq Ð pÆ (pÆq)

pÆ (pÆq) Ð (pÆp)Æq

(pÆp)Æp Ð (q Æq)Æq

(pÆp)Æp Ð q Æ (q Æq)

pÆ (pÆp) Ð (q Æq)Æq

pÆ (pÆp) Ð q Æ (q Æq)

(pÆp)Æp Ð (q Æq)Æp

(pÆp)Æp Ð q Æ (q Æp)

pÆ (pÆp) Ð (q Æq)Æp

pÆ (pÆp) Ð q Æ (q Æp)

(pÆp)Æp Ð (q Æp)Æq

(pÆp)Æp Ð q Æ (pÆq)

pÆ (pÆp) Ð (q Æp)Æq

pÆ (pÆp) Ð q Æ (pÆq)

(pÆp)Æp Ð (q Æp)Æp

(pÆp)Æp Ð q Æ (pÆp)

pÆ (pÆp) Ð (q Æp)Æp

pÆ (pÆp) Ð q Æ (pÆp)

(pÆp)Æp Ð (pÆq)Æq

(pÆp)Æp Ð pÆ (q Æq)

pÆ (pÆp) Ð (pÆq)Æq

pÆ (pÆp) Ð pÆ (q Æq)

(pÆp)Æp Ð (pÆq)Æp

(pÆp)Æp Ð pÆ (q Æp)

pÆ (pÆp) Ð (pÆq)Æp

pÆ (pÆp) Ð pÆ (q Æp)

False:0 ?

Nor:1 ?

2 ?

Not:3 ?

4 ?

Not:5 ?

Xor:6 ?

Nand:7 ?

And:8 ?

Equal:9 ?

Last:10 ?

Implies:11 ?

First:12 ?

13 ?

Or:14 ?

True:15 ?

Theorems that hold with operators of each of the forms shown on page 806. NAND and NOR yield the smallest
number of theorems.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

814

But if one considers for example analogs of logic for variables

with more than two possible values, the picture below shows that one

immediately gets systems with still fewer theorems.

So what about proofs? Is there something about these that is

somehow special in the case of ordinary logic? 

In the axiom systems on page 803 the typical lengths of proofs

seem to increase from one system to the next, so that they end up being

longest for the last axiom system, which corresponds to logic. 

But if one picks a different axiom system for logic—say one of the

others on page 808—then the length of a particular proof will usually

change. But since one can always just start by proving the new axioms,

the change can only be by a fixed amount. And as it turns out, even the

simplest axiom system (f) given on page 808 seems to allow fairly short

proofs of at least most short theorems.

But as one tries to prove progressively longer theorems it appears

that whatever axiom system one uses for logic the lengths of proofs can

increase as fast as exponentially. A crucial point, however, is that for

theorems of a given length there is always a definite upper limit on the

length of proof needed. Yet once again this is not something unique to

logic. Indeed, it turns out that this must always be the case for any

axiom system—like those on page 803—that ends up allowing

essentially only operators of a single form.

So what about other axiom systems?

The very simplest ones on pages 805 and 812 seem to yield proofs

that are always comparatively short. But when one looks at axiom

systems that are even slightly more complicated the proofs of anything

(pÆq)Æp Ð q Æ (pÆp)

pÆ (q Æp) Ð (q Æp)Æp

pÆ (q Æp) Ð q Æ (pÆp)

(pÆq)Æp Ð (pÆq)Æq

(pÆq)Æp Ð pÆ (q Æq)

pÆ (q Æp) Ð (pÆq)Æq

pÆ (q Æp) Ð pÆ (q Æq)

(pÆq)Æp Ð pÆ (q Æp)

pÆ (q Æp) Ð (pÆq)Æp

(pÆp)Æq Ð (q Æq)Æq

(pÆp)Æq Ð q Æ (q Æq)

pÆ (pÆq) Ð (q Æq)Æq

pÆ (pÆq) Ð q Æ (q Æq)

(pÆp)Æq Ð (q Æq)Æp

(pÆp)Æq Ð q Æ (q Æp)

pÆ (pÆq) Ð (q Æq)Æp

pÆ (pÆq) Ð q Æ (q Æp)

(pÆp)Æq Ð (q Æp)Æq

(pÆp)Æq Ð q Æ (pÆq)

pÆ (pÆq) Ð (q Æp)Æq

pÆ (pÆq) Ð q Æ (pÆq)

(pÆp)Æq Ð (q Æp)Æp

(pÆp)Æq Ð q Æ (pÆp)

pÆ (pÆq) Ð (q Æp)Æp

pÆ (pÆq) Ð q Æ (pÆp)

(pÆp)Æq Ð (pÆq)Æq

(pÆp)Æq Ð pÆ (q Æq)

pÆ (pÆq) Ð (pÆq)Æq

pÆ (pÆq) Ð pÆ (q Æq)

(pÆp)Æq Ð (pÆq)Æp

(pÆp)Æq Ð pÆ (q Æp)

pÆ (pÆq) Ð (pÆq)Æp

pÆ (pÆq) Ð pÆ (q Æp)

(pÆp)Æq Ð pÆ (pÆq)

pÆ (pÆq) Ð (pÆp)Æq

(pÆp)Æp Ð (q Æq)Æq

(pÆp)Æp Ð q Æ (q Æq)

pÆ (pÆp) Ð (q Æq)Æq

pÆ (pÆp) Ð q Æ (q Æq)

(pÆp)Æp Ð (q Æq)Æp

2 ?

3 ?

4 ?

2 3 4

Theorems in analogs of logic that allow
different numbers of truth values.
Statements like  do not hold in
general with more than 2 truth values. 

p Ð ¨ ¨ p
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but the simplest results can get much longer—making it in practice often

difficult to tell whether a given result can actually even be proved at all.

And this is in a sense just another example of the same basic

phenomenon that we already saw early in this section in multiway

systems, and that often seems to occur in real mathematics: that even if

a theorem is short to state, its proof can be arbitrarily long.

And this I believe is ultimately a reflection of the Principle of

Computational Equivalence. For the principle suggests that most axiom

systems whose consequences are not obviously simple will tend to be

universal. And this means that they will exhibit computational

irreducibility and undecidability—and will allow no general upper limit

to be placed on how long a proof could be needed for any given result.

As I discussed earlier, most of the common axiom systems in

traditional mathematics are known to be universal—basic logic being

one of the few exceptions. But one might have assumed that to achieve

their universality these axiom systems would have to be specially set

up with all sorts of specific sophisticated features.

Yet from the results of this book—as embodied in the Principle of

Computational Equivalence—we now know that this is not the case,

and that in fact universality should already be rather common even

among very simple axiom systems, like those on page 805.

And indeed, while operator systems and multiway systems have

many superficial differences, I suspect that when it comes to

universality they work very much the same. So in either idealization,

one should not have to go far to get axiom systems that exhibit

universality—just like most of the ones in traditional mathematics.

But once one has reached an axiom system that is universal, why

should one in a sense ever have to go further? After all, what it means

for an axiom system to be universal is that by setting up a suitable

encoding it must in principle be possible to make that axiom system

reproduce any other possible axiom system.

But the point is that the kinds of encodings that are normally

used in mathematics are in practice rather limited. For while it is

common, say, to take a problem in geometry and reformulate it as a

problem in algebra, this is almost always done just by setting up a direct
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translation between the objects one is describing—usually in effect just

by renaming the operators used to manipulate them. 

Yet to take full advantage of universality one must consider not

only translations between objects but also translations between

complete proofs. And if one does this it is indeed perfectly possible, say,

to program arithmetic to reproduce any proof in set theory. In fact, all

one need do is to encode the axioms of set theory in something like the

arithmetic equation system of page 786. 

But with the notable exception of Gödel’s Theorem these kinds of

encodings are not normally used in mathematics. So this means that

even when universality is present realistic idealizations of mathematics

must still distinguish different axiom systems.

So in the end what is it that determines which axiom systems are

actually used in mathematics? In the course of this section I have

discussed a few criteria. But in the end history seems to be the only real

determining factor. For given almost any general property that one can

pick out in axiom systems like those on pages 773 and 774 there

typically seem to be all sorts of operator and multiway systems—often

including some rather simple ones—that share the exact same property.

So this leads to the conclusion that there is in a sense nothing

fundamentally special about the particular axiom systems that have

traditionally been used in mathematics—and that in fact there are all

sorts of other axiom systems that could perfectly well be used as

foundations for what are in effect new fields of mathematics—just as

rich as the traditional ones, but without the historical connections.

So what about existing fields of mathematics? As I mentioned

earlier in this section, I strongly believe that even within these there are

fundamental limitations that have implicitly been imposed on what has

actually been studied. And most often what has happened is that there

are only certain kinds of questions or statements that have been

considered of real mathematical interest.

The picture on the facing page shows a rather straightforward

version of this. It lists in order a large number of theorems from basic

logic, highlighting just those few that are considered interesting enough

by typical textbooks of logic to be given explicit names.
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�

The theorems of basic logic written out in order of increasing complexity. Those considered interesting enough to name in typical textbooks
are highlighted. The theorems are respectively: (1), (2) idempotence (laws of tautology) of AND and OR, (3), (4) commutativity of AND and OR,
(5) law of double negation, (6), (7) absorption (redundancy) laws, (8) law of noncontradiction (definition of FALSE), (9) law of excluded middle
(definition of TRUE), (10) de Morgan’s law, (11), (12) associativity of AND and OR, (13), (14) distributive laws. With the exception of the second
distributive law, it turns out that the highlighted theorems are exactly the ones that cannot be derived from preceding theorems in the list.
The distributive laws appear at positions 2813 and 2814 in the list; it takes a long proof to obtain the second one from preceding theorems. 
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But what determines which theorems these will be? One might

have thought that it would be purely a matter of history. But actually

looking at the list of theorems it always seems that the interesting ones

are in a sense those that show the least unnecessary complication.

And indeed if one starts from the beginning of the list one finds

that most of the theorems can readily be derived from simpler ones

earlier in the list. But there are a few that cannot—and that therefore

provide in a sense the simplest statements of genuinely new

information. And remarkably enough what I have found is that these

theorems are almost exactly the ones highlighted on the previous page

that have traditionally been identified as interesting.

So what happens if one applies the same criterion in other

settings? The picture below shows as an example theorems from the

formulation of logic discussed above based on NAND.

a Ñ b Ð b Ñ a a Ð (a Ñ a) Ñ (a Ñ a) a Ð (a Ñ a) Ñ (a Ñ b) a Ð (a Ñ a) Ñ (b Ñ a)

a Ð (a Ñ b) Ñ (a Ñ a) a Ð (b Ñ a) Ñ (a Ñ a) (a Ñ a) Ñ a Ð a Ñ (a Ñ a) (a Ñ a) Ñ a Ð (b Ñ b) Ñ b

a Ñ (a Ñ a) Ð (b Ñ b) Ñ b (a Ñ a) Ñ a Ð b Ñ (b Ñ b) a Ñ (a Ñ a) Ð b Ñ (b Ñ b) a Ñ (a Ñ b) Ð (a Ñ b) Ñ a

a Ñ (a Ñ b) Ð a Ñ (b Ñ a) (a Ñ a) Ñ b Ð (a Ñ b) Ñ b a Ñ (a Ñ b) Ð a Ñ (b Ñ b) a Ñ (a Ñ b) Ð (b Ñ a) Ñ a

(a Ñ a) Ñ b Ð b Ñ (a Ñ a) (a Ñ a) Ñ b Ð (b Ñ a) Ñ b (a Ñ a) Ñ b Ð b Ñ (a Ñ b) a Ñ (a Ñ b) Ð (b Ñ b) Ñ a

(a Ñ a) Ñ b Ð b Ñ (b Ñ a) (a Ñ b) Ñ a Ð a Ñ (b Ñ a) (a Ñ b) Ñ a Ð a Ñ (b Ñ b) a Ñ (b Ñ a) Ð a Ñ (b Ñ b)

(a Ñ b) Ñ a Ð (b Ñ a) Ñ a a Ñ (b Ñ a) Ð (b Ñ a) Ñ a (a Ñ b) Ñ a Ð (b Ñ b) Ñ a a Ñ (b Ñ a) Ð (b Ñ b) Ñ a

a Ñ (b Ñ b) Ð (b Ñ a) Ñ a (a Ñ b) Ñ b Ð b Ñ (a Ñ a) (a Ñ b) Ñ b Ð (b Ñ a) Ñ b (a Ñ b) Ñ b Ð b Ñ (a Ñ b)

a Ñ (b Ñ b) Ð (b Ñ b) Ñ a (a Ñ b) Ñ b Ð b Ñ (b Ñ a) a Ñ (b Ñ c) Ð a Ñ (c Ñ b) (a Ñ b) Ñ c Ð (b Ñ a) Ñ c

a Ñ (b Ñ c) Ð (b Ñ c) Ñ a (a Ñ b) Ñ c Ð c Ñ (a Ñ b) a Ñ (b Ñ c) Ð (c Ñ b) Ñ a (a Ñ b) Ñ c Ð c Ñ (b Ñ a)

(a Ñ a) Ñ (a Ñ a) Ð (a Ñ a) Ñ (a Ñ b) (a Ñ a) Ñ (a Ñ a) Ð (a Ñ a) Ñ (b Ñ a) (a Ñ a) Ñ (a Ñ a) Ð (a Ñ b) Ñ (a Ñ a) (a Ñ a) Ñ (a Ñ a) Ð (b Ñ a) Ñ (a Ñ a)

(a Ñ a) Ñ (a Ñ b) Ð (a Ñ a) Ñ (a Ñ c) (a Ñ a) Ñ (a Ñ b) Ð (a Ñ a) Ñ (b Ñ a) (a Ñ a) Ñ (a Ñ b) Ð (a Ñ a) Ñ (c Ñ a) (a Ñ a) Ñ (a Ñ b) Ð (a Ñ b) Ñ (a Ñ a)

� 118 lines

a Ñ ( (a Ñ b) Ñ b) Ð (c Ñ (a Ñ a)) Ñ a a Ñ ( (a Ñ b) Ñ b) Ð ( (c Ñ a) Ñ c) Ñ a a Ñ ( (a Ñ b) Ñ b) Ð (c Ñ (a Ñ c)) Ñ a (a Ñ (a Ñ b)) Ñ b Ð (c Ñ (b Ñ b)) Ñ b

(a Ñ (a Ñ b)) Ñ b Ð ( (c Ñ b) Ñ c) Ñ b (a Ñ (a Ñ b)) Ñ b Ð (c Ñ (b Ñ c)) Ñ b a Ñ ( (a Ñ b) Ñ b) Ð (c Ñ (c Ñ a)) Ñ a (a Ñ (a Ñ b)) Ñ b Ð (c Ñ (c Ñ b)) Ñ b

a Ñ ( (a Ñ b) Ñ b) Ð ( (c Ñ c) Ñ c) Ñ a a Ñ ( (a Ñ b) Ñ b) Ð (c Ñ (c Ñ c)) Ñ a (a Ñ (a Ñ b)) Ñ b Ð ( (c Ñ c) Ñ c) Ñ b (a Ñ (a Ñ b)) Ñ b Ð (c Ñ (c Ñ c)) Ñ b

a Ñ (a Ñ (b Ñ c)) Ð a Ñ (a Ñ (c Ñ b)) (a Ñ (a Ñ b)) Ñ c Ð ( (a Ñ b) Ñ a) Ñ c (a Ñ (a Ñ b)) Ñ c Ð (a Ñ (b Ñ a)) Ñ c a Ñ ( (a Ñ b) Ñ c) Ð a Ñ ( (b Ñ a) Ñ c)

( (a Ñ a) Ñ b) Ñ c Ð ( (a Ñ b) Ñ b) Ñ c (a Ñ (a Ñ b)) Ñ c Ð (a Ñ (b Ñ b)) Ñ c a Ñ ( (a Ñ b) Ñ c) Ð a Ñ ( (b Ñ b) Ñ c) a Ñ ( (a Ñ b) Ñ c) Ð ( (a Ñ b) Ñ c) Ñ a

a Ñ (a Ñ (b Ñ c)) Ð (a Ñ (b Ñ c)) Ñ a a Ñ (a Ñ (b Ñ c)) Ð a Ñ ( (b Ñ c) Ñ a) a Ñ (a Ñ (b Ñ c)) Ð ( (a Ñ b) Ñ c) Ñ c (a Ñ (a Ñ b)) Ñ c Ð (a Ñ (b Ñ c)) Ñ c

a Ñ ( (a Ñ b) Ñ c) Ð a Ñ ( (b Ñ c) Ñ c) a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (a Ñ b)) a Ñ (a Ñ (b Ñ c)) Ð (a Ñ (c Ñ b)) Ñ a a Ñ (a Ñ (b Ñ c)) Ð a Ñ ( (c Ñ b) Ñ a)

a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (b Ñ a)) a Ñ (a Ñ (b Ñ c)) Ð ( (a Ñ c) Ñ b) Ñ b a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (b Ñ b)) ( (a Ñ a) Ñ b) Ñ c Ð ( (a Ñ c) Ñ b) Ñ c

(a Ñ (a Ñ b)) Ñ c Ð (a Ñ (c Ñ b)) Ñ c a Ñ ( (a Ñ b) Ñ c) Ð a Ñ ( (c Ñ b) Ñ c) a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (b Ñ c)) a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (c Ñ b))

�

The theorems of logic formulated in terms of NAND. Theorems which cannot be derived from ones earlier in the list are highlighted.
The last highlighted theorem is 539th in the list. No later theorems would be highlighted since the ones shown form a complete
axiom system from which any theorem of logic can be derived. The last highlighted theorem is however an example of one that
follows from the axioms, but is hard to prove.
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Now there is no particular historical tradition to rely on. But the

criterion nevertheless still seems to agree rather well with judgements a

human might make. And much as in the picture on page 817, what one

sees is that right at the beginning of the list there are several theorems

that are identified as interesting. But after these one has to go a long

way before one finds other ones.

So if one were to go still further, would one eventually find yet

more? It turns out that with the criterion we have used one would not.

And the reason is that just the six theorems highlighted already happen

to form an axiom system from which any possible theorem about

NANDs can ultimately be derived.

And indeed, whenever one is dealing with theorems that can be

derived from a finite axiom system the criterion implies that only a

finite number of theorems should ever be considered interesting—

ending as soon as one has in a sense got enough theorems to be able to

reproduce some formulation of the axiom system.

But this is essentially like saying that once one knows the rules

for a system nothing else about it should ever be considered interesting.

Yet most of this book is concerned precisely with all the interesting

behavior that can emerge even if one knows the rules for a system.

And the point is that if computational irreducibility is present,

then there is in a sense all sorts of information about the behavior of a

system that can only be found from its rules by doing an irreducibly

large amount of computational work. And the analog of this in an

axiom system is that there are theorems that can be reached only by

proofs that are somehow irreducibly long.

So what this suggests is that a theorem might be considered

interesting not only if it cannot be derived at all from simpler theorems

but also if it cannot be derived from them except by some long proof.

And indeed in basic logic the last theorem identified as interesting on

page 817—the distributivity of OR—is an example of one that can in

principle be derived from earlier theorems, but only by a proof that

seems to be much longer than other theorems of comparable size.

In logic, however, all proofs are in effect ultimately of limited

length. But in any axiom system where there is universality—and thus
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undecidability—this is no longer the case, and as I discussed above I

suspect that it will actually be quite common for there to be all sorts of

short theorems that have only extremely long proofs.

No doubt many such theorems are much too difficult ever to

prove in practice. But even if they could be proved, would they be

considered interesting? Certainly they would provide what is in essence

new information, but my strong suspicion is that in mathematics as it

is currently practiced they would only rarely be considered interesting.

And most often the stated reason for this would be that they do

not seem to fit into any general framework of mathematical results, but

instead just seem like isolated random mathematical facts.

In doing mathematics, it is common to use terms like difficult,

powerful, surprising and deep to describe theorems. But what do these

really mean? As I mentioned above, any field of mathematics can at

some level be viewed as a giant network of statements in which the

connections correspond to theorems. And my suspicion is that our

intuitive characterizations of theorems are in effect just reflections of

our perception of various features of the structure of this network.

And indeed I suspect that by looking at issues such as how easy a

given theorem makes it to get from one part of a network to another it

will be possible to formalize many intuitive notions about the practice

of mathematics—much as earlier in this book we were able to formalize

notions of everyday experience such as complexity and randomness.

Different fields of mathematics may well have networks with

characteristically different features. And so, for example, what are

usually viewed as more successful areas of pure mathematics may have

more compact networks, while areas that seem to involve all sorts of

isolated facts—like elementary number theory or theory of specific

cellular automata—may have sparser networks with more tendrils.

And such differences will be reflected in proofs that can be given.

For example, in a sparser network the proof of a particular theorem may

not contain many pieces that can be used in proving other theorems.

But in a more compact network there may be intermediate definitions

and concepts that can be used in a whole range of different theorems.
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Indeed, in an extreme case it might even be possible to do the

analog of what has been done, say, in the computation of symbolic

integrals, and to set up some kind of uniform procedure for finding a

proof of essentially any short theorem.

And in general whenever there are enough repeated elements

within a single proof or between different proofs this indicates the

presence of computational reducibility. Yet while this means that there

is in effect less new information in each theorem that is proved, it turns

out that in most areas of mathematics these theorems are usually the

ones that are considered interesting.

The presence of universality implies that there must at some

level be computational irreducibility—and thus that there must be

theorems that cannot be reached by any short procedure. But the point

is that mathematics has tended to ignore these, and instead to

concentrate just on what are in effect limited patches of computational

reducibility in the network of all possible theorems.

Yet in a sense this is no different from what has happened, say, in

physics, where the phenomena that have traditionally been studied are

mostly just those ones that show enough computational reducibility to

allow analysis by traditional methods of theoretical physics.

But whereas in physics one has only to look at the natural world

to see that other more complex phenomena exist, the usual approaches

to mathematics provide almost no hint of anything analogous.

Yet with the new approach based on explicit experimentation

used in this book it now becomes quite clear that phenomena such as

computational irreducibility occur in abstract mathematical systems.

And indeed the Principle of Computational Equivalence implies

that such phenomena should be close at hand in almost every direction:

it is merely that—despite its reputation for generality—mathematics

has in the past implicitly tended to define itself to avoid them.

So what this means is that in the future, when the ideas and

methods of this book have successfully been absorbed, the field of

mathematics as it exists today will come to be seen as a small and

surprisingly uncharacteristic sample of what is actually possible.




