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Basic Framework

Following the discussion of the notion of computation in the previous

chapter, I am now ready in this chapter to describe a bold hypothesis

that I have developed on the basis of the discoveries in this book, and

that I call the Principle of Computational Equivalence.

Among principles in science the Principle of Computational

Equivalence is almost unprecedentedly broad—for it applies to essentially

any process of any kind, either natural or artificial. And its implications

are both broad and deep, addressing a host of longstanding issues not only

in science, but also in mathematics, philosophy and elsewhere.

The key unifying idea that has allowed me to formulate the

Principle of Computational Equivalence is a simple but immensely

powerful one: that all processes, whether they are produced by human

effort or occur spontaneously in nature, can be viewed as computations.

In our practical experience with computers, we are mostly

concerned with computations that have been set up specifically to

perform particular tasks. But as I discussed at the beginning of this book

there is nothing fundamental that requires a computation to have any

such definite purpose. And as I discussed in the previous chapter the

process of evolution of a system like a cellular automaton can for

example perfectly well be viewed as a computation, even though in a

sense all the computation does is generate the behavior of the system.
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But what about processes in nature? Can these also be viewed as

computations? Or does the notion of computation somehow apply only

to systems with abstract elements like, say, the black and white cells in

a cellular automaton?

Before the advent of modern computer applications one might

have assumed that it did. But now every day we see computations being

done with a vast range of different kinds of data—from numbers to text

to images to almost anything else. And what this suggests is that it is

possible to think of any process that follows definite rules as being a

computation—regardless of the kinds of elements it involves.

So in particular this implies that it should be possible to think of

processes in nature as computations. And indeed in the end the only

unfamiliar aspect of this is that the rules such processes follow are

defined not by some computer program that we as humans construct

but rather by the basic laws of nature.

But whatever the details of the rules involved the crucial point is

that it is possible to view every process that occurs in nature or

elsewhere as a computation. And it is this remarkable uniformity that

makes it possible to formulate a principle as broad and powerful as the

Principle of Computational Equivalence.

Outline of the Principle

Across all the vastly different processes that we see in nature and in

systems that we construct one might at first think that there could be

very little in common. But the idea that any process whatsoever can be

viewed as a computation immediately provides at least a uniform

framework in which to discuss different processes. 

And it is by using this framework that the Principle of

Computational Equivalence is formulated. For what the principle does

is to assert that when viewed in computational terms there is a

fundamental equivalence between many different kinds of processes.

There are various ways to state the Principle of Computational

Equivalence, but probably the most general is just to say that almost all
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processes that are not obviously simple can be viewed as computations

of equivalent sophistication.

And although at first this statement might seem vague and

perhaps almost inconsequential, we will see in the course of this

chapter that in fact it has many very specific and dramatic implications.

One might have assumed that among different processes

there would be a vast range of different levels of computational

sophistication. But the remarkable assertion that the Principle of

Computational Equivalence makes is that in practice this is not the

case, and that instead there is essentially just one highest level of

computational sophistication, and this is achieved by almost all

processes that do not seem obviously simple.

So what might lead one to this rather surprising idea? An

important clue comes from the phenomenon of universality that I

discussed in the previous chapter and that has been responsible for

much of the success of modern computer technology. For the essence of

this phenomenon is that it is possible to construct universal systems

that can perform essentially any computation—and which must

therefore all in a sense be capable of exhibiting the highest level of

computational sophistication.

The most familiar examples of universal systems today are

practical computers and general-purpose computer languages. But in

the fifty or so years since the phenomenon of universality was first

identified, all sorts of types of systems have been found to be able to

exhibit universality. Indeed, as I showed in the previous chapter, it is

possible for example to get universality in cellular automata, Turing

machines, register machines—or in fact in practically every kind of

system that I have considered in this book.

So this implies that from a computational point of view even

systems with quite different underlying structures will still usually

show a certain kind of equivalence, in that rules can be found for them

that achieve universality—and that therefore can always exhibit the

same level of computational sophistication.

But while this is already a remarkable result, it represents

only a first step in the direction of the Principle of Computational
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Equivalence. For what the result implies is that in many kinds of

systems particular rules can be found that achieve universality and thus

show the same level of computational sophistication. But the result

says nothing about whether such rules are somehow typical, or are

instead very rare and special.

And in practice, almost without exception, the actual rules that

have been established to be universal have tended to be quite complex.

Indeed, most often they have in effect been engineered out of all sorts of

components that are direct idealizations of various elaborate structures

that exist in practical digital electronic computers.

And on the basis of traditional intuition it has almost always

been assumed that this is somehow inevitable, and that in order to get

something as sophisticated as universality there must be no choice but

to set up rules that are themselves special and sophisticated.

One of the dramatic discoveries of this book, however, is that this

is not the case, and that in fact even extremely simple rules can be

universal. Indeed, from our discussion in the previous chapter, we

already know that among the 256 very simplest possible cellular

automaton rules at least rule 110 and three others like it are universal.

And my strong suspicion is that this is just the beginning, and

that in time a fair fraction of other simple rules will also be shown to be

universal. For one of the implications of the Principle of Computational

Equivalence is that almost any rule whose behavior is not obviously

simple should ultimately be capable of achieving the same level of

computational sophistication and should thus in effect be universal.

So far from universality being some rare and special property that

exists only in systems that have carefully been built to exhibit it, the

Principle of Computational Equivalence implies that instead this

property should be extremely common. And among other things this

means that universality can be expected to occur not only in many

kinds of abstract systems but also in all sorts of systems in nature.

And as we shall see in this chapter, this idea already has many

important and surprising consequences. But still it is far short of what

the full Principle of Computational Equivalence has to say. 
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For knowing that a particular rule is universal just tells one that

it is possible to set up initial conditions that will cause a sophisticated

computation to occur. But it does not tell one what will happen if, for

example, one starts from typical simple initial conditions.

Yet the Principle of Computational Equivalence asserts that even in

such a case, whenever the behavior one sees is not obviously simple, it will

almost always correspond to a computation of equivalent sophistication. 

So what this means is that even, say, in cellular automata that

start from very simple initial conditions, one can expect that those

aspects of their behavior that do not look obviously simple will usually

correspond to computations of equivalent sophistication.

According to the Principle of Computational Equivalence

therefore it does not matter how simple or complicated either the rules

or the initial conditions for a process are: so long as the process itself

does not look obviously simple, then it will almost always correspond

to a computation of equivalent sophistication. 

And what this suggests is that a fundamental unity exists across a

vast range of processes in nature and elsewhere: despite all their

detailed differences every process can be viewed as corresponding to a

computation that is ultimately equivalent in its sophistication.

The Content of the Principle

Like many other fundamental principles in science, the Principle of

Computational Equivalence can be viewed in part as a new law of

nature, in part as an abstract fact and in part as a definition. For in one

sense it tells us what kinds of computations can and cannot happen in

our universe, yet it also summarizes purely abstract deductions about

possible computations, and provides foundations for more general

definitions of the very concept of computation.

Without the Principle of Computational Equivalence one might

assume that different systems would always be able to perform

completely different computations, and that in particular there would

be no upper limit on the sophistication of computations that systems

with sufficiently complicated structures would be able to perform.
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But the discussion of universality in the previous chapter already

suggests that this is not the case. For it implies that at least across the

kinds of systems that we considered in that chapter there is in fact an

upper limit on the sophistication of computations that can be done.

For as we discussed, once one has a universal system such a

system can emulate any of the kinds of systems that we considered—

even ones whose construction is more complicated than its own. So

this means that whatever kinds of computations can be done by the

universal system, none of the other systems will ever be able to do

computations that have any higher level of sophistication.

And as a result it has often seemed reasonable to define what one

means by a computation as being precisely something that can be done

by a universal system of the kind we discussed in the previous chapter.

But despite this, at an abstract level one can always imagine

having systems that do computations beyond what any of the cellular

automata, Turing machines or other types of systems in the previous

chapter can do. For as soon as one identifies any such class of

computations, one can imagine setting up a system which includes an

infinite table of their results.

But even though one can perfectly well imagine such a system,

the Principle of Computational Equivalence makes the assertion that

no such system could ever in fact be constructed in our actual universe.

In essence, therefore, the Principle of Computational Equivalence

introduces a new law of nature to the effect that no system can ever

carry out explicit computations that are more sophisticated than those

carried out by systems like cellular automata and Turing machines.

So what might make one think that this is true? One important

piece of evidence is the success of the various models of natural systems

that I have discussed in this book based on systems like cellular

automata. But despite these successes, one might still imagine that

other systems could exist in nature that are based, say, on continuous

mathematics, and which would allow computations more sophisticated

than those in systems like cellular automata to be done.

Needless to say, I do not believe that this is the case, and in fact if

one could find a truly fundamental theory of physics along the lines I
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discussed in Chapter 9 it would actually be possible to establish this

with complete certainty. For such a theory would have the feature that

it could be emulated by a universal system of the type I discussed in the

previous chapter—with the result that nowhere in our universe could

computations ever occur that are more sophisticated than those carried

out by the universal systems we have discussed.

So what about computations that we perform abstractly with

computers or in our brains? Can these perhaps be more sophisticated?

Presumably they cannot, at least if we want actual results, and not just

generalities. For if a computation is to be carried out explicitly, then it

must ultimately be implemented as a physical process, and must

therefore be subject to the same limitations as any such process.

But as I discussed in the previous section, beyond asserting that

there is an upper limit to computational sophistication, the Principle of

Computational Equivalence also makes the much stronger statement

that almost all processes except those that are obviously simple

actually achieve this limit.

And this is related to what I believe is a very fundamental

abstract fact: that among all possible systems with behavior that is not

obviously simple an overwhelming fraction are universal.

So what would be involved in establishing this fact? 

One could imagine doing much as I did early in this book and

successively looking at every possible rule for some type of system like

a cellular automaton. And if one did this what one would find is that

many of the rules exhibit obviously simple repetitive or nested

behavior. But as I discovered early in this book, many also do not, and

instead exhibit behavior that is often vastly more complex. 

And what the Principle of Computational Equivalence then

asserts is that the vast majority of such rules will be universal.

If one starts from scratch then it is not particularly difficult to

construct rules—though usually fairly complicated ones—that one

knows are universal. And from the result in the previous chapter that

rule 110 is universal it follows for example that any rule containing this

one must also be universal. But if one is just given an arbitrary rule—
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and especially a simple one—then it can be extremely difficult to

determine whether or not the rule is universal. 

As we discussed in the previous chapter, the usual way to

demonstrate that a rule is universal is to find a scheme for setting up

initial conditions and for decoding output that makes the rule emulate

some other rule that is already known to be universal.

But the problem is that in any particular case there is almost no

limit on how complicated such a scheme might need to be. In fact,

about the only restriction is that the scheme itself should not exhibit

universality just in setting up initial conditions and decoding output. 

And indeed it is almost inevitable that the scheme will have to

be at least somewhat complicated: for if a system is to be universal

then it must be able to emulate any of the huge range of other systems

that are universal—with the result that specifying which particular

such system it is going to emulate for the purposes of a proof will

typically require giving a fair amount of information, all of which

must somehow be part of the encoding scheme.

It is often even more difficult to prove that a system is not

universal than to prove that it is. For what one needs to show is that no

possible scheme can be devised that will allow the system to emulate

any other universal system. And usually the only way to be sure of this

is to have a more or less complete analysis of all possible behavior that

the system can exhibit.

If this behavior always has an obvious repetitive or nested form

then it will often be quite straightforward to analyze. But as we saw in

Chapter 10, in almost no other case do standard methods of perception

and analysis allow one to make much progress at all.

As mentioned in Chapter 10, however, I do know of a few

systems based on numbers for which a fairly complete analysis can be

given even though the overall behavior is not repetitive or nested or

otherwise obviously simple. And no doubt some other examples like

this do exist. But it is my strong belief—as embodied in the Principle of

Computational Equivalence—that in the end the vast majority of

systems whose behavior is not obviously simple will turn out to be

universal.
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If one tries to use some kind of systematic procedure to test

whether systems are universal then inevitably there will be three types

of outcomes. Sometimes the procedure will successfully prove that a

system is universal, and sometimes it will prove that it is not. But very

often the procedure will simply come to no definite conclusion, even

after spending a large amount of effort.

Yet in almost all such cases the Principle of Computational

Equivalence asserts that the systems are in fact universal. And although

almost inevitably it will never be easy to prove this in any great

generality, my guess is that, as the decades go by, more and more

specific rules will end up being proved to exhibit universality.

But even if one becomes convinced of the abstract fact that out of

all possible rules that do not yield obviously simple behavior the vast

majority are universal, this still does not quite establish the assertion

made by the Principle of Computational Equivalence that rules of this

kind that appear in nature and elsewhere are almost always universal.

For it could still be that the particular rules that appear are

somehow specially selected to be ones that are not universal. And

certainly there are all sorts of situations in which rules are constrained

to have behavior that is too simple to support universality. Thus, for

example, in most kinds of engineering one tends to pick rules whose

behavior is simple enough that one can readily predict it. And as I

discussed in Chapter 8, something similar seems to happen with rules

in biology that are determined by natural selection.

But when there are no constraints that force simple overall

behavior, my guess is that most rules that appear in nature can be

viewed as being selected in no special way—save perhaps for the fact

that the structure of the rules themselves tends to be fairly simple.

And what this means is that such rules will typically show the

same features as rules chosen at random from all possibilities—with the

result that presumably they do in the end exhibit universality in almost

all cases where their overall behavior is not obviously simple.

But even if a wide range of systems can indeed be shown to be

universal this is still not enough to establish the full Principle of

Computational Equivalence. For the Principle of Computational



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

724

Equivalence is concerned not only with the computational

sophistication of complete systems but also with the computational

sophistication of specific processes that occur within systems.

And when one says that a particular system is universal what one

means is that it is possible by choosing appropriate initial conditions

to make the system perform computations of essentially any

sophistication. But from this there is no guarantee that the vast

majority of initial conditions—including perhaps all those that could

readily arise in nature—will not just yield behavior that corresponds

only to very simple computations.

And indeed in the proof of the universality of rule 110 in the

previous chapter extremely complicated initial conditions were used to

perform even rather simple computations. 

But the Principle of Computational Equivalence asserts that in

fact even if it comes from simple initial conditions almost all behavior

that is not obviously simple will in the end correspond to computations

of equivalent sophistication.

And certainly there are all sorts of pictures in this book that lend

support to this idea. For over and over again we have seen that simple

initial conditions are quite sufficient to produce behavior of immense

complexity, and that making the initial conditions more complicated

typically does not lead to behavior that looks any different.

Quite often part of the reason for this, as illustrated in the

pictures on the facing page, is that even with a single very simple initial

condition the actual evolution of a system will generate blocks that

correspond to essentially all possible initial conditions. And this means

that whatever behavior would be seen with a given overall initial

condition, that same behavior will also be seen at appropriate places in

the single pattern generated from a specific initial condition.

So this suggests a way of having something analogous to

universality in a single pattern instead of in a complete system. The

idea would be that a pattern that is universal could serve as a kind of

directory of possible computations—with different regions in the

pattern giving results for all possible different initial conditions.
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So as a simple example one could imagine having a pattern laid

out on a three-dimensional array with each successive vertical plane

giving the evolution of some one-dimensional universal system from

each of its successive possible initial conditions. And with this setup

any computation, regardless of its sophistication, must appear

somewhere in the pattern.

Occurrences of progressively longer blocks in the pattern generated by rule 30 starting from a single black cell. So far as I can
tell, all possible blocks eventually appear, potentially letting the pattern serve as a kind of directory of all possible computations.
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In a pattern like the one obtained from rule 30 above different

computations are presumably not arranged in any such straightforward

way. But I strongly suspect that even though it may be quite impractical

to find particular computations that one wants, it is still the case that

essentially any possible computation exists somewhere in the pattern.

Much as in the case of universality for complete systems,

however, the Principle of Computational Equivalence does not just say

that a sophisticated computation will be found somewhere in a pattern

produced by a system like rule 30. Rather, it asserts that unless it is

obviously simple essentially any behavior that one sees should

correspond to a computation of equivalent sophistication.

And in a sense this can be viewed as providing a new way to

define the very notion of computation. For it implies that essentially

any piece of complex behavior that we see corresponds to a kind of

lump of computation that is at some level equivalent.

It is a little like what happens in thermodynamics, where all

sorts of complicated microscopic motions are identified as

corresponding in some uniform way to a notion of heat. 

But computation is both a much more general and much more

powerful notion than heat. And as a result, the Principle of

Computational Equivalence has vastly richer implications than the

laws of thermodynamics—or for that matter, than essentially any single

collection of laws in science.

The Validity of the Principle

With the intuition of traditional science the Principle of Computational

Equivalence—and particularly many of its implications—might seem

almost absurd. But as I have developed more and more new intuition

from the discoveries in this book so I have become more and more

certain that the Principle of Computational Equivalence must be valid.

But like any principle in science with real content it could in the

future always be found that at least some aspect of the Principle of

Computational Equivalence is not valid. For as a law of nature the

principle could turn out to disagree with what is observed in our
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universe, while as an abstract fact it could simply represent an incorrect

deduction, and even as a definition it could prove not useful or relevant.

But as more and more evidence is accumulated for phenomena

that would follow from the principle, so it becomes more and more

reasonable to expect that at least in some formulation or another the

principle itself must be valid.

As with many fundamental principles the most general

statement of the Principle of Computational Equivalence may at first

seem quite vague. But almost any specific application of the principle

will tend to suggest more specific and precise statements.

Needless to say, it will always be possible to come up with

statements that might seem related to the Principle of Computational

Equivalence but are not in fact the same. And indeed I suspect this will

happen many times over the years to come. For if one tries to use

methods from traditional science and mathematics it is almost

inevitable that one will be led to statements that are rather different

from the actual Principle of Computational Equivalence.

Indeed, my guess is that there is basically no way to formulate an

accurate statement of the principle except by using methods from the

kind of science introduced in this book. And what this means is that

almost any statement that can, for example, readily be investigated by

the traditional methods of mathematical proof will tend to be largely

irrelevant to the true Principle of Computational Equivalence.

In the course of this book I have made a variety of discoveries

that can be interpreted as limited versions of the Principle of

Computational Equivalence. And as the years and decades go by, it is

my expectation that many more such discoveries will be made. And as

these discoveries are absorbed, I suspect that general intuition in

science will gradually shift, until in the end the Principle of

Computational Equivalence will come to seem almost obvious.

But as of now the principle is far from obvious to most of those

whose intuition is derived from traditional science. And as a result all

sorts of objections to the principle will no doubt be raised. Some of

them will presumably be based on believing that actual systems have
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less computational sophistication than is implied by the principle,

while others will be based on believing that they have more.

But at an underlying level I suspect that the single most common

cause of objections will be confusion about various idealizations that

are made in traditional models for systems. For even though a system

itself may follow the Principle of Computational Equivalence, there is

no guarantee that this will also be true of idealizations of the system.

As I discussed at the beginning of Chapter 8, finding a good model

for a system is mostly about finding idealizations that are as simple as

possible, but that nevertheless still capture the important features of

the system. And the point is that in the past there was never a clear idea

that computational capabilities of systems might be important, so these

were usually not captured correctly when models were made.

Yet one of the characteristics of the kinds of models based on

simple programs that I have developed in this book is that they do

appear successfully to capture the computational capabilities of a wide

range of systems in nature and elsewhere. And in the context of such

models what I have discovered is that there is indeed all sorts of

evidence for the Principle of Computational Equivalence.

But if one uses the kinds of traditional mathematical models that

have in the past been common, things can seem rather different.

For example, many such models idealize systems to the point

where their complete behavior can be described just by some simple

mathematical formula that relates a few overall numerical quantities.

And if one thinks only about this idealization one almost inevitably

concludes that the system has very little computational sophistication.

It is also common for traditional mathematical models to

suggest too much computational sophistication. For example, as I

discussed at the end of Chapter 7, models based on traditional

mathematical equations often give constraints on behavior rather

than explicit rules for generating behavior. 

And if one assumes that actual systems somehow always manage

to find ways to satisfy such constraints, one will be led to conclude that

these systems must be computationally more sophisticated than any of



T H E  P R I N C I P L E  O F  C O M P U T A T I O N A L E Q U I V A L E N C E C H A P T E R  1 2

729

the universal systems I have discussed—and must thus violate the

Principle of Computational Equivalence.

For as I will describe in more detail later in this chapter, an

ordinary universal system cannot in any finite number of steps

guarantee to be able to tell whether, say, there is any pattern of black

and white squares that satisfies some constraint of the type I discussed

at the end of Chapter 5. Yet traditional mathematical models often in

effect imply that systems in nature can do things like this.

But I explained at the end of Chapter 7 this is presumably just an

idealization. For while in simple cases complicated molecules may for

example arrange themselves in configurations that minimize energy,

the evidence is that in more complicated cases they typically do not.

And in fact, what they actually seem to do is instead to explore different

configurations by an explicit process of evolution that is quite

consistent with the Principle of Computational Equivalence.

One of the features of cellular automata and most of the other

computational systems that I have discussed in this book is that they

are in some fundamental sense discrete. Yet traditional mathematical

models almost always involve continuous quantities. And this has in

the past often been taken to imply that systems in nature are able to do

computations that are somehow fundamentally more sophisticated

than standard computational systems.

But for several reasons I do not believe this conclusion. 

For a start, the experience has been that if one actually tries to

build analog computers that make use of continuous physical processes

they usually end up being less powerful than ordinary digital

computers, rather than more so.

And indeed, as I have discussed several times in this book, it is in

many cases clear that the whole notion of continuity is just an

idealization—although one that happens to be almost required if one

wants to make use of traditional mathematical methods.

Fluids provide one obvious example. For usually they are thought

of as being described by continuous mathematical equations. But at an

underlying level real fluids consist of discrete particles. And this means

that whatever the mathematical equations may suggest, the actual
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ultimate computational capabilities of fluids must be those of a system

of discrete particles.

But while it is known that many systems in nature are made up

of discrete elements, it is still almost universally believed that there are

some things that are fundamentally continuous—notably positions in

space and values of quantum mechanical probability amplitudes.

Yet as I discussed in Chapter 9 my strong suspicion is that at a

fundamental level absolutely every aspect of our universe will in the

end turn out to be discrete. And if this is so, then it immediately

implies that there cannot ever ultimately be any form of continuity in

our universe that violates the Principle of Computational Equivalence.

But what if one somehow restricts oneself to a domain where

some particular system seems continuous? Can one even at this level

perform more sophisticated computations than in a discrete system?

My guess is that for all practical purposes one cannot. Indeed, it is

my suspicion that with almost any reasonable set of assumptions even

idealized perfectly continuous systems will never in fact be able to

perform fundamentally more sophisticated computations.

In a sense the most basic defining characteristic of continuous

systems is that they operate on arbitrary continuous numbers. But just

to represent every such number in general requires something like an

infinite sequence of digits. And so this implies that continuous systems

must always in effect be able to operate on infinite sequences.

But in itself this is not particularly remarkable. For even a

one-dimensional cellular automaton can be viewed as updating an

infinite sequence of cells at every step in its evolution. But one feature

of this process is that it is fundamentally local: each cell behaves in a

way that is determined purely by cells in a local neighborhood around it.

Yet even the most basic arithmetic operations on continuous

numbers typically involve significant non-locality. Thus, for example,

when one adds two numbers together there can be carries in the digit

sequence that propagate arbitrarily far. And if one computes even a

function like  almost any digit in  will typically have an effect on

almost any digit in the result, as the pictures on the facing page indicate.

1�x x
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But can this detailed kind of phenomenon really be used as the

basis for doing fundamentally more sophisticated computations? To

compare the general computational capabilities of continuous and

discrete systems one needs to find some basic scheme for constructing

inputs and decoding outputs that one can use in both types of systems.

And the most obvious and practical approach is to require that this

always be done by finite discrete processes. 

But at least in this case it seems fairly clear that none of the

simple functions shown above can for example ever lead to results that

go beyond ones that could readily be generated by the evolution of

ordinary discrete systems. And the same is presumably true if one

works with essentially any of what are normally considered standard

mathematical functions. But what happens if one assumes that one can

set up a system that not only finds values of such functions but also

finds solutions to arbitrary equations involving them?

With pure polynomial equations one can deduce from results in

algebra that no fundamentally more sophisticated computations

become possible. But as soon as one even allows trigonometric

functions, for example, it turns out that it becomes possible to

construct equations for which finding a solution is equivalent to finding

x 1/x x2 �!!!!x

x 1/x x2 �!!!!x

Results from mathematical operations on numbers with similar digit sequences. Each successive line in each picture gives the digit
sequence obtained by using a value of  in which one successive digit has been reversed. The top row of pictures start from the
repetitive base 2 digit sequence of ; the bottom row of pictures from . The lack of coherence between successive
digit sequences in each picture reflects the non-locality of mathematical operations when applied to digit sequences.

x

x = 3/5 x = p /4



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

732

the outcome of an infinite number of steps in the evolution of a system

like a cellular automaton.

And while these particular types of equations have never

seriously been proposed as idealizations of actual processes in nature or

elsewhere, it turns out that a related phenomenon can presumably

occur in differential equations—which represent the most common

basis for mathematical models in most areas of traditional science.

Differential equations of the kind we discussed at the end of

Chapter 4 work at some level a little like cellular automata. For given

the state of a system, they provide rules for determining its state at

subsequent times. But whereas cellular automata always evolve only in

discrete steps, differential equations instead go through a continuous

process of evolution in which time appears just as a parameter.

And by making simple algebraic changes to the way that time

enters a differential equation one can often arrange, as in the pictures

below, that processes that would normally take an infinite time will

actually always occur over only a finite time. 

� �

$tt u[t, x] Ð $xx u[t, x] (1 - t)4 ($tt u[t, x] - 2 $t u[t, x] / (1 - t)) Ð $xx u[t, x]

Indications of how an infinite amount of computational work can in principle be performed in a finite
time in continuous systems like partial differential equations. The top left picture shows a solution to
the wave equation. The top right picture shows a solution to an equation obtained from the wave
equation by transforming the time variable according to . The bottom row shows what the
same transformation does to patterns of the kind that are generated by simple cellular automata. It
is presumably possible to construct partial differential equations that give both the original and
transformed versions of these patterns.

t ! 1 - 1/ t
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So if such processes can correspond to the evolution of systems

like cellular automata, then it follows at least formally that differential

equations should be able to do in finite time computations that would

take a discrete system like a cellular automaton an infinite time to do.

But just as it is difficult to make an analog computer faithfully

reproduce many steps in a discrete computation, so also it seems likely

that it will be difficult to set up differential equations that for arbitrarily

long times successfully manage to emulate the precise behavior of

systems like cellular automata. And in fact my suspicion is that to

make this work will require taking limits that are rather similar to

following the evolution of the differential equations for an infinite time.

So my guess is that even within the formalism of traditional

continuous mathematics realistic idealizations of actual processes will

never ultimately be able to perform computations that are more

sophisticated than the Principle of Computational Equivalence implies.

But what about the process of human thinking? Does it also

follow the Principle of Computational Equivalence? Or does it

somehow manage to do computations that are more sophisticated than

the Principle of Computational Equivalence implies?

There is a great tendency for us to assume that there must be

something extremely sophisticated about human thinking. And

certainly the fact that present-day computer systems do not emulate

even some of its most obvious features might seem to support this

view. But as I discussed in Chapter 10, particularly following the

discoveries in this book, it is my strong belief that the basic

mechanisms of human thinking will in the end turn out to correspond

to rather simple computational processes.

So what all of this suggests is that systems in nature do not

perform computations that are more sophisticated than the Principle of

Computational Equivalence allows. But on its own this is not enough to

establish the complete Principle of Computational Equivalence. For the

principle also implies a lower limit on computational sophistication—

making the assertion that almost any process that is not obviously

simple will tend to be equivalent in its computational sophistication.
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And one of the consequences of this is that it implies that most

systems whose behavior seems complex should be universal. Yet as of

now we only know for certain about fairly few systems that are

universal, albeit including ones like rule 110 that have remarkably

simple rules. And no doubt the objection will be raised that other

systems whose behavior seems complex may not in fact be universal.

In particular, it might be thought that the behavior of systems

like rule 30—while obviously at least somewhat computationally

sophisticated—might somehow be too random to be harnessed to allow

complete universality. And although in Chapter 11 I did give a few

pieces of evidence that point towards rule 30 being universal, there can

still be doubts until this has been proved for certain.

And in fact there is a particularly abstruse result in mathematical

logic that might be thought to show that systems can exist that exhibit

some features of arbitrarily sophisticated computation, but which are

nevertheless not universal. For in the late 1950s a whole hierarchy of

systems with so-called intermediate degrees were constructed with the

property that questions about the ultimate output from their evolution

could not in general be answered by finite computation, but for which

the actual form of this output was not flexible enough to be able to

emulate a full range of other systems, and thus support universality.

But when one examines the known examples of such systems—

all of which have very intricate underlying rules—one finds that even

though the particular part of their behavior that is identified as output

is sufficiently restricted to avoid universality, almost every other part of

their behavior nevertheless does exhibit universality—just as one

would expect from the Principle of Computational Equivalence.

So why else might systems like rule 30 fail to be universal? We

know from Chapter 11 that systems whose behavior is purely repetitive

or purely nested cannot be universal. And so we might wonder whether

perhaps some other form of regularity could be present that would

prevent systems like rule 30 from being universal.

When we look at the patterns produced by such systems they

certainly do not seem to have any great regularity; indeed in most
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respects they seem far more random than patterns produced by systems

like rule 110 that we already know are universal.

But how can we be sure that we are not being misled by

limitations in our powers of perception and analysis—and that an

extraterrestrial intelligence, for example, might not immediately

recognize regularity that would show that universality is impossible?

For as we saw in Chapter 10 the methods of perception and

analysis that we normally use cannot detect any form of regularity

much beyond repetition or at most nesting. So this means that even if

some higher form of regularity is in fact present, we as humans might

never be able to tell.

In the history of science and mathematics both repetition and

nesting feature prominently. And if there was some common higher

form of regularity its discovery would no doubt lead to all sorts of

important new advances in science and mathematics.

And when I first started looking at systems like cellular automata

I in effect implicitly assumed that some such form of regularity must

exist. For I was quite certain that even though I saw behavior that

seemed to me complex the simplicity of the underlying rules must

somehow ultimately lead to great regularity in it.

But as the years have gone by—and as I have investigated more

and more systems and tried more and more methods of analysis—I have

gradually come to the conclusion that there is no hidden regularity in

any large class of systems, and that instead what the Principle of

Computational Equivalence suggests is correct: that beyond systems

with obvious regularities like repetition and nesting most systems are

universal, and are equivalent in their computational sophistication.

Explaining the Phenomenon of Complexity

Early in this book I described the remarkable discovery that even

systems with extremely simple underlying rules can produce behavior

that seems to us immensely complex. And in the course of this book, I

have shown a great many examples of this phenomenon, and have
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argued that it is responsible for much of the complexity we see in

nature and elsewhere. 

Yet so far I have given no fundamental explanation for the

phenomenon. But now, by making use of the Principle of Computational

Equivalence, I am finally able to do this. 

And the crucial point is to think of comparing the computational

sophistication of systems that we study with the computational

sophistication of the systems that we use to study them.

At first we might assume that our brains and mathematical

methods would always be capable of vastly greater computational

sophistication than systems based on simple rules—and that as a result

the behavior of such systems would inevitably seem to us fairly simple.

But the Principle of Computational Equivalence implies that this

is not the case. For it asserts that essentially any processes that are not

obviously simple are equivalent in their computational sophistication.

So this means that even though a system may have simple underlying

rules its process of evolution can still computationally be just as

sophisticated as any of the processes we use for perception and analysis.

And this is the fundamental reason that systems with simple

rules are able to show behavior that seems to us complex.

At first, one might think that this explanation would depend on

the particular methods of perception and analysis that we as humans

happen to use. But one of the consequences of the Principle of

Computational Equivalence is that it does not. For the principle asserts

that the same computational equivalence exists for absolutely any

method of perception and analysis that can actually be used.

In traditional science the idealization is usually made that

perception and analysis are in a sense infinitely powerful, so that they

need not be taken into account when one draws conclusions about a

system. But as soon as one tries to deal with systems whose behavior is

anything but fairly simple one finds that this idealization breaks down,

and it becomes necessary to consider perception and analysis as explicit

processes in their own right.

If one studies systems in nature it is inevitable that both the

evolution of the systems themselves and the methods of perception and
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analysis used to study them must be processes based on natural laws.

But at least in the recent history of science it has normally been

assumed that the evolution of typical systems in nature is somehow

much less sophisticated a process than perception and analysis.

Yet what the Principle of Computational Equivalence now

asserts is that this is not the case, and that once a rather low threshold

has been reached, any real system must exhibit essentially the same

level of computational sophistication. So this means that observers will

tend to be computationally equivalent to the systems they observe—

with the inevitable consequence that they will consider the behavior of

such systems complex.

So in the end the fact that we see so much complexity can be

attributed quite directly to the Principle of Computational Equivalence,

and to the fact that so many of the systems we encounter in practice

turn out to be computationally equivalent.

Computational Irreducibility

When viewed in computational terms most of the great historical

triumphs of theoretical science turn out to be remarkably similar in

their basic character. For at some level almost all of them are based on

finding ways to reduce the amount of computational work that has to

be done in order to predict how some particular system will behave.

Most of the time the idea is to derive a mathematical formula

that allows one to determine what the outcome of the evolution of the

system will be without explicitly having to trace its steps. 

And thus, for example, an early triumph of theoretical science

was the derivation of a formula for the position of a single idealized

planet orbiting a star. For given this formula one can just plug in

numbers to work out where the planet will be at any point in the

future, without ever explicitly having to trace the steps in its motion.

But part of what started my whole effort to develop the new kind

of science in this book was the realization that there are many common

systems for which no traditional mathematical formulas have ever been

found that readily describe their overall behavior.
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At first one might have thought this must be some kind of

temporary issue, that could be overcome with sufficient cleverness. But

from the discoveries in this book I have come to the conclusion that in

fact it is not, and that instead it is one of the consequences of a very

fundamental phenomenon that follows from the Principle of

Computational Equivalence and that I call computational irreducibility.

If one views the evolution of a system as a computation, then

each step in this evolution can be thought of as taking a certain amount

of computational effort on the part of the system. But what traditional

theoretical science in a sense implicitly relies on is that much of this

effort is somehow unnecessary—and that in fact it should be possible to

find the outcome of the evolution with much less effort.

And certainly in the first two examples above this is the case. For

just as with the orbit of an idealized planet there is in effect a

straightforward formula that gives the state of each system after any

code 870 code 843 code 1599

Examples of computational reducibility and irreducibility in the evolution of cellular automata. The
first two rules yield simple repetitive computationally reducible behavior in which the outcome after
many steps can readily be deduced without tracing each step. The third rule yields behavior that
appears to be computationally irreducible, so that its outcome can effectively be found only by
explicitly tracing each step. The cellular automata shown here all have 3-color totalistic rules. 
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number of steps. So even though the systems themselves generate their

behavior by going through a whole sequence of steps, we can readily

shortcut this process and find the outcome with much less effort.

But what about the third example on the facing page? What does

it take to find the outcome in this case? It is always possible to do an

experiment and explicitly run the system for a certain number of steps

and see how it behaves. But to have any kind of traditional theory one

must find a shortcut that involves much less computation.

Yet from the picture on the facing page it is certainly not obvious

how one might do this. And looking at the pictures on the next page it

begins to seem quite implausible that there could ever in fact be any

way to find a significant shortcut in the evolution of this system. 

So while the behavior of the first two systems on the facing page

is readily seen to be computationally reducible, the behavior of the

third system appears instead to be computationally irreducible.

In traditional science it has usually been assumed that if one can

succeed in finding definite underlying rules for a system then this

means that ultimately there will always be a fairly easy way to predict

how the system will behave. 

Several decades ago chaos theory pointed out that to have enough

information to make complete predictions one must in general know

not only the rules for a system but also its complete initial conditions.

But now computational irreducibility leads to a much more

fundamental problem with prediction. For it implies that even if in

principle one has all the information one needs to work out how some

particular system will behave, it can still take an irreducible amount of

computational work actually to do this. 

Indeed, whenever computational irreducibility exists in a system

it means that in effect there can be no way to predict how the system

will behave except by going through almost as many steps of

computation as the evolution of the system itself.

In traditional science it has rarely even been recognized that there

is a need to consider how systems that are used to make predictions

actually operate. But what leads to the phenomenon of computational

irreducibility is that there is in fact always a fundamental competition
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5000 steps in the evolution of the third system from the previous page, starting from several initial conditions. The complexity of
the behavior makes it seem inconceivable that there could ever be a procedure that would always immediately find its outcome.
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between systems used to make predictions and systems whose behavior

one tries to predict. 

For if meaningful general predictions are to be possible, it must at

some level be the case that the system making the predictions be able

to outrun the system it is trying to predict. But for this to happen the

system making the predictions must be able to perform more

sophisticated computations than the system it is trying to predict.

In traditional science there has never seemed to be much problem

with this. For it has normally been implicitly assumed that with our

powers of mathematics and general thinking the computations we use

to make predictions must be almost infinitely more sophisticated than

those that occur in most systems in nature and elsewhere whose

behavior we try to predict. 

But the remarkable assertion that the Principle of Computational

Equivalence makes is that this assumption is not correct, and that in fact

almost any system whose behavior is not obviously simple performs

computations that are in the end exactly equivalent in their sophistication.

So what this means is that systems one uses to make predictions

cannot be expected to do computations that are any more sophisticated

than the computations that occur in all sorts of systems whose behavior

we might try to predict. And from this it follows that for many systems

no systematic prediction can be done, so that there is no general way to

shortcut their process of evolution, and as a result their behavior must

be considered computationally irreducible.

If the behavior of a system is obviously simple—and is say either

repetitive or nested—then it will always be computationally reducible.

But it follows from the Principle of Computational Equivalence that in

practically all other cases it will be computationally irreducible.

And this, I believe, is the fundamental reason that traditional

theoretical science has never managed to get far in studying most types

of systems whose behavior is not ultimately quite simple.

For the point is that at an underlying level this kind of science

has always tried to rely on computational reducibility. And for example

its whole idea of using mathematical formulas to describe behavior

makes sense only when the behavior is computationally reducible.
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So when computational irreducibility is present it is inevitable

that the usual methods of traditional theoretical science will not work.

And indeed I suspect the only reason that their failure has not been

more obvious in the past is that theoretical science has typically tended

to define its domain specifically in order to avoid phenomena that do

not happen to be simple enough to be computationally reducible.

But one of the major features of the new kind of science that I

have developed is that it does not have to make any such restriction.

And indeed many of the systems that I study in this book are no doubt

computationally irreducible. And that is why—unlike most traditional

works of theoretical science—this book has very few mathematical

formulas but a great many explicit pictures of the evolution of systems.

It has in the past couple of decades become increasingly common

in practice to study systems by doing explicit computer simulations of

their behavior. But normally it has been assumed that such simulations

are ultimately just a convenient way to do what could otherwise be

done with mathematical formulas.

But what my discoveries about computational irreducibility now

imply is that this is not in fact the case, and that instead there are many

common systems whose behavior cannot in the end be determined at

all except by something like an explicit simulation.

Knowing that universal systems exist already tells one that this

must be true at least in some situations. For consider trying to outrun

the evolution of a universal system. Since such a system can emulate

any system, it can in particular emulate any system that is trying to

outrun it. And from this it follows that nothing can systematically

outrun the universal system. For any system that could would in effect

also have to be able to outrun itself.

But before the discoveries in this book one might have thought

that this could be of little practical relevance. For it was believed that

except among specially constructed systems universality was rare. And

it was also assumed that even when universality was present, very

special initial conditions would be needed if one was ever going to

perform computations at anything like the level of sophistication

involved in most methods of prediction.
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But the Principle of Computational Equivalence asserts that this

is not the case, and that in fact almost any system whose behavior is

not obviously simple will exhibit universality and will perform

sophisticated computations even with typical simple initial conditions. 

So the result is that computational irreducibility can in the end

be expected to be common, so that it should indeed be effectively

impossible to outrun the evolution of all sorts of systems.

One slightly subtle issue in thinking about computational

irreducibility is that given absolutely any system one can always at

least nominally imagine speeding up its evolution by setting up a rule

that for example just executes several steps of evolution at once.

But insofar as such a rule is itself more complicated it may in the

end achieve no real reduction in computational effort. And what is

more important, it turns out that when there is true computational

reducibility its effect is usually much more dramatic.

The pictures on the next page show typical examples based on

cellular automata that exhibit repetitive and nested behavior. In the

patterns on the left the color of each cell at any given step is in effect

found by tracing the explicit evolution of the cellular automaton up to

that step. But in the pictures on the right the results for particular cells are

instead found by procedures that take much less computational effort.

These procedures are again based on cellular automata. But now

what the cellular automata do is to take specifications of positions of

cells, and then in effect compute directly from these the colors of cells.

The way things are set up the initial conditions for these cellular

automata consist of digit sequences of numbers that give positions. The

color of a particular cell is then found by evolving for a number of steps

equal to the length of these input digit sequences. 

And this means for example that the outcome of a million steps

of evolution for either of the cellular automata on the left is now

determined by just 20 steps of evolution, where 20 is the length of the

base 2 digit sequence of the number 1,000,000.

And this turns out to be quite similar to what happens with

typical mathematical formulas in traditional theoretical science. For

the point of such formulas is usually to allow one to give a number as
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input, and then to compute directly something that corresponds, say, to

the outcome of that number of steps in the evolution of a system.

In traditional mathematics it is normally assumed that once one

has an explicit formula involving standard mathematical functions

then one can in effect always evaluate this formula immediately.

But evaluating a formula—like anything else—is a computational

process. And unless some digits effectively never matter, this process

cannot normally take less steps than there are digits in its input. 

Indeed, it could in principle be that the process could take a

number of steps proportional to the numerical value of its input. But if

this were so, then it would mean that evaluating the formula would
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Examples of computational reducibility in action. The pictures on the left show patterns produced by the ordinary evolution of cellular
automata with elementary rules 188 and 60. The pictures on the right show how colors of particular cells in these patterns can be found
with much less computational effort. In each case the position of a cell is specified by a pair of numbers given as base 2 digit sequences
in the initial conditions for a cellular automaton. The evolution of the cellular automaton then quickly determines what the color of the cell
at that position in the pattern on the left will be. For rule 188 the cellular automaton that does this involves 12 colors; for rule 60 it involves
6. In general, to find the color of a cell after  steps of rule 188 or rule 60 evolution takes about  steps. Compare page 608. t Log[2, t]
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require as much effort as just tracing each step in the original process

whose outcome the formula was supposed to give.

And the crucial point that turns out to be the basis for much of

the success of traditional theoretical science is that in fact most

standard mathematical functions can be evaluated in a number of steps

that is far smaller than the numerical value of their input, and that

instead normally grows only slowly with the length of the digit

sequence of their input.

So the result of this is that if there is a traditional mathematical

formula for the outcome of a process then almost always this means

that the process must show great computational reducibility.

In practice, however, the vast majority of cases for which

traditional mathematical formulas are known involve behavior that is

ultimately either uniform or repetitive. And indeed, as we saw in

Chapter 10, if one uses just standard mathematical functions then it is

rather difficult even to reproduce many simple examples of nesting.

But as the pictures on the facing page and in Chapter 10 illustrate, if

one allows more general kinds of underlying rules then it becomes quite

straightforward to set up procedures that with very little computational

effort can find the color of any element in any nested pattern.

So what about more complex patterns, like the rule 30 cellular

automaton pattern at the bottom of the page? 

When I first generated such patterns I spent a huge amount of

time trying to analyze them and trying to find a procedure that would

allow me to compute directly the color of each cell. And indeed it was

the fact that I was never able to make much progress in doing this that

first led me to consider the possibility that there could be a

phenomenon like computational irreducibility.

And now, what the Principle of Computational Equivalence

implies is that in fact almost any system whose behavior is not

obviously simple will tend to exhibit computational irreducibility.

But particularly when the underlying rules are simple there is

often still some superficial computational reducibility. And so, for

example, in the rule 30 pattern on the right one can tell whether a cell

at a given position has any chance of not being white just by doing a

An example of a pattern
where it is difficult to
compute directly the color
of a particular cell. 



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

746

very short computation that tests whether that position lies outside the

center triangular region of the pattern. And in a class 4 cellular

automaton such as rule 110 one can readily shortcut the process of

evolution for at least a limited number of steps in places where there

happen to be only a few well-separated localized structures present.

And indeed in general almost any regularities that we manage to

recognize in the behavior of a system will tend to reflect some kind of

computational reducibility in this behavior. 

If one views the pattern of behavior as a piece of data, then as we

discussed in Chapter 10 regularities in it allow a compressed

description to be found. But the existence of a compressed description

does not on its own imply computational reducibility. For any system

that has simple rules and simple initial conditions—including for

example rule 30—will always have such a description. 

But what makes there be computational reducibility is when only

a short computation is needed to find from the compressed description

any feature of the actual behavior.

And it turns out that the kinds of compressed descriptions that

can be obtained by the methods of perception and analysis that we use

in practice and that we discussed in Chapter 10 all essentially have this

property. So this is why regularities that we recognize by these methods

do indeed reflect the presence of computational reducibility.

But as we saw in Chapter 10, in almost any case where there is

not just repetitive or nested behavior, our normal powers of perception

and analysis recognize very few regularities—even though at some level

the behavior we see may still be generated by extremely simple rules.

And this supports the assertion that beyond perhaps some small

superficial amount of computational reducibility a great many systems

are in the end computationally irreducible. And indeed this assertion

explains, at least in part, why our methods of perception and analysis

cannot be expected to go further in recognizing regularities.

But if behavior that we see looks complex to us, does this

necessarily mean that it can exhibit no computational reducibility?

One way to try to get an idea about this is just to construct patterns
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(m) Mod [d [x].d [y], 2] (n) If[Count [d [y] - d [x], 1] Ð 1, 1, 0] (o) If[Count [d [y] - d [x], 0] Ð 3, 1, 0] (p) If[Count [d [y] - d [x], 0] > 3, 1, 0]

( i) Mod [Mod [y, x], 2] ( j) Mod [Binomial [y, x], 2] (k) Mod [DigitCount [x y, 2, 1], 2] ( l) If[GCD[x, y] Ð 1, 1, 0]

(e) Mod [Quotient [y, x], 2] ( f) Mod [Quotient [y 3 , x 2 ], 2] (g) Mod [Quotient [2y , x], 2] (h) Mod [Quotient [3y , 2x ], 2]

(a) If[Mod [Log[x y], 1] > 1/2, 1, 0] (b) If[Mod [Sqrt[x y], 1] > 1/2, 1, 0] (c) If[Mod [Sin[x y], 1] > 1/2, 1, 0] (d ) If[Mod [Sin[x] + Sin[y], 1] > 1/2, 1, 0]

Examples of patterns set up so that a short computation can be used to determine the color of each cell from the numbers representing its
position. Most such patterns look to us quite simple, but the examples shown here were specifically chosen to be ones that look more
complicated. In most of them fairly standard mathematical functions are used, but in unusual combinations. In every picture both  and  run
from 1 to 127.   stands for . (h) is equivalent to digit sequences of powers of 3 in base 2 (see page 120). (j) is essentially
Pascal’s triangle (see page 611). (l) was discussed on page 613. (m) is a nested pattern seen on page 583. The only pattern that is known to be
obtainable by evolving down the page according to a simple local rule is (j), which corresponds to the rule 60 elementary cellular automaton. 

x y

d[n] IntegerDigits[n, 2, 7]
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where we explicitly set up the color of each cell to be determined by

some short computation from the numbers that represent its position.

When we look at such patterns most of them appear to us quite

simple. But as the pictures on the previous page demonstrate, it turns

out to be possible to find examples where this is not so, and where

instead the patterns appear to us at least somewhat complex.

But for such patterns to yield meaningful examples of

computational reducibility it must also be possible to produce them by

some process of evolution—say by repeated application of a cellular

automaton rule. Yet for the majority of cases shown here there is at

least no obvious way to do this.

I have however found one class of systems—already mentioned in

Chapter 10—whose behavior does not appear simple, but nevertheless

turns out to be computationally reducible, as in the pictures on the

facing page. However, I strongly suspect that systems like this are very

rare, and that in the vast majority of cases where the behavior that we

see in nature and elsewhere appears to us complex it is in the end

indeed associated with computational irreducibility.

So what does this mean for science?

In the past it has normally been assumed that there is no

ultimate limit on what science can be expected to do. And certainly the

progress of science in recent centuries has been so impressive that it has

become common to think that eventually it should yield an easy

theory—perhaps a mathematical formula—for almost anything.

But the discovery of computational irreducibility now implies

that this can fundamentally never happen, and that in fact there can be

no easy theory for almost any behavior that seems to us complex.

It is not that one cannot find underlying rules for such behavior.

Indeed, as I have argued in this book, particularly when they are

formulated in terms of programs I suspect that such rules are often

extremely simple. But the point is that to deduce the consequences of

these rules can require irreducible amounts of computational effort.

One can always in effect do an experiment, and just watch the

actual behavior of whatever system one wants to study. But what one
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cannot in general do is to find an easy theory that will tell one without

much effort what every aspect of this behavior will be.

So given this, can theoretical science still be useful at all?

The answer is definitely yes. For even in its most traditional form

it can often deal quite well with those aspects of behavior that happen

to be simple enough to be computationally reducible. And since one can

never know in advance how far computational reducibility will go in a

particular system it is always worthwhile at least to try applying the

traditional methods of theoretical science.

But ultimately if computational irreducibility is present then

these methods will fail. Yet there are still often many reasons to want

to use abstract theoretical models rather than just doing experiments on

actual systems in nature and elsewhere. And as the results in this book

suggest, by using the right kinds of models much can be achieved.

Any accurate model for a system that exhibits computational

irreducibility must at some level inevitably involve computations that

are as sophisticated as those in the system itself. But as I have shown in
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A system whose behavior looks complex but still turns out to be computationally reducible. The system is a cellular automaton with 10
possible colors for each cell. But it can also be viewed as a system based on numbers, in which successive rows are the base 10 digit
sequences of successive powers of 2. And it turns out that there is a fast way to compute row  just from the base 2 digit sequence of

, as the pictures on the right illustrate. This procedure is based on the standard repeated squaring method of finding  by starting
from 2, and then successively squaring the numbers one gets, multiplying by 2 if the corresponding base 2 digit in  is 1. Using this
procedure one can certainly compute the color of any cell on row  by doing about  operations—instead of the  needed if
one carried out the cellular automaton evolution explicitly.
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this book even systems with very simple underlying rules can still

perform computations that are as sophisticated as in any system.

And what this means is that to capture the essential features

even of systems with very complex behavior it can be sufficient to use

models that have an extremely simple basic structure. Given these

models the only way to find out what they do will usually be just to run

them. But the point is that if the structure of the models is simple

enough, and fits in well enough with what can be implemented

efficiently on a practical computer, then it will often still be perfectly

possible to find out many consequences of the model.

And that, in a sense, is what much of this book has been about.

The Phenomenon of Free Will

Ever since antiquity it has been a great mystery how the universe can

follow definite laws while we as humans still often manage to make

decisions about how to act in ways that seem quite free of obvious laws. 

But from the discoveries in this book it finally now seems

possible to give an explanation for this. And the key, I believe, is the

phenomenon of computational irreducibility.

For what this phenomenon implies is that even though a system

may follow definite underlying laws its overall behavior can still have

aspects that fundamentally cannot be described by reasonable laws.

For if the evolution of a system corresponds to an irreducible

computation then this means that the only way to work out how the

system will behave is essentially to perform this computation—with

the result that there can fundamentally be no laws that allow one to

work out the behavior more directly.

And it is this, I believe, that is the ultimate origin of the apparent

freedom of human will. For even though all the components of our

brains presumably follow definite laws, I strongly suspect that their

overall behavior corresponds to an irreducible computation whose

outcome can never in effect be found by reasonable laws.

And indeed one can already see very much the same kind of thing

going on in a simple system like the cellular automaton on the left. For

A cellular automaton whose
behavior seems to show an
analog of free will. Even
though its underlying laws
are definite—and simple—
the behavior is complicated
enough that many aspects of
it seem to follow no definite
laws. (The rule used is the
same as on page 740.)
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even though the underlying laws for this system are perfectly definite,

its overall behavior ends up being sufficiently complicated that many

aspects of it seem to follow no obvious laws at all.

And indeed if one were to talk about how the cellular automaton

seems to behave one might well say that it just decides to do this or

that—thereby effectively attributing to it some sort of free will.

But can this possibly be reasonable? For if one looks at the

individual cells in the cellular automaton one can plainly see that they

just follow definite rules, with absolutely no freedom at all.

But at some level the same is probably true of the individual

nerve cells in our brains. Yet somehow as a whole our brains still

manage to behave with a certain apparent freedom.

Traditional science has made it very difficult to understand how

this can possibly happen. For normally it has assumed that if one can

only find the underlying rules for the components of a system then in a

sense these tell one everything important about the system.

But what we have seen over and over again in this book is that

this is not even close to correct, and that in fact there can be vastly

more to the behavior of a system than one could ever foresee just by

looking at its underlying rules. And fundamentally this is a

consequence of the phenomenon of computational irreducibility.

For if a system is computationally irreducible this means that

there is in effect a tangible separation between the underlying rules for

the system and its overall behavior associated with the irreducible

amount of computational work needed to go from one to the other. 

And it is in this separation, I believe, that the basic origin of the

apparent freedom we see in all sorts of systems lies—whether those

systems are abstract cellular automata or actual living brains.

But so in the end what makes us think that there is freedom in

what a system does? In practice the main criterion seems to be that we

cannot readily make predictions about the behavior of the system. 

For certainly if we could, then this would show us that the

behavior must be determined in a definite way, and so cannot be free.

But at least with our normal methods of perception and analysis one
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typically needs rather simple behavior for us actually to be able to

identify overall rules that let us make reasonable predictions about it.

Yet in fact even in living organisms such behavior is quite

common. And for example particularly in lower animals there are all

sorts of cases where very simple and predictable responses to stimuli

are seen. But the point is that these are normally just considered to be

unavoidable reflexes that leave no room for decisions or freedom.

Yet as soon as the behavior we see becomes more complex we

quickly tend to imagine that it must be associated with some kind of

underlying freedom. For at least with traditional intuition it has always

seemed quite implausible that any real unpredictability could arise in a

system that just follows definite underlying rules.

And so to explain the behavior that we as humans exhibit it has

often been assumed that there must be something fundamentally more

going on—and perhaps something unique to humans.

In the past the most common belief has been that there must be

some form of external influence from fate—associated perhaps with the

intervention of a supernatural being or perhaps with configurations of

celestial bodies. And in more recent times sensitivity to initial

conditions and quantum randomness have been proposed as more

appropriate scientific explanations.

But much as in our discussion of randomness in Chapter 6

nothing like this is actually needed. For as we have seen many times in

this book even systems with quite simple and definite underlying rules

can produce behavior so complex that it seems free of obvious rules. 

And the crucial point is that this happens just through the

intrinsic evolution of the system—without the need for any additional

input from outside or from any sort of explicit source of randomness.

And I believe that it is this kind of intrinsic process—that we

now know occurs in a vast range of systems—that is primarily

responsible for the apparent freedom in the operation of our brains.

But this is not to say that everything that goes on in our brains

has an intrinsic origin. Indeed, as a practical matter what usually seems

to happen is that we receive external input that leads to some train of

thought which continues for a while, but then dies out until we get
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more input. And often the actual form of this train of thought is

influenced by memory we have developed from inputs in the past—

making it not necessarily repeatable even with exactly the same input.

But it seems likely that the individual steps in each train of

thought follow quite definite underlying rules. And the crucial point is

then that I suspect that the computation performed by applying these

rules is often sophisticated enough to be computationally irreducible—

with the result that it must intrinsically produce behavior that seems to

us free of obvious laws.

Undecidability and Intractability

Computational irreducibility is a very general phenomenon with many

consequences. And among these consequences are various phenomena

that have been widely studied in the abstract theory of computation.

In the past it has normally been assumed that these phenomena

occur only in quite special systems, and not, for example, in typical

systems with simple rules or of the kind that might be seen in nature.

But what my discoveries about computational irreducibility now

suggest is that such phenomena should in fact be very widespread, and

should for example occur in many systems in nature and elsewhere.

In this chapter so far I have mostly been concerned with ongoing

processes of computation, analogous to ongoing behavior of systems in

nature and elsewhere. But as a theoretical matter one can ask what the

final outcome of a computation will be, after perhaps an infinite

number of steps. And if one does this then one encounters the

phenomenon of undecidability that was identified in the 1930s.

The pictures on the next page show an example. In each case

knowing the final outcome is equivalent to deciding what will

eventually happen to the pattern generated by the cellular automaton

evolution. Will it die out? Will it stabilize and become repetitive? Or

will it somehow continue to grow forever? 

One can try to find out by running the system for a certain

number of steps and seeing what happens. And indeed in example (a)

this approach works well: in only 36 steps one finds that the pattern
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10200

10100

10000

(d)

(c)

(b)

(a)

100

200

300

400

500
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700

800

900

1000

1100

(c) (d)

(b) (c) (d)

Cellular automaton evolution illustrating the phenomenon of undecidability. Pattern (a) dies out after 36 steps; pattern (b)
takes 1017 steps. But what the final outcome in cases (c) and (d) will be is not clear after even a million steps. And in general
there appears to be no finite computation that can guarantee to determine the final outcome of the evolution after an infinite
number of steps. The cellular automaton rule used is a 4-color totalistic one with code 1004600. Whether a pattern in a
cellular automaton ever dies out can be viewed as analogous to a version of the halting problem for Turing machines. 
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dies out. But already in example (b) it is not so easy. One can go for 1000

steps and still not know what is going to happen. And only after 1017

steps does it finally become clear that the pattern in fact dies out.

So what about examples (c) and (d)? What happens to these? After

a million steps neither has died out; in fact they are respectively 31,000

and 39,718 cells wide. And after 10 million steps both are still going,

now 339,028 and 390,023 cells wide. But even having traced the

evolution this far, one still has no idea what its final outcome will be.

And in any system the only way to be able to guarantee to know

this in general is to have some way to shortcut the evolution of the

system, and to be able to reduce to a finite computation what takes the

system an infinite number of steps to do.

But if the behavior of the system is computationally irreducible—

as I suspect is so for the cellular automaton on the facing page and for

many other systems with simple underlying rules—then the point is

that ultimately no such shortcut is possible. And this means that the

general question of what the system will ultimately do can be

considered formally undecidable, in the sense there can be no finite

computation that will guarantee to decide it.

For any particular initial condition it may be that if one just runs

the system for a certain number of steps then one will be able to tell

what it will do. But the crucial point is that there is no guarantee that

this will work: indeed there is no finite amount of computation that

one can always be certain will be enough to answer the question of

what the system does after an infinite number of steps.

That this is the case has been known since the 1930s. But it has

normally been assumed that the effects of such undecidability will

rarely be seen except in special and complicated circumstances. Yet

what the picture on the facing page illustrates is that in fact

undecidability can have quite obvious effects even with a very simple

underlying rule and very simple initial conditions.

And what I suspect is that for almost any system whose behavior

seems to us complex almost any non-trivial question about what the

system does after an infinite number of steps will be undecidable. So,

for example, it will typically be undecidable whether the evolution of
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the system from some particular initial condition will ever generate a

specific arrangement of cell colors—or whether it will yield a pattern

that is, say, ultimately repetitive or ultimately nested.

And if one asks whether any initial conditions exist that lead, for

example, to a pattern that does not die out, then this too will in general

be undecidable—though in a sense this is just an immediate

consequence of the fact that given a particular initial condition one

cannot tell whether or not the pattern it produces will ever die out.

But what if one just looks at possible sequences—as might be

used for initial conditions—and asks whether any of them satisfy some

constraint? Even if the constraint is easy to test it turns out that there

can again be undecidability. For there may be no limit on how far one

has to go to be sure that out of the infinite number of possible

sequences there are really none that satisfy the constraint.

The pictures on the facing page show a simple example of this. The

idea is to pick a set of pairs of upper and lower blocks, and then to ask

whether there is any sequence of such pairs that satisfies the constraint that

the upper and lower strings formed end up being in exact correspondence.

When there are just two kinds of pairs it turns out to be quite

straightforward to answer this question. For if any sequence is going to

satisfy the constraint one can show that there must already be a

sequence of limited length that does so—and if necessary one can find

this sequence by explicitly looking at all possibilities.

But as soon as there are more than two pairs things become much

more complicated, and as the pictures on the facing page demonstrate,

even with very short blocks remarkably long and seemingly quite

random sequences can be required in order to satisfy the constraints.

And in fact I strongly suspect that even with just three pairs there

is already computational irreducibility, so that in effect the only way to

answer the question of whether the constraints can be satisfied is

explicitly to trace through some fraction of all arbitrarily long

sequences—making this question in general undecidable.

And indeed whenever the question one has can somehow involve

looking at an infinite number of steps, or elements, or other things, it
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( f )

(e)

(d)

(c)
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Examples of a class of one-dimensional constraints where it is in general undecidable whether they can be satisfied. The constraints require that
concatenating in some order the blocks shown should yield identical upper and lower strings. In cases (a)–(l) the constraints can be satisfied, and
the minimal strings which do so are shown. The plots to the right give the successive differences in length between upper and lower strings
when each new block is added; that this difference reaches zero reflects the fact that the constraint is satisfied. Cases (m)–(s) show constraints
that cannot be satisfied by strings of any finite length. When the constraints involve more than two blocks there seems in general to be no upper
limit on how long a string one may need to consider to tell whether the constraints can be satisfied. Pictures (a), (b), (h) and (j) show the longest
minimal strings needed for any of the 4096, 16384, 65536 and 262144 constraints involving blocks with totals of 7, 8, 9 and 10 elements. The
general problem of satisfying constraints of the kind shown here is known as the Post Correspondence Problem. Finding the systems on this
page required constructing—by computer and otherwise—an immense number of proofs of the impossibility of satisfying particular constraints.
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turns out that such a question is almost inevitably undecidable if it is

asked about a system that exhibits computational irreducibility.

So what about finite questions? 

Such questions can ultimately always be answered by finite

computations. But when computational irreducibility is present such

computations can be forced to have a certain level of difficulty which

sometimes makes them quite intractable.

When one does practical computing one tends to assess the

difficulty of a computation by seeing how much time it takes and

perhaps how big a program it involves and how much memory it needs.

But normally one has no way to tell whether the scheme one has

for doing a particular computation is the most efficient possible. And in

the past there have certainly been several instances when new

algorithms have suddenly allowed all sorts of computations to be done

much more efficiently than had ever been thought possible before.

Indeed, despite great efforts in the field of computational

complexity theory over the course of several decades almost no firm

lower bounds on the difficulty of computations have ever been

established. But using the methods of this book it turns out to be

possible to begin to get at least a few results.

The key is to consider very small programs. For with such

programs it becomes realistic to enumerate every single one of a

particular kind, and then just to see explicitly which is the most

efficient at performing some specific computation.

In the past such an approach would not have seemed sensible, for

it was normally assumed that programs small enough to make it work

would only ever be able to do rather trivial computations. But what my

discoveries have shown is that in fact even very small programs can be

quite capable of doing all sorts of sophisticated computations.

As a first example—based on a rather simple computation—the

picture at the top of the facing page shows a Turing machine set up to

add 1 to any number. The input to the Turing machine is the base 2

digit sequence for the number. The head of the machine starts at the

right-hand end of this sequence, and the machine runs until its head

first goes further to the right—at which point the machine stops, with
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whatever sequence of digits are left behind being taken to be the

output of the computation.

And what the pictures above show is that with this particular

machine the number of steps needed to finish the computation varies

greatly between different inputs. But if one looks just at the absolute

maximum number of steps for any given length of input one finds an

exactly linear increase with this length.

So are there other ways to do the same computation in a different

number of steps? One can readily enumerate all 4096 possible Turing

machines with 2 states and 2 colors. And it turns out that of these

exactly 17 perform the computation of adding 1 to a number. 

Each of them works in a slightly different way, but all of them

follow one of the three schemes shown at the top of the next page—

and all of them end up exhibiting the same overall linear increase in

number of steps with length of input. 

So what about other computations? 

It turns out that there are 351 different functions that can be

computed by one or more of the 4096 Turing machines with 2 states
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Examples of the behavior of a simple Turing machine that does the computation of adding 1 to a number. The number is
given as a base 2 digit sequence; the Turing machine runs until its head hits the gray stripe on the right. The plot shows the
number of steps that this takes as a function of the input number . The result turns out to be given by

, which has a maximum of , where  is the length of the digit sequence of , or
. The average for a given length of input does not increase with , and is always precisely 5.
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and 2 colors. And as the pictures on the facing page show, different

Turing machines can take very different numbers of steps to do the

computations they do.

Turing machine (a), for example, always finishes its computation

after at most 5 steps, independent of the length of its input. But in most

of the other Turing machines shown, the maximum number of steps

needed generally increases with the length of the input.

Turing machines (b), (c) and (d) are ones that always compute the

same function. But while this means that for a given input each of them

yields the same output, the pictures demonstrate that they usually take

a different number of steps to do so. Nevertheless, if one looks at the

maximum number of steps needed for any given length of input one

finds that this still always increases exactly linearly—just as for the

Turing machines that add 1 shown at the top of this page.

So are there cases in which there is more rapid growth? Turing

machine (e) shows an example in which the maximum number of steps

grows like the square of the length of the input. And it turns out that at

least among 2-state 2-color Turing machines this is the only one that

computes the function it computes—so that at least if one wants to use

a program this simple there is no faster way to do the computation.
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The three schemes for adding 1 to a number that are used by Turing machines with 2 states and 2
colors. All show the same linear growth in maximum number of steps as their size of input increases.
This growth can be viewed as a consequence of potentially having to propagate carry digits from one
end of the input number to the other. The machines shown are numbered 445, 461 and 1512.
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Examples of computations being done by Turing machines with two states and two colors. Evolution from a succession of initial
conditions is shown corresponding to inputs of numbers from 1 to 20. Each block of Turing machines yields the same output for a given
input. A computation is taken to be complete when the head of the Turing machine goes further to the right than it was at the
beginning. The plots show how many steps this takes for successive inputs with lengths up to 9. The maximum for input of length  is
(a) , (b) , (c) , (d) , (e) , (f)  (though the average is ), (g) , (h) , (i) , (j) , (k)
roughly . In cases (i), (j) and (k) there are some inputs for which the head goes further and further to the left, and the Turing
machine never halts. The machines shown are numbered 3279, 1285, 3333, 261, 1447, 1953, 1969, 3517, 3246, 3374, 1507.

n

5 6 n+ 3 4 n+ 3 2 n+ 3 2 n2 + 8 n+ 7 2n+1 - 1 n+ 2 2 n+ 1 3 2 n+ 1 4 n - 1

2.5 n2
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So are there computations that take still longer to do? In Turing

machine (f) the maximum number of steps increases exponentially with

the length of the input. But unlike in example (e), this Turing machine

is not the only one that computes the function it computes. And in fact

both (g) and (h) compute the same function—but in a linearly increasing

and constant number of steps respectively.

So what about other Turing machines? In general there is no

guarantee that a particular Turing machine will ever even complete a

computation in a finite number of steps. For as happens with several

inputs in examples (i) and (j) the head may end up simply going further

and further to the left—and never get to the point on the right that is

needed for the computation to be considered complete.

But if one ignores inputs where this happens, then at least in

examples (i) and (j) the maximum number of steps still grows in a very

systematic linear way with the length of the input. 

In example (k), however, there is more irregular growth. But once

again the maximum number of steps in the end just increases like the

square of the length of the input. And indeed if one looks at all 4096

Turing machines with 2 states and 2 colors it turns out that the only

rates of growth that one ever sees are linear, square and exponential. 

And of the six examples where exponential growth occurs, all of

them are like example (f) above—so that there is another 2-state 2-color

Turing machine that computes the same function, but without the

maximum number of steps increasing at all with input length.

So what happens if one considers more complicated Turing

machines? With 3 states and 2 colors there are a total of 2,985,984

possible machines. And it turns out that there are about 33,000 distinct

functions that one or more of these machines computes. 

Most of the time the fastest machine at computing a given function

again exhibits linear or at most quadratic growth. But the facing page

shows some cases where instead it exhibits exponential growth.

And indeed in a few cases the growth seems to be even faster.

Example (h) is the most extreme among 3-state 2-color Turing

machines: with the size 7 input 106 it already takes 1,978,213,883 steps
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(a) (b) (c) (d) (e) (f ) (g) (h) ( i) ( j) (k) ( l)

( l)

(k)

( j)

( i)

(d) (h)

(c) (g)

(b) (f )

(a) (e)

(d) (h) ( l)

(c) (g) (k)

(b) (f ) ( j)

(a) (e) ( i)

Examples of Turing machines with 3 and 4 states in which the maximum number of steps before a computation is finished grows
at least exponentially with the length of the input. In all cases no Turing machines with the same number of states compute the
same functions in fewer steps. In case (h) the number of steps grows so rapidly that only two peaks are seen in the plot. The top
row of pictures are all scaled to be exactly the same height, even though the initial conditions cannot be chosen to make the
number of steps in each case anything more than roughly the same. The machines have numbers: 582285, 657939, 2018806,
2868668, 2138664, 2139050, 132527, 600720, 3374234978, 1806221583, 1232059922, 3238044559. Cases like (c) and (d) show
nested behavior reminiscent of a counter which generates digit sequences of successive integers.
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to generate its output, and in general with size  input it may be able to

take more than  steps.

But what if one allows Turing machines with more complicated

rules? With 4-state 2-color rules it turns out to be possible to generate

the same output as examples (c) and (d) in just a fixed number of steps.

But for none of the other 3-state 2-color Turing machines shown do

4-state rules offer any speedup.

Nevertheless, if one looks carefully at examples (a) through (h)

each of them shows large regions of either repetitive or nested behavior.

And it seems likely that this reflects computational reducibility that

should make it possible for sufficiently complicated programs to

generate the same output in fewer than exponentially many steps.

But looking at 4-state 2-color Turing machines examples (i)

through (l) again appear to exhibit roughly exponential growth. Yet

now—much as for the 4-state Turing machines in Chapter 3—the actual

behavior seen does not show any obvious computational reducibility. 

So this suggests that even though they may be specified by very

simple rules there are indeed Turing machine computations that cannot

actually be carried out except by spending an amount of computational

effort that can increase exponentially with the length of input.

And certainly if one allows no more than 4-state 2-color Turing

machines I have been able to establish by explicitly searching all 4

billion or so possible rules that there is absolutely no way to speed up

the computations in pictures (i) through (l). 

But what about with other kinds of systems?

Once one has a system that is universal it can in principle be

made to do any computation. But the question is at what rate. And

without special optimization a universal Turing machine will for

example typically just operate at some fixed fraction of the speed of any

specific Turing machine that it is set up to emulate. 

And if one looks at different computers and computer languages

practical experience tends to suggest that at least at the level of issues

like exponential growth the rate at which a given computation can be

done is ultimately rather similar in almost every such system. 

n

22n
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But one might imagine that across the much broader range of

computational systems that I have considered in this book—and that

presumably occur in nature—there could nevertheless still be great

differences in the rates at which given computations can be done.

Yet from what we saw in Chapter 11 one suspects that in fact

there are not. For in the course of that chapter it became clear that

almost all the very varied systems in this book can actually be made to

emulate each other in a quite comparable number of steps.

Indeed often we found that it was possible to emulate every step

in a particular system by just a fixed sequence of steps in another

system. But if the number of elements that can be updated in one step is

sufficiently different this tends to become impossible. 

And thus for example the picture on the right shows that it can

take  steps for a Turing machine that updates just one cell at each step

to build up the same pattern as a one-dimensional cellular automaton

builds up in  steps by updating every cell in parallel. 

And in  dimensions it is common for it to take, say,  steps

for one system to emulate  steps of evolution of another.

But can it take an exponential number of steps? Certainly if one

has a substitution system that yields exponentially many elements

then to reproduce all these elements with an ordinary Turing machine

will take exponentially many steps. And similarly if one has a

multiway system that yields exponentially many strings then to

reproduce all these will again take exponentially many steps.

But what if one asks only about some limited feature of the

output—say whether some particular string appears after  steps of

evolution of the multiway system? Given a specific path like the one in

the picture on the right it takes an ordinary Turing machine not much

more than  steps to test whether the path yields the desired string.

But how long can it take for a Turing machine to find out

whether any path in the multiway system manages to produce the

string? If the Turing machine in effect had to examine each of the

perhaps exponentially many paths in turn then this could take

exponentially many steps. But the celebrated P=NP question in

computational complexity theory asks whether in general there is some

t2

t
To emulate  steps in the
evolution of the cellular
automaton takes the Turing
machine  steps. 

t

2 t 2 + 5 t - 6

d td�1

t

t

t

A Turing machine can quickly
test the highlighted path but
could take exponentially
long to test all paths.
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way to get such an answer in a number of steps that increases not

exponentially but only like a power.

And although it has never been established for certain it seems by

now likely that in most meaningful senses there is not. So what this

implies is that to answer questions about the -step behavior of a

multiway system can take any ordinary Turing machine a number of

steps that increases faster than any power of .

So how common is this kind of phenomenon? One can view

asking about possible outcomes in a multiway system as like asking

about possible ways to satisfy a constraint. And certainly a great many

practical problems can be formulated in terms of constraints.

But how do such problems compare to each other? The Principle

of Computational Equivalence suggests that those that seem difficult

should somehow tend to be equivalent. And indeed it turns out that

over the course of the past few decades a rather large number of such

problems have in fact all been found to be so-called NP-complete. 

What this means is that these problems exhibit a kind of analog of

universality which makes it possible with less than exponential effort to

translate any instance of any one of them into an instance of any other.

So as an example the picture on the facing page shows how one type of

problem about a so-called non-deterministic Turing machine can be

translated to a different type of problem about a cellular automaton.

Much like a multiway system, a non-deterministic Turing

machine has rules that allow multiple choices to be made at each step,

leading to multiple possible paths of evolution. And an example of an

NP-complete problem is then whether any of these paths satisfy the

constraint that, say, after a particular number of steps, the head of the

Turing machine has ever gone further to the right than it starts.

The top row in the picture on the facing page shows the first few

of the exponentially many possible paths obtained by making successive

sequences of choices in a particular non-deterministic Turing machine.

And in the example shown, one sees that for two of these paths the head

goes to the right, so that the overall constraint is satisfied.

So what about the cellular automaton below in the picture?

Given a particular initial condition its evolution is completely

t

t
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deterministic. But what the picture shows is that with successive

initial conditions it emulates each possible path in the

non-deterministic Turing machine.

And so what this means is that the problem of finding whether

initial conditions exist that make the cellular automaton produce a

certain outcome is equivalent to the non-deterministic Turing machine

problem above—and is therefore in general NP-complete.

So what about other kinds of problems? 

The picture on the next page shows the equivalence between the

classic problem of satisfiability and the non-deterministic Turing

machine problem at the top of this page. In satisfiability what one does

is to start with a collection of rows of black, white and gray squares.

And then what one asks is whether any sequence of just black and

Translation between an NP-complete problem about non-deterministic Turing machines and about cellular
automata. The top row shows how a particular non-deterministic Turing machine behaves with successive
sequences of choices for rules to apply. The bottom row shows how a cellular automaton can be made to

emulate this behavior when given a succession of different initial conditions. The cellular automaton is set up to produce a vertical
black stripe if the head of the Turing machine ever goes further to the right than it starts—as it does in cases 6 and 8. The left part
of each cellular automaton configuration emulates the actual evolution of the Turing machine; a specification of which rules should
be applied at each step is progressively fetched from the right and delivered to the position of the head. Given particular initial
conditions for the Turing machine the problem of whether the head ever goes further to the right than it starts is thus equivalent to
the problem of whether the cellular automaton ever produces a vertical black stripe given particular initial conditions on its left. The
cellular automaton takes  steps to emulate  steps of evolution in the Turing machine. It involves a total of 19 colors.2 t 2 + t t
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step 1 step 2 step 1 step 2 step 3 step 1 step 2 step 3 step 1 step 2 step 3 step 4

Translation between the NP-complete problem of halting in a non-deterministic Turing machine and the classic
NP-complete problem of satisfiability. In satisfiability one sets up a collection of rows of black, white and gray squares,
then asks whether there exists any sequence of black and white squares that satisfies the constraint that on every row the
color of at least one square agrees with the color of the corresponding square in the sequence. Each row can be viewed as
a term in a conjunctive normal form Boolean expression, with each column corresponding to a different variable. When a
given square on a particular row is black or white it indicates that a variable or its negation appear in that term. The
translation from the Turing machine problem is achieved by representing the behavior of the Turing machine by saying
which of a sequence of elementary statements are true about it at each step: whether the head is in one state or another,
whether the cell under the head is black or white, and whether the head is at each of the possible positions it can be in.
The Boolean expression then gives constraints on which of these statements can simultaneously be true. In the first two
pictures, for example, the first row corresponds to the constraint that on the first step of Turing machine evolution, the
head cannot simultaneously be in an up and a down state. About the first half of the terms in each Boolean expression
correspond to similar general constraints about the operation of Turing machines. There are then a few terms that specify
the particular initial conditions used here, followed by terms that give the rule for the Turing machine that is used. The very
last term makes the statement that the Turing machine halts. As the pictures indicate, each possible path of evolution for
the Turing machine then corresponds to a possible assignment of truth values to the variables associated with each
elementary statement. And if there is any path that leads the Turing machine to halt the Boolean expression will be
satisfiable. This is the case in the first and fourth examples shown, but not in the other two. In general, it is possible to
represent  steps in the evolution of a non-deterministic Turing machine by a Boolean expression with at most  terms in

 variables. A version of the translation shown here was what launched the study of NP completeness in the early 1970s.
t t 3

t 2
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white squares exists that satisfies the constraint that on every row there

is at least one square whose color agrees with the color of the

corresponding square in the sequence.

To see the equivalence to questions about Turing machines one

imagines breaking the description of the behavior of a Turing machine

into a sequence of elementary statements: whether the head is in a

particular state on a particular step, whether a certain cell has a

particular color, and so on. The underlying rules for the Turing machine

then define constraints on which sequences of such statements can be

true. And in the picture on the facing page almost every row of black,

white and gray squares corresponds to one such constraint.

The last row, however, represents the further constraint that the

head of the Turing machine must at some point go further to the right

than it starts. And this means that to ask whether there is any sequence

in the satisfiability problem that obeys all the constraints is equivalent

to finding the answer to the Turing machine problem described above.

Starting from satisfiability it is possible to show that all sorts of

well-known computational problems in discrete mathematics are

NP-complete. And in addition almost any undecidable problem that

involves simple constraints—such as the correspondence problem on

page 757—turns out to be NP-complete if restricted to finite cases.

In studying the phenomenon of NP completeness what has

mostly been done in the past is to try to construct particular instances

of rather general problems that exhibit equivalence to other problems.

But almost always what is actually constructed is quite complicated—

and certainly not something one would expect to occur at all often. 

Yet on the basis of intuition from the Principle of Computational

Equivalence I strongly suspect that in most cases there are already quite

simple instances of general NP-complete problems that are just as

difficult as any NP-complete problem. And so, for example, I suspect

that it does not take a cellular automaton nearly as complicated as the

one on page 767 for it to be an NP-complete problem to determine

whether initial conditions exist that lead to particular behavior.
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Indeed, my expectation is that asking about possible outcomes of

 steps of evolution will already be NP-complete even for the rule 30

cellular automaton, as illustrated below.

Just as with the Turing machines of pages 761 and 763 there will

be a certain density of cases where the problem is fairly easy to solve.

But it seems likely that as one increases , no ordinary Turing machine

or cellular automaton will ever be able to guarantee to solve the

problem in a number of steps that grows only like some power of . 

Yet even so, there could still in principle exist in nature some

other kind of system that would be able to do this. And for example one

might imagine that this would be possible if one were able to use

exponentially small components. But almost all the evidence we have

t

(a)

(b)

(c)

1
2
3
4
5
6
7
8
9

10
11
12

1
2
3
4
5
6
7
8
9

10
11
12

Example of a simple problem that I suspect is NP-complete. The problem is to determine whether
right-hand cells in the initial conditions for rule 30 can be filled in so as to produce a vertical black
stripe of a certain height at the bottom of the center column formed after  steps of evolution. The
pictures at the top show that in case (a) stripes up to height 3 can be produced, in case (b) up to
height 2, and in case (c) only up to height 1. The pictures at the bottom indicate in black for which of
the  successive left-hand sequences of  cells it is impossible to get stripes of respectively
heights 1 and 2. The apparent randomness of these patterns reflects the likely difficulty of the
problem. The problem is related to issues of rule 30 cryptanalysis discussed on page 603. 

t
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suggests that in our actual universe there are limits on the sizes and

densities of components that we can ever expect to manipulate.

In present-day physics the standard mathematical formalism of

quantum mechanics is often interpreted as suggesting that quantum

systems work like multiway systems, potentially following many paths

in parallel. And indeed within the usual formalism one can construct

quantum computers that may be able to solve at least a few specific

problems exponentially faster than ordinary Turing machines.

But particularly after my discoveries in Chapter 9, I strongly

suspect that even if this is formally the case, it will still not turn out to

be a true representation of ultimate physical reality, but will instead just

be found to reflect various idealizations made in the models used so far.

And so in the end it seems likely that there really can in some

fundamental sense be an almost exponential difference in the amount

of computational effort needed to find the behavior of a system with

given particular initial conditions, and to solve the inverse problem of

determining which if any initial conditions yield particular behavior.

In fact, my suspicion is that such a difference will exist in almost

any system whose behavior seems to us complex. And among other

things this then implies many fundamental limits on the processes of

perception and analysis that we discussed in Chapter 10.

Such limits can ultimately be viewed as being consequences of

the phenomenon of computational irreducibility. But a much more

direct consequence is one that we have discussed before: that even

given a particular initial condition it can require an irreducible

amount of computational work to find the outcome after a given

number of steps of evolution.

One can specify the number of steps  that one wants by giving

the sequence of digits in . And for systems with sufficiently simple

behavior—say repetitive or nested—the pictures on page 744 indicate

that one can typically determine the outcome with an amount of effort

that is essentially proportional to the length of this digit sequence.

But the point is that when computational irreducibility is

present, one may in effect explicitly have to follow each of the  steps of

evolution—again requiring exponentially more computational work. 

t

t

t
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Implications for Mathematics and Its Foundations

Much of what I have done in this book has been motivated by trying to

understand phenomena in nature. But the ideas that I have developed

are general enough that they do not apply just to nature. And indeed in

this section what I will do is to show that they can also be used to

provide important new insights on fundamental issues in mathematics. 

At some rather abstract level one can immediately recognize a

basic similarity between nature and mathematics: for in nature one

knows that fairly simple underlying laws somehow lead to the rich and

complex behavior we see, while in mathematics the whole field is in a

sense based on the notion that fairly simple axioms like those on the

facing page can lead to all sorts of rich and complex results.

So where does this similarity come from? At first one might

think that it must be a consequence of nature somehow intrinsically

following mathematics. For certainly early in its history mathematics

was specifically set up to capture certain simple aspects of nature.

But one of the starting points for the science in this book is that

when it comes to more complex behavior mathematics has never in

fact done well at explaining most of what we see every day in nature.

Yet at some level there is still all sorts of complexity in

mathematics. And indeed if one looks at a presentation of almost any

piece of modern mathematics it will tend to seem quite complex. But

the point is that this complexity typically has no obvious relationship

to anything we see in nature. And in fact over the past century what has

been done in mathematics has mostly taken increasing pains to

distance itself from any particular correspondence with nature.

So this suggests that the overall similarity between mathematics

and nature must have a deeper origin. And what I believe is that in the

end it is just another consequence of the very general Principle of

Computational Equivalence that I discuss in this chapter. 

For both mathematics and nature involve processes that can be

thought of as computations. And then the point is that all these

computations follow the Principle of Computational Equivalence, so
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a © b Ð b © a
a ª b Ð b ª a
a © (b ª ¨ b) Ð a
a ª (b ©¨ b) Ð a
a © (b ª c) Ð (a © b) ª (a © c)
a ª (b © c) Ð (a ª b) © (a ª c)

basic logic (standard axioms)

a ª b Ð b ª a
a ª (b ª c) Ð (a ª b) ª c
¨ (¨ a ª b) ª ¨ (¨ a ª ¨ b) Ð a

basic logic (Huntington axioms)

a ª b Ð b ª a
a ª (b ª c) Ð (a ª b) ª c
¨ (¨ (a ª b) ª ¨ (a ª ¨ b)) Ð a

basic logic (Robbins axioms)

(a Ñ a) Ñ (a Ñ a) Ð a
a Ñ (b Ñ (b Ñ b)) Ð a Ñ a

(a Ñ (b Ñ c)) Ñ (a Ñ (b Ñ c)) Ð

( (b Ñ b) Ñ a) Ñ ( (c Ñ c) Ñ a)

basic logic (Sheffer axioms)

(a Ñ a) Ñ (a Ñ b) Ð a
a Ñ (a Ñ b) Ð a Ñ (b Ñ b)
a Ñ (a Ñ (b Ñ c)) Ð b Ñ (b Ñ (a Ñ c))

basic logic (shorter axioms)

((a Ñ b) Ñ c) Ñ (a Ñ ( (a Ñ c) Ñ a)) Ð c

basic logic (shortest axioms)

´a_ (b_ ¶ c_) ¶ (´a_ b_ ¶ ´a_ c_)
a_ ¶ ´b_ a_ /; FreeQ[a, b]

µa_ a_ 2 b_ /; FreeQ[b, a]

a_ 2 b_ ¶ (c_ ¶ d_) /; FreeQ[c, ´_ _] &&

MatchQ[d, c /. a£a Ï b]

predicate logic

0 9 Ø�a
Ø�a 2Ø�b ¶ a 2 b
a+ 0 2 a
a+Ø�b 2Ø�(a+ b)
a60 2 0
a6Ø�b 2 (a6b) + a
a 9 0 ¶µb a 2Ø�b

reduced arithmetic
(Robinson axioms)

0 9 Ø�a
Ø�a 2Ø�b ¶ a 2 b
a+ 0 2 a
a+Ø�b 2Ø�(a+ b)
a60 2 0
a6Ø�b 2 (a6b) + a

(a�_ Ïa!0 ©´b (a�_ Ïa!b ¶ a�_ Ïa!Ø�b)) ¶

´b a�_ Ïa!b /; FreeQ[a, b]

arithmetic (Peano axioms)

aÞ (bÞc) 2 (aÞb) Þc

semigroup theory

aÞ (bÞc) 2 (aÞb) Þc
aÞ1 2 a
1Þa 2 a

monoid theory

aÞ (bÞc) 2 (aÞb) Þc
aÞ1 2 a

aÞa 2 1

group theory (standard axioms)

a Ç ( ( ( (a Ç a) Ç b) Ç c) Ç ( ( (a Ç a) Ç a) Ç c)) 2 b

group theory (shorter axioms)

aÞbÞ ( ( (c Þc) Þd Þb) Þa) 2 d

group theory (shorter axioms)

aÞ (bÞc) 2 (aÞb) Þc
aÞ1 2 a

aÞa 2 1
aÞb 2 bÞa

commutativegroup theory
(standard axioms)

a Ç (b Ç (c Ç (a Ç b))) 2 c

commutativegroup theory
(shorter axioms)

((aÞb) Þc) ÞaÞc 2 b

commutativegroup theory
(shorter axioms)

a« (b«c) 2 (a«b)«c
a«0 2 a

a«a 2 0
a«b 2 b«a
a» (b»c) 2 (a»b)»c
a» (b«c) 2 (a»b)« (a»c)
a»b 2 b»a

ring theory

a« (b«c) 2 (a«b)«c
a«0 2 a

a«a 2 0
a«b 2 b«a
a» (b»c) 2 (a»b)»c
a» (b«c) 2 (a»b)« (a»c)
a»b 2 b»a
a»1 2 a

a 9 0 ¶ a»a-1 2 1
0 9 1

field theory

a+ (b+ c) 2 (a+ b) + c a 9 0 ¶ a6a-1 2 1

a+ 0 2 a (a > b © b > c) ¶ a > c
a+ (-a) 2 0 a > b ¶ a 9 b
a+ b 2 b+ a a > b ª a 2 b ª b > a
a6 (b6c) 2 (a6b)6c a > b ¶ a+ c > b+ c

a6 (b+ c) 2 (a6b) + (a6c)

a6b 2 b6a

(a > b © c > 0) ¶

a6c > b6c

a61 2 a 1 > 0
(µa a�_ ©µb ´a (a�_ ¶ a > b)) ¶

µb ´c (c > b ¸µa (a�_ © c > a)) /; FreeQ[a, c Ï b]
real algebra (Tarski axioms)

basic logic, �x_ © y_£x_�, �x_£´y_ x_�,

�x_£x_ © # &�, and ...

predicate logic and ...

Axiom systems for traditional mathematics. It is from the axiom systems on this page and the next that most of the millions
of theorems in the literature of mathematics have ultimately been derived. Note that in several cases axiom systems are
given here in much shorter forms than in standard mathematics textbooks. (See also the definitions on the next page.) 
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(aâbâa) ¶ a 2 b
((aâbâc) © (bâd âc)) ¶ (aâbâd)
( (aâbâc) © (aâbâd) © a 9 b) ¶ ( (aâcâd) ª (aâd âc))

a�b
�

Ý b�a
�

a�b
�

Ý c�c�¶ a 2 b

( a�b
�

Ý c�d
�

© a�b
�

Ý e�f
�

) ¶ c�d
�

Ý e�f
�

µa ( ( (bâcâd) © (eâd â f )) ¶ ( (bâaâe) © ( f âcâa)))
µa µb (( (câd âe) © ( f âd âg) © c 9 d) ¶ ( (câgâa) © (câ f âb) © (aâeâb)))

( a�b
�

Ý c�d
�

© b�e
�

Ý d �f
�

© a�g� Ý c�h
�

© b�g
�

Ý d �h
�

© (aâbâe) © (câd â f ) © a 9 b) ¶

e�g� Ý f �h
�

µa ( (bâcâa) © c�a� Ý d �e
�

)
µa µb µc (¨ (aâbâc) ©¨ (bâcâa) ©¨ (câaâb))

( a�b
�

Ý a�c� © d �b
�

Ý d �c
�

© e�b
�

Ý e�c� © b 9 c) ¶ ( (aâd âe) ª (d âeâa) ª (eâaâd))

µa ´b ´c ( (a�_ © b�_) ¶ (aâbâc)) ¶

µd ´b ´c ( (a�_ © b�_) ¶ (bâd âc)) /; FreeQ[a, a Ï c Ï d] && FreeQ[b, a Ï b Ï d]

Euclidean plane geometry

aÞ (bÞc) 2 (aÞb) Þc
aÞ � a 2 a
� aÞa 2 a

aÞí 2 í

í Þa 2 í

� í 2 í

� í 2 í

(a 9 í © b 9 í) ¶ (aÞb 9 í ¸ � a 2 � b)

elementary category theory

´a (a À b ¸ a À c) ¶ b 2 c (extensionality)

¨ a À Ë (empty set)

a À {b, c} ¸ (a 2 b ª a 2 c) (pairing)

a À Äb ¸µc (c À b © a À c) (union)

µa ´b (b À a ¸´c (c À b ¶ c À d)) (power set)

µa ´b (b À a ¸ (b À c ©a�_)) /; FreeQ[a, a] (subset)

µa (Ë À a ©´b (b À a ¶Ä{b, {b}} À a)) ( infinity)

´a (a À b ¶´c ´d ((a�_ Ïe!c ©a�_ Ïe!d ) ¶ c 2 d)) ¶

µf ´g (g À f ¸µa (a À b ©a�_ Ïe!g)) /; FreeQ[a, c Ï d Ï f Ï g]
( replacement)

(¨ Ë À a ©´b ´c ( (b À a © c À a © b 9 c) ¶ bÅ c 2Ë)) ¶

µd ´b (b À a ¶µe d Å b 2 {e})
(choice)

a 9 Ë ¶ µb (b À a © aÅ b 2Ë) (regularity)

set theory

µa_ b_£¨ ´a ¨ b
a_ ¶ b_£¨ a ª b
a_ ¸ b_£ (a ¶ b) © (b ¶ a)

a_ Å b_ 2 c_£

´n (n À c ¸ (n À a © n À b))

{a_}£{a, a}
a_ Ïb_!c_£´b (b 2 c ¶ a)

a_ ¾ b_£´n (n À a ¶ n À b)
a_ 9 b_£¨ (a 2 b)

definitions

© and
ª or
¨ not
Ñ nand
´ for all
µ there exists
Ø next integer
Þ composition
Ç inverse composition

ò inverse

« generalized addition
» generalized multiplication

ò-1 reciprocal

� left identity morphism
� right identity morphism
í morphism mismatch

(òâòâò) is between

ò�ò
�

Ý ò�ò
� segments are congruent

À element of
Ë empty set

{ò, ò} pair
Ä union
Ì set of all points
Í set of all open sets
Î set of all real numbers

typical interpretations

a ÀÍ¶ a ¾ Ì

Ë À Í©Ì À Í

(a ÀÍ© b ÀÍ© aÅ b 2 c) ¶ c ÀÍ

a ¾Í¶ Äa ÀÍ

general topology

real algebra with all objects restricted to �Î

(a ¾ Î © a 9 Ë ©µb (b À Î ©´c (c À a ¶ c > b))) ¶

µb (b À Î ©´d (d À Î ¶ (d > b ¸µc (c À a © d > c))))

real analysis

predicate logic and ...

set theory and ...

Further axiom systems for traditional mathematics. The typical interpretations are relevant for applications, though not
for formal derivation of theorems. The last two axioms listed for set theory are usually considered optional. 
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that they ultimately tend to be equivalent in their computational

sophistication—and thus show all sorts of similar phenomena. 

And what we will see in this section is while some of these

phenomena correspond to known features of mathematics—such as

Gödel’s Theorem—many have never successfully been recognized.

But just what basic processes are involved in mathematics?

Ever since antiquity mathematics has almost defined itself as

being concerned with finding theorems and giving their proofs. And in

any particular branch of mathematics a proof consists of a sequence of

steps ultimately based on axioms like those of the previous two pages.

The picture below gives a simple example of how this works in

basic logic. At the top right are axioms specifying certain fundamental

equivalences between logic expressions. A proof of the equivalence

 between logic expressions is then formed by applying these

axioms in the particular sequence shown.

p | q � q | p

pÑ q

pÑ ( ( q Ñ q ) Ñ ( q Ñ q ) )

pÑ ( pÑ ( q Ñ q ) )

pÑ ( pÑ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( ( q Ñ q ) Ñ ( ( pÑ p ) Ñ ( q Ñ q ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( q Ñ q ) Ñ ( ( q Ñ q ) Ñ ( ( pÑ p ) Ñ ( q Ñ q ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( q Ñ q ) Ñ ( ( q Ñ q ) Ñ ( ( pÑ p ) Ñ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( pÑ p ) Ñ ( ( pÑ p ) Ñ ( ( q Ñ q ) Ñ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( pÑ p ) Ñ ( ( pÑ p ) Ñ ( ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) Ñ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( pÑ p ) Ñ ( ( pÑ p ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( pÑ p ) Ñ ( ( ( q Ñ q ) Ñ ( q Ñ q ) ) Ñ ( ( q Ñ q ) Ñ ( q Ñ q ) ) ) ) ) )

pÑ ( pÑ ( q Ñ ( ( pÑ p ) Ñ ( q Ñ q ) ) ) )

pÑ ( pÑ ( q Ñ ( ( pÑ p ) Ñ ( ( pÑ p ) Ñ q ) ) ) )

q Ñ ( q Ñ ( pÑ ( ( pÑ p ) Ñ ( ( pÑ p ) Ñ q ) ) ) )

q Ñ ( q Ñ ( ( ( pÑ p ) Ñ ( pÑ p ) ) Ñ ( ( pÑ p ) Ñ ( ( pÑ p ) Ñ q ) ) ) )

q Ñ ( q Ñ ( pÑ p ) )

q Ñ ( ( pÑ p ) Ñ ( pÑ p ) )

q Ñ p

2

4

2

1

2

5

2

1

3

1

4

5

2

1

3

1

( a Ñ a ) Ñ ( a Ñ b )

a
1

a

( a Ñ a ) Ñ ( a Ñ b )
2

a Ñ ( a Ñ b )

a Ñ ( b Ñ b )
3

a Ñ ( b Ñ b )

a Ñ ( a Ñ b )
4

a Ñ ( a Ñ ( b Ñ c ) )

b Ñ ( b Ñ ( a Ñ c ) )
5

Proof of the theorem  on the basis of the
shorter set of axioms for logic from page 773. The symbol 
stands for NAND, sometimes known as Sheffer stroke. The
axioms given here do not immediately say whether NAND is
commutative (so that ). But the proof
demonstrates that in fact this follows from them. Note that the
proof uses the approach common in practical mathematics and
in Mathematica of doing direct structural substitutions for
terms—not the approach based on logical implications that has
traditionally been discussed in typical formal mathematical logic.

(p Ñ q) Ð (q Ñ p)

Ñ

(p Ñ q) Ð (q Ñ p)
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In most kinds of mathematics there are all sorts of additional

details, particularly about how to determine which parts of one or more

previous expressions actually get used at each step in a proof. But much

as in our study of systems in nature, one can try to capture the essential

features of what can happen by using a simple idealized model.

And so for example one can imagine representing a step in a proof

just by a string of simple elements such as black and white squares. And

one can then consider the axioms of a system as defining possible

transformations from one sequence of these elements to another—just

like the rules in the multiway systems we discussed in Chapter 5.

The pictures below show how proofs of theorems work with this

setup. Each theorem defines a connection between strings, and proving

the theorem consists in finding a series of transformations—each

associated with an axiom—that lead from one string to another.

But just as in the multiway systems in Chapter 5 one can also

consider an explicit process of evolution, in which one starts from a

Simple idealizations of proofs in mathematics. The rules on the left in effect correspond to axioms
that specify valid transformations between strings of black and white elements. The proofs above
then show how one string—say —can be transformed into another—say —by using the
axioms. Typically there are many different proofs that can be given of a particular theorem; here in
each case the ones shown are examples of the shortest possible proofs. The system shown is an
example of a general substitution system of the kind discussed on page 497. Note that the fifth
theorem  occurs in effect as a lemma in the second theorem .! !
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particular string, then at each successive step one applies all possible

transformations, so that in the end one builds up a whole network of

connections between strings, as in the pictures below. 

In a sense such a network can then be thought of as representing

the whole field of mathematics that can be derived from whatever set of

axioms one is using—with every connection between strings

corresponding to a theorem, and every possible path to a proof.

But can networks like the ones above really reflect mathematics

as it is actually practiced? For certainly the usual axioms in every

traditional area of mathematics are significantly more complicated than

any of the multiway system rules used above.

But just like in so many other cases in this book, it seems that

even systems whose underlying rules are remarkably simple are already

able to capture many of the essential features of mathematics.

An obvious observation in mathematics is that proofs can be

difficult to do. One might at first assume that any theorem that is easy

The result of applying the same transformations as on the facing page—but in all possible ways,
corresponding to the evolution of a multiway system that represents all possible theorems that can be
derived from the axioms. With the axioms used here, the total number of strings grows by a factor of
roughly 1.7 at each step; on the last steps shown there are altogether 237 and 973 strings respectively.
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Three examples of multiway systems
that show the analog of long proofs. In
each case a string consisting of a single
white element is eventually generated—
but this takes respectively 12, 28 and 34
steps to happen. The first multiway
system actually generates all strings in
the end (not least since it yields the
lemmas  and )—and in fact
strings of length  appear after at
most steps. The second multiway
system generates only the  strings
where black comes before white—and
all of these strings appear after at most

 steps. The third multiway system
generates a complicated collection of
strings; the numbers of lengths up to 8
are 1, 2, 4, 8, 14, 22, 34, 45. All the
strings generated have an even number
of black elements. 

! !

n > 2

2 n+ 7

n+ 1

7 n
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to state will also be easy to prove. But experience suggests that this is

far from correct. And indeed there are all sorts of well-known

examples—such as Fermat’s Last Theorem and the Four-Color

Theorem—in which a theorem that is easy to state seems to require a

proof that is immensely long.

So is there an analog of this in multiway systems? It turns out

that often there is, and it is that even though a string may be short it

may nevertheless take a great many steps to reach.

If the rules for a multiway system always increase string length

then it is inevitable that any given string that is ever going to be generated

must appear after only a limited number of steps. But if the rules can both

increase and decrease string length the story is quite different, as the

picture on the facing page illustrates. And often one finds that even a

short string can take a rather large number of steps to produce.

But are all these steps really necessary? Or is it just that the rule

one has used is somehow inefficient, and there are other rules that

generate the short strings much more quickly?

Certainly one can take the rules for any multiway system and

add transformations that immediately generate particular short strings.

But the crucial point is that like so many other systems I have discussed

in this book there are many multiway systems that I suspect are

computationally irreducible—so that there is no way to shortcut their

evolution, and no general way to generate their short strings quickly.

And what I believe is that essentially the same phenomenon

operates in almost every area of mathematics. Just like in multiway

systems, one can always add axioms to make it easier to prove

particular theorems. But I suspect that ultimately there is almost

always computational irreducibility, and this makes it essentially

inevitable that there will be short theorems that only allow long proofs.

In the previous section we saw that computational irreducibility

tends to make infinite questions undecidable. So for example the

question of whether a particular string will ever be generated in the

evolution of a multiway system—regardless of how long one waits—is

in general undecidable. And similarly it can be undecidable whether
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any proof—regardless of length—exists for a specific result in a

mathematical system with particular axioms.

So what are the implications of this?

Probably the most striking arise when one tries to apply

traditional ideas of logic—and particularly notions of true and false.

The way I have set things up, one can find all the statements that

can be proved true in a particular axiom system just by starting with an

expression that represents “true” and then using the rules of the axiom

system, as in the picture on the facing page.

In a multiway system, one can imagine identifying “true” with a

string consisting of a single black element. And this would mean that

every string in networks like the ones below should correspond to a

statement that can be proved true in the axiom system used.

But is this really reasonable? In traditional logic there is always

an operation of negation which takes any true statement, and makes it

into a false one, and vice versa. And in a multiway system, one possible

way negation might work is just to reverse the colors of the elements in

a string. But this then leads to a problem in the first picture above.

For the picture implies that both  and its negation  can be

proved to be true statements. But this cannot be correct. And so what

Multiway systems starting from a single black element that represents TRUE. All strings that appear can be thought of as statements
that are true according to the axioms represented by the multiway system rules. One can take negation to be the operation that
interchanges black and white. This then means that the first multiway system represents an inconsistent axiom system, since on
step 2, both  and its negation  appear. The other two multiway systems are consistent, so that they never generate both a string
and its negation. The third one, however, is incomplete, since for example it never generates either  or its negation . The second
one, however, is both complete and consistent: it generates all strings that begin with , but none that begin with . 



T H E  P R I N C I P L E  O F  C O M P U T A T I O N A L E Q U I V A L E N C E C H A P T E R  1 2

781

this means is that with the setup used the underlying axiom system is

inconsistent. So what about the other multiway systems on the facing

page? At least with the strings one can see in the pictures there are no

inconsistencies. But what about with longer strings? For the particular

rules shown it is fairly easy to demonstrate that there are never

inconsistencies. But in general it is not possible to do this, for after

some given string has appeared, it can for example be undecidable

whether the negation of that particular string ever appears.

So what about the axiom systems normally used in actual

mathematics? None of those on pages 773 and 774 appear to be

inconsistent. And what this means is that the set of statements that can

be proved true will never overlap with the set that can be proved false.

But can every possible statement that one might expect to be true

or false actually in the end be proved either true or false? 

p Ñ (p Ñ p)

( (p Ñ p) Ñ (p Ñ q)) Ñ (p Ñ p) (p Ñ q) Ñ ( (p Ñ q) Ñ (p Ñ q)) p Ñ (p Ñ ( (p Ñ p) Ñ (p Ñ q))) p Ñ ( ( (p Ñ p) Ñ (p Ñ q)) Ñ p)

p Ñ (p Ñ ( (p Ñ p) Ñ q)) ( (p Ñ p) Ñ (p Ñ p)) Ñ (p Ñ p) (p Ñ p) Ñ ( (p Ñ p) Ñ (p Ñ p)) p Ñ ( ( (p Ñ p) Ñ (p Ñ p)) Ñ p) p Ñ (p Ñ ( (p Ñ p) Ñ (p Ñ p)))

(p Ñ p) Ñ p p Ñ (p Ñ ( (p Ñ p) Ñ p)) p Ñ (p Ñ (p Ñ (p Ñ p))) p Ñ (p Ñ ( (p Ñ p) Ñ (q Ñ r))) ( (p Ñ p) Ñ ( (p Ñ p) Ñ p)) Ñ (p Ñ p)

(p Ñ p) Ñ ( (p Ñ p) Ñ (p Ñ q)) ( (p Ñ q) Ñ (p Ñ q)) Ñ (p Ñ q) (p Ñ ( (p Ñ p) Ñ (p Ñ q))) Ñ p p Ñ (p Ñ ( (p Ñ p) Ñ (q Ñ p))) p Ñ (p Ñ ( (p Ñ p) Ñ (q Ñ q)))

(p Ñ ( (p Ñ p) Ñ q)) Ñ p (p Ñ p) Ñ ( (p Ñ q) Ñ (p Ñ q)) ( ( (p Ñ p) Ñ (p Ñ p)) Ñ p) Ñ p (p Ñ ( (p Ñ p) Ñ (p Ñ p))) Ñ p (p Ñ p) Ñ ( (p Ñ p) Ñ (p Ñ (q Ñ r)))

(p Ñ ( (p Ñ p) Ñ p)) Ñ p (p Ñ (p Ñ (p Ñ p))) Ñ p (p Ñ ( (p Ñ p) Ñ (q Ñ r))) Ñ p (p Ñ p) Ñ ( (p Ñ p) Ñ (p Ñ (p Ñ p))) (p Ñ p) Ñ ( (p Ñ p) Ñ (p Ñ (p Ñ q)))

(p Ñ ( (p Ñ p) Ñ (q Ñ p))) Ñ p (p Ñ ( (p Ñ p) Ñ (q Ñ q))) Ñ p (( (p Ñ p) Ñ (p Ñ (p Ñ p))) Ñ p) Ñ p (p Ñ ( (p Ñ p) Ñ (p Ñ (p Ñ p)))) Ñ p

(p Ñ ( (p Ñ p) Ñ ( (p Ñ p) Ñ q))) Ñ p (p Ñ ( (p Ñ p) Ñ ( (p Ñ q) Ñ r))) Ñ p (p Ñ ( (p Ñ p) Ñ ( (q Ñ p) Ñ r))) Ñ p (p Ñ ( (p Ñ p) Ñ (q Ñ (p Ñ r)))) Ñ p

(p Ñ ( (p Ñ p) Ñ ( (p Ñ q) Ñ p))) Ñ p (p Ñ ( (p Ñ p) Ñ ( (p Ñ q) Ñ q))) Ñ p (p Ñ ( (p Ñ p) Ñ ( (q Ñ p) Ñ p))) Ñ p (p Ñ ( (p Ñ p) Ñ (q Ñ (p Ñ p)))) Ñ p

?

?

?

?

?

?

?

?

?

The network of statements that can be proved true using the axiom system for logic from page 775.  is the simplest
representation for TRUE when logic is set up using the NAND operator . Each arrow indicates an equivalence established by applying a
single axiom. On each row only statements that have not appeared before are given. The statements are sorted so that the simplest are
first. Note that some fairly simple statements do not show up for at least several rows. The total number of statements on successive
rows grows faster than exponentially; for the first few it is 1, 6, 91, 2180, 76138. If continued forever the network would eventually
include all possible true statements (tautologies) of logic (see also page 818). Other simple axiom systems for logic like those on page
808 yield networks similar to the one shown.

p Ñ (p Ñ p)

Ñ
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In the early 1900s it was widely believed that this would

effectively be the case in all reasonable mathematical axiom systems.

For at the time there seemed to be no limit to the power of

mathematics, and no end to the theorems that could be proved. 

But this all changed in 1931 when Gödel’s Theorem showed that

at least in any finitely-specified axiom system containing standard

arithmetic there must inevitably be statements that cannot be proved

either true or false using the rules of the axiom system.

This was a great shock to existing thinking about the foundations

of mathematics. And indeed to this day Gödel’s Theorem has continued

to be widely regarded as a surprising and rather mysterious result.

But the discoveries in this book finally begin to make it seem

inevitable and actually almost obvious. For it turns out that at some

level it can be viewed as just yet another consequence of the very

general Principle of Computational Equivalence.

So what is the analog of Gödel’s Theorem for multiway systems?

Given the setup on page 780 one can ask whether a particular multiway

system is complete in the sense that for every possible string the

system eventually generates either that string or its negation.

And one can see that in fact the third multiway system is

incomplete, since by following its rules one can never for example

generate either  or its negation . But what if one extends the rules by

adding more transformations, corresponding to more axioms? Can one

always in the end make the system complete?

If one is not quite careful, one will generate too many strings, and

inevitably get inconsistencies where both a string and its negation

appear, as in the second picture on the facing page. But at least if one

only has to worry about a limited number of steps, it is always possible

to set things up so as to get a system that is both complete and

consistent, as in the third picture on the facing page.

And in fact in the particular case shown on the facing page it is

fairly straightforward to find rules that make the system always

complete and consistent. But knowing how to do this requires having

behavior that is in a sense simple enough that one can foresee every

aspect of it. 
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Yet if a system is computationally irreducible this will inevitably

not be possible. For at any point the system will always in effect be able

to do more things that one did not expect. And this means that in

general one will not be able to construct a finite set of axioms that can

be guaranteed to lead to ultimate completeness and consistency.

And in fact it turns out that as soon as the question of whether a

particular string can ever be reached is undecidable it immediately

follows that there must be either incompleteness or inconsistency. For

to say that such a question is undecidable is to say that it cannot in

general be answered by any procedure that is guaranteed to finish. 

But if one had a system that was complete and consistent then it

is easy to come up with such a procedure: one just runs the system until

either one reaches the string one is looking for or one reaches its

negation. For the completeness of the system guarantees that one must

always reach one or the other, while its consistency implies that

reaching one allows one to conclude that one will never reach the other.

So the result of this is that if the evolution of a multiway system

is computationally irreducible—so that questions about its ultimate

behavior are undecidable—the system cannot be both complete and

consistent. And if one assumes consistency then it follows that there

must be strings where neither the string nor its negation can be

The effect of adding transformations to the rules for a multiway system. The first multiway system is incomplete, in the sense that
for some strings, it generates neither the string nor its negation. The second multiway system yields more strings—but
introduces inconsistency, since it can generate both  and its negation . The third multiway system is however both
complete and consistent: for every string it eventually generates either that string or its negation.
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reached—corresponding to the fact that statements must exist that

cannot be proved either true or false from a given set of axioms.

But what does it take to establish that such incompleteness will

actually occur in a specific system? 

The basic way to do it is to show that the system is universal. 

But what exactly does universality mean for something like an

axiom system? In effect what it means is that any question about the

behavior of any other universal system can be encoded as a statement in

the axiom system—and if the answer to the question can be established

by watching the evolution of the other universal system for any finite

number of steps then it must also be able to be established by giving a

proof of finite length in the axiom system.

So what axiom systems in mathematics are then universal?

Basic logic is not, since at least in principle one can always

determine the truth of any statement in this system by the finite—if

perhaps exponentially long—procedure of trying all possible

combinations of truth values for the variables that appear in it. 

And essentially the same turns out to be the case for pure

predicate logic, in which one just formally adds “for all” and “there

exists” constructs. But as soon as one also puts in an abstract function

or relation with more than one argument, one gets universality.

And indeed the basis for Gödel’s Theorem is the result that the

standard axioms for basic integer arithmetic support universality.

Set theory and several other standard axiom systems can readily be

made to reproduce arithmetic, and are therefore also universal. And the

same is true of group theory and other algebraic systems like ring theory. 

If one puts enough constraints on the axioms one uses, one can

eventually prevent universality—and in fact this happens for

commutative group theory, and for the simplified versions of both real

algebra and geometry on pages 773 and 774.

But of the axiom systems actually used in current mathematics

research every single one is now known to be universal.

From page 773 we can see that many of these axiom systems can

be stated in quite simple ways. And in the past it might have seemed
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hard to believe that systems this simple could ever be universal, and

thus in a sense be able to emulate essentially any system.

But from the discoveries in this book this now seems almost

inevitable. And indeed the Principle of Computational Equivalence

implies that beyond some low threshold almost any axiom system

should be expected to be universal.

So how does universality actually work in the case of arithmetic?

One approach is illustrated in the picture on the next page. The idea

is to set up an arithmetic statement that can be proved true if the evolution

of a cellular automaton from a given initial condition makes a given cell be

a given color at a given step, and can be proved false if it does not. 

By changing numbers in this arithmetic statement one can then

in effect sample different aspects of the cellular automaton evolution.

And with the cellular automaton being a universal one such as rule 110

this implies that the axioms of arithmetic can support universality.

Such universality then implies Gödel’s Theorem and shows that

there must exist statements about arithmetic that cannot ever be

proved true or false from its normal axioms.

So what are some examples of such statements?

The original proof of Gödel’s Theorem was based on considering

the particular self-referential statement “this statement is unprovable”. 

At first it does not seem obvious that such a statement could ever

be set up as a statement in arithmetic. But if it could then one can see

that it would immediately follow that—as the statement says—it

cannot be proved, since otherwise there would be an inconsistency. 

And in fact the main technical difficulty in the original proof of

Gödel’s Theorem had to do with showing—by doing what amounted to

establishing the universality of arithmetic—that the statement could

indeed meaningfully be encoded as a statement purely in arithmetic.

But at least with the original encoding used, the statement would

be astronomically long if written out in the notation of page 773. And

from this result, one might imagine that unprovability would never be

relevant in any practical situation in mathematics.

But does one really need to have such a complicated statement in

order for it to be unprovable from the axioms of arithmetic? 
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(-3 x6 + x7 + x8 )2 + (21+x3 (1+x1+2 x3) x2 - 2 x4 - x10 + x11)2 + (-2 x8 - x9 + x10 + x11)2 + (1 - 2(1+x3) (x1+2 x3) + x4 + x12)2 +

(1 - 2x1 + x2 + x13)2 + (1 - 2x1 + x5 + x14)2 + (-x4 + 2x3 x5 + 2x1+2 x3 x6 + 2x1+x3 x15 + x16 )2 + (1 - 2x3 + x15 + x17 )2 +

(1 - 2x3 + x16 + x18 )2 + (-x6 - 2 x7 + x9 + x19)2 + (-(2 + 2x6 )x6 + (1+ 2x6 )x7 (1+ 2 x20 + (1+ 2x6 ) x21) + x22)2 + (1 - (1+ 2x6 )x7 + x22 + x23)2 +

(1 - 2x6 + 2 x20 + x24)2 + (-(2 + 4x6 )2 x6 + (1+ 4x6 )x7 (1+ 2 x25 + (1+ 4x6 ) x26 ) + x27 )2 + (1 - (1+ 4x6 )x7 + x27 + x28 )2 +

(1 - 4x6 + 2 x25 + x29)2 + (-(2 + 2x8 )x8 + (1+ 2x8 )x6 (1+ 2 x30 + (1+ 2x8 ) x31) + x32)2 + (1 - (1+ 2x8 )x6 + x32 + x33)2 +

(1 - 2x8 + 2 x30 + x34)2 + (-(2 + 2x8 )x8 + (1+ 2x8 )2 x6 (1+ 2 x35 + (1+ 2x8 ) x36 ) + x37 )2 + (1 - (1+ 2x8 )2 x6 + x37 + x38 )2 +

(1 - 2x8 + 2 x35 + x39)2 + (-(2 + 2x6 )x6 + (1+ 2x6 )x9 (1+ 2 x40 + (1+ 2x6 ) x41) + x42)2 + (1 - (1+ 2x6 )x9 + x42 + x43)2 +

(1 - 2x6 + 2 x40 + x44)2 + (-(2 + 4x7 )2 x7 + (1+ 4x7 )x9 (1+ 2 x45 + (1+ 4x7 ) x46 ) + x47 )2 + (1 - (1+ 4x7 )x9 + x47 + x48 )2 +

(1 - 4x7 + 2 x45 + x49)2 + (-(2 + 2x19 )x19 + (1+ 2x19 )x6 (1+ 2 x50 + (1+ 2x19 ) x51) + x52)2 + (1 - (1+ 2x19 )x6 + x52 + x53)2 +

(1 - 2x19 + 2 x50 + x54)2 + (-(2 + 2x19 )x19 + (1+ 2x19 )2 x7 (1+ 2 x55 + (1+ 2x19 ) x56 ) + x57 )2 + (1 - (1+ 2x19 )2 x7 + x57 + x58 )2 +

(1 - 2x19 + 2 x55 + x59)2 + (-(2 + 2x9 )x9 + (1+ 2x9 )x10 (1+ 2 x60 + (1+ 2x9 ) x61) + x62)2 + (1 - (1+ 2x9 )x10 + x62 + x63)2 + (1 - 2x9 + 2 x60 + x64)2 +

(-(2 + 4x8 )2 x8 + (1+ 4x8 )x10 (1+ 2 x65 + (1+ 4x8 ) x66 ) + x67 )2 + (1 - (1+ 4x8 )x10 + x67 + x68 )2 + (1 - 4x8 + 2 x65 + x69)2 +

(-(2 + 2x11 )x11 + (1+ 2x11 )x9 (1+ 2 x70 + (1+ 2x11 ) x71) + x72)2 + (1 - (1+ 2x11 )x9 + x72 + x73)2 + (1 - 2x11 + 2 x70 + x74)2 +

(-(2 + 2x11 )x11 + (1+ 2x11 )2 x8 (1+ 2 x75 + (1+ 2x11 ) x76 ) + x77 )2 + (1 - (1+ 2x11 )2 x8 + x77 + x78 )2 + (1 - 2x11 + 2 x75 + x79)2 Ð 0

x1 ( initial width) 1
x2 ( initial state) 1
x3 (steps) 1
x4 (evolution) 22
x5 1
x6 2
x7 0
x8 6
x9 0
x10 0
x11 12
x12 41
x13 0
x14 0
x15 1
�

x4 = 22 =
0 1 0
1 1 0

x1 ( initial width) 1
x2 ( initial state) 1
x3 (steps) 2
x4 (evolution) 4508
x5 1
x6 140
x7 8
x8 412
x9 0
x10 0
x11 824
x12 28259
x13 0
x14 0
x15 3
�

x4 = 4508 =
0 0 1 0 0
0 1 1 0 0
1 1 1 0 0

x1 ( initial width) 1
x2 ( initial state) 1
x3 (steps) 3
x4 (evolution) 17177704
x5 1
x6 134200
x7 2096
x8 400504
x9 32
x10 32
x11 801008
x12 251257751
x13 0
x14 0
x15 6
�

x4 = 17177704 =
0 0 0 1 0 0 0
0 0 1 1 0 0 0
0 1 1 1 0 0 0
1 1 0 1 0 0 0

x1 ( initial width) 1
x2 ( initial state) 1
x3 (steps) 4
x4 (evolution) 1105983545840
x5 1
x6 2160124112
x7 8437888
x8 6471934448
x9 32768
x10 32768
x11 12943868896
x12 34078388542991
x13 0
x14 0
x15 15
�

x4 = 1105983545840 =
0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0
0 1 1 0 1 0 0 0 0
1 1 1 1 1 0 0 0 0

x1 ( initial width) 3
x2 ( initial state) 5
x3 (steps) 4
x4 (evolution) 1409438147512048
x5 7
x6 688202220464
x7 940049184
x8 2063666612208
x9 805306880
x10 805306880
x11 4127333224416
x12 34619358871451919
x13 2
x14 0
x15 13
�

x4 = 1409438147512048 =
0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0
0 1 1 1 0 1 1 0 0 0 0
1 1 0 1 1 1 1 0 0 0 0

Universality in arithmetic, illustrated by an integer equation whose solutions in effect emulate the rule 110 universal cellular

automaton from Chapter 11. The equation has many solutions, but all of them satisfy the constraint that the variables through 

must encode possible initial conditions and evolution histories for rule 110. If one fills in fixed values for ,  and , then only one

value for  is ever possible—corresponding to the evolution history of rule 110 for  steps starting from a width  initial condition

given by the digit sequence of . In general any statement about the possible behavior of rule 110 can be encoded as a statement

in arithmetic about solutions to the equation. So for example if one fills in values for ,  and , but not , then the statement

that the equation has no solution for any  corresponds to a statement that rule 110 can never exhibit certain behavior, even after

any number of steps. But the universality of rule 110 implies that such statements must in general be undecidable. So from this it

follows that in at least some instances the axioms of arithmetic can never be used to give a finite proof of whether or not the

statement is true. The construction shown here can be viewed as providing a simple proof of Gödel’s Theorem on the existence of

unprovable statements in arithmetic. Note that the equation shown is a so-called exponential Diophantine one, in which some

variables appear in exponents. At the cost of considerably more complication—and using for example 2154 variables—it is possible

to avoid this. The equation above can however already be viewed as capturing the essence of what is needed to demonstrate the

general unsolvability of Diophantine equations and Hilbert’s Tenth Problem. 

x1 x4

x1 x2 x3

x4 x3 x1

x2

x1 x2 x4 x3

x3
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Over the past seventy years a few simpler examples have been

constructed—mostly with no obviously self-referential character.

But usually these examples have involved rather sophisticated

and obscure mathematical constructs—most often functions that are

somehow set up to grow extremely rapidly. Yet at least in principle

there should be examples that can be constructed based just on

statements that no solutions exist to particular integer equations.

If an integer equation such as  has a definite solution

such as ,  in terms of particular finite integers then this

fact can certainly be proved using the axioms of arithmetic. For it takes

only a finite calculation to check the solution, and this very calculation

can always in effect be thought of as a proof.

But what if the equation has no solutions? To test this explicitly

one would have to look at an infinite number of possible integers. But

the point is that even so, there can still potentially be a finite

mathematical proof that none of these integers will work.

And sometimes the proof may be straightforward—say being

based on showing that one side of the equation is always odd while the

other is always even. In other cases the proof may be more difficult—

say being based on establishing some large maximum size for a

solution, then checking all integers up to that size.

And the point is that in general there may in fact be absolutely no

proof that can be given in terms of the normal axioms of arithmetic.

So how can one see this?

The picture on the facing page shows that one can construct an

integer equation whose solutions represent the behavior of a system

like a cellular automaton. And the way this works is that for example

one variable in the equation gives the number of steps of evolution,

while another gives the outcome after that number of steps.

So with this setup, one can specify the number of steps, then

solve for the outcome after that number of steps. But what if for

example one instead specifies an outcome, then tries to find a solution

for the number of steps at which this outcome occurs?

If in general one was able to tell whether such a solution exists

then it would mean that one could always answer the question of

x2 � y3 � 12

x � 47 y � 13
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whether, say, a particular pattern would ever die out in the evolution of

a given cellular automaton. But from the discussion of the previous

section we know that this in general is undecidable.

So it follows that it must be undecidable whether a given integer

equation of some particular general form has a solution. And from the

arguments above this in turn implies that there must be specific integer

equations that have no solutions but where this fact cannot be proved

from the normal axioms of arithmetic.

So how ultimately can this happen?

At some level it is a consequence of the involvement of infinity.

For at least in a universal system like arithmetic any question that is

entirely finite can in the end always be answered by a finite procedure.

But what about questions that somehow ask, say, about infinite

numbers of possible integers? To have a finite way to address questions

like these is often in the end the main justification for setting up typical

mathematical axiom systems in the first place.

For the point is that instead of handling objects like integers

directly, axiom systems can just give abstract rules for manipulating

statements about them. And within such statements one can refer, say,

to infinite sets of integers just by a symbol like . 

And particularly over the past century there have been many

successes in mathematics that can be attributed to this basic kind of

approach. But the remarkable fact that follows from Gödel’s Theorem is

that whatever one does there will always be cases where the approach

must ultimately fail. And it turns out that the reason for this is

essentially the phenomenon of computational irreducibility.

For while simple infinite quantities like  or the total number

of integers can readily be summarized in finite ways—often just by

using symbols like  and —the same is not in general true of all

infinite processes. And in particular if an infinite process is

computationally irreducible then there cannot in general be any useful

finite summary of what it does—since the existence of such a summary

would imply computational reducibility.

s

1�0

� �0
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So among other things this means that there will inevitably be

questions that finite proofs based on axioms that operate within

ordinary computational systems will never in general be able to answer.

And indeed with integer equations, as soon as one has a general

equation that is universal, it typically follows that there will be specific

instances in which the absence of solutions—or at least of solutions of

some particular kind—can never be proved on the basis of the normal

axioms of arithmetic.

For several decades it has been known that universal integer

equations exist. But the examples that have actually been constructed

are quite complicated—like the one on page 786—with the simplest

involving 9 variables and an immense number of terms. 

Yet from the discoveries in this book I am quite certain that there

are vastly simpler examples that exist—so that in fact there are in the

end rather simple integer equations for which the absence of solutions

can never be proved from the normal axioms of arithmetic.

If one just starts looking at sequences of integer equations—as on

the next page—then in the very simplest cases it is usually fairly easy to

tell whether a particular equation will have any solutions. But this

rapidly becomes very much more difficult. For there is often no obvious

pattern to which equations ultimately have solutions and which do not.

And even when equations do have solutions, the integers involved can

be quite large. So, for example, the smallest solution to  is

, , while the smallest solution to

 is , , .

Integer equations such as  that have only linear

dependence on any variable were largely understood even in antiquity.

Quadratic equations in two variables such as  were

understood by the 1800s. But even equations such as  were

not properly understood until the 1980s. And with equations that have

higher powers or more variables questions of whether solutions exist

quickly end up being unsolved problems of number theory.

It has certainly been known for centuries that there are questions

about integer equations and other aspects of number theory that are

easy to state, yet seem very hard to answer. But in practice it has almost

x2 � 61 y2 � 1

x � 1766319049 y � 226153980

x3 � y3 � z3 � 2 x � 1214928 y � 3480205 z � 3528875

a x � b y � c z � d

x2 � a y2 � b

x2 � a y3 � b
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2 x + 3 y Ð 1 �

2 x + 3 y Ð 2 �

2 x + 3 y Ð 3 �

2 x + 3 y Ð 4 �

2 x + 3 y Ð 5 x Ð 1 y Ð 1

2 x + 3 y Ð 6 �

2 x + 3 y Ð 7 x Ð 2 y Ð 1

2 x + 3 y Ð 8 x Ð 1 y Ð 2

2 x + 3 y Ð 9 x Ð 3 y Ð 1

2 x + 3 y Ð 10 x Ð 2 y Ð 2

2 x + 3 y Ð 11 x Ð 1 y Ð 3

2 x + 3 y Ð 12 x Ð 3 y Ð 2

2 x + 3 y Ð 13 x Ð 2 y Ð 3

2 x + 3 y Ð 14 x Ð 1 y Ð 4

2 x + 3 y Ð 15 x Ð 3 y Ð 3

x2 Ð y2 + 1 �

x2 Ð y2 + 2 �

x2 Ð y2 + 3 x Ð 2 y Ð 1

x2 Ð y2 + 4 �

x2 Ð y2 + 5 x Ð 3 y Ð 2

x2 Ð y2 + 6 �

x2 Ð y2 + 7 x Ð 4 y Ð 3

x2 Ð y2 + 8 x Ð 3 y Ð 1

x2 Ð y2 + 9 x Ð 5 y Ð 4

x2 Ð y2 + 10 �

x2 Ð y2 + 11 x Ð 6 y Ð 5

x2 Ð y2 + 12 x Ð 4 y Ð 2

x2 Ð y2 + 13 x Ð 7 y Ð 6

x2 Ð y2 + 14 �

x2 Ð y2 + 15 x Ð 4 y Ð 1

x2 Ð y2 + 16 x Ð 5 y Ð 3

x2 Ð y2 + 1 �

x2 Ð 2 y2 + 1 x Ð 3 y Ð 2

x2 Ð 3 y2 + 1 x Ð 2 y Ð 1

x2 Ð 4 y2 + 1 �

x2 Ð 5 y2 + 1 x Ð 9 y Ð 4

x2 Ð 6 y2 + 1 x Ð 5 y Ð 2

x2 Ð 7 y2 + 1 x Ð 8 y Ð 3

x2 Ð 8 y2 + 1 x Ð 3 y Ð 1

x2 Ð 9 y2 + 1 �

x2 Ð 10 y2 + 1 x Ð 19 y Ð 6

x2 Ð 11 y2 + 1 x Ð 10 y Ð 3

x2 Ð 12 y2 + 1 x Ð 7 y Ð 2

x2 Ð 13 y2 + 1 x Ð 649 y Ð 180

x2 Ð 14 y2 + 1 x Ð 15 y Ð 4

x2 Ð 15 y2 + 1 x Ð 4 y Ð 1

x2 Ð 16 y2 + 1 �

x2 Ð 17 y2 + 1 x Ð 33 y Ð 8

x2 Ð 18 y2 + 1 x Ð 17 y Ð 4

x2 Ð 19 y2 + 1 x Ð 170 y Ð 39

x2 Ð 20 y2 + 1 x Ð 9 y Ð 2

x2 Ð y3 - 20 x Ð 14 y Ð 6

x2 Ð y3 - 19 x Ð 18 y Ð 7

x2 Ð y3 - 18 x Ð 3 y Ð 3

x2 Ð y3 - 17 �

x2 Ð y3 - 16 �

x2 Ð y3 - 15 x Ð 7 y Ð 4

x2 Ð y3 - 14 �

x2 Ð y3 - 13 x Ð 70 y Ð 17

x2 Ð y3 - 12 �

x2 Ð y3 - 11 x Ð 4 y Ð 3

x2 Ð y3 - 10 �

x2 Ð y3 - 9 �

x2 Ð y3 - 8 �

x2 Ð y3 - 7 x Ð 1 y Ð 2

x2 Ð y3 - 6 �

x2 Ð y3 - 5 �

x2 Ð y3 - 4 x Ð 2 y Ð 2

x2 Ð y3 - 3 �

x2 Ð y3 - 2 x Ð 5 y Ð 3

x2 Ð y3 - 1 �

x2 Ð y3 x Ð 1 y Ð 1

x2 Ð y3 + 1 x Ð 3 y Ð 2

x2 Ð y3 + 2 �

x2 Ð y3 + 3 x Ð 2 y Ð 1

x2 Ð y3 + 4 �

x2 Ð y3 + 5 �

x2 Ð y3 + 6 �

x2 Ð y3 + 7 �

x2 Ð y3 + 8 x Ð 3 y Ð 1

x2 Ð y3 + 9 x Ð 6 y Ð 3

x2 Ð y3 + 10 �

x2 Ð y3 + 11 �

x2 Ð y3 + 12 x Ð 47 y Ð 13

x2 Ð y3 + 13 �

x2 Ð y3 + 14 �

x2 Ð y3 + 15 x Ð 4 y Ð 1

x2 Ð y3 + 16 �

x2 Ð y3 + 17 x Ð 5 y Ð 2

x2 Ð y3 + 18 x Ð 19 y Ð 7

x2 Ð y3 + 19 x Ð 12 y Ð 5

x2 Ð y3 + 20 �

x2 Ð y3 + 1 x Ð 3 y Ð 2

x2 Ð 2 y3 + 1 �

x2 Ð 3 y3 + 1 x Ð 2 y Ð 1

x2 Ð 4 y3 + 1 �

x2 Ð 5 y3 + 1 �

x2 Ð 6 y3 + 1 x Ð 7 y Ð 2

x2 Ð 7 y3 + 1 �

x2 Ð 8 y3 + 1 x Ð 3 y Ð 1

x2 Ð 9 y3 + 1 �

x2 Ð 10 y3 + 1 x Ð 9 y Ð 2

x3 Ð y4 - 20 x y - 1 x Ð 10 y Ð 7

x3 Ð y4 - 19 x y - 1 x Ð 3 y Ð 4

x3 Ð y4 - 18 x y - 1 x Ð 75 y Ð 26

x3 Ð y4 - 17 x y - 1

x3 Ð y4 - 16 x y - 1

x3 Ð y4 - 15 x y - 1 x Ð 624 y Ð 125

x3 Ð y4 - 14 x y - 1

x3 Ð y4 - 13 x y - 1

x3 Ð y4 - 12 x y - 1 x Ð 3 y Ð 2

x3 Ð y4 - 11 x y - 1

x3 Ð y4 - 10 x y - 1

x3 Ð y4 - 9 x y - 1 x Ð 80 y Ð 27

x3 Ð y4 - 8 x y - 1 x Ð 12 y Ð 7

x3 Ð y4 - 7 x y - 1 x Ð 1 y Ð 2

x3 Ð y4 - 6 x y - 1 x Ð 15 y Ð 8

x3 Ð y4 - 5 x y - 1

x3 Ð y4 - 4 x y - 1 x Ð 30 y Ð 13

x3 Ð y4 - 3 x y - 1

x3 Ð y4 - 2 x y - 1

x3 Ð y4 - x y - 1

x3 Ð y4 - 1 �

x3 Ð y4 + x y - 1 x Ð 1 y Ð 1

x3 Ð y4 + 2 x y - 1 x Ð 3 y Ð 2

x3 Ð y4 + 3 x y - 1 x Ð 5 y Ð 3

x3 Ð y4 + 4 x y - 1 x Ð 2 y Ð 1

x3 Ð y4 + 5 x y - 1

x3 Ð y4 + 6 x y - 1

x3 Ð y4 + 7 x y - 1

x3 Ð y4 + 8 x y - 1 x Ð 20 y Ð 9

x3 Ð y4 + 9 x y - 1 x Ð 3 y Ð 1

x3 Ð y4 + 10 x y - 1

x3 Ð y4 + 11 x y - 1 x Ð 5 y Ð 2

x3 Ð y4 + 12 x y - 1

x3 Ð y4 + 13 x y - 1

x3 Ð y4 + 14 x y - 1

x3 Ð y4 + 15 x y - 1

x3 Ð y4 + 16 x y - 1 x Ð 4 y Ð 1

x3 Ð y4 + 17 x y - 1

x3 Ð y4 + 18 x y - 1 x Ð 8 y Ð 3

x3 Ð y4 + 19 x y - 1

x3 Ð y4 + 20 x y - 1

x2 Ð y5 + 3 x Ð 2 y Ð 1

x2 Ð y5 + y + 3 x Ð 2537 y Ð 23

x2 Ð y5 + 2 y + 3

x2 Ð y5 + 3 y + 3

x2 Ð y5 + 4 y + 3

x2 Ð y5 + 5 y + 3 x Ð 3 y Ð 1

x2 Ð y5 + 6 y + 3

x2 Ð y5 + 7 y + 3 x Ð 7 y Ð 2

x2 Ð y5 + 8 y + 3

x2 Ð y5 + 9 y + 3

x3 + y3 Ð z2 + 1 x Ð 1 y Ð 1 z Ð 1

x3 + y3 Ð z2 + 2 x Ð 107 y Ð 232 z Ð 3703

x3 + y3 Ð z2 + 3 x Ð 1 y Ð 3 z Ð 5

x3 + y3 Ð z2 + 4 x Ð 5 y Ð 12 z Ð 43

x3 + y3 Ð z2 + 5 x Ð 1 y Ð 2 z Ð 2

x3 + y3 Ð z2 + 6 x Ð 7 y Ð 24 z Ð 119

x3 + y3 Ð z2 + 7 x Ð 2 y Ð 2 z Ð 3

x3 + y3 Ð z2 + 8 x Ð 1 y Ð 2 z Ð 1

x3 + y3 Ð z2 + 9 x Ð 3 y Ð 7 z Ð 19

x3 + y3 Ð z2 + 10 x Ð 2 y Ð 3 z Ð 5

x3 + y3 Ð z3 - 20 x Ð 107 y Ð 137 z Ð 156

x3 + y3 Ð z3 - 19 x Ð 14 y Ð 16 z Ð 19

x3 + y3 Ð z3 - 18 x Ð 1 y Ð 2 z Ð 3

x3 + y3 Ð z3 - 17 x Ð 103 y Ð 111 z Ð 135

x3 + y3 Ð z3 - 16 x Ð 10 y Ð 12 z Ð 14

x3 + y3 Ð z3 - 15 x Ð 262 y Ð 265 z Ð 332

x3 + y3 Ð z3 - 14 �

x3 + y3 Ð z3 - 13 �

x3 + y3 Ð z3 - 12 x Ð 5725013 y Ð 9019406 z Ð 9730705

x3 + y3 Ð z3 - 11 x Ð 2 y Ð 2 z Ð 3

x3 + y3 Ð z3 - 10 x Ð 3 y Ð 3 z Ð 4

x3 + y3 Ð z3 - 9 x Ð 52 y Ð 216 z Ð 217

x3 + y3 Ð z3 - 8 x Ð 16 y Ð 12 z Ð 18

x3 + y3 Ð z3 - 7 x Ð 605809 y Ð 680316 z Ð 812918

x3 + y3 Ð z3 - 6 x Ð 1 y Ð 1 z Ð 2

x3 + y3 Ð z3 - 5 �

x3 + y3 Ð z3 - 4 �

x3 + y3 Ð z3 - 3

x3 + y3 Ð z3 - 2 x Ð 5 y Ð 6 z Ð 7

x3 + y3 Ð z3 - 1 x Ð 6 y Ð 8 z Ð 9

x3 + y3 Ð z3 �

x3 + y3 Ð z3 + 1 x Ð 1 y Ð 2 z Ð 2

x3 + y3 Ð z3 + 2 x Ð 1214928 y Ð 3480205 z Ð 3528875

x3 + y3 Ð z3 + 3 x Ð 4 y Ð 4 z Ð 5

x3 + y3 Ð z3 + 4 �

x3 + y3 Ð z3 + 5 �

x3 + y3 Ð z3 + 6 x Ð 10529 y Ð 60248 z Ð 60355

x3 + y3 Ð z3 + 7 x Ð 32 y Ð 104 z Ð 105

x3 + y3 Ð z3 + 8 x Ð 1 y Ð 2 z Ð 1

x3 + y3 Ð z3 + 9 x Ð 2097 y Ð 11305 z Ð 11329

x3 + y3 Ð z3 + 10 x Ð 130 y Ð 141 z Ð 171

x3 + y3 Ð z3 + 11 x Ð 297 y Ð 619 z Ð 641

x3 + y3 Ð z3 + 12 x Ð 7 y Ð 10 z Ð 11

x3 + y3 Ð z3 + 13 �

x3 + y3 Ð z3 + 14 �

x3 + y3 Ð z3 + 15 x Ð 2 y Ð 2 z Ð 1

x3 + y3 Ð z3 + 16 x Ð 2429856 y Ð 6960410 z Ð 7057750

x3 + y3 Ð z3 + 17 x Ð 25 y Ð 50 z Ð 52

x3 + y3 Ð z3 + 18 x Ð 94 y Ð 101 z Ð 123

x3 + y3 Ð z3 + 19 x Ð 26 y Ð 76 z Ð 77

x3 + y3 Ð z3 + 20 x Ð 1 y Ð 3 z Ð 2
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universally been assumed that with the continued development of

mathematics any of these questions could in the end be answered.

However, what Gödel’s Theorem shows is that there must always

exist some questions that cannot ever be answered using the normal

axioms of arithmetic. Yet the fact that the few known explicit examples

have been extremely complicated has made this seem somehow

fundamentally irrelevant for the actual practice of mathematics.

But from the discoveries in this book it now seems quite certain

that vastly simpler examples also exist. And it is my strong suspicion

that in fact of all the current unsolved problems seriously studied in

number theory a fair fraction will in the end turn out to be questions

that cannot ever be answered using the normal axioms of arithmetic.

If one looks at recent work in number theory, most of it tends to

be based on rather sophisticated methods that do not obviously depend

only on the normal axioms of arithmetic. And for example the elaborate

proof of Fermat’s Last Theorem that has been developed may make at

least some use of axioms that come from fields like set theory and go

beyond the normal ones for arithmetic. 

But so long as one stays within, say, the standard axiom systems

of mathematics on pages 773 and 774, and does not in effect just end up

implicitly adding as an axiom whatever result one is trying to prove, my

strong suspicion is that one will ultimately never be able to go much

further than one can purely with the normal axioms of arithmetic. 

And indeed from the Principle of Computational Equivalence I

strongly believe that in general undecidability and unprovability will

start to occur in practically any area of mathematics almost as soon as

one goes beyond the level of questions that are always easy to answer. 

But if this is so, why then has mathematics managed to get as far

as it has? Certainly there are problems in mathematics that have

remained unsolved for long periods of time. And I suspect that many of

these will in fact in the end turn out to involve undecidability and

 Smallest solutions for various sequences of integer (or so-called Diophantine) equations.  indicates
that it can be proved that no solution exists. A blank indicates that I know only that no solution exists
below a billion. Methods for resolving some of the equations in the first column were known in
antiquity; all had been resolved by the 1800s. Practical methods for resolving the so-called elliptic curve
equations in the second column were developed only in the 1980s. No general methods are yet known
for most of the other equations given—and some classes of them may in fact show undecidability.

�
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unprovability. But the issue remains why such phenomena have not

been much more obvious in everyday work in mathematics. 

At some level I suspect the reason is quite straightforward: it is

that like most other fields of human inquiry mathematics has tended to

define itself to be concerned with just those questions that its methods

can successfully address. And since the main methods traditionally

used in mathematics have revolved around doing proofs, questions that

involve undecidability and unprovability have inevitably been avoided.

But can this really be right? For at least in the past century

mathematics has consistently given the impression that it is concerned

with questions that are somehow as arbitrary and general as possible. 

But one of the important conclusions from what I have done in

this book is that this is far from correct. And indeed for example

traditional mathematics has for the most part never even considered

most of the kinds of systems that I discuss in this book—even though

they are based on some of the very simplest rules possible.

So how has this happened? The main point, I believe, is that in

both the systems it studies and the questions it asks mathematics is

much more a product of its history than is usually realized. 

And in fact particularly compared to what I do in this book the

vast majority of mathematics practiced today still seems to follow

remarkably closely the traditions of arithmetic and geometry that

already existed even in Babylonian times.

It is a fairly recent notion that mathematics should even try to

address arbitrary or general systems. For until not much more than a

century ago mathematics viewed itself essentially just as providing a

precise formulation of certain aspects of everyday experience—mainly

those related to number and space. 

But in the 1800s, with developments such as non-Euclidean

geometry, quaternions, group theory and transfinite numbers it began

to be assumed that the discipline of mathematics could successfully be

applied to any abstract system, however arbitrary or general.

Yet if one looks at the types of systems that are actually studied

in mathematics they continue even to this day to be far from as general

as possible. Indeed at some level most of them can be viewed as having
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been arrived at by the single rather specific approach of starting from

some known set of theorems, then trying to find systems that are

progressively more general, yet still manage to satisfy these theorems.

And given this approach, it tends to be the case that the questions

that are considered interesting are ones that revolve around whatever

theorems a system was set up to satisfy—making it rather likely that

these questions can themselves be addressed by similar theorems,

without any confrontation with undecidability or unprovability.

But what if one looks at other kinds of systems?

One of the main things I have done in this book is in a sense to

introduce a new approach to generalization in which one considers

systems that have simple but completely arbitrary rules—and that are

not set up with any constraint about what theorems they should satisfy.

But if one has such a system, how does one decide what questions

are interesting to ask about it? Without the guidance of known

theorems, the obvious thing to do is just to look explicitly at how the

system behaves—perhaps by making some kind of picture.

And if one does this, then what I have found is that one is usually

immediately led to ask questions that run into phenomena like

undecidability. Indeed, from my experiments it seems that almost as

soon as one leaves behind the constraints of mathematical tradition

undecidability and unprovability become rather common.

As the picture on the next page indicates, it is quite straightforward

to set up an axiom system that deals with logical statements about a

system like a cellular automaton. And within such an axiom system one

can ask questions such as whether the cellular automaton will ever

behave in a particular way after any number of steps.

But as we saw in the previous section, such questions are in

general undecidable. And what this means is that there will inevitably

be cases of them for which no proof of a particular answer can ever be

given within whatever axiom system one is using.

So from this one might conclude that as soon as one looks at

cellular automata or other kinds of systems beyond those normally

studied in mathematics it must immediately become effectively

impossible to make progress using traditional mathematical methods.
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But in fact, in the fifteen years or so since I first emphasized the

importance of cellular automata all sorts of traditional mathematical

work has actually been done on them. So how has this been possible?

The basic point is that the work has tended to concentrate on

particular aspects of cellular automata that are simple enough to avoid

undecidability and unprovability. And typically it has achieved this in

one of two ways: either by considering only very specific cases that

have been observed or constructed to be simple, or by looking at things

in so much generality that only rather simple properties ever survive.

So for example when presented with the 256 elementary cellular

automaton patterns shown on page 55 mathematicians in my

experience have two common responses: either to single out specific

patterns that have a simple repetitive or perhaps nested form, or to

generalize and look not at individual patterns, but rather at aggregate

properties obtained say by evolving from all possible initial conditions.

And about questions that concern, for example, the structure of a

pattern that looks to us complex, the almost universal reaction is that

such questions can somehow not be of any real mathematical interest.

Needless to say, in the framework of the new kind of science in

this book, such questions are now of great interest. And my results
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An axiom system for statements about the rule
110 cellular automaton. The top statement above
makes the assertion that the outcome after one
step of evolution from a single black cell has a
particular form. A proof of this statement is
shown to the left. All the statements in the top
block above can be proved true from the axiom
system. The statement at the bottom, however,
cannot be proved either true or false. The axioms
given are set up using predicate logic.
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suggest that if one is ever going to study many important phenomena

that occur in nature one will also inevitably run into them. But to

traditional mathematics they seem uninteresting and quite alien.

As I said above, it is at some level not surprising that questions

will be considered interesting in a particular field only if the methods of

that field can say something useful about them. But this I believe is

ultimately why there have historically been so few signs of

undecidability or unprovability in mathematics. For any kinds of

questions in which such phenomena appear are usually not amenable to

standard methods of mathematics based on proof, and as a result such

questions have inevitably been viewed as being outside what should be

considered interesting for mathematics.

So how then can one set up a reasonable idealization for

mathematics as it is actually practiced? The first step—much as I

discussed earlier in this section—is to think not so much about systems

that might be described by mathematics as about the internal processes

associated with proof that go on inside mathematics.

A proof must ultimately be based on an axiom system, and one

might have imagined that over the course of time mathematics would

have sampled a wide range of possible axiom systems. But in fact in its

historical development mathematics has normally stuck to only rather

few such systems—each one corresponding essentially to some

identifiable field of mathematics, and most given on pages 773 and 774.

So what then happens if one looks at all possible simple axiom

systems—much as we looked, say, at all possible simple cellular

automata earlier in this book? To what extent does what one sees

capture the features of mathematics? With axiom systems idealized as

multiway systems the pictures on the next page show some results.

In some cases the total number of theorems that can ever be

proved is limited. But often the number of theorems increases rapidly

with the length of proof—and in most cases an infinite number of

theorems can eventually be proved. And given experience with

mathematics an obvious question to ask in such cases is to what extent

the system is consistent, or complete, or both.
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But to formulate such a question in a meaningful way one needs a

notion of negation. In general, negation is just some operation that

takes a string and yields another, giving back the original if it is applied

a second time. Earlier in this section we discussed cases in which

negation simply reverses the color of each element in a string. And as a

generalization of this one can consider cases in which negation can be

any operation that preserves lengths of strings.

And in this case it turns out that the criterion for whether a

system is complete and consistent is simply that exactly half the
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Plots showing which possible strings get generated in the first 15 steps of evolution in various multiway systems. Each string that is
generated can be thought of as a theorem derived from the set of axioms represented by the rules of the multiway system. A dot
shows at which step a given string first appears—and indicates the shortest proof of the theorem that string represents. In most cases,
many strings are never produced—so that there are many possible statements that simply do not follow from the axioms given. Thus
for example in first case shown only strings containing nothing but black elements are ever produced. 
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possible strings of a given length are eventually generated if one starts

from the string representing “true”. 

For if more than half the strings are generated, then somewhere

both a string and its negation would have to appear, implying that the

system must be inconsistent. And similarly, if less than half the strings

are generated, there must be some string for which neither that string

nor its negation ever appear, implying that the system is incomplete.

The pictures on the next page show the fractions of strings of

given lengths that are generated on successive steps in various multiway

systems. In general one might have to wait an arbitrarily large number

of steps to find out whether a given string will ever be generated. But in

practice after just a few steps one already seems to get a reasonable

indication of the overall fraction of strings that will ever be generated.

And what one sees is that there is a broad distribution: from cases

in which very few strings can be generated—corresponding to a very

incomplete axiom system—to cases in which all or almost all strings

can be generated—corresponding to a very inconsistent axiom system.

So where in this distribution do the typical axiom systems of

ordinary mathematics lie? Presumably none are inconsistent. And a

few—like basic logic and real algebra—are both complete and

consistent, so that in effect they lie right in the middle of the

distribution. But most are known to be incomplete. And as we

discussed above, this is inevitable as soon as universality is present.

But just how incomplete are they? The answer, it seems, is

typically not very. For if one looks at axiom systems that are widely

used in mathematics they almost all tend to be complete enough to

prove at least a fair fraction of statements either true or false.

So why should this be? I suspect that it has to do with the fact

that in mathematics one usually wants axiom systems that one can

think of as somehow describing definite kinds of objects—about which

one then expects to be able to establish all sorts of definite statements.

And certainly if one looks at the history of mathematics most

basic axiom systems have been arrived at by starting with objects—

such as finite integers or finite sets—then trying to find collections of

axioms that somehow capture the relevant properties of these objects.
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Examples of multiway systems that generate different fractions of possible strings, and in effect range from being highly incomplete
to highly inconsistent. The plots show what fraction of strings of a given length have been produced by each of the first 25 steps in
the evolution of each multiway system. If less than half the strings of a given length are ever produced, this means that there must
be some strings where neither the string nor its negation can be proved, indicating incompleteness. But if more than half the strings
are produced, there must be cases where both a string and its negation can be proved, indicating inconsistency. Rules (f) through (i),
however, produce exactly half the strings of any given length, and can be considered complete and consistent. 
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But one feature is that normally the resulting axiom system is in a

sense more general than the objects one started from. And this is why for

example one can often use the axiom system to extrapolate to infinite

situations. But it also means that it is not clear whether the axiom system

actually describes only the objects one wants—or whether for example it

also describes all sorts of other quite different objects.

One can think of an axiom system—say one of those listed on

pages 773 and 774—as giving a set of constraints that any object it

describes must satisfy. But as we saw in Chapter 5, it is often possible to

satisfy a single set of constraints in several quite different ways.

And when this happens in an axiom system it typically indicates

incompleteness. For as soon as there are just two objects that both

satisfy the constraints but for which there is some statement that is

true about one but false about the other it immediately follows that at

least this statement cannot consistently be proved true or false, and

that therefore the axiom system must be incomplete. 

One might imagine that if one were to add more axioms to an

axiom system one could always in the end force there to be only one

kind of object that would satisfy the constraints of the system. But as

we saw earlier, as soon as there is universality it is normally impossible

to avoid incompleteness. And if an axiom system is incomplete there

must inevitably be different kinds of objects that satisfy its constraints.

For given any statement that cannot be proved from the axioms there

must be distinct objects for which it is true, and for which it is false.

If an axiom system is far from complete—so that a large fraction

of statements cannot be proved true or false—then there will typically

be many different kinds of objects that are easy to specify and all satisfy

the constraints of the system but for which there are fairly obvious

properties that differ. But if an axiom system is close to complete—so

that the vast majority of statements can be proved true or false—then it

is almost inevitable that the different kinds of objects that satisfy its

constraints must differ only in obscure ways. 

And this is presumably the case in the standard axiom system for

arithmetic from page 773. Originally this axiom system was intended to

describe just ordinary integers. But Gödel’s Theorem showed that it is
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incomplete, so that there must be more than one kind of object that can

satisfy its constraints. Yet it is rather close to being complete—since as

we saw earlier one has to go through at least millions of statements

before finding ones that it cannot prove true or false.

And this means that even though there are objects other than the

ordinary integers that satisfy the standard axioms of arithmetic, they

are quite obscure—in fact, so much so that none have ever yet actually

been constructed with any real degree of explicitness. And this is why it

has been reasonable to think of the standard axiom system of

arithmetic as being basically just about ordinary integers.

But if instead of this standard axiom system one uses the reduced

axiom system from page 773—in which the usual axiom for induction

has been weakened—then the story is quite different. There is again

incompleteness, but now there is much more of it, for even statements

as simple as  and  cannot be proved true or false

from the axioms. And while ordinary integers still satisfy all the

constraints, the system is sufficiently incomplete that all sorts of other

objects with quite different properties also do. So this means that the

system is in a sense no longer about any very definite kind of

mathematical object—and presumably that is why it is not used in

practice in mathematics. 

At this juncture it should perhaps be mentioned that in their raw

form quite a few well-known axiom systems from mathematics are

actually also far from complete. An example of this is the axiom system

for group theory given on page 773. But the point is that this axiom

system represents in a sense just the beginning of group theory. For it

yields only those theorems that hold abstractly for any group.

Yet in doing group theory in practice one normally adds axioms

that in effect constrain one to be dealing say with a specific group rather

than with all possible groups. And the result of this is that once again

one typically has an axiom system that is at least close to complete.

In basic arithmetic and also usually in fields like group theory the

underlying objects that one imagines describing can at some level be

manipulated—and understood—in fairly concrete ways. But in a field

like set theory this is less true. Yet even in this case an attempt has

x � y � y � x x � 0 � x
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historically been made to get an axiom system that somehow describes

definite kinds of objects. But now the main way this has been done is by

progressively adding axioms so as to get closer to having a system that

is complete—with only a rather vague notion of just what underlying

objects one is really expecting to describe.

In studying basic processes of proof multiway systems seem to do

well as minimal idealizations. But if one wants to study axiom systems

that potentially describe definite objects it seems to be somewhat more

convenient to use what I call operator systems. And indeed the version

of logic used on page 775—as well as many of the axiom systems on

pages 773 and 774—are already set up essentially as operator systems.

The basic idea of an operator system is to work with expressions

such as  built up using some operator , and then to

consider for example what equivalences may exist between such

expressions. If one has an operator whose values are given by some finite

table then it is always straightforward to determine whether expressions

are equivalent. For all one need do, as in the pictures at the top of the next

page, is to evaluate the expressions for all possible values of each variable,

and then to see whether the patterns of results one gets are the same.

And in this way one can readily tell, for example, that the first

operator shown is idempotent, so that , while both the first two

operators are associative, so that , and all but the third

operator are commutative, so that . And in principle one can

use this method to establish any equivalence that exists between any

expressions with an operator of any specific form.

But the crucial idea that underlies the traditional approach to

mathematical proof is that one should also be able to deduce such

results just by manipulating expressions in purely symbolic form, using

the rules of an axiom system, without ever having to do anything like

filling in explicit values of variables.

And one advantage of this approach is that at least in principle it

allows one to handle operators—like those found in many areas of

mathematics—that are not based on finite tables. But even for operators

given by finite tables it is often difficult to find axiom systems that can

successfully reproduce all the results for a particular operator. 

�p�q�� ��q�r��p� �

p�p � p

�p�q��r � p��q�r�

p�q � q�p
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With the way I have set things up, any axiom system is itself just

a collection of equivalence results. So the question is then which

equivalence results need to be included in the axiom system in order

that all other equivalence results can be deduced just from these.

In general this can be undecidable—for there is no limit on how

long even a single proof might need to be. But in some cases it turns out

to be possible to establish that a particular set of axioms can

successfully generate all equivalence results for a given operator—and

indeed the picture at the top of the facing page shows examples of this

for each of the four operators in the picture above.

So if two expressions are equivalent then by applying the rules of

the appropriate axiom system it must be possible to get from one to the

other—and in fact the picture on page 775 shows an example of how

p pÆp pÆ (pÆp) pÆq q Æp pÆ (pÆq) pÆ (q Æp) (pÆq)Æ (pÆq) (pÆp)Æ (q Æq)

pÆ (q Æ r) (pÆq)Æ r q Æ (pÆ r)

p pÆp pÆ (pÆp) pÆq q Æp pÆ (pÆq) pÆ (q Æp) (pÆq)Æ (pÆq) (pÆp)Æ (q Æq)

pÆ (q Æ r) (pÆq)Æ r q Æ (pÆ r)

p pÆp pÆ (pÆp) pÆq q Æp pÆ (pÆq) pÆ (q Æp) (pÆq)Æ (pÆq) (pÆp)Æ (q Æq)

pÆ (q Æ r) (pÆq)Æ r q Æ (pÆ r)

p pÆp pÆ (pÆp) pÆq q Æp pÆ (pÆq) pÆ (q Æp) (pÆq)Æ (pÆq) (pÆp)Æ (q Æq)

pÆ (q Æ r) (pÆq)Æ r q Æ (pÆ r)

Values of expressions obtained by using operators of various forms. For each expression the sequence of values
for every possible combination of values of variables is shown. Two expressions are equivalent when this
sequence of values is the same. With black and white interpreted as TRUE and FALSE, the forms of operators
shown here correspond respectively to AND, EQUAL, IMPLIES and NAND. (The first argument to each operator is
shown on the left; the second on top.) The arrays of values generated can be thought of as being like truth tables. 
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this can be done for the fourth axiom system above. But if one removes

just a single axiom from any of the axiom systems above then it turns

out that they no longer work, and for example they cannot establish the

equivalence result stated by whichever axiom one has removed.

In general one can think of axioms for an operator system as

giving constraints on the form of the operator. And if one is going to

reproduce all the equivalences that hold for a particular form then these

constraints must in effect be such as to force that form to occur.

So what happens in general for arbitrary axiom systems? Do they

typically force the operator to have a particular form, or not?

The pictures on the next two pages show which forms of

operators are allowed by various different axiom systems. The

successive blocks of results in each case give the forms allowed with

progressively more possible values for each variable.

Indicated by stars near the bottom of the picture are the four

axiom systems from the top of this page. And for each of these only a

limited number of forms are allowed—all of which ultimately turn out

to be equivalent to just the single forms shown on the facing page.

But what about other axiom systems? Every axiom system must

allow an operator of at least some form. But what the pictures on the

next two pages show is that the vast majority of axiom systems actually

allow operators with all sorts of different forms.

And what this means is that these axiom systems are in a sense

not really about operators of any particular form. And so in effect they

are also far from complete—for they can prove only equivalence results

that hold for every single one of the various operators they allow.

( aÆa)Æ ( aÆb) Ð a aÆ ( aÆb) Ð aÆ (bÆb) aÆ ( aÆ (bÆc)) Ð bÆ (bÆ ( aÆc))

(aÆb)Æa Ð a aÆ (bÆc) Ð bÆ ( aÆc) (aÆb)Æb Ð (bÆa)Æa

(bÆb)Æa Ð a aÆb Ð bÆa (aÆb)Æc Ð aÆ (bÆc)

aÆa Ð a aÆb Ð bÆa (aÆb)Æc Ð aÆ (bÆc) Axiom systems that can be used to derive all the
equivalences between expressions that involve
operators with the forms shown. Each axiom can be
applied in either direction—as in the picture on page
775, with each variable standing for any expression, as
in a Mathematica pattern. The operators shown are
AND, EQUAL, IMPLIES and NAND. They yield respectively
junctional, equivalential, implicational and full
propositional or sentential calculus (ordinary logic).
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� (10) � (262)

� (16)

(0) � (16)

� (21) � (1022)

� (113) � (3492)

� (10) � (100)

� (216) � (335008)

� (146) � (168780)

� (2916) � (167772160)

(0) (0) (0)

(0) (0) (0)

� (298) � (1147649)

� (18)

� (27) � (10000)

� (64) � (10000)

� (136) � (46121)

� (10)

� (64) � (10000)

� (18)

� (10)

� (298) � (1147649)

� (136) � (46121)

� (27) � (10000)

� (3375) � (157351936)

� (3375) � (157351936)

� (729) � (1048576)

(0) (0) (0)

� (729) � (16777216)

(0) (0) (0)

� (19683) � (4294967296)

(aÆb) Æ (aÆ (bÆc)) Ð a ?

2 bÆ (c Æ (aÆ (bÆc))) Ð a ?

( (bÆ (aÆa)) Æa) Æb Ð a ?

( (bÆb) Æa) Æ (aÆb) Ð a ?

1 (aÆb) Æc Ð aÆ (bÆc) ?

(aÆb) Æ (bÆc) Ð a ?

(aÆa) Æ (aÆb) Ð a ?

aÆ ( (aÆa) Æb) Ð a ?

(aÆa) Æ (aÆa) Ð a ?

(bÆb) Æb Ð a ?

bÆ (bÆb) Ð a ?

(bÆb) Æa Ð a ?

(bÆa) Æb Ð a ?

(bÆa) Æa Ð a ?

(aÆb) Æb Ð a ?

(aÆb) Æa Ð a ?

(aÆa) Æb Ð a ?

bÆ (bÆa) Ð a ?

bÆ (aÆb) Ð a ?

bÆ (aÆa) Ð a ?

aÆ (bÆb) Ð a ?

aÆ (bÆa) Ð a ?

aÆ (aÆb) Ð a ?

(aÆa) Æa Ð a ?

aÆ (aÆa) Ð a ?

aÆb Ð bÆa ?

bÆb Ð a ?

bÆa Ð a ?

aÆb Ð a ?

aÆa Ð a ?

b Ð a ?

a Ð a ?



T H E  P R I N C I P L E  O F  C O M P U T A T I O N A L E Q U I V A L E N C E C H A P T E R  1 2

805

(0) � (12)

� (16)

(0)

� (27) � (3072)

(0)

(0) � (12)

(0) � (12)

� (9) � (76)

� (16)

� (16)

(0) � (12)

(0) � (12)

� (16) � (2302)

(0) (0)

(0) � (12)

� (63) � (1140)

� (114) � (31104)

� (16)

� (68)

� (12) � (96)

(0) � (12)

(0) � (12)

(0) � (12)

� (108) � (40960)

� (104)

(0) � (24)

(0) � (24)

� 2 (aÆa) Æ (aÆb) Ð a aÆ (aÆb) Ð aÆ (bÆb) aÆ (aÆ (bÆc)) Ð bÆ (bÆ (aÆc)) ?

� 9 (aÆb) Æa Ð a aÆ (bÆc) Ð bÆ (aÆc) (aÆb) Æb Ð (bÆa) Æa ?

( (bÆb) Æ (c Æ (aÆ ( ( (c Æc) Æc) Æd)))) Æd Ð a aÆb Ð bÆa ?

(aÆa) Æ (aÆa) Ð a aÆ (aÆa) Ð bÆ (bÆb) aÆb Ð bÆa ?

� 8 (bÆb) Æa Ð a aÆb Ð bÆa (aÆb) Æc Ð aÆ (bÆc) ?

3 aÆ (bÆ (aÆc)) Ð ( (c Æb) Æb) Æa (aÆa) Æ (bÆa) Ð a ?

3 (bÆ (bÆ (aÆa))) Æ (aÆ (bÆc)) Ð a aÆb Ð bÆa ?

� 7 aÆa Ð a aÆb Ð bÆa (aÆb) Æc Ð aÆ (bÆc) ?

6 ( (bÆb) Æ (c Æ (aÆ ( ( (c Æc) Æc) Æd)))) Æd Ð a ?

6 bÆ ( ( ( (bÆb) Æa) Æc) Æ ( ( (bÆb) Æb) Æc)) Ð a ?

(aÆb) Æ (aÆ (bÆ (bÆb))) Ð a aÆb Ð bÆa ?

(aÆb) Æ (aÆ (bÆ (aÆb))) Ð a aÆb Ð bÆa ?

(aÆa) Æ (aÆb) Ð a aÆ (aÆb) Ð aÆ (bÆb) ?

5 bÆ ( (c Æ (c Æ ( ( (d Æd) Æa) Æd))) Æb) Ð a ?

3 (aÆb) Æ (aÆ (bÆc)) Ð a aÆb Ð bÆa ?

4 (aÆb) Æc Ð aÆ (bÆc) aÆb Ð bÆa ?

aÆ (aÆa) Ð bÆ (bÆb) aÆb Ð bÆa ?

2 ( (bÆb) Æ ( ( (c Æa) Æd) Æc)) Æd Ð a ?

(bÆ (aÆc)) Æa Ð a aÆa Ð bÆb ?

(aÆa) Æ (aÆb) Ð a aÆb Ð bÆa ?

3 ( (bÆc) Æa) Æ (bÆ ( (bÆa) Æb)) Ð a ?

3 (bÆ ( (aÆb) Æb)) Æ (aÆ (c Æb)) Ð a ?

(bÆ (bÆ (aÆa))) Æ (aÆ (bÆc)) Ð a ?

(aÆa) Æ (aÆa) Ð a aÆb Ð bÆa ?

(aÆb) Æa Ð a aÆa Ð bÆb ?

( ( (bÆc) Æd) Æa) Æ (aÆd) Ð a ?

( ( (bÆa) Æc) Æa) Æ (aÆc) Ð a ?

Forms of a binary operator satisfying the constraints of a series of different axiom systems. The successive blocks of results in each
case show forms of the operator allowed with 2, 3 and 4 possible elements. Note that with 3 and 4 elements, only forms inequivalent
under interchange of element labels are shown. Representations of notable systems in mathematics are: (1) semigroup theory, (2)
commutative group theory, (3) basic logic, (4) commutative semigroup theory, (5) squag theory, (6) group theory, (7) junctional calculus,
(8) equivalential calculus and (9) implicational calculus. In each case the operator forms shown correspond to possible semigroups,
commutative groups, systems of logic (Boolean algebras), etc. with 2, 3 and 4 possible elements. The operator forms shown can be
thought of as giving multiplication tables. In model theory, these forms are usually called the models of an axiom system. 
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So if one makes a list of all possible axiom systems—say starting

with the simplest—where in such a list should one expect to see axiom

systems that correspond to traditional areas of mathematics?

Most axiom systems as they are given in typical textbooks are

sufficiently complicated that they will not show up at all early. And in

fact the only immediate exception is the axiom system

 for what are known as semigroups—which

ironically are usually viewed as rather advanced mathematical objects. 

But just how complicated do the axiom systems for traditional

areas of mathematics really need to be? Often it seems that they can be

vastly simpler than their textbook forms. And so, for example, as page 773

indicates, interpreting the  operator as division,  is

known to be an axiom system for commutative group theory, and

 for general group theory.

So what about basic logic? How complicated an axiom system

does one need for this? Textbook discussions of logic mostly use axiom

systems at least as complicated as the first one on page 773. And such

axiom systems not only involve several axioms—they also normally

involve three separate operators: AND ( ), OR ( ) and NOT ( ).

But is this in fact the only way to formulate logic?

As the picture below shows, there are 16 different possible

operators that take two arguments and allow two values, say true and

false. And of these AND, OR and NOT are certainly the most commonly

used in both everyday language and most of mathematics. 

��a�b��c � a� �b�c��

� �a��b��c ��a�b��� � c�

�a� ����a�a��b��c�����a�a��a��c�� � b�

� 	 �

12 : First 13 : 14 : Or �( ª ) 15 : True

8 : And �( © ) 9 : Equal �( = ) 10 : Last 11 : Implies�( ¶ )

4 : 5 : Not�(¨ ) 6 : Xor �( Ò ) 7 : Nand �( Ñ )

0 : False 1 : Nor�( Ó ) 2 : 3 : Not�(¨ )

Logical functions of two arguments and their
common names. Black stands for TRUE; white for
FALSE. AND, OR, NOT, and IMPLIES are widely used in
traditional logic. EQUAL (if and only if) is common in
more mathematical settings, while XOR is
widespread in discrete mathematics. NAND and NOR

are mostly used only in circuit design and in a few
foundational studies of logic. The first argument for
each function appears on the left in the picture; the
second argument on top. The functions are
numbered like 2-neighbor analogs of the cellular
automaton rules of page 53. 
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But at least at a formal level, logic can be viewed simply as a

theory of functions that take on two possible values given variables

with two possible values. And as we discussed on page 616, any such

function can be represented as a combination of AND, OR and NOT.

But the table below demonstrates that as soon as one goes beyond

the familiar traditions of language and mathematics there are other

operators that can also just as well be used as primitives. And indeed it

has been known since before 1900 that both NAND and NOR on their

own work—a fact I already used on pages 617 and 775.

0 ¨ a © a 1 ¨ (a ª b) 2 ¨ a © b 3 ¨ a
4 ¨ b © a 5 ¨ b 6 ¨ (a © b) © (a ª b) 7 ¨ (a © b)
8 a © b 9 a © b ª ¨ (a ª b) 10 b 11 ¨ a ª b
12 a 13 ¨ b ª a 14 a ª b 15 ¨ a ª a

And
( © )

Or
( ª )

Not
(¨ )

0 ¨ a © a 1 ¨ a ©¨ b 2 ¨ a © b 3 ¨ a
4 ¨ b © a 5 ¨ b 6 ¨ (¨ a ©¨ b) ©¨ (a © b) 7 ¨ (a © b)
8 a © b 9 ¨ (¨ a © b) ©¨ (¨ b © a) 10 b 11 ¨ (¨ b © a)
12 a 13 ¨ (¨ a © b) 14 ¨ (¨ a ©¨ b) 15 ¨ (¨ a © a)

And
( © )

Not
(¨ )

0 ¨ (¨ a ª a) 1 ¨ (a ª b) 2 ¨ (¨ b ª a) 3 ¨ a
4 ¨ (¨ a ª b) 5 ¨ b 6 ¨ (¨ a ª b) ª ¨ (¨ b ª a) 7 ¨ a ª ¨ b
8 ¨ (¨ a ª ¨ b) 9 ¨ (¨ a ª ¨ b) ª ¨ (a ª b) 10 b 11 ¨ a ª b
12 a 13 ¨ b ª a 14 a ª b 15 ¨ a ª a

Or
( ª )

Not
(¨ )

0 ¨ (a ¶ a) 1 ¨ (¨ a ¶ b) 2 ¨ (b ¶ a) 3 ¨ a
4 ¨ (a ¶ b) 5 ¨ b 6 (a ¶ b) ¶ ¨ (b ¶ a) 7 a ¶ ¨ b
8 ¨ (a ¶ ¨ b) 9 ¨ ( (a ¶ b) ¶ ¨ (b ¶ a)) 10 b 11 a ¶ b
12 a 13 b ¶ a 14 ¨ a ¶ b 15 a ¶ a

Implies
( ¶ )

Not
(¨ )

0 a Ò a 1 (a ¶ b) Ò b 2 ((a ¶ b) ¶ b) Ò a 3 (a ¶ a) Ò a
4 ( (a ¶ b) ¶ b) Ò b 5 (a ¶ a) Ò b 6 a Ò b 7 (a ¶ b) Ò a
8 ( ( (a ¶ b) ¶ b) Ò a) Ò b 9 ((a ¶ a) Ò a) Ò b 10 b 11 a ¶ b
12 a 13 b ¶ a 14 (a ¶ b) ¶ b 15 a ¶ a

Xor
( Ò )

Implies
( ¶ )

0 aÆa 1 aÆ (a Ç b) 2 aÆb 3 aÆ (a Ç a)
4 bÆa 5 bÆ (a Ç a) 6 aÆb Ç (b Ç a) 7 aÆb Ç b
8 (aÆb)Æb 9 (aÆb)Æ (b Ç a) 10 b 11 b Ç a
12 a 13 a Ç b 14 a Ç (a Ç b) 15 a Ç a

2
( Æ)

13
( Ç )

0 ( (a Ñ a) Ñ a) Ñ ( (a Ñ a) Ñ a) 1 ( (a Ñ a) Ñ (b Ñ b)) Ñ ( (a Ñ a) Ñ a) 2 ( (a Ñ a) Ñ a) Ñ ( (a Ñ a) Ñ b) 3 a Ñ a
4 ( (a Ñ a) Ñ a) Ñ ( (a Ñ b) Ñ a) 5 b Ñ b 6 ((a Ñ a) Ñ b) Ñ ( (a Ñ b) Ñ a) 7 a Ñ b
8 (a Ñ b) Ñ (a Ñ b) 9 ( (a Ñ a) Ñ (b Ñ b)) Ñ (a Ñ b) 10 b 11 (a Ñ b) Ñ a
12 a 13 (a Ñ a) Ñ b 14 (a Ñ a) Ñ (b Ñ b) 15 (a Ñ a) Ñ a

Nand
( Ñ )

0 (a Ó a) Ó a 1 a Ó b 2 (a Ó b) Ó a 3 a Ó a
4 (a Ó a) Ó b 5 b Ó b 6 ((a Ó a) Ó (b Ó b)) Ó (a Ó b) 7 ( (a Ó a) Ó (b Ó b)) Ó ( (a Ó a) Ó a)
8 (a Ó a) Ó (b Ó b) 9 ( (a Ó a) Ó b) Ó ( (a Ó b) Ó a) 10 b 11 ( (a Ó a) Ó a) Ó ( (a Ó a) Ó b)
12 a 13 ( (a Ó a) Ó a) Ó ( (a Ó b) Ó a) 14 (a Ó b) Ó (a Ó b) 15 ( (a Ó a) Ó a) Ó ( (a Ó a) Ó a)

Nor
( Ó )

Functions that can be used to formulate logic. In each case the minimal combinations of primitive functions necessary
to reproduce each of the 16 logical functions of two arguments is given. From these any possible logical function with
any number of arguments can be obtained. Most textbook treatments of logic use AND, OR, and NOT as primitive
functions. NAND and NOR are the only primitive functions that work on their own.
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So this means that logic can be set up using just a single operator.

But how complicated an axiom system does it then need? The first box in

the picture below shows that the direct translation of the standard

textbook AND, OR, NOT axiom system from page 773 is very complicated.

But boxes (b) and (c) show that known alternative axiom systems

for logic reduce the size of the axiom system by about a factor of ten.

And some further reduction is achieved by manipulating the resulting

axioms—leading to the axiom system used above and given in box (d).

But can one go still further? And what happens for example if one

just tries to search simple axiom systems for ones that work?

One can potentially test axiom systems by seeing what operators

satisfy their constraints, as on page 805. The first non-trivial axiom

system that even allows the NAND operator is . And

the first axiom system for which NAND and NOR are the only operators

allowed that involve 2 possible values is .

But if one now looks at operators involving 3 possible values then

it turns out that this axiom system allows ones not equivalent to NAND

(a) (aÆb)Æ (aÆb) Ð (bÆa)Æ (bÆa) (aÆa)Æ (bÆb) Ð (bÆb)Æ (aÆa) (aÆ ( (bÆb)Æ ( (bÆb)Æ (bÆb))))Æ (aÆ ( (bÆb)Æ ( (bÆb)Æ (bÆb)))) Ð a
(aÆa)Æ ( ( (bÆ (bÆb))Æ (bÆ (bÆb)))Æ ( (bÆ (bÆb))Æ (bÆ (bÆb)))) Ð a aÆb Ð ( (aÆb)Æ (aÆb))Æ ( (aÆb)Æ (aÆb))

(aÆ ( (bÆb)Æ (cÆc)))Æ (aÆ ( (bÆb)Æ (cÆc))) Ð ( ( (aÆb)Æ (aÆb))Æ ( (aÆb)Æ (aÆb)))Æ ( ( (aÆc)Æ (aÆc))Æ ( (aÆc)Æ (aÆc)))
(aÆa)Æ ( ( (bÆc)Æ (bÆc))Æ ( (bÆc)Æ (bÆc))) Ð ( ( (aÆa)Æ (bÆb))Æ ( (aÆa)Æ (cÆc)))Æ ( ( (aÆa)Æ (bÆb))Æ ( (aÆa)Æ (cÆc)))

(b) (aÆa)Æ (aÆa) Ð a aÆb Ð bÆa aÆ ( (bÆc)Æ (bÆc)) Ð bÆ ( (aÆc)Æ (aÆc)) (aÆb)Æ (aÆ (bÆb)) Ð a

(c) (aÆa)Æ (aÆa) Ð a aÆ (bÆ (bÆb)) Ð aÆa (aÆ (bÆc))Æ (aÆ (bÆc)) Ð ( (bÆb)Æa)Æ ( (cÆc)Æa)

(d) (aÆa)Æ (aÆb) Ð a aÆ (aÆb) Ð aÆ (bÆb) aÆ (aÆ (bÆc)) Ð bÆ (bÆ (aÆc))

(e) aÆ (bÆ (aÆc)) Ð ( (cÆb)Æb)Æa (aÆa)Æ (bÆa) Ð a

(f ) (aÆb)Æ (aÆ (bÆc)) Ð a aÆb Ð bÆa

(g) ( (bÆc)Æa)Æ (bÆ ( (bÆa)Æb)) Ð a

(h) (bÆ ( (aÆb)Æb))Æ (aÆ (cÆb)) Ð a

Axiom systems for basic logic (propositional calculus) formulated in terms of
NAND ( ). The number of operators that occur in these axiom systems is
respectively 94, 17, 17, 13, 9, 6, 6, 6. System (a) is a translation of the standard
textbook one given on page 773 in terms of AND, OR and NOT. (b) is based on
the Robbins axioms from page 773. (c) is the Sheffer axiom system. (e) is the
Meredith axiom system. The other axiom systems were found for this book.
(d) was used on page 775. (g) and (h) are as short as is possible. Each axiom
system given applies equally well to NOR as well as NAND. 

Ñ

��a�a���a�a� � a�

���b�b��a���a�b� � a�
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and NOR. And this means that it cannot successfully reproduce all the

results of logic. Yet if any axiom system with just a single axiom is

going to be able to do this, the axiom must be of the form . 

With up to 6 NANDs and 2 variables none of the 16,896 possible

axiom systems of this kind work even up to 3-value operators. But with

6 NANDs and 3 variables, 296 of the 288,684 possible axiom systems

work up to 3-value operators, and 100 work up to 4-value operators.

And of the 25 of these that are not trivially equivalent, it then

turns out that the two given as (g) and (h) on the facing page can actually

be proved as on the next two pages to be axiom systems for logic—thus

showing that in the end quite remarkable simplification can be

achieved relative to ordinary textbook axiom systems.

If one looks at axiom systems of the form  the

first one that one finds that allows only NAND and NOR with 2-value

operators is . But as soon as one uses a total

of just 6 NANDs, one suddenly finds that out of the 3402 possibilities

with 3 variables 32 axiom systems equivalent to case (f) above all end

up working all the way up to at least 4-value operators. And in fact it

then turns out that (f) indeed works as an axiom system for logic.

So what this means is that if one were just to go through a list of

the simplest few thousand axiom systems one would already be quite

likely to find one that represents logic.

In human intellectual history logic has had great significance. But

if one looks just at axiom systems is there anything obviously special

about the ones for logic? My guess is that unless one asks about very

specific details there is really not—and that standard logic is in a sense

distinguished in the end only by its historical context.

One feature of logic is that its axioms effectively describe a single

specific operator. But it turns out that there are all sorts of other axioms

that also do this. I gave three examples on page 803, and in the picture on

the right I give two more very simple examples. Indeed, given many forms

of operator there are always axiom systems that can be found to describe it.

�… � a�

�… � a, a�b � b�a�

��a�a���a�a� � a, a�b � b�a�

Axiom systems that
reproduce equivalence
results for the forms of
operators shown.

(aÆa)Æb Ð a

aÆb Ð a
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L�1 (a�( (a�a)�a))�(a�( (a�a)�a))
= A ( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�

a))))�(a�( (a�a)�a))
= A ( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�(a�( (a�a)�a))))�(a�( (a�a)�a))
= A ( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))�a)�(a�( (a�a)�a))
= A ( (a�(a�( (a�a)�a)))�a)�(a�( (a�a)�a))
= A a

L�2 (a�a)�( (a�( (a�a)�a))�a)
= A (a�a)�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= L�1 (a�a)�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�(a�( (a�a)�a))))�(a�( (a�a)�a))))
= L�1 ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�(a�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�

a))�( (a�( (a�a)�a))�(a�( (a�a)�a))))�(a�( (a�a)�a))))
= A (a�( (a�a)�a))�(a�( (a�a)�a))
= L�1 a

L�3 (a�b)�( (a�a)�( ( (a�a)�b)�(a�a)))
= L�2 ( ( (a�a)�( (a�( (a�a)�a))�a))�b)�( (a�a)�( ( (a�a)�b)�(a�a)))
= A b

L�4 ( (a�( (a�b)�a))�d)�(b�( (b�d)�b))
= A ( (a�( (a�b)�a))�d)�(b�( (b�d)�( ( (a�c)�b)�(a�( (a�b)�a)))))
= A ( (a�( (a�b)�a))�d)�(b�( ( ( ( (a�c)�b)�(a�( (a�b)�a)))�d)�( ( (a�c)�b)�(a�( (a�b)�a)))))
= A ( (a�( (a�b)�a))�d)�( ( ( (a�c)�b)�(a�( (a�b)�a)))�( ( ( ( (a�c)�b)�(a�( (a�b)�a)))�d)�( ( (a�c)�b)�(a�

( (a�b)�a)))))
= L�3 ( ( ( ( (a�c)�b)�(a�( (a�b)�a)))�( ( ( (a�c)�b)�( (a�c)�b))�( ( ( ( (a�c)�b)�( (a�c)�b))�(a�( (a�b)�

a)))�( ( (a�c)�b)�( (a�c)�b)))))�d)�( ( ( (a�c)�b)�(a�( (a�b)�a)))�( ( ( ( (a�c)�b)�(a�( (a�b)�a)))�d)�( ( (a�

c)�b)�(a�( (a�b)�a)))))
= A d

L�5 (a�( (a�a)�a))�( (a�( (a�a)�a))�a)
= A (a�( (a�a)�a))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= A ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�( ( ( (a�a)�a)�

(a�( (a�a)�a)))�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= A ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�(a�( (a�a)�

a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= A ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�a)�( (a�( (a�a)�a))�( ( (a�

( (a�a)�a))�a)�(a�( (a�a)�a))))
= A ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�

( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))))�a)�( (a�( (a�a)�a))�

( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a))))
= L�4 a

L�6 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�1 (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))
= A ( ( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�

a)))�(a�( (a�a)�a)))))�( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( ( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( (a�

( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= A (a�( (a�a)�a))�( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( ( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( (a�

( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�5 (a�( (a�a)�a))�(a�( ( ( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�

a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�5 (a�( (a�a)�a))�(a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�

( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�1 (a�( (a�a)�a))�(a�( (a�( (a�( (a�a)�a))�(a�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�1 (a�( (a�a)�a))�(a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�

( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�4 (a�( (a�a)�a))�(a�( ( ( ( (a�( (a�a)�a))�a)�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�

a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= A (a�( (a�a)�a))�(a�( (a�( (a�a)�a))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))

L�7 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�6 (a�( (a�a)�a))�(a�( (a�( (a�a)�a))�( (a�( (a�a)�a))�( (a�( (a�a)�a))�a))))
= L�5 (a�( (a�a)�a))�(a�( (a�( (a�a)�a))�a))
= A (a�( (a�a)�a))�(a�( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�a))
= A (a�( (a�a)�a))�(a�( (a�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�a))
= L�3 ( (a�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�(a�( (a�( (a�a)�( ( (a�a)�(a�( (a�a)�

a)))�(a�a))))�a))
= A (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))

L�8 ( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a)))
= L�7 ( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))�( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))
= L�1 ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�

a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))
= L�1 a�( (a�a)�a)

L�9 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�1 (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))
= L�8 ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�

a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�

( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�

( (a�a)�a))�(a�( (a�a)�a)))))
= L�1 (a�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�

a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�

a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))

L�10 (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))
= L�7 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�9 (a�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�

a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( ( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�

a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))
= L�1 (a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�

( (a�a)�a)))))�(a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�

(a�( (a�a)�a)))))

L�11 (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))
= L�10 (a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�

( (a�a)�a)))))�(a�( (a�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�

(a�( (a�a)�a)))))
= L�1 (a�( (a�( (a�( (a�a)�a))�(a�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( (a�( (a�( (a�

a)�a))�(a�(a�( (a�a)�a)))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))

= L�7 (a�( (a�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( (a�( (a�

a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))

L�12 (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))
= L�11 (a�( (a�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( (a�( (a�

a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))
= A (a�( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�( (a�

a)�a)))))�(a�( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))�( (a�( (a�a)�a))�(a�

( (a�a)�a)))))
= A (a�( (a�( (a�a)�a))�( (a�( (a�a)�a))�(a�( (a�a)�a)))))�(a�( (a�( (a�a)�a))�( (a�( (a�a)�a))�(a�( (a�

a)�a)))))
= L�1 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))

L�13 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�7 (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))
= L�12 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))

L�14 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))
= L�13 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�1 (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))
= A ( ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�

a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�

a)�a)))�(a�( (a�a)�a)))�( ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�

a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�

a)�a)))�(a�( (a�a)�a)))))
= A ( ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�

a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))))�(a�( (a�a)�a)))�

( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�

a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�

a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a)))))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�

a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))))
= L�4 (a�( (a�a)�a))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( ( ( ( ( (a�

a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�

a)�a)))�(a�( (a�a)�a)))))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))))
= L�4 (a�( (a�a)�a))�( ( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�

a)�a))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))))
= A (a�( (a�a)�a))�( ( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( ( (a�a)�a)�( ( ( (a�

a)�a)�(a�( (a�a)�a)))�( (a�a)�a)))�(a�( (a�a)�a)))))
= A (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( ( (a�a)�a)�( ( ( (a�a)�a)�(a�( (a�a)�a)))�( (a�

a)�a)))�(a�( (a�a)�a)))))
= A (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�a)))))

L�15 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))
= L�14 (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�a)�a))�( ( ( (a�a)�a)�(a�( (a�a)�a)))�(a�( (a�a)�

a)))))
= A (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�a)�a))�(a�(a�( (a�a)�a)))))
= L�13 (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))))

L�16 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))
= L�15 (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))))
= L�12 (a�( (a�a)�a))�( (a�(a�( (a�a)�a)))�( (a�a)�( ( (a�a)�(a�( (a�a)�a)))�(a�a))))
= L�3 (a�( (a�a)�a))�(a�( (a�a)�a))

L�17 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�13 (a�( (a�( (a�a)�a))�a))�(a�( (a�( (a�a)�a))�a))
= L�16 (a�( (a�a)�a))�(a�( (a�a)�a))
= L�1 a

L�18 a�( (a�a)�a)
= L�1 ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�

a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))
= L�16 ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))�(a�( (a�a)�

a))))�( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�( (a�a)�a)))�(a�( (a�a)�a))))�(a�( (a�a)�a))))
= L�1 ( (a�( (a�a)�a))�( ( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))�(a�( (a�a)�a))))�( (a�( (a�a)�a))�( ( (a�( (a�

a)�a))�(a�(a�( (a�a)�a))))�(a�( (a�a)�a))))
= L�17 ( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))�( (a�( (a�a)�a))�(a�(a�( (a�a)�a))))
= L�17 a�a

L�19 (a�a)�(a�(a�a))
= L�18 (a�a)�(a�(a�( (a�a)�a)))
= L�18 (a�( (a�a)�a))�(a�(a�( (a�a)�a)))
= L�17 a

L�20 a�(a�( (a�( (a�a)�a))�a))
= L�18 a�(a�( (a�( (a�( (a�a)�a))�a))�a))
= L�2 ( (a�a)�( (a�( (a�a)�a))�a))�(a�( (a�( (a�( (a�a)�a))�a))�a))
= A (a�( (a�a)�a))�a

L�21 a�(a�a)
= L�18 a�(a�( (a�a)�a))
= L�18 a�(a�( (a�( (a�a)�a))�a))
= L�20 (a�( (a�a)�a))�a

L�22 (a�a)�(a�a)
= L�18 (a�( (a�a)�a))�(a�( (a�a)�a))
= L�1 a

T �1 (a�a)�(a�a)
= L�22 a

L�23 (a�a)�a
= L�18 (a�( (a�a)�a))�a
= L�21 a�(a�a)

L�24 ( (a�b)�a)�(a�a)
= L�18 ( (a�b)�a)�(a�( (a�a)�a))
= A a

L�25 a�( (a�( (a�b)�(a�b)))�a)
= A ( ( (a�b)�( (a�b)�(a�b)))�(a�( (a�( (a�b)�(a�b)))�a)))�( (a�b)�( ( (a�b)�(a�( (a�( (a�b)�(a�b)))�

a)))�(a�b)))
= A ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�( (a�( (a�b)�(a�b)))�a)))�(a�b)))
= L�19 ( (a�b)�(a�b))�( (a�b)�( ( ( ( (a�b)�(a�b))�( (a�b)�( (a�b)�(a�b))))�(a�( (a�( (a�b)�(a�b)))�a)))�

(a�b)))
= A ( (a�b)�(a�b))�( (a�b)�( ( ( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�b))))�

(a�( (a�( (a�b)�(a�b)))�a)))�(a�b)))
= L�24 ( (a�b)�(a�b))�( (a�b)�( ( ( ( ( ( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�

b))))�(a�( (a�(a�b))�a)))�( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�b)))))�( ( ( (a�

b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�b))))�( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�

( (a�(a�b))�a)))�( (a�b)�(a�b))))))�(a�( (a�( (a�b)�(a�b)))�a)))�(a�b)))

= A ( (a�b)�(a�b))�( (a�b)�( ( ( (a�( (a�(a�b))�a))�( ( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�

a)))�( (a�b)�(a�b))))�( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�(a�( (a�(a�b))�a)))�( (a�b)�(a�b))))))�(a�( (a�

( (a�b)�(a�b)))�a)))�(a�b)))
= A ( (a�b)�(a�b))�( (a�b)�( ( ( (a�( (a�(a�b))�a))�( ( ( (a�b)�(a�b))�( (a�b)�( (a�b)�(a�b))))�( ( (a�b)�

(a�b))�( (a�b)�( (a�b)�(a�b))))))�(a�( (a�( (a�b)�(a�b)))�a)))�(a�b)))
= L�19 ( (a�b)�(a�b))�( (a�b)�( ( ( (a�( (a�(a�b))�a))�( (a�b)�(a�b)))�(a�( (a�( (a�b)�(a�b)))�a)))�(a�

b)))
= A ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b)))

L�26 a�( (a�( (a�b)�(a�b)))�a)
= L�25 ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b)))
= A ( (a�b)�(a�b))�( ( ( ( (a�b)�(a�b))�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b))))�( ( (a�b)�(a�b))�( ( ( (a�

b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b))))�( (a�b)�(a�b)))))
= A ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�( ( ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�(a�b))�(a�b))))�( (a�b)�

(a�b)))))
= L�12 ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�( ( (a�b)�( ( (a�b)�(a�b))�(a�b)))�(a�b)))�( (a�b)�( ( (a�b)�

( ( (a�b)�(a�b))�(a�b)))�(a�b)))))
= L�16 ( (a�b)�(a�b))�( (a�b)�( ( (a�b)�( ( (a�b)�(a�b))�(a�b)))�( (a�b)�( ( (a�b)�(a�b))�(a�b)))))
= L�1 ( (a�b)�(a�b))�( (a�b)�(a�b))

L�27 a�( (a�( (a�b)�(a�b)))�a)
= L�26 ( (a�b)�(a�b))�( (a�b)�(a�b))
= L�22 a�b

L�28 a
= L�24 ( (a�b)�a)�(a�a)
= L�27 ( (a�b)�a)�( ( ( (a�b)�a)�( ( ( (a�b)�a)�(a�a))�( ( (a�b)�a)�(a�a))))�( (a�b)�a))
= L�24 ( (a�b)�a)�( ( ( (a�b)�a)�(a�a))�( (a�b)�a))

L�29 ( (a�b)�a)�(a�( (a�b)�a))
= L�24 ( (a�b)�a)�( ( ( (a�b)�a)�(a�a))�( (a�b)�a))
= L�28 a

L�30 (a�b)�(a�a)
= L�27 (a�( (a�( (a�b)�(a�b)))�a))�(a�a)
= L�29 (a�( (a�( (a�b)�(a�b)))�a))�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a)))�( ( (a�( (a�

b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a))))
= L�29 (a�( (a�( (a�b)�(a�b)))�a))�( ( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�

(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a)))�( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�

(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a))))
= A ( ( ( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a)))�( (a�( (a�b)�(a�

b)))�a)))�(a�( (a�( (a�b)�(a�b)))�a)))�( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�

(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a))))�( ( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�

b)�(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a)))�( ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�

b)�(a�b)))�a)))�( (a�( (a�b)�(a�b)))�a))))
= L�24 ( (a�( (a�b)�(a�b)))�a)�( ( ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a)))�( (a�( (a�b)�(a�

b)))�a))
= L�29 ( (a�( (a�b)�(a�b)))�a)�(a�( (a�( (a�b)�(a�b)))�a))
= L�29 a

L�31 b�( (a�b)�(a�b))
= L�3 ( (a�b)�( (a�a)�( ( (a�a)�b)�(a�a))))�( (a�b)�(a�b))
= L�30 a�b

L�32 a�( (a�b)�(a�b))
= L�30 ( (a�b)�(a�a))�( (a�b)�(a�b))
= L�30 a�b

L�33 a�( (a�b)�a)
= L�32 a�( (a�( (a�b)�(a�b)))�a)
= L�27 a�b

L�34 ( (a�b)�c)�(b�c)
= L�33 ( (a�b)�c)�(b�( (b�c)�b))
= L�33 ( (a�( (a�b)�a))�c)�(b�( (b�c)�b))
= L�4 c

L�35 b�a
= L�31 a�( (b�a)�(b�a))
= L�33 a�( (a�( (b�a)�(b�a)))�a)
= L�31 a�( (b�a)�a)

L�36 b�(b�(a�b))
= L�33 b�(b�(a�( (a�b)�a)))
= L�33 b�(b�( (b�(a�( (a�b)�a)))�b))
= A ( ( (a�( (a�b)�a))�b)�(a�( (a�b)�a)))�(b�( (b�(a�( (a�b)�a)))�b))
= A ( ( (a�( (a�b)�a))�( ( (a�( (a�b)�a))�b)�(a�( (a�b)�a))))�(a�( (a�b)�a)))�(b�( (b�(a�( (a�b)�a)))�

b))
= L�4 a�( (a�b)�a)
= L�33 a�b

L�37 (a�b)�a
= L�36 a�(a�( (a�b)�a))
= L�33 a�(a�b)

L�38 (b�a)�a
= L�36 a�(a�( (b�a)�a))
= L�35 a�(b�a)

L�39 (b�b)�(b�(a�b))
= L�38 (b�b)�( (a�b)�b)
= L�33 (b�b)�( (a�b)�( ( (a�b)�b)�(a�b)))
= L�3 (b�b)�( (a�b)�( ( (a�b)�( (a�b)�( (a�a)�( ( (a�a)�b)�(a�a)))))�(a�b)))
= L�3 ( ( (a�b)�( (a�a)�( ( (a�a)�b)�(a�a))))�( (a�b)�( (a�a)�( ( (a�a)�b)�(a�a)))))�( (a�b)�( ( (a�b)�( (a�

b)�( (a�a)�( ( (a�a)�b)�(a�a)))))�(a�b)))
= A (a�b)�( (a�a)�( ( (a�a)�b)�(a�a)))
= L�3 b

L�40 a
= L�39 (a�a)�(a�( (b�a)�a))
= L�38 (a�a)�(a�(a�(b�a)))
= L�36 (a�a)�(b�a)

L�41 a
= L�39 (a�a)�(a�( (a�b)�a))
= L�33 (a�a)�(a�b)

L�42 b�a
= L�41 b�( (a�a)�(a�b))
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= L�33 b�( (a�a)�(a�( (a�b)�a)))
= L�33 b�( (a�a)�( ( (a�a)�(a�( (a�b)�a)))�(a�a)))
= A ( ( (a�a)�b)�(a�( (a�b)�a)))�( (a�a)�( ( (a�a)�(a�( (a�b)�a)))�(a�a)))
= A a�( (a�b)�a)
= L�33 a�b

L�43 (a�c)�( (a�b)�c)
= L�42 ( (a�b)�c)�(a�c)
= L�33 ( (a�b)�c)�(a�( (a�c)�a))
= A c

L�44 (b�c)�( (a�b)�c)
= L�42 ( (a�b)�c)�(b�c)
= L�34 c

L�45 (b�a)�( (a�c)�b)
= L�42 (a�b)�( (a�c)�b)
= L�43 b

L�46 (b�a)�(a�(b�c))
= L�42 (b�a)�( (b�c)�a)
= L�43 a

L�47 b�c
= L�46 ( (a�b)�(b�c))�( (b�c)�( (a�b)�c))
= L�44 ( (a�b)�(b�c))�c
= L�42 c�( (a�b)�(b�c))

L�48 a�b
= L�45 ( (a�b)�(c�a))�( ( (c�a)�b)�(a�b))
= L�42 ( (a�b)�(c�a))�( (a�b)�( (c�a)�b))
= L�44 ( (a�b)�(c�a))�b

L�49 b�( (a�b)�(c�a))
= L�42 ( (a�b)�(c�a))�b
= L�48 a�b

L�50 (a�b)�c
= L�43 (a�( (a�b)�c))�( (a�c)�( (a�b)�c))
= L�43 (a�( (a�b)�c))�c
= L�42 c�(a�( (a�b)�c))

L�51 a�(b�(a�b))
= L�42 a�( (a�b)�b)
= L�42 ( (a�b)�b)�a
= L�50 a�( (a�b)�( ( (a�b)�b)�a))
= L�42 a�( (b�a)�( ( (a�b)�b)�a))
= L�44 a�a

L�52 (b�a)�(a�b)
= L�50 (a�b)�(b�( (b�a)�(a�b)))
= L�47 (a�b)�(a�b)

L�53 (a�a)�( (b�a)�(b�a))
= L�44 (a�a)�( (b�a)�( ( (a�a)�(b�a))�( ( ( (a�a)�(b�a))�(a�a))�(b�a))))
= L�50 (a�a)�( ( ( (a�a)�(b�a))�(a�a))�(b�a))
= L�42 (a�a)�( (b�a)�( ( (a�a)�(b�a))�(a�a)))
= L�42 (a�a)�( (b�a)�( (a�a)�( (a�a)�(b�a))))
= L�40 (a�a)�( (b�a)�( (a�a)�a))
= L�42 (a�a)�( (b�a)�(a�(a�a)))
= L�47 a�(a�a)

L�54 ( (a�b)�(a�b))�( (a�b)�(a�b))
= L�52 ( (b�a)�(a�b))�( (b�a)�(a�b))
= L�52 ( (a�b)�(b�a))�( (b�a)�(a�b))
= L�52 ( (a�b)�(b�a))�( (a�b)�(a�b))

L�55 a�b
= L�22 ( (a�b)�(a�b))�( (a�b)�(a�b))
= L�54 ( (a�b)�(b�a))�( (a�b)�(a�b))
= L�52 ( (b�a)�(b�a))�( (a�b)�(a�b))

L�56 a�(b�(b�b))
= L�53 a�( (b�b)�( (a�b)�(a�b)))
= L�42 a�( ( (a�b)�(a�b))�(b�b))
= L�40 a�( ( (a�b)�(a�b))�( ( (b�b)�(a�b))�( (b�b)�(a�b))))
= L�53 a�( (a�b)�( (a�b)�(a�b)))
= L�42 a�( ( (a�b)�(a�b))�(a�b))
= L�32 a�( ( (a�b)�(a�b))�(a�( (a�b)�(a�b))))
= L�51 a�a

T �2 a�(b�(b�b))
= L�56 a�a

L�57 ( (a�a)�( ( (a�b)�(a�b))�c))�( (a�a)�( ( (a�b)�(a�b))�c))
= L�56 ( (a�a)�( ( (a�b)�(d �(d �d)))�c))�( (a�a)�( ( (a�b)�(d �(d �d)))�c))
= L�56 ( (a�(d �(d �d)))�( ( (a�b)�(d �(d �d)))�c))�( (a�(d �(d �d)))�( ( (a�b)�(d �(d �d)))�c))
= L�56 ( (a�(d �(d �d)))�( ( (a�b)�(d �(d �d)))�c))�(d �(d �d))
= L�42 (d �(d �d))�( (a�(d �(d �d)))�( ( (a�b)�(d �(d �d)))�c))
= L�42 (d �(d �d))�( ( ( (a�b)�(d �(d �d)))�c)�(a�(d �(d �d))))
= L�42 ( ( ( (a�b)�(d �(d �d)))�c)�(a�(d �(d �d))))�(d �(d �d))
= L�46 ( ( ( (a�b)�(d �(d �d)))�c)�(a�(d �(d �d))))�( ( (a�b)�(d �(d �d)))�( (d �(d �d))�( (a�b)�(d �(d �

d)))))
= L�33 ( ( ( (a�b)�(d �(d �d)))�c)�(a�( (a�(d �(d �d)))�a)))�( ( (a�b)�(d �(d �d)))�( (d �(d �d))�( (a�b)�

(d �(d �d)))))

= A ( ( ( (a�b)�(d �(d �d)))�c)�(a�( (a�(d �(d �d)))�a)))�( ( (a�b)�(d �(d �d)))�( ( ( (a�b)�(d �(d �d)))�

(a�( (a�(d �(d �d)))�a)))�( (a�b)�(d �(d �d)))))

= A a�( (a�(d �(d �d)))�a)
= L�33 a�(d �(d �d))
L�58 (b�b)�( ( (b�c)�(b�c))�d)
= L�22 ( ( (b�b)�( ( (b�c)�(b�c))�d))�( (b�b)�( ( (b�c)�(b�c))�d)))�( ( (b�b)�( ( (b�c)�(b�c))�d))�

( (b�b)�( ( (b�c)�(b�c))�d)))

= L�57 (b�(a�(a�a)))�(b�(a�(a�a)))
= L�56 (b�b)�(b�b)
L�59 (a�a)�( ( (a�b)�(a�b))�c)
= L�58 (a�a)�(a�a)
= L�22 a
L�60 a
= L�59 (a�a)�( ( (a�( (b�a)�(c�b)))�(a�( (b�a)�(c�b))))�( (d �( (a�( (b�a)�(c�b)))�(a�( (b�a)�(c�

b)))))�(e�d)))
= L�49 (a�a)�(d �( (a�( (b�a)�(c�b)))�(a�( (b�a)�(c�b)))))

= L�49 (a�a)�(d �( (b�a)�(b�a)))
L�61 c�( (a�c)�( ( (a�b)�c)�( (a�b)�c)))
= L�42 c�( ( ( (a�b)�c)�( (a�b)�c))�(a�c))
= L�42 ( ( ( (a�b)�c)�( (a�b)�c))�(a�c))�c
= L�46 ( ( ( (a�b)�c)�( (a�b)�c))�(a�c))�( ( (a�b)�c)�(c�( (a�b)�c)))
= L�33 ( ( ( (a�b)�c)�( (a�b)�c))�(a�( (a�c)�a)))�( ( (a�b)�c)�(c�( (a�b)�c)))

= A ( ( ( (a�b)�c)�( (a�b)�c))�(a�( (a�c)�a)))�( ( (a�b)�c)�( ( ( (a�b)�c)�(a�( (a�c)�a)))�( (a�b)�c)))
= A a�( (a�c)�a)
= L�33 a�c

L�62 (a�a)�b
= L�61 b�( ( (a�a)�b)�( ( ( (a�a)�( ( (a�c)�(a�c))�d))�b)�( ( (a�a)�( ( (a�c)�(a�c))�d))�b)))
= L�59 b�( ( (a�a)�b)�( (a�b)�(a�b)))
= L�50 b�( ( (a�b)�(a�b))�( (a�a)�( ( (a�a)�b)�( (a�b)�(a�b)))))

= L�45 b�( ( (a�b)�(a�b))�( ( ( (a�b)�( (b�c)�a))�( (a�b)�( (b�c)�a)))�( ( (a�a)�b)�( (a�b)�(a�b)))))
= L�59 b�(a�b)
L�63 a�(a�b)
= L�42 a�(b�a)

= L�62 (b�b)�a
L�64 a�(b�c)
= L�45 ( (a�(b�c))�c)�( (c�a)�(a�(b�c)))
= L�42 ( (a�(b�c))�c)�( (c�a)�( (b�c)�a))

= L�44 ( (a�(b�c))�c)�a
L�65 a�(b�c)
= L�64 ( (a�(b�c))�c)�a
= L�42 a�( (a�(b�c))�c)

= L�42 a�(c�(a�(b�c)))
L�66 a�c
= L�59 ( (a�c)�(a�c))�( ( ( (a�c)�(c�a))�( (a�c)�(c�a)))�b)
= L�52 ( (a�c)�(a�c))�( ( ( (c�a)�(c�a))�( (c�a)�(c�a)))�b)
= L�22 ( (a�c)�(a�c))�( (c�a)�b)
L�67 (a�b)�(a�b)
= L�59 ( ( (a�b)�(a�b))�( (a�b)�(a�b)))�( ( ( ( (a�b)�(a�b))�( (b�a)�(b�a)))�( ( (a�b)�(a�b))�( (b�a)�

(b�a))))�c)
= L�55 ( ( (a�b)�(a�b))�( (a�b)�(a�b)))�( ( (b�a)�(b�a))�c)
= L�22 (a�b)�( ( (b�a)�(b�a))�c)

L�68 a�( ( (b�c)�(b�a))�( (b�c)�(b�a)))
= L�42 ( ( (b�c)�(b�a))�( (b�c)�(b�a)))�a
= L�63 a�(a�( (b�c)�(b�a)))
= L�33 a�(a�( (b�c)�(b�( (b�a)�b))))

= L�33 a�(a�( (b�c)�( ( (b�c)�(b�( (b�a)�b)))�(b�c))))
= A a�( ( ( (b�c)�a)�(b�( (b�a)�b)))�( (b�c)�( ( (b�c)�(b�( (b�a)�b)))�(b�c))))
= A a�(b�( (b�a)�b))
= L�33 a�(b�a)

= L�62 (b�b)�a
L�69 (b�c)�a
= L�22 ( ( (b�c)�(b�c))�( (b�c)�(b�c)))�a
= L�68 a�( ( ( ( (b�c)�(b�c))�( (c�b)�(c�b)))�( ( (b�c)�(b�c))�a))�( ( ( (b�c)�(b�c))�( (c�b)�(c�b)))�

( ( (b�c)�(b�c))�a)))

= L�55 a�( ( (c�b)�( ( (b�c)�(b�c))�a))�( (c�b)�( ( (b�c)�(b�c))�a)))
L�70 (b�c)�a
= L�69 a�( ( (c�b)�( ( (b�c)�(b�c))�a))�( (c�b)�( ( (b�c)�(b�c))�a)))
= L�67 a�( ( (c�b)�(c�b))�( (c�b)�(c�b)))

= L�22 a�(c�b)
L�71 ( (b�c)�(b�c))�a
= L�68 a�( ( ( (b�c)�(c�b))�( (b�c)�a))�( ( (b�c)�(c�b))�( (b�c)�a)))
= L�52 a�( ( ( (c�b)�(c�b))�( (b�c)�a))�( ( (c�b)�(c�b))�( (b�c)�a)))
= L�66 a�( (c�b)�(c�b))

L�72 (b�a)�( ( (b�c)�a)�( (b�c)�a))
= L�3 (a�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))�( (a�a)�( ( (a�a)�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))�(a�a)))
= L�33 (a�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))�( (a�a)�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))
= L�61 (b�a)�( (a�a)�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))

L�73 (b�a)�( ( (b�c)�a)�( (b�c)�a))
= L�72 (b�a)�( (a�a)�( (b�a)�( ( (b�c)�a)�( (b�c)�a))))
= L�60 (b�a)�a
= L�70 a�(a�b)
= L�63 (b�b)�a
L�74 (a�a)�c
= L�73 (a�c)�( ( (a�b)�c)�( (a�b)�c))
= L�50 ( ( (a�b)�c)�( (a�b)�c))�(a�( (a�c)�( ( (a�b)�c)�( (a�b)�c))))
= L�73 ( ( (a�b)�c)�( (a�b)�c))�(a�( (a�a)�c))

= L�22 ( ( (a�b)�c)�( (a�b)�c))�( ( (a�a)�(a�a))�( (a�a)�c))
= L�41 ( ( (a�b)�c)�( (a�b)�c))�(a�a)
L�75 (a�a)�( (c�(a�b))�(c�(a�b)))
= L�71 ( ( (a�b)�c)�( (a�b)�c))�(a�a)
= L�74 (a�a)�c

L�76 (b�(a�c))�(a�a)
= L�22 ( ( (b�(a�c))�(b�(a�c)))�( (b�(a�c))�(b�(a�c))))�(a�a)
= L�63 (a�a)�( (a�a)�( (b�(a�c))�(b�(a�c))))
= L�75 (a�a)�( (a�a)�b)
L�77 ( (a�b)�(a�b))�(c�a)
= L�75 ( (a�b)�(a�b))�( ( (c�a)�( (a�b)�c))�( (c�a)�( (a�b)�c)))
= L�45 ( (a�b)�(a�b))�(c�c)

L�78 ( (b�c)�(b�c))�a
= L�45 ( (b�c)�(b�c))�( (a�b)�( (b�c)�a))
= L�70 ( ( (b�c)�a)�(a�b))�( (b�c)�(b�c))
= L�22 ( ( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b)))�( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b))))�( (b�c)�

(b�c))
= L�63 ( (b�c)�(b�c))�( ( (b�c)�(b�c))�( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b))))
= L�76 ( ( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b)))�( (b�c)�(a�b)))�( (b�c)�(b�c))
= L�70 ( (b�c)�(b�c))�( ( (b�c)�(a�b))�( ( ( (b�c)�a)�(a�b))�( ( (b�c)�a)�(a�b))))
= L�73 ( (b�c)�(b�c))�( ( (b�c)�(b�c))�(a�b))
= L�63 ( (a�b)�(a�b))�( (b�c)�(b�c))
= L�47 ( (a�b)�(a�b))�( (c�( (a�b)�(b�c)))�(c�( (a�b)�(b�c))))
= L�75 ( (a�b)�(a�b))�c
= L�71 c�( (b�a)�(b�a))

L�79 a�(c�( (a�b)�(a�b)))
= L�42 a�(c�( (b�a)�(b�a)))
= L�78 a�( ( (b�c)�(b�c))�a)
= L�62 ( ( (b�c)�(b�c))�( (b�c)�(b�c)))�a
= L�22 (b�c)�a
L�80 a�( (b�a)�c)
= L�70 (c�(b�a))�a
= L�79 a�( (b�a)�( (a�c)�(a�c)))
= L�42 a�( ( (a�c)�(a�c))�(b�a))
= L�77 a�( ( (a�c)�(a�c))�(b�b))
= L�78 a�(c�( (a�(b�b))�(a�(b�b))))
= L�79 ( (b�b)�c)�a
L�81 ( (c�a)�(a�b))�( (c�a)�(a�b))
= L�40 ( ( ( (c�a)�(a�b))�( (c�a)�(a�b)))�( ( (c�a)�(a�b))�( (c�a)�(a�b))))�( (a�a)�( ( (c�a)�(a�b))�

( (c�a)�(a�b))))
= L�75 ( ( ( (c�a)�(a�b))�( (c�a)�(a�b)))�( ( (c�a)�(a�b))�( (c�a)�(a�b))))�( (a�a)�(c�a))
= L�22 ( (c�a)�(a�b))�( (a�a)�(c�a))
= L�70 ( (a�a)�(c�a))�( (a�b)�(c�a))
= L�40 a�( (a�b)�(c�a))
= L�70 ( (c�a)�(a�b))�a
= L�79 a�( (a�b)�( (a�(c�a))�(a�(c�a))))
= L�70 a�( ( (a�(c�a))�(a�(c�a)))�(b�a))
= L�77 a�( ( (a�(c�a))�(a�(c�a)))�(b�b))
= L�78 a�( (c�a)�( (a�(b�b))�(a�(b�b))))
= L�79 ( (b�b)�(c�a))�a
T �3 ( (b�b)�a)�( (c�c)�a)
= L�42 ( (b�b)�a)�(a�(c�c))
= L�42 (a�(c�c))�( (b�b)�a)
= L�22 ( ( (a�a)�(a�a))�(c�c))�( (b�b)�a)
= L�80 ( (b�b)�a)�( ( (a�a)�( (b�b)�a))�(c�c))
= L�70 ( (c�c)�( (a�a)�( (b�b)�a)))�( (b�b)�a)
= L�81 ( ( (a�a)�( (b�b)�a))�( ( (b�b)�a)�c))�( ( (a�a)�( (b�b)�a))�( ( (b�b)�a)�c))
= L�40 (a�( ( (b�b)�a)�c))�(a�( ( (b�b)�a)�c))
= L�80 ( ( ( (b�b)�(b�b))�c)�a)�( ( ( (b�b)�(b�b))�c)�a)
= L�42 ( (c�( (b�b)�(b�b)))�a)�( (c�( (b�b)�(b�b)))�a)
= L�40 ( ( ( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�b))))�( (b�b)�(c�( (b�b)�(b�b)))))�a)�( ( ( (c�( (b�b)�

(b�b)))�(c�( (b�b)�(b�b))))�( (b�b)�(c�( (b�b)�(b�b)))))�a)
= L�60 ( ( ( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�b))))�b)�a)�( ( ( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�

b))))�b)�a)
= L�42 ( (b�( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�b)))))�a)�( (b�( (c�( (b�b)�(b�b)))�(c�( (b�b)�(b�

b)))))�a)
= L�78 ( ( ( (c�b)�(c�b))�( (b�b)�(b�b)))�a)�( ( ( (c�b)�(c�b))�( (b�b)�(b�b)))�a)
= L�40 ( ( ( (c�b)�(c�b))�( (b�( (b�b)�(c�b)))�(b�( (b�b)�(c�b)))))�a)�( ( ( (c�b)�(c�b))�( (b�( (b�

b)�(c�b)))�(b�( (b�b)�(c�b)))))�a)
= L�65 ( ( ( (c�b)�(c�b))�( (b�( (c�b)�(b�( (b�b)�(c�b)))))�(b�( (c�b)�(b�( (b�b)�(c�b)))))))�a)�

( ( ( (c�b)�(c�b))�( (b�( (c�b)�(b�( (b�b)�(c�b)))))�(b�( (c�b)�(b�( (b�b)�(c�b)))))))�a)
= L�75 ( ( ( (c�b)�(c�b))�b)�a)�( ( ( (c�b)�(c�b))�b)�a)
= L�78 ( (b�( (c�b)�(c�b)))�a)�( (b�( (c�b)�(c�b)))�a)
= L�31 ( (c�b)�a)�( (c�b)�a)
= L�70 (a�(b�c))�(a�(b�c))

A proof that the axiom system  given as example (g) on page 808 can reproduce the Sheffer axiom
system (c), and is thus a complete axiom system for logic. The proof involves taking the original axiom  and using it to establish a
sequence of lemmas , from which it is eventually possible to prove the three Sheffer axioms . In each part of the proof each line
can be obtained from the previous one just as on page 775 by applying the axiom or lemma indicated. Explicit operators have been
omitted to allow expressions to be printed more compactly. The proof shown takes a total of 343 steps, and involves intermediate
expressions with as many as 128 NANDs. It is quite possible that the proof could be considerably shortened. Note that any proof can
always be recast without lemmas, but will usually then be much longer.

{( (b Æc) Æa) Æ (b Æ ( (b Æa) Æb)) Ð a}

A

Ln Tn

Ñ
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So what about patterns of theorems? Does logic somehow stand

out when one looks at these? The picture below shows which possible

simple equivalence theorems hold in systems from page 805.

And comparing with page 805 one sees that typically the more

forms of operator are allowed by the constraints of an axiom system,

the fewer equivalence results hold in that axiom system.

(pÆp)Æp Ð (pÆp)Æq

(pÆp)Æp Ð pÆ (pÆq)

pÆ (pÆp) Ð (pÆp)Æq

pÆ (pÆp) Ð pÆ (pÆq)

(pÆp)Æp Ð pÆ (pÆp)

pÆ (pÆp) Ð (pÆp)Æp

q Æq Ð (pÆq)Æq

q Æq Ð pÆ (q Æq)

q Æq Ð (pÆq)Æp

q Æq Ð pÆ (q Æp)

q Æq Ð (pÆp)Æq

q Æq Ð pÆ (pÆq)

q Æq Ð (pÆp)Æp

q Æq Ð pÆ (pÆp)

q Æp Ð (pÆq)Æq

q Æp Ð pÆ (q Æq)

q Æp Ð (pÆq)Æp

q Æp Ð pÆ (q Æp)

q Æp Ð (pÆp)Æq

q Æp Ð pÆ (pÆq)

q Æp Ð (pÆp)Æp

q Æp Ð pÆ (pÆp)

pÆq Ð (q Æq)Æq

pÆq Ð q Æ (q Æq)

pÆq Ð (q Æq)Æp

pÆq Ð q Æ (q Æp)

pÆq Ð (q Æp)Æq

pÆq Ð q Æ (pÆq)

pÆq Ð (q Æp)Æp

pÆq Ð q Æ (pÆp)

pÆq Ð (pÆq)Æq

pÆq Ð pÆ (q Æq)

pÆq Ð (pÆq)Æp

pÆq Ð pÆ (q Æp)

pÆq Ð (pÆp)Æq

pÆq Ð pÆ (pÆq)

pÆq Ð (pÆp)Æp

pÆq Ð pÆ (pÆp)

pÆp Ð (q Æq)Æq

pÆp Ð q Æ (q Æq)

pÆp Ð (q Æq)Æp

pÆp Ð q Æ (q Æp)

pÆp Ð (q Æp)Æq

pÆp Ð q Æ (pÆq)

pÆp Ð (q Æp)Æp

pÆp Ð q Æ (pÆp)

pÆp Ð (pÆq)Æq

pÆp Ð pÆ (q Æq)

pÆp Ð (pÆq)Æp

pÆp Ð pÆ (q Æp)

pÆp Ð (pÆp)Æq

pÆp Ð pÆ (pÆq)

pÆp Ð (pÆp)Æp

pÆp Ð pÆ (pÆp)

q Ð (pÆq)Æq

q Ð pÆ (q Æq)

q Ð (pÆq)Æp

q Ð pÆ (q Æp)

q Ð (pÆp)Æq

q Ð pÆ (pÆq)

q Ð (pÆp)Æp

q Ð pÆ (pÆp)

p Ð (q Æq)Æq

p Ð q Æ (q Æq)

p Ð (q Æq)Æp

p Ð q Æ (q Æp)

p Ð (q Æp)Æq

p Ð q Æ (pÆq)

p Ð (q Æp)Æp

p Ð q Æ (pÆp)

p Ð (pÆq)Æq

p Ð pÆ (q Æq)

p Ð (pÆq)Æp

p Ð pÆ (q Æp)

p Ð (pÆp)Æq

p Ð pÆ (pÆq)

p Ð (pÆp)Æp

p Ð pÆ (pÆp)

pÆq Ð q Æq

pÆq Ð q Æp

pÆp Ð q Æq

pÆp Ð q Æp

pÆp Ð pÆq

q Ð pÆq

q Ð pÆp

p Ð q Æq

p Ð q Æp

p Ð pÆq

p Ð pÆp

p Ð q

aÆa Ð a ?

aÆb Ð a ?

bÆa Ð a ?

bÆb Ð a ?

aÆb Ð bÆa ?

aÆ (aÆa) Ð a ?

(aÆa)Æa Ð a ?

aÆ (aÆb) Ð a ?

aÆ (bÆa) Ð a ?

aÆ (bÆb) Ð a ?

bÆ (aÆa) Ð a ?

bÆ (aÆb) Ð a ?

bÆ (bÆa) Ð a ?

(aÆa)Æb Ð a ?

(aÆb)Æa Ð a ?

(aÆb)Æb Ð a ?

(bÆa)Æa Ð a ?

(bÆa)Æb Ð a ?

(bÆb)Æa Ð a ?

bÆ (bÆb) Ð a ?

(bÆb)Æb Ð a ?

(aÆa)Æ (aÆa) Ð a ?

aÆ ( (aÆa)Æb) Ð a ?

(aÆa)Æ (aÆb) Ð a ?

(aÆb)Æ (bÆc) Ð a ?

(aÆb)Æc Ð aÆ (bÆc) ?

( (bÆb)Æa)Æ (aÆb) Ð a ?

( (bÆ (aÆa))Æa)Æb Ð a ?

bÆ (c Æ (aÆ (bÆc))) Ð a ?

(aÆb)Æ (aÆ (bÆc)) Ð a ?

( ( (bÆa)Æc)Æa)Æ (aÆc) Ð a ?

( ( (bÆc)Æd)Æa)Æ (aÆd) Ð a ?

(aÆb)Æa Ð a aÆa Ð bÆb ?

(aÆa)Æ (aÆa) Ð a aÆb Ð bÆa ?

(bÆ (bÆ (aÆa)))Æ (aÆ (bÆc)) Ð a ?

(bÆ ( (aÆb)Æb))Æ (aÆ (c Æb)) Ð a ?

( (bÆc)Æa)Æ (bÆ ( (bÆa)Æb)) Ð a ?

(aÆa)Æ (aÆb) Ð a aÆb Ð bÆa ?

(bÆ (aÆc))Æa Ð a aÆa Ð bÆb ?

Theorems that can be proved on the basis of simple axiom systems from page 805. A black square indicates that a particular theorem
holds in a particular axiom system. In general the question of whether a given theorem holds is undecidable, but the particular
theorems given here happen to be simple enough that results for them can with some effort be established with certainty. 
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So what happens if essentially just a single form of operator is

allowed? The pictures below show results for the 16 forms from page

806, and among these one sees that logic yields the fewest theorems.

(pÆp)Æp Ð (pÆp)Æq

(pÆp)Æp Ð pÆ (pÆq)

pÆ (pÆp) Ð (pÆp)Æq

pÆ (pÆp) Ð pÆ (pÆq)

(pÆp)Æp Ð pÆ (pÆp)

pÆ (pÆp) Ð (pÆp)Æp

q Æq Ð (pÆq)Æq

q Æq Ð pÆ (q Æq)

q Æq Ð (pÆq)Æp

q Æq Ð pÆ (q Æp)

q Æq Ð (pÆp)Æq

q Æq Ð pÆ (pÆq)

q Æq Ð (pÆp)Æp

q Æq Ð pÆ (pÆp)

q Æp Ð (pÆq)Æq

q Æp Ð pÆ (q Æq)

q Æp Ð (pÆq)Æp

q Æp Ð pÆ (q Æp)

q Æp Ð (pÆp)Æq

q Æp Ð pÆ (pÆq)

q Æp Ð (pÆp)Æp

q Æp Ð pÆ (pÆp)

pÆq Ð (q Æq)Æq

pÆq Ð q Æ (q Æq)

pÆq Ð (q Æq)Æp

pÆq Ð q Æ (q Æp)

pÆq Ð (q Æp)Æq

pÆq Ð q Æ (pÆq)

pÆq Ð (q Æp)Æp

pÆq Ð q Æ (pÆp)

pÆq Ð (pÆq)Æq

pÆq Ð pÆ (q Æq)

pÆq Ð (pÆq)Æp

pÆq Ð pÆ (q Æp)

pÆq Ð (pÆp)Æq

pÆq Ð pÆ (pÆq)

pÆq Ð (pÆp)Æp

pÆq Ð pÆ (pÆp)

pÆp Ð (q Æq)Æq

pÆp Ð q Æ (q Æq)

pÆp Ð (q Æq)Æp

pÆp Ð q Æ (q Æp)

pÆp Ð (q Æp)Æq

pÆp Ð q Æ (pÆq)

pÆp Ð (q Æp)Æp

pÆp Ð q Æ (pÆp)

pÆp Ð (pÆq)Æq

pÆp Ð pÆ (q Æq)

pÆp Ð (pÆq)Æp

pÆp Ð pÆ (q Æp)

pÆp Ð (pÆp)Æq

pÆp Ð pÆ (pÆq)

pÆp Ð (pÆp)Æp

pÆp Ð pÆ (pÆp)

q Ð (pÆq)Æq

q Ð pÆ (q Æq)

q Ð (pÆq)Æp

q Ð pÆ (q Æp)

q Ð (pÆp)Æq

q Ð pÆ (pÆq)

q Ð (pÆp)Æp

q Ð pÆ (pÆp)

p Ð (q Æq)Æq

p Ð q Æ (q Æq)

p Ð (q Æq)Æp

p Ð q Æ (q Æp)

p Ð (q Æp)Æq

p Ð q Æ (pÆq)

p Ð (q Æp)Æp

p Ð q Æ (pÆp)

p Ð (pÆq)Æq

p Ð pÆ (q Æq)

p Ð (pÆq)Æp

p Ð pÆ (q Æp)

p Ð (pÆp)Æq

p Ð pÆ (pÆq)

p Ð (pÆp)Æp

p Ð pÆ (pÆp)

pÆq Ð q Æq

pÆq Ð q Æp

pÆp Ð q Æq

pÆp Ð q Æp

pÆp Ð pÆq

q Ð pÆq

q Ð pÆp

p Ð q Æq

p Ð q Æp

p Ð pÆq

p Ð pÆp

p Ð q

False:0 ?

Nor:1 ?

2 ?

Not:3 ?

4 ?

Not:5 ?

Xor:6 ?

Nand:7 ?

And:8 ?

Equal:9 ?

Last:10 ?

Implies:11 ?

First:12 ?

13 ?

Or:14 ?

True:15 ?

(pÆq)Æq Ð (q Æq)Æq

(pÆq)Æq Ð q Æ (q Æq)

pÆ (q Æq) Ð (q Æq)Æq

pÆ (q Æq) Ð q Æ (q Æq)

(pÆq)Æq Ð (q Æq)Æp

(pÆq)Æq Ð q Æ (q Æp)

pÆ (q Æq) Ð (q Æq)Æp

pÆ (q Æq) Ð q Æ (q Æp)

(pÆq)Æq Ð (q Æp)Æq

(pÆq)Æq Ð q Æ (pÆq)

pÆ (q Æq) Ð (q Æp)Æq

pÆ (q Æq) Ð q Æ (pÆq)

(pÆq)Æq Ð (q Æp)Æp

(pÆq)Æq Ð q Æ (pÆp)

pÆ (q Æq) Ð (q Æp)Æp

pÆ (q Æq) Ð q Æ (pÆp)

(pÆq)Æq Ð pÆ (q Æq)

pÆ (q Æq) Ð (pÆq)Æq

(pÆq)Æp Ð (q Æq)Æq

(pÆq)Æp Ð q Æ (q Æq)

pÆ (q Æp) Ð (q Æq)Æq

pÆ (q Æp) Ð q Æ (q Æq)

(pÆq)Æp Ð (q Æq)Æp

(pÆq)Æp Ð q Æ (q Æp)

pÆ (q Æp) Ð (q Æq)Æp

pÆ (q Æp) Ð q Æ (q Æp)

(pÆq)Æp Ð (q Æp)Æq

(pÆq)Æp Ð q Æ (pÆq)

pÆ (q Æp) Ð (q Æp)Æq

pÆ (q Æp) Ð q Æ (pÆq)

(pÆq)Æp Ð (q Æp)Æp

(pÆq)Æp Ð q Æ (pÆp)

pÆ (q Æp) Ð (q Æp)Æp

pÆ (q Æp) Ð q Æ (pÆp)

(pÆq)Æp Ð (pÆq)Æq

(pÆq)Æp Ð pÆ (q Æq)

pÆ (q Æp) Ð (pÆq)Æq

pÆ (q Æp) Ð pÆ (q Æq)

(pÆq)Æp Ð pÆ (q Æp)

pÆ (q Æp) Ð (pÆq)Æp

(pÆp)Æq Ð (q Æq)Æq

(pÆp)Æq Ð q Æ (q Æq)

pÆ (pÆq) Ð (q Æq)Æq

pÆ (pÆq) Ð q Æ (q Æq)

(pÆp)Æq Ð (q Æq)Æp

(pÆp)Æq Ð q Æ (q Æp)

pÆ (pÆq) Ð (q Æq)Æp

pÆ (pÆq) Ð q Æ (q Æp)

(pÆp)Æq Ð (q Æp)Æq

(pÆp)Æq Ð q Æ (pÆq)

pÆ (pÆq) Ð (q Æp)Æq

pÆ (pÆq) Ð q Æ (pÆq)

(pÆp)Æq Ð (q Æp)Æp

(pÆp)Æq Ð q Æ (pÆp)

pÆ (pÆq) Ð (q Æp)Æp

pÆ (pÆq) Ð q Æ (pÆp)

(pÆp)Æq Ð (pÆq)Æq

(pÆp)Æq Ð pÆ (q Æq)

pÆ (pÆq) Ð (pÆq)Æq

pÆ (pÆq) Ð pÆ (q Æq)

(pÆp)Æq Ð (pÆq)Æp

(pÆp)Æq Ð pÆ (q Æp)

pÆ (pÆq) Ð (pÆq)Æp

pÆ (pÆq) Ð pÆ (q Æp)

(pÆp)Æq Ð pÆ (pÆq)

pÆ (pÆq) Ð (pÆp)Æq

(pÆp)Æp Ð (q Æq)Æq

(pÆp)Æp Ð q Æ (q Æq)

pÆ (pÆp) Ð (q Æq)Æq

pÆ (pÆp) Ð q Æ (q Æq)

(pÆp)Æp Ð (q Æq)Æp

(pÆp)Æp Ð q Æ (q Æp)

pÆ (pÆp) Ð (q Æq)Æp

pÆ (pÆp) Ð q Æ (q Æp)

(pÆp)Æp Ð (q Æp)Æq

(pÆp)Æp Ð q Æ (pÆq)

pÆ (pÆp) Ð (q Æp)Æq

pÆ (pÆp) Ð q Æ (pÆq)

(pÆp)Æp Ð (q Æp)Æp

(pÆp)Æp Ð q Æ (pÆp)

pÆ (pÆp) Ð (q Æp)Æp

pÆ (pÆp) Ð q Æ (pÆp)

(pÆp)Æp Ð (pÆq)Æq

(pÆp)Æp Ð pÆ (q Æq)

pÆ (pÆp) Ð (pÆq)Æq

pÆ (pÆp) Ð pÆ (q Æq)

(pÆp)Æp Ð (pÆq)Æp

(pÆp)Æp Ð pÆ (q Æp)

pÆ (pÆp) Ð (pÆq)Æp

pÆ (pÆp) Ð pÆ (q Æp)

False:0 ?

Nor:1 ?

2 ?

Not:3 ?

4 ?

Not:5 ?

Xor:6 ?

Nand:7 ?

And:8 ?

Equal:9 ?

Last:10 ?

Implies:11 ?

First:12 ?

13 ?

Or:14 ?

True:15 ?

Theorems that hold with operators of each of the forms shown on page 806. NAND and NOR yield the smallest
number of theorems.
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But if one considers for example analogs of logic for variables

with more than two possible values, the picture below shows that one

immediately gets systems with still fewer theorems.

So what about proofs? Is there something about these that is

somehow special in the case of ordinary logic? 

In the axiom systems on page 803 the typical lengths of proofs

seem to increase from one system to the next, so that they end up being

longest for the last axiom system, which corresponds to logic. 

But if one picks a different axiom system for logic—say one of the

others on page 808—then the length of a particular proof will usually

change. But since one can always just start by proving the new axioms,

the change can only be by a fixed amount. And as it turns out, even the

simplest axiom system (f) given on page 808 seems to allow fairly short

proofs of at least most short theorems.

But as one tries to prove progressively longer theorems it appears

that whatever axiom system one uses for logic the lengths of proofs can

increase as fast as exponentially. A crucial point, however, is that for

theorems of a given length there is always a definite upper limit on the

length of proof needed. Yet once again this is not something unique to

logic. Indeed, it turns out that this must always be the case for any

axiom system—like those on page 803—that ends up allowing

essentially only operators of a single form.

So what about other axiom systems?

The very simplest ones on pages 805 and 812 seem to yield proofs

that are always comparatively short. But when one looks at axiom

systems that are even slightly more complicated the proofs of anything

(pÆq)Æp Ð q Æ (pÆp)

pÆ (q Æp) Ð (q Æp)Æp

pÆ (q Æp) Ð q Æ (pÆp)

(pÆq)Æp Ð (pÆq)Æq

(pÆq)Æp Ð pÆ (q Æq)

pÆ (q Æp) Ð (pÆq)Æq

pÆ (q Æp) Ð pÆ (q Æq)

(pÆq)Æp Ð pÆ (q Æp)

pÆ (q Æp) Ð (pÆq)Æp

(pÆp)Æq Ð (q Æq)Æq

(pÆp)Æq Ð q Æ (q Æq)

pÆ (pÆq) Ð (q Æq)Æq

pÆ (pÆq) Ð q Æ (q Æq)

(pÆp)Æq Ð (q Æq)Æp

(pÆp)Æq Ð q Æ (q Æp)

pÆ (pÆq) Ð (q Æq)Æp

pÆ (pÆq) Ð q Æ (q Æp)

(pÆp)Æq Ð (q Æp)Æq

(pÆp)Æq Ð q Æ (pÆq)

pÆ (pÆq) Ð (q Æp)Æq

pÆ (pÆq) Ð q Æ (pÆq)

(pÆp)Æq Ð (q Æp)Æp

(pÆp)Æq Ð q Æ (pÆp)

pÆ (pÆq) Ð (q Æp)Æp

pÆ (pÆq) Ð q Æ (pÆp)

(pÆp)Æq Ð (pÆq)Æq

(pÆp)Æq Ð pÆ (q Æq)

pÆ (pÆq) Ð (pÆq)Æq

pÆ (pÆq) Ð pÆ (q Æq)

(pÆp)Æq Ð (pÆq)Æp

(pÆp)Æq Ð pÆ (q Æp)

pÆ (pÆq) Ð (pÆq)Æp

pÆ (pÆq) Ð pÆ (q Æp)

(pÆp)Æq Ð pÆ (pÆq)

pÆ (pÆq) Ð (pÆp)Æq

(pÆp)Æp Ð (q Æq)Æq

(pÆp)Æp Ð q Æ (q Æq)

pÆ (pÆp) Ð (q Æq)Æq

pÆ (pÆp) Ð q Æ (q Æq)

(pÆp)Æp Ð (q Æq)Æp

2 ?

3 ?

4 ?

2 3 4

Theorems in analogs of logic that allow
different numbers of truth values.
Statements like  do not hold in
general with more than 2 truth values. 

p Ð ¨ ¨ p
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but the simplest results can get much longer—making it in practice often

difficult to tell whether a given result can actually even be proved at all.

And this is in a sense just another example of the same basic

phenomenon that we already saw early in this section in multiway

systems, and that often seems to occur in real mathematics: that even if

a theorem is short to state, its proof can be arbitrarily long.

And this I believe is ultimately a reflection of the Principle of

Computational Equivalence. For the principle suggests that most axiom

systems whose consequences are not obviously simple will tend to be

universal. And this means that they will exhibit computational

irreducibility and undecidability—and will allow no general upper limit

to be placed on how long a proof could be needed for any given result.

As I discussed earlier, most of the common axiom systems in

traditional mathematics are known to be universal—basic logic being

one of the few exceptions. But one might have assumed that to achieve

their universality these axiom systems would have to be specially set

up with all sorts of specific sophisticated features.

Yet from the results of this book—as embodied in the Principle of

Computational Equivalence—we now know that this is not the case,

and that in fact universality should already be rather common even

among very simple axiom systems, like those on page 805.

And indeed, while operator systems and multiway systems have

many superficial differences, I suspect that when it comes to

universality they work very much the same. So in either idealization,

one should not have to go far to get axiom systems that exhibit

universality—just like most of the ones in traditional mathematics.

But once one has reached an axiom system that is universal, why

should one in a sense ever have to go further? After all, what it means

for an axiom system to be universal is that by setting up a suitable

encoding it must in principle be possible to make that axiom system

reproduce any other possible axiom system.

But the point is that the kinds of encodings that are normally

used in mathematics are in practice rather limited. For while it is

common, say, to take a problem in geometry and reformulate it as a

problem in algebra, this is almost always done just by setting up a direct
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translation between the objects one is describing—usually in effect just

by renaming the operators used to manipulate them. 

Yet to take full advantage of universality one must consider not

only translations between objects but also translations between

complete proofs. And if one does this it is indeed perfectly possible, say,

to program arithmetic to reproduce any proof in set theory. In fact, all

one need do is to encode the axioms of set theory in something like the

arithmetic equation system of page 786. 

But with the notable exception of Gödel’s Theorem these kinds of

encodings are not normally used in mathematics. So this means that

even when universality is present realistic idealizations of mathematics

must still distinguish different axiom systems.

So in the end what is it that determines which axiom systems are

actually used in mathematics? In the course of this section I have

discussed a few criteria. But in the end history seems to be the only real

determining factor. For given almost any general property that one can

pick out in axiom systems like those on pages 773 and 774 there

typically seem to be all sorts of operator and multiway systems—often

including some rather simple ones—that share the exact same property.

So this leads to the conclusion that there is in a sense nothing

fundamentally special about the particular axiom systems that have

traditionally been used in mathematics—and that in fact there are all

sorts of other axiom systems that could perfectly well be used as

foundations for what are in effect new fields of mathematics—just as

rich as the traditional ones, but without the historical connections.

So what about existing fields of mathematics? As I mentioned

earlier in this section, I strongly believe that even within these there are

fundamental limitations that have implicitly been imposed on what has

actually been studied. And most often what has happened is that there

are only certain kinds of questions or statements that have been

considered of real mathematical interest.

The picture on the facing page shows a rather straightforward

version of this. It lists in order a large number of theorems from basic

logic, highlighting just those few that are considered interesting enough

by typical textbooks of logic to be given explicit names.
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The theorems of basic logic written out in order of increasing complexity. Those considered interesting enough to name in typical textbooks
are highlighted. The theorems are respectively: (1), (2) idempotence (laws of tautology) of AND and OR, (3), (4) commutativity of AND and OR,
(5) law of double negation, (6), (7) absorption (redundancy) laws, (8) law of noncontradiction (definition of FALSE), (9) law of excluded middle
(definition of TRUE), (10) de Morgan’s law, (11), (12) associativity of AND and OR, (13), (14) distributive laws. With the exception of the second
distributive law, it turns out that the highlighted theorems are exactly the ones that cannot be derived from preceding theorems in the list.
The distributive laws appear at positions 2813 and 2814 in the list; it takes a long proof to obtain the second one from preceding theorems. 
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But what determines which theorems these will be? One might

have thought that it would be purely a matter of history. But actually

looking at the list of theorems it always seems that the interesting ones

are in a sense those that show the least unnecessary complication.

And indeed if one starts from the beginning of the list one finds

that most of the theorems can readily be derived from simpler ones

earlier in the list. But there are a few that cannot—and that therefore

provide in a sense the simplest statements of genuinely new

information. And remarkably enough what I have found is that these

theorems are almost exactly the ones highlighted on the previous page

that have traditionally been identified as interesting.

So what happens if one applies the same criterion in other

settings? The picture below shows as an example theorems from the

formulation of logic discussed above based on NAND.

a Ñ b Ð b Ñ a a Ð (a Ñ a) Ñ (a Ñ a) a Ð (a Ñ a) Ñ (a Ñ b) a Ð (a Ñ a) Ñ (b Ñ a)

a Ð (a Ñ b) Ñ (a Ñ a) a Ð (b Ñ a) Ñ (a Ñ a) (a Ñ a) Ñ a Ð a Ñ (a Ñ a) (a Ñ a) Ñ a Ð (b Ñ b) Ñ b

a Ñ (a Ñ a) Ð (b Ñ b) Ñ b (a Ñ a) Ñ a Ð b Ñ (b Ñ b) a Ñ (a Ñ a) Ð b Ñ (b Ñ b) a Ñ (a Ñ b) Ð (a Ñ b) Ñ a

a Ñ (a Ñ b) Ð a Ñ (b Ñ a) (a Ñ a) Ñ b Ð (a Ñ b) Ñ b a Ñ (a Ñ b) Ð a Ñ (b Ñ b) a Ñ (a Ñ b) Ð (b Ñ a) Ñ a

(a Ñ a) Ñ b Ð b Ñ (a Ñ a) (a Ñ a) Ñ b Ð (b Ñ a) Ñ b (a Ñ a) Ñ b Ð b Ñ (a Ñ b) a Ñ (a Ñ b) Ð (b Ñ b) Ñ a

(a Ñ a) Ñ b Ð b Ñ (b Ñ a) (a Ñ b) Ñ a Ð a Ñ (b Ñ a) (a Ñ b) Ñ a Ð a Ñ (b Ñ b) a Ñ (b Ñ a) Ð a Ñ (b Ñ b)

(a Ñ b) Ñ a Ð (b Ñ a) Ñ a a Ñ (b Ñ a) Ð (b Ñ a) Ñ a (a Ñ b) Ñ a Ð (b Ñ b) Ñ a a Ñ (b Ñ a) Ð (b Ñ b) Ñ a

a Ñ (b Ñ b) Ð (b Ñ a) Ñ a (a Ñ b) Ñ b Ð b Ñ (a Ñ a) (a Ñ b) Ñ b Ð (b Ñ a) Ñ b (a Ñ b) Ñ b Ð b Ñ (a Ñ b)

a Ñ (b Ñ b) Ð (b Ñ b) Ñ a (a Ñ b) Ñ b Ð b Ñ (b Ñ a) a Ñ (b Ñ c) Ð a Ñ (c Ñ b) (a Ñ b) Ñ c Ð (b Ñ a) Ñ c

a Ñ (b Ñ c) Ð (b Ñ c) Ñ a (a Ñ b) Ñ c Ð c Ñ (a Ñ b) a Ñ (b Ñ c) Ð (c Ñ b) Ñ a (a Ñ b) Ñ c Ð c Ñ (b Ñ a)

(a Ñ a) Ñ (a Ñ a) Ð (a Ñ a) Ñ (a Ñ b) (a Ñ a) Ñ (a Ñ a) Ð (a Ñ a) Ñ (b Ñ a) (a Ñ a) Ñ (a Ñ a) Ð (a Ñ b) Ñ (a Ñ a) (a Ñ a) Ñ (a Ñ a) Ð (b Ñ a) Ñ (a Ñ a)

(a Ñ a) Ñ (a Ñ b) Ð (a Ñ a) Ñ (a Ñ c) (a Ñ a) Ñ (a Ñ b) Ð (a Ñ a) Ñ (b Ñ a) (a Ñ a) Ñ (a Ñ b) Ð (a Ñ a) Ñ (c Ñ a) (a Ñ a) Ñ (a Ñ b) Ð (a Ñ b) Ñ (a Ñ a)

� 118 lines

a Ñ ( (a Ñ b) Ñ b) Ð (c Ñ (a Ñ a)) Ñ a a Ñ ( (a Ñ b) Ñ b) Ð ( (c Ñ a) Ñ c) Ñ a a Ñ ( (a Ñ b) Ñ b) Ð (c Ñ (a Ñ c)) Ñ a (a Ñ (a Ñ b)) Ñ b Ð (c Ñ (b Ñ b)) Ñ b

(a Ñ (a Ñ b)) Ñ b Ð ( (c Ñ b) Ñ c) Ñ b (a Ñ (a Ñ b)) Ñ b Ð (c Ñ (b Ñ c)) Ñ b a Ñ ( (a Ñ b) Ñ b) Ð (c Ñ (c Ñ a)) Ñ a (a Ñ (a Ñ b)) Ñ b Ð (c Ñ (c Ñ b)) Ñ b

a Ñ ( (a Ñ b) Ñ b) Ð ( (c Ñ c) Ñ c) Ñ a a Ñ ( (a Ñ b) Ñ b) Ð (c Ñ (c Ñ c)) Ñ a (a Ñ (a Ñ b)) Ñ b Ð ( (c Ñ c) Ñ c) Ñ b (a Ñ (a Ñ b)) Ñ b Ð (c Ñ (c Ñ c)) Ñ b

a Ñ (a Ñ (b Ñ c)) Ð a Ñ (a Ñ (c Ñ b)) (a Ñ (a Ñ b)) Ñ c Ð ( (a Ñ b) Ñ a) Ñ c (a Ñ (a Ñ b)) Ñ c Ð (a Ñ (b Ñ a)) Ñ c a Ñ ( (a Ñ b) Ñ c) Ð a Ñ ( (b Ñ a) Ñ c)

( (a Ñ a) Ñ b) Ñ c Ð ( (a Ñ b) Ñ b) Ñ c (a Ñ (a Ñ b)) Ñ c Ð (a Ñ (b Ñ b)) Ñ c a Ñ ( (a Ñ b) Ñ c) Ð a Ñ ( (b Ñ b) Ñ c) a Ñ ( (a Ñ b) Ñ c) Ð ( (a Ñ b) Ñ c) Ñ a

a Ñ (a Ñ (b Ñ c)) Ð (a Ñ (b Ñ c)) Ñ a a Ñ (a Ñ (b Ñ c)) Ð a Ñ ( (b Ñ c) Ñ a) a Ñ (a Ñ (b Ñ c)) Ð ( (a Ñ b) Ñ c) Ñ c (a Ñ (a Ñ b)) Ñ c Ð (a Ñ (b Ñ c)) Ñ c

a Ñ ( (a Ñ b) Ñ c) Ð a Ñ ( (b Ñ c) Ñ c) a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (a Ñ b)) a Ñ (a Ñ (b Ñ c)) Ð (a Ñ (c Ñ b)) Ñ a a Ñ (a Ñ (b Ñ c)) Ð a Ñ ( (c Ñ b) Ñ a)

a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (b Ñ a)) a Ñ (a Ñ (b Ñ c)) Ð ( (a Ñ c) Ñ b) Ñ b a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (b Ñ b)) ( (a Ñ a) Ñ b) Ñ c Ð ( (a Ñ c) Ñ b) Ñ c

(a Ñ (a Ñ b)) Ñ c Ð (a Ñ (c Ñ b)) Ñ c a Ñ ( (a Ñ b) Ñ c) Ð a Ñ ( (c Ñ b) Ñ c) a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (b Ñ c)) a Ñ ( (a Ñ b) Ñ c) Ð a Ñ (c Ñ (c Ñ b))

�

The theorems of logic formulated in terms of NAND. Theorems which cannot be derived from ones earlier in the list are highlighted.
The last highlighted theorem is 539th in the list. No later theorems would be highlighted since the ones shown form a complete
axiom system from which any theorem of logic can be derived. The last highlighted theorem is however an example of one that
follows from the axioms, but is hard to prove.
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Now there is no particular historical tradition to rely on. But the

criterion nevertheless still seems to agree rather well with judgements a

human might make. And much as in the picture on page 817, what one

sees is that right at the beginning of the list there are several theorems

that are identified as interesting. But after these one has to go a long

way before one finds other ones.

So if one were to go still further, would one eventually find yet

more? It turns out that with the criterion we have used one would not.

And the reason is that just the six theorems highlighted already happen

to form an axiom system from which any possible theorem about

NANDs can ultimately be derived.

And indeed, whenever one is dealing with theorems that can be

derived from a finite axiom system the criterion implies that only a

finite number of theorems should ever be considered interesting—

ending as soon as one has in a sense got enough theorems to be able to

reproduce some formulation of the axiom system.

But this is essentially like saying that once one knows the rules

for a system nothing else about it should ever be considered interesting.

Yet most of this book is concerned precisely with all the interesting

behavior that can emerge even if one knows the rules for a system.

And the point is that if computational irreducibility is present,

then there is in a sense all sorts of information about the behavior of a

system that can only be found from its rules by doing an irreducibly

large amount of computational work. And the analog of this in an

axiom system is that there are theorems that can be reached only by

proofs that are somehow irreducibly long.

So what this suggests is that a theorem might be considered

interesting not only if it cannot be derived at all from simpler theorems

but also if it cannot be derived from them except by some long proof.

And indeed in basic logic the last theorem identified as interesting on

page 817—the distributivity of OR—is an example of one that can in

principle be derived from earlier theorems, but only by a proof that

seems to be much longer than other theorems of comparable size.

In logic, however, all proofs are in effect ultimately of limited

length. But in any axiom system where there is universality—and thus
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undecidability—this is no longer the case, and as I discussed above I

suspect that it will actually be quite common for there to be all sorts of

short theorems that have only extremely long proofs.

No doubt many such theorems are much too difficult ever to

prove in practice. But even if they could be proved, would they be

considered interesting? Certainly they would provide what is in essence

new information, but my strong suspicion is that in mathematics as it

is currently practiced they would only rarely be considered interesting.

And most often the stated reason for this would be that they do

not seem to fit into any general framework of mathematical results, but

instead just seem like isolated random mathematical facts.

In doing mathematics, it is common to use terms like difficult,

powerful, surprising and deep to describe theorems. But what do these

really mean? As I mentioned above, any field of mathematics can at

some level be viewed as a giant network of statements in which the

connections correspond to theorems. And my suspicion is that our

intuitive characterizations of theorems are in effect just reflections of

our perception of various features of the structure of this network.

And indeed I suspect that by looking at issues such as how easy a

given theorem makes it to get from one part of a network to another it

will be possible to formalize many intuitive notions about the practice

of mathematics—much as earlier in this book we were able to formalize

notions of everyday experience such as complexity and randomness.

Different fields of mathematics may well have networks with

characteristically different features. And so, for example, what are

usually viewed as more successful areas of pure mathematics may have

more compact networks, while areas that seem to involve all sorts of

isolated facts—like elementary number theory or theory of specific

cellular automata—may have sparser networks with more tendrils.

And such differences will be reflected in proofs that can be given.

For example, in a sparser network the proof of a particular theorem may

not contain many pieces that can be used in proving other theorems.

But in a more compact network there may be intermediate definitions

and concepts that can be used in a whole range of different theorems.
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Indeed, in an extreme case it might even be possible to do the

analog of what has been done, say, in the computation of symbolic

integrals, and to set up some kind of uniform procedure for finding a

proof of essentially any short theorem.

And in general whenever there are enough repeated elements

within a single proof or between different proofs this indicates the

presence of computational reducibility. Yet while this means that there

is in effect less new information in each theorem that is proved, it turns

out that in most areas of mathematics these theorems are usually the

ones that are considered interesting.

The presence of universality implies that there must at some

level be computational irreducibility—and thus that there must be

theorems that cannot be reached by any short procedure. But the point

is that mathematics has tended to ignore these, and instead to

concentrate just on what are in effect limited patches of computational

reducibility in the network of all possible theorems.

Yet in a sense this is no different from what has happened, say, in

physics, where the phenomena that have traditionally been studied are

mostly just those ones that show enough computational reducibility to

allow analysis by traditional methods of theoretical physics.

But whereas in physics one has only to look at the natural world

to see that other more complex phenomena exist, the usual approaches

to mathematics provide almost no hint of anything analogous.

Yet with the new approach based on explicit experimentation

used in this book it now becomes quite clear that phenomena such as

computational irreducibility occur in abstract mathematical systems.

And indeed the Principle of Computational Equivalence implies

that such phenomena should be close at hand in almost every direction:

it is merely that—despite its reputation for generality—mathematics

has in the past implicitly tended to define itself to avoid them.

So what this means is that in the future, when the ideas and

methods of this book have successfully been absorbed, the field of

mathematics as it exists today will come to be seen as a small and

surprisingly uncharacteristic sample of what is actually possible.
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Intelligence in the Universe

Whether or not we as humans are the only examples of intelligence in

the universe is one of the great unanswered questions of science.

Just how intelligence should be defined has never been quite

clear. But in recent times it has usually been assumed that it has

something to do with an ability to perform sophisticated computations.

And with traditional intuition it has always seemed perfectly

reasonable that it should take a system as complicated as a human to

exhibit such capabilities—and that the whole elaborate history of life

on Earth should have been needed to generate such a system.

With the development of computer technology it became clear

that many features of intelligence could be achieved in systems that are

not biological. Yet our experience has still been that to build a computer

requires sophisticated engineering that in a sense exists only because of

human biological and cultural development.

But one of the central discoveries of this book is that in fact

nothing so elaborate is needed to get sophisticated computation. And

indeed the Principle of Computational Equivalence implies that a vast

range of systems—even ones with very simple underlying rules—should

be equivalent in the sophistication of the computations they perform.

So in as much as intelligence is associated with the ability to do

sophisticated computations it should in no way require billions of years

of biological evolution to produce—and indeed we should see it all over

the place, in all sorts of systems, whether biological or otherwise.

And certainly some everyday turns of phrase might suggest that

we do. For when we say that the weather has a mind of its own we are

in effect attributing something like intelligence to the motion of a fluid.

Yet surely, one might argue, there must be something fundamentally

more to true intelligence of the kind that we as humans have. 

So what then might this be?

Certainly one can identify all sorts of specific features of human

intelligence: the ability to understand language, to do mathematics,

solve puzzles, and so on. But the question is whether there are more
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general features that somehow capture the essence of true intelligence,

independent of the particular details of human intelligence.

Perhaps it could be the ability to learn and remember. Or the

ability to adapt to a wide range of different and complex situations. Or

the ability to handle abstract general representations of data.

At first, all of these might seem like reasonable indicators of true

intelligence. But as soon as one tries to think about them independent

of the particular example of human intelligence, it becomes much less

clear. And indeed, from the discoveries in this book I am now quite

certain that any of them can actually be achieved in systems that we

would normally never think of as showing anything like intelligence.

Learning and memory, for example, can effectively occur in any

system that has structures that form in response to input, and that can

persist for a long time and affect the behavior of the system. And this

can happen even in simple cellular automata—or, say, in a physical

system like a fluid that carves out a long-term pattern in a solid surface.

Adaptation to all sorts of complex situations also occurs in a

great many systems. It is well recognized when natural selection is

present. But at some level it can also be thought of as occurring

whenever a constraint ends up getting satisfied—even say that a fluid

flowing around a complex object minimizes the energy it dissipates.

Handling abstraction is also in a sense rather common. Indeed, as

soon as one thinks of a system as performing computations one can

immediately view features of those computations as being like abstract

representations of input to the system.

So given all of this is there any way to define a general notion of

true intelligence? My guess is that ultimately there is not, and that in

fact any workable definition of what we normally think of as

intelligence will end up having to be tied to all sorts of seemingly rather

specific details of human intelligence.

And as it turns out this is quite similar to what happens if one

tries to define the seemingly much simpler notion of life.

There was a time when it was thought that practically any

system that moves spontaneously and responds to stimuli must be
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alive. But with the development of machines having even the most

primitive sensors it became clear that this was not correct.

Work in the field of thermodynamics led to the idea that perhaps

living systems could be defined by their ability to take disorganized

material and spontaneously organize it—usually to incorporate it into

their own structure. Yet all sorts of non-living systems—from crystals

to flames—also do this. And Chapter 6 showed that self-organization is

actually extremely common even among systems with simple rules.

For a while it was thought that perhaps life might be defined by

its ability for self-reproduction. But in the 1950s abstract computational

systems were constructed that also had this ability. Yet it seemed that

they needed highly complex rules—not unlike those found in actual

living cells. But in fact no such complexity is really necessary. And as

one might now expect from the intuition in this book, even systems

like the one below with remarkably simple rules can still manage to

show self-reproduction—despite the fact that they bear almost no other

resemblance to ordinary living systems. 

If one looks at typical living systems one of their most obvious

features is great apparent complexity. And for a long time it has been

thought that such complexity must somehow be unique to living

systems—perhaps requiring billions of years of biological evolution to

develop. But what I have shown in this book is that this is not the case,

and that in fact a vast range of systems—including ones with very

step 10 step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9

A two-dimensional cellular automaton that exhibits an almost trivial form of self-reproduction, in which multiple copies of any initial
pattern appear every time the number of steps of evolution doubles. The rule used is additive, and takes a cell to be black whenever
an odd number of its neighbors were black on the step before (outer totalistic code 204). The same basic self-reproduction
phenomenon occurs in elementary rule 90, as well as in essentially any other additive rule, in any number of dimensions. 
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simple underlying rules—can generate at least as much complexity as

we see in the components of typical living systems. 

Yet despite all this, we do not in our everyday experience

typically have much difficulty telling living systems from non-living

ones. But the reason for this is that all living systems on Earth share an

immense number of detailed structural and chemical features—

reflecting their long common history of biological evolution. 

So what about extraterrestrial life? To be able to recognize this

we would need some kind of general definition of life, independent of

the details of life on Earth. But just as in the case of intelligence, I

believe that no reasonable definition of this kind can actually be given.

Indeed, following the discoveries in this book I have come to the

conclusion that almost any general feature that one might think of as

characterizing life will actually occur even in many systems with very

simple rules. And I have little doubt that all sorts of such systems can

be identified both terrestrially and extraterrestrially—and certainly

require nothing like the elaborate history of life on Earth to produce.

But most likely we would not consider these systems even close

to being real examples of life. And in fact I expect that in the end the

only way we would unquestionably view a system as being an example

of life is if we found that it shared many specific details with life on

Earth—probably down, say, to being made of gelatinous materials and

having components analogous to proteins, enzymes, cell membranes

and so on—and perhaps even down to being based on specific chemical

substances like water, sugars, ATP and DNA. 

So what then of extraterrestrial intelligence? To what extent

would it have to show the same details as human intelligence—and

perhaps even the same kinds of knowledge—for us to recognize it as a

valid example of intelligence?

Already just among humans it can in practice be somewhat

difficult to recognize intelligence in the absence of shared education

and culture. Indeed, in young children it remains almost completely

unclear at what stage different aspects of intelligence become active.

And when it comes to other animals things become even more

difficult. If one specifically tries to train an animal to solve
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mathematical puzzles or to communicate using human language then

it is usually possible to recognize what intelligence it shows.

But if one just observes the normal activities of the animal it can

be remarkably difficult to tell whether they involve intelligence. And so

as a typical example it remains quite unclear whether there is

intelligence associated with the songs of either birds or whales.

To us these songs may sound quite musical—and indeed they

even seem to show some of the same principles of organization as

human music. But do they really require intelligence to generate?

Particularly for birds it has increasingly been possible to trace the

detailed processes by which songs are produced. And it seems that at

least some of their elaborate elements are just direct consequences of

the complex patterns of air flow that occur in the vocal tracts of birds. 

But there is definitely also input from the brain of the bird. Yet

within the brain some of the neural pathways responsible are known.

And one might think that if all such pathways could be found then this

would immediately show that no intelligence was involved.

Certainly if the pathways could somehow be seen to support only

simple computations then this would be a reasonable conclusion. But

just using definite pathways—or definite underlying rules—does not in

any way preclude intelligence. And in fact if one looks inside a human

brain—say in the process of generating speech—one will no doubt also

see definite pathways and definite rules in use.

So how then can we judge whether something like a bird song, or

a whale song—or, for that matter, an extraterrestrial signal—is a

reflection of intelligence? The fundamental criterion we tend to use is

whether it has a meaning—or whether it communicates anything.

Everyday experience shows us that it can often be very hard to

tell. For even if we just hear a human language that we do not know it

can be almost impossible for us to recognize whether what is being said

is meaningful or not. And the same is true if we pick up data of any

kind that is encoded in a format we do not know.

We might start by trying to use our powers of perception and

analysis to find regularities in the data. And if we found too many

regularities we might conclude that the data could not represent
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enough information to communicate anything significant—and indeed

perhaps this is the case for at least some highly repetitive bird songs.

But what if we could find no particular regularities? Our everyday

experience with human language might make us think that the data

could then have no meaning. But there is nothing to say that it might

not be a perfectly meaningful message—even one in human language—

that just happens to have been encrypted or compressed to a point

where it shows no detectable regularities.

And indeed it is sobering to notice that if one just listens even to

bird songs and whale songs there is little that fundamentally seems to

distinguish them from what can be generated by all sorts of processes in

nature—say the motion of chimes blowing in the wind or of plasma in

the Earth’s magnetosphere.

One might imagine that one could find out whether a meaningful

message had been communicated in a particular case by looking for

correlations it induces between the actions of sender and receiver. But it

is extremely common in all sorts of natural systems to see effects that

propagate from one element to another. And when it comes even to

whale songs it turns out that no clear correlations have ever in the end

been identified between senders and receivers.

But what if one were to notice some event happen to the sender?

If one were somehow to see a representation of this in what the sender

produced, would it not be evidence for meaningful communication?

Once again, it need not be. For there are a great many cases in

which systems generate signals that reflect what happens to them. And

so, for example, a drum that is struck in a particular pattern will

produce a sound that reflects—and in effect represents—that pattern.

Yet on the other hand even among humans different training or

culture can lead to vastly different responses to a given event. And for

animals there is the added problem of emphasis on different forms of

perception. For presumably dogs can sense the detailed pattern of smell

in their environment, and dolphins the detailed pattern of fluid motion

around them. Yet we as humans would almost certainly not recognize

descriptions presented in such terms. 
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So if we cannot identify intelligence by looking for meaningful

communication, can we perhaps at least tell for a given object whether

intelligence has been involved in producing it?

For certainly our everyday experience is that it is usually quite

easy to tell whether something is an artifact created by humans. 

But a large part of the reason for this is just that most artifacts we

encounter in practice have specific elements that look rather similar. Yet

presumably this is for the most part just a reflection of the historical

development of engineering—and of the fact that the same basic

geometrical and other forms have ended up being used over and over again.

So are there then more general ways to recognize artifacts? 

A fairly good way in practice to guess whether something is an

artifact is just to look and see whether it appears simple. For although

there are exceptions—like crystals, bubbles and animal horns—the

majority of objects that exist in nature have irregular and often very

intricate forms that seem much more complex than typical artifacts.

And indeed this fact has often been taken to show that objects in

nature must have been created by a deity whose capabilities go beyond

human intelligence. For traditional intuition suggests that if one sees

more complexity it must always in a sense have more complex origins.

But one of the main discoveries of this book is that in fact great

complexity can arise even in systems with extremely simple underlying

rules, so that in the end nothing with rules even as elaborate as human

intelligence—let alone beyond it—is needed to explain the kind of

complexity we see in nature.

But the question then remains why when human intelligence is

involved it tends to create artifacts that look much simpler than objects

that just appear in nature. And I believe the basic answer to this has to

do with the fact that when we as humans set up artifacts we usually

need to be able to foresee what they will do—for otherwise we have no

way to tell whether they will achieve the purposes we want.

Yet nature presumably operates under no such constraint. And in

fact I have argued that among systems that appear in nature a great

many exhibit computational irreducibility—so that in a sense it

becomes irreducibly difficult to foresee what they will do.
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Yet at least with its traditional methodology engineering tends to

rely on computational reducibility. For typically it operates by building

systems up in such a way that the behavior of each element can always

readily be predicted by something like a simple mathematical formula.

And the result of this is that most systems created by engineering

are forced in some sense to seem simple—in mechanical cases for

example typically being based only on simple repetitive motion.

But is simplicity a necessary feature of artifacts? Or might

artifacts created by extraterrestrial intelligence—or by future human

technology—seem to show no signs of simplicity?

As soon as we say that a system achieves a definite purpose this

means that we can summarize at least some part of what the system

does just by describing this purpose. So if we have a simple description

of the purpose it follows that we must be able to give a simple summary

of at least some part of what the system does.

But does this then mean that the whole behavior of the system

must be simple? Traditional engineering might tend to make one think

so. For typically our experience is that if we are able to get a particular

kind of system to generate a particular outcome at all, then normally

the behavior involved in doing so is quite simple.

But one of the results of this book is that in general things need

not work like this. And so for example at the end of Chapter 5 we saw

several systems in which a simple constraint of achieving a particular

outcome could in effect only be satisfied with fairly complex behavior.

And as I will discuss in the next section I believe that in the effort

to optimize things it is almost inevitable that even to achieve

comparatively simple purposes more advanced forms of technology will

make use of systems that have more and more complex behavior.

So this means that there is in the end no reason to think that

artifacts with simple purposes will necessarily look simple.

And so if we are just presented with something, how then can we

tell if it has a purpose? Even with things that we know were created by

humans it can already be difficult. And so, for example, there are many

archeological structures—such as Stonehenge—where it is at best

unclear which features were intended to be purposeful.
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And even in present-day situations, if we are exposed to objects or

activities outside the areas of human endeavor with which we happen

to be familiar, it can be very hard for us to tell which features are

immediately purposeful, and which are unintentional—or have, say,

primarily ornamental or ceremonial functions.

Indeed, even if we are told a purpose we will often not recognize

it. And the only way we will normally become convinced of its validity

is by understanding how some whole chain of consequences can lead to

purposes that happen to fit into our own specific personal context.

So given this how then can we ever expect in general to recognize

the presence of purpose—say as a sign of extraterrestrial intelligence?

And as an example if we were to see a cellular automaton how

would we be able to tell whether it was created for a purpose?

Of the cellular automata in this book—especially in Chapter 11—

a few were specifically constructed to achieve particular purposes. But

the vast majority originally just arose as part of my investigation of

what happens with the simplest possible underlying rules.

And at first I did not think of most of them as achieving any

particular purposes at all. But gradually as I built up the whole context

of the science in this book I realized that many of them could in fact be

thought of as achieving very definite purposes.

Systems like rule 110 shown on the left have a kind of local

coherence in their behavior that reminds one of the operation of

traditional engineering systems—or of purposeful human activity. But

the same is not true of systems like rule 30. For although one can see

that such systems have a lot going on, one tends to assume that

somehow none of it is coherent enough to achieve any definite purpose.

Yet in the context of the ideas in this book, a system like rule 30

can be viewed as achieving the purpose of performing a fairly

sophisticated computation. And indeed we know that this computation

is useful in practice for generating sequences that appear random.

But of course it is not necessary for us to talk about purpose when

we describe the behavior of rule 30. We can perfectly well instead talk

only about mechanism, and about the way in which the underlying

rules for the cellular automaton lead to the behavior we see.

rule 110

rule 30

Cellular automata whose behavior
does and does not give the
impression of being purposeful.
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And indeed this is true of any system. But as a practical matter

we often end up describing what systems do in terms of purpose when

this seems to us simpler than describing it in terms of mechanism.

And so for example if we can identify some simple constraint

that a system always tries to satisfy it is not uncommon for us to talk of

this as being the purpose of the system. And in fact we do this even in

cases like minimization of energy in physical systems or natural

selection for fitness in biological systems where nothing that we

ordinarily think of as intelligence is involved.

So the fact that we may be able to interpret a system as achieving

some purpose does not necessarily mean that the system was really

created with that purpose in mind. And indeed just looking at the

system we will never ultimately be able to tell for sure that it was.

But we can still often manage to guess. And given a particular

supposed purpose one potential criterion to use is that the system in a

sense not appear to do too much that is extraneous to that purpose.

And so, for example, in looking at the pictures on the right it

would normally seem much more plausible that rule 254 might have

been set up for the purpose of generating a uniformly expanding pattern

than that rule 30 might have been. For while rule 30 does generate such

a pattern, it also does a lot else that appears irrelevant to this purpose.

So what this might suggest is that perhaps one could tell that a

system was set up for a given purpose if the system turns out to be in a

sense the minimal one that achieves that purpose.

But an immediate issue is that in traditional engineering we

normally do not come even close to getting systems that are minimal.

Yet it seems reasonable to suppose that as technology becomes more

advanced it should become more common that the systems it sets up

for a given purpose are ones that are minimal.

So as an example of all this consider cellular automata that achieve

the purpose of doubling the width of the pattern given in their input. Case

(a) in the picture on the next page is a cellular automaton one might

construct for this purpose by using ideas from traditional engineering.

But while this cellular automaton seems to have little extraneous

going on, it operates in a slow and sequential way, and its underlying

rule 254

rule 30

If the purpose is to
generate a uniformly
expanding pattern it
seems more plausible
that the top cellular
automaton should have
been the one created
for this purpose.
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rules turn out to be far from minimal. For case (b) gets its results much

more quickly—in effect by operating in parallel—and its rules involve

four possible colors rather than six.

But is case (b) really the minimal cellular automaton that

achieves the purpose of doubling its input? Just thinking about it, one

might not be able to come up with anything better. But if one in effect

explicitly searches all 8 trillion or so rules that involve less than four

colors, it turns out that one can find 4277 three-color rules that work.

The pictures on the facing page show a few typical examples. 

Each uses at least a slightly different scheme, but all achieve the

same purpose of doubling their input. Yet often they operate in ways

that seem considerably more complex than most familiar artifacts. And

indeed some of the examples might look to us more like systems that

just occur in nature than like artifacts.

But the point is that with sufficiently advanced technology one

might expect that doubling of input would be implemented using a rule

that is in some sense optimal. Different criteria for optimality could

lead to different rules, but usually they will be rules like those on the

facing page—and sometimes rules with quite complex behavior.

But now the question is if one were just to encounter such a rule,

would one be able to guess that it was created for a purpose? After all,

(a) (c)

(b)

Examples of cellular automata that can be viewed as achieving the purpose of doubling the width of the pattern
given in their input. Rule (a) involves 6 colors, and works sequentially, much as a typical traditional engineering
system might. Rule (b) involves 4 colors, and works in parallel. Rule (c) was found by a large search, and involves
only 3 colors. It takes the fewest steps of any 3-color rule to generate its result. Its rule number is 5407067979. 
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1920106431 5407067979 50663695617 50749793433 144892613592 238949703351 272425762404 272684219877 493427573370 837428508144 1380347975457 3385253974896

4510289298924 5616661823460 5616790963623 5794444905633 6424448193765 6463950373854 6463950380415 6863658437061 6937134280020 7050911966469 7066073564883

Examples of rules with three colors that achieve the purpose of doubling the width of the pattern given in their input. These
examples are taken from the 4277 found in effect by searching exhaustively all 7,625,597,484,987 possible rules with three colors. In
most cases the number of steps to generate the final pattern increases roughly linearly with the width of the input—although in the
case of the fourth-to-last rule on the second row it is  for width . 2 (n2 - n+ 1) n

144892613592 493427573370 837428508144 4510289298924 6424448193765 6463950373854
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there are all sorts of features in the behavior of these rules that could in

principle represent a possible purpose. But what is special about rules

like those on the previous page is that they are the minimal ones that

exhibit the particular feature of doubling their input.

And in general if one sees some feature in the behavior of a

system then finding out that the rule for the system is the minimal or

optimal one for producing that feature may make it seem more likely

that at least with sufficiently advanced technology the system might

have specifically been created for the purpose of exhibiting that feature.

Computational irreducibility implies that it can be arbitrarily

difficult to find minimal or optimal rules. Yet given any procedure for

trying to do this it is certainly always possible that the procedure could

just occur in nature without any purpose or intelligence being involved.

And in fact one might consider this not all that unlikely for the

kind of fairly straightforward exhaustive searches that I ended up using

to find the cellular automaton rules in the pictures on the previous page.

So what does all this mean for extraterrestrial intelligence?

Extrapolating from our own development we might expect that

given sufficiently advanced technology it would be almost inevitable

for artifacts to be constructed on an astronomical scale—perhaps for

example giant machines with objects like stars as components.

Yet we do not believe that we have ever seen any such artifacts.

But how do we know for sure? For certainly our astronomical

observations have revealed all sorts of phenomena for which we do not

yet have any very satisfactory explanations. And indeed until just a few

centuries ago most such unexplained phenomena would routinely have

been attributed to some kind of divine intelligence. 

But in more recent times it has become almost universally

assumed that they must instead be the result of physical processes in

which nothing like intelligence is involved. 

Yet what the discoveries in this book have shown is that even

such physical processes can often correspond to computations that are

at least as sophisticated as any that we as humans perform.

But what we believe is that somehow none of the phenomena we

see have any sense of purpose analogous to typical human artifacts.
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Occasionally we do see evidence of simple geometrical shapes

like those familiar from human artifacts—or visible on the Earth from

space. But normally our explanations for these end up being short

enough that they seem to leave no room for anything like intelligence.

And when we see elaborate patterns, say in nebulas or galaxies, we

assume that these can have no purpose—even though they may remind

us to some extent of human art.

So if we do not recognize any objects that seem to be artifacts,

what about signals that might correspond to messages?

If we looked at the Earth from far away the most obvious signs of

human intelligence would probably be found in radio signals.

And in fact in the past it was often assumed that just to generate

radio signals at all must require intelligence and technology. So when

complex radio signals not of human origin were discovered in the early

1900s it was at first thought that they must be coming from

extraterrestrial intelligence. But it was eventually realized that in fact

the signals were just produced by effects in the Earth’s magnetosphere.

And then again in the 1960s when the intense and highly regular

signals of pulsars were discovered it was briefly thought that they too

must come from extraterrestrial intelligence. But it was soon realized

that these signals could actually be produced just by ordinary physical

processes in the magnetospheres of rapidly rotating neutron stars.

So what might a real signal from extraterrestrial intelligence be

like? Human radio signals currently tend to be characterized by the

presence of sharply defined carrier frequencies, corresponding in effect

to almost perfect small-scale repetition. But such regularity greatly

reduces the rate at which information can be transmitted. And as

technology advances less and less regularity needs to be present.

But in practice essentially all serious searches for extraterrestrial

intelligence made so far have been based on using radio telescopes to

look for signals with sharply defined frequencies. And indeed no such

signals have been found. But as we saw in Chapter 10 even signals that

are nested rather than purely repetitive cannot reliably be recognized

just by looking for peaks in frequency spectra.
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And there is certainly in general no lack of radio signals that we

receive from around our galaxy and beyond. But the point is that these

signals typically seem to us quite random. And normally this has made

us assume that they must in effect just be some kind of radio noise that

is being produced by one of several simple physical processes.

But could it be that some of these signals instead come from

extraterrestrial intelligence—and are in fact meaningful messages?

Ongoing communications between extraterrestrials seem likely

to be localized to regions of space where they are needed, and therefore

presumably not accessible to us. And even if some signals involved in

such communications are broadcast, my guess is that they will exhibit

essentially no detectable regularities. For any such regularity represents

in a sense a redundancy or inefficiency that can be removed by the

sender and receiver both using appropriate data compression.

But if there are beacons that are intended to be noticed even if

one does not already know that they are there, then the signals these

produce must necessarily have recognizable distinguishing features, and

thus regularities that can be detected, at least by their potential users.

So perhaps the problem is just that the methods of perception and

analysis that we as humans have are not powerful enough. And perhaps

if we could only find the appropriate new method it would suddenly be

clear that some of what we thought was random radio noise is actually

the output of beacons set up by extraterrestrial intelligence.

For as we saw in Chapter 10 most of the methods of perception

and analysis that we currently use can in general do little more than

recognize repetition—and sometimes nesting. Yet in the course of this

book we have seen a great many examples where data that appears to us

quite random can in fact be produced by very simple underlying rules.

And although I somewhat doubt it, one could certainly imagine

that if one were to show data like the center column of rule 30 or the

digit sequence of  to an extraterrestrial then they would immediately

be able to deduce simple rules that can produce these.

But even if at some point we were to find that some of the

seemingly random radio noise that we detect can be generated by

simple rules, what would this mean about extraterrestrial intelligence?

Π
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In many respects, the simpler the rules, the more likely it might

seem that they could be associated with ordinary physical processes,

without anything like intelligence being involved. 

Yet as we discussed above, if one could actually determine that

the rules used in a given case were the simplest possible, then this

might suggest that they were somehow set up on purpose. But in

practice if one just receives a signal one normally has no way to tell

which of all possible rules for producing it were in fact used.

So is there then any kind of signal that could be sent that would

unambiguously communicate the presence of intelligence?

In the past, one might have thought that it would be enough for

the production of the signal to involve sophisticated computation. But

the discoveries in this book have made it clear that in fact such

computation is quite common in all sorts of systems that do not show

anything that we would normally consider intelligence.

And indeed it seems likely that for example an ordinary physical

process like fluid turbulence in the gas around a star should rather

quickly do more computation than has by most measures ever been

done throughout the whole course of human intellectual history.

In discussions of extraterrestrial intelligence it is often claimed

that mathematical constructs—such as the sequence of primes—

somehow serve as universal signs of intelligence.

But from the results in this book it is clear that this is not correct. 

For while in the past it might have seemed that the only way to

generate primes was by using intelligence, we now know that the rather

straightforward computations required can actually be carried out by a

vast range of different systems—with no apparent need for intelligence.

One might nevertheless imagine that any sufficiently advanced

intelligence would somehow at least consider the primes significant.

But here again I do not believe that this is correct. For very little

even of current human technology depends on ideas about primes. And

I am also fairly sure that not much can be deduced from the fact that

primes happen to be popular in present-day human mathematics.

For despite its reputation for generality I argued at length in the

previous section that the whole field of mathematics that we as
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humans have historically developed ultimately covers only a tiny

fraction of what is possible—notably leaving out the vast majority of

systems that I have studied in this book.

And if one identifies a feature—such as repetition or nesting—

that is common to many possible systems, then it becomes inevitable

that this feature will appear not only when intelligence or mathematics

is involved, but also in all sorts of systems that just occur in nature.

So what about trying to set up a signal that gives evidence of

somehow having been created for a purpose? I argued above that if the

rules for a system are as simple as they can be, then this may suggest

the presence of purpose. But such a criterion relies on seeing not only a

signal but also the mechanism by which the signal was produced.

So what about a signal on its own? One might imagine that one

could set something up—say the solution to a difficult mathematical

problem—that was somehow easy to describe in terms of a constraint

or purpose, but difficult to explain in terms of an explicit mechanism.

But in a sense such a thing cannot exist. For given a constraint, it

is always in principle simple to set up an exhaustive search that

provides a mechanism for finding what satisfies the constraint.

However, this may still take a lot of computational effort. But we

cannot use that alone as a criterion. For as we have seen, many systems

that just occur in nature actually end up doing more computation than

typical systems that we explicitly set up for a purpose.

So even if we cannot find an abstract way to give evidence of

purpose or intelligence, what about using the practical fact that both

the sender and receiver of a signal exist in the same physical universe?

Can one perhaps use a signal that is a representation of actual data in,

say, astronomy, physics or chemistry?

As I discussed earlier, the more direct the representation the

more easily an ordinary physical process can be expected to generate it,

and the less there will be any indication of intelligence—just as, for

example, something like a photograph can be produced essentially just

by projecting light, while a diagram or a painting requires more.

But as soon as there is interpretation of data, it can become very

difficult to recognize the results. For different forms of perception and



T H E  P R I N C I P L E  O F  C O M P U T A T I O N A L E Q U I V A L E N C E C H A P T E R  1 2

839

different experiences and contexts can cause vastly different features to

be emphasized. And thus, for example, the fact that we can readily

recognize pictures of animals in cave paintings made by Stone Age

humans depends greatly on the fact that our visual system still picks

out the same specific features.

But what about more abstract art?

Although one has the feeling that this involves more human

input, it rapidly becomes extremely difficult to tell what has been

created on purpose. And so, for example, if one sees a splash of paint it

is almost impossible to know without detailed cultural background and

context whether it is intended to be purposeful art.

So what does all this mean about extraterrestrial intelligence?

My main conclusion is rather similar to my conclusion about

artificial intelligence in Chapter 10: that the basic issue is not finding

systems that perform sophisticated enough computations, but rather

finding ones whose details happen to be similar enough to us as humans

that we recognize what they do as showing intelligence.

And there is perhaps some analogy to recognizing the capability

for sophisticated computation in the first place. For while this is

undoubtedly very common say in cellular automata, the most

immediate suggestions of it are in class 4 systems like rule 110 that in

effect happen to do their computations in a way that looks at least

somewhat similar to the way we as humans are used to doing them. 

So should we expect that somehow recognizable extraterrestrial

intelligence will occur at a level of a few percent—like class 4 systems?

There is clearly more to the phenomenon of intelligence than

this. But if we require something that follows too many of the details of

us as humans there is already evidence that it does not exist. For if such

intelligence had ever arisen in the past, then extrapolating from our

own history we would expect that some of it would long ago have

colonized our galaxy—at least with signals, if not with physical objects.

But I suspect that if we generalize even quite modestly our

definition of intelligence then there will be examples that can be

found—at least with sufficiently powerful methods of perception and

analysis. Yet it seems likely that they will behave in some ways that are
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as bizarrely different from human intelligence as many of the simple

programs in this book are different from the systems that have

traditionally been studied in human mathematics and science. 

Implications for Technology

My main purpose in this book has been to build a new kind of basic

science. But I expect that in time what I have done will also have many

implications for technology. No doubt there will be all sorts of specific

applications of particular results and ideas. But in the long run probably

the most important consequence will be to introduce a vast new range

of systems and processes that can be used for technology. 

And indeed one of the things that emerges from this book is that

traditional engineering has actually considered only a tiny and quite

unrepresentative fraction of all the kinds of systems and processes that

are in principle possible. 

Presumably the reason—as I have mentioned several times in this

book—is that its whole methodology has tended to be based on setting

up systems whose behavior is simple enough that almost every aspect

of them can always readily be predicted. But doing this has immediately

excluded many of the systems that I have studied in this book—or for

that matter that occur in nature. And no doubt this is why systems

created by engineering have in the past usually ended up looking so

much simpler than typical systems in nature. 

And with traditional intuition it has normally been assumed that

the only way to create systems that show a higher degree of complexity

is somehow to build this complexity into their underlying rules. 

But one of the central discoveries of this book is that this is not

the case, and that in fact it is perfectly possible for systems even with

extremely simple underlying rules to produce behavior that has

immense complexity—and that looks like what one sees in nature.

And I believe that if one uses such systems it is almost inevitable

that a vast amount of new technology will become possible.

There are some places where just the abstract ability to produce

complexity from simple rules is already important. One example

discussed in Chapter 10 is cryptography. Other examples include all
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sorts of practical processes in which bias or deadlock can be avoided by

using randomness, or in which one wants to generate behavior that is

somehow too complex for an adversary to predict.

Being able to produce complexity that is even roughly like what

we see in nature also has immediate consequences—say in generating

realistic textures and computer graphics or in producing artistic images

that we abstractly perceive as having features familiar from nature.

The phenomenon of computational irreducibility implies that to

find out what some specific system with complex behavior will do can

require explicit simulation that involves an irreducible amount of

computational work. But as a practical matter, if one can set up a model

that is based on sufficiently simple rules then it becomes more likely

that one will be able to make designs and build control devices that

work even with some system in nature that shows complex behavior. 

So what about computers? Although the components used have

shifted from vacuum tubes to semiconductors the fundamental rules by

which computers operate have changed very little in half a century.

But what the Principle of Computational Equivalence implies is

that there are actually a vast range of very different kinds of rules that

all lead to exactly the same computational capabilities—and so can all

in principle be used as a basis for making computers.

Traditional intuition suggests that to be able to do sophisticated

computations one would inevitably need a system with complicated

underlying rules. But what I have shown in this book is that this is not

the case, and that in fact even systems with extremely simple rules—

like the rule 110 cellular automaton—can often be universal, and thus

be capable of doing computations as sophisticated as any other system.

And the fact that the underlying rules can be so simple vastly

expands the kinds of components that can realistically be used to

implement them. For while it is quite implausible that some simple

chemical process could successfully assemble a traditional computer

out of atoms, it seems quite plausible that this could be done for

something like a rule 110 cellular automaton.

Indeed, it seems likely that a system could be set up in which

just one or a few atoms would correspond to a cell in a system like a

cellular automaton. And one thing this would mean is that doing
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computations would then translate almost directly into building

actual physical structures out of atoms.

In the past biology—with all its details of DNA, proteins,

ribosomes and so on—has provided our only example of programmable

construction on an atomic scale. But the discoveries in this book

suggest that there are vastly simpler systems that could also be used.

And indeed my guess is that the essential features of all sorts of

intricate structures that are seen in living systems can actually be

reproduced with remarkably simple rules—making it for example

possible to use technology to repair or replace a whole new range of

functions of biological tissues and organs.

But given some form of perhaps complex behavior, how can one

find rules that will manage to generate it? The traditional engineering

approach—if it works at all—will almost inevitably give rules that are

in effect at least as complicated as the behavior one is trying to get.

At first biology seems to do better by repeatedly making random

modifications to genetic programs, and then applying natural selection.

But while this process does quite often yield programs with complex

behavior, I argued earlier in this book that it does not usually manage to

mold anything but fairly simple aspects of this behavior.

So what then can one do? Occasionally some kind of iterative or

directed search may work. But in my experience there are so many

different and unexpected things that can happen with simple programs

that ultimately the only way to find what one wants is essentially just

to do an exhaustive search of all possibilities.

And with computers as they are today one can already often look

at trillions of cases—as on page 833. But while this is enough to see a

tremendous range of behavior, there is no guarantee that one will in fact

run across whatever specific features one is looking for.

Yet in a sense this is a familiar problem. For especially early in

their history many branches of technology have ended up searching the

natural world for ingredients or systems that serve particular

purposes—whether for making light bulb filaments or drugs. And in

some sense the only difference here is that in the abstract world of

simple programs doing a search becomes much more systematic. 
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But while traditional engineering has usually ended up finding

ways to avoid searches for the limited kinds of systems it considers, the

phenomenon of computational irreducibility makes it inevitable that if

one considers all possible simple programs then finding particular

forms of behavior can require doing searches that involve irreducibly

large amounts of computational work.

And in a sense this means that if one tries directly to produce

specific pieces of technology one can potentially always get stuck. So in

practice a better approach will often be in effect just to do basic

science—and much as I have done in this book to try to build up a body

of abstract knowledge about how all sorts of simple programs behave.

In chemistry for example one might start by studying the basic

science of how all sorts of different substances behave. But having

developed a library of results one is then in a position to pick out

substances that might be relevant for a specific technological purpose.

And I believe much the same will happen with simple programs.

Indeed, in my experience it is remarkable just how often even

elementary cellular automata like rule 90 and rule 30 can be applied in

one way or another to technological situations.

In general one can think of technology as trying to take systems

that exist in nature or elsewhere and harness them to achieve human

purposes. But history suggests that it is often difficult even to imagine a

purpose without having seen at least something that achieves it.

And indeed a vast quantity of current technology is in the end

based on trying to set up our own systems to emulate features that we

have noticed exist in ordinary biological or physical systems.

But inevitably we tend to notice only those features that

somehow fit into the whole conceptual framework we use. And insofar

as that framework is based even implicitly on traditional science it will

tend to miss much of what I have discussed in this book.

So in the decades to come, when the science in this book has

been absorbed, it is my expectation that it will not only suggest many

new ways to achieve existing technological purposes but will also

suggest many new purposes that technology can address.
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Historical Perspectives

It would be most satisfying if science were to prove that we as humans

are in some fundamental way special, and above everything else in the

universe. But if one looks at the history of science many of its greatest

advances have come precisely from identifying ways in which we are

not special—for this is what allows science to make ever more general

statements about the universe and the things in it. 

Four centuries ago we learned for example that our planet does

not lie at a special position in the universe. A century and a half ago we

learned that there was nothing very special about the origin of our

species. And over the past century we have learned that there is nothing

special about our various physical, chemical and other constituents.

Yet in Western thought there is still a strong belief that there

must be something fundamentally special about us. And nowadays the

most common assumption is that it must have to do with the level of

intelligence or complexity that we exhibit. But building on what I have

discovered in this book, the Principle of Computational Equivalence

now makes the fairly dramatic statement that even in these ways there

is nothing fundamentally special about us. 

For if one thinks in computational terms the issue is essentially

whether we somehow show a specially high level of computational

sophistication. Yet the Principle of Computational Equivalence asserts

that almost any system whose behavior is not obviously simple will

tend to be exactly equivalent in its computational sophistication.

So this means that there is in the end no difference between the

level of computational sophistication that is achieved by humans and

by all sorts of other systems in nature and elsewhere. 

For my discoveries imply that whether the underlying system is a

human brain, a turbulent fluid, or a cellular automaton, the behavior it

exhibits will correspond to a computation of equivalent sophistication.

And while from the point of view of modern intellectual thinking

this may come as quite a shock, it is perhaps not so surprising at the

level of everyday experience. For there are certainly many systems in

nature whose behavior is complex enough that we often describe it in
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human terms. And indeed in early human thinking it is very common

to encounter the idea of animism: that systems with complex behavior

in nature must be driven by the same kind of essential spirit as humans.

But for thousands of years this has been seen as naive and counter

to progress in science. Yet now essentially this idea—viewed in

computational terms through the discoveries in this book—emerges as

crucial. For as I discussed earlier in this chapter, it is the computational

equivalence of us as observers to the systems in nature that we observe

that makes these systems seem to us so complex and unpredictable.

And while in the past it was often assumed that such complexity

must somehow be special to systems in nature, what my discoveries

and the Principle of Computational Equivalence now show is that in

fact it is vastly more general. For what we have seen in this book is that

even when their underlying rules are almost as simple as possible,

abstract systems like cellular automata can achieve exactly the same

level of computational sophistication as anything else.

It is perhaps a little humbling to discover that we as humans are

in effect computationally no more capable than cellular automata with

very simple rules. But the Principle of Computational Equivalence also

implies that the same is ultimately true of our whole universe. 

So while science has often made it seem that we as humans are

somehow insignificant compared to the universe, the Principle of

Computational Equivalence now shows that in a certain sense we are at

the same level as it is. For the principle implies that what goes on inside

us can ultimately achieve just the same level of computational

sophistication as our whole universe.

But while science has in the past shown that in many ways there

is nothing special about us as humans, the very success of science has

tended to give us the idea that with our intelligence we are in some way

above the universe. Yet now the Principle of Computational

Equivalence implies that the computational sophistication of our

intelligence should in a sense be shared by many parts of our universe—

an idea that perhaps seems more familiar from religion than science.

Particularly with all the successes of science, there has been a great

desire to capture the essence of the human condition in abstract scientific



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

846

terms. And this has become all the more relevant as its replication with

technology begins to seem realistic. But what the Principle of

Computational Equivalence suggests is that abstract descriptions will

never ultimately distinguish us from all sorts of other systems in nature

and elsewhere. And what this means is that in a sense there can be no

abstract basic science of the human condition—only something that

involves all sorts of specific details of humans and their history.

So while we might have imagined that science would eventually

show us how to rise above all our human details what we now see is

that in fact these details are in effect the only important thing about us. 

And indeed at some level it is the Principle of Computational

Equivalence that allows these details to be significant. For this is what

leads to the phenomenon of computational irreducibility. And this in

turn is in effect what allows history to be significant—and what implies

that something irreducible can be achieved by the evolution of a system.

Looking at the progress of science over the course of history one

might assume that it would only be a matter of time before everything

would somehow be predicted by science. But the Principle of

Computational Equivalence—and the phenomenon of computational

irreducibility—now shows that this will never happen.

There will always be details that can be reduced further—and

that will allow science to continue to show progress. But we now know

that there are some fundamental boundaries to science and knowledge. 

And indeed in the end the Principle of Computational

Equivalence encapsulates both the ultimate power and the ultimate

weakness of science. For it implies that all the wonders of our universe

can in effect be captured by simple rules, yet it shows that there can be

no way to know all the consequences of these rules, except in effect just

to watch and see how they unfold.
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NOTES FOR CHAPTER 12

The Principle of Computational Equivalence

Basic Framework

â All is computation. The early history of science includes
many examples of attempts to treat all aspects of the universe
in a uniform way. Some were more successful than others.
“All is fire” was never definite enough to lead to much, but
“all is number” can be viewed as an antecedent to the whole
application of mathematics to science, and “all is atoms” to
the atomic theory of matter and quantum mechanics. My “all
is computation” will, I believe, form the basis for a fruitful
new direction in science. It should be pointed out, however,
that it is wrong to think that once one has described
everything as, say, computation, then there is nothing more
to do. Indeed, the phenomenon of computational
irreducibility discussed in this chapter specifically implies
that in many cases irreducible work has to be done in order to
find out how any particular system will behave.

Outline of the Principle

â Note for mathematicians. The way I discuss the Principle of
Computational Equivalence is in a sense opposite to what
would be typical in modern mathematics. For rather than
starting with very specific definitions and then expanding
from these, I start from general intuition and then use this to
come up with more specific results. In the years to come there
will no doubt be many attempts to formulate parts of the
Principle of Computational Equivalence in ways that are
closer to the traditions of modern mathematics. But at least at
first, I suspect that huge simplifications will be made, with
the result that all sorts of misleading conclusions will
probably be reached, perhaps in some cases even seemingly
contradicting the principle. 

â History. As I discuss elsewhere, aspects of the Principle of
Computational Equivalence have many antecedents. But the
complete principle is presented for the first time in this book, and
is the result of thinking I did in the late 1980s and early 1990s.

â Page 717 · Church’s Thesis. The idea that any computation
that can be done at all can be done by a universal system such
as a universal Turing machine is often referred to as Church’s
Thesis. Following the introduction of so-called primitive
recursive functions (see page 907) in the 1880s, there had by
the 1920s emerged the idea that perhaps any reasonable
function could be computed using the small set of operations
on which primitive recursive functions are based. This notion
was supported by the fact that certain modifications to these
operations were found to allow only the exact same set of
functions. But the discovery of the Ackermann function in
the late 1920s (see page 906) showed that there are reasonable
functions that are not primitive recursive. The proof of
Gödel’s Theorem in 1931 made use of so-called general
recursive functions (see page 1121) as a way to represent
possible functions in arithmetic. And in the early 1930s the
two basic idealizations used in foundational studies of
mathematical processes were then general recursive
functions and lambda calculus (see page 1121). By 1934 these
were known to be equivalent, and in 1935 Alonzo Church
suggested that either of them could be used to do any
mathematical calculation which could effectively be done. (It
had been noted that many specific kinds of calculations could
be done within such systems—and that processes like
diagonalization led to operations of a seemingly rather
different character.) In 1936 Alan Turing then introduced the
idea of Turing machines, and argued that any mathematical
process that could be carried out in practice, say by a person,
could be carried out by a Turing machine. Turing proved that
his machines were exactly equivalent in their computational
capabilities to lambda calculus. By the 1940s Emil Post had
shown that the string rewriting systems he had studied were
also equivalent, and as electronic computers began to be
developed it became quite firmly established that Turing
machines provided an appropriate idealization for what
computations could be done. From the 1940s to 1960s many
different types of systems—almost all mentioned at some
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point or another in this book—were shown to be equivalent
in their computational capabilities. (Starting in the 1970s, as
discussed on page 1143, emphasis shifted to studies not of
overall equivalence but instead equivalence with respect to
classes of transformations such as polynomial time.) 

When textbooks of computer science began to be written some
confusion developed about the character of Church’s Thesis:
was it something that could somehow be deduced, or was it
instead essentially just a definition of computability? Turing
and Post seem to have thought of Church’s Thesis as
characterizing the “mathematicizing power” of humans, and
Turing at least seems to have thought that it might not apply to
continuous processes in physics. Kurt Gödel privately
discussed the question of whether the universe could be
viewed as following Church’s Thesis and being “mechanical”.
And starting in the 1950s a few physicists, notably Richard
Feynman, asked about fundamental comparisons between
computational and physical processes. But it was not until the
1980s—perhaps particularly following some of my work—that
it began to be more widely realized that Church’s Thesis
should best be considered a statement about nature and about
the kinds of computations that can be done in our universe.
The validity of Church’s Thesis has long been taken more or
less for granted by computer scientists, but among physicists
there are still nagging doubts, mostly revolving around the
perfect continua assumed in space and quantum mechanics in
the traditional formalism of theoretical physics (see page 730).
Such doubts will in the end only be put to rest by the explicit
construction of a discrete fundamental theory along the lines I
discuss in Chapter 9. 

The Content of the Principle

â Page 719 · Character of principles. Examples of principles
that can be viewed in several ways include the Principle of
Entropy Increase (Second Law of Thermodynamics), the
Principle of Relativity, Newton’s Laws, the Uncertainty
Principle and the Principle of Natural Selection. The Principle
of Entropy Increase, for example, is partly a law of nature
relating to properties of heat, partly an abstract fact about
ensembles of dynamical systems, and partly a foundation for
the definition of entropy. In this case and in others, however,
the most important role of a principle is as a guide to
intuition and understanding.

â Page 720 · Oracles. Following his introduction of Turing
machines Alan Turing tried in 1937 to develop models that
would somehow allow the ultimate result of absolutely every
conceivable computation to be determined. And as a step
towards this, he introduced the idea of oracles which would

give results of computations that could not be found by any
Turing machine in any limited number of steps. He then
noted, for example, that if an oracle were set up that could
answer the question for a particular universal system of
whether that system would ever halt when given any specific
input, then with an appropriate transformation of input this
same oracle could also answer the question for any other
system that can be emulated by the universal system. But it
turns out that this is no longer true if one allows systems
which themselves can access the oracle in the course of their
evolution. Yet one can then imagine a higher-level oracle for
these systems, and indeed a whole hierarchy of levels of
oracles—as studied in the theory of degrees of unsolvability.
(Note that for example to answer the question of whether or
not a given Turing machine always halts can require a
second-order oracle, since it is a  question in the sense of
page 1139.)

â Initial conditions. Oracles are usually imagined as being
included in the internal rules for a system. But if there are an
infinite number of elements that can be specified in the initial
condition—as in a cellular automaton—then a table for an
oracle could also be given in the initial conditions. 

â Page 722 · Criteria for universality. To be universal a system
must in effect be able to emulate any feature of any system.
So at some level any feature can be thought of as a criterion
for universality. Some features—like the possibility of
information transmission—may be more obvious than
others, but despite occasional assertions to the contrary in the
scientific literature none is ever the whole story. Since any
given universal system must be able to emulate any other
universal system it follows that within any such system it
must in a sense be possible to find any known universal
system. But inevitably the encoding will sometimes be very
complicated. And in practice if there are many simple rules
that are universal they cannot all be related by simple
encodings. (See also the end of Chapter 11.)

â Page 722 · Encodings. One can prevent an encoding from
itself introducing universality by insisting, for example, that
it be primitive recursive (see page 907) or always involve
only a bounded number of steps. One can also do this—as in
the rule 110 proof in the previous chapter—by having
programs and data be encoded separately, and appear, say, as
distinct parts of the initial conditions for the system one is
studying. (See also page 1118.)

â Density of universal systems. One might imagine that it
would be possible to make estimates of the overall density of
universal systems, perhaps using arguments like those for
the density of primes, or for the density of algorithmically

#2
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random sequences. But as it turns out I know of no way to
make any such estimates. If one has shown that various
simple rules are universal, then it follows that rules which
generalize these must also be universal. But even from this I
do not know, for example, how to prove that the density of
universal rules cannot decrease when rules become more
complicated. 

â Page 723 · Proving universality. The question of whether a
system is universal is in general undecidable. Using a
specific mathematical axiom system such as Peano
arithmetic or set theory it may also be that there is no proof
that can be given. (It is straightforward to construct
complicated examples where this is the case.) In practice it
seems to get more difficult to prove universality when the
structure of a system gets simpler. Current proofs of
universality all work by showing how to emulate a known
universal system. Some level of checking can be done by
tracing the emulation of random initial conditions for the
universal system. In the future it seems likely that
automated theorem-proving methods should help in finding
proofs of universality. 

â Page 724 · History. There are various precedents in
philosophy and mysticism for the idea of encoding all
possible knowledge of some kind in a single object. An
example in computation theory is the concept emphasized by
Gregory Chaitin of a number whose th digit specifies
whether a computation with initial condition  in a particular
system will ever halt. This particular number is far from
being computable (see page 1128), as a result of the
undecidability of the halting problem (see page 754). But a
finite version in which one looks at results after a limited
number of steps is similar to my concept of a universal object.
(See also page 1067.) 

â Page 725 · Universal objects. A more direct way to create a
universal object is to set up, say, a 4D array in which two
of the dimensions range respectively over possible 1D
cellular automaton rules and over possible initial
conditions, while the other two dimensions correspond to
space and time in the evolution of each cellular automaton
from each initial condition. (Compare the parameter space
sets of page 1006.)

â Page 725 · Block occurrences. The pictures below show at
which step each successive block of length up to 8 first
appears in evolution according to various cellular automaton
rules starting from a single black cell. For rule 30, the
numbers of steps needed for each block of lengths 1 through
10 to appear at least once is .
(See also page 871.)

 

 

The Validity of the Principle

â Page 729 · Continuum and cardinality. Some notion of a
distinction between continuous and discrete systems has
existed since antiquity. But in the 1870s the distinction
became more precise with Georg Cantor’s characterization of
the total numbers of possible objects of various types in terms
of different orders of infinity (see page 1162). The total
number of possible integers corresponds to the smallest level
of infinity, usually denoted . The total number of possible
lists of integers of given finite length—and thus the number
of possible rational numbers—turns out also to be . The
reason is that it is always possible to encode any finite list of
integers as a single integer, as discussed on page 1120. (A
way to do this for pairs of non-negative integers is to use

.) But for real numbers
the story is different. Any real number  can be represented
as a set of integers using for example

but except when  is rational this list is not finite. Since the
number of possible subsets of a set with  elements is , the
number of possible real numbers is . And using Cantor’s
diagonal argument (see note below) one can then show that
this must be larger than . (The claim that there are no sets
intermediate in size between  and  is the so-called
continuum hypothesis, which is known to be independent of
the standard axioms of set theory, as discussed on page 1155.)
Much as for integers, finite lists of real numbers can be
encoded as single real numbers—using for example roughly

—so that the
number of such lists is . (Space-filling curves yield a more
continuous version of such an encoding.) But unlike for
integers the same turns out to be true even for infinite lists of
real numbers. (The function  above can for example be used
to specify the order in which to sample elements in

). The total number of possible functions of real
numbers is ; the number of continuous such functions
(which can always be represented by a list of coefficients for a
series) is however only .

In systems like cellular automata, finite arrangements of
black cells on a background of white cells can readily be
specified by single integers, so the number of them is . But
infinite configurations of cells are like digit sequences of real
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numbers (as discussed on page 869 they correspond more
precisely to elements in a Cantor set), so the number of them
is . Continuous cellular automata (see page 155) also have

 possible states.

â Computable reals. The stated purpose of Alan Turing’s
original 1936 paper on computation was to introduce the
notion of computable real numbers, whose th digit for any 
could be found by a Turing machine in a finite number of
steps. Real numbers used in any explicit way in traditional
mathematics are always computable in this sense. But as
Turing pointed out, the overwhelming majority of all
possible real numbers are not computable. For certainly there
can be no more computable real numbers than there are
possible Turing machines. But with his discovery of
universality, Turing established that any Turing machine can
be emulated by a single universal Turing machine with
suitable initial conditions. And the point is that any such
initial conditions can always be encoded as an integer.

As examples of non-computable reals that can readily be
defined, Turing considered numbers whose successive digits
are determined by the eventual behavior after an infinitely
long time of a universal system with successive possible
initial conditions (compare page 964). With two possible
forms of behavior  or  for initial condition , an
example of such a number is . Closely
related is the total probability for each form of behavior,
given for example by .
I suspect that many limiting properties of systems like
cellular automata in general correspond to non-computable
reals. An example is the average density of black cells after an
arbitrarily long time. For many rules, this converges rapidly
to a definite value; but for some rules it will wiggle forever as
more and more initial conditions are included in the average.

â Diagonal arguments. Similar arguments were used by Georg
Cantor in 1891 to show that there must be more real numbers
than integers and by Alan Turing in 1936 to show that the
problem of enumerating computable real numbers is
unsolvable. One might imagine that it should be possible to set
up a function  which if given successive integers  would
give the th base 2 digit in every possible real number. But
what about the number whose th digit is ? This is
still a real number, yet it cannot be generated by  for any
—thus showing that there are more real numbers than

integers. Analogously, one might imagine that it should be
possible to have a function  which enumerates all
possible programs that always halt, and specifies a digit in
their output when given input . But what about the program
with output ? This program always halts, yet it does
not correspond to any possible value of —even though

universality implies that any program should be encodable by
a single integer . And the only possible conclusion from this is
that  cannot in fact be implemented as a program that
always halts—thus demonstrating that the computable real
numbers cannot explicitly be enumerated. (Closely related is
the undecidability of the problem discussed on page 1137 of
whether a system halts given any particular input.) (See also
pages 907 and 1162.)

â Continuous computation. Various models of computation
that involve continuous elements have been proposed since
the 1930s, and unlike those with discrete elements they have
often not proved ultimately equivalent. One general class of
models based on the work of Alan Turing in 1936 follow the
operation of standard digital computers, and involve looking
at real numbers in terms of digits, and using discrete
processes to generate these digits. Such models inevitably
handle only computable reals (in the sense defined above),
and can never do computations beyond those possible in
ordinary discrete systems. Functions are usually considered
computable in such models if one can take the procedure for
finding the digits of  and get a procedure for finding the
digits of . And with this definition all standard
mathematical functions are computable—even those from
chaos theory that excavate digits rapidly. (It seems possible
however to construct functions computable in this sense
whose derivatives are not computable.) The same basic
approach can be used whenever numbers are represented by
constructs with discrete elements (see page 143), including
for example symbolic formulas.

Several times since the 1940s it has been suggested that
models of computation should be closer to traditional
continuous mathematics, and should look at real numbers as
a whole, not in terms of their digit or other representations.
In a typical case, what is done is to generalize the register
machines of page 97 to have registers that hold arbitrary real
numbers. It is then usually assumed, however, that the
primitive operations performed on these registers are just
those of ordinary arithmetic, with the result that only a very
limited set of functions (not including for example the
exponential function) can be computed in a finite number of
steps. Introducing other standard mathematical functions as
primitives does not usually help much, unless one somehow
gives the system the capability to solve any equation
immediately (see below). (Other appropriate primitives may
conceivably be related to the solubility of Hilbert’s Thirteenth
Problem and the fact that any continuous function with any
number of arguments can be written as a one-argument
function of a sum of a handful of fixed one-argument
functions applied to the arguments of the original function.) 
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Most of the types of programs that I have discussed in this
book can be generalized to allow continuous data, often just by
having a continuous range of values for their elements (see e.g.
page 155). But the programs themselves normally remain
discrete, typically involving discrete choices made at discrete
steps. If one has a table of choices, one can imagine
generalizing this to a function of a real number. But to specify
this function one normally has no choice but to use some type
of finite formula. And to set up any kind of continuous
evolution, the most obvious approach is to use traditional
mathematical ideas of calculus and differential equations (see
page 161). This leads to models in which possible
computations are assumed, say, to correspond to combinations
of differential equations—as in Claude Shannon’s 1941
general-purpose analog computer. And if one assumes—as is
usually implicitly done in traditional mathematics—that any
solutions that exist to these equations can somehow always be
found then at least in principle this allows computations
impossible for discrete systems to be done.

â Initial conditions. Traditional mathematics tends to assume
that real numbers with absolutely any digit sequence can be
set up. And if this were the case, then the digits of an initial
condition could for example be the table for an oracle of the
kind discussed on page 1126—and even a simple shift
mapping could then yield output that is computationally
more sophisticated than any standard discrete system. But
just as in my discussion of chaos theory in Chapter 7, any
reasonably complete theory must address how such an initial
condition could have been constructed. And presumably the
only way is to have another system that already violates the
Principle of Computational Equivalence.

â Constructible reals. Instead of finding successive digits
using systems like Turing machines, one can imagine
constructing complete real numbers using idealizations of
mechanical processes. An example studied since antiquity
involves finding lengths or angles using a ruler and compass
(i.e. as intersections between lines and circles). However, as
was shown in the 1800s, this method can yield only numbers
formed by operating on rationals with combinations of ,

 and . (Thus it is impossible with ruler and
compass to construct  and “square the circle” but it is
possible to construct 17-gons or other -gons for which

 contains only ,  and
.) Linkages consisting of rods of integer lengths always

trace out algebraic curves (or algebraic surfaces in 3D) and in
general allow any algebraic number (as represented by )
to be constructed. (Linkages were used by the late 1800s not
only in machines such as steam engines, but also in devices
for analog computation. More recently they have appeared in

robotics.) Note that above degree 4, algebraic numbers
cannot in general be expressed in radicals involving only

,  and  (see page 945). 

â Page 732 · Equations. For any purely algebraic equation
involving real numbers it is possible to find a bound on the
size of any isolated solutions it has, and then to home in on
their actual values. But as discussed on page 786, nothing
similar is true for equations involving only integers, and in
this case finding solutions can in effect require following the
evolution of a system like a cellular automaton for infinitely
many steps. If one allows trigonometric functions, any
equation for integers can be converted to one for real
numbers; for example  for integers is equivalent
to  for
real numbers.

â Page 732 · ODEs. The method of compressing time using
algebraic transformations works not only in partial but also
in ordinary differential equations. 

â Emulating discrete systems. Despite it often being assumed
that continuous systems are computationally more
sophisticated than discrete ones, it has in practice proved
surprisingly difficult to make continuous systems emulate
discrete ones. Some integer functions can readily be obtained
by supplying integer arguments to continuous functions, so
that for example  corresponds to  or

,

(As another example,  corresponds to
.) And in this way the discrete system

 from page 122 can be
emulated by the continuous iterated map

. This approach can then be
applied to the universal arithmetic system on page 673,
establishing that continuous iterated maps can in principle
emulate discrete universal systems. A similar result
presumably holds for ordinary and therefore also partial
differential equations (PDEs). One might expect, however,
that it should be possible to construct a PDE that quite
directly emulates a system like a cellular automaton. And to
do this approximately is not difficult. For as suggested by the
bottom row of pictures on page 732 one can imagine having
localized structures whose interactions emulate the rules of
the cellular automaton. And one can set things up so that
these structures exhibit the analog of attractors, and evolve
towards one of a few discrete states. But the problem is that
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in finite time one cannot expect that they will precisely reach
such states. (This is somewhat analogous to the issue of
asymptotic particle states in the foundations of quantum
field theory.) And this means that the overall state of the
system will not be properly prepared for the next step of
cellular automaton evolution.

Generating repetitive patterns with continuous systems is
straightforward, but generating even nested ones is not. Page
147 showed how  has nested features, and
these are reflected in the distribution of eigenvalues for ODEs
containing such functions. Strange attractors for many
continuous systems also show various forms of Cantor sets
and nesting.

â Page 732 · Time and gravity. General relativity implies that
time can be affected by gravitational fields—and that for
example a process in a lower gravitational field will seem
to be going faster if it is looked at by an observer in a
higher gravitational field. (Related phenomena associated
with motion in special relativity are more difficult to
interpret in a static way.) But presumably there are effects
that prevent infinite speedups. For if, say, energy were
coming from a process at a constant rate, then an infinite
speedup would lead to infinite energy density, and thus
presumably to infinite gravitational fields that would
change the system.

At least formally, general relativity does nevertheless suggest
infinite transformations of time in various cases. For
example, to a distant observer, an object falling into a black
hole will seem to take an infinite time to cross the event
horizon—even though to the object itself only a finite time
will seem to have passed. One might have thought that this
would imply in reverse that to an observer moving with the
object the whole infinite future of the outside universe would
in effect seem to go by in a finite time. But in the simplest case
of a non-rotating black hole (Schwarzschild metric), it turns
out that an object will always hit the singularity at the center
before this can happen. In a rotating but perfectly spherical
black hole (Kerr metric), the situation is nevertheless
different, and in this case the whole infinite future of the
outside universe can indeed in principle be seen in the finite
time between crossing the outer and inner event horizons.
But for the reasons mentioned above, this very fact
presumably implies instability, and the whole effect
disappears if there is any deviation from perfect spherical
symmetry.

Even without general relativity there are already issues with
time and gravity. For example, it was shown in 1990 that
close encounters in a system of 5 idealized point masses can

lead to infinite accelerations which cause one mass to be able
to go infinitely far in a finite time.

â Page 733 · Human thinking. The discovery in this book that
even extremely simple programs can give rise to behavior
vastly more complex than expected casts suspicion on any
claim that programs are fundamentally unable to reproduce
features of human thinking. But complete evidence that
human thinking follows the Principle of Computational
Equivalence will presumably come only gradually as
practical computer systems manage to emulate more and
more aspects of human thinking. (See page 628.)

â Page 734 · Intermediate degrees. As discussed on page 753,
an important indication of computational sophistication in a
system is for its ultimate behavior to be undecidable, in the
sense that a limited number of steps in a standard universal
system cannot determine in general what the system will do
after an infinite number of steps, and whether, for example, it
will ever in some sense halt. Such undecidability is inevitable
in any system that is universal. But what about other
systems? So long as one only ever looks at the original input
and final output it turns out that one can construct a system
that exhibits undecidability but is not universal. One trivial
way to do so is to take a universal system but modify it so
that if it ever halts its output is discarded and, say, replaced
by its original input. The lack of meaningful output prevents
such a system from being universal, but the question of
whether the system halts is still undecidable. Nevertheless,
the pattern of this undecidability is just the same as for the
underlying universal system. So one can then ask whether it
is possible to have a system which exhibits undecidability,
but with a pattern that does not correspond to that of any
universal system. 

As I discuss on page 1137, almost all known proofs of
undecidability in practice work by reduction to the halting
problem for some universal system—this is, by showing that
if one could resolve whatever is supposed to be undecidable
then one could also solve the halting problem for a universal
system. But in 1956 Richard Friedberg and Albert Muchnik
both gave an intricate and abstract construction of a system
that has a halting problem which is undecidable but is not
reducible to the halting problem of any universal system.

The pictures at the top of the facing page show successive
steps in the evolution of an analog of their system. The input
is an integer that gives a position in either of the two rows of
cells at the bottom of each picture. All these cells are initially
white, but some eventually become black—and the system is
considered to halt for a particular input if the corresponding
cell ever becomes black.

Sin[x] +Sin[�!!!!2 x]
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The rules for the system are quite complicated, and in essence
work by progressively implementing a generalization of a
diagonal argument of the kind discussed on page 1128. Note
first that the configuration of cells in the rows at the bottom
of each picture can be thought of as successive finite
approximations to tables for an oracle (see page 1126) which
gives the solution to the halting problem for each possible
input to the system. To set up the generalized diagonal
argument one needs a way to list all possible programs. Any
type of program that supports universality can be used for
this purpose; the pictures shown use essentially the register
machines from page 97. Each row above the bottom one
corresponds in effect to a successive register machine—and
shows, if relevant, its output when given as input the integer
corresponding to that position in the row, together with the
complete bottom row of cells found so far. (A dot indicates
that the register machine does not halt.) The way the system
works is to put down new black cells in the bottom row in
just such a way as to arrange that for any register machine at
least the output shown will ultimately not agree with the
cells in the bottom row. As indicated by vertical gray lines,
there is sometimes temporary agreement, but this is always
removed within a finite number of steps.

The fact that no register machine can ever ultimately give
output that agrees everywhere with the bottom row of cells
then demonstrates that the halting problem for the system—
whose results appear in the bottom row—must be
undecidable. Yet if this halting problem were reducible to a
halting problem for a universal system, then by using its
results one should ultimately be able to solve the halting
problem for any system. However, even using the complete
bottom row of cells on the left it turns out that the
construction is such that no register machine can ever yield
results after any finite number of steps that agree everywhere
with the row of cells on the right—thus demonstrating that
the halting problem for the system is not reducible to the
halting problem for a universal system.

Note however that this result is extremely specific to looking
only at what is considered output from the system, and that
inside the system there are all sorts of components that are
definitely universal.

Explaining the Phenomenon of Complexity

â Definition of complexity. See page 557.

â Ingredients for complexity. With its emphasis on breaking
systems down to find their underlying elements traditional
science tends to make one think that any important overall
property of a system must be a consequence of some
specific feature of its underlying construction. But the
results of this section imply that for complexity this is not
the case. For as discussed on page 1126 there is no direct
structural criterion for sophisticated computation and
universality. And indeed most ways of ensuring that these
do not occur are in essence equivalent just to saying that
the overall behavior exhibits some specific regularity and is
therefore not complex.

â Relativism and equivalence. Although the notion has been
discussed since antiquity, it has become particularly common
in the academic humanities in the past few decades to believe
that there can be no valid absolute conclusions about the
world—only statements made relative to particular cultural
contexts. My emphasis of the importance of perception and
analysis might seem to support this view, and to some extent
it does. But the Principle of Computational Equivalence
implies that in the end essentially any method of perception
and analysis that can actually be implemented in our
universe must have a certain computational equivalence, and
must therefore at least in some respects come to the same
absolute conclusions. 

step 1 step 2 step 3
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step 7 step 8 step 9

step 10 step 11 step 12
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Computational Irreducibility

â History. The notion that there could be fundamental limits
to knowledge or predictability has been discussed repeatedly
since antiquity. But most often it has been assumed that the
origin of this must be inadequacy in models, not difficulty in
working out their consequences. And indeed already in the
1500s with the introduction of symbolic algebra and the
discovery of formulas for solving cubic and quartic equations
the expectation began to develop that with sufficient
cleverness it should be possible to derive a formula for the
solution to any purely mathematical problem. Infinitesimals
were sometimes thought to get in the way of finite
understanding—but this was believed to be overcome by
calculus. And when mathematical models for natural
systems became widespread in the late 1600s it was generally
assumed that their basic consequences could always be
found in terms of formulas or geometrical theorems, perhaps
with fairly straightforward numerical calculations required
for connection to practical situations. In discussing
gravitational interactions between many planets Isaac
Newton did however comment in 1684 that “to define these
motions by exact laws admitting of easy calculation exceeds,
if I am not mistaken, the force of any human mind”. But in
the course of the 1700s and 1800s formulas were successfully
found for solutions to a great many problems in
mathematical physics (see note below)—at least when
suitable special functions (see page 1091) were introduced.
The three-body problem (see page 972) nevertheless
continued to resist efforts at general solution. In the 1820s it
was shown that quintic equations cannot in general be solved
in terms of radicals (see page 1137), and by the 1890s it was
known that degree 7 equations cannot in general be solved
even if elliptic functions are allowed. Around 1890 it was
then shown that the three-body problem could not be solved
in general in terms of ordinary algebraic functions and
integrals (see page 972). However, perhaps in part because of
a shift towards probabilistic theories such as quantum and
statistical mechanics there remained the conviction that for
relevant aspects of behavior formulas should still exist. The
difficulty for example of finding more than a few exact
solutions to the equations of general relativity was noted—
but a steady stream of results (see note below) maintained
the belief that with sufficient cleverness a formula could be
found for behavior according to any model. 

In the 1950s computers began to be used to work out
numerical solutions to equations—but this was seen mostly
as a convenience for applications, not as a reflection of any
basic necessity. A few computer experiments were done on
systems with simple underlying rules, but partly because

Monte Carlo methods were sometimes used, it was typically
assumed that their results were just approximations to what
could in principle be represented by exact formulas. And this
view was strengthened in the 1960s when solitons given by
simple formulas were found in some of these systems.

The difficulty of solving equations for numerical weather
prediction was noted even in the 1920s. And by the 1950s and
1960s the question of whether computer calculations would
be able to outrun actual weather was often discussed. But it
was normally assumed that the issue was just getting a better
approximation to the underlying equations—or better initial
measurements—not something more fundamental.

Particularly in the context of game theory and cybernetics the
idea had developed in the 1940s that it should be possible to
make mathematical predictions even about complex human
situations. And for example starting in the early 1950s
government control of economies based on predictions from
linear models became common. By the early 1970s, however,
such approaches were generally seen as unsuccessful, but it
was usually assumed that the reason was not fundamental,
but was just that there were too many disparate elements to
handle in practice. 

The notions of universality and undecidability that underlie
computational irreducibility emerged in the 1930s, but they
were not seen as relevant to questions arising in natural
science. Starting in the 1940s they were presumably the basis
for a few arguments made about free will and fundamental
unpredictability of human behavior (see page 1135),
particularly in the context of economics. And in the late 1950s
there was brief interest among philosophers in connecting
results like Gödel’s Theorem to questions of determinism—
though mostly there was just confusion centered around the
difficulty of finding countable proofs for statements about
the continuous processes assumed to occur in physics.

The development of algorithmic information theory in the
1960s led to discussion of objects whose information content
cannot be compressed or derived from anything shorter. But
as indicated on page 1067 this is rather different from what I
call computational irreducibility. In the 1970s computational
complexity theory began to address questions about overall
resources needed to perform computations, but concentrated
on computations that perform fairly specific known practical
tasks. At the beginning of the 1980s, however, it was noted
that certain problems about models of spin glasses were NP-
complete. But there was no immediate realization that this
was connected to any underlying general phenomenon.

Starting in the late 1970s there was increasing interest in
issues of predictability in models of physical systems. And it
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was emphasized that when the equations in such models are
nonlinear it often becomes difficult to find their solutions.
But usually this was at some level assumed to be associated
with sensitive dependence on initial conditions and the chaos
phenomenon—even though as we saw on page 1098 this
alone does not even prevent there from being formulas. 

By the early 1980s it had become popular to use computers to
study various models of natural systems. Sometimes the idea
was to simulate a large collection of disparate elements, say
as involved in a nuclear explosion. Sometimes instead the
idea was to get a numerical approximation to some fairly
simple partial differential equation, say for fluid flow.
Sometimes the idea was to use randomized methods to get a
statistical approximation to properties say of spin systems or
lattice gauge theories. And sometimes the idea was to work
out terms in a symbolic perturbation series approximation,
say in quantum field theory or celestial mechanics. With any
of these approaches huge amounts of computer time were
often used. But it was almost always implicitly assumed that
this was necessary in order to overcome the approximations
being used, and not for some more fundamental reason.

Particularly in physics, there has been some awareness of
examples such as quark confinement in QCD where it seems
especially difficult to deduce the consequences of a theory—
but no general significance has been attached to this.

When I started studying cellular automata in the early 1980s I
was quickly struck by the difficulty of finding formulas for
their behavior. In traditional models based for example on
continuous numbers or approximations to them there was
usually no obvious correspondence between a model and
computations that might be done about it. But the evolution
of a cellular automaton was immediately reminiscent of other
computational processes—leading me by 1984 to formulate
explicitly the concept of computational irreducibility.

No doubt an important reason computational irreducibility
was not identified before is that for more than two centuries
students had been led to think that basic theoretical science
could somehow always be done with convenient formulas.
For almost all textbooks tend to discuss only those cases that
happen to come out this way. Starting in earnest in the 1990s,
however, the influence of Mathematica has gradually led to
broader ranges of examples. But there still remains a very
widespread belief that if a theoretical result about the
behavior of a system is truly fundamental then it must be
possible to state it in terms of a simple mathematical formula.

â Exact solutions. Some notable cases where closed-form
analytical results have been found in terms of standard
mathematical functions include: quadratic equations (~2000

BC) ( ); cubic, quartic equations (1530s) ( ); 2-body
problem (1687) ( ); catenary (1690) ( ); brachistochrone
(1696) ( ); spinning top (1849; 1888; 1888) ( ;

; hyperelliptic functions); quintic equations
(1858) ( ); half-plane diffraction (1896) ( );
Mie scattering (1908) ( , , ); Einstein
equations (Schwarzschild (1916), Reissner-Nordström (1916),
Kerr (1963) solutions) (rational and trigonometric functions);
quantum hydrogen atom and harmonic oscillator (1927)
( , ); 2D Ising model (1944) ( , );
various Feynman diagrams (1960s–1980s) ( ); KdV
equation (1967) (  etc.); Toda lattice (1967) ( ); six-
vertex spin model (1967) (  integrals); Calogero-Moser
model (1971) ( ); Yang-Mills instantons
(1975) (rational functions); hard-hexagon spin model (1979)
( ); additive cellular automata (1984)
( ); Seiberg-Witten supersymmetric theory
(1994) ( ). When problems are originally
stated as differential equations, results in terms of integrals
(“quadrature”) are sometimes considered exact solutions—as
occasionally are convergent series. When one exact solution is
found, there often end up being a whole family—with much
investigation going into the symmetries that relate them. It is
notable that when many of the examples above were
discovered they were at first expected to have broad
significance in their fields. But the fact that few actually did
can be seen as further evidence of how narrow the scope of
computational reducibility usually is. Notable examples of
systems that have been much investigated, but where no exact
solutions have been found include the 3D Ising model,
quantum anharmonic oscillator and quantum helium atom. 

â Amount of computation. Computational irreducibility
suggests that it might be possible to define “amount of
computation” as an independently meaningful quantity—
perhaps vaguely like entropy or amount of information. And
such a quantity might satisfy laws vaguely analogous to the
laws of thermodynamics that would for example determine
what processes are possible and what are not. If one knew the
fundamental rules for the universe then one way in principle
to define the amount of computation associated with a given
process would be to find the minimum number of
applications of the rules for the universe that are needed to
reproduce the process at some level of description.

â Page 743 · More complicated rules. The standard rule for a
cellular automaton specifies how every possible block of cells
of a certain size should be updated at every step. One can
imagine finding the outcome of evolution more efficiently by
adding rules that specify what happens to larger blocks of
cells after more steps. And as a practical matter, one can look
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up different blocks using a method like hashing. But much as
one would expect from data compression this will only in the
end work more efficiently if there are some large blocks that
are sufficiently common. Note that dealing with blocks of
different sizes requires going beyond an ordinary cellular
automaton rule. But in a sequential substitution system—and
especially in a multiway system (see page 776)—this can be
done just as part of an ordinary rule. 

â Page 744 · Reducible systems. The color of a cell at step 
and position  can be found by starting with initial condition

then for rule 188 running the cellular automaton with rule

and for rule 60 running the cellular automaton with rule

â Speed-up theorems. That there exist computations that are
arbitrarily computationally reducible was noted in work on
the theory of computation in the mid-1960s. 

â Page 745 · Mathematical functions. The number of bit
operations needed to add two -digit numbers is of order .
The number of operations  needed to multiply them
increases just slightly more rapidly than  (see page 1093).
(Even if one can do operations on all digits in parallel it still
takes of order  steps in a system like a cellular automaton
for the effects of different digits to mix together—though see
also page 1149.) The number of operations to evaluate

 is of order  if  has  digits and  is small. Many
standard continuous mathematical functions just increase or
decrease smoothly at large  (see page 917). The main issue in
evaluating those that exhibit regular oscillations at large  is
to find their oscillation period with sufficient precision. Thus
for example if  is an integer with  digits then evaluating

 or  requires respectively finding  or
 to -digit precision. It is known how to evaluate  (see

page 912) and all standard elementary functions to -digit
precision using about  operations. (This can be
done by repeatedly making use of functional relations such
as  which express  as a polynomial
in ; such an approach is known to work for elementary,
elliptic, modular and other functions associated with

 and for example .)
Known methods for high-precision evaluation of special
functions—usually based in the end on series

representations—typically require of order 
operations, where  is often 2 or 3. (Examples of more
difficult cases include  and

, where logarithmic series can require an
exponential number of terms. Evaluation of  is
also difficult.) Any iterative procedure (such as ) that
yields a constant multiple more digits at each step will take
about  steps to get  digits. Roots of polynomials can
thus almost always be found with  in about

 operations. If one evaluates  or
 by effectively fitting functions to order 

polynomials the difficulty of getting results with -digit
precision typically increases like . An adaptive algorithm
such as Romberg integration reduces this to about .
The best-known algorithms for evaluating  (see
page 918) to fixed precision take roughly  operations—or

 operations if  is an -digit integer. (The evaluation is
based on the Riemann-Siegel formula, which involves sums
of about  cosines.) Unlike for continuous mathematical
functions, known algorithms for number theoretical
functions such as  or  typically
seem to require a number of operations that grows faster
with the number of digits  in  than any power of  (see
page 1090). 

â Formulas. It is always in principle possible to build up some
kind of formula for the outcome of any process of evolution,
say of a cellular automaton (see page 618). But for there to be
computational reducibility this formula needs to be simple
and easy to evaluate—as it is if it consists just of a few
standard mathematical functions (see note above; page 1098). 

â Page 747 · Short computations. Some properties include:

(a) The regions are bounded by the hyperbolas
 for successive integers . 

(d) There is approximate repetition associated with rational
approximations to  (for example with period 22), but never
precise repetition.

(e) The pattern essentially shows which  are divisors of ,
just as on pages 132 and 909.

(h)  extracts the digit associated with
 in the base 2 digit sequence of . 

(i) Like (e), except that colors at neighboring positions
alternate.

(l) See page 613. 

(m) The pattern can be generated by a 2D substitution system
with rule {1 -> {{0, 0}, {0, 1}}, 0 -> {{1, 1}, {1, 0}}} (see page 583). 

(See also page 870.)

t
x

Flatten[With[{w = Max[Ceiling[Log[2, {t, x}]]]},
{2 Reverse[IntegerDigits[t, 2, w]] + 1,

5, 2 IntegerDigits[x, 2, w] + 2}]]

{{a : (1 Ï 3), 1 Ï 3, _} ! a, {_, 2 Ï 4, a : (2 Ï 4)} ! a,
{3, 5 Ï 10, 2} ! 6, {1, 5 Ï 7, 4} ! 0, {3, 5, 4} ! 7,
{1, 6, 2} ! 10, {1, 6 Ï 11, 4} ! 8, {3, 6 Ï 8 Ï 10 Ï 11, 4} ! 9,
{3, 7 Ï 9, 2} ! 11, {1, 8 Ï 11, 2} ! 9, {3, 11, 2} ! 8,
{1, 9 Ï 10, 4} ! 11, {_, a_ /; a > 4, _} ! a, {_, _, _} ! 0}

{{a : (1 Ï 3), 1 Ï 3, _} ! a, {_, 2 Ï 4, a : (2 Ï 4)} ! a,
{1, 5, 4} ! 0, {_, 5, _} ! 5, {_, _, _} ! 0}
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Even though standard mathematical functions are used, few
of the pictures can readily be generalized to continuous
values of  and . 

â Intrinsic limits in science. Before computational irreducibility
other sources of limits to science that have been discussed
include: measurement in quantum mechanics, prediction in
chaos theory and singularities in gravitation theory. As it
happens, in each of these cases I suspect that the supposed
limits are actually just associated with a lack of correct analysis
of all elements of the relevant systems. In mathematics,
however, more valid intrinsic limits—much closer to
computational irreducibility—follow for example from
Gödel’s Theorem.

The Phenomenon of Free Will

â History. Early in history it seems to have generally been
assumed that everything about humans must ultimately be
determined by unchangeable fate—which it was sometimes
thought could be foretold by astrology or other forms of
divination. Most Greek philosophers seem to have believed
that their various mechanical or moral theories implied rigid
determination of human actions. But especially with the
advent of the Christian religion the notion that humans can at
some level make free choices—particularly about whether to
do good or not—emerged as a foundational idea. (The idea
had also arisen in Persian and Hebrew religions and legal
systems, and was supported by Roman lawyers such as
Cicero.) How this could be consistent with God having
infinite power was not clear, although around 420 AD
Augustine suggested that while God might have infinite
knowledge of the future we as humans could not—yielding
what can be viewed as a very rough analog of my
explanation for free will. In the 1500s some early Protestants
made theological arguments against free will—and indeed
issues of free will remain a feature of controversy between
Christian denominations even today.

In the mid-1600s philosophers such as Thomas Hobbes
asserted that minds operate according to definite
mechanisms and therefore cannot exhibit free will. In the late
1700s philosophers such as Immanuel Kant—agreeing with
earlier work by Gottfried Leibniz—claimed instead that at
least some parts of our minds are free and not determined by
definite laws. But soon thereafter scientists like Pierre-Simon
Laplace began to argue for determinism throughout the
universe based on mathematical laws. And with the
increasing success of science in the 1800s it came to be widely
believed that there must be definite laws for all human

actions—providing a foundation for the development of
psychology and the social sciences.

In the early 1900s historians and economists emphasized that
there were at least not simple laws for various aspects of
human behavior. But it was nevertheless typically assumed
that methods based on physics would eventually yield
deterministic laws for human behavior—and this was for
example part of the inspiration for the behaviorist movement
in psychology in the mid-1900s. The advent of quantum
mechanics in the 1920s, however, showed that even physics
might not be entirely deterministic—and by the 1940s the
possibility that this might lead to human free will was being
discussed by physicists, philosophers and historians. Around
this time Karl Popper used both quantum mechanics and
sensitive dependence on initial conditions (see also page 971)
to argue for fundamental indeterminism. And also around
this time Friedrich Hayek (following ideas of Ludwig Mises
in the early 1900s) suggested—presumably influenced by
work in mathematical logic—that human behavior might be
fundamentally unpredictable because in effect brains can
explain only systems simpler than themselves, and can thus
never explain their own operation. But while this has some
similarity to the ideas of computational irreducibility in this
book it appears never to have been widely studied. 

Questions of free will and responsibility have been widely
discussed in criminal and other law since at least the 1800s
(see note below). In the 1960s and 1970s ideas from popular
psychology tended to diminish the importance of free will
relative to physiology or environment and experiences. In the
1980s, however, free will was increasingly attributed to
animals other than humans. Free will for computers and
robots was discussed in the 1950s in science fiction and to
some extent in the field of cybernetics. But following lack of
success in artificial intelligence it has for the most part not
been seriously studied. Sometimes it is claimed that Gödel’s
Theorem shows that humans cannot follow definite rules—
but I argue on page 1158 that this is not correct.

â Determinism in brains. Early investigations of internal
functioning in the brain tended to suggest considerable
randomness—say in the sequence of electrical pulses from a
nerve cell. But in recent years, with more extensive
measurement methods, there has been increasing evidence
for precise deterministic underlying rules. (See pages 976 and
1011.)

â Amounts of free will. In my theory the amount of free will
associated with a particular decision is in effect related to the
amount of computation required to arrive at it. In conscious
thinking we can to some extent scrutinize the processes we

x y
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use, and assess how much computation they involve. But in
unconscious thinking we cannot. And probably often these
just involve memory lookups with rather little computation.
But other unconscious abilities like intuition presumably
involve more sophisticated computation.

â Responsibility. It is often assumed that if there are definite
underlying rules for our brains then it cannot be meaningful
to say that we have any ultimate moral or legal
responsibility for our actions. For traditional ideas lead to
the notion that in this case all our actions must somehow be
thought of as the direct result of whatever external causes
(over which we have no control) are responsible for the
underlying rules in our brains and the environment in
which we find ourselves. But if the processes in our brains
are computationally irreducible then as discussed in the
main text their outcome can seem in many respects free of
underlying rules, making it reasonable to view the processes
themselves as what is really responsible for our actions. And
since these processes are intrinsic to us, it makes sense to
treat us as responsible for their effects. 

Several different theories are used in practical legal systems.
The theory popular from the behavioral sciences tends to
assume that human actions can be understood from
underlying rules for the brain, and that people should be
dealt with according to the rules they have—which can
perhaps be modified by some form of treatment. But
computational irreducibility can make it essentially
impossible to find what general behavior will arise from
particular rules—making it difficult to apply this theory. The
alternative pragmatic theory popular in rational philosophy
and economics suggests that behavior in legal matters is
determined through calculations based on laws and the
deterrents they provide. But here there is the issue that
computational irreducibility can make it impossible to
foresee what consequences a given law will have. Western
systems of law tend to be dominated by the moral theory that
people should somehow get what they deserve for choices
they made with free will—and my explanation now makes
this consistent with the existence of definite underlying rules
for the brain. 

Young children, animals and the insane are typically held less
responsible for their actions. And in a moral theory of law
this can be understood in my approach as a consequence of
the computations they do being less sophisticated—so that
their outcome is less free of the environment and of their
underlying rules. (In a pragmatic theory the explanation
would presumably be that less sophisticated computations
would not be up to the task of handling the elaborate system
of incentives that laws had defined.)

â Will and purpose. Things that are too predictable do not
normally seem free. But things that are too random also do
not normally seem to be associated with the exercise of a will.
Thus for example continual random twitching in our muscles
is not normally thought to be a matter of human will, even
though some of it is the result of signals from our brains. For
typically one imagines that if something is to be a genuine
reflection of human will then there must be some purpose to
it. In general it is very difficult to assess whether something
has a purpose (see page 829). But in capturing the most
obvious aspects of human will what seems to be most
important is at least short-term coherence and consistency of
action—as often exists in class 4, but not class 3, systems.

â Source of will. Damage to a human brain can lead to
apparent disappearance of the will to act, and there is some
evidence that one small part of the brain is what is crucial. 

Undecidability and Intractability

â History. In the early 1900s, particularly in the context of the
ideas of David Hilbert, it was commonly believed that there
should be a finite procedure to decide the truth of any
mathematical statement. That this is not the case in the
standard theory of arithmetic was in effect established by
Kurt Gödel in 1931 (see page 1158). Alonzo Church gave the
first explicit example of an undecidable problem in 1935
when he showed that no finite procedure in lambda calculus
could guarantee to determine the equivalence of two lambda
expressions. (A corollary to Gödel’s proof had in fact already
supplied another explicit undecidable problem by implying
that no finite procedure based on recursive functions could
decide whether a given primitive recursive function is
identically 0.) In 1936 Alan Turing then showed that the
halting problem for Turing machines could not be solved in
general in a finite number of steps by any Turing machine.
Some similar issues had already been considered by Emil
Post in the context of tag and multiway systems starting in
the 1920s, and in 1947 Post and Andrei Markov were able to
establish that an existing mathematical question—the word
problem for semigroups (see page 1141)—was undecidable.
By the 1960s undecidability was being found in all sorts of
systems, but most of the examples were too complicated to
seem of much relevance in practical mathematics or
computing. And apart from a few vague mentions in fields
like psychology, undecidability was viewed mainly as a
highly abstract curiosity of no importance to ordinary
science. But in the early 1980s my experiments on cellular
automata convinced me that undecidability is vastly more
common than had been assumed, and in my 1984 paper
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“Undecidability and intractability in theoretical physics” I
argued that it should be important in many issues in physics
and elsewhere. 

â Mathematical impossibilities. It is sometimes said that in the
1800s problems such as trisecting angles, squaring the circle,
solving quintics, and integrating functions like  were
proved mathematically impossible. But what was actually
done was just to show that these problems could not be
solved in terms of particular levels of mathematical
constructs—say square roots (as in ruler and compass
constructions discussed on page 1129), arbitrary roots, or
elementary transcendental functions. And in each case higher
mathematical constructs that seem in some sense no less
implementable immediately allow the problems to be solved.
Yet with undecidability one believes that there is absolutely
no construct that can explicitly exist in our universe that
allows the problem to be solved in any finite way. And unlike
traditional mathematical impossibilities, undecidability is
normally formulated purely in terms of ordinary integers—
making it in a sense necessary to collapse basic distinctions
between finite and infinite quantities if any higher-level
constructs are to be included.

â Page 755 · Code 1004600. In cases (c) and (d) steady growth
at about 0.035 and 0.039 cells per step (of which 28% on
average are non-white) is seen up to at least 20 million steps,
though there continue to be fluctuations as shown below.

â Halting problems. A classic example of a problem that is
known in general to be undecidable is whether a given
Turing machine will ever halt when started from a given
initial condition. Halting is usually defined by the head of the
Turing machine reaching a special halt state. But other
criteria can equally well be used—say the head reaching a
particular position (see page 759), or a certain pattern of
colors being formed on the tape. And in a system like a
cellular automaton a halting problem can be set up by asking
whether a cell at a particular position ever turns a particular
color, or whether, more globally, the complete state of the
system ever reaches a fixed point and no longer changes.

In practical computing, one usually thinks of computational
programs as being set up much like the register machines of
page 896 and halting when they have finished executing their
instructions. User interface and operating system programs
are not normally intended to halt in an explicit sense,
although without external input they often reach states that

do not change. Mathematica works by taking its input and
repeatedly applying transformation rules—a process which
normally reaches a fixed point that is returned as the answer,
but with definitions like  (  having no value)
formally does not.

â Proofs of undecidability. Essentially the same argument due
to Alan Turing used on page 1128 to show that most numbers
cannot be computable can also be used to show that most
problems cannot be decidable. For a problem can be thought
of as an infinite list of solutions for successive possible
inputs. But this is analogous to a digit sequence of a real
number. And since any program for a universal system can
be specified by an integer it follows that there must be many
problems for which no such program can be given.

To show that a particular problem like the halting problem is
undecidable one typically argues by contradiction, setting up
analogs of self-referential logic paradoxes such as “this
statement is false”. Suppose that one had a Turing machine

 that could solve the halting problem, in the sense that it
itself would always halt after a finite number of steps, but it
would determine whether any Turing machine whose
description it was given as input would ever halt. One way to
see that this is not possible is to imagine modifying  to
make a machine  that halts if its input corresponds to a
machine that does not halt, but otherwise goes into an
infinite loop and does not itself halt. For if one considers
feeding  as input to itself there is immediately no
consistent answer to the question of whether  halts—
leading to the conclusion that in fact no machine  could
ever exist in the first place. (To make the proof rigorous one
must add another level of self-reference, say setting up  to
ask  whether a Turing machine will halt when fed its own
description as input.) In the main text I argued that
undecidability is a consequence of universality. In the proof
above universality is what guarantees that any Turing
machine can successfully be described in a way that can be
fed as input to another Turing machine.

â Page 756 · Examples of undecidability. Once universality
exists in a system it is known from Gordon Rice’s 1953
theorem and its generalizations that most questions about
ultimate behavior will be undecidable unless their answers
are always trivially the same. Undecidability has been
demonstrated in various seemingly rather different types of
systems, most often by reduction to halting (termination)
problems for multiway systems.

In formal language theory, questions about regular languages
are always decidable, but ones about context-free languages
(see page 1103) are already often not. It is decidable whether
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such a language is finite, but not whether it contains every
possible string, is regular, is unambiguous, or is equivalent to
a language with a different grammar. 

In mathematical logic, it can be undecidable whether
statements are provable from a given axiom system—say
predicate logic or Peano arithmetic (see page 782). It is also
undecidable whether one axiom system is equivalent to
another—even for basic logic (see page 1170).

In algebra and related areas of mathematics problems of
equivalence between objects built up from elements that
satisfy relations are often in general undecidable. Examples
are word problems for groups and semigroups (see page
1141), and equivalence of finitely specified 4D manifolds (see
page 1051). (Equivalence for 3D manifolds is thought to be
decidable.) A related undecidable problem is whether two
integer matrices can be multiplied together in some sequence
to yield the zero matrix. It is also undecidable whether two
sets of relations specify the same group or semigroup. 

In combinatorics it is known in general to be undecidable
whether a given set of tiles can cover the plane (see page
1139). And from this follows the undecidability of various
problems about 2D cellular automata (see note below) and
spin systems. Also undecidable are many questions about
whether strings exist that satisfy particular constraints (see
below).

In number theory it is known to be undecidable whether
Diophantine equations have solutions (i.e. whether algebraic
equations have integer solutions) (see page 786). And this
means for example that it is in general undecidable whether
expressions that involve both algebraic and trigonometric
functions can be zero for real values of variables, or what the
values of integrals are in which such expressions appear as
denominators (compare page 916).

In computer science, general problems about verifying the
possible behavior of programs tend to be undecidable,
usually being directly related to halting problems. It is also
for example undecidable whether a given program is the
shortest one that produces particular output (see page 1067). 

It is in general undecidable whether a given system exhibits
universality—or undecidability.

â Undecidability in cellular automata. For 1D cellular
automata, almost all questions about ultimate limiting
behavior are undecidable, even ones that ask about average
properties such as density and entropy. (This results in
undecidability in classification schemes, as mentioned on
page 948.) Questions about behavior after a finite number of
steps, even with infinite initial conditions, tend to be

decidable for 1D cellular automata, and related to regular
languages (see page 957). In 2D cellular automata, however,
even questions about a single step are often undecidable.
Examples include whether any configurations are invariant
under the cellular automaton evolution (see page 942), and,
as established by Jarkko Kari in the late 1980s, whether the
evolution is reversible, or can generate every possible
configuration (see page 959). 

â Natural systems. Undecidable questions arise even in some
traditional classes of models for natural systems. For
example, in a generalized Ising model (see page 944) for a
spin system the undecidability of the tiling problem implies
that it is undecidable whether a given energy function leads
to a phase transition in the infinite size limit. Somewhat
similarly, the undecidability of equivalence of 4-manifolds
implies undecidability of questions about quantum gravity
models. In models based both on equations and other kinds
of rules the existence of formulas for conserved quantities is
in general undecidable. In models that involve continuous
quantities it can be more difficult to formulate undecidability.
But I strongly suspect that with appropriate definitions there
is often undecidability in for example the three-body
problem, so that the questions such as whether one of the
bodies in a particular scattering process will ever escape to
infinity are in general undecidable. In biology formal models
for neural processes often involve undecidability, so that in
principle it can be undecidable whether, say, there is any
particular stimulus that will lead to a given response. Formal
models for morphogenesis can also involve undecidability, so
that for example it can in principle be undecidable whether a
particular organism will ever stop growing, or whether a
given structure can ever be formed in some class of
organisms. (Compare page 407.)

â Undecidability in Mathematica. In choosing functions to
build into Mathematica I tried to avoid ones that would often
encounter undecidability. And this is why for example there
is no built-in function in Mathematica that tries to predict
whether a given program will terminate. But inevitably
functions like ,  and 
can run into undecidability—so that ultimately they have to
be limited by constructs such as  and

.

â Undecidability and sets. Functions that can be computed in
finite time by systems like Turing machines are often called
recursive (or effectively computable). Sets are called
recursive if there is a recursive function that can test
whether or not any given element is in them. Sets are
called recursively enumerable if there is a recursive
function that can eventually generate any element in them.
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The set of initial conditions for which a given Turing
machine halts is thus not recursive. But it turns out that
this set is recursively enumerable. And the reason is that
one can generate the elements in it by effectively
maintaining a copy of the Turing machine for each possible
initial condition, then following a procedure where for
example at step  one updates the one for initial condition

, and watches to see if it halts. Note
that while the complement of a recursive set is always
recursive, the complement of a recursively enumerable set
may not be recursively enumerable. (An example is the set
of initial conditions for which a Turing machines does not
halt.) Recursively enumerable sets are characteristically
associated with so-called  statements of the form 
(where  is recursive). (Asking whether a system ever
halts is equivalent to asking whether there exists a number
of steps  at which the system can be determined to be in
its halting state.) Complements of recursively enumerable
sets are characteristically associated with  statements of
the form —an example being whether a given
system never halts. (  and  statements are such that if
they can be shown to be undecidable, then respectively
they must be true or false, as discussed on page 1167.) If a
statement in minimal form involves  alternations of 
and  it is  if it starts with  and  if it starts
with . The  and  form the so-called arithmetic
hierarchy in which statements with larger  can be
constructed by allowing  to access an oracle for
statements with smaller  (see page 1126). (Showing that a
statement with  is undecidable does not establish that
it is always true or always false.) 

â Undecidability in tiling problems. The question of whether a
particular set of constraints like those on page 220 can be
satisfied over the whole 2D plane is in general undecidable.
For much as on page 943, one can imagine setting up a 1D
cellular automaton with the property that, say, the absence of
a particular color of cell throughout the 2D pattern formed by
its evolution signifies satisfaction of the constraints. But even
starting from a fixed line of cells, the question of whether a
given color will ever occur in the evolution of a 1D cellular
automaton is in general undecidable, as discussed in the
main text. And although it is somewhat more difficult to
show, this question remains undecidable even if one allows
any possible configuration of cells on the starting line. (There
are several different detailed formulations; the first explicit
proof of undecidability in a tiling problem was given by Hao
Wang in 1960; the version with no fixed cells by Robert
Berger in 1966 by setting up an elaborate emulation of a
register machine.) (See also page 943.) 

â Page 757 · Correspondence systems. Given a list of pairs 
with  the constraint to be satisfied is 

Thus for example  has
shortest solution . (One can have lists
instead of strings, replacing  by .)

Correspondence systems were introduced by Emil Post in
1945 to give simple examples of undecidability; he showed
that the so-called Post Correspondence Problem (PCP) of
satisfying their constraints is in general undecidable (see
below). With 2 string pairs PCP was shown to be decidable in
1981. It is known to be undecidable when 9 pairs are used,
but I strongly suspect that it is also undecidable with just 3
pairs. The undecidability of PCP has been used to establish
undecidability of many problems related to groups, context-
free languages, and other objects defined by relations (see
page 1141). Finding PCP solutions shorter than a given
length is known to be an NP-complete problem.

With  string pairs and  there
are  possible constraints (assuming no
strings of zero length), each being related to at most 
others by straightforward symmetries (or altogether  for
given ). The number of constraints which yield solutions of
specified lengths  for  and  are as follows
(the boxes at the end give the number of cases with no
solution): 

With , as  increases an exponentially decreasing
fraction of possible constraints have solutions; with  it
appears that a fraction more than 1/4 continue to do so.
With , it appears that if a solution exists, it must have
length  or less. With , the longest minimal solution
lengths for  are given above. (Allowing  yields no
greater lengths for these values of .) With , example
(l) yields a solution of length 112. The only possible longer

 case is , for which
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any possible solution must be longer than 200. With ,
 has minimal solution

length 120 and  has
minimal solution length 132.

A given constraint can fail to have a solution either because
the colors of cells at some point cannot be made to match, or
because the two strings can never have the same finite length
(as in ). To know that a solution exists in a
particular case, it is sufficient just to exhibit it. To know that
no solution is possible of any length, one must in effect have
a proof.

In general, one condition for a solution to exist is that
integer numbers of pairs can yield strings of the same
length, so that given the length differences

 there is a vector  of
non-negative integers such that . If only one color of
element ever appears this is the complete condition for a
solution—and for  solutions exist if 
and are then of length at least

. With two colors of
elements additional conditions can be constructed involving
counting elements of each color, or various blocks of
elements.

The undecidability of PCP can be seen to follow from the
undecidability of the halting problem through the fact that
the question of whether a tag system of the kind on page 93
with initial sequence  ever reaches a halting state (where
none of its rules apply) is equivalent to the question of
whether there is a way to satisfy the PCP constraint

Any PCP constraint can also immediately be related to the
evolution of a multiway tag system of the kind discussed in
the note below. Assuming that the upper string is never
shorter than the lower one, the rules for the relevant tag
system are given simply by

In the case of example (e) the existence of a solution of
length 24 can then be seen to follow from the fact that

 contains .

This correspondence with tag systems can be used in practice
to search for PCP solutions, though it is usually most efficient
to run tag systems that correspond both to moving forward
and backward in the string, and to see whether their results
ever agree. (In most PCP systems, including all the examples

shown except (a) and (g), one string is always systematically
longer than the other.) The tag system approach is normally
limited by the number of intermediate strings that may need
to be kept.

The pictures below show which possible sequences of up to 6
blocks yield upper and lower strings that agree in each of the
PCP systems in the main text. As indicated in the first picture
for the case of two blocks, each possible successively longer
sequence corresponds to a rectangle in the picture (compare
page 594). When a sequence of blocks leads to upper and
lower strings that disagree, the rectangle is left white. If the
strings agree so far, then the rectangle is colored with a gray
that is darker if the strings are closer in length. Rectangles
that are black (as visible in cases (a) and (b)) correspond to
actual PCP solutions where the strings are the same length.
Note that in case (c) the presence of only one color in either
block means that strings will always agree so far. In cases (m)
through (s) there is ultimately no solution, but as the pictures
indicate, in these specific PCP systems there are always
strings that agree as far as they have gone—it is just that they
never end up the same length. 

As one example of how one proves that a PCP constraint
cannot be satisfied, consider case (s). From looking at the
structure of the individual pairs one can see that if there is a
solution it must begin with pair 1 or pair 3, and end with pair
1. But in fact it cannot begin with pair 1 because this would
mean that the upper string would have to start off being
longer, then at some point cross over to being shorter.
However, the only way that such a crossover can occur is by
pair 3 appearing with its upper  aligned with its second
lower . Yet starting with pair 1, the upper string is longer by
2 s, and the pairs are such that the length difference must
always remain even—preventing the crossover from
occurring. This means that any solution must begin with pair
3. But this pair must then be followed by another pair 3,
which leaves  sticking out on the bottom. So how can
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this  be removed? The only way is to use the sequence
of pairs 2, 3, 3, 2—yet doing this will just produce another

 further on. And thus one concludes that there is no
way to satisfy these particular PCP constraints. 

One can generalize PCP to allow any number of colors, and
to require correspondence among any number of strings—
though it is fairly easy to translate any such generalization to
the 2-string 2-color case.

â Multiway tag systems. As an extension of ordinary
multiway systems one can generalize tag systems from page
93 to allow a list of strings at each step. Representing the
strings by lists, one can write rules in the form

so that the evolution is given by 

â Word problems. The question of whether a particular string
can be generated in a given multiway system is an example
of a so-called word problem. An original more specialized
version of this was posed by Max Dehn in 1911 for groups
and by Axel Thue in 1914 for semigroups. As discussed on
page 938 a finitely presented group or semigroup can be
viewed as a special case of a multiway system, in which the
rules of the multiway system are obtained from relations
between strings consisting of products of generators. The
word problem then asks if a given product of such generators
is equal to the identity element. Following work by Alan
Turing in the mid-1930s, it was shown in 1947 by Emil Post
from the undecidability of PCP that the word problem for
semigroups is in general undecidable. Andrei Markov gave a
specific example of this for a semigroup with 13 generators
and 33 relations, and by 1966 Gennadií Makanin had found
the simpler example

Using these relations as rules for a multiway system most
initial strings yield behavior that either dies out or becomes
repetitive. The shortest initial strings that give unbounded
growth are  and —though both of
these still eventually yield just exponentially increasing
numbers of distinct strings. In 1967 Yuri Matiyasevich
constructed a semigroup with 3 complicated relations that
has an undecidable word problem. It is not yet known
whether undecidability can occur in a semigroup with a
single relation. The word problem is known to be decidable
for commutative semigroups. 

The word problem for groups was shown to be undecidable
in the mid-1950s by Petr Novikov and William Boone. There

are however various classes of groups for which it is
decidable. Abelian groups are one example. Another are so-
called automatic groups, studied particularly in the 1980s, in
which equivalence of words can be recognized by a finite
automaton. (Such groups turn out to have definite
geometrical properties, and are associated with spaces of
negative curvature.) Even if a group ultimately has only a
finite number of distinct elements, its word problem (with
elements specified as products of generators) may still be
undecidable. Constructions of groups with undecidable
word problems have been based on setting up relations that
correspond to the rules in a universal Turing machine. With
the simplest such machine known in the past (see page 706)
one gets a group with 32 generators and 142 relations. But
with the universal Turing machine from page 707 one gets a
group with 14 generators and 52 relations. (In general 
generators and  relations are needed.) From the
results in this book it seems likely that there are still much
simpler examples—some of which could perhaps be found
by setting up groups to emulate rule 110. Note that groups
with just one relation were shown always to have decidable
word problems by Wilhelm Magnus in 1932.

For ordinary multiway (semi-Thue) systems, an example
with an undecidable word problem is known with 2 types of
elements and 5 very complicated rules—but I am quite
certain that much simpler examples are possible. (1-rule
multiway systems always have decidable word problems.) 

â Sequence equations. One can ask whether by replacing
variables by sequences one can satisfy so-called word or
string equations such as 

(with shortest solution ,
). Knowing about PCP and

Diophantine equations one might expect that in general this
would be undecidable. But in 1977 Gennadií Makanin gave a
complicated algorithm that solves the problem completely in
a finite number of steps (though in general triple exponential
in the length of the equation). 

â Fast algorithms. Most of the fast algorithms now known
seem to fall into a few general classes. The most common are
ones based on repetition or iteration, classic examples being
Euclid’s algorithm for  (page 915), Newton’s method for

 and the Gaussian elimination method for
. Starting in the 1960s it began to be realized that

fast algorithms could be based on nested or recursive
processes, and such algorithms became increasingly popular
in the 1980s. In most cases, the idea is recursively to divide
data into parts, then to do operations on these parts, and

BAAB

BAAB

{{1, 1, s___} ! {s, 1, 0}, {1, s___} ! {s, 1, 0, 1}}

MWTSEvolve[rule_, list_, t_] :=
Nest[Flatten[Map[ReplaceList[#, rule] &, #], 1] &, list, t]

{"CCBB" · "BBCC", "BCCCBB" · "CBBBCC", "ACCBB" · "BBA",
"ABCCCBB" · "CBBA", "BBCCBBBBCC" · "BBCCBBBBCCA"}

"BBBBABB" "BBBBBBA"

s k + 4
5 s k + 2

Flatten[{x, 0, x, 0, y}] 2 Flatten[{y, x, 0, y, 1, 0, 1, 0, 0}]

x = {1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0}

y = {1, 0, 1, 0, 0, 1, 0, 1, 0, 0}

GCD
FindRoot
LinearSolve
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finally reassemble the results. An example is the algorithm of
Anatolii Karatsuba from 1961 for finding products of -digit
numbers (with ) by operating on their digits in the
nested pattern of page 608 (see also page 1093) according to

Other examples include the fast Fourier transform (page
1074) and related algorithms for , the quicksort
algorithm for , and many algorithms in fields such as
computational geometry. Starting in the 1980s fast algorithms
based on randomized methods (see page 1192) have also
become popular. But particularly from the discoveries in this
book, it seems likely that the very fastest algorithms for many
kinds of problems will not in the end have the type of regular
structure that characterizes almost all algorithms currently
used.

â Sorting networks. Any list can be sorted using
 by doing a fixed sequence of

comparisons of pairs 

(Different comparisons often do not interfere and so can be
done in parallel.) The pictures below show a few sequences
of pair comparisons that sort lists of length . 

The top two (both with 120 comparisons) have a repetitive
structure and correspond to standard sorting algorithms:
transposition sort and insertion sort. (Quicksort does not use
a fixed sequence of comparisons.) The first one on the bottom
(with 63 comparisons) has a nested structure and uses the
method invented by Kenneth Batcher in 1964:

The second one on the bottom also uses 63 comparisons,
while the last one is the smallest known for : it uses 60
comparisons and was invented by Milton Green in 1969. For

 the smallest numbers of comparisons known to work

are . (In
general all lists will be sorted correctly if lists of just 0’s and
1’s are sorted correctly; allowing even just one of these 
cases to be wrong greatly reduces the number of comparisons
needed.) For  the Batcher method is known to give
minimal length sequences of comparisons (for  the total
numbers of minimal sequences that work are

). The Batcher method in general requires
about  comparisons; it is known that in principle

 are sufficient. Various structures such as de Bruijn
and Cayley graphs can be used as the basis for sorting
networks, though it is my guess that typically the smallest
networks for given  will have no obvious regularity. (See
also page 832.) 

â Page 758 · Computational complexity theory. Despite its
rather general name, computational complexity theory has
for the most part been concerned with the quite specific issue
of characterizing how the computational resources needed to
solve problems grow with input size. From knowing explicit
algorithms many problems can be assigned to such classes as:

äNC: can be solved in a number of steps that increases like a 
polynomial in the logarithm of the input size if processing 
is done in parallel on a number of arbitrarily connected 
processors that increases like a polynomial in the input 
size. (Examples include addition and multiplication.)

äP (polynomial time): can be solved (with one processor) in 
a number of steps that increases like a polynomial in the 
input size. (Examples include evaluating standard 
mathematical functions and simulating the evolution of 
cellular automata and Turing machines.)

äNP (non-deterministic polynomial time): solutions can be 
checked in polynomial time. (Examples include many 
problems based on constraints as well as simulating the 
evolution of multiway systems and finding initial 
conditions that lead to given behavior in a cellular 
automaton.)

äPSPACE (polynomial space): can be solved with an 
amount of memory that increases like a polynomial in the 
input size. (Examples include finding repetition periods in 
systems of limited size.)

Central to computational complexity theory are a collection
of hypotheses that imply that NC, P, NP and PSPACE form a
strict hierarchy. At each level there are many problems
known that are complete at that level in the sense that all
other problems at that level can be translated to instances of
that problem using only computations at a lower level. (Thus,
for example, all problems in NP can be translated to instances
of any given NP-complete problem using computations in P.)

n
n = 2s

First[f [IntegerDigits[x, 2, n], IntegerDigits[y, 2, n], n/2]]

f [x_, y_, n_] :=
If[n < 1, x y, g[Partition[x, n], Partition[y, n], n]]

g[{x1_, x0_}, {y1_, y0_}, n_] :=
With[{z1 = f [x1, y1, n/2], z0 = f [x0, y0, n/2]},

z1 22 n + ( f [x0 + x1, y0 + y1, n/2] - z1 - z0) 2n + z0]

ListConvolve
Sort

Fold[PairSort, list, pairs]

PairSort[a_, p : {_, _}] := Block[{t = a}, t0p1 = Sort[t0p1]; t]

n = 16

Flatten[Reverse[Flatten[With[{m = Ceiling[Log[2, n]] - 1},
Table[With[{d = If[ i 2 m, 2t , 2i+1 - 2t]}, Map[

{0, d} + # &, Select[Range[n - d], BitAnd[# - 1, 2t] 2
If[ i 2 m, 0, 2t] &]]], {t, 0, m}, {i, t, m}]], 1]], 1]

n = 16

n < 16

{0, 1, 3, 5, 9, 12, 16, 19, 25, 29, 35, 39, 45, 51, 56, 60}

2n

n < 8
n < 5

{1, 6, 3, 13866}
n Log[n]2

n Log[n]

n
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â History. Ideas of characterizing problems by growth rates in
the computational resources needed to solve them were
discussed in the 1950s, notably in the context of operation
counts for numerical calculations, sizes of circuits for
switching and other applications, and theoretical lengths of
proofs. In the 1960s such ideas were increasingly formalized,
particularly for execution times on Turing machines, and in
1965 the suggestion was made that one should consider
computations feasible if they take times that grow like
polynomials in their input size. NP completeness (see below)
was introduced by Stephen Cook in 1971 and Leonid Levin
around the same time. And over the course of the 1970s a
great many well-known problems were shown to be NP-
complete. A variety of additional classes of computations—
notably ones like NC with various kinds of parallelism, ones
based on circuits and ones based on algebraic operations—
were defined in the 1970s and 1980s, and many detailed
results about them were found. In the 1980s much work was
also done on the average difficulty of solving NP-complete
problems—both exactly and approximately (see page 985).
When computational complexity theory was at its height in
the early 1980s it was widely believed that if a problem could
be shown, for example, to be NP-complete then there was
little chance of being able to work with it in a practical
situation. But increasingly it became clear that general
asymptotic results are often quite irrelevant in typical
problems of reasonable size. And certainly pattern matching
with  in Mathematica, as well as polynomial manipulation
functions like , routinely deal with problems
that are formally NP-complete.

â Lower bounds. If one could prove for example that 
then one would immediately have lower bounds on all NP-
complete problems. But absent such a result most of the
general lower bounds known so far are based on fairly
straightforward information content arguments. One cannot
for example sort  objects in less than about  steps since one
must at least look at each object, and one cannot multiply two

-digit numbers in less than about  steps since one must at
least look at each digit. (As it happens the fastest known
algorithms for these problems require very close to  steps.)
And if the output from a computation can be of size  then
this will normally take at least  steps to generate. Subtleties
in defining how big the input to a computation really is can
lead to at least apparently exponential lower bounds. An
example is testing whether one can match all possible
sequences with a regular expression that involves -fold
repetitions. It is fairly clear that this cannot be done in less
than about  steps. But this seems exponentially large if  is
specified by its digit sequence in the original input regular

expression. Similar issues arise in the problem of determining
truth or falsity in Presburger arithmetic (see page 1152). 

Diagonalization arguments analogous to those on pages 1128
and 1162 show that in principle there must exist functions
that can be evaluated only by computations that exceed any
given bound. But actually finding examples of such functions
that can readily be described as having some useful purpose
has in the past seemed essentially impossible.

If one sufficiently restricts the form of the underlying system
then it sometimes becomes possible to establish meaningful
lower bounds. For example, with deterministic finite
automata (see page 957), there are sequences that can be
recognized, but only by having exponentially many states.
And with DNF Boolean expressions (see page 1096) functions
like  are known to require exponentially many terms,
even—as discovered in the 1980s—if any limited number of
levels are allowed (see page 1096).

â Algorithmic complexity theory. Ordinary computational
complexity theory asks about the resources needed to run
programs that perform a given computation. But algorithmic
complexity theory (compare page 1067) asks instead about
how large the programs themselves need to be. The results of
this book indicate however that even programs that are very
small—and thus have low algorithmic complexity—can
nevertheless perform all sorts of complex computations.

â Turing machines. The Turing machines used here in effect
have tapes that extend only to the left, and have no explicit
halt states. (They thus differ from the Turing machines which
Marvin Minsky and Daniel Bobrow studied in 1961 in the

,  case and concluded all had simple behavior.) One
can think of each Turing machine as computing a function

 of the number  given as its input. The function is total
(i.e. defined for all ) if the Turing machine always halts;
otherwise it is partial (and undefined for at least some ).
Turing machines can be numbered according to the scheme
on page 888. The number of steps before a machine with
given rule halts can be computed from (see page 888)

Of the 4096 Turing machines with , , 748 never halt,
3348 sometimes halt and 1683 always halt. (The most rarely
halting are ones like machine 3112 that halt only when

.) The number of distinct functions  that can be
computed by such machines is 351, of which 149 are total. 17
machines compute ; none compute ; 17 compute 
and do not halt when —an example being 2575. Most
machines compute functions that involve digit manipulations

__

GroebnerBasis

P % NP

n n

n n

n
2n

2n

s

s s

Xor

s = 2 k = 2

f [x] x
x

x

Module[{s = 1, a, i = 1, d}, a[_] = 0; MapIndexed[a[#2011] =
#1 &, Reverse[IntegerDigits[x, 2]]]; Do[{s, a[ i], d} =

{s, a[ i]} /. rule; i -= d; If[ i 2 0, Return[t]], {t, tmax}]]

s = 2 k = 2

x = 4 j - 1 f [x]

x + 1 x + 2 x - 1
x = 0
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without traditional interpretations as mathematical functions. It
is quite common to find machines that compute almost the
same function: 1507 and 1511 disagree (where 1507 halts) only
for . If  is the number of steps to compute  then
the number of distinct pairs  is 492, or 230 for total

. In 164  does not increase with the number of digits  in
, in 295 it increases linearly, in 27 quadratically, and in 6

exponentially. For total  the corresponding numbers are 84,
136, 7, 3; the 3 machines with exponential growth are 378
(example (f) on page 761), 1953 and 2289; all compute trivial
functions. Machine 1447 (example (e)) computes the function
which takes the digit sequence of  and replaces its first

 0’s by 1’s.

Among the 2,985,984 Turing machines with , , at
least 2,550,972 sometimes halt, and about 1,271,304 always
do. The number of distinct functions that can be computed is
about 36,392 (or 75,726 for  pairs). 8934 machines
compute  (by 25 different methods, including ones like
machine 164850 that take exponential steps), 14 compute

, and none compute . Those machines that take
times that grow precisely like  all tend to compute very
straightforward functions which can be computed much
faster by other machines. 

Among the 2,985,984 Turing machines with , , at
least 2,760,721 sometimes halt, and about 974,595 always halt.
The number of distinct functions that can be computed is
about 315,959 (or 457,508 for  pairs). (The fact that
there are far fewer distinct functions in the ,  case is a
consequence of equivalences between states but not colors.) 

Among the  Turing machines with ,  about 80%
at least sometimes halt, and about 16% always do. Still none
compute . And no Turing machine of any size can
directly compute a function like ,  or  that
involves manipulating all digits in . 

â Functions. The plots below show the values of the functions
 for  from 0 to 1023 computed by the Turing machines on

pages 761 and 763. Many of the plots use logarithmic scales.
Rarely are the values close to their absolute maximum . 

â Machine 1507. This machine shows in some ways the most
complicated behavior of any ,  Turing machine. As
suggested by picture (k) it fails to halt if and only if its
configuration at some step matches  (in
the alternative form of page 888). For any input  one can test
whether the machine will ever halt using

This test takes at most  recursive steps, even though the
original machine can take of order  steps to halt. Among

,  machines there are 314 machines that do the same
computation as 1507, but none any faster.

â Page 763 · Properties. The maximum numbers of steps
increase with input size according to:

(a) 

(b) (does not halt for )

(c) 

(d) 

(h) (see note below)

(i) (does not halt for various )

(j) (does not halt for various )

(k) (does not halt for )

(l) 

â Longest halting times. The pictures below show the largest
numbers of steps  that it takes any machine of a
particular type to halt when given successive inputs . For

,  the largest results for all inputs of sizes 0 to 4 are
, all obtained with machine 1447. For 

the largest results are , achieved for  with
machines 378 and 1351. For ,  the largest results
for successive sizes are  (often
achieved by machine 600720; see below) and for , 

 (often achieved by machine 840971).
Note the similarity to the busy beaver problem discussed on
page 889.

x > 35 t[x] f [x]
{f [x], t[x]}

f [x] t[x] n
x

f [x]

x
3 + IntegerExponent[x + 1, 2]

s = 3 k = 2

{f [x], t[x]}
x + 1

x + 2 x + 3
2n

s = 2 k = 3

{f [x], t[x]}
s = 3 k = 2

232 s = 4 k = 2

x + 3
x2 2 x Mod[x, 2]
x

f [x] x

t[x]

(b), (c), (d) ( f ), (g), (h) (k)

(a) (e) ( i), ( j)

(d) (h) ( l)

(c) (g) (k)

(b) ( f ) ( j)

(a) (e) ( i)

s = 2 k = 2

{( 0) ..., {1, 1}, 1, ___}
x

u[{Reverse[IntegerDigits[x, 2]], 0}]

u[ list_] := v[Split[Flatten[ list]]]

v[{a_, b_ : {}, c_ : {}, d_ : {}, e_ : {}, f_ : {}, g___}] :=
Which[a 2 {1} || First[a] 2 0, True, c 2 {}, False,

EvenQ[Length[b]], u[{a, 1 - b, c, d, e, f , g}],
EvenQ[Length[c]], u[{a, 1 - b, c, 1, Rest[d], e, f , g, 0}],
e 2 {} || Length[d] > Length[b] + Length[a] - 2,
True, EvenQ[Length[e]], u[{a, b, c, d, f , g}],
True, u[{a, 1 - b, c, 1 - d, e, 1, Rest[f], g, 0}]]

n/3
n2

s = 3 k = 2

14 2^Floor[n/2] - 11+ 2 Mod[n, 2]

x = 1

2n - 1

(7 (1+Mod[n, 2]) 4^Floor[n/2] + 2 Mod[n, 2] - 7)/3

x > 53

x > 39

x = 1

5 (2n-2 - 1)

t[x]
x

s = 2 k = 2
{7, 17, 31, 49, 71} n > 4
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s = 3 k = 2
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â Growth rates. Some Turing machine can always be found that
has halting times that grow at any specified rate. (See page 103
for a symbolic system with halting times that grow like

.) As discussed on page 1162, if the growth rate
is too high then it may not be possible to prove that the
machines halt using, say, the standard axioms of arithmetic. The
maximum halting times above increase faster than the halting
times for any specific Turing machine, and are therefore
ultimately not computable by any single Turing machine.

â Machine 600720. (Case (h) of page 763.) The maximum
halting times for the first few sizes  are

These occur for inputs  and
correspond to outputs (each themselves maximal for given )

Such maxima often seem to occur when the input  has the
form  (and so has digits ). The
output  in such cases is always  where 

One then finds that  has the form
 for some ,

suggesting a connection with the number theory systems of
page 122. The corresponding halting time  is

 with

For  it then turns out that  is extremely close to
, and  to , for

some integer . 

It is very difficult in general to find traditional formulas for
 and . But if  involves no

consecutive 0’s then for example  can be obtained from 

(The corresponding expression for  is more complicated.)
A few special cases are:

How the halting times behave for large  is not clear. It is
certainly possible that they could increase like

, or , although for  a
better fit for  is just , with outputs increasing like

.

â Page 766 · NP completeness. Among the hundreds of
problems known to be NP-complete are:

äCan a non-deterministic Turing machine reach a certain 
state in a given number of steps?

äCan a multiway system generate a certain string in a given 
number of steps?

ä Is there an assignment of truth values to variables that 
makes a given Boolean expression true? (Satisfiability; 
related to minimal Boolean expressions of page 1095.)

äWill a given sequence of pair comparisons correctly sort 
any list (see page 1142)?

äWill a given pattern of origami folds yield an object that 
can be made flat?

äDoes a network have any parts that match a given 
subnetwork (see page 1038)? 

ä Is there a path shorter than some given length that visits all 
of some set of points in the plane? (Travelling salesman; 
related to the network layout problem of page 1031.)

ä Is there a solution of a certain size to an integer linear 
programming problem?

ä Is there any  such that ? (See page 
1090.)

äDoes a matrix have a permanent of given value?

ä Is there a way to satisfy tiling constraints in a finite region? 
(See page 984.)

ä Is there a string of some limited length that solves a 
correspondence problem?

ä Is there an initial condition to a cellular automaton that 
yields particular behavior after a given number of steps?

(In cases where numbers are involved, it is usually crucial
that these be represented by base 2 digit sequences, and not,
say, in unary.) Many NP-complete problems at first seem
quite unrelated. But often their equivalence becomes clear
just by straightforward identification of terms. And so for
example the equivalence of satisfiability to problems about
networks can be seen by identifying variables and clauses in
Boolean expressions respectively with connections and nodes
in networks.

One can get an idea of the threshold of NP completeness by
looking at seemingly similar problems where one is
NP-complete but the other is in P. Examples include:

Nest[2# &, 0, n]

n
{5, 159, 161, 1021, 5419, 315391,

1978213883, 1978213885, 3018415453261}

{1, 2, 5, 10, 26, 34, 106, 213, 426}

n

2^{3, 23, 24, 63, 148, 1148, 91148, 91149, 3560523} - 1

x
(20 4s - 2)/3 {1, 1, 0, 1, 0, ?, 1, 0}

f [x] 2u - 1
u = Nest[( 13 + ( 6 # + 8) (5/2)^

IntegerExponent[6 # + 8, 2]) /6 &, 1, s + 1]

6 u + 8
Nest[If[EvenQ[#], 5 # /2, # + 21] &, 14, m] m

t[x]
Last[Nest[h, {8, 4 s + 24}, s]] - 1

h[{i_, j_}] := With[{e = IntegerExponent[3 i + 4, 2]}, {13/6 +
( i + 4/3) (5/2)e+1, ( ( 154+ 75 ( i + 4/3) (5/2)e)2 -

16321 - 7860 i - 900 i2 + 3360 e)/3780 + j}]

s > 3 f [x]
3560523 (5/2)r t[x] 18865098979373 (5/2)2 r

r

f [x] t[x] IntegerDigits[x, 2]
f [x]

2^ ( b[Join[{1, 1}, #], Length[#]] &)[IntegerDigits[x, 2]] - 1

a[{l_, _}, r_] := ( {l + ( 5 r - 3 #) /2, #} &)[Mod[r, 2]]

a[{l_, 0}, 0] := {l + 1, 0}

a[{l_, 1}, 0] :=
( {( 13 +# ( 5 /2)^ IntegerExponent[#, 2]) /6, 0} &)[6 l + 2]

b[ list_, i_] := First[Fold[a, {Apply[Plus, Drop[ list, -i]], 0},
Apply[Plus, Split[Take[ list, -i], #1 2 #2 9 0 &], 1]]]

t[x]

f [4 s] = 4 s + 3

f [4 s + 1] = 2 f [2 s] + 1

f [2s - 1] = 2(10 s+5+3 (-1)s)/4 - 1

n

NestList[#2 &, 2, n] 22n

x = ( 20 4s - 2)/3
n ¦ 200 22.6 n

221.3 n

x < a Mod[x2, b] 2 c
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äFinding a Hamiltonian circuit that visits once every 
connection in a given network is NP-complete, but finding 
an Euler circuit that visits once every node is in P.

äFinding the longest path between two nodes in a network 
is NP-complete, but finding the shortest path is in P.

äDetermining satisfiability for a Boolean expression with 3 
variables in each clause is NP-complete, but for one with 2 
variables is in P. (The latter is like a network with only 2 
connections at each node.)

ä Solving quadratic Diophantine equations  is 
NP-complete, but solving linear ones  is in P.

äFinding a minimum energy configuration for a 2D Ising 
spin glass in a magnetic field is NP-complete, but is in P if 
there is no magnetic field.

äFinding the permanent of a matrix is NP-complete, but 
finding its determinant is in P.

It is not known whether problems such as integer factoring or
equivalence of networks under relabelling of nodes (graph
isomorphism) are NP-complete. It is known that in principle
there exist NP problems that are not in P, yet are not
NP-complete. 

â Natural systems. Finding minimum energy configurations
is formally NP-complete in standard models of natural
systems such as folding protein and DNA molecules (see
page 1003), collections of charges on a sphere (compare page
987), and finite regions of spin glasses (see page 944). As
discussed on page 351, however, it seems likely that in nature
true minima are very rare, and that instead what is usually
seen are just the results of actual dynamical processes of
evolution.

In quantum field theory and to a lesser extent quantum
mechanics and celestial mechanics, approximation schemes
based on perturbation series seem to require computations
that grow very rapidly with order. But exactly what this
implies about the underlying physical processes is not
clear.

â P versus NP questions. Most programs that are explicitly
constructed to solve specific problems tend at some level to
have rather simple behavior—often just repetitive or nested,
so long as appropriate number representations are used. And
it is this that makes it realistic to estimate asymptotic growth
rates using traditional mathematics, and to determine
whether the programs operate in polynomial time. But as the
pictures on page 761 suggest, arbitrary computational
systems—even Turing machines with very simple rules—can
exhibit much more complicated behavior with no clear
asymptotic growth rate. And indeed the question of whether

the halting times for a system grow only like a power of input
size is in general undecidable. And if one tries to prove a
result about halting times using, say, standard axioms of
arithmetic or set theory, one may find that the result is
independent of those axioms. So this makes it far from clear
that the general  question has a definite answer within
standard axiom systems of mathematics. If one day someone
were to find a provably polynomial time algorithm that
solves an NP-complete problem then this would establish
that . But it could well be that the fastest programs for
NP-complete problems behave in ways that are too
complicated to prove much about using the standard axioms
of mathematics.

â Non-deterministic Turing machines. Generalizing rules
from page 888 by making each right-hand side a list of
possible outcomes, the list of configurations that can be
reached after  steps is given by

â Page 767 · Implementation. Given a non-deterministic
Turing machine with rules in the form above, the rules for a
cellular automaton which emulates it can be obtained from

â Page 768 · Satisfiability. Given variables , ,
 representing whether at step  a non-deterministic

Turing machine is in state , the tape square at position  has
color , and the head is at position , the following CNF
expression represents the assertion that a Turing machine
with  states and  possible colors follows the specified
rules and halts after at most  steps:

 

a x2 + b y 2 c
a x + b y 2 c

P = NP

P = NP

t

NTMEvolve[rule_, inits_, t_Integer] := Nest[
Union[Flatten[Map[NTMStep[rule, #] &, #], 1]] &, inits, t]

NTMStep[rule_List, {s_, a_, n_}] /; 1 < n < Length[a] :=
Apply[{#1, ReplacePart[a, #2, n], n+#3} &,

Replace[{s, a0n1}, rule], {1}]

NDTMToCA[tm_] := Flatten[{{_, h, _} ! h, {s, _c, _} ! e, {s,
_, _} ! s, {_, s, c[ i_]} ! s[ i], {_, s, x_} ! x, {a[_, _], _s, _} ! s,
{_, a[x_, y_], s[ i_]} ! a[x, y, i], {x_, _s, _} ! x, {_, _, s[ i_]} !
s[ i], Map[Table[With[{b = (#0Min[Length[#], z]1 &)[
{x, #} /. tm]}, If[Last[b] 2 -1, {{a[_], a[x, #, z], e} ! h, {a[
_], a[x, #, z], s} ! a[x, #, z], {a[_], a[x, #, z], _} ! a[b021],
{a[x, #, z], a[w_], _} ! a[b011, w], {_, a[w_], a[x, #, z]} !
a[w]}, {{a[_], a[x, #, z], _} ! a[b021], {a[x, #, z], a[w_],
_} ! a[w], {_, a[w_], a[x, #, z]} ! a[b011, w]}]], {x,

Max[Map[#01, 11 &, tm]]}, {z, Max[Map[Length[#021] &,
tm]]}] &, Union[Map[#01, 21 &, tm]]], {_, x_, _} ! x}]

²[t, s] °[t, x, a]
±[t, n] t

s x
a n

stot ktot
t

NDTMToCNF[rules_, {s_, a_, n_}, t_] :=
{Table[Apply[Or, Table[²[ i, j], { j , stot}]], {i, t - 1}],
Table[! ²[ i, j] || ! ²[ i, k], {i, 0, t - 1}, { j , stot}, {k, j + 1, stot}],
Table[Apply[Or, Table[±[ i, j], { j , n+ i, Max[0, n - i], -2}]],
{i, 0, t}], Table[!±[ i, j] || !±[ i, k], {i, 0, t}, { j , n+ i, Max[0,
n - i], -2}, {k, j + 2, n+ i}], Table[Apply[Or, Table[°[ i, j , k],
{k, 0, ktot - 1}]], {i, 0, t - 1}, { j , Max[1, n - i], n+ i}],

Table[! °[ i, j , k] || ! °[ i, j , m], {i, 0, t - 1}, { j , Max[1, n - i],
n+ i}, {k, 0, ktot - 1}, {m, k + 1, ktot - 1}], ²[0, s],
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â Density of difficult problems. There are arguments that in
an asymptotic sense most instances chosen at random of
problems like limited-size PCP or tiling will be difficult to
solve. In a problem like satisfiability, however, difficult
instances tend to occur only on the boundary between cases
where the density of black or white squares implies that there
is usually satisfaction or usually not satisfaction. If one looks
at simple instances of problems (say PCP with short strings)
then my experience is that many are easy to solve. But just as
some fraction of cellular automata with very simple rules
show immensely complex behavior, so similarly it seems that
some fraction of even simple instances of many NP-complete
problems also tend to be difficult to solve.

â Page 770 · Rule 30 inversion. The total numbers of
sequences for  from 1 to 15 not yielding stripes of heights 1
and 2 are respectively

The sideways evolution of rule 30 discussed on page 601
implies that if one fills cells from the left rather than the right
then some sequence of length  will always yield any
given stripe of height . 

If the evolution of rule 30 can be set up as on page 704 to
emulate any Boolean function then the problem considered
here is immediately equivalent to satisfiability. 

â Systems of limited size. In the system 
from page 255 the repetition period  can be
computed using Euclid’s algorithm in at most about

 steps. In the system  from
page 257, the repetition period 
probably cannot always be computed in any polynomial of

 steps, since otherwise  could also be
computed in about this number of steps. (But see note below.)
In a cellular automaton with  cells, the problem of finding
the repetition period is in general PSPACE-complete—as
follows from the possibility of universality in the underlying
cellular automaton. And even in a case like rule 30 I suspect
that the period cannot be found much faster than by tracing
nearly  steps of evolution. (I know of no way for example

to break the computation into parts that can be done in
parallel.) With sufficiently simple behavior, a cellular
automaton repetition period can readily be determined in
some power of  steps. But even with an additive rule
and nested behavior, the period depends on quantities like

, which probably take more like 
steps to evaluate. (But see note below.)

â Page 771 · Quantum computers. In an ordinary classical
setup one typically describes the state of something like a 2-
color cellular automaton with  cells just by giving a list of 
color values. But the standard formalism of quantum theory
(see page 1058) implies that for an analogous quantum
system—like a line of  quantum spins each either up or
down—one instead has to give a whole vector of probability
amplitudes for each of the  possible complete underlying
spin configurations. And these amplitudes  are assumed to
be complex numbers with a continuous range of possible
values, subject only to the conventional constraint of unit
total probability . The evolution of
such a quantum system can then formally be represented by
successive multiplication of the vector of amplitudes by
appropriate  unitary matrices. 

In a classical system like a cellular automaton with  cells a
probabilistic ensemble of states can similarly be described by
a vector of  probabilities —now satisfying

, and evolving by multiplication with
 matrices having a single  in each row. (If the system

is reversible—as in the quantum case—then the matrices are
invertible.) But even if one assumes that all  states in the
ensemble somehow manage to evolve in parallel, it is still
fairly clear that to do reliable computations takes essentially
as much effort as evolving single instances of the underlying
system. For even though the vector of probabilities can
formally give outcomes for  different initial conditions, any
specific individual outcome could have probability as small
as —and so would take  trials on average to detect. 

The idea of setting up quantum analogs of systems like
Turing machines and cellular automata began to be pursued
in the early 1980s by a number of people, including myself.
At first it was not clear what idealizations to make, but by the
late 1980s—especially through the work of David Deutsch—
the concept had emerged that a quantum computer should
be described in terms of a network of basic quantum gates.
The idea was to have say  quantum spins (each representing
a so-called qubit), then to do computations much like in the
reversible logic systems of page 1097 or the sorting networks
of page 1142 by applying some appropriate sequence of
elementary operations. It was found to be sufficient to do
operations on just one and two spins at a time, and in fact it

Cases[MapIndexed[°[Abs[n - First[#2]], First[#2], #1] &,
a], °[x_, _, _] /; x < t], Table[°[Abs[n - i], i, 0],
{i, Length[a] + 1, n+ t - 1}], Table[! °[ i, j , k] ||
If [EvenQ[n+ i - j], ±[ i, j], False] || °[ i + 1, j, k], {i, 0, t - 2},
{ j , Max[1, n - i], n+ i}, {k, 0, ktot - 1}], Table[Map[Function[
z, Outer[!±[ i, j] || ! ²[ i, z01, 11] || ! °[ i, j , z01, 21] || ## &,
Apply[Sequence, Map[If [ i < t - 1, {²[ i + 1, #011], ±[

i + 1, j - #031], °[ i + 1, j, #021]}, {±[ i + 1, j - #031]}] &,
z021]]]], rules], {i, 0, t - 1}, { j , n+ i, Max[1, n - i], -2}],

Apply[Or, Table[±[ i, 0], {i, n, t, 2}]]} /. List ! And

t

{1, 2, 2, 3, 3, 6, 6, 10, 16, 31, 52, 99, 165, 260}

{2, 5, 8, 14, 23, 40, 66, 111, 182,
316, 540, 921, 1530, 2543, 4122}

t + 1
t

x ! Mod[x +m, n]
n/GCD[m, n]

Log[GoldenRatio, n] x ! Mod[2 x, n]
MultiplicativeOrder[2, n]

Log[n] FactorInteger[n]

n

2n

Log[n]

MultiplicativeOrder[2, n] n

n n

n

2n

ai

Sum[Abs[ai]
2, {i, 2n}] 2 1

2n 62n

n

2n pi

Sum[pi, {i, 2n}] 2 1
2n 62n 1

2n

2n

2-n 2n

n



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

1148

was shown that any  unitary matrix can be
approximated arbitrarily closely by a suitable sequence of for
example underlying 2-spin 
operations (assuming values 0 and 1), together with 1-spin
arbitrary phase change operations. Such phase changes can
be produced by repeatedly applying a single irrational
rotation, and using the fact that  will eventually
for some  come close to any given phase (see page 903).
From the involvement of continuous numbers, one might at
first imagine that it should be possible to do fundamentally
more computations than can be done say in ordinary discrete
cellular automata. But all the evidence is that—just as
discussed on page 1128—this will not in fact be possible if
one makes the assumption that at some level discrete must be
used to set up the initial values of probability amplitudes.

From the fact that the basic evolution of an -spin quantum
system in effect involves superpositions of  spin
configurations one might however still imagine that in finite
computations exponential speedups should be possible. And
as a potential example, consider setting up a quantum
computer that evaluates a given Boolean function—with its
initial configurations of spins encoding possible inputs to the
function, and the final configuration of a particular spin
representing the output from the function. One might
imagine that with such a computer it would be easy to solve
the NP-complete problem of satisfiability from page 768: one
would just start off with a superposition in which all 
possible inputs have equal amplitude, then look at whether
the spin representing the output from the function has any
amplitude to be in a particular configuration. But in an actual
physical system one does not expect to be able to find values
of amplitudes directly. For according to the standard
formalism of quantum theory all amplitudes do is to
determine probabilities for particular outcomes of
measurements. And with the setup described, even if a
particular function is ultimately satisfiable the probability for
a single output spin to be measured say as up can be as little
as —requiring on average  trials to distinguish from ,
just as in the classical probabilistic case. 

With a more elaborate setup, however, it appears sometimes to
be possible to spread out quantum amplitudes so as to make
different outcomes correspond to much larger probability
differences. And indeed in 1994 Peter Shor found a way to do
this so as to get quantum computers at least formally to factor
integers of size  using resources only polynomial in . As
mentioned in the note above, it becomes straightforward to
factor  if one can get the values of .
But these correspond to periodicities in the list

. Given  spins one can imagine using

their  possible configurations to represent each element of
. But now if one sets up a superposition of all these

configurations, one can compute , then
essentially use  to find periodicities—all with a
polynomial number of quantum gates. And depending on

 the resulting amplitudes show fairly large
differences which can then be detected in the probabilities for
different outcomes of measurements. 

In the mid-1990s it was thought that quantum computers
might perhaps give polynomial solutions to all NP problems.
But in fact only a very few other examples were found—all
ultimately based on very much the same ideas as factoring.
And indeed it now seems decreasingly likely that quantum
computers will give polynomial solutions to NP-complete
problems. (Factoring is not known to be NP-complete.) 

And even in the case of factoring there are questions about
the idealizations used. It does appear that only modest
precision is needed for the initial amplitudes. And it seems
that perturbations from the environment can be overcome
using versions of error-correcting codes. But it remains
unclear just what might be needed actually to perform for
example the final measurements required.

Simple physical versions of individual quantum gates have
been built using particles localized for example in ion traps.
But even modestly larger setups have been possible only in
NMR and optical systems—which show formal similarities
to quantum systems (and for example exhibit interference)
but presumably do not have any unique quantum advantage.
(There are other approaches to quantum computation that
involve for example topology of 4D quantum fields. But it is
difficult to see just what idealizations are realistic for these.)

â Circuit complexity. Any function with a fixed size of input
can be computed by a circuit of the kind shown on page 619.
How the minimal size or depth of circuit needed grows with
input size then gives a measure of the difficulty of the
computation, with circuit depth growing roughly like number
of steps for a Turing machine. Note that much as on page 662
one can construct universal circuits that can be arranged by
appropriate choice of parts of their input to compute any
function of a given input size. (Compare page 703.)

â Page 771 · Finding outcomes. If one sets up a function to
compute the outcome after  steps of evolution from some
fixed initial condition—say a single black cell in a cellular
automaton—then the input to this function need contain only

 digits. But if the evolution is computationally
irreducible then to find its outcome will involve explicitly
following each of its  steps—thereby effectively finding
results for each of the  possible arrangements of

2n 62n

{x, y} ! {x, Mod[x + y, 2]}

Mod[h s, 2p]

s

n
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digits corresponding to numbers less than . Note that the
computation that is involved is not necessarily in either NP
or PSPACE.

â P completeness. If one allows arbitrary initial conditions in a
cellular automaton with nearest-neighbor rules, then to
compute the color of a particular cell after  steps in general
requires specifying as input the colors of all  initial cells
up to distance  away (see page 960). And if one always does
computations using systems that have only nearest-neighbor
rules then just combining  bits of information can take
up to  steps—even if the bits are combined in a way that is
not computationally irreducible. So to avoid this one can
consider systems that are more like circuits in which any
element can get data from any other. And given  elements
operating in parallel one can consider the class NC studied
by Nicholas Pippenger in 1978 of computations that can be
done in a number of steps that is at most some power of

. Among such computations are , , ,
 and  for integers, as well as determining

outcomes in additive cellular automata (see page 609). But I
strongly suspect that computational irreducibility prevents
outcomes in systems like rule 30 and rule 110 from being
found by computations that are in NC—implying in effect
that allowing arbitrary connections does not help much in
computing the evolution of such systems. There is no way yet
known to establish this for certain, but just as with NP and P
one can consider showing that a computation is P-complete
with respect to transformations in NC. It turns out that
finding the outcome of evolution in any standard universal
Turing machine or cellular automaton is P-complete in this
sense, since the process of emulating any such system by any
other one is in NC. Results from the mid-1970s established
that finding the output from an arbitrary circuit with  or

 gates is P-complete, and this has made it possible to show
that finding the outcome of evolution in various systems not
yet known to be universal is P-complete. A notable example
due to Cristopher Moore from 1996 is the 3D majority cellular
automaton with rule  (see
page 927); another example is the Ising model cellular
automaton from page 982.

Implications for Mathematics and Its Foundations

â History. Babylonian and Egyptian mathematics emphasized
arithmetic and the idea of explicit calculation. But Greek
mathematics tended to focus on geometry, and increasingly
relied on getting results by formal deduction. For being
unable to draw geometrical figures with infinite accuracy this
seemed the only way to establish anything with certainty.

And when Euclid around 330 BC did his work on geometry
he started from 10 axioms (5 “common notions” and 5
“postulates”) and derived 465 theorems. Euclid’s work was
widely studied for more than two millennia and viewed as a
quintessential example of deductive thinking. But in
arithmetic and algebra—which in effect dealt mostly with
discrete entities—a largely calculational approach was still
used. In the 1600s and 1700s, however, the development of
calculus and notions of continuous functions made use of
more deductive methods. Often the basic concepts were
somewhat vague, and by the mid-1800s, as mathematics
became more elaborate and abstract, it became clear that to
get systematically correct results a more rigid formal
structure would be needed. 

The introduction of non-Euclidean geometry in the 1820s,
followed by various forms of abstract algebra in the mid-
1800s, and transfinite numbers in the 1880s, indicated that
mathematics could be done with abstract structures that had
no obvious connection to everyday intuition. Set theory and
predicate logic were proposed as ultimate foundations for all
of mathematics (see note below). But at the very end of the
1800s paradoxes were discovered in these approaches. And
there followed an increasing effort—notably by David
Hilbert—to show that everything in mathematics could
consistently be derived just by starting from axioms and then
using formal processes of proof.

Gödel’s Theorem showed in 1931 that at some level this
approach was flawed. But by the 1930s pure mathematics
had already firmly defined itself to be based on the notion of
doing proofs—and indeed for the most part continues to do
so even today (see page 859). In recent years, however, the
increasing use of explicit computation has made proof less
important, at least in most applications of mathematics. 

â Models of mathematics. Gottfried Leibniz’s notion in the
late 1600s of a “universal language” in which arguments in
mathematics and elsewhere could be checked with logic can
be viewed as an early idealization of mathematics. Starting in
1879 with his “formula language” (Begriffsschrift) Gottlob
Frege followed a somewhat similar direction, suggesting that
arithmetic and from there all of mathematics could be built
up from predicate logic, and later an analog of set theory. In
the 1890s Giuseppe Peano in his Formulario project organized
a large body of mathematics into an axiomatic framework
involving logic and set theory. Then starting in 1910 Alfred
Whitehead and Bertrand Russell in their Principia
Mathematica attempted to derive many areas of mathematics
from foundations of logic and set theory. And although its
methods were flawed and its notation obscure this work did

t
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much to establish the idea that mathematics could be built up
in a uniform way.

Starting in the late 1800s, particularly with the work of
Gottlob Frege and David Hilbert, there was increasing
interest in so-called metamathematics, and in trying to treat
mathematical proofs like other objects in mathematics. This
led in the 1920s and 1930s to the introduction of various
idealizations for mathematics—notably recursive functions,
combinators, lambda calculus, string rewriting systems and
Turing machines. All of these were ultimately shown to be
universal (see page 784) and thus in a sense capable of
reproducing any mathematical system. String rewriting
systems—as studied particularly by Emil Post—are close to
the multiway systems that I use in this section (see page 938).

Largely independent of mathematical logic the success of
abstract algebra led by the end of the 1800s to the notion that
any mathematical system could be represented in algebraic
terms—much as in the operator systems of this section.
Alfred Whitehead to some extent captured this in his 1898
Universal Algebra, but it was not until the 1930s that the
theory of structures emphasized commonality in the axioms
for different fields of mathematics—an idea taken further in
the 1940s by category theory (and later by topos theory). And
following the work of the Bourbaki group beginning at the
end of the 1930s it has become almost universally accepted
that structures together with set theory are the appropriate
framework for all of pure mathematics. 

But in fact the Mathematica language released in 1988 is now
finally a serious alternative. For while it emphasizes
calculation rather than proof its symbolic expressions and
transformation rules provide an extremely general way to
represent mathematical objects and operations—as for
example the notes to this book illustrate.

(See also page 1176.)

â Page 773 · Axiom systems. In the main text I argue that there
are many consequences of axiom systems that are quite
independent of their details. But in giving the specific axiom
systems that have been used in traditional mathematics one
needs to take account of all sorts of fairly complicated details.

As indicated by the tabs in the picture, there is a hierarchy to
axiom systems in traditional mathematics, with those for
basic and predicate logic, for example, being included in all
others. (Contrary to usual belief my results strongly suggest
however that the presence of logic is not in fact essential to
many overall properties of axiom systems.)

As discussed in the main text (see also page 1155) one can
think of axioms as giving rules for transforming symbolic

expressions—much like rules in Mathematica. And at a
fundamental level all that matters for such transformations
is the structure of expressions. So notation like  and

, while convenient for interpretation, could equally
well be replaced by more generic forms such as  or

 without affecting any of the actual operation of the
axioms.

My presentation of axiom systems generally follows the
conventions of standard mathematical literature. But by
making various details explicit I have been able to put all
axiom systems in forms that can be used almost directly in
Mathematica. Several steps are still necessary though to get
the actual rules corresponding to each axiom system. First,
the definitions at the top of page 774 must be used to expand
out various pieces of notation. In basic logic I use the notation

 to stand for the pair of rules  and . (Note
that  has the precedence of  not .) In predicate logic
the tab at the top specifies how to construct rules (which in
this case are often called rules of inference, as discussed on
page 1155).  is the modus ponens or detachment
rule (see page 1155).  is the generalization rule.

 is applied to the axioms given to get a list of
rules. Note that while  in basic logic is used in the
underlying construction of rules,  in predicate logic is just
an abstract operator with properties defined by the last two
axioms given.

As is typical in mathematical logic, there are some subtleties
associated with variables. In the axioms of basic logic literal
variables like  must be replaced with patterns like  that
can stand for any expression. A rule like 
can then immediately be applied to part of an expression
using . But to apply a rule like 
requires in effect choosing some new expression for  (see
page 1155). And one way to represent this process is just to
have the pattern  and then to say that any
actual rule that can be used must match this pattern. The
rules given in the tab for predicate logic work the same way.
Note, however, that in predicate logic the expressions that
appear on each side of any rule are required to be so-called
well-formed formulas (WFFs) consisting of variables (such
as ) and constants (such as  or ) inside any number of
layers of functions (such as , , or ) inside a layer of
predicates (such as  or ) inside any number of layers of
logical connectives (such as  or ) or quantifiers (such as

 or ). (This setup is reflected in the grammar of the
Mathematica language, where the operator precedences for
functions are higher than for predicates, which are in turn
higher than for quantifiers and logical connectives—thus
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yielding for example few parentheses in the presentation of
axiom systems here.) 

In basic logic any rule can be applied to any part of any
expression. But in predicate logic rules can be applied only
to whole expressions, always in effect using

. The axioms below (devised by
Matthew Szudzik as part of the development of this book)
set up basic logic in this way.

â Basic logic. The formal study of logic began in antiquity (see
page 1099), with verbal descriptions of many templates for
valid arguments—corresponding to theorems of logic—being
widely known by medieval times. Following ideas of abstract
algebra from the early 1800s, the work of George Boole
around 1847 introduced the notion of representing logic in a
purely symbolic and algebraic way. (Related notions had
been considered by Gottfried Leibniz in the 1680s.) Boole
identified  with  and  with , then noted that
theorems in logic could be stated as equations in which  is
roughly  and  is —and that such equations can
be manipulated by algebraic means. Boole’s work was
progressively clarified and simplified, notably by Ernst
Schröder, and by around 1900, explicit axiom systems for
Boolean algebra were being given. Often they included most
of the 14 highlighted theorems of page 817, but slight
simplifications led for example to the “standard version” of
page 773. (Note that the duality between  and  is no
longer explicit here.) The “Huntington version” of page 773
was given by Edward Huntington in 1933, along with

The “Robbins version” was suggested by Herbert Robbins
shortly thereafter, but only finally proved correct in 1996 by
William McCune using automated theorem proving (see
page 1157). The “Sheffer version” based on  (see page
1173) was given by Henry Sheffer in 1913. The shorter
version was devised by David Hillman as part of the
development of this book. The shortest version is discussed
on page 808. (See also page 1175.)

In the main text each axiom defines an equivalence between
expressions. The tradition in philosophy and mathematical
logic has more been to take axioms to be true statements from
which others can be deduced by the modus ponens inference
rule  (see page 1155). In 1879 Gottlob Frege

used his diagrammatic notation to set up a symbolic
representation for logic on the basis of the axioms

Charles Peirce did something similar at almost the same
time, and by 1900 this approach to so-called propositional or
sentential calculus was well established. (Alfred Whitehead
and Bertrand Russell used an axiom system based on  and

 in their original 1910 edition of Principia Mathematica.) In
1948 Jan Lukasiewicz found the single axiom version

equivalent for example to 

It turns out to be possible to convert any axiom system that
works with modus ponens (and supports the properties of )
into a so-called equational one that works with equivalences
between expressions by using 

An analog of modus ponens for  is , and
with this Jean Nicod found in 1917 the single axiom

which was highlighted in the 1925 edition of Principia
Mathematica. In 1931 Mordechaj Wajsberg found the slightly
simpler 

Such an axiom system can be converted to an equational one
using

but then involves 4 axioms.

The question of whether any particular statement in basic
logic is true or false is always formally decidable, although in
general it is NP-complete (see page 768).

â Predicate logic. Basic logic in effect concerns itself with
whole statements (or “propositions”) that are each either 
or . Predicate logic on the other hand takes into account
how such statements are built up from other constructs—like
those in mathematics. A simple statement in predicate logic
is , where  is “for all” and

 is “there exists” (defined in terms of  on page 774)—and
this particular statement can be proved  from the axioms.
In general statements in predicate logic can contain arbitrary
so-called predicates, say  or , that are each either

 or  for given  and . When predicate logic is used
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aª (b ©¨ (c ª d)) Ð aª (b © (¨ c ©¨ d)) aª (b ©¨ (c © d)) Ð aª (b © (¨ c ª ¨ d))

aª (b © c) Ð aª (b ©¨ ¨ c)

1 True 0 False
Or

Plus And Times

And Or

{(¨ ¨ a) Ð a, ( a ª ¨ ( b ª ¨ b)) Ð a,
(¨ (¨ ( a ª ¨ b) ª ¨ ( a ª ¨ c))) Ð ( a ª ¨ ( b ª c))}

Nand

{x, x ¶ y} ! y

{a ¶ ( b ¶ a), ( a ¶ ( b ¶ c)) ¶ ( ( a ¶ b) ¶ ( a ¶ c)),
( a ¶ ( b ¶ c)) ¶ ( b ¶ ( a ¶ c)),
( a ¶ b) ¶ ( (¨ b) ¶ (¨ a)), (¨ ¨ a) ¶ a, a ¶ (¨ ¨ a)}

Or
Not

{( ( a ¶ ( b ¶ a)) ¶ ( ( ( (¨ c) ¶ ( d ¶ (¨ e))) ¶ ( ( c ¶ ( d ¶ f )) ¶
( ( e ¶ d) ¶ ( e ¶ f )))) ¶ g)) ¶ ( h ¶ g)}

{( (¨ a) ¶ ( b ¶ (¨ c))) ¶
( ( a ¶ ( b ¶ d)) ¶ ( ( c ¶ b) ¶ ( c ¶ d))), a ¶ ( b ¶ a)}

¶

Module[{a}, Join[Thread[axioms 2 a ¶ a],
{( ( a ¶ a) ¶ b) 2 b, ( ( a ¶ b) ¶ b) 2 ( b ¶ a) ¶ a}]]

Nand {x, x Ñ ( y Ñ z)} ! z

{( a Ñ ( b Ñ c)) Ñ ( ( e Ñ ( e Ñ e)) Ñ ( ( d Ñ b) Ñ ( ( a Ñ d) Ñ ( a Ñ d))))}

{( a Ñ ( b Ñ c)) Ñ ( ( ( d Ñ c) Ñ ( ( a Ñ d) Ñ ( a Ñ d))) Ñ ( a Ñ ( a Ñ b)))}

Module[{a}, With[{t = a Ñ ( a Ñ a), i = #1 Ñ (#2 Ñ #2) &},
Join[Thread[axioms 2 t], {i[t Ñ ( b Ñ c), c] 2 t,

i[t, b] 2 b, i[ i[a, b], b] 2 i[ i[b, a], a]}]]]

True
False

´x (´y x 2 y) ª ´x (µy (¨ x 2 y)) ´

µ ´

True

p[x] r[x, y]
True False x y
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as part of other axiom systems, there are typically axioms
which define properties of the predicates. (In real algebra, for
example, the predicate  satisfies .) But in pure
predicate logic the predicates are not assumed to have any
particular properties.

Notions of quantifiers like  and  were already discussed
in antiquity, particularly in the context of syllogisms. The first
explicit formulation of predicate logic was given by Gottlob
Frege in 1879, and by the 1920s predicate logic had become
widely accepted as a basis for mathematical axiom systems.
(Predicate logic has sometimes also been used as a model for
general reasoning—and particularly in the 1980s was the
basis for several initiatives in artificial intelligence. But for
the most part it has turned out to be too rigid to capture
directly typical everyday reasoning processes.)

Monadic pure predicate logic—in which predicates always
take only a single argument—reduces in effect to basic logic
and is not universal. But as soon as there is even one arbitrary
predicate with two arguments the system becomes universal
(see page 784). And indeed this is the case even if one
considers only statements with quantifiers ´ µ ´. (The
system is also universal with one two-argument function or
two one-argument functions.)

In basic logic any statement that is true for all possible
assignments of truth values to variables can always be
proved from the axioms of basic logic. In 1930 Kurt Gödel
showed a similar result for pure predicate logic: that any
statement that is true for all possible explicit values of
variables and all possible forms of predicates can always be
proved from the axioms of predicate logic. (This is often
called Gödel’s Completeness Theorem, but is not related to
completeness of the kind I discuss on page 782 and elsewhere
in this section.)

In discussions of predicate logic there is often much said
about scoping of variables. A typical issue is that in, say,

,  and  are dummy variables whose
specific names are not supposed to be significant; yet the
names become significant if, say,  is replaced by . In
Mathematica most such issues are handled automatically. The
axioms for predicate logic given here follow the work of
Alfred Tarski in 1962 and use properties of  to minimize
issues of variable scoping.

(See also higher-order logics on page 1167.)

â Arithmetic. Most of the Peano axioms are straightforward
statements of elementary facts about arithmetic. The last
axiom is a schema (see page 1156) that states the principle of
mathematical induction: that if a statement is valid for ,
and its validity for  implies its validity for , then

it follows that the statement must be valid for all . Induction
was to some extent already used in antiquity—for example in
Euclid’s proof that there are always larger primes. It began to
be used in more generality in the 1600s. In effect it expresses
the idea that the integers form a single ordered sequence, and
it provides a basis for the notion of recursion.

In the early history of mathematics arithmetic with integers
did not seem to need formal axioms, for facts like

 appeared to be self-evident. But in 1861
Hermann Grassmann showed that such facts could be
deduced from more basic ones about successors and
induction. And in 1891 Giuseppe Peano gave essentially the
Peano axioms listed here (they were also given slightly less
formally by Richard Dedekind in 1888)—which have been
used unchanged ever since. (Note that in second-order
logic—and effectively set theory—  and  can be defined
just in terms of ; see page 1160. In addition, as noted by Julia
Robinson in 1948 it is possible to remove explicit mention of

 even in the ordinary Peano axioms, using the fact that if
 then . Axioms 3,

4 and 6 can then be replaced by ,
 and . See

also page 1163.) 

The proof of Gödel’s Theorem in 1931 (see page 1158)
demonstrated the universality of the Peano axioms. It was
shown by Raphael Robinson in 1950 that universality is also
achieved by the Robinson axioms for reduced arithmetic
(usually called Q) in which induction—which cannot be
reduced to a finite set of ordinary axioms (see page 1156)—is
replaced by a single weaker axiom. Statements like

 can no longer be proved in the resulting system
(see pages 800 and 1169). 

If any single one of the axioms given for reduced arithmetic is
removed, universality is lost. It is not clear however exactly
what minimal set of axioms is needed, for example, for the
existence of solutions to integer equations to be undecidable
(see page 787). (It is known, however, that essentially nothing
is lost even from full Peano arithmetic if for example one
drops axioms of logic such as .)

A form of arithmetic in which one allows induction but
removes multiplication was considered by Mojzesz
Presburger in 1929. It is not universal, although it makes
statements of size  potentially take as many as about 
steps to prove (though see page 1143).

The Peano axioms for arithmetic seem sufficient to support
most of the whole field of number theory. But if as I believe
there are fairly simple results that are unprovable from these
axioms it may in fact be necessary to extend the Peano
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axioms to make certain kinds of progress even in practical
number theory. (See also page 1166.)

â Algebraic axioms. Axioms like  can be
used in at least three ways. First, as equations which can be
manipulated—like the axioms of basic logic—to establish
whether expressions are equal. Second, as on page 773, as
statements to be added to the axioms of predicate logic to
yield results that hold for every possible system described by
the axioms (say every possible semigroup). And third, as
definitions of sets whose properties can be studied—and
compared—using set theory. High-school algebra typically
treats axioms as equations. More advanced algebra often uses
predicate logic, but implicitly uses set theory whenever it
addresses for example mappings between objects. Note that
as discussed on page 1159 how one uses algebraic axioms can
affect issues of universality and undecidability. (See also page
1169.) 

â Groups. Groups have been used implicitly in the context of
geometrical symmetries since antiquity. In the late 1700s
specific groups began to be studied explicitly, mainly in the
context of permutations of roots of polynomials, and notably
by Evariste Galois in 1831. General groups were defined by
Arthur Cayley around 1850 and their standard axioms
became established by the end of the 1800s. The alternate
axioms given in the main text are the shortest known. The
first for ordinary groups was found by Graham Higman and
Bernhard Neumann in 1952; the second by William McCune
(using automated theorem proving) in 1992. For
commutative (Abelian) groups the first alternate axioms
were found by Alfred Tarski in 1938; the second by William
McCune (using automated theorem proving) in 1992. In this
case it is known that no shorter axioms are possible. (See
page 806.) Note that in terms of the  operator ,

, and . Ordinary group
theory is universal; commutative group theory is not (see
page 1159).

â Semigroups. Despite their simpler definition, semigroups
have been much less studied than groups, and there have for
example been about 7 times fewer mathematical publications
about them (and another 7 times fewer about monoids).
Semigroups were defined by Jean-Armand de Séguier in
1904, and beginning in the late 1920s a variety of algebraic
results about them were found. Since the 1940s they have
showed up sporadically in various areas of mathematics—
notably in connection with evolution processes, finite
automata and category theory.

â Fields. With  being  and  being  rational, real and
complex numbers are all examples of fields. Ordinary

integers lack inverses under , but reduction modulo a
prime  gives a finite field. Since the 1700s many examples of
fields have arisen, particularly in algebra and number theory.
The general axioms for fields as given here emerged around
the end of the 1800s. Shorter versions can undoubtedly be
found. (See page 1168.) 

â Rings. The axioms given are for commutative rings. With 
being  and  being  the integers are an example. Several
examples of rings arose in the 1800s in number theory and
algebraic geometry. The study of rings as general algebraic
structures became popular in the 1920s. (Note that from the
axioms of ring theory one can only expect to prove results
that hold for any ring; to get most results in number theory,
for example, one needs to use the axioms of arithmetic, which
are intended to be specific to ordinary integers.) For non-
commutative rings the last axiom given is replaced by

. Non-commutative rings already
studied in the 1800s include quaternions and square
matrices. 

â Other algebraic systems. Of algebraic systems studied in
traditional mathematics the vast majority are special cases of
either groups, rings or fields. Probably the most common
other examples are those based on lattice theory. Standard
axioms for lattice theory are (  is usually called meet, and 
join)

Boolean algebra (basic logic) is a special case of lattice theory,
as is the theory of partially ordered sets (of which the causal
networks in Chapter 9 are an example). The shortest single
axiom currently known for lattice theory has  79
and involves 7 variables. But I suspect that in fact a 
less than about 20 is enough.

(See also page 1171.) 

â Real algebra. A notion of real numbers as measures of space
or quantity has existed since antiquity. The development of
basic algebra gave a formal way to represent operations on
such numbers. In the late 1800s there were efforts—notably
by Richard Dedekind and Georg Cantor—to set up a general
theory of real numbers relying only on basic concepts about
integers—and these efforts led to set theory. For purely
algebraic questions of the kind that might arise in high-
school algebra, however, one can use just the axioms given
here. These add to field theory several axioms for ordering,
as well as the axiom at the bottom expressing a basic form of
continuity (specifically that any polynomial which changes
sign must have a zero). With these axioms one can prove
results about real polynomials, but not about arbitrary
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mathematical functions, or integers. The axioms were shown
to be complete by Alfred Tarski in the 1930s. The proof was
based on setting up a procedure that could in principle
resolve any set of real polynomial equations or inequalities.
This is now in practice done by  and other functions
in Mathematica using methods of cylindrical algebraic
decomposition invented in the 1970s—which work roughly
by finding a succession of points of change using .
(Note that with  variables the number of steps needed can
increase like .) (See the note about real analysis below.)

â Geometry. Euclid gave axioms for basic geometry around
300 BC which were used with fairly little modification for
more than 2000 years. In the 1830s, however, it was realized
that the system would remain consistent even if the so-called
parallel postulate was modified to allow space to be curved.
Noting the vagueness of Euclid’s original axioms there was
then increasing interest in setting up more formal axiom
systems for geometry. The best-known system was given by
David Hilbert in 1899—and by describing geometrical
figures using algebraic equations he showed that it was as
consistent as the underlying axioms for numbers. 

The axioms given here are illustrated below. They were
developed by Alfred Tarski and others in the 1940s and
1950s. (Unlike Hilbert’s axioms they require only first-order
predicate logic.) The first six give basic properties of
betweenness of points and congruence of line segments. The
second- and third-to-last axioms specify that space has two
dimensions; they can be modified for other dimensions. The
last axiom is a schema that asserts the continuity of space.
(The system is not finitely axiomatizable.)

The axioms given can prove most of the results in an
elementary geometry textbook—indeed all results that are
about geometrical figures such as triangles and circles
specified by a fixed finite number of points, but which do not
involve concepts like area. The axioms are complete and
consistent—and thus not universal. They can however be
made universal if axioms from set theory are added. 

â Category theory. Developed in the 1940s as a way to
organize constructs in algebraic topology, category theory
works at the level of whole mathematical objects rather than
their elements. In the basic axioms given here the variables
represent morphisms that correspond to mappings between
objects. (Often morphisms are shown as arrows in diagrams,

and objects as nodes.) The axioms specify that when
morphisms are composed their domains and codomains
must have appropriately matching types. Some of the
methodology of category theory has become widely used in
mathematics, but until recently the basic theory itself was not
extensively studied—and its axiomatic status remains
unclear. Category theory can be viewed as a formalization of
operations on abstract data types in computer languages—
though unlike in Mathematica it normally requires that
functions take a single bundle of data as an argument. 

â Set theory. Basic notions of finite set theory have been used
since antiquity—though became widespread only after their
introduction into elementary mathematics education in the
1960s. Detailed ideas about infinite sets emerged in the
1880s through the work of Georg Cantor, who found it
useful in studying trigonometric series to define sets of
transfinite numbers of points. Several paradoxes associated
with infinite sets were quickly noted—a 1901 example due
to Bertrand Russell being to ask whether a set containing all
sets that do not contain themselves in fact contains itself. To
avoid such paradoxes Ernst Zermelo in 1908 suggested
formalizing set theory using the first seven axioms given in
the main text. (The axiom of infinity, for example, was
included to establish that an infinite set such as the integers
exists.) In 1922 Abraham Fraenkel noted that Zermelo’s
axioms did not support certain operations that seemed
appropriate in a theory of sets, leading to the addition of
Thoralf Skolem’s axiom of replacement, and to what is
usually called Zermelo-Fraenkel set theory (ZF). (The
replacement axiom formally makes the subset axiom
redundant.) The axiom of choice was first explicitly
formulated by Zermelo in 1904 to capture the idea that in a
set all elements can be ordered, so that the process of
transfinite induction is possible (see page 1160). The non-
constructive character of the axiom of choice has made it
always remain somewhat controversial. It has arisen in
many different guises and been useful in proving theorems
in many areas of mathematics, but it has seemingly peculiar
consequences such as the Banach-Tarski result that a solid
sphere can be divided into six pieces (each a non-
measurable set) that can be reassembled into a solid sphere
twice the size. (The nine axioms with the axiom of choice are
usually known as ZFC.) The axiom of regularity (or axiom
of foundation) formulated by John von Neumann in 1929
explicitly forbids sets which for example can be elements of
themselves. But while this axiom is convenient in
simplifying work in set theory it has not been found
generally useful in mathematics, and is normally considered
optional at best.
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A few additional axioms have also arisen as potentially
useful. Most notable is the Continuum Hypothesis discussed
on page 1127, which was proved independent of ZFC by Paul
Cohen in 1963. (See also page 1166.)

Note that by using more complicated axioms the only
construct beyond predicate logic needed to formulate set
theory is . As discussed on page 1176, however, one cannot
avoid axiom schemas in the formulation of set theory given
here. (The von Neumann-Bernays-Gödel formulation does
avoid these, but at the cost of introducing additional objects
more general than sets.)

(See also page 1160.)

â General topology. The axioms given define properties of
open sets of points in spaces—and in effect allow issues like
connectivity and continuity to be discussed in terms of set
theory without introducing any explicit distance function. 

â Real analysis. The axiom given is Dedekind’s axiom of
continuity, which expresses the connectedness of the set of
real numbers. Together with set theory it allows standard
results about calculus to be derived. But as well as ordinary
real numbers, these axioms allow non-standard analysis with
constructs such as explicit infinitesimals (see page 1172).

â Axiom systems for programs. (See pages 794 and 1168.)

â Page 775 · Implementation. Given the axioms in the form

the proof shown here can be represented by

and applied using

â Page 776 · Proof structures. The proof shown is in a sense
based on very low-level steps, each consisting of applying a
single axiom from the original axiom system. But in practical
mathematics it is usual for proofs to be built up in a more
hierarchical fashion using intermediate results or lemmas. In
the way I set things up lemmas can in effect be introduced as
new axioms which can be applied repeatedly during a proof.
And in the case shown here if one first proves the lemma 

and treats it as rule 6, then the main proof can be shortened:

When one just applies axioms from the original axiom system
one is in effect following a single line of steps. But when one
proves a lemma one is in effect on a separate branch, which
only merges with the main proof when one uses the lemma.
And if one has nested lemmas one can end up with a proof
that is in effect like a tree. (Repeated use of a single lemma
can also lead to cycles.) Allowing lemmas can in extreme
cases probably make proofs as much as exponentially shorter.
(Note that lemmas can also be used in multiway systems.)

In the way I have set things up one always gets from one step
in a proof to the next by taking an expression and applying
some transformation rule to it. But while this is familiar from
algebraic mathematics and from the operation of Mathematica
it is not the model of proofs that has traditionally been used
in mainstream mathematical logic. For there one tends to
think not so much about transforming expressions as about
taking collections of true statements (such as equations

), and using so-called rules of inference to deduce other
ones. Most often there are two basic rules of inference: modus
ponens or detachment which uses the logic result

 to deduce the statement  from statements 
and , and substitution, which takes statements  and 
and deduces , where  is a logical variable in  (see
page 1151). And with this approach axioms enter merely as
initial true statements, leaving rules of inference to generate
successive steps in proofs. And instead of being mainly linear
sequences of results, proofs instead become networks in
which pairs of results are always combined when modus
ponens is used. But it is still always in principle possible to
convert any proof to a purely sequential one—though
perhaps at the cost of having exponentially many more steps.

À

s[1] = ( a_ Ñ a_) Ñ ( a_ Ñ b_) ! a;
s[2, x_] := b_ ! ( b Ñ b) Ñ ( b Ñ x); s[3] =

a_ Ñ ( a_ Ñ b_) ! a Ñ ( b Ñ b); s[4] = a_ Ñ ( b_ Ñ b_) ! a Ñ ( a Ñ b);
s[5] = a_ Ñ ( a_ Ñ ( b_ Ñ c_)) ! b Ñ ( b Ñ ( a Ñ c));

{{s[2, b], {2}}, {s[4], {}}, {s[2, (b Ñ b) Ñ ( ( a Ñ a) Ñ ( b Ñ b))],
{2, 2}}, {s[1], {2, 2, 1}}, {s[2, b Ñ b], {2, 2, 2, 2, 2, 2}},

{s[5], {2, 2, 2}}, {s[2, b Ñ b], {2, 2, 2, 2, 2, 1}},
{s[1], {2, 2, 2, 2, 2}}, {s[3], {2, 2, 2}},
{s[1], {2, 2, 2, 2}}, {s[4], {2, 2, 2}}, {s[5], {}},
{s[2, a], {2, 2, 1}}, {s[1], {2, 2}}, {s[3], {}}, {s[1], {2}}}

FoldList[Function[{u, v},
MapAt[Replace[#, v011] &, u, {v021}]], a Ñ b, proof]
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â Substitution strategies. With the setup I am using each step
in a proof involves transforming an expression like 
using an expression like . And for this to happen  or 
must match some part  of  or . The simplest way this can
be achieved is for  or  to reproduce  when its variables
are replaced by appropriate expressions. But in general one
can make replacements not only for variables in  and , but
also for ones in . And in practice this often makes many
more matches possible. Thus for example the axiom 
cannot be applied directly to . But after the
replacement ,  matches  with ,
yielding the new theorem . These kinds of
substitutions are used in the proof on page 810. One
approach to finding them is so-called paramodulation, which
was introduced around 1970 in the context of automated
theorem-proving systems, and has been used in many such
systems (see page 1157). (Such substitutions are not directly
relevant to Mathematica, since it transforms expressions
rather than theorems or equations. But when I built SMP in
1981, its semantic pattern matching mechanism did use
essentially such substitutions.) 

â One-way transformations. As formulated in the main text,
axioms define two-way transformations. One can also set up
axiom systems based on one-way transformations (as in
multiway systems). For basic logic, examples of this were
studied in the mid-1900s, and with the transformations
thought of as rules of inference they were sometimes known
as “axiomless formulations”.

â Axiom schemas. An axiom like  is a single well-
formed formula in the sense of page 1150. But sometimes one
needs infinite collections of such individual axioms, and in
the main text these are represented by axiom schemas given
as Mathematica patterns involving objects like . Such
schemas are taken to stand for all individual axioms that
match the patterns and are well-formed formulas. The
induction axiom in arithmetic is an example of a schema. (See
the note on finite axiomatizability on page 1176.) Note that as
mentioned on page 1150 all the axioms given for basic logic
should really be thought of as schemas. 

â Reducing axiom details. Traditional axiom systems have
many details not seen in the basic structure of multiway
systems. But in most cases these details can be avoided—and
in the end the universality of multiway systems implies that
they can always be made to emulate any axiom system.

Traditional axiom systems tend to be based on operator
systems (see page 801) involving general expressions, not just
strings. But any expression can always be written as a string
using something like Mathematica . (See also page

1169.) Traditional axiom systems also involve symbolic
variables, not just literal string elements. But by using
methods like those for combinators on page 1121 explicit
mention of variables can always be eliminated.

â Proofs in practice. At some level the purpose of a proof is to
establish that something is true. But in the practice of modern
mathematics proofs have taken on a broader role; indeed
they have become the primary framework for the vast
majority of mathematical thinking and discourse. And from
this perspective the kinds of proofs given on pages 810 and
811—or typically generated by automated theorem
proving—are quite unsatisfactory. For while they make it
easy at a formal level to check that certain statements are
true, they do little at a more conceptual level to illuminate
why this might be so. And indeed the kinds of proofs
normally considered most mathematically valuable are ones
that get built up in terms of concepts and constructs that are
somehow expected to be as generally applicable as possible.
But such proofs are inevitably difficult to study in a uniform
and systematic way (though see page 1176). And as I argue in
the main text, it is in fact only for the rather limited kinds of
mathematics that have historically been pursued that such
proofs can be expected to be sufficient. For in general proofs
can be arbitrarily long, and can be quite devoid of what
might be considered meaningful structure.

Among practical proofs that show signs of this (and whose
mathematical value is thus often considered controversial)
most have been done with aid of computers. Examples
include the Four-Color Theorem (coloring of maps), the
optimality of the Kepler packing (see page 986), the
completeness of the Robbins axiom system (see page 1151)
and the universality of rule 110 (see page 678). 

In the past it was sometimes claimed that using computers is
somehow fundamentally incompatible with developing
mathematical understanding. But particularly as the use of
Mathematica has become more widespread there has been
increasing recognition that computers can provide crucial
raw material for mathematical intuition—a point made
rather forcefully by the discoveries in this book. Less well
recognized is the fact that formulating mathematical ideas in
a Mathematica program is at least as effective a way to
produce clarity of thinking and understanding as
formulating a traditional proof.

â Page 778 · Properties. The second rule shown has the
property that black elements always appear before white, so
that strings can be specified just by the number of elements of
each color that they contain—making the rule one of the
sorted type discussed on page 937, based on the difference
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vector . The question of whether a
given string can be generated is then analogous to finding
whether there is a solution with certain positivity properties
to a set of linear Diophantine equations. 

â Page 781 · NAND tautologies. At each step every possible
transformation rule in the axioms is applied wherever it can.
New expressions are also created by replacing each possible
variable with , where  and  are new variables, and by
setting every possible pair of variables equal in turn. The
longest tautology at step  is 

whose  grows like . The distribution of sizes of
statements generated at each step is shown below.

Even with the same underlying axioms the tautologies are
generated in a somewhat different order if one uses a
different strategy—say one based on paramodulation (see
page 1156). Pages 818 and 1175 discuss the sequence of all
NAND theorems listed in order of increasing complexity.

â Proof searching. To find a proof of some statement  in a
multiway system one can always in principle just start from

, evolve the system until it first generates , then pick out
the sequence of strings on the path from  to . But doing
this will usually involve building up a vast network of
strings. And although at some level computational
irreducibility and NP completeness (see page 766) imply that
in general only a limited amount of this computational work
can be saved, there are in practice quite often important
optimizations that can be made. For finding a proof of 
is like searching for a path satisfying the constraint of going
from  to . And just like in the systems based on constraints
in Chapter 5 one can usually do at least somewhat better than
just to look at every possible path in turn.

For a start, in generating the network of paths one only ever
need keep a single path that leads to any particular string;
just like in many of my pictures of multiway systems one can
in effect always drop any duplicate strings that occur. One
might at first imagine that if  and  are both short strings
then one could also drop any very long strings that are
produced. But as we have seen, it is perfectly possible for
long intermediate strings to be needed to get from  to .
Still, it is often reasonable to weight things so that at least at
first one looks at paths that involve only shorter strings.

In the most direct approach, one takes a string and at each
step just applies the underlying rules or axioms of the

multiway system. But as soon as one knows that there is a
path from a string  to a string , one can also imagine
applying the rule  to any string—in effect like a lemma.
And one can choose which lemmas to try first by looking for
example at which involve the shortest or commonest strings.

It is often important to minimize the number of lemmas one
has to keep. Sometimes one can do this by reducing every
lemma—and possibly every string—to some at least partially
canonical form. One can also use the fact that in a multiway
system if  and  then . 

If one wants to get from  to  the most efficient thing is to
use properties of  to avoid taking wrong turns. But except
in systems with rather simple structure this is usually
difficult to achieve. Nevertheless, one can for example
always in effect work forwards from , and backwards from

, seeing whether there is any overlap in the sets of strings
one gets.

â Automated theorem proving. Since the 1950s a fair amount
of work has been done on trying to set up computer systems
that can prove theorems automatically. But unlike systems
such as Mathematica that emphasize explicit computation
none of these efforts have ever achieved widespread success
in mathematics. And indeed given my ideas in this section
this now seems not particularly surprising.

The first attempt at a general system for automated theorem
proving was the 1956 Logic Theory Machine of Allen Newell
and Herbert Simon—a program which tried to find proofs in
basic logic by applying chains of possible axioms. But while
the system was successful with a few simple theorems the
searches it had to do rapidly became far too slow. And as the
field of artificial intelligence developed over the next few years
it became widely believed that what would be needed was a
general system for imitating heuristics used in human
thinking. Some work was nevertheless still done on applying
results in mathematical logic to speed up the search process.
And in 1963 Alan Robinson suggested the idea of resolution
theorem proving, in which one constructs ,
then typically writes this in conjunctive normal form and
repeatedly applies rules like  to try to
reduce it to , thereby proving given  that 
is . But after early enthusiasm it became clear that this
approach could not be expected to make theorem proving
easy—a point emphasized by the discovery of NP
completeness in the early 1970s. Nevertheless, the approach
was used with some success, particularly in proving that
various mechanical and other engineering systems would
behave as intended—although by the mid-1980s such
verification was more often done by systematic Boolean
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function methods (see page 1097). In the 1970s simple versions
of the resolution method were incorporated into logic
programming languages such as Prolog, but little in the way of
mathematical theorem proving was done with them. A notable
system under development since the 1970s is the Boyer-Moore
theorem prover Nqthm, which uses resolution together with
methods related to induction to try to find proofs of statements
in a version of LISP. Another family of systems under
development at Argonne National Laboratory since the 1960s
are intended to find proofs in pure operator (equational)
systems (predicate logic with equations). Typical of this effort
was the Otter system started in the mid-1980s, which uses the
resolution method, together with a variety of ad hoc strategies
that are mostly versions of the general ones for multiway
systems in the previous note. The development of so-called
unfailing completion algorithms (see page 1037) in the late
1980s made possible much more systematic automated
theorem provers for pure operator systems—with a notable
example being the Waldmeister system developed around
1996 by Arnim Buch and Thomas Hillenbrand.

Ever since the 1970s I at various times investigated using
automated theorem-proving systems. But it always seemed
that extensive human input—typically from the creators of
the system—was needed to make such systems actually find
non-trivial proofs. In the late 1990s, however, I decided to try
the latest systems and was surprised to find that some of
them could routinely produce proofs hundreds of steps long
with little or no guidance. Almost any proof that was easy to
do by hand almost always seemed to come out automatically
in just a few steps. And the overall ability to do proofs—at
least in pure operator systems—seemed vastly to exceed that
of any human. But as page 810 illustrates, long proofs
produced in this way tend to be difficult to read—in large
part because they lack the higher-level constructs that are
typical in proofs created by humans. As I discuss on page
821, such lack of structure is in some respects inevitable. But
at least for specific kinds of theorems in specific areas of
mathematics it seems likely that more accessible proofs can
be created if each step is allowed to involve sophisticated
computations, say as done by Mathematica. 

â Proofs in Mathematica. Most of the individual built-in
functions of Mathematica I designed to be as predictable as
possible—applying transformations in definite ways and
using algorithms that are never of fundamentally unknown
difficulty. But as their names suggest  and 
were intended to be less predictable—and just to do what
they can and then return a result. And in many cases these
functions end up trying to prove theorems; so for example

 must in effect
prove a theorem to get the result .

â Page 781 · Truth and falsity. The notion that statements can
always be classified as either true or false has been a common
idealization in logic since antiquity. But in everyday
language, computer languages and mathematics there are
many ways in which this idealization can fail. An example is

, which cannot reasonably be considered either true
or false unless one knows what ,  and  are. Predicate logic
avoids this particular kind of case by implicitly assuming
that what is meant is a general statement about all values of
any variable—and avoids cases like the expression  by
requiring all statements to be well-formed formulas (see page
1150). In Mathematica functions like  and  are
set up always to yield  or —but just by looking at
the explicit structure of a symbolic expression. 

Note that although the notion of negation seems fairly
straightforward in everyday language it can be difficult to
implement in computational or mathematical settings. And
thus for example even though it may be possible to establish
by a finite computation that a particular system halts, it will
often be impossible to do the same for the negation of this
statement. The same basic issue arises in the intuitionistic
approach to mathematics, in which one assumes that any
object one handles must be found by a finite construction.
And in such cases one can set up an analog of logic in which
one no longer takes . 

It is also possible to assume a specific number  of truth
values, as on page 1175, or to use so-called modal logics.

(See also page 1167.)

â Page 782 · Gödel’s Theorem. What is normally known as
“Gödel’s Theorem” (or “Gödel’s First Incompleteness
Theorem”) is the centerpiece of the paper “On Undecidable
Propositions of Principia Mathematica and Related Systems”
published by Kurt Gödel in 1931. What the theorem shows is
that there are statements that can be formulated within the
standard axiom system for arithmetic but which cannot be
proved true or false within that system. Gödel’s paper does
this first for the statement “this statement is unprovable”,
and much of the paper is concerned with showing how such
a statement can be encoded within arithmetic. Gödel in effect
does this by first converting the statement to one about
recursive functions and then—by using tricks of number
theory such as the beta function of page 1120—to one purely
about arithmetic. (Gödel’s main achievement is sometimes
characterized as the “arithmetization of metamathematics”:
the discovery that concepts such as provability related to the

Simplify FullSimplify
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processes of mathematics can be represented purely as
statements in arithmetic.) (See page 784.)

Gödel originally based his theorem on Peano arithmetic (as
discussed in the context of Principia Mathematica), but
expected that it would in fact apply to any reasonable formal
system for mathematics—and in later years considered that
this had been established by thinking about Turing machines.
He suggested that his results could be avoided if some form
of transfinite hierarchy of formalisms could be used, and
appears to have thought that at some level humans and
mathematics do this (compare page 1167).

Gödel’s 1931 paper came as a great surprise, although the
issues it addressed were already widely discussed in the field
of mathematical logic. And while the paper is at a technical
level rather clear, it has never been easy for typical
mathematicians to read. Beginning in the late 1950s its results
began to be widely known outside of mathematics, and by
the late 1970s Gödel’s Theorem and various misstatements of
it were often assigned an almost mystical significance. Self-
reference was commonly seen as its central feature, and
connections with universality and computation were usually
missed. And with the belief that humans must somehow
have intrinsic access to all truths in mathematics, Gödel’s
Theorem has been used to argue for example that computers
can fundamentally never emulate human thinking.

The picture on page 786 can be viewed as a modern proof of
Gödel’s Theorem based on Diophantine equations.

In addition to what is usually called Gödel’s Theorem, Kurt
Gödel established a second incompleteness theorem: that the
statement that the axioms of arithmetic are consistent cannot
be proved by using those axioms (see page 1168). He also
established what is often called the Completeness Theorem
for predicate logic (see page 1152)—though here
“completeness” is used in a different sense.

â Page 783 · Properties. The first multiway system here
generates all strings that end in ; the third all strings that
end in . The second system generates all strings where the
second-to-last element is white, or the string ends with a run
of black elements delimited by white ones. 

â Page 783 · Essential incompleteness. If a consistent axiom
system is complete this means that any statement in the
system can be proved true or false using its axioms, and the
question of whether a statement is true can always be
decided by a finite procedure. If an axiom system is
incomplete then this means that there are statements that
cannot be proved true or false using its axioms—and which
must therefore be considered independent of those axioms.
But even given this it is still possible that a finite procedure

can exist which decides whether a given statement is true,
and indeed this happens in the theory of commutative
groups (see note below). But often an axiom system will not
only be incomplete, but will also be what is called essentially
incomplete. And what this means is that there is no finite set
of axioms that can consistently be added to make the system
complete. A consequence of this is that there can be no finite
procedure that always decides whether a given statement is
true—making the system what is known as essentially
undecidable. (When I use the term “undecidable” I normally
mean “essentially undecidable”. Early work on mathematical
logic sometimes referred to statements that are independent
as being undecidable.) 

One might think that adding rules to a system could never
reduce its computational sophistication. And this is correct if
with suitable input one can always avoid the new rules. But
often these rules will allow transformations that in effect
short-circuit any sophisticated computation. And in the
context of axiom systems, adding axioms can be thought of
as putting more constraints on a system—thus potentially in
effect forcing it to be simpler. The result of all this is that an
axiom system that is universal can stop being universal when
more axioms are added to it. And indeed this happens when
one goes from ordinary group theory to commutative group
theory, and from general field theory to real algebra.

â Page 784 · Predicate logic. The universality of predicate logic
with a single two-argument function follows immediately
from the result on page 1156 that it can be used to emulate
any two-way multiway system. 

â Page 784 · Algebraic axioms. How universality works with
algebraic axioms depends on how those axioms are being
used (compare page 1153). What is said in the main text here
assumes that they are being used as on page 773—with each
variable in effect standing for any object (compare page
1169), and with the axioms being added to predicate logic.
The first of these points means that one is concerned with
so-called pure group theory—and with finding results valid
for all possible groups. The second means that the
statements one considers need not just be of the form

, but can explicitly involve logic; an example is
Cayley’s theorem

With this setup, Alfred Tarski showed in 1946 that any
statement in Peano arithmetic can be encoded as a statement
in group theory—thus demonstrating that group theory is
universal, and that questions about it can be undecidable.
This then also immediately follows for semigroup theory
and monoid theory. It was shown for ring theory and field

?2?

a Þx 2 a Þy ¶ ( x 2 y ©µz a Þz 2 x) ©
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theory by Julia Robinson in 1949. But for commutative
group theory it is not the case, as shown by Wanda
Szmielew around 1950. And indeed there is a procedure
based on quantifier elimination for determining in a finite
number of steps whether any statement in commutative
group theory can be proved. (Commutative group theory is
thus a decidable theory. But as mentioned in the note above,
it is not complete—since for example it cannot establish the
theorem  which states that a group has just one
element. It is nevertheless not essentially incomplete—and
for example adding the axiom  makes it complete.)
Real algebra is also not universal (see page 1153), and the
same is for example true for finite fields—but not for
arbitrary fields.

As discussed on page 1141, word problems for systems such
as groups are undecidable. But to set up a word problem in
general formally requires going beyond predicate logic, and
including axioms from set theory. For a word problem relates
not, say, to groups in general, but to a particular group,
specified by relations between generators. Within predicate
logic one can give the relations as statements, but in effect
one cannot specify that no other relations hold. It turns out,
however, that undecidability for word problems occurs in
essentially the same places as universality for axioms with
predicate logic. Thus, for example, the word problem is
undecidable for groups and semigroups, but is decidable for
commutative groups.

One can also consider using algebraic axioms without
predicate logic—as in basic logic or in the operator systems of
page 801. And one can now ask whether there is then
universality. In the case of semigroup theory there is not. But
certainly systems of this type can be universal—since for
example they can be set up to emulate any multiway system.
And it seems likely that the axioms of ordinary group theory
are sufficient to achieve universality. 

â Page 784 · Set theory. Any integer  can be encoded as a set
using for example . And from this
a statement  in Peano arithmetic (with each variable
explicitly quantified) can be translated to a statement in set
theory by using

and then adding the statements below to provide
definitions (  is the set of non-negative integers,  is
an ordered triple, and  determines whether each triple in
a set  is of the form  specifying a single-
valued function).

This means that set theory can be used to prove any statement
that can be proved in Peano arithmetic. But it can also prove
other statements—such as Goodstein’s result (see note below),
and the consistency of arithmetic (see page 1168). An
important reason for this is that set theory allows not just
ordinary induction over sequences of integers but also
transfinite induction over arbitrary ordered sets (see below). 

â Page 786 · Universal Diophantine equation. The equation is
built up from ones whose solutions are set up to be integers
that satisfy particular relations. So for example the equation

 has solutions that are exactly those integers that
satisfy the relation . Similarly, assuming as in the
rest of this note that all variables are non-negative,

 has solutions that are exactly those integers that
satisfy , with  having some allowed value. From
various number-theoretical results many relations can readily
be encoded as integer equations:

where the last encoding uses the result on page 608. (Note
that any variable  can be forced to be non-negative by
including an equation , as on page 910.) 

Given an integer  for which  gives the cell
values for a cellular automaton, a single step of evolution
according say to rule 30 is given by

a 2 b

a 2 b

n
Nest[Union[#, {#}] &, {}, n]
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a 2 Floor[b/c]� ( a c + d 2 b © d < c)
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where (see page 871)

and  is assumed to be padded with 0’s at each end. The
corresponding form for rule 110 is

The final equation is then obtained from

where  through  have the meanings indicated in the main
text, and satisfy . Non-overlapping subsidiary variables
are introduced for  and , yielding a total of 79
variables.

Note that it is potentially somewhat easier to construct
Diophantine equations to emulate register machines—or
arithmetic systems from page 673—than to emulate cellular
automata, but exactly the same basic methods can be used. 

In the universal equation in the main text variables appear in
exponents. One can reduce such an exponential equation to a
pure polynomial equation by encoding powers using integer
equations. The simplest known way of doing this (see note
below) involves a degree 8 equation with 60 variables:

(This roughly uses the idea that solutions to Pell equations
grow exponentially, so that for example  has
solutions .) From this
representation of  the universal equation can be
converted to a purely polynomial equation with 2154
variables—which when expanded has 1683150 terms, total
degree 16 (average per term 6.8), maximum coefficient
17827424 and  16540206. 

Note that the existence of universal Diophantine equations
implies that any problem of mathematics—even, say, the
Riemann Hypothesis—can in principle be formulated as a
question about the existence of solutions to a Diophantine
equation. It also means that given any specific enumeration
of polynomials, there must be some universal polynomial 
which if fed the enumeration number of a polynomial ,

together with an encoding of the values of its variables, will
yield the corresponding value of  as a solution to . 

â Hilbert’s Tenth Problem. Beginning in antiquity various
procedures were developed for solving particular kinds of
Diophantine equations (see page 1164). In 1900, as one of his
list of 23 important mathematical problems, David Hilbert
posed the problem of finding a single finite procedure that
could systematically determine whether a solution exists to
any specified Diophantine equation. The original proof of
Gödel’s Theorem from 1931 in effect involves showing that
certain logical and other operations can be represented by
Diophantine equations—and in the end Gödel’s Theorem can
be viewed as saying that certain statements about
Diophantine equations are unprovable. The notion that there
might be universal Diophantine equations for which
Hilbert’s Tenth Problem would be fundamentally unsolvable
emerged in work by Martin Davis in 1953. And by 1961
Davis, Hilary Putnam and Julia Robinson had established
that there are exponential Diophantine equations that are
universal. Extending this to show that Hilbert’s original
problem about ordinary polynomial Diophantine equations
is unsolvable required proving that exponentiation can be
represented by a Diophantine equation, and this was finally
done by Yuri Matiyasevich in 1969 (see note above). 

By the mid-1970s, Matiyasevich had given a construction for
a universal Diophantine equation with 9 variables—though
with a degree of about . It had been known since the
1930s that any Diophantine equation can be reduced to one
with degree 4—and in 1980 James Jones showed that a
universal Diophantine equation with degree 4 could be
constructed with 58 variables. In 1979 Matiyasevich also
showed that universality could be achieved with an
exponential Diophantine equation with many terms, but
with only 3 variables. As discussed in the main text I believe
that vastly simpler Diophantine equations can also be
universal. It is even conceivable that a Diophantine equation
with 2 variables could be universal: with one variable
essentially being used to represent the program and input,
and the other the execution history of the program—with no
finite solution existing if the program does not halt. 

â Polynomial value sets. Closely related to issues of solving
Diophantine equations is the question of what set of positive
values a polynomial can achieve when fed all possible
positive integer values for its variables. A polynomial with a
single variable must always yield either be a finite set, or a
simple polynomial progression of values. But already the
sequence of values for  or even  seem
quite complicated. And for example from the fact that

 has solutions  it follows that
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the positive values of  are just
 (achieved when  is ).

This is the simplest polynomial giving , and
there are for example no polynomials with 2 variables, up to
4 terms, total degree less than 4, and integer coefficients
between -2 and +2, that give any of ,  or .
Nevertheless, from the representation for  in the note
above it has been shown that the positive values of a
particular polynomial with 26 variables, 891 terms and total
degree 97 are exactly the primes. (Polynomials with 42
variables and degree 5, and 10 variables and degree , are
also known to work, while it is known that one with 2
variables cannot.) And in general the existence of a universal
Diophantine equation implies that any set obtained by any
finite computation must correspond to the positive values of
some polynomial. The analog of doing a long computation to
find a result is having to go to large values of variables to find
a positive polynomial value. Note that one can imagine, say,
emulating the evolution of a cellular automaton by having
the th positive value of a polynomial represent the th step of
evolution. That universality can be achieved just in the
positive values of a polynomial is already remarkable. But I
suspect that in the end it will take only a surprisingly simple
polynomial, perhaps with just three variables and fairly low
degree. 

(See also page 1165.)

â Statements in Peano arithmetic. Examples include:

ä  is irrational:

äThere are infinitely many primes of the form :

äEvery even number (greater than 2) is the sum of two 
primes (Goldbach’s Conjecture; see page 135):

The last two statements have never been proved true or false,
and remain unsolved problems of number theory. The
picture shows spacings between  for which  is prime.

â Transfinite numbers. For most mathematical purposes it is
quite adequate just to have a single notion of infinity,
usually denoted . But as Georg Cantor began to emphasize
in the 1870s, it is possible to distinguish different levels of

infinity. Most of the details of this have not been widely
used in typical mathematics, but they can be helpful in
studying foundational issues. Cantor’s theory of ordinal
numbers is based on the idea that every integer must have a
successor. The next integer after all of the ordinary ones—
the first infinite integer—is given the name . In Cantor’s
theory  is still larger (though  is not), as are ,

 and . Any arithmetic expression involving 
specifies an ordinal number—and can be thought of as
corresponding to a set containing all integers up to that
number. The ordinary axioms of arithmetic do not apply, but
there are still fairly straightforward rules for manipulating
such expressions. In general there are many different
expressions that correspond to a given number, though
there is always a unique Cantor normal form—essentially a
finite sequence of digits giving coefficients of descending
powers of . However, not all infinite integers can be
represented in this way. The first one that cannot is , given
by the limit , or effectively  is the
smallest solution to . Subsequent solutions ( , ..., ,
..., , ...) define larger ordinals, and one can go on until one
reaches the limit , which is the first solution to .
Giving this ordinal a name, one can then go on again, until
eventually one reaches another limit. And it turns out that
in general one in effect has to introduce an infinite sequence
of names in order to be able to specify all transfinite
integers. (Naming a single largest or “absolutely infinite”
integer is never consistent, since one can always then talk
about its successor.) As Cantor noted, however, even this
only allows one to reach the lowest class of transfinite
numbers—in effect those corresponding to sets whose size
corresponds to the cardinal number . Yet as discussed on
page 1127, one can also consider larger cardinal numbers,
such as , considered in connection with the number of
real numbers, and so on. And at least for a while the
ordinary axioms of set theory can be used to study the sets
that arise.

â Growth rates. One can characterize most functions by their
ultimate rates of growth. In basic mathematics these might be

, , , ... or , , ..., or , , ..., or , , , ... To
go further one begins by defining an analog to the
Ackermann function of page 906:

 is then ,  is iterated power, and so on. Given
this one can now form the “diagonal” function 

and this has a higher growth rate than any of the  with
finite . This higher growth rate is indicated by the transfinite
index . And in direct analogy to the transfinite numbers
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discussed above one can then in principle form a hierarchy of
functions using operations like 

together with diagonalization at limit ordinals. In practice,
however, it gets more and more difficult to determine that the
functions defined in this way actually in a sense halt and
yield definite values—and indeed for  this can no longer
be proved using the ordinary axioms of arithmetic (see
below). Yet it is still possible to define functions with even
more rapid rates of growth. An example is the so-called busy
beaver function (see page 1144) that gives the maximum
number of steps that it takes for any Turing machine of size 
to halt when started from a blank tape. In general this
function must grow faster than any computable function, and
is not itself computable.

â Page 787 · Unprovable statements. After the appearance of
Gödel’s Theorem a variety of statements more or less directly
related to provability were shown to be unprovable in Peano
arithmetic and certain other axiom systems. Starting in the
1960s the so-called method of forcing allowed certain kinds
of statements in strong axiom systems—like the Continuum
Hypothesis in set theory (see page 1155)—to be shown to be
unprovable. Then in 1977 Jeffrey Paris and Leo Harrington
showed that a variant of Ramsey’s Theorem (see page
1068)—a statement that is much more directly
mathematical—is also unprovable in Peano arithmetic. The
approach they used was in essence based on thinking about
growth rates—and since the 1970s almost all new examples
of unprovability have been based on similar ideas. Probably
the simplest is a statement shown to be unprovable in Peano
arithmetic by Laurence Kirby and Jeff Paris in 1982: that
certain sequences  defined by Reuben Goodstein in 1944
are of limited length for all , where 

As in the pictures below,  is ,  is  and
 is .  increases quadratically for a

long time, with only element  finally being 0.
And the point is that in a sense  grows too
quickly for its finiteness to be provable in general in Peano
arithmetic.

The argument for this as usually presented involves rather
technical results from several fields. But the basic idea is

roughly just to set up a correspondence between elements of
 and possible proofs in Peano arithmetic—then to use the

fact that if one knew that  always terminated this would
establish the validity of all these proofs, which would in turn
prove the consistency of arithmetic—a result which is known
to be unprovable from within arithmetic. 

Every possible proof in Peano arithmetic can in principle be
encoded as an ordinary integer. But in the late 1930s Gerhard
Gentzen showed that if proofs are instead encoded as ordinal
numbers (see note above) then any proof can validly be
reduced to a preceding one just by operations in logic. To
cover all possible proofs, however, requires going up to the
ordinal . And from the unprovability of consistency one
can conclude that this must be impossible using the ordinary
operation of induction in Peano arithmetic. (Set theory,
however, allows transfinite induction—essentially induction
on arbitrary sets—letting one reach such ordinals and thus
prove the consistency of arithmetic.) In constructing  the
integer  is in effect treated like an ordinal number in Cantor
normal form, and a sequence of numbers that should precede
it are found. That this sequence terminates for all  is then
provable in set theory, but not Peano arithmetic—and in
effect  must grow like .) 

In general one can imagine characterizing the power of any
axiom system by giving a transfinite number  which
specifies the first function  (see note above) whose
termination cannot be proved in that axiom system (or
similarly how rapidly the first example of  must grow with

 to prevent  from being provable). But while it is
known that in Peano arithmetic , quite how to describe
the value of  for, say, set theory remains unknown. And in
general I suspect that there are a vast number of functions
with simple definitions whose termination cannot be proved
not just because they grow too quickly but instead for the
more fundamental reason that their behavior is in a sense too
complicated.

Whenever a general statement about a system like a Turing
machine or a cellular automaton is undecidable, at least some
instances of that statement encoded in an axiom system must
be unprovable. But normally these tend to be complicated
and not at all typical of what arise in ordinary mathematics.
(See page 1167.)

â Encodings of arithmetic. Statements in arithmetic are
normally written in terms of ,  and  (and logical
operations). But it turns out also to be possible to encode
such statements in terms of other basic operations. This was
for example done by Julia Robinson in 1949 with  (or )
and . And in the 1990s Ivan Korec and others
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showed that it could be done just with
 with  or any product of

primes—and that it could not be done with  a prime or
prime power. These operations can be thought of as finding
elements in nested Pascal’s triangle patterns produced by -
color additive cellular automata. Korec showed that finding
elements in the nested pattern produced by the  cellular
automaton with rule 
(compare page 886) was also enough. 

â Page 788 · Infinity. See page 1162.

â Page 789 · Diophantine equations. If variables appear only
linearly, then it is possible to use  (see page 944)
to find all solutions to any system of Diophantine
equations—or to show that none exist. Particularly from the
work of Carl Friedrich Gauss around 1800 there emerged a
procedure to find solutions to any quadratic Diophantine
equation in two variables—in effect by reduction to the Pell
equation  (see page 944), and then computing

. The minimal solutions can be large;
the largest ones for successive coefficient sizes are given
below. (With size  coefficients it is for example known that
the solutions must always be less than .).

There is a fairly complete theory of homogeneous quadratic
Diophantine equations with three variables, and on the basis
of results from the early and mid-1900s a finite procedure
should in principle be able to handle quadratic Diophantine
equations with any number of variables. (The same is not
true of simultaneous quadratic Diophantine equations, and
indeed with a vector  of just a few variables, a system

 of such equations could quite possibly show
undecidability.) 

Ever since antiquity there have been an increasing number of
scattered results about Diophantine equations involving
higher powers. In 1909 Axel Thue showed that any equation
of the form , where  is a homogeneous
irreducible polynomial of degree at least 3 (such as

) can have only a finite number of integer
solutions. (He did this by formally factoring  into
terms , then looking at rational approximations to the
algebraic numbers .) In 1966 Alan Baker then proved an
explicit upper bound on such solutions, thereby establishing
that in principle they can be found by a finite search
procedure. (The proof is based on having bounds for how
close to zero  can be for independent

algebraic numbers .) His bound was roughly
—but later work in essence reduced this, and by

the 1990s practical algorithms were being developed. (Even
with a bound of , rational approximations to real
number results can quickly give the candidates that need to
be tested.) 

Starting in the late 1800s and continuing ever since a series of
progressively more sophisticated geometric and algebraic
views of Diophantine equations have developed. These have
led for example to the 1993 proof of Fermat’s Last Theorem
and to the 1983 Faltings theorem (Mordell conjecture) that the
topology of the algebraic surface formed by allowing variables
to take on complex values determines whether a Diophantine
equation has only a finite number of rational solutions—and
shows for example that this is the case for any equation of the
form  with . Extensive work has been done
since the early 1900s on so-called elliptic curve equations such
as  whose corresponding algebraic surface has a
single hole (genus 1). (A crucial feature is that given any two
rational solutions to such equations, a third can always be
found by a simple geometrical construction.) By the 1990s
explicit algorithms for such equations were being developed—
with bounds on solutions being found by Baker’s method (see
above). In the late 1990s similar methods were applied to
superelliptic (e.g. ) and hyperelliptic (e.g. )
equations involving higher powers, and it now at least
definitely seems possible to handle any two-variable cubic
Diophantine equation with a finite procedure. Knowing
whether Baker’s method can be made to work for any
particular class of equations involves, however, seeing
whether certain rather elaborate algebraic constructions can be
done—and this may perhaps in general be undecidable. Most
likely there are already equations of degree 4 where Baker’s
method cannot be used—perhaps ones like .
But in recent years there have begun to be results by other
methods about two-variable Diophantine equations, giving,
for example, general upper bounds on the number of possible
solutions. And although this has now led to the assumption
that all two-variable Diophantine equations will eventually be
resolved, based on the results of this book I would not be
surprised if in fact undecidability and universality appeared in
such equations—even perhaps at degree 4 with fairly small
coefficients.

The vast majority of work on Diophantine equations has
been for the case of two variables (or three for some
homogeneous equations). No clear analog of Baker’s method
is known beyond two variables, and my suspicion is that
with three variables undecidability and universality may
already be present even in cubic equations.
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As mentioned in the main text, proving that even simple
specific Diophantine equations have no solutions can be very
difficult. Obvious methods involve for example showing that
no solutions exist for real variables, or for variables reduced
modulo some . (For quadratic equations Hasse’s Principle
implies that if no solutions exist for any  then there are no
solutions for ordinary integers—but a cubic like

 is a counterexample.) If one can find a
bound on solutions—say by Baker’s method—then one can
also try to show that no values below this bound are actually
solutions. Over the history of number theory the
sophistication of equations for which proofs of no solutions
can be given has gradually increased—though even now it is
state of the art to show say that  is the only solution
to .

Just as for all sorts of other systems with complex behavior,
some idea of overall properties of Diophantine equations can
be found on the basis of an approximation of perfect
randomness. Writing equations in the form

 the distribution of values of  will in
general be complicated (see page 1161), but as a first
approximation one can try taking it to be purely random.
(Versions of this for large numbers of variables are validated
by the so-called circle method from the early 1900s.) If  has
total degree  then with  the values of  will range
up to about . But with  variables the number of different
cases sampled for  will be . The assumption of perfect
randomness then suggests that for , more and more
cases with  will be seen as  increases, so that the
equation will have an infinite number of solutions. For ,
on the other hand, it suggests that there will often be no
solutions, and that any solutions that exist will usually be
small. In the boundary case  it suggests that even for
arbitrarily large  an average of about one solution should
exist—suggesting that the smallest solution may be very
large, and presumably explaining the presence of so many
large solutions in the  and  examples in the
main text. Note that even though large solutions may be rare
when  they must always exist in at least some cases
whenever there is undecidability and universality in a class
of equations. (See also page 1161.)

If one wants to enumerate all possible Diophantine equations
there are many ways to do this, assigning different weights to
numbers of variables, and sizes of coefficients and of
exponents. But with several ways I have tried, it seems that of
the first few million equations, the vast majority have no
solutions—and this can in most cases be established by fairly
elementary methods that are presumably within Peano
arithmetic. When solutions do exist, most are fairly small. But

as one continues the enumeration there are increasingly a few
equations that seem more and more difficult to handle.

â Page 790 · Properties. (All variables are assumed positive.)

ä . There are  
solutions, the one with smallest  being 

. Linear 
equations like this were already studied in antiquity. 
(Compare page 915.)

ä . Writing  in terms of distinct factors as , 
 gives a solution if it yields integers—which 

happens when  and .

ä  (Pell equation). As discussed on page 944, 
whenever  is not a perfect square, there are always an 
infinite number of solutions given in terms of 

. Note that even when the smallest 
solution is not very large, subsequent solutions can rapidly 
get large. Thus for example when , the second 
solution is already . 

ä  (Mordell equation). First studied in the 1600s, a 
complete theory of this so-called elliptic curve equation 
was only developed in the late 1900s—using fairly 
sophisticated algebraic number theory. The picture below 
shows as a function of  the minimum  that solves the 
equation. For , the only solution is ; for 

, it is . The density of cases with 
solutions gradually thins out as  increases (for 

 there are 2468 such cases). There are always 
only a finite number of solutions (for  the 
maximum is 12, achieved for ).

ä . Also an elliptic curve equation. 

ä . For most values of  (including 
specifically ) the continuous version of this equation 
defines a surface of genus 3, so there are at most a finite 
number of integer solutions. (An equation of degree  
generically defines a surface of genus .) 
Note that  is equivalent to  by a 
simple substitution. 

ä . The second smallest solution to 
 is . As for the equations above, 

there are always at most a finite number of integer 
solutions.

ä . For the homogenous case  the 
complete solution was found by Leonhard Euler in 1756. 
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ä . No solutions exist when ; for 
 or  infinite families of solutions are known. 

Particularly in its less strict form  with , , 
 positive or negative the equation was mentioned in the 

1800s and again in the mid-1900s; computer searches for 
solutions were begun in the 1960s, and by the mid-1990s 
solutions such as  for 
the case  had been found. Any solution to the 
difficult case  must have 

. (Note that 
 always has solutions except when 

, as mentioned on page 135.) 

â Large solutions. A few other 2-variable equations with fairly
large smallest solutions are:

ä :  

ä : 

ä :  

The equation  is known to have smallest non-trivial
solution .

â Nearby powers. One can potentially find integer equations
with large solutions but small coefficients by looking say for
pairs of integer powers close in value. The pictures below
show what happens if one computes  and  for many 
and , sorts these values, then plots successive differences.
The differences are trivially zero when , . Often
they are large, but surprisingly small ones can sometimes
occur (despite various suggestions from the so-called ABC
conjecture). Thus, for example, 
is a perfect square, as found by Noam Elkies in 1998.
(Another example is .)

â Page 791 · Unsolved problems. Problems in number theory
that are simple to state (say in the notation of Peano
arithmetic) but that so far remain unsolved include:

ä Is there any odd number equal to the sum of its divisors? 
(Odd perfect number; 4th century BC) (See page 911.)

äAre there infinitely many primes that differ by 2? (Twin 
Prime Conjecture; 1700s?) (See page 909.)

ä Is there a cuboid in which all edges and all diagonals are of 
integer length? (Perfect cuboid; 1719)

ä Is there any even number which is not the sum of two 
primes? (Goldbach’s Conjecture; 1742) (See page 135.)

äAre there infinitely many primes of the form ? 
(Quadratic primes; 1840s?) (See page 1162.) 

äAre there infinitely many primes of the form ? 
(Fermat primes; 1844)

äAre there no solutions to  other than 
? (Catalan’s Conjecture; 1844)

äCan every integer not of the form  be written as 
? (See note above.) 

äHow few th powers need be added to get any given 
integer? (Waring’s Problem; 1770)

(See also Riemann Hypothesis on page 918.)

â Page 791 · Fermat’s Last Theorem. That  has no
integer solutions for  was suggested by Pierre Fermat
around 1665. Fermat proved this for  around 1660;
Leonhard Euler for  around 1750. It was proved for 
and  in the early 1800s. Then in 1847 Ernst Kummer
used ideas of factoring with algebraic integers to prove it for
all . Extensions of this method gradually allowed more
cases to be covered, and by the 1990s computers had
effectively given proofs for all  up to several million.
Meanwhile, many connections had been found between the
general case and other areas of mathematics—notably the
theory of elliptic curves. And finally around 1995, building
on extensive work in number theory, Andrew Wiles managed
to give a complete proof of the result. His proof is long and
complicated, and relies on sophisticated ideas from many
areas of mathematics. But while the statement of the proof
makes extensive use of concepts from areas like set theory, it
seems quite likely that in the end a version of it could be
given purely in terms of Peano arithmetic. (By the 1970s it
had for example been shown that many classic proofs with a
similar character in analytic number theory could at least in
principle be carried out purely in Peano arithmetic.) 

â Page 791 · More powerful axioms. If one looks for example
at progressively more complicated Diophantine equations
then one can expect that one will find examples where more
and more powerful axiom systems are needed to prove
statements about them. But my guess is that almost as soon
as one reaches cases that cannot be handled by Peano
arithmetic one will also reach cases that cannot be handled by
set theory or even by still more powerful axiom systems. 

Any statement that one can show is independent of the
Peano axioms and at least not inconsistent with them one can
potentially consider adding as a new axiom. Presumably it is
best to add axioms that allow the widest range of new
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statements to be proved. But I strongly suspect that the set of
statements that cannot be proved is somehow sufficiently
fragmented that adding a few new axioms will actually make
very little difference. 

In set theory (see page 1155) a whole sequence of new axioms
have historically been added to allow particular kinds of
statements to be proved. And for several decades additional
so-called large cardinal axioms have been discussed, that in
effect state that sets exist larger than any that can be reached
with the current axioms of set theory. (As discussed on page
816 any axiom system that is universal must in principle be
able to prove any statement that can be proved in any axiom
system—but not with the kinds of encodings normally
considered in mathematical logic.)

It is notable, however, that if one looks at classic theorems in
mathematics many can actually be derived from remarkably
weak axioms. And indeed the minimal axioms needed to
obtain most of mathematics as it is now practiced are
probably much weaker than those on pages 773 and 774.

(If one considers for example theorems about computational
issues such as whether Turing machines halt, then it becomes
inevitable that to cover more Turing machines one needs
more axioms—and to cover all possible machines one needs
an infinite set of axioms, that cannot even be generated by
any finite set of rules.) 

â Higher-order logics. In ordinary predicate—or so-called
first-order—logic the objects  that  and  range over
are variables of the kind used as arguments to functions (or
predicates) such as . To set up second-order logic,
however, one imagines also being able to use  and 
where  is a function (say the head of ). And then in
third-order logic one imagines using  and  where 
appears in . 

Early formulations of axiom systems for mathematics made
little distinction between first- and second-order logic. The
theory of types used in Principia Mathematica introduced
some distinction, and following the proof of Gödel’s
Completeness Theorem for first-order logic in 1930 (see page
1152) standard axiom systems for mathematics (as given on
pages 773 and 774) began to be reformulated in first-order
form, with set theory taking over many of the roles of second-
order logic.

In current mathematics, second-order logic is sometimes
used at the level of notation, but almost never in its full form
beyond. And in fact with any standard computational system
it can never be implemented in any explicit way. For even to
enumerate theorems in second-order logic is in general
impossible for a system like a Turing machine unless one

assumes that an oracle can be added. (Note however that this
is possible in Henkin versions of higher-order logic that
allow only limited function domains.) 

â Truth and incompleteness. In discussions of the foundations
of mathematics in the early 1900s it was normally assumed
that truth and provability were in a sense equivalent—so that
all true statements could in principle be reached by formal
processes of proof from fixed axioms (see page 782). Gödel’s
Theorem showed that there are statements that can never be
proved from given axioms. Yet often it seemed inevitable just
from the syntactic structure of statements (say as well-formed
formulas) that each of them must at some level be either true
or false. And this led to the widespread claim that Gödel’s
Theorem implies the existence of mathematical statements that
are true but unprovable—with their negations being false but
unprovable. Over the years this often came to be assigned a
kind of mystical significance, mainly because it was implicitly
assumed that somehow it must still ultimately be possible to
know whether any given statement is true or false. But the
Principle of Computational Equivalence implies that in fact
there are all sorts of statements that simply cannot be decided
by any computational process in our universe. So for example,
it must in some sense be either true or false that a given Turing
machine halts with given input—but according to the
Principle of Computational Equivalence there is no finite
procedure in our universe through which we can guarantee to
know which of these alternatives is correct.

In some cases statements can in effect have default truth
values—so that showing that they are unprovable
immediately implies, say, that they must be true. An example
in arithmetic is whether some integer equation has no solution.
For if there were a solution, then given the solution it would be
straightforward to give a proof that it is correct. So if it is
unprovable that there is no solution, then it follows that there
must in fact be no solution. And similarly, if it could be shown
for example that Goldbach’s Conjecture is unprovable then it
would follow that it must be true, for if it were false then there
would have to be a specific number which violates it, and this
could be proved. Not all statements in mathematics have this
kind of default truth value. And thus for example the
Continuum Hypothesis in set theory is unprovable but could
be either of true or false: it is just independent of the axioms of
set theory. In computational systems, showing that it is
unprovable that a given Turing machine halts with given input
immediately implies that in fact it must not halt. But showing
that it is unprovable whether a Turing machine halts with
every input (a  statement in the notation of page 1139) does
not immediately imply anything about whether this is in fact
true or false. 

x ´x µx

f [x]
´f µf

f f [x]
´g µg g

g[f][x]

#2
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â Page 793 · Generalization in mathematics. Systems that
have evolved from the basic notion of numbers provide a
characteristic example of the process of progressive
generalization in mathematics. The main such systems and
their dates of earliest known reasonably formalized use
have been (see also page 901): positive integers (before
10,000 BC), rationals (3000 BC), square roots (2000 BC), other
roots (1800 BC), all integers (600 AD, 1600s), decimals (950
AD), complex numbers (1500s, 1800s), polynomials (1591),
infinitesimals (1635), algebraic numbers (1744), quaternions
(1843), Grassmann algebra (1844), ideals (1844, 1871),
octonions (~1845), Boolean algebra (1847), fields (1850s,
1871), matrices (1858), associative algebras (1870), axiomatic
real numbers (1872), vectors (1881), transfinite ordinals
(1883), transfinite cardinals (1883), operator calculus (1880s),
Boolean algebras (1890), algebraic number fields (1893),
rings (1897), p-adic numbers (1897), non-Archimedean fields
(1899), q-numbers (1926), non-standard integers (1930s),
non-standard reals (hyperreals) (1960), interval arithmetic
(1968), fuzzy arithmetic (1970s), surreal numbers (1970s).
New systems have usually been introduced in connection
with extending the domains of particular existing
operations. But in almost all cases the systems are set up so
as to preserve as many theorems as possible—a notion that
was for example made explicit in the Principle of
Permanence discussed by George Peacock in 1830 and
extended by Hermann Hankel in 1869.

â Page 794 · Cellular automaton axioms. The first 4 axioms are
general to one-dimensional cellular automata. The next 8 are
specific to rule 110. The final 3 work whenever patterns are
embedded in a background of white cells. The universality of
rule 110 presumably implies that the axiom system given is
universal. (A complete proof would require handling various
issues about boundary conditions.) 

If the last 2 axioms are dropped any statement can readily be
proved true or false essentially just by running rule 110 for a
finite number of steps equal to the number of nested  plus

 in the statement. In practice, a large number of steps can
however be required. As an example the statement

asserts that a particular localized structure occurs in the
evolution of rule 110 from a single black cell. But page 38
shows that this happens for the first time after 2867 steps. (A
proof of this without lemmas would probably have to be of
length at least 32,910,300.)

The axioms as they are stated apply to any rule 110 evolution,
regardless of initial conditions. One can establish that the
statement at the bottom on the right cannot be proved either
true or false from the axioms by showing that it is true for
some initial conditions and false for others. Note from page
279 that the sequence  cannot occur in rule 110 evolution
except as an initial condition. So this means that the
statement is false if the initial condition is  and true if the
initial condition is .

â Practical programs. Any equivalence between programs in
a programming language can be thought of as a theorem.
Simple examples in Mathematica include:

One can set up axiom systems say by combining definitions
of programming languages with predicate logic (as done by
John McCarthy for LISP in 1963). And for programs whose
structure is simple enough it has sometimes been possible to
prove theorems useful for optimization or verification. But in
the vast majority of cases this has been essentially impossible
in practice. And I suspect that this is a reflection of
widespread fundamental unprovability. In setting up
programs with specific purposes there is inevitably some
computational reducibility (see page 828). But I suspect that
enough computational irreducibility usually remains to
make unprovability common when one asks about all
possible forms of behavior of the program. 

â Page 796 · Rules. The examples shown here (roughly in
order of increasing complexity) correspond respectively to
cases (a), (k), (b), (q), (p), (r), (o), (d) on page 798.

â Page 797 · Consistency. Any axiom system that is universal
can represent the statement that the system is consistent.
But normally such a statement cannot be proved true or
false within the system itself. And thus for example Kurt
Gödel showed this in 1931 for Peano arithmetic (in his so-
called second incompleteness theorem). In 1936, however,
Gerhard Gentzen showed that the axioms of set theory
imply the consistency of Peano arithmetic (see page 1160).
In practical mathematics set theory is always taken to be
consistent, but to set up a proof of this would require
axioms beyond set theory.

â Page 798 · Properties. For most of the rules shown, there
ultimately turn out to be quite easy characterizations of what
strings can be produced.

ä (a) At step , the only new string produced is the one 
containing  black elements.

á

É?Ê

� ��¶ (µa (µb � a³ (�³ (�³ (�³ (�³
(�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³

(�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³
(�³ (�³ (�³ (�³ (�³b)))))))))))))))))))))))))))))))))))))

First[Prepend[p, q]] === q

Join[Join[p, q], r] === Join[p, Join[q, r]]

Partition[Union[p], 1] === Split[Union[p]]

t
t
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ä (b) All strings of length  containing exactly one black cell 
are produced—after at most  steps.

ä (c) All strings containing even-length runs of white cells 
are produced.

ä (d) The set of strings produced is complicated. The last 
length 4 string produced is , after 16 steps; the last 
length 6 one is , after 26 steps. 

ä (e) All strings that begin with a black element are 
produced.

ä (f) All strings that end with a white element but contain at 
least one black element, or consist of all white elements 
ending with black, are produced. Strings of length  take  
steps to produce.

ä (g) The same strings as in (f) are produced, but now a 
string of length  with  black elements takes  
steps.

ä (h) All strings appear in which the first run of black 
elements is of length 1; a string of length  with  black 
elements appears after  steps.

ä (i) All strings containing an odd number of black elements 
are produced; a string of length  with  black cells occurs 
at step .

ä (j) All strings that end with a black element are produced.

ä (k) Above length 1, the strings produced are exactly those 
starting with a white element. Those of length  appear 
after at most  steps.

ä (l) The same strings as in (k) are produced, taking now at 
most  steps.

ä (m) All strings beginning with a black element are 
produced, after at most  steps.

ä (n) The set of strings produced is complicated, and seems 
to include many but not all that do not end with .

ä (o) All strings that do not end in  are produced.

ä (p) All strings are produced, except ones in which every 
element after the first is white.  takes 14 steps. 

ä (q) All strings are produced, with a string of length  with 
 white elements taking  steps.

ä (r) All strings are ultimately produced—which is 
inevitable after the lemmas  and  appear at 
steps 12 and 13. (See the first rule on page 778.)

â Page 800 · Non-standard arithmetic. Goodstein’s result from
page 1163 is true for all ordinary integers. But since it is
independent of the axioms of arithmetic there must be objects
that still satisfy the axioms but for which it is false. It turns out

however that any such objects must in effect be infinite. For
any set of objects that satisfy the axioms of arithmetic must
include all finite ordinary integers, since each of these can be
reached just by using  repeatedly. And the axioms then turn
out to imply that any additional objects must be larger than all
these integers—and must therefore be infinite. But for any
such truly infinite objects operations like  and  cannot be
computed by finite procedures, making it difficult to describe
such objects in an explicit way. Ever since the work of Thoralf
Skolem in 1933 non-standard models of arithmetic have been
discussed, particularly in the context of ultrafilters and
constructs like infinite trees. (See also page 1172.) 

â Page 800 · Reduced arithmetic. (See page 1152.) Statements
that can be proved with induction but are not provable only
with Robinson’s axioms are: ; ;

; ; ;
; ; .

â Page 800 · Generators and relations. In the axiom systems of
page 773, a single variable can stand for any element—much
like a Mathematica pattern object such as . In studying
specific instances of objects like groups one often represents
elements as products of constants or generators, and then for
example specifies the group by giving relations between
these products. In traditional mathematical notation such
relations normally look just like ordinary axioms, but in fact
the variables that appear in them are now assumed to be
literal objects—like  in Mathematica—that are generically
taken to be unequal. (Compare page 1159.)

â Page 801 · Comparison to multiway systems. Operator
systems are normally based on equations, while multiway
systems are based on one-way transformations. But for
multiway systems where each rule  is accompanied by
its reverse , and such pairs are represented say by

, an equivalent operator system can
immediately be obtained either from 

or from (compare page 1172)

where now objects like  and  are treated as constants—
essentially functions with zero arguments. With slightly more
effort multiway systems with ordinary one-way rules can
also be converted to operator systems. Converting from
operator systems to multiway systems is more difficult,
though ultimately always possible (see page 1156).

As discussed on page 898, one can set up operator evolution
systems similar to symbolic systems (see page 103) that have

n
2 n - 1
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n m n+m - 1

n m
n+m - 1
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n+m - 1
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x

p ! q
q ! p

"AAB" · "BBAA"

Apply[Equal,
Map[Fold[#2[#1] &, x, Characters[#]] &, rules, {2}], {1}]

Append[Apply[Equal,
Map[( Fold[f , First[#], Rest[#]] &)[Characters[#]] &,

rules, {2}], {1}], f [f [a, b], c] 2 f [a, f [b, c]]]

"A" "B"
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essentially the same relationship to operator systems as
sequential substitution systems do to multiway systems. (See
also page 1172.)

â Page 802 · Operator systems. One can represent the possible
values of expressions like  by rule numbers
analogous to those used for cellular automata. Specifying an
operator  (taken in general to have  arguments with 
possible values) by giving the rule number  for ,
the rule number for an expression with variables  can be
obtained from

â Truth tables. The method of finding results in logic by
enumerating all possible combinations of truth values seems
to have been rediscovered many times since antiquity. It
began to appear regularly in the late 1800s, and became
widely known after its use by Emil Post and Ludwig
Wittgenstein in the early 1920s.

â Page 803 · Proofs of axiom systems. One way to prove that an
axiom system can reproduce all equivalences for a given
operator is to show that its axioms can be used to transform
any expression to and from a unique standard form. For then
one can start with an expression, convert it to standard form,
then convert back to any expression that is equivalent. We saw
on page 616 that in ordinary logic there is a unique DNF
representation in terms of ,  and  for any expression,
and in 1921 Emil Post used essentially this to give the first
proof that an axiom system like the first one on page 773 can
completely reproduce all theorems of logic. A standard form in
terms of  can be constructed essentially by direct
translation of DNF; other methods can be used for the various
other operators shown. (See also page 1175.)

Given a particular axiom system that one knows reproduces
all equivalences for a given operator one can tell whether a
new axiom system will also work by seeing whether it can be
used to derive the axioms in the original system. But often
the derivations needed may be very long—as on page 810.
And in fact in 1948 Samuel Linial and Emil Post showed that
in general the problem is undecidable. They did this in effect
by arguing (much as on page 1169) that any multiway system
can be emulated by an axiom system of the form on page 803,
then knowing that in general it is undecidable whether a
multiway system will ever reach some given result. (Note
that if an axiom system does manage to reproduce logic in
full then as indicated on page 814 its consequences can
always be derived by proofs of limited length, if nothing else
by using truth tables.)

Since before 1920 it has been known that one way to disprove
the validity of a particular axiom system is to show that with

 truth values it allows additional operators (see page
805). (Note that even if it works for all finite  this does not
establish its validity.) Another way to do this is to look for
invariants that should not be present—seeing if there are
features that differ between equivalent expressions, yet are
always left the same by transformations in the axiom system.
(Examples for logic are axiom systems which never change
the size of an expression, or which are of the form 
where  begins or ends with .) 

â Junctional calculus. Expressions are equivalent when
 is the same, and this canonical form

can be obtained from the axiom system of page 803 by
flattening using , sorting using ,
and removing repeats using . The operator can be
either  or  (8 or 14). With  there are 9 operators that
yield the same results:

With  there are 3944 such operators (see below). No single
axiom can reproduce all equivalences, since such an axiom
must of the form , yet  cannot contain variables
other than , and so cannot for example reproduce .

â Equivalential calculus. Expressions with variables  are
equivalent if they give the same results for

With  variables, there are thus  equivalence classes of
expressions (compared to  for ordinary logic). The
operator can be either  or  (6 or 9). With  there
are no operators that yield the same results; with 

 work (see
below). The shortest axiom system that works up to  is

. With modus ponens as the rule of inference, the
shortest single-axiom system that works is known to be

. Note that equivalential calculus
describes the smallest non-trivial group, and can be viewed
as an extremely minimal model of algebra. 

â Implicational calculus. With  the operator can be
either 2 or 11 ( ), with  , and
with  any of 16 possibilities. (Operators exist for any

.) No single axiom, at least with up to 7 operators and 4
variables, reproduces all equivalences. With modus ponens
as the rule of inference, the shortest single-axiom system
that works is known to be . Using
the method of page 1151 this can be converted to the
equational form

f [f [p, q], p]

f n k
u f [p, q, ?]

vars

With[{m = Length[vars]}, FromDigits[
Block[{f = Reverse[IntegerDigits[u, k, kn]]0FromDigits[

{##}, k] + 11 &}, Apply[Function[Evaluate[vars], expr],
Reverse[Array[IntegerDigits[# - 1, k, m] &, km]], {1}]], k]]

And Or Not

Nand

k > 2
k

{expr 2 a}
Flatten[expr] a

Union[Level[expr, {-1}]]

( aÆb)Æc 2 aÆ ( bÆc) aÆb 2 bÆa
aÆa 2 a

And Or k = 3

{13203, 15633, 15663, 16401,
17139, 18063, 19539, 19569, 19599}

k = 4

expr 2 a expr
a aÆb Ð bÆa

vars

Mod[Map[Count[expr, #, {-1}] &, vars], 2]

n 2n

22n

Xor Equal k = 3
k = 4

{458142180, 1310450865, 2984516430, 3836825115}

k = 2
{( aÆb)Æa Ð b}

{( aÆb)Æ ( ( cÆb)Æ ( aÆc))}

k = 2
Implies k = 3 {2694, 9337, 15980}

k = 4
k

{( ( aÆb)Æc)Æ ( ( cÆa)Æ ( d Æa))}

{( ( aÆb)Æc)Æ ( ( cÆa)Æ ( d Æa)) Ð d Æd,
( aÆa)Æb Ð b, ( aÆb)Æb Ð ( bÆa)Æa}
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from which the validity of the axiom system in the main text
can be established. 

â Page 803 · Operators on sets. There is always more than one
operator that yields a given collection of equivalences. So for
ordinary logic both  and  work. And with  any
of the 12 operators

also turn out to work. One can see why this happens by
considering the analogy between operations in logic and
operations on sets. As reflected in their traditional
notations—and emphasized by Venn diagrams—  ( ), 
( ) and  correspond directly to  ( ), 
( ) and . If one starts from the single-element
set  then applying ,  and 
one always gets either  or . And applying

 to these two elements gives
the same results and same equivalences as  applied to

 and . But if one uses instead  then starts
with  and  one gets any of  and in
general with  one gets any of the  elements in
the powerset 

But applying  to these
elements still always produces the same equivalences as with

. Yet now . And so one therefore has a
representation of Boolean algebra of size . For ordinary
logic based on  it turns out that there are no other finite
representations (though there are other infinite ones). But if
one works, say, with  then there are for example
representations of size 3 (see above). And the reason for this
is that with  the function 
corresponding to  only ever gets to the 3 elements

. Indeed, in general with operators ,
 and  one gets to  elements, while with operators
 and  one gets to  elements.

(One might think that one could force there only ever to be
two elements by adding an axiom like .
But all this actually does is to force there to be only two
objects analogous to  and .)

â Page 805 · Implementation. Given an axiom system in the
form  one can find rule
numbers for the operators  with  values for each
variable that are consistent with the axiom system by using

For  this involves checking nearly  or 4 billion cases,
though many of these can often be avoided, for example by
using analogs of the so-called Davis-Putnam rules. (In
searching for an axiom system for a given operator it is in
practice often convenient first to test whether each candidate
axiom holds for the operator one wants.) 

â Page 805 · Properties. There are  possible forms for
binary operators with  possible values for each argument.
There is always at least some operator that satisfies the
constraints of any given axiom system—though in a case
like  it has . Of the 274,499 axiom systems of the
form  where  involves  up to 6 times, 32,004
allow only operators , while 964 allow only . The
only cases of 2 or less operators that appear with  are

. (See
page 1174.)

â Page 806 · Algebraic systems. Operator systems can be
viewed as algebraic systems of the kind studied in
universal algebra (see page 1150). With a single two-
argument operator (such as ) what one has is in general
known as a groupoid (though this term means something
different in topology and category theory); with two such
operators a ringoid. Given a particular algebraic system, it
is sometimes possible—as we saw on page 773—to reduce
the number of operators it involves. But the number of
systems that have traditionally been studied in
mathematics and that are known to require only one
2-argument operator are fairly limited. In addition to basic
logic, semigroups and groups, there are essentially only the
rather obscure examples of semilattices, with axioms

, central groupoids,
with axioms , and squags (quasigroup
representations of Steiner triple systems), with axioms

 or equivalently
. (Ordinary quasigroups

are defined by  with ,  unique for
given , —so that their table is a Latin square; their
axioms can be set up with 3 operators as

.) 

Pages 773 and 774 indicate that most axiom systems in
mathematics involve operators with at most 2 arguments
(there are exceptions in geometry). (Constants such as  or 
can be viewed as 0-argument operators.) One can
nevertheless generalize say to polyadic groups, with
3-argument composition and analogs of associativity such as

Another example is the cellular automaton axiom system of
page 794; see also page 886. (A perhaps important

Nand Nor k = 4

{1116699, 169585339, 290790239, 459258879,
1090522958, 1309671358, 1430343258, 1515110058,
2184380593, 2575151445, 2863760025, 2986292093}

And © Or
ª Not Intersection Å Union
Ä Complement

{1} Union Intersection Complement
{} {1}

Complement[s, Intersection[a, b]]
a Ñ b

True False s = {1, 2}
{1} {2} {{}, {1}, {2}, {1, 2}}

s = Range[n] 2n

Distribute[Map[{{}, {#}} &, s], List, List, List, Join]

Complement[s, Intersection[a, b]]

a Ñ b k = 2n

2n

Nand

Implies

s = {1, 2} Union[Complement[s, a], b]
a ¶ b

{{1}, {2}, {1, 2}} Implies
And Or 2n - 1
Xor Equal 2^ ( 2 Floor[n/2])

a 2 b ª b 2 c ª c 2 a

True False

{f [a, f [a, a]] Ð a, f [a, b] Ð f [b, a]}
f [x, y] k

Module[{c, v}, c = Apply[Function,
{v = Union[Level[axioms, {-1}]], Apply[And, axioms]}];

Select[Range[0, kk2

- 1], With[{u = IntegerDigits[#, k, k2]},
Block[{f}, f [x_, y_] := u0-1 - k x - y1;
Array[c, Table[k, {Length[v]}], 0, And]]] &]]

k = 4 164

kk2

k

a Ð b k = 1
{? Ð a} ? Æ

{6, 9} {1, 7}
k = 2

{{}, {10}, {12}, {1, 7}, {3, 12}, {5, 10}, {6, 9}, {10, 12}}

Æ

{aÆ ( bÆc) Ð ( aÆb)Æc, aÆb Ð bÆa, aÆa Ð a}
{( bÆa)Æ ( aÆc) Ð b}

{aÆb Ð bÆa, aÆa Ð a, aÆ ( aÆb) Ð b}
{aÆ ( ( bÆ ( bÆ ( ( ( cÆc)Æd)Æc)))Æa) Ð d}

{aÆc Ð b, d Æa Ð b} c d
a b

{a 
aÆb Ð b, aÆb�Ö �b Ð a, aÆ ( a 
b) Ð b, ( a�Ö �b)Æb Ð a}

1 Ë

f [f [a, b, c], d, e] Ð f [a, f [b, c, d], e] Ð f [a, b, f [c, d, e]]
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generalization is to have expressions that are arbitrary
networks rather than just trees.) 

â Symbolic systems. By introducing constants (0-argument
operators) and interpreting  as function application one
can turn any symbolic system such as 
from page 103 into an algebraic system such as

. Doing this for the combinator system
from page 711 yields the so-called combinatory algebra

.

â Page 806 · Groups and semigroups. With  possible values
for each variable, the forms of operators allowed by axiom
systems for group theory and semigroup theory correspond
to multiplication tables for groups and semigroups with 
elements. Note that the first group that is not commutative
(Abelian) is the group  with  elements. The total
number of commutative groups with  elements is just 

(Relabelling of elements makes the number of possible
operator forms up to  times larger.) (See also pages 945,
1153 and 1173.)

â Forcing of operators. Given a particular set of forms for
operators one can ask whether an axiom system can be found
that will allow these but no others. As discussed in the note
on operators on sets on page 1171 some straightforwardly
equivalent forms will always be allowed. And unless one
limits the number of elements  it is in general undecidable
whether a given axiom system will allow no more than a
given set of forms. But even with fixed  it is also often not
possible to force a particular set of forms. And as an example
of this one can consider commutative group theory. The basic
axioms for this allow forms of operators corresponding to
multiplication tables for all possible commutative groups
(see note above). So to force particular forms of operators
would require setting up axioms satisfied only by specific
commutative groups. But it turns out that given the basic
axioms for commutative group theory any non-trivial set of
additional axioms can always be reduced to a single axiom of
the form  (where exponentiation is repeated
application of ). Yet even given a particular number of
elements , there can be several distinct groups satisfying

 for a given exponent . (The groups can be written as
products of cyclic ones whose orders correspond to the
possible factors of .) (Something similar is also known in
principle to be true for general groups, though the hierarchy
of axioms in this case is much more complicated.)

â Model theory. In model theory each form of operator that
satisfies the constraints of a given axiom system is called a

model of that axiom system. If there is only one inequivalent
model the axiom system is said to be categorical—a notion
discussed for example by Richard Dedekind in 1887. The
Löwenheim-Skolem theorem from 1915 implies that any
axiom system must always have a countable model. (For an
operator system such a model can have elements which are
simply equivalence classes of expressions equal according to
the axioms.) So this means that even if one tries to set up an
axiom system to describe an uncountable set—such as real
numbers—there will inevitably always be extra countable
models. Any axiom system that is incomplete must always
allow more than one model. The model intended when the
axiom system was originally set up is usually called the
standard model; others are called non-standard. In arithmetic
non-standard models are obscure, as discussed on page 1169.
In analysis, however, Abraham Robinson pointed out in 1960
that one can potentially have useful non-standard models, in
which there are explicit infinitesimals—much along the lines
suggested in the original work on calculus in the late 1600s.

â Pure equational logic. Proofs in operator systems always
rely on certain underlying rules about equality, such as the
equivalence of  and , and of  and

. And as Garrett Birkhoff showed in 1935, any
equivalence between expressions that holds for all possible
forms of operator must have a finite proof using just these
rules. (This is the analog of Gödel’s Completeness Theorem
from page 1152 for pure predicate logic.) But as soon as one
introduces actual axioms that constrain the operators this is
no longer true—and in general it can be undecidable whether
or not a particular equivalence holds.

â Multiway systems. One can use ideas from operator systems
to work out equivalences in multiway systems (compare page
1169). One can think of concatenation of strings as being an
operator, in terms of which a string like  can be written

. (The arguments to  should strictly be distinct
constants, but no equivalences are lost by allowing them to be
general variables.) Assuming that the rules for a multiway
system come in pairs , , like ,

, these can be written as statements about
operators, like . The basic properties of
concatenation then also imply that .
And this means that the possible forms for the operator 
correspond to possible semigroups. Given a particular such
semigroup satisfying axioms derived from a multiway system,
one can see whether the operator representations of particular
strings are equal—and if they are not, then it follows that the
strings can never be reached from each other through
evolution of the multiway system. (Such operator
representations are a rough analog for multiway systems of

Æ

−[x][y] ! x[x[y]]

(−Æa)Æb Ð aÆ ( aÆb)

{( (�Æa)Æb)Æc Ð ( aÆc)Æ ( bÆc), (�Æa)Æb Ð a}

k

k

S3 k = 6
k

Apply[Times,
Map[PartitionsP[Last[#]] &, FactorInteger[k]]]

k !

k

k

an 2 1
Æ

k
an 2 1 n

n

u 2 v v 2 u u 2 v
u 2 v /. a ! b

"ABB"
f [f [a, b], b] Æ

p ! q q ! p "AB" ! "AAA"
"AAA" ! "AB"

f [a, b] 2 f [f [a, a], a]
f [f [a, b], c] 2 f [a, f [b, c]]

Æ
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truth tables.) As an example, with the multiway system
 some possible forms of operators are shown

below. (In this case these are the commutative semigroups.
With , elements 6 out of the total of 8 possible semigroups
appear; with , 63 out of 113, and with , 1140 out of
3492—all as shown on page 805.) (See also page 952.)

Taking  to be each of these operators, one can work out a
representation for any given string like  by for
example constructing the expression  and
finding its value for each of the  possible pairs of values of

 and . Then for each successive operator, the sets of strings
where the arrays of values are the same are as shown below.

Ultimately the sets of strings equivalent under the multiway
system are exactly those containing particular numbers of
black and white elements. But as the pictures above suggest,
only some of the distinctions between sets of strings are ever
captured when any specific form for the operator is used.

Just as for operator systems, any bidirectional multiway
system will allow a certain set of operators. (When there are
multiple rules in the multiway system, tighter constraints are
obtained by combining them with .) And the pattern of
results for simple multiway systems is roughly similar to
those on page 805 for operator systems—although, for
example, the associativity of concatenation makes it
impossible for example to get the operators for  and
basic logic. 

â Page 806 · Logic in languages. Human languages always
seem to have single words for AND, OR and NOT. A few have
distinct words for OR and XOR: examples are Latin with vel
and aut and Finnish with vai and tai. NOR is somewhat rare,
though Dutch has noch and Old English ne. (Modern English
has only the compound form neither ... nor.) But remarkably
enough it appears that no ordinary language has a single
word for NAND. The reason is not clear. Most people seem to
find it difficult to think in terms of NAND (NAND is for
example not associative, but then neither is NOR). And NAND

on the face of it rarely seems useful in everyday situations.

But perhaps these are just reflections of the historical fact that
NAND has never been familiar from ordinary languages. 

Essentially all computer languages support AND, OR and
NOT as ways to combine logical statements; many support
AND, OR and XOR as bitwise operations. Circuit design
languages like Verilog and VHDL also support NAND, NOR

and XNOR. (NAND is the operation easiest to implement with
CMOS FETs—the transistors used in most current chips; it
was also implemented by pentode vacuum tubes.) Circuit
designers sometimes use the linguistic construct “p nand q”. 

The Laws of Form presented by George Spencer Brown in
1969 introduce a compact symbolic notation for NAND with
any number of arguments and in effect try to develop a way
of discussing NAND and reasoning directly in terms of it.
(The axioms normally used are essentially the Sheffer ones
from page 773.)

â Page 806 · Properties. Page 813 lists theorems satisfied by
each function.  are commutative
(orderless) so that , while 
are associative (flat), so that . (Compare
page 886.)

â Notations. Among those in current use are (highlighted
ones are supported directly in Mathematica):

The grouping of terms is normally inferred from precedence
of operators (typically ordered , , , , , , , ),
or explicitly indicated by parentheses, function brackets, or
sometimes nested underbars or dots. So-called Polish
notation given second-to-last above avoids all explicit
delimiters (see page 896). 

â Page 807 · Universal logical functions. The fact that
combinations of  or  are adequate to reproduce any
logical function was noted by Charles Peirce around 1880,
and became widely known after the work of Henry Sheffer in
1913. (See also page 1096.)  and  are the only 2-input
functions universal in this sense. (  can for example

"AB" · "BA"

k = 2
k = 3 k = 4

(a) (b) (c) (d) (e) ( f ) (g) (h) ( i)

Æ

"ABAA"
f [f [f [a, b], a], a]

k2

a b

… …

… … …

… … …

… … … …

…

… … …

… … … …

… … …

…

(i)

(h)

(g)

( f )

(e)

(d)

(c)

(b)

(a)

And

Nand

{0, 1, 6, 7, 8, 9, 14, 15}
aÆb Ð bÆa {0, 6, 8, 9, 10, 12, 14, 15}

aÆ ( bÆc) Ð ( aÆb)Æc

True T 1 � Û �

False F 0 � Ú �

Not[p] ¨ p p
_

~p pç -p ! p Ü p N p �(negation)

And[p, q] p © q p &�q p Þq p q p && q K p q �(conjunction)

Or[p, q] p ª q p + q p || q A p q �(disjunction)

Xor[p, q] p Ò q p«q p 
 q p è q J p q �( inequivalence)

Implies[p, q] p ¶ q p ß q p º q If [p, q] C p q �(material implication)

Equal[p, q] p Ð q p ¸ q p Ý q p · q p ~ q E p q �(material equivalence; 
xnor)

Nand[p, q] p Ñ q p Ï q p�Ü q (p�q) D p q �(Sheffer stroke; 
alternative denial)

Nor[p, q] p Ó q páq X p q �( joint denial)

2 ¨ Ñ © Ò Ó ª ¶

Nand Nor

Nand Nor
{Equal}
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reproduce only functions ,  only
functions , and  only
functions .) For 3-input functions,
corresponding to elementary cellular automaton rules, 56 of
the 256 possibilities turn out to be universal. Of these, 6 are
straightforward generalizations of  and . Other
universal functions include rules 1, 45 and 202
( ), but not 30, 60 or 110. For large  roughly 1/4
of all -input functions are universal. (See also page 1175.) 

â Page 808 · Searching for logic. For axiom systems of the form
 one finds: 

 allows the  operator 15552 for
which the NAND theorem  is not true.

 allows the  operator 95356335
for which even  is not true. Of the 100 cases that
remain when , the 25 inequivalent under renaming of
variables and reversing arguments of  are

Of these I was able in 2000—using automated theorem
proving—to show that the ones given as (g) and (h) in the
main text are indeed axiom systems for logic. (My proof
essentially as found by Waldmeister is given on page 810.) 

If one adds  to any of the other 23 axioms above
then in all cases the resulting axiom system can be shown to
reproduce logic. But from any of the 23 axioms on their own I
have never managed to derive . Indeed, it seems
difficult to derive much at all from them—though for
example I have found a fairly short proof of 
from .

It turns out that the first of the 25 axioms allows the 
operator  and so cannot be
logic. Axioms 3, 19 and 23 allow similar operators, leaving 19
systems as candidate axioms for logic.

It has been known since the 1940s that any axiom system for
logic must have at least one axiom that involves more than 2
variables. The results above now show that 3 variables
suffice. And adding more variables does not seem to help.
The smallest axiom systems with more than 3 variables that
work up to  are of the form .
All turn out also to work at , but fail at . And with 6
NANDs (as in (g) and (h)) no system of the form 
works even up to . 

For axiom systems of the form :

With 2 variables the inequivalent cases that remain are

but all of these allow the  operator

and so cannot correspond to basic logic. With 3 variables, all
32 cases with 6 NANDs are equivalent to ,
which is axiom system (f) in the main text. With 7 NANDs
there are 8 inequivalent cases:

and of these at least 5 and 6 can readily be proved to be
axioms for logic.

Any axiom system must consist of equivalences valid for the
operator it describes. But the fact that there are fairly few
short such equivalences for  (see page 818) implies that
there can be no axiom system for  with 6 or less NANDs
except the ones discussed above. 

â Two-operator logic. If one allows two operators then one
can get standard logic if one of these operators is forced to be

 and the other is forced to be ,  or —or in
fact any of operators 1, 2, 4, 7, 8, 11, 13, 14 from page 806.

A simple example that allows  and either  or  is the
Robbins axiom system from page 773. Given the first two
axioms (commutativity and associativity) it turns out that no
shorter third axiom will work in this case (though ones such as

 of the same size do work).

Much as in the single-operator case, to reproduce logic two pairs
of operators must be allowed for , none for , 12 for

, and so on. Among single axioms, the shortest that works
up to  is . The shortest that

{9, 10, 12, 15} {Implies}
{10, 11, 12, 13, 14, 15} {Equal, Implies}
{8, 9, 10, 11, 12, 13, 14, 15}

Nand Nor

If[a 2 1, b, c] n
n

{? Ð a}

2 variables 3 variables
number of Æ

total systems
allow Ñ

allow only Ñ etc. for k=2
allow only Ñ etc. for k<3
allow only Ñ etc. for k<4

2 3 4 5 6

4 16 80 448 2688
0 5 44 168 1532
0 0 2 12 76
0 0 0 0 0
0 0 0 0 0

2 3 4 5 6

54 405 3402 30618 288684
0 9 124 744 8764
0 0 12 84 868
0 0 8 16 296
0 0 0 0 100

{( ( bÆb)Æa)Æ ( aÆb) Ð a} k = 3
(pÆp)Æq Ð ( pÆq)Æq

{( ( ( bÆa)Æc)Æa)Æ ( aÆc) Ð a} k = 4
pÆq Ð qÆp

k = 4
Æ

{(b Æ (b Æ (aÆa))) Æ (aÆ (b Æc)),
(b Æ (b Æ (aÆa))) Æ (aÆ (cÆb)), (b Æ (b Æ (aÆb))) Æ (aÆ (b Æc)),
(b Æ (b Æ (aÆb))) Æ (aÆ (cÆb)), (b Æ (b Æ (aÆc))) Æ (aÆ (cÆb)),
(b Æ (b Æ (b Æa))) Æ (aÆ (b Æc)), (b Æ (b Æ (b Æa))) Æ (aÆ (cÆb)),
(b Æ (b Æ (cÆa))) Æ (aÆ (b Æc)), (b Æ ( (aÆb) Æb)) Æ (aÆ (b Æc)),
(b Æ ( (aÆb) Æb)) Æ (aÆ (cÆb)), (b Æ ( (aÆc) Æb)) Æ (aÆ (cÆb)),
((b Æc) Æa) Æ (b Æ (b Æ (aÆb))), ( (b Æc) Æa) Æ (b Æ (b Æ (aÆc))),
( (b Æc) Æa) Æ (b Æ ( (aÆa) Æb)), ((b Æc) Æa) Æ (b Æ ( (aÆb) Æb)),
((b Æc) Æa) Æ (b Æ ( (aÆc) Æb)), ((b Æc) Æa) Æ (b Æ ( (b Æa) Æb)),
((b Æc) Æa) Æ (b Æ ( (cÆa) Æb)), ((b Æc) Æa) Æ (cÆ (cÆ (aÆb))),
( (b Æc) Æa) Æ (cÆ (cÆ (aÆc))), ( (b Æc) Æa) Æ (cÆ ( (aÆa) Æc)),
((b Æc) Æa) Æ (cÆ ( (aÆb) Æc)), ((b Æc) Æa) Æ (cÆ ( (aÆc) Æc)),
((b Æc) Æa) Æ (cÆ ( (b Æa) Æc)), ((b Æc) Æa) Æ (cÆ ( (cÆa) Æc))}

aÆb Ð bÆa

pÆq Ð qÆp

(pÆp)Æ ( pÆq) Ð p
{( bÆ ( bÆ ( bÆa)))Æ ( aÆ ( bÆc)) Ð a}

k = 6
1885760537655023865453442036

k = 2 {( ( ( bÆc)Æd)Æa)Æ ( aÆd) Ð a}
k = 3 k = 4

{? Ð a}
k = 4

{? Ð a, aÆb Ð bÆa}

2 variables 3 variables
number of Æ

total systems
allow Ñ

allow only Ñ etc. for k=2
allow only Ñ etc. for k<3
allow only Ñ etc. for k<4

4 5 6 7 8

4 16 80 448 2688
0 5 44 168 1532
0 4 20 160 748
0 0 0 64 16
0 0 0 48 16

4 5 6 7 8

54 405 3402 30618 288684
0 9 124 744 8764
0 8 80 736 6248
0 0 32 416 2752
0 0 32 384 2368

{( aÆb)Æ ( aÆ ( bÆ ( aÆb))),
( aÆb)Æ ( aÆ ( bÆ ( bÆb))), ( aÆ ( bÆb))Æ ( aÆ ( bÆ ( bÆb)))}

k = 6
1885760537655125429738480884

(aÆb)Æ ( aÆ ( bÆc))

{(aÆa) Æ (b Æ (b Æ (aÆc))), (aÆb) Æ (aÆ (b Æ (aÆb))), (aÆb) Æ (aÆ (b Æ (aÆc))),
(aÆb) Æ (aÆ (b Æ (b Æb))), (aÆb) Æ (aÆ (b Æ (b Æc))),
(aÆb) Æ (aÆ (b Æ (cÆc))), (aÆb) Æ (aÆ (cÆ (aÆc))), (aÆb) Æ (aÆ (cÆ (cÆc)))}

Nand
Nand

Not And Or Implies

Not And Or

f [g[f [a, g[f [a, b]]]], g[g[b]]] Ð b

k = 2 k = 3
k = 4

k = 2 (¨ (¨ (¨ b ª a) ª ¨ ( a ª b))) Ð a
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works up to  is . It is
known, however, that at least 3 variables must appear in order
to reproduce logic, and an example of a single axiom with 4
variables that has been found recently to work is

.

â Page 808 · History. (See page 1151.) (c) was found by Henry
Sheffer in 1913; (e) by Carew Meredith in 1967. Until this
book, very little work appears to have been done on finding
short axioms for logic in terms of . Around 1949
Meredith found the axiom system

In 1967 George Spencer Brown found (see page 1173)

and in 1969 Meredith also gave the system 

â Page 812 · Theorem distributions. The picture below shows
which of the possible theorems from page 812 hold for each
of the numbered standard mathematical theories from page
805. The theorem close to the right-hand end valid in many
cases is . The lack of regularity in this
picture can be viewed as a sign that it is difficult to tell which
theorems hold, and thus in effect to do mathematics.  

â Page 814 · Multivalued logic. As noted by Jan Lukasiewicz
and Emil Post in the early 1920s, it is possible to generalize
ordinary logic to allow  values , say with
0 being , and 1 being . Standard operations in logic can
be generalized as , ,

, ,
,

. An alternative
generalization for  is .
The function  used in the main
text turns out to be universal for any . Axiom systems can be
set up for multivalued logic, but they are presumably more
complicated than for ordinary  logic. (Compare page 1171.)

The idea of intermediate truth values has been discussed
intermittently ever since antiquity. Often—as in the work of
George Boole in 1847—a continuum of values between 0 and
1 are taken to represent probabilities of events, and this is the
basis for the field of fuzzy logic popular since the 1980s.

â Page 814 · Proof lengths in logic. As discussed on page 1170
equivalence between expressions can always be proved by
transforming to and from canonical form. But with 

variables a DNF-type canonical form can be of size —and
can take up to at least  proof steps to reach. And indeed if
logic proofs could in general be done in a number of steps
that increases only like a polynomial in  this would mean
that the NP-complete problem of satisfiability could also be
solved in this number of steps, which seems very unlikely
(see page 768).

In practice it is usually extremely difficult to find the absolute
shortest proof of a given logic theorem—and the exact length
will depend on what axiom system is used, and what kinds
of steps are allowed. In fact, as mentioned on page 1155, if
one does not allow lemmas some proofs perhaps have to
become exponentially longer. The picture below shows in
each of the axiom systems from page 808 the lengths of the
shortest proofs found by a version of Waldmeister (see page
1158) for all 582 equivalences (see page 818) that involve two
variables and up to 3 NANDs on either side.

The longest of these are respectively
 and occur for theorems 

Note that for systems that do not already have it as an axiom,
most theorems use the lemma  which takes
respectively  steps to prove.

â Page 818 · NAND theorems. The total number of expressions
with  NANDs and  variables is: 
(see page 897). With  and  from 0 to 7 the number of
these  for all values of variables is

, with the first few distinct ones
being (see page 781)

k = 3 (¨ (¨ ( a ª b) ª ¨ b) ª ¨ (¨ a ª a)) Ð b

{(¨ (¨ ( c ª b) ª ¨ a) ª ¨ (¨ (¨ d ª d) ª ¨ a ª c)) Ð a}

Nand

{( aÆ ( bÆc))Æ ( aÆ ( bÆc)) Ð
( ( cÆa)Æa)Æ ( ( bÆa)Æa), ( aÆa)Æ ( bÆa) Ð a}

{( aÆa)Æ ( ( bÆb)Æb) Ð a,
aÆ ( bÆc) Ð ( ( ( cÆc)Æa)Æ ( ( bÆb)Æa))Æ ( ( ( cÆc)Æa)Æ ( ( bÆb)Æa))}

{aÆ ( bÆ ( aÆc)) Ð aÆ ( bÆ ( bÆc)), ( aÆa)Æ ( bÆa) Ð a, aÆb Ð bÆa}

( pÆp)Æp Ð pÆ ( pÆp)

k Range[0, 1, 1/ ( k - 1)]
False True

Not[a_] = 1 - a And[a_, b_] = Min[a, b]
Or[a_, b_] = Max[a, b] Xor[a_, b_] = Abs[a - b]
Equal[a_, b_] = 1 -Abs[a - b]
Implies[a_, b_] = 1 -UnitStep[a - b] ( a - b)

Not Not[a_] := Mod[( k - 1) a + 1, k] / ( k - 1)
Nand[a_, b_] := Not[And[a, b]]

k

k = 2

n

2n

2n

n

0

20

40

0 100 200 300 400 500

0

20

40

60

0 100 200 300 400 500

0
20
40

0 100 200 300 400 500

0

20

40

60

80

0 100 200 300 400 500

0

20

40

60

0 100 200 300 400 500

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500

0
20
40

0 100 200 300 400 500

(e)

(d)

(c)

(b)

(a)

(h)

(g)

( f )

{57, 94, 42, 57, 55, 53, 179, 157}

{( ( (aÑ a) Ñ b) Ñ b) Ð ( ( (aÑ b) Ñ a) Ñ a),
(aÑ (aÑ (aÑ a))) Ð (aÑ ( (aÑ b) Ñ b)), (( (aÑ a) Ñ a) Ñ a) Ð

( ( (aÑ a) Ñ b) Ñ a), (( (aÑ a) Ñ b) Ñ b) Ð ( ( (aÑ b) Ñ a) Ñ a),
(aÑ ( (b Ñ b) Ñ a)) Ð (b Ñ ( (aÑ a) Ñ b)), ((aÑ a) Ñ a) Ð ( (b Ñ b) Ñ b),
((aÑ a) Ñ a) Ð ( (b Ñ b) Ñ b), ((aÑ a) Ñ a) Ð ( (b Ñ b) Ñ b)}

( a Ñ b) Ð ( b Ñ a)
{6, 1, 8, 49, 8, 1, 119, 118}

n s Binomial[2 n, n] sn+1 / ( n+ 1)
s = 2 n

True
{0, 0, 4, 0, 80, 108, 2592, 7296}

{( p Ñ p) Ñ p, ( ( ( p Ñ p) Ñ p) Ñ p) Ñ p, ( ( ( p Ñ p) Ñ p) Ñ q) Ñ q}
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The number of unequal expressions obtained is
 (compare page 1096), with the first

few distinct ones being 

Most of the axioms from page 808 are too long to appear
early in the list of theorems. But those of system (d) appear at
positions  and those of (e) at .

(See also page 1096.)

â Page 819 · Finite axiomatizability. It is known that the axiom
systems (such as Peano arithmetic and set theory) given with
axiom schemas on pages 773 and 774 can be set up only with
an infinite number of individual axioms. But because such
axioms can be described by schemas they must all have
similar forms, so that even though the definition in the main
text suggests that each corresponds to an interesting theorem
these theorems are not in a sense independently interesting.
(Note that for example the theory of specifically finite groups
cannot be set up with a finite number even of schemas—or
with any finite procedure for checking whether a given
candidate axiom should be included.) 

â Page 820 · Empirical metamathematics. One can imagine a
network representing some field of mathematics, with nodes
corresponding to theorems and connections corresponding to
proofs, gradually getting filled in as the field develops.
Typical rough characterizations of mathematical results—
independent of their detailed history—might then end up
being something like the following:

ä lemma: short theorem appearing at an intermediate stage 
in a proof

ä corollary: theorem connected by a short proof to an 
existing theorem

ä easy theorem: theorem having a short proof

ädifficult theorem: theorem having a long proof

ä elegant theorem: theorem whose statement is short and 
somewhat unique

ä interesting theorem (see page 817): theorem that cannot 
readily be deduced from earlier theorems, but is well 
connected

äboring theorem: theorem for which there are many others 
very much like it

äuseful theorem: theorem that leads to many new ones 

äpowerful theorem: theorem that substantially reduces the 
lengths of proofs needed for many others

ä surprising theorem: theorem that appears in an otherwise 
sparse part of the network of theorems

ädeep theorem: theorem that connects components of the 
network of theorems that are otherwise far away

ä important theorem: theorem that allows a broad new area 
of the network to be reached.

The picture below shows the network of theorems associated
with Euclid’s Elements. Each stated theorem is represented by
a node connected to the theorems used in its stated proof.
(Only the shortest connection from each theorem is shown
explicitly.) The axioms (postulates and common notions) are
given in the first column on the left, and successive columns
then show theorems with progressively longer proofs.
(Explicit annotations giving theorems used in proofs were
apparently added to editions of Euclid only in the past few
centuries; the picture below extends the usual annotations in
a few cases.) The theorem with the longest proof is the one
that states that there are only five Platonic solids. 

â Speedups in other systems. Multiway systems are almost
unique in being able to be sped up just by adding “results”
already derived in the multiway system. In other systems,
there is no such direct way to insert such results into the rules
for the system.

â Character of mathematics. Since at least the early 1900s
several major schools of thought have existed:

äFormalism (e.g. David Hilbert): Mathematics studies formal 
rules that have no intrinsic meaning, but are relevant 
because of their applications or history. 

äPlatonism (e.g. Kurt Gödel): Mathematics involves trying 
to discover the properties of a world of ideal mathematical 
forms, of which we in effect perceive only shadows.

äLogicism (e.g. Gottlob Frege, Bertrand Russell): 
Mathematics is an elaborate application of logic, which is 
itself fundamental.

ä Intuitionism (e.g. Luitzen Brouwer): Mathematics is a 
precise way of handling ideas that are intuitive to the 
human mind.

The results in this book establish a new point of view
somewhere between all of these.

â Invention versus discovery in mathematics. One generally
considers things invented if they are created in a somewhat
arbitrary way, and discovered if they are identified by what

{2, 3, 3, 7, 10, 15, 12, 16}

{p, p Ñ p, p Ñ q, (p Ñ p) Ñ p, (p Ñ q) Ñ p, (p Ñ p) Ñ q}

{3, 15, 568} {855, 4}

0 5 10 15 20 25 30



T H E  P R I N C I P L E  O F  C O M P U T A T I O N A L  E Q U I V A L E N C E N O T E S  F O R  C H A P T E R  1 2

1177

seems like a more inexorable process. The results of this
section thus strongly suggest that the basic directions taken
by mathematics as currently practiced should mostly be
considered invented, not discovered. The new kind of science
that I describe in this book, however, tends to suggest forms
of mathematics that involve discovery rather than invention.

â Ordering of constructs. One can deduce some kind of
ordering among standard mathematical constructs by seeing
how difficult they are to implement in various systems—such
as cellular automata, Turing machines and Diophantine
equations. My experience has usually been that addition is
easiest, followed by multiplication, powers, Fibonacci
numbers, perfect numbers and then primes. And perhaps
this is similar to the order in which these constructs appeared
in the early history of mathematics. (Compare page 640.) 

â Mathematics and the brain. A possible reason for some
constructs to be more common in mathematics is that they
are somehow easier for human brains to manipulate. Typical
human experience makes small positive integers and simple
shapes familiar—so that all human brains are at least well
adapted to such constructs. Yet of the limited set of people
exposed to higher mathematics, different ones often seem to
think in bizarrely different ways. Some think symbolically,
presumably applying linguistic capabilities to algebraic or
other representations. Some think more visually, using
mechanical experience or visual memory. Others seem to
think in terms of abstract patterns, perhaps sometimes with
implicit analogies to musical harmony. And still others—
including some of the purest mathematicians—seem to think
directly in terms of constraints, perhaps using some kind of
abstraction of everyday geometrical reasoning.

In the history of mathematics there are many concepts that
seem to have taken surprisingly long to emerge. And
sometimes these are ones that people still find hard to grasp.
But they often later seem quite simple and obvious—as with
many examples in this book. 

It is sometimes thought that people understand concepts in
mathematics most easily if they are presented in the order in
which they arose historically. But for example the basic
notion of programmability seems at some level quite easy
even for young children to grasp—even though historically it
appeared only recently.

In designing Mathematica one of my challenges was to use
constructs that are at least ultimately easy for people to
understand. Important criteria for this in my experience
include specifying processes directly rather than through
constraints, the explicitness in the representation of input
and output, and the existence of small, memorable,

examples. Typically it seems more difficult for people to
understand processes in which larger numbers of different
things happen in parallel. (Notably,  normally seems
more difficult to understand than .) Tree structures
such as Mathematica expressions are fairly easy to
understand. But I have never found a way to make general
networks similarly easy, and I am beginning to suspect that
they may be fundamentally difficult for brains to handle.

â Page 821 · Frameworks. Symbolic integration was in the
past done by a collection of ad hoc methods like substitution,
partial fractions, integration by parts, and parametric
differentiation. But in Mathematica  is now almost
completely systematic, being based on structure theorems for
finding general forms of integrals, and on general
representations in terms of  and other functions. (In
recognizing, for example, whether an expression involving a
parameter can have a pole undecidable questions can in
principle come up, but they seem rare in practice.) Proofs are
essentially always still done in an ad hoc way—with a few
minor frameworks like enumeration of cases, induction, and
proof by contradiction (reductio ad absurdum) occasionally
being used. (More detailed frameworks are used in specific
areas; an example are -  arguments in calculus.) But
although still almost unknown in mainstream mathematics,
methods from automated theorem proving (see page 1157)
are beginning to allow proofs of many statements that can be
formulated in terms of operator systems to be found in a
largely systematic way (e.g. page 810). (In the case of
Euclidean geometry—which is a complete axiom system—
algebraic methods have allowed complete systematization.)
In general, the more systematic the proofs in a particular area
become, the less relevant they will typically seem compared
to the theorems that they establish as true. 

Intelligence in the Universe

â Page 822 · Animism. Attributing abstract human qualities
such as intelligence to systems in nature is a central part of
the idea of animism, discussed on page 1195.

â Page 822 · The weather. Almost all the intricate variations
of atmospheric temperature, pressure, velocity and humidity
that define the weather we see are in the end determined by
fairly simple underlying rules for fluid behavior. (Details of
phase changes in water are also important, as are features of
topography, ocean currents, solar radiation levels and
presumably land use.) Our everyday personal attempts to
predict the weather tend to be based just on looking at local
conditions and then recalling what happened when we saw
these conditions before. But ever since the mid-1800s
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synoptic weather maps of large areas have been available
that summarize conditions in terms of features like fronts
and cyclones. And predictions made by looking at simple
trends in these features tend at least in some situations to
work fairly well. Starting in the 1940s more systematic efforts
to predict weather were made by using computers to run
approximations to fluid equations. The approximations have
improved as larger computers have become available. But
even though millions of discrete samples are now used, each
one typically still represents something much larger then for
example a single cloud. Yet ever since the 1970s, the approach
has had at least some success in making predictions up to
several days in advance. But although there has been gradual
improvement it is usually assumed that—like in the Lorenz
equations—the phenomenon of chaos must make forecasts
that are based on even slightly different initial measurements
eventually diverge exponentially (see page 972). Almost
certainly this does indeed happen in at least some critical
situations. But it seems that over most of a typical weather
map there is no such sensitivity—so that in the end the
difficulties of weather prediction are probably much more a
result of computational irreducibility and of the sophisticated
kinds of computations that the Principle of Computational
Equivalence implies should often occur even in simple fluids. 

â Page 822 · Defining intelligence. The problem of defining
intelligence independent of specific education and culture
has been considered important for human intelligence testing
since the beginning of the 1900s. Charles Spearman
suggested in 1904 that there might be a general intelligence
factor (usually called g) associated with all intellectual tasks.
Its nature was never very clear, but it was thought that its
value could be inferred from performance on puzzles
involving numbers, words and pictures. By the 1980s,
however, there was increasing emphasis on the idea that
different types of human tasks require different types of
intelligence. But throughout the 1900s psychologists
occasionally tried to give general definitions of intelligence—
initially usually in terms of learning or problem-solving
capabilities; later more often in terms of adaptation to
complex environments. 

Particularly starting at the end of the 1800s there was great
interest in whether animals other than humans could be
considered intelligent. The most common general criterion
used was the ability to show behavior based on conceptual or
abstract thinking rather than just simple instincts. More
specific criteria also included ability to use tools, plan
actions, use language, solve logical problems and do
arithmetic. But by the mid-1900s it became increasingly clear
that it was very difficult to interpret actual observations—

and that unrecognized cues could for example often account
for the behavior seen.

When the field of artificial intelligence began in the mid-
1900s there was some discussion of appropriate definitions of
intelligence (see page 1099). Most focused on mathematical
or other problem solving, though some—such as the Turing
test—emphasized everyday conversation with humans. 

â Page 823 · Mimesis. The notion of inanimate analogs of
memory—such as impressions in wax—was discussed for
example by Plato in antiquity. 

â Page 823 · Defining life. Greek philosophers such as
Aristotle defined life by the presence of some form of soul,
and the idea that there must be a single unique feature
associated with life has always remained popular. In the
1800s the notion of a “life force” was discussed—and thought
to be associated perhaps with chemical properties of
protoplasm, and perhaps with electricity. The discovery from
the mid-1800s to the mid-1900s of all sorts of elaborate
chemical processes in living systems led biologists often to
view life as defined by its ability to maintain fixed overall
structure while achieving chemical functions such as
metabolism. When the Second Law of Thermodynamics was
formulated in the mid-1800s living systems were usually
explicitly excluded (see page 1021), and by the 1930s
physicists often considered local entropy decrease a defining
feature of life. Among geneticists and soon mathematicians
self-reproduction was usually viewed as the defining feature
of life, and following the discovery of the structure of DNA
in 1953 it came to be widely believed that the presence of self-
replicating elements must be fundamental to life. But the
recognition that just copying information is fairly easy led in
the 1960s to definitions of life based on the large amounts of
information encoded in its genetic material, and later to ones
based on the apparent difficulty of deriving this information
(see page 1069). And perhaps in part reacting to my
discoveries about cellular automata it became popular in the
1980s to mention adaptation and essential interdependence
of large numbers of different kinds of parts as further
necessary characteristics of life. Yet in the end every single
general definition that has been given both includes systems
that are not normally considered alive, and excludes ones
that are. (Self-reproduction, for example, suggests that flames
are alive, but mules are not.)

One of the features that defines life on Earth is the presence
of DNA, or at least RNA. But as one looks at smaller
molecules they become less specific to living systems. It is
sometimes thought significant that living systems perpetuate
the use of only one chirality of molecules, but actually this
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can quite easily be achieved by various forms of non-
chemical input without life. 

The Viking spacecraft that landed on Mars in the 1970s tried
specific tests for life on soil samples—essentially whether
gases were generated when nutrients were added, whether
this behavior changed if the samples were first heated, and
whether molecules common in terrestrial life were present.
The tests gave confusing results, presumably having to do
not with life, but rather with details of martian soil chemistry

â Origin of life. Fossil traces of living cells have been found
going back more than 3.8 billion years—to perhaps as little as
700 million years after the formation of the Earth. There were
presumably simpler forms of life that preceded the advent of
recognizable cells, and even if life arose more than once it is
unlikely that evidence of this would remain. (One sees many
branches in the fossil record—such as organisms with
dominant symmetries other than fivefold—but all seem to
have the same ancestry.) 

From antiquity until the 1700s it was widely believed that
smaller living organisms arise spontaneously in substances
like mud, and this was not finally disproved until the 1860s.
Controversy surrounding the theory of biological evolution
in the late 1800s dissuaded investigation of non-biological
origins for life, and at the end of the 1800s it was for example
suggested that life on Earth might have arisen from spores of
extraterrestrial origin. In the 1920s the idea developed that
electrical storms in the atmosphere of the early Earth could
lead to production of molecules seen in living systems—and
this was confirmed by the experiment of Stanley Miller and
Harold Urey in 1953. The molecules obtained were
nevertheless still fairly simple—and as it turns out most of
them have now also been found in interstellar space. Starting
in the 1960s suggestions were made for the chemical and
other roles of constituents of the crust as well as atmosphere.
Schemes for early forms of self-replication were invented
based on molecules such as RNA and on patterns in clay-like
materials. (The smallest known system that independently
replicates itself is a mycoplasma bacterium with about
580,000 base pairs and perhaps 470 genes. Viroids can be as
small as 10,000 atoms but require a host for replication.) In
the 1970s it then became popular to investigate complicated
cycles of chemical reactions that seemed analogous to ones
found in living systems. But with the advent of widespread
computer simulations in the 1980s it became clear that all
sorts of features normally associated with life were actually
rather easy to obtain. (See note above.) 

â Page 824 · Self-reproduction. That one can for example make
a mold that will produce copies of a shape has been known

since antiquity (see note above). The cybernetics movement
highlighted the question of what it takes for self-
reproduction to occur autonomously, and in 1952 John von
Neumann designed an elaborate 2D cellular automaton that
would automatically make a copy of its initial configuration
of cells (see page 876). In the course of the 1950s suggestions
of several increasingly simple mechanical systems capable of
self-reproduction were made—notably by Lionel Penrose.
The phenomenon in the main text was noticed around 1961
by Edward Fredkin (see page 877). But while it shows some
of the essence of self-reproduction, it lacks many of the more
elaborate features common in biological self-reproduction. In
the 1980s, however, such features were nevertheless
surprisingly often present in computer viruses and worms.
(See also page 1092.)

â Page 825 · Extraterrestrial life. Conditions thermally and
chemically similar to those on Earth have presumably existed
on other bodies in the solar system. Venus, Mars, Europa (a
moon of Jupiter) and Titan (a moon of Saturn) have for
example all probably had liquid water at some time. But
there is so far no evidence for life now or in the past on any of
these. Yet if life had arisen one might expect it to have
become widespread, since at least on Earth it has managed to
spread to many extremes of temperature, pressure and
chemical composition. On several occasions structures have
been found in extraterrestrial rocks that look somewhat like
small versions of microorganism fossils (most notably in 1996
in a meteorite from Mars discovered in Antarctica). But
almost certainly these structures have nothing to do with life,
and are instead formed by ordinary precipitation of minerals.
And although even up to the 1970s it was thought that life
might well be found on Mars, it now seems likely that there is
nothing quite like terrestrial life anywhere else in our solar
system. (Even if life is found elsewhere it might still have
originally come from Earth, say via meteorites, since
dormant forms such as spores can apparently survive for
long periods in space.)

Away from our solar system there is increasing evidence that
most stars have planets with a distribution of sizes—so
presumably conditions similar to Earth are fairly common.
But thus far it has not been possible to see—say in planetary
atmospheres—whether there are for example molecules
similar to ones characteristically found in life on Earth. 

â Forms of living systems. This book has shown that even
with underlying rules of some fixed type a vast range of
different forms can often be produced. And this makes it
reasonable to expect that with appropriate genetic programs
the chemical building blocks of life on Earth should in
principle allow a vast range of forms. But the comparative
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weakness of natural selection (see page 391) has meant that
only a limited set of such forms have actually been explored.
And from the experience of this book I suspect that what
others might even be nearby is effectively impossible to
foresee. The appearance in engineering of forms somewhat
like those in living systems should not be taken to imply that
other forms are fundamentally difficult to produce; instead I
suspect that it is more a reflection of the copying of living
systems for engineering purposes. The overall morphology
of living systems on Earth seems to be greatly affected by
their basically gelatinous character. So even systems based on
solids or gases would likely not be recognized by us as life. 

â Page 825 · History. Although Greek philosophers such as
Democritus believed that there must be an infinite number of
worlds all with inhabitants like us, the prevailing view in
antiquity—later supported by theological arguments—was
that the Earth is special, and the only abode of life. However,
with the development of Copernican ideas in the 1600s it
came to be widely though not universally believed, even in
theological circles, that other planets—as well as the Moon—
must have inhabitants like us. Many astronomers attributed
features they saw on the Moon to life if not intelligence, but
in the late 1800s, after it was found that the Moon has no
atmosphere, belief in life there began to wane. Starting in the
1870s, however, there began to be great interest in life on
Mars, and it was thought—perhaps following the emphasis
on terrestrial canal-building at the time—that a vast network
of canals on Mars had been observed. And although in 1911
the apparent building of new canals on Mars was still being
soberly reported by newspapers, there was by the 1920s
increasing skepticism. The idea that lichens might exist on
Mars and be responsible for seasonal changes in color
nevertheless became popular, especially after the discovery
of atmospheric carbon dioxide in 1947. Particularly in the
1920s there had been occasional claims of extraterrestrial
radio signals (see page 1188), but by the 1950s interest in
extraterrestrial intelligence had largely transferred to science
fiction (see page 1190). Starting in the late 1940s many
sightings were reported of UFOs believed to be alien
spacecraft, but by the 1960s these were increasingly
discredited. It had been known since the mid-1800s that
many other stars are much like the Sun, but it was not until
the 1950s that evidence of planets around other stars began to
accumulate. Following a certain amount of discussion in the
physics community in the 1950s, the first explicit search for
extraterrestrial intelligence with a radio telescope was done
in 1960 (see page 1189). In the 1960s landings of spacecraft on
the Moon confirmed the absence of life there—though
returning Apollo astronauts were still quarantined to guard

against possible lunar microbes. And despite substantial
expectations to the contrary, when spacecraft landed on Mars
in 1976 they found no evidence of life there. Some searches
for extraterrestrial signals have continued in the radio
astronomy community, but perhaps because of its association
with science fiction, the topic of extraterrestrial intelligence
has generally not been popular with professional scientists.
With the rise of amateur science on the web and the
availability of low-cost radio telescope components the late
1990s may however have seen a renewal of serious interest.

â Page 826 · Bird songs. Essentially all birds produce calls of
some kind, but complex songs are mainly produced by male
songbirds, usually in breeding season. Their general form is
inherited, but specifics are often learned through imitation
during a fixed period of infancy, leading birds in local areas
to have distinctive songs. The songs sometimes seem to be
associated with attracting mates, and sometimes with
defining territory—but often their function is unclear, even
when one bird seems to sing in response to another. (There
are claims, however, that parrots can learn to have
meaningful conversations with humans.) The syrinxes of
songbirds have two membranes, which can vibrate
independently, in a potentially complex way. A specific
region in bird brains appears to coordinate singing; the
region contains a few tens of thousands of nerve cells, and is
larger in species with more complex songs. 

Famous motifs from human music are heard in bird songs
probably more often than would be expected by chance. It
may be that some common neural mechanism makes the
motifs seem pleasing to both birds and humans. Or it could
be that humans find them pleasing because they are familiar
from bird songs. 

â Page 826 · Whale songs. Male whales can produce complex
songs lasting tens of minutes during breeding season. The
songs often include rhyme-like repeating elements. At a
given time all whales in a group typically sing almost the
same song, which gradually changes. The function of the
song is quite unclear. It has been claimed that its frequencies
are optimized for long-range transmission in the ocean, but
this appears not to be the case. In dolphins, it is known that
one dolphin can produce patterns of sound that are repeated
by a specific other dolphin.

â Page 826 · Animal communication. Most animals that live in
groups have the capability to produce at least a few specific
auditory, visual (e.g. gestures and displays), chemical (e.g.
pheromones) or other signals in response to particular
situations such as danger. Some animals have also been
found to produce much more complex and varied signals.
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For example it was discovered in the 1980s that elephants can
generate elaborate patterns of sounds—but at frequencies
below human hearing. Animals such as octopuses and
particularly cuttlefish can show complex and changing
patterns of pigmentation. But despite a fair amount of
investigation it remains unclear whether these represent
more than just simple responses to the environment.

â Page 826 · Theories of communication. Over the course of
time the question of what the essential features of
communication are has been discussed from many different
angles. It appears to have always been a common view that
communication somehow involves transferring thoughts
from one mind to another. Even in antiquity it was
nevertheless recognized that all sorts of aspects of language
are purely matters of convention, so that shared conventions
are necessary for verbal communication to be possible. In the
1600s the philosophical idea that the only way to get
information with certainty is from the senses led to emphasis
on observable aspects of communication, and to the
conclusion that there is no way to tell whether an accurate
transfer of abstract thoughts has occurred between one mind
and another. In the late 1600s Gottfried Leibniz nevertheless
suggested that perhaps a universal language—modelled on
mathematics—could be created that would represent all
truths in an objective way accessible to any mind (compare
page 1149). But by the late 1800s philosophers like Charles
Peirce had developed the idea that communication must be
understood purely in terms of its observable features and
effects. Three levels of so-called semiotics were then
discussed. The first was syntax: the grammatical or other
structure of a sequence of verbal or other elements. The
second was semantics: the standardized meaning or
meanings of the sequence of elements. And the third was
pragmatics: the observable effect on those involved in the
communication. In the early 1900s, the logical positivism
movement suggested that perhaps a universal language or
formalism based on logic could be developed that would
allow at least scientific truths to be communicated in an
unambiguous way not affected by issues of pragmatics—and
that anything that could not be communicated like this was
somehow meaningless. But by the 1940s it came to be
believed—notably by Ludwig Wittgenstein—that ordinary
language, with its pragmatic context, could in the end
communicate fundamentally more than any formalized
logical system, albeit more ambiguously.

Ever since antiquity work has been done to formalize
grammatical and other rules of individual human languages. In
the early 1900s—notably with the work of Ferdinand de
Saussure—there began to be more emphasis on the general

question of how languages really operate, and the point was
made that the verbal elements or signs in a language should be
viewed as somehow intermediate between tangible entities like
sounds and abstract thoughts and concepts. The properties of
any given sign were recognized as arbitrary, but what was then
thought to be essential about a language is the structure of the
network of relations between signs—with the ultimate meaning
of any given sign inevitably depending on the meanings of
signs related to it (as later emphasized in deconstructionism). By
the 1950s anthropological studies of various languages—
notably by Benjamin Whorf—had encouraged the idea that
concepts that did not appear to fit in certain languages simply
could not enter the thinking of users of those languages.
Evidence to the contrary (notably about past and future among
Hopi speakers) eroded this strong form of the so-called Sapir-
Whorf hypothesis, so that by the 1970s it was generally believed
just that language can have an influence on thinking—a
phenomenon definitely seen with mathematical notation and
computer languages. Starting in the 1950s, especially with the
work of Noam Chomsky, there were claims of universal features
in human languages—independent of historical or cultural
context (see page 1103). But at least among linguists these are
generally assumed just to reflect common aspects of verbal
processing in the human brain, not features that must
necessarily appear in any conceivable language. (And it remains
unclear, for example, to what extent non-verbal forms of
communication such as music, gestures and visual ornament
show the same grammatical features as ordinary languages.)

The rise of communications technology in the early 1900s led
to work on quantitative theories of communication, and for
example in 1928 Ralph Hartley suggested that an objective
measure of the information content of a message with 
possible forms is . (Similar ideas arose around the
same time in statistics, and in fact there had already been
work on probabilistic models of written language by Andrei
Markov in the 1910s.) In 1948 Claude Shannon suggested
using a measure of information based on , and there
quickly developed the notion that this could be used to find
the fundamental redundancy of any sequence of data,
independent of its possible meaning (compare page 1071).
Human languages were found on this basis to have
substantial redundancy (see page 1086), and it has sometimes
been suggested that this is important to their operation—
allowing errors to be corrected and details of different users
to be ignored. (There are also obvious features which reduce
redundancy—for example that in most languages common
words tend to be short. One can also imagine models of the
historical development of languages which will tend to lead
to redundancy at the level of Shannon information.)

n
Log[n]

p Log[p]
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â Mathematical notation. While it is usually recognized that
ordinary human languages depend greatly on history and
context, it is sometimes believed that mathematical notation
is somehow more universal. But although it so happens that
essentially the same mathematical notation is in practice used
all around the world by speakers of every ordinary language,
I do not believe that it is in any way unique or inevitable, and
in fact I think it shows most of the same issues of dependence
on history and context as any ordinary language.

As a first example, consider the case of numbers. One can
always just use  copies of the same symbol to represent an
integer —and indeed this idea seems historically to have
arisen independently quite a few times. But as soon as one
tries to set up a more compact notation there inevitably seem
to be many possibilities. And so for example the Greek and
Roman number systems were quite different from current
Hindu-Arabic base-10 positional notation. Particularly from
working with computers it is often now assumed that base-2
positional notation is somehow the most natural and
fundamental. But as pages 560 and 916 show, there are many
other quite different ways to represent numbers, each with
different levels of convenience for different purposes. And it
is fairly easy to see how a different historical progression
might have ended up making another one of these seem the
most natural.

The idea of labelling entities in geometrical diagrams by
letters existed in Babylonian and Greek times. But perhaps
because until after the 1200s numbers were usually also
represented by letters, algebraic notation with letters for
variables did not arise until the late 1500s. The idea of having
notation for operators emerged in the early 1600s, and by the
end of the 1600s, notably with the work of Gottfried Leibniz,
essentially all the basic notation now used in algebra and
calculus had been established. Most of it was ultimately
based on shortenings and idealizations of ordinary language,
an important early motivation just being to avoid
dependence on particular ordinary languages. Notation for
mathematical logic began to emerge in the 1880s, notably
with the work of Giuseppe Peano, and by the 1930s it was
widely used as the basis for notation in pure mathematics.

In its basic structure of operators, operands, and so on,
mathematical notation has always been fairly systematic—
and is close to being a context-free language. (In many ways
it is like a simple idealization of ordinary language, with
operators being like verbs, operands nouns, and so on.) And
while traditional mathematical notation suffers from some
inconsistencies and ambiguities, it was possible in
developing Mathematica  to set up something
very close that can be interpreted uniquely in all cases.

Mathematical notation works well for things like ordinary
formulas that involve a comparatively small number of basic
operations. But there has been no direct generalization for
more general constructs and computations. And indeed my
goal in designing Mathematica was precisely to provide a
uniform notation for these (see page 852). Yet to make this
work I had to use names derived from ordinary language to
specify the primitives I defined. 

â Computer communication. Most protocols for exchanging
data between computers have in the end traditionally had
rather simple structures—with different pieces of
information usually being placed at fixed positions, or at
least being arranged in predefined sequences—or sometimes
being given in name-value pairs. A more general approach,
however, is to use tree-structured symbolic expressions of the
kind that form the basis for Mathematica—and now in essence
appear in XML. In the most general case one can imagine
directly exchanging a representation of a program, that is run
on the computer that receives it, and induces whatever effect
one wants. A simple example from 1984 is PostScript, which
can specify a picture by giving a program for constructing it;
a more sophisticated example from the late 1990s is client-
side Java. (Advanced forms of data compression can also be
thought of as working by sending simple programs.) But a
practical problem in exchanging arbitrary programs is the
difficulty of guarding against malicious elements like viruses.
And although at some level most communications between
present-day computers are very regular and structured, this
is often obscured by compression or encryption. 

When a program is sent between computers it is usually
encoded in a syntactically very straightforward way. But
computer languages intended for direct use by humans
almost always have more elaborate syntax that is a simple
idealization of ordinary human language (see page 1103).
There are in practice many similarities between different
computer languages. Yet except in very low-level languages
few of these are necessary consequences of features or
limitations of actual computers. And instead most of them
must be viewed just as the results of shared history—and the
need to fit in with human cognitive abilities.

â Meaning in programs. Many issues about meaning arise for
computer languages in more defined versions of the ways
they arise for ordinary languages. Input to a computer
language will immediately fail to be meaningful if it does not
conform to a certain definite syntax. Before the input can
have a chance of specifying meaningful action there are often
all sorts of issues about whether variables in it refer to entities
that can be considered to exist. And even if this is resolved,
one can still get something that is in effect nonsense and does

n
n

StandardForm
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not usefully run. In most traditional computer languages it is
usually the case that most programs chosen at random will
just crash if run, often as a result of trying to write to memory
outside the arrays they have allocated. In Mathematica, there
is almost no similar issue, and programs chosen at random
tend instead just to return unchanged. (Compare page 101.)

For the kinds of systems like cellular automata that I have
discussed in this book programs chosen at random do very
often produce some sort of non-trivial behavior. But as
discussed in the main text there is still an issue of when this
behavior can reasonably be considered meaningful. 

For some purposes a more direct analog of messages is not
programs or rules for systems like cellular automata but instead
initial conditions. And one might imagine that the very process
of running such initial conditions in a system with appropriate
underlying rules would somehow be what corresponds to their
meaning. But if one was just given a collection of initial
conditions without any underlying rules one would then need
to find out what underlying rules one was supposed to use in
order to determine their meaning. Yet the system will always do
something, whatever rules one uses. So then one is back to
defining criteria for what counts as meaningful behavior in
order to determine—by a kind of generalization of
cryptanalysis—what rules one is supposed to use. 

â Meaning and regularity. If one considers something to show
regularity one may or may not consider it meaningful. But if
one considers something random then usually one will also
consider it meaningless. For to say that something is
meaningful normally implies that one somehow comes to a
conclusion from it. And this typically implies that one can
find some summary of some aspect of it—and thus some
regularity. Yet there are still cases where things that are
presumably quite random are considered meaningful—
prices in financial markets being one example.

â Page 828 · Forms of artifacts. Much as in biological evolution,
once a particular engineering construct has been found to
work it normally continues to be used. Examples with
characteristic forms include (in rough order of their earliest
known use): arrowheads, boomerangs, saws, boxes, stairs,
fishhooks, wheels, arches, forks, balls, kites, lenses, springs,
catenaries, cogs, screws, chains, trusses, cams, linkages,
propellers, clocksprings, parabolic reflectors, airfoils,
corrugation, zippers, and geodesic domes. It is notable that not
even nested shapes are common, though they appear in cross-
sections of rope (see page 874), as well as in address decoder
trees on chips—and have recently been used in broadband
antennas. (Some self-similarity is also present in standard log-
periodic antennas.) When several distinct components are

involved, more complicated structures are not uncommon—as
in escapements, and many bearings and joints. More complex
shapes for single elements sometimes arise when an analog of
area maximization is desired—as with tire treads or fins in
devices such as heat exchangers. Quadratic residue sequences

 (see page 1081) are used to give profiles for
acoustic diffusers that operate uniformly over a range of
frequencies. Musical instruments can have fairly complicated
shapes maintained for historical reasons to considerable
precision. Some knots can also be thought of as objects with
complex forms. It is notable that elaborate types of mechanical
motion (and sometimes surprising phenomena in general) are
often first implemented in toys. Examples are early mechanical
automata and model airplanes, and modern executive toys
claiming to illustrate chaos theory through linkages, magnets
or fluid systems. Complex trajectories (compare page 972)
have sometimes been proposed or used for spacecraft. (See
also notes on ornamental art on page 872.)

â Page 828 · Recognizing artifacts. Various situations require
picking out artifacts automatically. One example is finding
buildings or machines from aerial reconnaissance images;
another is finding boat or airplane wreckage on an ocean
floor from sonar data. In both these cases the most common
approach is to look for straight edges. Outdoor security
systems also often need ways to distinguish animals and
wind-induced motion from intentional human activity—and
tend to have fairly simple procedures for doing this. 

To recognize a regular crystal as not being a carefully cut
artifact can take specific knowledge. The same can be true of
patterns produced by wind on sand or rocks. Lenticular
clouds are sometimes mistaken for UFOs on account of their
regular shape. The exact cuboid form of the monolith in the
movie 2001 was intended to suggest that it was an artifact. 

Recognizing artifacts can be a central—and controversial—
issue in prehistoric archeology. Sometimes human bones are
found nearby. And sometimes chemical analysis suggests
controlled fire—as with charcoal or baked clay. But to tell
whether for example a piece of rock was formed naturally or
was carefully made to be a stone tool can in general be very
difficult. And a large part of the way this has been done in
practice is just through comparison with known examples that
fit into an overall pattern of gradual historical change. In
recent decades there has been increasing emphasis on trying to
understand and reproduce the whole process of making and
using artifacts. And in the field of lithic analysis there are
beginning to be fairly systematic ways to recognize for
example the effects of the hundreds of orderly impacts needed
to make a typical flint arrowhead by knapping. (Sometimes it
is also possible to recognize microscopic features characteristic

Mod[Range[n]2, n]
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of particular kinds of use or wear—and it is conceivable that in
the future analysis of trillions of atomic-scale features could
reveal all sorts of details of the history of an object.)

To tell whether or not some arrangement of soil or rocks is an
artifact can be extremely difficult—and there are many
notorious cases of continuing controversy. Beyond looking
for similarities to known examples, a typical approach is just
to look for correlations with topographic or other features
that might reveal some possible purpose. 

â Artifacts in data. In fields like accounting and experimental
science it is usually a sign of fraud if primary data is being
created for a purpose, rather than merely being reported. If a
large amount of numerical data has been made up by a
person this can be detectable through statistical deviations
from expected randomness—particularly in structural details
such as frequency of digits. (So-called artifacts can also be the
unintentional result of details of methods used to obtain or
process data.)

In numerical computations effects are often called artifacts if
they are believed not to be genuine features of an underlying
mathematical system, but merely to reflect the computational
scheme used. Such effects are usually first noticed through
unexpected regularities in some detail of output. But in cases
like chaos theory it remains unclear to what extent complex
behavior seen in computations is an artifact (see page 920).

â Animal artifacts. Structures like mollusc shells, radiolarian
skeletons and to some extent coral are formed through
processes of growth like those discussed in Chapter 8.
Structures like spider webs, wasp nests, termite mounds, bird
nests and beaver dams rely on behavior determined by
animal brains. (Even spider webs end up looking quite
different if psychoactive drugs are administered to the
spider.) And much like human artifacts, many of these
structures tend to be distinguished by their comparative
geometrical simplicity. In a few cases—particularly with
insects—somewhat complicated forms are seen, but it seems
likely that these are actually produced by rather simple local
rules like those in aggregation systems (see page 1011). 

â Molecular biology. DNA sequences of organisms can be
thought of as artifacts created by biological evolution, and
current data suggests that they contain some long-range
correlations not present in typical random sequences. Most
likely, however, these have fairly simple origins, perhaps being
associated with iterative splicing of subsequences. And in the
few thousand proteins currently known, standard statistical
tests reveal no significant overall regularities in their
sequences of up to a few thousand amino acids. (Some of the
20 standard amino acids do however occur more frequently

than others.) Nevertheless, if one looks at overall shapes into
which these proteins fold, there is some evidence that the same
patterns of behavior are often seen. But probably such patterns
would also occur in purely random proteins—at least if their
folding happened in the same cellular apparatus. (See page
1003.) Note that the antibodies of the immune system are
much like short random proteins—whose range of shapes
must be sufficient to match any antigen. (See also page 1194.) 

â Messages in DNA. Science fiction has sometimes suggested
that an extraterrestrial source of life might have left some form
of message in the DNA sequences of all terrestrial organisms,
but to get evidence of this would seem to require extensive
other knowledge of the source. (See also page 1190.)

â Decompilers. Trying to reverse engineer source code in a
programming language like C from machine code output by
compilers involves in effect trying to deduce higher-level
purposes from lower-level computational steps. And
normally this can be done with any reliability only when the
machine code represents a fairly direct translation that has
not been extensively rearranged or optimized. 

â Page 828 · Complexity and theology. See page 861.

â Page 829 · Purpose in archeology. Ideas about the purpose
of archeological objects most often ultimately tend to come
from comparisons to similar-looking objects in use today. But
great differences in typical beliefs and ways of life can make
comparisons difficult. And certainly it is now very hard for
us to imagine just what range of purposes the first known
stone tools from 2.6 million years ago might have been put
to—or what purpose the arrays of dots or handprints in cave
paintings from 30,000 BC might have had. And even when it
comes to early buildings from perhaps 10,000 BC it is still
difficult to know just how they were used. Stone circles like
Stonehenge from perhaps 3000 BC presumably served some
community purpose, but beyond that little can convincingly
be said. Definite geographical or astronomical alignments
can be identified for many large prehistoric structures, but
whether these were actually intentional is almost never clear.
After the development of writing starting around 4000 BC,
purposes can often be deduced from inscriptions and other
written material. But still to work out for example the
purpose of the Antikythera device from around 100 BC is
very difficult, and depends on being able to trace a long
historical tradition of astronomical clocks and orreries.

â Dead languages. Particularly over the past century or so,
most of the known written human languages from every
point in history have successfully been decoded. But to do
this has essentially always required finding a case where
there is explicit overlap with a known language—say a
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Rosetta stone with the same text in multiple languages, or at
least words or proper names that are transliterated. As in
cryptanalysis, it is sometimes remarkable how small an
amount of text is needed to find a decoding scheme. But
usually what is done relies critically on the slowness with
which human languages change, and the comparatively
limited number of different basic ways in which they work.

â Teleology. There is a common tendency to project human
purposes onto natural objects and events—and this is for
example almost universally done by young children. Ancient
beliefs often held that things in nature are set up by a variety
of gods for a variety of purposes. By 400 BC, following ideas
of Anaxagoras, Socrates and Plato discussed the notion that
things in nature might in effect be optimally designed for
coherent purposes by a single mind. Around 350 BC Aristotle
claimed that a full explanation of anything should include its
purpose (or so-called final cause, or telos)—but said that for
systems in nature this is often just to make the final forms of
these systems (their so-called formal cause). The rise of
monotheistic religions led to the widespread belief that the
universe and everything in it was created for definite
purposes by a single god. But the development of
mathematical science in the 1600s—and its focus on
mechanisms (“efficient causes”)—led away from ascribing
explicit purposes to physical systems. In the mid-1700s David
Hume then claimed on philosophical grounds that we
fundamentally have no basis for ascribing purposes to any
kind of natural system—though in the 1790s Immanuel Kant
argued that even though we cannot know whether there
really are such purposes, it is still often necessary for us to
think in terms of them. And in fact the notion that systems in
biology are so complex that they must have been intelligently
designed for a purpose remained common. In the late 1800s
Darwinian evolution nevertheless suggested that no such
purposeful design was necessary—though in a sense it again
introduced a notion of purpose associated with optimization
of fitness. Ever since the 1700s economics had been discussed
in terms of purposeful activities of rational agents. In the
early 1900s there were however general attempts to develop
mechanistic explanations in the social sciences, but by the
mid-1900s purpose was again widely discussed, especially in
economics. And in fact, even in physics, a notion of purpose
had actually always been quite common. For whenever a
physical system satisfies any kind of implicit equation, this
defines a constraint that can be viewed as corresponding to
some kind of purpose. (See page 940.) That something like a
notion of purpose is being used has been more widely
recognized for variational principles like the Principle of
Least Action in mechanics from the mid-1700s. Results in the

late 1900s in astrophysics and cosmology seemed to suggest
that for us to exist our universe must satisfy all sorts of
constraints—and to avoid explaining this in terms of purpose
the Anthropic Principle was introduced (see page 1026).
What I do in this book goes significantly further than
traditional science in getting rid of notions of purpose from
investigations of nature. For I essentially always consider
systems that are based on explicit evolution rules rather than
implicit constraints. And in fact I argue that simple programs
constructed without known purposes are what one needs to
study to find the kinds of complex behavior we see.

â Possible purposes. As part of asking whether the rules for a
system are somehow minimal for a given purpose, one can
ask what properties the system has that could reasonably be
considered a purpose at all. In general one tends to talk of
purpose only when doing so allows one to give a simpler
description of some aspect of behavior than just describing
the behavior directly. But whether one can give a simple
description can depend greatly on the framework in which
one is operating. And so, for example, while the digits of 
have a simple description in terms of traditional
mathematics, the results in Chapter 4 suggest that outside of
this framework they normally do not. And what this means
is that if one saw a system that had the property of
generating the digits of  one would be unlikely to think that
this could represent a meaningful purpose—unless one
happened to be operating in traditional mathematics. And so
similarly, one would be unlikely to think that generating the
center column from rule 30 could represent any sort of
meaningful purpose—unless one was operating within the
framework that I have developed in this book. 

â Page 830 · Purposeful computation. See page 638.

â Page 832 · Doubling rules. Rule (a) is 

and takes  steps to yield  given input
. Rule (b) is

and takes  steps. Rule (c) is ,  rule 
and takes  steps. 

â Page 833 · Searching. No symmetric ,  rule yields
doubling. General rules can show subtle bugs; rule

 for example first fails at . The total
number of ,  rules that need to be searched can
easily be reduced from  to . Several different rules that
work can behave identically, since up to 6 of the 27 cases in
each rule are not sampled with the initial conditions used. In
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{{0, 2, _} ! 5, {5, 3, _} ! 5, {5, _, _} ! 1,
{_, 5, _} ! 1, {_, 2, _} ! 3, {_, 3, 2} ! 2, {_, 1, 2} ! 4,
{_, 4, _} ! 3, {4, 3, _} ! 4, {4, 0, _} ! 2, {_, x_, _} ! x}

2 n2 + n Table[1, {2 n}]
Append[Table[1, {n - 1}], 2]

{{_, 2, _} ! 3, {_, 1, 2} ! 2, {3, 0, _} ! 1,
{3, _, _} ! 3, {_, 3, _} ! 1, {_, x_, _} ! x}

3 n k = 3 r = 1 5407067979
3 n - 1

k = 3 r = 1

1340716537107 n = 24
k = 3 r = 1
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rules that work, between 8 and 19 cases lead to a change in
the color of a cell, with 14 cases being the most common. 

â Page 833 · Properties. The number of steps increases
irregularly but roughly quadratically with  in rule (a), and
roughly linearly in (d) and (e). Rule (b) in the end repeats
every 128 steps. The center of the complex pattern in both (d)
and (e) emulates  rule 90.

â Other functions. The first three pictures below show rules
that yield  (no  rules yield ,  or ), and the last
picture  (corresponding to doubling with initial
conditions analogous to page 639). 

â Page 834 · Minimal cellular automata for sequences. Given
any particular sequence of black and white cells one can look
for the simplest cellular automaton which generates that
sequence as its center column when evolving from a single
black cell (compare page 956). The pictures below show the
lowest-numbered cellular automaton rules that manage to
generate repetitive sequences containing black cells with
successively greater separations .

Elementary ( , ) cellular automata can be found only
up to separations . But ,  cellular automata can
be found for all separations up to 15, as well as 17, 19 and 23.
(Note that for example in the  case the lowest-
numbered rule exhibits a complex 350-step transient away
from the center column.) 

The pictures below show the lowest-numbered cellular
automata that generate respectively powers of two, squares
and the nested Thue-Morse sequence of page 83 (compare
rule 150). Of the 4 billion ,  cellular automata none
turn out to be able to produce for example sequences
corresponding to the cubes, powers of 3, Fibonacci numbers,
primes, digits of , or concatenation sequences.

If one looks not just at specific sequences, but instead at all 
possible sequences of length , one can ask how many cellular
automaton rules (say with , ) one has to go through in
order to generate every one of these. The pictures below show
on the left the last rules needed to generate any sequence of each
successive length—and on the right the form of the sequence (as
well as its continuation after length ). Since some different
rules generate the same sequences (see page 956) one needs to
go through somewhat more than  rules to get every sequence
of length . The sequences shown below can be thought of as
being in a sense the ones of each length that are the most
difficult to generate—or have the highest algorithmic
information content. (Note that the sequence  is the first
one that cannot be generated by any of the 256 elementary
cellular automata; the first sequence that cannot be generated by
any ,  cellular automata is probably of length 26.) 

â Other examples. Minimal systems achieving particular
purposes are shown on page 619 for Boolean functions
evaluated with NANDs, pages 759 and 889 for Turing
machines, page 1142 for sorting networks, and page 1035 for
firing squad synchronization. 

â Page 834 · Minimal theories. Particularly in fundamental
physics it has been found that the correct theory is often the
minimal one consistent with basic observations. Yet barring
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supernatural intervention, the laws of physics embodied in
such a theory presumably cannot be considered to have been
created for any particular purpose. (See page 1025.)

â Page 835 · Earth from space. Human activity has led to a few
large simple geometrical structures that are visually
noticeable from space. One is the almost-straight 30-mile
railroad causeway built in 1959 that divides halves of the
Great Salt Lake in Utah where the water is colored blue and
orange. Another is the almost-circular 12-mile-diameter
national park created in 1900 that encloses ungrazed
vegetation on the Egmont Volcano in New Zealand. On the
scale of a few miles, there is also rectilinear arrangement of
fields in the U.S. Midwest, as well as straight-line political
boundaries with different agriculture on each side. Large
geometrical patterns of logging were for example briefly
visible after snow in 1961 near Cochrane, Canada—as
captured by an early weather satellite. Perfectly straight
sections of roads (such as the 90-mile Balladonia-Caiguna
road in Australia), as well as the 4-mile-diameter perfectly
circular Fermilab accelerator ring are not so easy to see. The
Great Wall of China from 200 BC follows local topography
and so is not straight. 

Some of the most dramatic geometrical structures—such as the
dendritic fossil drainage pattern in south Yemen or the
bilaterally symmetric coral reefs around islands like Bora Bora—
are not artifacts. The same is true of fields of parallel sand dunes,
as well as of almost-circular structures such as the 40-mile-
diameter impact crater in Manicouagan, Canada (highlighted
by an annular lake) and the 30-mile-diameter Richat structure in
the Sahara desert of Mauritania. On the Moon, the 50-mile-
diameter crater Tycho is also almost circular—and has 1000-mile
almost-straight rays coming out from it. 

At night, lights of cities are obvious—notably hugging the
coast of the Mediterranean—as are fire plumes from oil rigs.
In addition, in some areas, sodium streetlamps make the light
almost monochromatic. But it would seem difficult to be sure
that these were artifacts without more information. In
western Kansas there is however a 200-mile square region
with light produced by a strikingly regular grid of towns—
many at the centers of square counties laid out around 1870
in connection with land grants for railroad development. In
addition, there is an isolated 1000-mile straight railroad built
in the late 1800s across Kazakhstan between Aktyubinsk and
Tashkent, with many towns visible at night along it. There are
also 500-mile straight railroads built around the same time
between Makat and Nukus, and Yaroslavl and Archangel. All
these railroads go through flat empty terrain that previously
had only a few nomadic inhabitants—and no settlements to
define a route. But in many ways such geometrical forms

seem vastly simpler to imagine producing than for example
the elaborate pattern of successive lightning strikes visible
especially in the tropics from space.

â Page 835 · Astronomical objects. Stars and planets tend to
be close to perfect spheres. Lagrange points and resonances
often lead to simple geometrical patterns of orbiting bodies.
(The orbits of most planets in our solar system are also close
to perfect circles; see page 973.) Regular spirograph-like
patterns can occur for example in planetary nebulas formed
by solar mass exploding stars. Unexplained phenomena that
could conceivably be at least in part artifacts include gamma
ray bursts and ultra high-energy cosmic rays. The local
positions of stars are generally assumed to be random. 88
constellations are usually named—quite a few presumably
already identified by the Babylonians and Sumerians around
2000 BC.

â Page 835 · Natural radio emissions. Each of the few million
lightning flashes that occur on the Earth each day produce
bursts of radio energy. At kilohertz frequencies reflection
from the ionosphere allows these signals to propagate up to
thousands of miles around the Earth, leading to continual
intermittent crackling and popping. Particularly at night
such signals can also travel within the ionosphere, but
different frequencies travel at different rates, leading to so-
called tweeks involving ringing or pinging. Signals can
sometimes travel through the magnetosphere along magnetic
field lines from one hemisphere to the other, yielding so-
called whistlers with frequencies that fall off in a highly
regular way with time. (Occasionally the signals can also
travel back and forth between hemispheres, giving more
complex results.) Radio emission can also occur when
charged particles from the Sun excite plasma waves in the
magnetosphere. And particularly at dawn or when an aurora
is present an elaborate chorus of different elements can be
produced—and heard directly on a VLF radio receiver. 

Sunspots and solar flares make the Sun the most intense
radio source in the solar system. Artificial radio signals from
the Earth come next. The interaction of the solar wind with
the magnetosphere of Jupiter produces radio emissions that
exhibit variations reminiscent of gusting.

Outside the solar system, gas clouds show radio emission at
discrete gigahertz frequencies from rotational transitions in
molecules and spin-flip transitions in hydrogen atoms. (The
narrowest lines come from natural masers and have widths
around 1 kHz.) The cosmic microwave background, and
processes such as thermal emission from dust, radiation from
electrons in ionized gases, and synchrotron radiation from
relativistic electrons in magnetic fields yield radio emissions
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with characteristic continuous frequency spectra. A total of
over a million radio sources inside and outside our galaxy
have now been catalogued, most with frequency spectra
apparently consistent with known natural phenomena.
Variations of source properties on timescales of months or
years are not uncommon; variations of signals on timescales
of tens of minutes can be introduced by propagation through
turbulence in the interstellar medium.

Most radio emission from outside the solar system shows
little apparent regularity. The almost perfectly repetitive
signals from pulsars are an exception. Pulsars appear to be
rapidly rotating neutron stars—perhaps 10 miles across—
whose magnetic fields trap charged particles that produce
radio emissions. When they first form after a supernova
pulsars have millisecond repetition rates, but over the course
of a few million years they slow to repetition rates of seconds
through a series of glitches, associated perhaps with cracking
in their solid crusts or perhaps with motion of quantized
vortices in their superfluid interiors. Individual pulses from
pulsars show some variability, presumably largely reflecting
details of plasma dynamics in their magnetospheres.

â Page 835 · Artificial radio signals. In current technology
radio signals are essentially always based on carriers of the
form  with frequencies . When radio was first
developed around 1900 information was normally encoded
using amplitude modulation (AM) . In the 1940s
it also became popular to use frequency modulation (FM)

, and in the 1970s pulse code modulation
(PCM) (pulse trains for ). All such
methods yield signals that remain roughly in the range of
frequencies  where  is the data rate in . But
in the late 1990s—particularly for the new generation of
cellular telephones—it began to be common to use spread
spectrum CDMA methods, in which many signals with the
same carrier frequency are combined. Each is roughly of the
form , where  is a pseudonoise
(PN) sequence generated by a linear feedback shift register
(LFSR) (see page 1084); the idea is that by using a different
PN sequence for each signal the corresponding  can be
recovered even if thousands are superimposed.

The radio spectrum from about 9 kHz to 300 GHz is divided
by national and international legislation into about 460 bands
designated for different purposes. And except when spread
spectrum methods are used, most bands are then divided into
between a few and a few thousand channels in which signals
with identical structures but different frequencies are sent.

If one steps through frequencies with an AM radio scanner,
one sometimes hears intelligible speech—from radio or TV

broadcasts, or two-way radio communication. But in many
frequency bands one hears instead either very regular or
seemingly quite random signals. (A few bands allocated for
example to distress signals or radio astronomy are normally
quiet.) The regular signals come from such sources as
navigation beacons, time standards, identification
transponders and radars. Most have characteristic almost
perfectly repetitive forms (radar pulses, for example,
typically have the chirped form )—and some
sound uncannily like pulsars. When there are seemingly
random signals some arise say from transmission of analog
video (though this typically has very rigid overall structure
associated with successive lines and frames), but most are
now associated with digital data. And when CDMA methods
are used there can be spreading over a significant range of
frequencies—with regularities being recognizable only if one
knows or can cryptanalyze LFSR sequences. 

In general to send many signals together one just needs to
associate each with a function  orthogonal to all other
functions  (see page 1072). Current electronics (with
analog elements such as phase-locked loops) make it easy to
handle functions , but other functions can yield better
data density and perhaps better signal propagation. And as
faster digital electronics makes it easier to implement these it
seems likely that it will become less and less common to have
simple carriers with definite frequencies. 

In addition, there is a continuing trend towards greater
spatial localization of signals—whether by using phased
arrays or by explicitly using technologies like fiber optics.

At present, the most intense overall artificial radio emission
from the Earth is probably the 50 or 60 Hz hum from power
lines. The most intense directed signals are probably from
radars (such as those used for ballistic missile detection) that
operate at a few hundred megahertz and put megawatts of
power into narrow beams. (Some such systems are however
being replaced by lower-power phased array systems.)

â Page 835 · SETI. First claims of extraterrestrial radio signals
were made by Nikola Tesla in 1899. More widely believed
claims were made by Guglielmo Marconi in 1922, and for
several years searches were done—notably by the U.S.
military—for signals presumed to be coming from Mars. But
it became increasingly accepted that in fact nothing beyond
natural radio emissions such as whistlers (see note above)
were actually being detected.

When galactic radio emission was first noticed by Karl
Jansky in 1931 it seemed too random to be of intelligent
origin. And when radio astronomy began to develop it
essentially ignored extraterrestrial intelligence. But in 1959
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Giuseppe Cocconi and Philip Morrison analyzed the
possibility of interstellar radio communication, and in 1960
Frank Drake used a radio telescope to look for explicit signals
from two nearby stars.

In 1965 a claim was made that there might be intensity
variations of intelligent origin in radio emission from the
quasar CTA-102—but this was quickly retracted. Then in
1967 when the first pulsar was discovered it was briefly
thought that perhaps its precise 1.33730113-second repetition
rate might be of intelligent origin.

Since the 1960s around a hundred different SETI (search for
extraterrestrial intelligence) experiments have been done.
Most use the same basic scheme: to look for signals that show
a narrow band of frequencies—say only 1 Hz wide—perhaps
changing in time. (The corresponding waveform is thus
required to be an almost perfect sinusoid.) Some concentrate
on specific nearby stars, while others look at the whole sky, or
test the stream of data from all observations at a particular
radio telescope, sometimes scanning for repetitive trains of
pulses rather than single frequencies. The best current
experiments could successfully detect radio emission at the
level now produced on Earth only from about 10 light years
away—or from about the nearest 10 stars. The detection
distance increases like the square root of the signal strength,
covering all  stars in our galaxy when the signal uses the
total power output of a star.

Most SETI has been done with specially built systems or with
existing radio telescopes. But starting in the mid-1990s it
became possible to use standard satellite receivers, and there
are now plans to set up a large array of these specifically for
SETI. In addition, it is now possible to use software instead of
hardware to implement SETI signal-processing algorithms—
both traditional ones and presumably much more general
ones that can for example pick out much weaker signals. 

Many SETI experiments look for signals in the so-called
“water hole” between the 1420 MHz frequency associated
with the 21 cm line of hydrogen and the 1720 MHz frequency
associated with hydroxyl (OH). But although there are now
practical constraints associated with the fact that on Earth
only a few frequency regions have been left clear for radio
astronomy I consider this to be a remarkable example of
reliance on details of human intellectual development.

Already in the early 1960s it was suggested that lasers
instead of radio could be used for interstellar
communication, and there have been various attempts to
detect interstellar optical pulses. Other suggested methods of
communication have included optical solitons, neutrinos and
as-yet-unknown faster-than-light quantum effects.

It is sometimes suggested that there must be fundamental
limits to detection of radio signals based on such issues as
collection areas, noise temperatures and signal degradation.
But even existing technology has provided a steady stream of
examples where limits like these have been overcome—most
often by the use of more sophisticated signal processing.

â Detection methods. Ways to identify computational origins
include looking for repeatability in apparently random
signals and comparing with output from large collections of
possible simple programs. At a practical level, the one-
dimensional character of data from radio signals makes it
difficult for us to apply our visual systems—which remain
our most powerful general-purpose analysis tools.

â Higher perception and analysis. See page 632.

â Page 837 · Messages to send. The idea of trying to send
messages to extraterrestrials has existed since at least the early
1800s. The proposed content and medium of the messages has
however steadily changed, usually reflecting what seemed to
be the most significant human achievements of the time—yet
often seeming quaint within just a few decades.

Starting in the 1820s various scientists (notably Carl Friedrich
Gauss) suggested signalling the Moon by using such schemes
as cutting clearings in a forest to illustrate the Pythagorean
theorem or reflecting sunlight from mirrors in different
countries placed so as to mimic an observed constellation of
stars. In the 1860s, with the rise of telegraphy, schemes for
sending flashes of light to Mars were discussed, and the idea
developed that mathematics should somehow be the basic
language used. In the 1890s radio signals were considered,
and were tried by Nikola Tesla in 1899. Discussion in the
1920s led to the idea of sending radio pulses that could be
assembled into a bitmap image, and some messages intended
for extraterrestrials were probably sent by radio enthusiasts.

There is a long history of attempts to formulate universal
languages (see page 1181). The Lincos language of Hans
Freudenthal from 1960 was specifically designed for
extraterrestrial communication. It was based on predicate
logic, and attempted to use this to build up first mathematics,
then science, then a general presentation of human affairs. 

When the Pioneer 10 spacecraft was launched in 1972 it
carried a physical plaque designed by Carl Sagan and others.
The plaque is surprisingly full of implicit assumptions based
on details of human intellectual development. For example, it
has line drawings of humans—whose interpretation
inevitably seems very specific to our visual system and
artistic culture. It also has a polar plot of the positions of 14
pulsars relative to the Sun, with the pulsars specified by
giving their periods as base 2 integers—but with trailing
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zeros inserted to cover inadequate precision. Perhaps the
most peculiar element, however, is a diagram indicating the
21 cm transition in hydrogen—by showing two abstract
quantum mechanical spin configurations represented in a
way that seems completely specific to the particular details of
human mathematics and physics. In 1977 the Voyager
spacecraft carried phonograph records that included bitmap
images and samples of spoken languages and music.

In 1974 the bitmap image below was sent as a radio signal
from the Arecibo radio telescope. At the left-hand end is a
version of the pattern of digits from page 117—but distorted
so it has no obvious nested structure. There follow atomic
numbers for various elements, and bitvectors for components
of DNA. Next are idealized pictures of a DNA molecule, a
human, and the telescope. All these parts seem to depend
almost completely on detailed common conventions—and I
suspect that without all sorts of human context their meaning
would be essentially impossible to recognize. 

In all, remarkably few messages have been sent—perhaps in
part because of concerns that they might reveal us to
extraterrestrial predators (see page 1191). There has also been
a strong tendency to make messages hard even for humans to
understand—perhaps on the belief that they must then be
more scientific and more universal. 

The main text argues that it will be essentially impossible to
give definitive evidence of intelligence. Schemes that might
however get at least some distance include sending:

äwaveforms made of simple underlying elements;

ä long complicated sequences that repeat precisely; 

ä a diversity of kinds of sequences;

ä something complicated that satisfies simple constraints.

Examples of the latter include pattern-avoiding sequences
(see page 944), magic squares and other combinatorial
designs, specifications of large finite groups, and maximal
length linear feedback shift register sequences (see page
1084). Notably, the last of these are already being transmitted
by GPS satellites and CDMA communications systems. (If
cases could be found where the sequences as a whole were
forced not to have any obvious regularities, then pattern-
avoiding sequences might perhaps be good since they have
constraints that are locally fairly easy to recognize.)

Extrapolation of trends in human technology suggest that it
will become ever easier to detect weak signals that might be
assumed distorted beyond recognition or swamped by noise. 

â Page 838 · P versus NP. Given a constraint, it may be an NP-
complete problem to find out what object satisfies it. So it
may be difficult to generate the object from the constraint.
But if one allows oneself to generate the object in any way at
all, this may still be easy, even if . 

â Science fiction. Inhabitants of the Moon were described in
stories by Lucian around 150 AD and Johannes Kepler in
1634—and in both cases were closely modelled on terrestrial
organisms. Interest in fiction about extraterrestrials increased
greatly at the end of the 1800s—perhaps because by then few
parts of the Earth remained unexplored. And as science
fiction developed, accounts of the future sometimes treated
extraterrestrials as commonplace—and sometimes did not
mention them at all. Most often extraterrestrials have been
easy to recognize, being little more than simple combinations
of terrestrial animals (and occasionally plants)—though
fairly often with extra features like telepathy. Some stories
have nevertheless explored extraterrestrial intelligence based
for example on solids, gases or energy fields. An example is
Fred Hoyle’s 1957 The Black Cloud in which a large cloud of
hydrogen gas achieves intelligence by exchanging
electromagnetic signals between rocks whose surface
molecular configurations store memories. 

The most common fictional scenario for first contact with
extraterrestrials is the arrival of spacecraft—often induced by
us having passed a technology threshold such as radio,
nuclear explosions or faster-than-light travel. Other scenarios
sometimes considered include archeological discovery of
extraterrestrial artifacts and receipt of radio signals.

In the movie 2001 a black cuboid with side ratios 1:4:9
detected on the Moon through its anomalous magnetic
properties sends a radio pulse in response to sunlight. Later
there are also a few frames of flashing octahedra, presumably
intended to be extraterrestrial artifacts, or perhaps
extraterrestrials themselves.

In The Black Cloud intelligence is suggested by responsiveness
to radio stimuli. Communication is established—as often in
science fiction—by the intelligence interpreting material that
we supply, and then replying in the same format.

The movie Contact centers on a radio signal with several
traditional SETI ideas: it is transmitted at  MHz, and
involves a sequence of primes to draw attention, an
amplified TV signal from Earth and a description of a
machine to build.

P % NP

1420p
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The various Star Trek television series depict many
encounters with “new life and new civilizations”. Sometimes
intelligence is seen not associated with something that is
considered a lifeform.

Particularly in short stories various scenarios have been
explored where it is difficult ever to recognize intelligence.
These include one-of-a-kind beings that have nothing to
communicate with, as well as beings with inner intellectual
activity but no effect on the outside world. When there are
extraterrestrials substantially more advanced than humans
few efforts have been made to describe their motives and
purposes directly—and usually what is emphasized is just
their effects on humans. 

(See also page 1184.)

â Page 839 · Practical arguments. If extraterrestrials exist at all
an obvious question—notably asked by Enrico Fermi in the
1940s—is why we have not encountered them. For there
seems no fundamental reason that even spacecraft could not
colonize our entire galaxy within just a few million years.

Explanations suggested for apparent absence include:

äExtraterrestrials are visiting, but we do not detect them;

äExtraterrestrials have visited, but not in recorded history;

äExtraterrestrials choose to exist in other dimensions;

ä Interstellar travel is somehow infeasible;

äColonization is somehow ecologically limited;

äPhysical travel is not worth it; only signals are ever sent.

Explanations for apparent lack of radio signals include:

äBroadcasting is avoided for fear of conquest;

äThere are active efforts to prevent us being contaminated;

äExtraterrestrials have no interest in communicating;

äRadio is the wrong medium;

äThere are signals, but we do not understand them.

The so-called Drake equation gives a straightforward upper
bound on the number of cases of extraterrestrial intelligence
that could have arisen in our galaxy through the same basic
chain of circumstances as humans. The result is a product of:
rate of formation of suitable stars; fraction with planetary
systems; number of Earth-like planets per system; fraction
where life develops; fraction where intelligence develops;
fraction where technology develops; time communicating
civilizations survive. It now seems fairly certain that there are
at least hundreds of millions of Earth-like planets in our
galaxy. Biologists sometimes argue that intelligence is a rare
development—though in the Darwinian approach it certainly

has clear benefit. In addition, particularly in the Cold War
period, it was often said that technological civilizations
would quickly tend to destroy themselves, but now it seems
more likely that intelligence—once developed—will tend to
survive indefinitely, at least in machine form. 

It is obviously difficult to guess the possible motivations of
extraterrestrials, but one might expect that—just as with
humans—different extraterrestrials would tend to do
different things, so that at least some would choose to send
out signals if not spacecraft. Out of about 6 billion humans,
however, it is notable that only extremely few choose, say, to
explore life in the depths of the oceans—though perhaps this
is just because technology has not yet made it easy to do. In
human history a key motivator for exploration has been
trade. But trade requires that there be things of value to
exchange; yet it is not clear that with sufficiently advanced
technology there would be. For if the fundamental theory of
physics is known, then everything about what is possible in
our universe can in principle be worked out purely by a
computation. Often irreducible work will be required, which
one might imagine it would be worthwhile to trade. But as a
practical matter, it seems likely that there will be vastly more
room to do more extensive computations by using smaller
components than by trading and collaborating with even
millions of other civilizations. (It is notable that just a couple
of decades ago, it was usually assumed that extraterrestrials
would inevitably want to use large amounts of energy, and so
would eventually for example tap all the output of a star. But
seeing the increasing emphasis on information rather than
mechanical work in human affairs this now seems much less
clear.)

Extrapolating from our development, one might expect that
most extraterrestrials would be something like immortal
disembodied minds. And what such entities might do has to
some extent been considered in the context of the notion of
heaven in theology and art. And it is perhaps notable that
while such activities as music and thought are often
discussed, exploration essentially never is. 

â Physics as intelligence. From the point of view of traditional
thinking about intelligence in the universe it might seem like
an extremely bizarre possibility that perhaps intelligence
could exist at a very small scale, and in effect have spread
throughout the universe, building as an artifact everything
we see. But at least with a broad interpretation of intelligence
this is at some level exactly what the Principle of
Computational Equivalence suggests has actually happened.
For it implies that even at the smallest scales the laws of
physics will show the same computational sophistication that
we normally associate with intelligence. So in some sense this
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supports the theological notion that there might be a kind of
intelligence that permeates our universe. (See page 1195.)

Implications for Technology

â Covering technology. In writing this book I have tried to
achieve some level of completeness in covering the obvious
scientific implications of my ideas. But to cover technological
implications at anything like the same level would require at
least as long a book again. And in my experience many of the
intellectually most interesting aspects of technology emerge
only when one actually tries to build technology for real—
and they are often in a sense best captured by the technology
itself rather than by a book about it.

â Page 840 · Applications of randomness. Random drawing of
lots has been used throughout recorded history as an
unbiased way to distribute risks or rewards. Also common
have been games of chance (see page 968). Randomness is in
general a convenient way to allow local decisions to be made
while maintaining overall averages. In biological organisms
it is used in determining sex of offspring, as well as in
achieving uniform sampling, say in foraging for food.
(Especially in antiquity, all sorts of seemingly random
phenomena have been used as a basis for fortune telling.)

The notion of taking random samples as a basis for making
unbiased deductions has been common since the early 1900s,
notably in polling and market research. And in the past few
decades explicit randomization has become common as a
way of avoiding bias in cases such as clinical trials of drugs. 

In the late 1800s it was noted in recreational mathematics that
one could find the value of  by looking at randomly
dropped needles. In the early 1900s devices based on
randomness were built to illustrate statistics and probability
(see page 312), and were used for example to find the form of
the Student t-distribution. With the advent of digital
computers in the mid-1940s Monte Carlo methods (see page
968) were introduced, initially as a way to approximate
processes like neutron diffusion. (Similar ideas had been
used in 1901 by Kelvin to study the Boltzmann equation.)
Such methods became increasingly popular, especially for
simulating systems like telephone networks and particle
detectors that have many heterogeneous elements—as well
as in statistical physics. In the 1970s they also became widely
used for high-dimensional numerical integration, notably for
Feynman diagram evaluation in quantum electrodynamics.
But eventually it was realized that quasi-Monte Carlo
methods based on simple sequences could normally do
better than ones based on pure randomness (see page 1085). 

A convenient way to tell whether expressions are equal is to
evaluate them with random numerical values for variables.
(Care must be taken with branch cuts and bounding intervals
for inexact numbers.) In the late 1970s it was noted that by
evaluating  for several random
integers  one can with high probability quickly deduce

. (In the 1960s it had been noted that one can factor
polynomials by filling in random integers for variables and
factoring the resulting numbers.) And in the 1980s many
such randomized algorithms were invented, but by the mid-
1990s it was realized that most did not require any kind of
true randomness, and could readily be derandomized and
made more predictable. (See page 1085.)

There are all sorts of situations where in the absence of
anything better it is good to use randomness. Thus, for
example, many exploratory searches in this book were done
randomly. And in testing large hardware and software
systems random inputs are often used.

Randomness is a common way of avoiding pathological cases
and deadlocks. (It requires no communication between
components so is convenient in parallel systems.) Examples
include message routing in networks, retransmission times after
ethernet collisions, partitionings for sorting algorithms, and
avoiding getting stuck in minimization procedures like simulated
annealing. (See page 347.) As on page 333, it is common for
randomness to add robustness—as for example in cellular
automaton fluids, or in saccadic eye movements in biology.

In cryptography randomness is used to make messages look
typical of all possibilities (see page 598). It is also used in
roughly the same way in hashing (see page 622). Such
randomness must be repeatable. But for cryptographic keys it
should not be. And the same is true when one picks unique
IDs, say to keep track of repeat web transactions with a low
probability of collisions. Randomness is in effect also used in
a similar way in the shotgun method for DNA sequencing, as
well as in creating radar pulses that are difficult to forge. (In
biological organisms random diversity in faces and voices
may perhaps have developed for similar reasons.)

The unpredictability of randomness is often useful, say for
animals or military vehicles avoiding predators (see page
1105). Such unpredictability can also be used in simulating
human or natural processes, say for computer graphics,
videogames, or mock handwriting. Random patterns are
often used as a way to hide regularities—as in camouflage,
security envelopes, and many forms of texturing and
distressing. (See page 1077.)

In the past, randomness was usually viewed as a thing to be
avoided. But with the spread of computers and consumer
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electronics that normally operate predictably, it has become
increasingly popular as an option. 

Microscopic randomness is implicitly used whenever there is
dissipation or friction in a system, and generally it adds
robustness to the behavior that occurs in systems. 

â Page 841 · Self-assembly. Given elements (such as pieces of
molecules) that fit together only when certain specified
constraints are satisfied it is fairly straightforward to force,
say, cellular automaton patterns to be generated, as on page
221. (Notable examples of such self-assembly occur for
instance in spherical viruses.) 

â Page 841 · Nanotechnology. Popular since the late 1980s,
especially through the work of Eric Drexler, nanotechnology
has mostly involved investigation of several approaches to
making essentially mechanical devices out of small numbers
of atoms. One approach extrapolates chip technology, and
studies placing atoms individually on solid surfaces using for
example scanning probe microscopy. Another extrapolates
chemical synthesis—particularly of fullerenes—and considers
large molecules made for example out of carbon atoms. And
another involves for example setting up fragments of DNA to
try to force particular patterns of self-assembly. Most likely it
will eventually be possible to have a single universal system
that can manufacture almost any rigid atomic-scale structure
on the basis of some kind of program. (Ribosomes in biological
cells already construct arbitrary proteins from DNA
sequences, but ordinary protein shapes are usually difficult to
predict.) Existing work has tended to concentrate on trying to
make rather elaborate components suitable for building
miniature versions of familiar machines. The discoveries in
this book imply however that there are much simpler
components that can also be used to set up systems that have
behavior with essentially any degree of sophistication. Such
systems can either have the kind of chemical and mechanical
character most often considered in nanotechnology, or can be
primarily electronic, for example along the lines of so-called
quantum-dot cellular automata. Over the next several decades
applications of nanotechnology will no doubt include much
higher-capacity computers, active materials of various kinds,
and cellular-scale biomedical devices. 

â Page 842 · Searching for technology. Many inventions are
made by pure ingenuity (sometimes aided by mathematical
calculation) or by mimicking processes that go on in nature.
But there are also cases where systematic searches are done.
Notable examples were the testing of thousands of materials
as candidate electric light bulb filaments by Thomas Edison
in 1879, and the testing of 606 substances for chemotherapy
by Paul Ehrlich in 1910. For at least fifty years it has now

been quite routine to test many hundreds or thousands of
substances in looking, say, for catalysts or drugs with
particular functions. (Other kinds of systematic searches
done include ones for metal alloys, cooking recipes and plant
hybrids.) Starting in the late 1980s the methods of
combinatorial chemistry (see note below) began to make it
possible to do biochemical tests on arrays of millions of
related substances. And by the late 1990s, similar ideas were
being used for example in materials science: in a typical case
an array of different combinations of substances is made by
successively spraying through an appropriate sequence of
masks, with some physical or chemical test then applied to
all the samples.

In the late 1950s maximal length shift register sequences
(page 1084) and some error-correcting codes (page 1101) were
found by systematic searches of possible polynomials. Most
subsequent codes, however, have been found by explicit
mathematical constructions. Optimal circuit blocks for
operations such as addition and sorting (see page 1142) have
occasionally been found by searches, but are more often
found by explicit construction, progressive improvement or
systematic logic minimization (see page 1097). In some
compilers searches are occasionally done for optimal
sequences of instructions to implement particular simple
functions. And in recent years—notably in the building of
Mathematica—optimal algorithms for operations such as
function evaluation and numerical integration have
sometimes been found through searches. In addition, my
1984 identification of rule 30 as a randomness generator was
the result of a small-scale systematic search. 

Particularly since the 1970s, many systematic methods have
been tried for optimizing engineering designs by computer.
Usually they are based on iterative improvement rather than
systematic search. Some rely on linear programming or
gradient descent. Others use methods such as simulated
annealing, neural networks and genetic algorithms. But as
discussed on page 342, except in very simple cases, the
results are usually far from any absolute optimum. (Plant and
animal breeding can be viewed as a simple form of
randomized search done since the dawn of civilization.)

â Page 843 · Methodology in this book. Much of what is
presented in this book comes from systematic enumeration of
all possible systems of particular types. However, sometimes
I have done large searches for systems (see e.g. page 112).
And especially in Chapter 11 I have occasionally explicitly
constructed systems that show particular features. 

â Chemistry. Chemical compounds are a little like cellular
automata and other kinds of programs. For even though
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the basic physical laws relevant to chemical compounds
have been known since the early 1900s, it remains
extremely difficult to predict the actual properties of a
given compound. And I suspect that the ultimate reason
for this—just as in the case of simple programs—is
computational irreducibility.

For a single molecule, the minimum energy configuration
can presumably always be found by a limited amount of
computational work—though potentially increasing rapidly
with the number of atoms. But if one allows progressively
more molecules computational irreducibility can make it
take progressively more computational work to see what
will happen. And much as in determining whether
constraints like those on page 213 can be satisfied for an
infinite region, it can take an infinite amount of
computational work to determine bulk properties of an
infinite collection of molecules. Thus in practice it has
typically been difficult to predict for example boiling and
particularly melting points (see note below). So this means
in the end that most of chemistry must be based on facts
determined experimentally about specific compounds that
happen to have been studied.

There are currently about 10 million compounds listed in
standard chemical databases. Of these, most were first
identified as extracts from biological or other natural
systems. In trying to discover compounds that might be
useful say as drugs the traditional approach was to search
large libraries of compounds, then to study variations on
those that seemed promising. But in the 1980s it began to be
popular to try so-called rational design in which molecules
were created that could at least to some extent specifically
be computed to have relevant shapes and chemical
functions. Then in the 1990s so-called combinatorial
chemistry became popular, in which—somewhat in
imitation of the immune system—large numbers of possible
compounds were created by successively adding at random
several different possible amino acids or other units. But
although it will presumably change in the future it remained
true in 2001 that half of all drugs in use are derived from
just 32 families of compounds.

Doing a synthesis of a chemical is much like constructing a
network by applying a specified sequence of
transformations. And just like for multiway systems it is
presumably in principle undecidable whether a given set of
possible transformations can ever be combined to yield a
particular chemical. Yet ever since the 1960s there have been
computer systems like LHASA that try to find synthesis
pathways automatically. But perhaps because they lack even
the analog of modern automated theorem-proving methods,

such systems have never in practice been extremely
successful.

â Interesting chemicals. The standard IUPAC system for
chemical nomenclature assigns a name to essentially any
possible compound. But even among hydrocarbons with
fairly few atoms not all have ever been considered interesting
enough to list in standard chemical databases. Thus for
example the following compares the total number of
conceivable alkanes (paraffins) to the number actually listed
in the 2001 standard Beilstein database: 

Any tree with up to 4 connections at each node can in
principle correspond to an alkane with chemical formula
CnH2n+2. The total number of such trees—studied since
1875—increases roughly like . If every node has
say 4 connections, then eventually one gets dendrimers that
cannot realistically be constructed in 3D. But long before
this happens one runs into many alkanes that presumably
exist, but apparently have never explicitly been studied.
The small unbranched ones (methane, ethane, propane,
butane, pentane, etc.) are all well known, but ones with
more complicated branching are decreasingly known. In
coal and petroleum a continuous range of alkanes occur.
Branched octanes are used to reduce knocking in car
engines. Biological systems contain many specific alkanes—
often quite large—that happen to be produced through
chemical pathways in biological cells. (The  and

 unbranched alkanes are for example known to serve
as ant pheromones.)

In general the main way large molecules have traditionally
ended up being considered chemically interesting is if they
occur in biological systems—or mimic ones that do. Since the
1980s, however, molecules such as the fullerenes that instead
have specific regular geometrical shapes have also begun to
be considered interesting. 

â Alkane properties. The picture on the facing page shows
melting points measured for alkanes. (Note that even when
alkanes are listed in chemical databases—as discussed
above—their melting points may not be given.) Unbranched
alkanes yield melting points that increase smoothly for 
even and for  odd. Highly symmetrical branched alkanes
tend to have high melting points, presumably because they
pack well in space. No reliable general method for
predicting melting points is however known (see note
above), and in fact for large  alkanes tend to form jellies
with no clear notion of melting.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
total 1 1 1 2 3 5 9 18 35 75 159 355 802 1858 4347 10359

listed 1 1 1 2 3 5 9 18 35 75 68 108 60 60 41 62

2.79n n-5/2

n = 11
n = 13

n
n
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Things appear somewhat simpler with boiling points, and as
noticed by Harry Wiener in 1947 (and increasingly discussed
since the 1970s) these tend to be well fit as being linearly
proportional to the so-called topological index given by the
sum of the smallest numbers of connections visited in getting
between all pairs of carbon atoms in an alkane molecule.

â Page 843 · Components for technology. The Principle of
Computational Equivalence suggests that a vast range of
systems in nature can all ultimately be used to make
computers. But it is remarkable to what extent even the
components of present-day computer systems involve
elements of nature originally studied for quite different
reasons. Examples include electricity, semiconductors (used
for chips), ferrites (used for magnetic storage), liquid crystals
(used for displays), piezoelectricity (used for microphones),
total internal reflection (used for optical fibers), stimulated
emission (used for lasers) and photoconductivity (used for
xerographic printing).

â Future technology. The purposes technology should serve
inevitably change as human civilization develops. But at least
in the immediate future many of these purposes will tend to
relate to the current character of our bodies and minds. For
certainly technology must interface with these. But
presumably as time progresses it will tend to become more
integrated, with systems that we have created eventually
being able to fit quite interchangeably into our usual
biological or mental setup. At first most such systems will
probably tend either to be based on standard engineering, or
to be quite direct emulations of human components that we
see. But particularly by using the ideas and methods of this
book I suspect that significant progressive enhancements will
be possible. And probably there will be many features that
are actually quite easy to take far beyond the originals. One
example is memory and the recall of history. Human memory
is in many ways quite impressive. Yet for ordinary physical
objects we are used to the idea that they remember little of
their history, for at a macroscopic level we tend to see only

the coarsest traces. But at a microscopic scale something like
the surface of a solid has in at least some form remarkably
detailed information about its history. And as technological
systems get smaller it should become possible to read and
manipulate this. And much as in the discussion at the end of
Chapter 10 the ability to interact at such a level will yield
quite different experiences, which in turn will tend to suggest
different purposes to pursue with technology. 

Historical Perspectives

â Page 844 · Human uniqueness. The idea that there is
something unique and special about humans has deep roots
in Judeo-Christian tradition—and despite some dilution
from science remains a standard tenet of Western thought
today. Eastern religions have however normally tended to
take a different view, and to consider humans as just one of
many elements that make up the universe as a whole. (See
note below.)

â Page 845 · Animism. Belief in animism remains strong in
perhaps several hundred million indigenous people around
the world. In its typical form, it involves not only explaining
natural phenomena by analogy to human behavior but also
assuming that they can be influenced as humans might be,
say by offerings or worship. (See also page 1177.)

Particularly since Edward Tylor in 1871 animism has often
been thought of as the earliest identifiable form of religion.
Polytheism is then assumed to arise when the idea of
localized spirits associated with individual natural objects is
generalized to the idea of gods associated with types of
objects or concepts (as for example in many Roman beliefs).
Following their rejection in favor of monotheism by
Judaism—and later Christianity and Islam—such ideas have
however tended to be considered primitive and pagan. In
Europe through the Middle Ages there nevertheless
remained widespread belief in animistic kinds of
explanations. And even today some Western superstitions
center on animism, as do rituals in countries like Japan.
Animism is also a key element of the New Age movement of
the 1960s, as well as of such ideas as the Gaia Hypothesis.

Particularly since the work of Jean Piaget in the 1940s, young
children are often said to go through a phase of animism, in
which they interact with complex objects much as if they
were alive and human.

â Page 845 · Universe as intelligent. Whether or not something
like thinking can be attributed to the universe has long been
discussed in philosophy and theology. Theism and the
standard Western religions generally attribute thinking to a
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person-like God who governs the universe but is separate
from it. Deism emphasizes that God can govern the universe
only according to natural laws—but whether or not this
involves thinking is unclear. Pantheism generally identifies the
universe and God. In its typical religious form in Eastern
metaphysics—as well as in philosophical idealism—the
contents of the universe are identified quite directly with the
thoughts of God. In scientific pantheism the abstract order of
the universe is identified with God (often termed “Nature’s
God” or “Spinoza’s God”), but whether this means that
thinking is involved in the operation of the universe is not
clear. (See also pages 822 and 1191.)

â Non-Western thinking. Some of my conclusions in this
book may seem to resonate with ideas of Eastern thinking.
For example, what I say about the fundamental similarity of
human thinking to other processes in nature may seem to fit
with Buddhism. And what I say about the irreducibility of
processes in nature to short formal rules may seem to fit with
Taoism. Like essentially all forms of science, however, what I
do in this book is done in a rational tradition—with limited
relation to the more mystical traditions of Eastern thinking. 

â Aphorisms. Particularly from ancient and more fragmentary
texts aphorisms have survived that may sometimes seem at
least vaguely related to this book. (An example from the pre-
Socratics is “everything is full of gods”.) But typically it is
impossible to see with any definiteness what such aphorisms
might really have been intended to mean.

â Postmodernism. Since the mid-1960s postmodernism has
argued that science must have fundamental limitations,
based on its general belief that any single abstract system
must somehow be as limited—and as arbitrary in its
conclusions—as the context in which it is set up. My work
supports the notion that—despite implicit assumptions made
especially in the physical sciences—context can in fact be
crucial to the choice of subject matter and interpretation of
results in science (see e.g. page 1105). But the Principle of
Computational Equivalence suggests at some level a
remarkable uniformity among systems, that allows all sorts
of general scientific statements to be made without
dependence on context. It so happens that some of these
statements then imply intrinsic general limitations on
science—but even the very fact that such statements can be
made is in a sense an example of successful generality in
science that goes against the conclusions of postmodernism.
(See also page 1131.)

â Microcosm. The notion that a human mind might somehow
be analogous to the whole universe was discussed by Plato
and others in antiquity, and known in the Middle Ages. But it

was normally assumed that this was something fairly unique
to the human mind—and nothing with the generality of the
Principle of Computational Equivalence was ever imagined.

â Human future. The Principle of Computational Equivalence
and the results of this book at first suggest a rather bleak view
of the end point of the development of technology. As I argued
in Chapter 10 computers will presumably be able to emulate
human thinking. And particularly using the methods of this
book one will be able to use progressively smaller physical
components as elements of computers. So before too long it
will no doubt be possible to implement all the processes of
thinking that go on in a single human—or even in billions of
humans—in a fairly small piece of material. Each piece of
human thinking will then correspond to some microscopic
pattern of changes in the atoms of the material. In the past one
might have assumed that these changes would somehow
show fundamental evidence of representing sophisticated
human thinking. But the Principle of Computational
Equivalence implies that many ordinary physical processes are
computationally just as sophisticated as human thinking. And
this means that the pattern of microscopic changes produced
by such processes can at some level be just as sophisticated as
those corresponding to human thinking. So given, say, an
ordinary piece of rock in which there is all sorts of complicated
electron motion this may in a fundamental sense be doing no
less than some system of the future constructed with
nanotechnology to implement operations of human thinking.
And while at first this might seem to suggest that the rich
history of biology, civilization and technology needed to reach
this point would somehow be wasted, what I believe instead is
that this just highlights the extent to which such history is
what is ultimately the defining feature of the human condition.

â Philosophical implications. The Principle of Computational
Equivalence has implications for many issues long discussed
in the field of philosophy. Most important are probably those
in epistemology (theory of knowledge). In the past, it has
usually been assumed that if we could only build up in our
minds an adequate model of the world, then we would
immediately know whatever we want about the world. But
the Principle of Computational Equivalence now implies that
even given a model it may be irreducibly difficult to work out
its consequences. In effect, computational irreducibility
introduces a new kind of limit to knowledge. And it implies
that one needs a criterion more sophisticated than immediate
predictability to assess a scientific theory—since when
computational irreducibility is present this will inevitably be
limited. In the past, it has sometimes been assumed that
truths that can be deduced purely by operations like those in
logic must somehow always be trivial. But computational
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irreducibility implies that in general they are not. Indeed it
implies that even once the basic laws are known there are still
an endless series of questions that are worth investigating in
science. It is often assumed that one cannot learn much about
the world just by studying purely formal systems—and that
one has to rely on empirical input. But the Principle of
Computational Equivalence implies that at some level there
are inevitably common features across both abstract and
natural systems. In ontology (theory of being) the Principle of
Computational Equivalence implies that special components
are vastly less necessary than might have been thought. For it
shows that all sorts of sophisticated characteristics can
emerge from the very same kinds of simple components. (My
discussion of fundamental physics in Chapter 9 also suggests
that no separate entities beyond simple rules are needed to
capture space, time or matter.) Arguments in several areas of
philosophy involve in effect considering fundamentally
different intelligences. But the Principle of Computational
Equivalence implies that in fact above a certain threshold

there is an ultimate equivalence between possible
intelligences. In addition, the Principle of Computational
Equivalence implies that all sorts of systems in nature and
elsewhere will inevitably exhibit features that in the past
have been considered unique to intelligence—and this has
consequences for the mind-body problem, the question of
free will, and recognition of other minds. It has often been
thought that traditional logic—and to some extent
mathematics—are somehow fundamentally special and
provide in a sense unique foundations. But the Principle of
Computational Equivalence implies that in fact there are a
huge range of other formal systems, equivalent in their
ultimate richness, but different in their details, and in the
questions to which they naturally lead. In philosophy of
science the Principle of Computational Equivalence forces a
new methodology based on formal experiments—that is
ultimately the foundation for the whole new kind of science
that I describe in this book. 




