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The Crucial Experiment 

How Do Simple Programs Behave? 

New directions in science have typically been initiated by certain

central observations or experiments. And for the kind of science that I

describe in this book these concerned the behavior of simple programs. 

In our everyday experience with computers, the programs that we

encounter are normally set up to perform very definite tasks. But the key

idea that I had nearly twenty years ago—and that eventually led to the

whole new kind of science in this book—was to ask what happens if one

instead just looks at simple arbitrarily chosen programs, created without

any specific task in mind. How do such programs typically behave?

The mathematical methods that have in the past dominated

theoretical science do not help much with such a question. But with a

computer it is straightforward to start doing experiments to investigate

it. For all one need do is just set up a sequence of possible simple

programs, and then run them and see how they behave. 

Any program can at some level be thought of as consisting of a set

of rules that specify what it should do at each step. There are many

possible ways to set up these rules—and indeed we will study quite a

few of them in the course of this book. But for now, I will consider a

particular class of examples called cellular automata, that were the very

first kinds of simple programs that I investigated in the early 1980s.
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An important feature of cellular automata is that their behavior

can readily be presented in a visual way. And so the picture below

shows what one cellular automaton does over the course of ten steps.

The cellular automaton consists of a line of cells, each colored

either black or white. At every step there is then a definite rule that

determines the color of a given cell from the color of that cell and its

immediate left and right neighbors on the step before. 

For the particular cellular automaton shown here the rule

specifies—as in the picture below—that a cell should be black in all

cases where it or either of its neighbors were black on the step before.

And the picture at the top of the page shows that starting with a

single black cell in the center this rule then leads to a simple growing

pattern uniformly filled with black. But modifying the rule just slightly

one can immediately get a different pattern. 

As a first example, the picture at the top of the facing page shows

what happens with a rule that makes a cell white whenever both of its

neighbors were white on the step before—even if the cell itself was

black before. And rather than producing a pattern that is uniformly

filled with black, this rule now instead gives a pattern that repeatedly

alternates between black and white like a checkerboard.

A visual representation of the behavior
of a cellular automaton, with each row
of cells corresponding to one step. At
the first step the cell in the center is
black and all other cells are white. Then
on each successive step, a particular
cell is made black whenever it or either
of its neighbors were black on the step
before. As the picture shows, this leads
to a simple expanding pattern uniformly
filled with black. 

step 10:

step 9:

step 8:

step 7:

step 6:

step 5:

step 4:

step 3:

step 2:

step 1:

A representation of the rule for
the cellular automaton shown
above. The top row in each box

gives one of the possible combinations of colors for a cell and its immediate neighbors. The
bottom row then specifies what color the center cell should be on the next step in each of these
cases. In the numbering scheme described in Chapter 3, this is cellular automaton rule 254.

step 1:

step 2:

step 3:

step 4:

step 5:
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This pattern is however again fairly simple. And we might

assume that at least with the type of cellular automata that we are

considering, any rule we might choose would always give a pattern that

is quite simple. But now we are in for our first surprise.

The picture below shows the pattern produced by a cellular

automaton of the same type as before, but with a slightly different rule.

A cellular automaton with a slightly different rule. The rule
makes a particular cell black if either of its neighbors was black
on the step before, and makes the cell white if both its
neighbors were white. Starting from a single black cell, this rule
leads to a checkerboard pattern. In the numbering scheme of
Chapter 3, this is cellular automaton rule 250. 

A cellular automaton that produces an intricate nested pattern. The rule in this case is
that a cell should be black whenever one or the other, but not both, of its neighbors
were black on the step before. Even though the rule is very simple, the picture

shows that the overall pattern obtained over the course of 50 steps starting from a single black cell is not so simple. The particular rule
used here can be described by the formula . In the numbering scheme of Chapter 3, it is cellular automaton rule 90. ai

ç = Mod[ai-1 + ai+1, 2]



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

26

This time the rule specifies that a cell should be black when either its

left neighbor or its right neighbor—but not both—were black on the

step before. And again this rule is undeniably quite simple. But now the

picture shows that the pattern it produces is not so simple. 

And if one runs the cellular automaton for more steps, as in the

picture below, then a rather intricate pattern emerges. But one can now

see that this pattern has very definite regularity. For even though it is

intricate, one can see that it actually consists of many nested triangular

pieces that all have exactly the same form. And as the picture shows,

each of these pieces is essentially just a smaller copy of the whole

pattern, with still smaller copies nested in a very regular way inside it.

So of the three cellular automata that we have seen so far, all

ultimately yield patterns that are highly regular: the first a simple

uniform pattern, the second a repetitive pattern, and the third an

intricate but still nested pattern. And we might assume that at least for

A larger version of the pattern from the previous page, now shown without a grid explicitly indicating each cell. The picture shows five
hundred steps of cellular automaton evolution. The pattern obtained is intricate, but has a definite nested structure. Indeed, as the
picture illustrates, each triangular section is essentially just a smaller copy of the whole pattern, with still smaller copies nested inside it.
Patterns with nested structure of this kind are often called “fractal” or “self-similar”. 
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cellular automata with rules as simple as the ones we have been using

these three forms of behavior would be all that we could ever get. 

But the remarkable fact is that this turns out to be wrong.

And the picture below shows an example of this. The rule used—

that I call rule 30—is of exactly the same kind as before, and can be

described as follows. First, look at each cell and its right-hand neighbor.

If both of these were white on the previous step, then take the new

color of the cell to be whatever the previous color of its left-hand

neighbor was. Otherwise, take the new color to be the opposite of that. 

The picture shows what happens when one starts with just one

black cell and then applies this rule over and over again. And what one

sees is something quite startling—and probably the single most

surprising scientific discovery I have ever made. Rather than getting a

simple regular pattern as we might expect, the cellular automaton

instead produces a pattern that seems extremely irregular and complex. 

A cellular automaton with a simple rule that generates a pattern which seems
in many respects random. The rule used is of the same type as in the
previous examples, and the cellular automaton is again started from a single

black cell. But now the pattern that is obtained is highly complex, and shows almost no overall regularity. This picture is our first
example of the fundamental phenomenon that even with simple underlying rules and simple initial conditions, it is possible to
produce behavior of great complexity. In the numbering scheme of Chapter 3, the cellular automaton shown here is rule 30.
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But where does this complexity come from? We certainly did not

put it into the system in any direct way when we set it up. For we just

used a simple cellular automaton rule, and just started from a simple

initial condition containing a single black cell. 

Yet the picture shows that despite this, there is great complexity

in the behavior that emerges. And indeed what we have seen here is a

first example of an extremely general and fundamental phenomenon

that is at the very core of the new kind of science that I develop in this

book. Over and over again we will see the same kind of thing: that even

though the underlying rules for a system are simple, and even though

the system is started from simple initial conditions, the behavior that

the system shows can nevertheless be highly complex. And I will argue

that it is this basic phenomenon that is ultimately responsible for most

of the complexity that we see in nature.

The next two pages show progressively more steps in the

evolution of the rule 30 cellular automaton from the previous page. One

might have thought that after maybe a thousand steps the behavior

would eventually resolve into something simple. But the pictures on

the next two pages show that nothing of the sort happens. 

Some regularities can nevertheless be seen. On the left-hand side,

for example, there are obvious diagonal bands. And dotted throughout

there are various white triangles and other small structures. Yet given

the simplicity of the underlying rule, one would expect vastly more

regularities. And perhaps one might imagine that our failure to see any

in the pictures on the next two pages is just a reflection of some kind of

inadequacy in the human visual system. 

But it turns out that even the most sophisticated mathematical

and statistical methods of analysis seem to do no better. For example,

one can look at the sequence of colors directly below the initial black cell.

And in the first million steps in this sequence, for example, it never

repeats, and indeed none of the tests I have ever done on it show any

meaningful deviation at all from perfect randomness.

In a sense, however, there is a certain simplicity to such perfect

randomness. For even though it may be impossible to predict what
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marker

Five hundred steps in the evolution of the rule 30 cellular automaton from page 27. The pattern produced continues to expand on both
left and right, but only the part that fits across the page is shown here. The asymmetry between the left and right-hand sides is a direct
consequence of asymmetry that exists in the particular underlying cellular automaton rule used. 
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Fifteen hundred steps of rule 30 evolution. Some regularities are evident, particularly on the left. But even after all these steps there are
no signs of overall regularity—and indeed even continuing for a million steps many aspects of the pattern obtained seem perfectly
random according to standard mathematical and statistical tests. The picture here shows a total of just under two million individual cells. 
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color will occur at any specific step, one still knows for example that

black and white will on average always occur equally often.

But it turns out that there are cellular automata whose behavior

is in effect still more complex—and in which even such averages

become very difficult to predict. The pictures on the next several pages

give a rather dramatic example. The basic form of the rule is just the

same as before. But now the specific rule used—that I call rule 110—

takes the new color of a cell to be black in every case except when the

previous colors of the cell and its two neighbors were all the same, or

when the left neighbor was black and the cell and its right neighbor

were both white. 

The pattern obtained with this rule shows a remarkable mixture

of regularity and irregularity. More or less throughout, there is a very

regular background texture that consists of an array of small white

triangles repeating every 7 steps. And beginning near the left-hand edge,

there are diagonal stripes that occur at intervals of exactly 80 steps.

But on the right-hand side, the pattern is much less regular.

Indeed, for the first few hundred steps there is a region that seems

essentially random. But by the bottom of the first page, all that remains

of this region is three copies of a rather simple repetitive structure.

Yet at the top of the next page the arrival of a diagonal stripe from

the left sets off more complicated behavior again. And as the system

progresses, a variety of definite localized structures are produced.

Some of these structures remain stationary, like those at the

bottom of the first page, while others move steadily to the right or left

at various speeds. And on their own, each of these structures works

in a fairly simple way. But as the pictures illustrate, their various

interactions can have very complicated effects. 

And as a result it becomes almost impossible to predict—even

approximately—what the cellular automaton will do.

Will all the structures that are produced eventually annihilate

each other, leaving only a very regular pattern? Or will more and more

structures appear until the whole pattern becomes quite random?

The only sure way to answer these questions, it seems, is just to

run the cellular automaton for as many steps as are needed, and to
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A cellular automaton whose behavior seems neither highly regular nor completely
random. The picture is obtained by applying the simple rule shown for a total of
150 steps, starting with a single black cell. Note that the particular rule used here
yields a pattern that expands on the left but not on the right. In the scheme defined
in Chapter 3, the rule is number 110.

More steps in the pattern shown above. Each successive page shows a total of 700 steps. The pattern continues to expand on the left
forever, but only the part that fits across each page is shown. For a long time it is not clear how the right-hand part of the pattern will
eventually look. But after 2780 steps, a fairly simple repetitive structure emerges. Note that to generate the pictures that follow
requires applying the underlying cellular automaton rule for individual cells a total of about 12 million times.
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watch what happens. And as it turns out, in the particular case shown

here, the outcome is finally clear after about 2780 steps: one structure

survives, and that structure interacts with the periodic stripes coming

from the left to produce behavior that repeats every 240 steps.

However certain one might be that simple programs could never

do more than produce simple behavior, the pictures on the past few

pages should forever disabuse one of that notion. And indeed, what is

perhaps most bizarre about the pictures is just how little trace they

ultimately show of the simplicity of the underlying cellular automaton

rule that was used to produce them.

One might think, for example, that the fact that all the cells in a

cellular automaton follow exactly the same rule would mean that in

pictures like the last few pages all cells would somehow obviously be

doing the same thing. But instead, they seem to be doing quite different

things. Some of them, for example, are part of the regular background,

while others are part of one or another localized structure. And what

makes this possible is that even though individual cells follow the same

rule, different configurations of cells with different sequences of colors

can together produce all sorts of different kinds of behavior.

Looking just at the original cellular automaton rule one would

have no realistic way to foresee all of this. But by doing the appropriate

computer experiments one can easily find out what actually happens—

and in effect begin the process of exploring a whole new world of

remarkable phenomena associated with simple programs. 

The Need for a New Intuition

The pictures in the previous section plainly show that it takes only very

simple rules to produce highly complex behavior. Yet at first this may

seem almost impossible to believe. For it goes against some of our most

basic intuition about the way things normally work.

 A single picture of the behavior from the previous five pages. A total of 3200 steps
are shown. Note that this is more than twice as many as in the picture on page 30. 
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For our everyday experience has led us to expect that an object

that looks complicated must have been constructed in a complicated

way. And so, for example, if we see a complicated mechanical device,

we normally assume that the plans from which the device was built

must also somehow be correspondingly complicated.

But the results at the end of the previous section show that at

least sometimes such an assumption can be completely wrong. For the

patterns we saw are in effect built according to very simple plans—that

just tell us to start with a single black cell, and then repeatedly to apply

a simple cellular automaton rule. Yet what emerges from these plans

shows an immense level of complexity. 

So what is it that makes our normal intuition fail? The most

important point seems to be that it is mostly derived from experience

with building things and doing engineering—where it so happens that

one avoids encountering systems like the ones in the previous section.

For normally we start from whatever behavior we want to get,

then try to design a system that will produce it. Yet to do this reliably,

we have to restrict ourselves to systems whose behavior we can readily

understand and predict—for unless we can foresee how a system will

behave, we cannot be sure that the system will do what we want. 

But unlike engineering, nature operates under no such constraint.

So there is nothing to stop systems like those at the end of the previous

section from showing up. And in fact one of the important conclusions

of this book is that such systems are actually very common in nature.

But because the only situations in which we are routinely aware

both of underlying rules and overall behavior are ones in which we are

building things or doing engineering, we never normally get any

intuition about systems like the ones at the end of the previous section.

So is there then any aspect of everyday experience that should

give us a hint about the phenomena that occur in these systems?

Probably the closest is thinking about features of practical computing.

For we know that computers can perform many complex tasks. Yet

at the level of basic hardware a typical computer is capable of executing just

a few tens of kinds of simple logical, arithmetic and other instructions. And

to some extent the fact that by executing large numbers of such
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instructions one can get all sorts of complex behavior is similar to the

phenomenon we have seen in cellular automata. 

But there is an important difference. For while the individual

machine instructions executed by a computer may be quite simple, the

sequence of such instructions defined by a program may be long and

complicated. And indeed—much as in other areas of engineering—the

typical experience in developing software is that to make a computer do

something complicated requires setting up a program that is itself

somehow correspondingly complicated. 

In a system like a cellular automaton the underlying rules can be

thought of as rough analogs of the machine instructions for a computer,

while the initial conditions can be thought of as rough analogs of the

program. Yet what we saw in the previous section is that in cellular

automata not only can the underlying rules be simple, but the initial

conditions can also be simple—consisting say of just a single black

cell—and still the behavior that is produced can be highly complex.

So while practical computing gives a hint of part of what we saw

in the previous section, the whole phenomenon is something much

larger and stronger. And in a sense the most puzzling aspect of it is that

it seems to involve getting something from nothing. 

For the cellular automata we set up are by any measure simple to

describe. Yet when we ran them we ended with patterns so complex

that they seemed to defy any simple description at all.

And one might hope that it would be possible to call on some

existing kind of intuition to understand such a fundamental

phenomenon. But in fact there seems to be no branch of everyday

experience that provides what is needed. And so we have no choice but

to try to develop a whole new kind of intuition.

And the only reasonable way to do this is to expose ourselves to a

large number of examples. We have seen so far only a few examples, all

in cellular automata. But in the next few chapters we will see many

more examples, both in cellular automata and in all sorts of other

systems. And by absorbing these examples, one is in the end able to

develop an intuition that makes the basic phenomena that I have

discovered seem somehow almost obvious and inevitable.
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Why These Discoveries Were Not Made Before

The main result of this chapter—that programs based on simple rules

can produce behavior of great complexity—seems so fundamental that

one might assume it must have been discovered long ago. But it was

not, and it is useful to understand some of the reasons why it was not.

In the history of science it is fairly common that new

technologies are ultimately what make new areas of basic science

develop. And thus, for example, telescope technology was what led to

modern astronomy, and microscope technology to modern biology. And

now, in much the same way, it is computer technology that has led to

the new kind of science that I describe in this book.

Indeed, this chapter and several of those that follow can in a sense

be viewed as an account of some of the very simplest experiments that

can be done using computers. But why is it that such simple

experiments were never done before? 

One reason is just that they were not in the mainstream of any

existing field of science or mathematics. But a more important reason is

that standard intuition in traditional science gave no reason to think

that their results would be interesting.

And indeed, if it had been known that they were worthwhile,

many of the experiments could actually have been done even long

before computers existed. For while it may be somewhat tedious, it is

certainly possible to work out the behavior of something like a cellular

automaton by hand. And in fact, to do so requires absolutely no

sophisticated ideas from mathematics or elsewhere: all it takes is an

understanding of how to apply simple rules repeatedly. 

And looking at the historical examples of ornamental art on the

facing page, there seems little reason to think that the behavior of many

cellular automata could not have been worked out many centuries or even

millennia ago. And perhaps one day some Babylonian artifact created using

the rule 30 cellular automaton from page 27 will be unearthed. But I very

much doubt it. For I tend to think that if pictures like the one on page 27

had ever in fact been seen in ancient times then science would have been

led down a very different path from the one it actually took. 
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13th century (Italian) 13th century (Italian) 14th century (Islamic) 14th century (Islamic)

12th century (Italian) 13th century (English) 13th century (Italian) 13th century (Italian)

1st century BC (Celtic) 2nd century (Roman) 8th century (Islamic) 8th century (Celtic)

22,000 BC (Paleolithic) 3500 BC (Sumerian) 1200 BC (Greek) 9th century BC (Phoenician)

Historical examples of ornamental art. Repetitive patterns are common and some nested patterns are seen, but the more complicated
kinds of patterns discussed in this chapter do not ever appear to have been used. Note that the second-to-last picture is not an abstract
design, but is instead text written in a highly stylized form of Arabic script. 
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Even early in antiquity attempts were presumably made to see

whether simple abstract rules could reproduce the behavior of natural

systems. But so far as one can tell the only types of rules that were tried

were ones associated with standard geometry and arithmetic. And using

these kinds of rules, only rather simple behavior could be obtained—

adequate to explain some of the regularities observed in astronomy, but

unable to capture much of what is seen elsewhere in nature. 

And perhaps because of this, it typically came to be assumed that

a great many aspects of the natural world are simply beyond human

understanding. But finally the successes based on calculus in the late

1600s began to overthrow this belief. For with calculus there was finally

real success in taking abstract rules created by human thought and

using them to reproduce all sorts of phenomena in the natural world.

But the particular rules that were found to work were fairly

sophisticated ones based on particular kinds of mathematical

equations. And from seeing the sophistication of these rules there began

to develop an implicit belief that in almost no important cases would

simpler rules be useful in reproducing the behavior of natural systems.

During the 1700s and 1800s there was ever-increasing success in

using rules based on mathematical equations to analyze physical

phenomena. And after the spectacular results achieved in physics in the

early 1900s with mathematical equations there emerged an almost

universal belief that absolutely every aspect of the natural world would

in the end be explained by using such equations.

Needless to say, there were many phenomena that did not readily

yield to this approach, but it was generally assumed that if only the

necessary calculations could be done, then an explanation in terms of

mathematical equations would eventually be found.

Beginning in the 1940s, the development of electronic computers

greatly broadened the range of calculations that could be done. But

disappointingly enough, most of the actual calculations that were tried

yielded no fundamentally new insights. And as a result many people

came to believe—and in some cases still believe today—that computers

could never make a real contribution to issues of basic science.
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But the crucial point that was missed is that computers are not

just limited to working out consequences of mathematical equations.

And indeed, what we have seen in this chapter is that there are

fundamental discoveries that can be made if one just studies directly

the behavior of even some of the very simplest computer programs. 

In retrospect it is perhaps ironic that the idea of using simple

programs as models for natural systems did not surface in the early days

of computing. For systems like cellular automata would have been

immensely easier to handle on early computers than mathematical

equations were. But the issue was that computer time was an expensive

commodity, and so it was not thought worth taking the risk of trying

anything but well-established mathematical models.

By the end of the 1970s, however, the situation had changed, and

large amounts of computer time were becoming readily available. And this

is what allowed me in 1981 to begin my experiments on cellular automata.

There is, as I mentioned above, nothing in principle that requires

one to use a computer to study cellular automata. But as a practical

matter, it is difficult to imagine that anyone in modern times would

have the patience to generate many pictures of cellular automata by

hand. For it takes roughly an hour to make the picture on page 27 by

hand, and it would take a few weeks to make the picture on page 29.

Yet even with early mainframe computers, the data for these

pictures could have been generated in a matter of a few seconds and a

few minutes respectively. But the point is that one would be very

unlikely to discover the kinds of fundamental phenomena discussed in

this chapter just by looking at one or two pictures. And indeed for me to

do it certainly took carrying out quite large-scale computer experiments

on a considerable number of different cellular automata.

If one already has a clear idea about the basic features of a

particular phenomenon, then one can often get more details by doing

fairly specific experiments. But in my experience the only way to find

phenomena that one does not already know exist is to do very

systematic and general experiments, and then to look at the results with

as few preconceptions as possible. And while it takes only rather basic
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computer technology to make single pictures of cellular automata, it

requires considerably more to do large-scale systematic experiments.

Indeed, many of my discoveries about cellular automata came as

direct consequences of using progressively better computer technology.

As one example, I discovered the classification scheme for

cellular automata with random initial conditions described at the

beginning of Chapter 6 when I first looked at large numbers of different

cellular automata together on high-resolution graphics displays.

Similarly, I discovered the randomness of rule 30 (page 27) when I was

in the process of setting up large simulations for an early

parallel-processing computer. And in more recent years, I have

discovered a vast range of new phenomena as a result of easily being

able to set up large numbers of computer experiments in Mathematica.

Undoubtedly, therefore, one of the main reasons that the

discoveries I describe in this chapter were not made before the 1980s is

just that computer technology did not yet exist powerful enough to do

the kinds of exploratory experiments that were needed.

But beyond the practicalities of carrying out such experiments, it

was also necessary to have the idea that the experiments might be

worth doing in the first place. And here again computer technology

played a crucial role. For it was from practical experience in using

computers that I developed much of the necessary intuition.

As a simple example, one might have imagined that systems like

cellular automata, being made up of discrete cells, would never be able

to reproduce realistic natural shapes. But knowing about computer

displays it is clear that this is not the case. For a computer display, like

a cellular automaton, consists of a regular array of discrete cells or

pixels. Yet practical experience shows that such displays can produce

quite realistic images, even with fairly small numbers of pixels.

And as a more significant example, one might have imagined that

the simple structure of cellular automaton programs would make it

straightforward to foresee their behavior. But from experience in

practical computing one knows that it is usually very difficult to

foresee what even a simple program will do. Indeed, that is exactly why

bugs in programs are so common. For if one could just look at a program
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and immediately know what it would do, then it would be an easy

matter to check that the program did not contain any bugs.

Notions like the difficulty of finding bugs have no obvious

connection to traditional ideas in science. And perhaps as a result of

this, even after computers had been in use for several decades,

essentially none of this type of intuition from practical computing had

found its way into basic science. But in 1981 it so happened that I had

for some years been deeply involved in both practical computing and

basic science, and I was therefore in an almost unique position to apply

ideas derived from practical computing to basic science. 

Yet despite this, my discoveries about cellular automata still

involved a substantial element of luck. For as I mentioned on page 19,

my very first experiments on cellular automata showed only very

simple behavior, and it was only because doing further experiments was

technically very easy for me that I persisted.

And even after I had seen the first signs of complexity in cellular

automata, it was several more years before I discovered the full range of

examples given in this chapter, and realized just how easily complexity

could be generated in systems like cellular automata.

Part of the reason that this took so long is that it involved

experiments with progressively more sophisticated computer

technology. But the more important reason is that it required the

development of new intuition. And at almost every stage, intuition

from traditional science took me in the wrong direction. But I found

that intuition from practical computing did better. And even though it

was sometimes misleading, it was in the end fairly important in putting

me on the right track.

Thus there are two quite different reasons why it would have

been difficult for the results in this chapter to be discovered much

before computer technology reached the point it did in the 1980s. First,

the necessary computer experiments could not be done with sufficient

ease that they were likely to be tried. And second, the kinds of intuition

about computation that were needed could not readily have been

developed without extensive exposure to practical computing.
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But now that the results of this chapter are known, one can go

back and see quite a number of times in the past when they came at

least somewhat close to being discovered.

It turns out that two-dimensional versions of cellular automata

were already considered in the early 1950s as possible idealized models

for biological systems. But until my work in the 1980s the actual

investigations of cellular automata that were done consisted mainly in

constructions of rather complicated sets of rules that could be shown to

lead to specific kinds of fairly simple behavior.

The question of whether complex behavior could occur in

cellular automata was occasionally raised, but on the basis of intuition

from engineering it was generally assumed that to get any substantial

complexity, one would have to have very complicated underlying rules.

And as a result, the idea of studying cellular automata with simple rules

never surfaced, with the result that nothing like the experiments

described in this chapter were ever done.

In other areas, however, systems that are effectively based on

simple rules were quite often studied, and in fact complex behavior was

sometimes seen. But without a framework to understand its significance,

such behavior tended either to be ignored entirely or to be treated as some

kind of curiosity of no particular fundamental significance.

Indeed, even very early in the history of traditional mathematics

there were already signs of the basic phenomenon of complexity. One

example known for well over two thousand years concerns the

distribution of prime numbers (see page 132). The rules for generating

primes are simple, yet their distribution seems in many respects

random. But almost without exception mathematical work on primes

has concentrated not on this randomness, but rather on proving the

presence of various regularities in the distribution.

Another early sign of the phenomenon of complexity could have

been seen in the digit sequence of a number like 

(see page 136). By the 1700s more than a hundred digits of  had been

computed, and they appeared quite random. But this fact was treated

essentially as a curiosity, and the idea never appears to have arisen that

Π � 3.141592653 …

Π
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there might be a general phenomenon whereby simple rules like those

for computing  could produce complex results.

In the early 1900s various explicit examples were constructed in

several areas of mathematics in which simple rules were repeatedly

applied to numbers, sequences or geometrical patterns. And sometimes

nested or fractal behavior was seen. And in a few cases substantially

more complex behavior was also seen. But the very complexity of this

behavior was usually taken to show that it could not be relevant for real

mathematical work—and could only be of recreational interest.

When electronic computers began to be used in the 1940s, there

were many more opportunities for the phenomenon of complexity to be

seen. And indeed, looking back, significant complexity probably did

occur in many scientific calculations. But these calculations were

almost always based on traditional mathematical models, and since

previous analyses of these models had not revealed complexity, it

tended to be assumed that any complexity in the computer calculations

was just a spurious consequence of the approximations used in them.

One class of systems where some types of complexity were

noticed in the 1950s are so-called iterated maps. But as I will discuss on

page 149, the traditional mathematics that was used to analyze such

systems ended up concentrating only on certain specific features, and

completely missed the main phenomenon discovered in this chapter.

It is often useful in practical computing to produce sequences of

numbers that seem random. And starting in the 1940s, several simple

procedures for generating such sequences were invented. But perhaps

because these procedures always seemed quite ad hoc, no general

conclusions about randomness and complexity were drawn from them.

Along similar lines, systems not unlike the cellular automata

discussed in this chapter were studied in the late 1950s for generating

random sequences to be used in cryptography. Almost all the results

that were obtained are still military secrets, but I do not believe that

any phenomena like the ones described in this chapter were discovered.

And in general, within the context of mainstream science, the

standard intuition that had been developed made it very difficult for

anyone to imagine that it would be worth studying the behavior of the

Π
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very simple kinds of computer programs discussed in this chapter. But

outside of mainstream science, some work along such lines was done.

And for example in the 1960s early computer enthusiasts tried running

various simple programs, and found that in certain cases these programs

could succeed in producing nested patterns.

Then in the early 1970s, considerable recreational computing

interest developed in a specific two-dimensional cellular automaton

known as the Game of Life, whose behavior is in some respects similar

to the rule 110 cellular automaton discussed in this chapter. Great

effort was spent trying to find structures that would be sufficiently

simple and predictable that they could be used as idealized components

for engineering. And although complex behavior was seen it was

generally treated as a nuisance, to be avoided whenever possible.

In a sense it is surprising that so much could be done on the

Game of Life without the much simpler one-dimensional cellular

automata in this chapter ever being investigated. And no doubt the lack

of a connection to basic science was at least in part responsible. 

But whatever the reasons, the fact remains that, despite many

hints over the course of several centuries, the basic phenomenon that I

have described in this chapter was never discovered before.

It is not uncommon in the history of science that once a general

new phenomenon has been identified, one can see that there was

already evidence of it much earlier. But the point is that without the

framework that comes from knowing the general phenomenon, it is

almost inevitable that such evidence will have been ignored.

It is also one of the ironies of progress in science that results

which at one time were so unexpected that they were missed despite

many hints eventually come to seem almost obvious. And having lived

with the results of this chapter for nearly two decades, it is now

difficult for me to imagine that things could possibly work in any other

way. But the history that I have outlined in this section—like the

history of many other scientific discoveries—provides a sobering

reminder of just how easy it is to miss what will later seem obvious.
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NOTES FOR CHAPTER 2

The Crucial Experiment

How Do Simple Programs Behave?

â Implementing cellular automata. It is convenient to
represent the state of a cellular automaton at each step by a
list such as , where  corresponds to a white cell
and  to a black cell. An initial condition consisting of 
white cells with one black cell in the middle can then be
obtained with the function (see below for comments on this
and other Mathematica functions)

For cellular automata of the kind discussed in this chapter,
the rule can also be represented by a list. Thus, for example,
rule 30 on page 27 corresponds to the list .
(The numbering of rules is discussed on page 53.) In general,
the list for a particular rule can be obtained with the function

Given a rule together with a list representing the state  of a
cellular automaton at a particular step, the following simple
function gives the state at the next step:

A list of states corresponding to evolution for  steps can then
be obtained with

Graphics of this evolution can be generated using

And having set up the definitions above, the Mathematica input

will generate the image:

The description just given should be adequate for most
cellular automaton simulations. In some earlier versions of
Mathematica a considerably faster version of the program can
be created by using the definition

In addition, in Mathematica 4 and above, one can use

or directly in terms of the rule number 

(In versions of Mathematica subsequent to the release of this
book the built-in  function can be used, as
discussed on page 867.) It is also possible to have  call
the following external C language program via MathLink—
though typically with successive versions of Mathematica the
speed advantage obtained will be progressively less
significant:

#include "mathlink.h"

main(argc, argv)
int argc; char *argv[];
{
MLMain(argc, argv);
}

void casteps(revrule, rlen, a, n, steps)
int *revrule, rlen, *a, n, steps;
{
int i, *ap, t, tp;

for (i = 0; i <steps; i++)
{
a[0] = a[n-2]; /* right boundary */
a[n-1] = a[1]; /* left boundary */

t = a[0];
for (ap = a+1; ap <= a+n-2; ap++)

{
tp = ap[0];
ap[0] = revrule[ap[1]+2*(tp + 2*t)];
t = tp;
}

}

MLPutIntegerList(stdlink, a, n);
}

The linkage of this external program to the Mathematica
function  is achieved with the following MathLink
template (note the optional third argument which allows

{0, 0, 1, 0, 0} 0
1 n

 CenterList[n_Integer] :=
ReplacePart[Table[0, {n}], 1, Ceiling[n/2]]

{0, 0, 0, 1, 1, 1, 1, 0}

ElementaryRule[num_Integer] := IntegerDigits[num, 2, 8]

a

 CAStep[rule_List, a_List] :=
rule08 - (RotateLeft[a] + 2 (a + 2 RotateRight[a]))1

t

 CAEvolveList[rule_, init_List, t_Integer] :=
NestList[CAStep[rule, #] &, init, t]

 CAGraphics[history_List] := Graphics[
Raster[1 -Reverse[history]]�AspectRatio ! Automatic]

 Show[CAGraphics[CAEvolveList[
ElementaryRule[30], CenterList[103], 50]]]

 CAStep = Compile[{{rule, _Integer, 1}, {a, _Integer, 1}},
rule08 - (RotateLeft[a] + 2 (a + 2 RotateRight[a]))1]

CAStep[rule_, a_] := rule08 - ListConvolve[{1, 2, 4}, a, 2]1

num

Sign[BitAnd[2^ListConvolve[{1, 2, 4}, a, 2], num]]

CellularAutomaton
CAStep

CAStep
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 to perform several steps of cellular automaton
evolution at a time):

:Begin:
:Function: casteps
:Pattern: CAStep[rule_List, a_List, steps_Integer:1]
:Arguments: {Reverse[rule], a, steps}
:ArgumentTypes: {IntegerList, IntegerList, Integer}
:ReturnType: Manual
:End:

There are a couple of tricky issues in the C program above.
First, cellular automaton rules are always defined to use the
old values of neighbors in determining the new value of any
particular cell. But since the C program explicitly updates
values sequentially from left to right, the left-hand neighbor
of a particular cell will already have been given its new value
when one tries to updates the cell itself. As a result, it is
necessary to store the old value of the left-hand neighbor in a
temporary variable in order to make it available for updating
the cell itself. (Another approach to this problem is to
maintain two copies of the array of cells, and to interchange
pointers to them after every step in the cellular automaton
evolution.)

Another tricky point in cellular automaton programs
concerns boundary conditions. Since in a practical computer
one can use only a finite array of cells, one must decide how
the cellular automaton rule is to be applied to the cells at each
end of the array. In both the Mathematica and the C programs
above, we effectively use a cyclic array, in which the left
neighbor of the leftmost cell is taken to be rightmost cell, and
vice versa. In the C program, this is implemented by
explicitly copying the value of the leftmost cell to the
rightmost position in the array, and vice versa, before
updating the values in the array. (In a sense there is a bug in
the program in that the update only puts new values into

 of the  array elements.) 

â Comments on Mathematica functions.  works by
first creating a list of  0’s, then replacing the middle 0 by a
1. (In Mathematica 4 and above PadLeft[{1}, n, 0, Floor[n/2]] can
be used instead.)  works by converting 
into a base 2 digit sequence, padding with zeros on the left
so as to make a list of length 8. The scheme for numbering
rules works so that if the value of a particular cell is , the
value of its left neighbor is , and the value of its right
neighbor is , then the element at position 
in the list obtained from  will give the new
value of the cell. 

 uses the fact that Mathematica can manipulate all
the elements in a list at once.  and

 make shifted versions of the original list of
cell values . Then when these lists are added together,
their corresponding elements are combined, as in

. The result is that a list
is produced which specifies for each cell which element of
the rule applies to that cell. The actual list of new cell
values is then generated by using the fact that

. Note that by using
 and  one automatically gets cyclic

boundary conditions. 

 applies   times. Many other evolution
functions in these notes use the same mechanism. In general

, etc.

â Bitwise optimizations. The C program above stores each cell
value in a separate element of an integer array. But since
every value must be either 0 or 1, it can in fact be encoded by
just a single bit. And since integer variables in practical
computers typically involve 32 or 64 bits, the values of many
cells can be packed into a single integer variable. The main
point of this is that typical machine instructions operate in
parallel on all the bits in such a variable. And thus for
example the values of all cells represented by an integer
variable  can be updated in parallel according to rule 30 by
the single C statement

a = a>>1 ^ (a | a<<1); 

This statement, however, will only update the specific block
of cells encoded in . Gluing together updates to a
sequence of such blocks requires slightly intricate code. (It
is much easier to implement in Mathematica—as discussed
above—since there functions like  can operate on
integers of any length.) In general, bitwise optimizations
require representing cellular automaton rules not by simple
look-up tables but rather by Boolean expressions, which
must be derived for each rule and can be quite complicated
(see page 869). Applying the rules can however be made
faster by using bitslicing to avoid shift operations. The idea
is to store the cellular automaton configuration in, say, 
variables  whose bits correspond respectively to the
cell values , , ,
etc. This then makes the left and right neighbors of the th

bit in  be the th bits in  and —so that
for example a step of rule 30 evolution can be achieved just
by  with no shift operations
needed (except in boundary conditions on  and

). If many steps of evolution are required, it is
sufficient just to pack all cell values at the beginning, and
unpack them at the end. 

â More general rules. The programs given so far are for
cellular automata with rules of the specific kind described in
this chapter. In general, however, a 1D cellular automaton
rule can be given as a set of explicit replacements for all

CAStep

n - 2 n

CenterList
n

ElementaryRule num

q
p

r 8 - ( r + 2 (q + 2 p))
ElementaryRule

CAStep
RotateLeft[a]

RotateRight[a]
a

{p, q, r} + {s, t, u}£{p + s, q + t, r + u}

{i, j , k}0{2, 1, 1, 3, 2}1£{ j , i, i, k, j}
RotateLeft RotateRight

CAEvolveList CAStep t

NestList[s[r, #] &, i, 2]£{i, s[r, i], s[r, s[r, i]]}

a

a

BitXor

m
w[ i]
{a1, am+1, a2 m+1, ?} {a2, am+2, a2 m+2, ?} {a3, ?}

j
w[ i] j w[ i - 1] w[ i + 1]

w[ i] = w[ i - 1]^ (w[ i] Ï w[ i + 1])
w[0]

w[m - 1]
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possible blocks of cells in each neighborhood (see page 60).
Thus, for example, rule 30 can be given as

To use rules in this form,  can be rewritten as

or

The rules that are given can now contain patterns, so that rule
90, for example, can be written as

But how can one set up a program that can handle rules in
several different forms? A convenient approach is to put a
“wrapper” around each rule that specifies what form the rule
is in. Then, for example, one can define 

Note that the second two definitions have been generalized to
allow rules that involve  neighbors on each side. In each case, the
use of  could be replaced by Transpose[Table[RotateLeft[a,

i], {i, -r, r}]]. For efficiency in early versions of Mathematica, explicit
rule lists in the second definition can be preprocessed using

, and functions in the third definition
preprocessed using . 

I discuss the implementation of totalistic cellular automata
on page 886, and of higher-dimensional cellular automata on
page 927. 

â Built-in cellular automaton function. Versions of Mathematica
subsequent to the release of this book will include a very general
function for cellular automaton evolution. The description is as
follows (see also page 886):

CellularAutomaton[rnum, init, t] generates a list representing
the evolution of cellular automaton rule rnum from initial
condition init for t steps. 

CellularAutomaton[rnum, init, t, {off1, offx, . . . }] keeps only the
parts of the evolution list with the specified offsets. 

Possible settings for rnum are: 

â CellularAutomaton[{n, k}, . . . ] is equivalent to CellularAutomaton[{n, {k,
{k2, k, 1}}}, . . . ]. â Common forms for 2D cellular automata include:

â Normally, all elements in init and the evolution list are integers
between 0 and k-1. â But when a general function is used, the elements
of init and the evolution list do not have to be integers. â The second
argument passed to fun is the step number, starting at 0. â Initial
conditions are constructed from init as follows:

â The first element of aspec is superimposed on the background at the first
position in the positive direction in each coordinate relative to the origin.
This means that bspec[[1,1,.. .]] is aligned with aspec[[1, 1,. ..]]. â Time
offsets offt are specified as follows:

â CellularAutomaton[rnum, init, t] generates an evolution list of length
t+1. â The initial condition is taken to have offset 0. â Space offsets offx

are specified as follows:

â In one dimension, the first element of aspec is taken by default to have
space offset 0. â In any number of dimensions, aspec[[1, 1, 1, . . . ]] is
taken by default to have space offset {0, 0, 0, . . . }. â Each element of
the evolution list produced by CellularAutomaton is always the same
size. â With an initial condition specified by an aspec of width w, the
region that can be affected after t steps by a cellular automaton with a

n k = 2, r = 1, elementary rule
{n, k} general nearest-neighbor rule with k colors

{n, k, r} general rule with k colors and range r
{n, k, {r1, r2, . . . ,

rd}}

d-dimensional rule with (2 r1 + 1) ä (2 r2 + 1) 

ä . . . ä  (2 rd + 1) neighborhood
{n, k, {{off1}, {off2}, . . . , {offs}}}

rule with neighbors at specified offsets
{n, {k, 1}} k-color nearest-neighbor totalistic rule

 {{1, 1, 1} ! 0, {1, 1, 0} ! 0, {1, 0, 1} ! 0, {1, 0, 0} ! 1,
{0, 1, 1} ! 1, {0, 1, 0} ! 1, {0, 0, 1} ! 1, {0, 0, 0} ! 0}

CAStep
 CAStep[rule_, a_List] :=

Transpose[{RotateRight[a], a, RotateLeft[a]}] /. rule

CAStep[rule_, a_List] := Partition[a, 3, 1, 2] /. rule

{{1, _, 1} ! 0, {1, _, 0} ! 1, {0, _, 1} ! 1, {0, _, 0} ! 0}

 CAStep[ElementaryCARule[rule_List], a_List] :=
rule08 - (RotateLeft[a] + 2 (a + 2 RotateRight[a]))1

CAStep[GeneralCARule[rule_, r_Integer : 1], a_List] :=
Partition[a, 2 r + 1, 1, r + 1] /. rule

CAStep[FunctionCARule[f_, r_Integer : 1], a_List] :=
Map[f , Partition[a, 2 r + 1, 1, r + 1]]

r
Partition

Dispatch[rules]
Compile[{{x, _Integer, 1}}, body]

{n, {k, 1}, r} k-color range r totalistic rule
{n, {k, {wt1, wt2, . . . }}, rspec}

rule in which neighbor i is assigned weight wti

{fun, {}, rspec} applies the function fun to each list of 
neighbors, with a second argument of the step 
number

{n, {k, 1}, {1, 1}} 9-neighbor totalistic rule
{n, {k, {{0, 1, 0}, {1, 1, 1}, {0, 1, 0}}, {1, 1}}}

5-neighbor totalistic rule
{n, {k, {{0, k, 0}, {k, 1, k}, {0, k, 0}}, {1, 1}}}

5-neighbor outer totalistic rule
{n + k5 (k – 1), {k, {{0, 1, 0}, {1, 4 k + 1, 1}, {0, 1, 0}}, {1, 1}}}

5-neighbor growth rule

{a1, a2, . . . } explicit list of values ai, assumed cyclic
{{a1, a2, . . . }, b} values ai superimposed on a b background

{{a1, a2, . . . }, {b1, b2, . . . }}

values ai superimposed on a background of 
repetitions of b1, b2, . . .

{{{{a11, a12, . . . }, off1}, {a21, . . . }, off2}, . . . }, bspec}
values ai j at offsets offi on a background

{{a11, a12, . . . },{a21, . . . }, . . . }
explicit list of values in two dimensions

{aspec, bspec} values in d dimensions with d-dimensional padding

All all steps 0 through t (default)
u steps 0 through u

-1 last step (step t)
{u} step u

{u1, u2} steps u1 through u2

{u1, u2, du} steps u1, u1 + du, . . .

All all cells that can be affected by the specified 
initial condition

Automatic all cells in the region that differs from the 
background

0 cell aligned with beginning of aspec
x cells at offsets up to x on the right

-x cells at offsets up to x on the left
{x} cell at offset x to the right

{-x} cell at offset x to the left
{x1, x2} cells at offsets x1 through x2

{x1, x2, dx} cells x1, x1 + dx, . . .
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rule of range r has width w + 2 r t. â If no bspec background is specified,
space offsets of All and Automatic will include every cell in aspec. â A
space offset of All includes all cells that can be affected by the initial
condition. â A space offset of Automatic can be used to trim off
background from the sides of a cellular automaton pattern. â In
working out how wide a region to keep, Automatic only looks at results
on steps specified by offt.

Some examples include:

This gives the array of values obtained by running rule 30 for 3 steps, 
starting from an initial condition consisting of a single 1 surrounded by 0’s. 
In[1] : = CellularAutomaton[30, {{1}, 0}, 3]

Out[1]= {{0, 0, 0, 1, 0, 0, 0}, {0, 0, 1, 1, 1, 0, 0}, {0, 1, 1, 0, 0, 1, 0}, {1, 1, 0, 1, 1, 1, 1}}

This runs rule 30 for 50 steps and makes a picture of the result.
In[2] : = Show[RasterGraphics[CellularAutomaton[30, {{1}, 0}, 50]]]

If all values in the initial condition are given explicitly, they are in effect 
assumed to continue cyclically. The runs rule 30 with 5 cells for 3 steps. 
In[3] : = CellularAutomaton[30, {1, 0, 0, 1, 0}, 3]

Out[3]= {{1, 0, 0, 1, 0}, {1, 1, 1, 1, 0}, {1, 0, 0, 0, 0}, {1, 1, 0, 0, 1}}

This starts from {1,1} on an infinite background of repeating {1,0,1,1} blocks. 
By default, only the region of the pattern affected by the {1,1} is given.
In[4] : = Show[RasterGraphics[CellularAutomaton[30, {{1, 1}, {1, 0, 1, 1}}, 50]]]

This gives all cells that could possibly be affected, whether or not they are.
In[5] : = Show[RasterGraphics[CellularAutomaton[30, 

{{1, 1}, {1, 0, 1, 1}}, 50, {All, All}]]]

This places blocks in the initial conditions at offsets -10 and 20.
In[6] : = Show[RasterGraphics[CellularAutomaton[30, 

{{{{1}, {-10}}, {{1, 1}, {20}}}, 0}, 50]]]

This gives only the last row after running for 10 steps.
In[7] : = CellularAutomaton[30, {{1}, 0}, 10, -1]

Out[7]= {{1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0}}

This runs for 5 steps, giving the cells on the 3 center columns at each step.
In[8] : = CellularAutomaton[30, {{1}, 0}, 5, {All, {-1, 1}}]

Out[8]= {{0, 1, 0}, {1, 1, 1}, {1, 0, 0}, {0, 1, 1}, {0, 1, 0}, {1, 1, 1}}

This picks out every other cell in space and time, starting 200 cells to the left.

In[9] : = Show[RasterGraphics[CellularAutomaton[30, {{1}, 0}, 100, 

{{1, 100, 2}, {-200, 200, 2}}]]]

This runs the general k=3 , r=1 rule with rule number 921408.
In[10] : = Show[RasterGraphics[CellularAutomaton[{921408, 3, 1}, {{1}, 0}, 100]]]

This runs the totalistic k=3, r=1 rule with code 867.
In[11] : = Show[RasterGraphics[CellularAutomaton[{867, {3, 1}, 1}, {{1}, 0}, 50]]]

This uses a rule based on applying a function to each neighborhood of cells.
In[12] : = Show[RasterGraphics[CellularAutomaton[

{Mod[Apply[Plus, #], 4] &, {}, 1}, {{1}, 0}, 50]]]

This runs 2D 9-neighbor totalistic code 3702 for 25 steps, giving the results 
for the last 5 steps.
In[13] : = Show[GraphicsArray[ Map[RasterGraphics, 

CellularAutomaton[{3702, {2, 1}, {1, 1}}, {{{1}}, 0}, 25, -5]]]]

â Special-purpose hardware. The simple structure of cellular
automata makes it natural to think of implementing them with
special-purpose hardware. And indeed from the 1950s on, a
sequence of special-purpose machines have been built to
implement 1D, 2D and sometimes 3D cellular automata. Two
basic ideas have been used: parallelism and pipelines. Both
ideas rely on the local nature of cellular automaton rules.

In the parallel approach, the machine has many separate
processors, each dedicated to handling a single cell or a small
group of cells. In the pipelined approach, there is just a single
processor (or perhaps a few processors) through which the
data on different cells is successively piped. The key point,
however, is that at every stage it is easy to know what data
will be needed, so this data can be prefetched, potentially
through a specially built memory system.
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In general, the speed increases that can be achieved depend
on many details of memory and communications
architecture. The increases have tended to become less
significant over the years, as the on-chip memories of
microprocessors have become larger, and the time necessary
to send data from one chip to another has become
proportionately more important.

In the future, however, new technologies may change the
trade-offs, and indeed cellular automata are obvious
candidates for early implementation in both nanotechnology
and optical computing. (See also page 841.)

â Audio representation. A step in the evolution of a cellular
automaton can be represented as a sound by treating each
cell like a key on a piano, with the key taken to be pressed if
the cell is black. This yields a chord such as

A sequence of such chords can sometimes provide a useful
representation of cellular automaton evolution. (See also
page 1080.) 

â Cellular automaton rules as formulas. The value  for a
cell on step  at position  in any of the cellular automata in
this chapter can be obtained from the definition

Different rules correspond to different choices of the function
. For example, rule 90 on page 25 corresponds to

One can specify initial conditions for example by 

(the cell on step 0 at position 0 has value 1, but all other cells
on that step have value 0). Then just asking for  one
will immediately get the value after 4 steps of the cell at
position 0. (For efficiency, the main definition should in
practice be given as

so that all intermediate values which are computed are
automatically stored.)

The definition of the function  for rule 90 that we gave
above is essentially just a look-up table. But it is also possible
to define this function in an algebraic way

Algebraic definitions can also be given for other rules:

äRule 254 (page 24): 

äRule 250 (page 25):  

äRule 30 (page 27): 

äRule 110 (page 32): 

In these definitions, we represent the values of cells by the
numbers 1 or 0. If values +1 and -1 are used instead, different
formulas are obtained; rule 90, for example, corresponds to

. It is also possible to represent values of cells as  and
. And in this case cellular automaton rules become logic

expressions:

äRule 254: 

äRule 250: 

äRule 90: 

äRule 30: 

äRule 110: 

(Note that  corresponds to ,  to ,
 to  and  to

.)

Given either the algebraic or logical form of a cellular
automaton rule, it is possible at least in principle to generate
symbolic formulas for the results of cellular automaton
evolution. Thus, for example, one can use initial conditions

to generate a formula for the value of a cell that holds for any
choice of values for the three initial center cells. In practice,
however, most such formulas rapidly become very
complicated, as discussed on page 618. 

â Mathematical interpretation of cellular automata. In the
context of pure mathematics, the state space of a 1D cellular
automaton with an infinite number of cells can be viewed as
a Cantor set. The cellular automaton rule then corresponds to
a continuous mapping of this Cantor set to itself (continuity
follows from the locality of the rule). (Compare page 959.) 

The pictures above show representations of the mappings
corresponding to various rules, obtained by plotting

 against 

 Play[Evaluate[Apply[Plus, Flatten[Map[Sin[1000 # t] &,
N[21/12]^Position[ list, 1]]]]], {t, 0, 0.2}]

a[t, i]
t i

a[t_, i_] := f [a[t - 1, i - 1], a[t - 1, i], a[t - 1, i + 1]]

f

f [1, _, 1] = 0; f [0, _, 1] = 1; f [1, _, 0] = 1; f [0, _, 0] = 0

a[0, 0] = 1; a[0, _] = 0

a[4, 0]

a[t_, i_] := a[t, i] = f [a[t - 1, i - 1], a[t - 1, i], a[t - 1, i + 1]]

f

f [p_, q_, r_] := Mod[p + r, 2]

1 - ( 1 - p) (1 - q) (1 - r)

p + r - p r

Mod[p + q + r + q r, 2]

Mod[( 1+ p) q r + q + r, 2]

p r True
False

Or[p, q, r]

Or[p, r]

Xor[p, r]

Xor[p, Or[q, r]]

Xor[Or[p, q], And[p, q, r]]

Not[p] 1 - p And[p, q] p q
Xor[p, q] Mod[p + q, 2] Or[p, q]
Mod[p q + p + q, 2]

a[0, -1] = p; a[0, 0] = q; a[0, 1] = r; a[0, _] = 0

rule 90 rule 30 rule 110

rule 170 rule 254 rule 250

Sum[a[t + 1, i] 2-i , {i, -n, n}] Sum[a[t, i] 2-i , {i, -n, n}]
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for all possible choices of the . (Periodic boundary
conditions are used, so that the  can be viewed as
corresponding precisely to digits of rational numbers.) Rule
170 is the classic shift map which shifts all cell values one
position to the left without changing them. In the pictures
below, this map has the form  (compare page 153).

â Page 26 · Pascal’s triangle and rule 90. As shown on page
611 the pattern produced by rule 90 is exactly Pascal’s
triangle of binomial coefficients reduced modulo 2: black
cells correspond to odd binomial coefficients.

The number of black cells on row  is given by
, where  is plotted on

page 902. The positions of the black cells are given by (and
this establishes the connection with the picture on page 117)

The actual pattern generated by rule 90 corresponds to the
coefficients in  (see
page 1091); the color of a particular cell is thus given by

. 

 yields a distorted pattern that is the
one produced by rule 60 (see page 58). In this pattern, the
color of a particular cell can be obtained directly from the
digit sequences for  and  by  or (see
page 583)

â Self-similarity. The pattern generated by rule 90 after a
given number of steps has the property that it is identical to
what one would get by going twice as many steps, and then
keeping only every other row and column. After  steps the
triangular region outlined by the pattern contains altogether

 cells, but only  of these are black. In the limit of an
infinite number of steps one gets a fractal known as a
Sierpinski pattern (see page 934), with fractal dimension

 (see page 933). Nesting occurs in all cellular
automata with additive rules (see page 955). 

â Another initial condition. Inserting a single  in a
background of  blocks in rule 90 yields the pattern below
in which both the white and striped regions have fractal
dimension 2.

â More colors. The pictures below show generalizations of
rule 90 to  possible colors using the rule

or equivalently . The
number of cells that are not white on row  in this case is
given by . (For non-prime

, the patterns are obtained by superimposing the patterns
corresponding to the factors of .) A related result is that

 is given by the number of
borrows in the base  subtraction of  from .

 is given for prime  by

The patterns obtained for any  are nested. For prime  the
total number of non-white cells down to step  is

 and the patterns have fractal dimension
 (see page 955). These are examples of

additive rules, discussed further on page 952. (See also page
922 for the continuous case.)

â History. Pascal’s triangle probably dates from antiquity; it
was known in China in the 1200s, and was discussed in some
detail by Blaise Pascal in 1654, particularly in connection
with probability theory. The digit-based approach to finding
binomial coefficients modulo  has been invented
independently many times since the mid-1800s, notably by
Edouard Lucas in 1877 and James Glaisher in 1899. The fact
that the odd binomial coefficients form a nested geometrical
pattern had apparently not been widely noticed before I
emphasized it in 1982. 
 
 

â Other integer functions. The pictures above show patterns
produced by reducing several integer functions modulo 2.
With  arguments  yields a nested pattern in 
dimensions. Note that  yields a more complicated

a[t, i]
a[t, i]

Mod[2 x, 1]

t
2^DigitCount[t, 2, 1] DigitCount[t, 2, 1]

 Fold[Flatten[{#1 - #2, #1+#2}] &, 0, 2^DigitPositions[t]]

DigitPositions[n_] :=
Flatten[Position[Reverse[IntegerDigits[n, 2]], 1]] - 1

PolynomialMod[Expand[( 1/x + x)t], 2]

Mod[Binomial[t, ( n+ t) /2], 2] /; EvenQ[n+ t]

Mod[Binomial[t, n], 2]

t n 1 - Sign[BitAnd[-t, n]]

 With[{d = Ceiling[Log[2, Max[t, n] + 1]]}, If[FreeQ[
IntegerDigits[t, 2, d] - IntegerDigits[n, 2, d], -1], 1, 0]]

2m

4m 3m

Log[2, 3] ; 1.59

k
 CAStep[k_Integer, a_List] :=

Mod[RotateLeft[a] +RotateRight[a], k]

Mod[ListCorrelate[{1, 0, 1}, a, 2], k]
t

Apply[Times, 1+ IntegerDigits[t, k]]
k

k
IntegerExponent[Binomial[t, n], k]

k n t
Mod[Binomial[t, n], k] k
 With[{d = Ceiling[Log[k, Max[t, n] + 1]]},

Mod[Apply[Times, Apply[Binomial, Transpose[
{IntegerDigits[t, k, d], IntegerDigits[n, k, d]}], {1}]], k]]

k k
km

(1/2 k ( k + 1))m

1+ Log[k, ( k + 1)/2]

k = 5 k = 6 k = 7

k = 2 k = 3 k = 4

k

Binomial[m,n] Multinomial[m,n] StirlingS1[m,n] StirlingS2[m,n]

d Multinomial d
GCD[m, n]
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pattern (see page 613), as do  (see
page 1081) and various combinations of functions (see
page 747).

â Bitwise functions. Bitwise functions typically yield nested
patterns. (As discussed above, any cellular automaton rule
can be represented as an appropriate combination of bitwise
functions.) Note that  and

. 

The patterns below show where  for
successive  and correspond to steps in the “munching
squares” program studied on the PDP-1 computer in 1962. 

Nesting is also seen in curves obtained by applying bitwise
functions to  and  for successive . Note that  has the
same digits as , but shifted one position to the left. 

â Page 28 · Tests of randomness. The statistical tests that I
have performed include the eight listed on page 1084.

â Page 29 · Rule 30. The left-hand side of the pattern shown
has an obvious repetitive character. In general, if one looks
along a diagonal  cells in from either edge of the pattern,
then the period of repetition can be at most . On the right-
hand edge, the first few periods that are seen are

 and in
general the period seems to increase exponentially with
depth. On the left-hand edge, the period increases only

extremely slowly: period 2 is first achieved at depth 3, period
4 at depth 8, 8 at 29, 16 at 400, 32 at 87,867, 64 at 2,107,985,255
or more, and so on. (Each period doubling turns out to occur
exactly when a diagonal in the pattern eventually becomes a
white stripe, and the diagonal to its left has an odd number of
black cells in each repeating block.) The boundary that
separates repetition on the left from randomness on the right
moves an average of about 0.252 cells to the left at every step
(compare page 949). The picture below shows the
fluctuations around this average. 

Complete pattern. All possible blocks appear to occur
eventually (see page 725). The probability for a block of 
adjacent white cells (corresponding to a row in a white
triangle) seems quite accurately to approach , with the
first length 10 such block occurring at step 67 and the first
length 20 one occurring at step 515.

Center column. The pictures below show the excess of black
over white cells in the center column. Out of the first 100,000
cells, a total of 50,098 are black, and out of the first million
500,768 are. The longest run of identical colors in the first
100,000 cells consists of 21 black cells, and in the first million
elements 22 black cells. The first  elements can be found
efficiently using

The sequence does not repeat in at least its first million steps,
and I would amazed if it ever repeats, but as of now I know
of no rigorous proof of this. (Erica Jen showed in 1986 that no
pair of columns can ever repeat, and the arguments on page
1087 suggest that neither can the center column together with
occasional neighboring cells.) 

â Page 32 · Rule 110. Many more details of rule 110 are
discussed on pages 229 and 675. Localized structures that
can occur are shown on page 292. Note that of the 8 cases in

JacobiSymbol[m, 2 n - 1]

BitOr[x, y] +BitAnd[x, y] 2 x + y
BitOr[x, y] -BitAnd[x, y] 2 BitXor[x, y]

BitAnd[x, y] BitOr[x, y] BitXor[x, y]

BitAnd[x, y] BitOr[x, y] BitXor[x, y]

BitXor[x, y] 2 t
t

n 2 n n 2 n
n

BitAnd[n, 2 n] BitOr[n, 2 n] BitXor[n, 2 n]

n
2n
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n

 Module[{a = 1}, Table[First[IntegerDigits[
a, a = BitXor[a, BitOr[2 a, 4 a]]; 2, i]], {i, n}]]
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the basic rule for rule 110, only one differs from rule 102—
which is a simple additive rule obtained by reflecting
rule 60. 

The Need for a New Intuition

â Reactions of scientists. Many scientists find the complexity
of the pictures in this chapter so surprising that at first they
assume it cannot be real. Typically they imagine that while
the pictures may look complicated, they would actually seem
simple if only they were subjected to the appropriate kind of
analysis. In Chapter 10 I will give extensive evidence that this
is not the case. But suffice it to say here that when it comes to
finding regularities even the most advanced methods from
mathematics and statistics tend to be no more powerful than
our eyes. And whatever formal definition one may use for
complexity (see page 557), the fact that our eyes perceive it in
the systems discussed in this chapter is already very
significant. 

â Intuition from practical computing. Everyday experience
with computers and programming leads to observations like
the following:

äGeneral-purpose computers and general-purpose 
programming languages can be built.

äDifferent programs for doing all sorts of different things 
can be set up.

äAny given program can be implemented in many ways. 

äPrograms can behave in complicated and seemingly 
random ways—particularly when they are not working 
properly.

äDebugging a program can be difficult.

ä It is often difficult to foresee what a program can do by 
reading its code. 

äThe lower the level of representation of the code for a 
program the more difficult it tends to be to understand. 

ä Some computational problems are easy to state but hard to 
solve.

äPrograms that simulate natural systems are among the 
most computationally expensive.

ä It is possible for people to create large programs—at least 
in pieces. 

ä It is almost always possible to optimize a program more, 
but the optimized version may be more difficult to 
understand.

ä Shorter programs are sometimes more efficient, but 
optimizations often require many cases to be treated 
separately, making programs longer. 

ä If programs are patched too much, they typically stop 
working at all.

â Applications to design. Many of the pictures in this book
look strikingly similar to artistic designs of various styles.
Probably this reflects not so much a similarity in underlying
rules, but rather similarity in features that are most
noticeable to the human visual system. Note that square
grids of colored cells as in the cellular automata in this
chapter can be used quite directly as weaving patterns. (See
also page 929.) 

Why These Discoveries Were Not Made Before

â Page 43 ·  Ornamental art. Almost all major cultural periods
are associated with certain characteristic forms of ornament.
Often the forms of ornament used on particular kinds of
objects probably arose as idealized imitations of earlier or
more natural forms for such objects—so that, for example,
imitations of weaving, bricks and various plant forms are
common. Large-scale purely abstract patterns were also
central to art in such cultural traditions as Islam where
natural forms were considered works of God that must not
be shown directly. Once established, styles of ornament tend
to be repeated extensively as a way of providing certain
comfort and familiarity—especially in architecture. The vast
majority of elaborate ornament seems to have been created
by artisans with little or no formal theoretical discussion,
although particularly since the 1800s there have been various
attempts to find systematic ways to catalog forms of
ornament, sometimes based on analogies with grammar.
(Issues of proportion have however long been the subject of
considerable theoretical discussion.) It is notable that
whereas repetitive patterns have been used extensively in
ornament, even nesting is rather rare. And even though for
example elaborate symmetry rules have been devised,
nothing like cellular automaton rules appear to have ever
arisen. The results in this book now show that such rules can
capture the essence of many complex processes that occur in
nature—so that even though they lack historical context such
rules can potentially provide a basis for forms of ornament
that are familiar as idealizations of nature. (Compare
page 929.) 

The pictures in the main text show a sequence of early
examples of various characteristic forms of ornament. 
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22,000 BC (Paleolithic). Mammoth ivory bracelet from
Mezin, Ukraine. Similar zig-zag designs are seen in other
objects from the same period. In the example shown, it is
notable that the angle of the zig-zags is comparable to the
angle of the Schreger lines that occur naturally in
mammoth dentin.

3000 BC (Sumerian). Columns with three colors of clay pegs
set in mud from a wall of the Eanna temple in Uruk,
Mesopotamia (Warka, Iraq)—perhaps mentioned in the Epic
of Gilgamesh. (Now in the Staatliche Museum, Berlin.) This
is the earliest known explicit example of mosaic. 

1200 BC (Greek). The back of a clay accounting tablet from
Pylos, Greece. The pattern was presumably made by the
procedure shown below. Legend has it that it was the plan
for the labyrinth housing the minotaur in the palace at
Knossos, Crete, and that it was designed by Daedalus. It is
also said that it was a logo for the city of Troy—or perhaps
the plan of some of its walls. The pattern—in either its
square or rounded form—has appeared with remarkably
little variation in a huge variety of places all over the
world—from Cretan coins, to graffiti at Pompeii, to the
floor of the cathedral at Chartres, to carvings in Peru, to
logos for aboriginal tribes. For probably three thousand
years, it has been the single most common design used for
mazes. 

900 BC (Phoenician). Ivory carving presumably from the
Mediterranean area. (Now in the British Museum.) This was
a common decorative pattern, formed by drawing circles
centered at holes arranged in a triangular array. It is also
found in Egyptian and other art. Such patterns were
discussed by Euclid and later Leonardo da Vinci in
connection with the theory of lunes. 

1st century BC (Celtic). The back of the so-called Desborough
Mirror—a bronze mirror from Desborough, England made
in the Iron Age sometime between 50 BC and 50 AD. (Now
in the British Museum.) The engraved pattern is made of
parts of circles that just touch each other, as in the picture
below.

2nd century AD (Roman). A mosaic from a complex in Rome,
Italy. (Now in the National Museum, Rome.) The geometrical
pattern was presumably made by first constructing 48
regularly spaced spokes by repeated angle bisection, as in the
first picture below, then drawing semicircles centered at the
end of each spoke, and finally adding concentric circles
through the intersection points. Similar rosette patterns may
have been used in Greece around 350 BC; they became
popular in churches in the 1500s.

8th century (Islamic). A detail on the outside wall of the Great
Mosque of Córdoba, Spain, built around 785 AD. 

8th century (Celtic). An area less than 2 inches square from
inside the letter  on the extremely elaborate chi-rho page of
the Book of Kells, an illuminated gospel manuscript created
over a period of years at various monasteries, probably
starting around 800 AD at the Irish monastery on the island
of Iona, Scotland. Even on this one page there are perhaps a
dozen other very similar nested structures. 

12th century (Italian). A window in the Palatine Chapel in
Palermo, Sicily, presumably built around 1140 AD. The
chapel is characteristic of so-called Arab-Norman style.

13th century (English). The Dean’s Eye rose window of the
Lincoln cathedral in England, built around 1225 AD. Similar
tree-like patterns are seen in many Gothic windows from the
same general period. 

13th century (Italian) (4 pictures). Marble mosaics on the floor
of the cathedral at Anagni, Italy, made around 1226 AD by
Cosmas of the Cosmati group. (The fourth picture is a close-
up of the third.) The third picture—particularly the part
magnified in the fourth picture—shows an approximate
nested structure, presumably created as in the pictures below.
The triangles are all equilateral, with the result that at a given
step several different sizes of triangles occur—though the
basic structure of the pattern is still the same as from the rule
90 cellular automaton. (Compare the Apollonian packing of
page 986.) The Cosmati group—mostly four generations of
one family—made elaborate geometrical and other mosaics
with a mixture of Byzantine, Islamic and other influences
from about 1190 to 1300, mostly in and around Rome, but
also for example in Westminster Abbey in England.
Triangular shapes with one level of nesting are quite
common in their work; three levels of nesting as shown here

Ρ



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

874

are rare. It is notable that in later imitations of Cosmati
mosaics, these kinds of patterns were almost never used.

14th century (Islamic). Wall decoration in the Pir-i-Bakran
mausoleum in Linjan, Iran, built around 1299–1312. The
pattern is square Kufi calligraphy for a widely quoted verse
of the Koran. Starting from traditional Naskhi Arabic script,
as in the picture below, the Kufi style began to develop
around 900 AD, with square Kufi being used in architectural
ornamental by about 1100 AD. 

14th century (Islamic). Tiled wall in the Alcázar of Seville, Spain,
built in 1364. (The same pattern was used at about the same
time in the Alhambra in Granada, Spain.) The pattern can be
made by starting with a grid of triangles, then consistently
pushing in or out the sides of each one. (Notable uses of such
patterns were made by Maurits Escher starting in the 1930s.) 

Other cases. The cases that are known inevitably tend to be
ones created out of stone or ceramic materials that survive;
no doubt there were others created for example with wood or
textiles. One case with wood is Chinese lattice. What has
survived mostly shows repetitive patterns, but the ice-ray
style, probably going back to 100 AD, has approximate
nesting, though with many random elements. The patterns
shown are all basically two-dimensional. An example of 1D
ornamental patterns are molding profiles. Ever since
antiquity these have often been quite elaborate, and it is
conceivable that they can sometimes be interpreted as
showing nesting.

â Recognition of art. One bizarre possibility is that forms like
those from rule 30 could have been created as art long ago
but not be recognized now. For while it is easy to tell that a
cave painting of an animal is a piece of purposeful art, dots
carved into a rock in an approximate rule 30 pattern might
not even be noticed as something of human origin. But
although there are many seemingly random painted patterns
in caves from perhaps 30,000 BC, I would be amazed if any of
them were actually produced by definite simple rules. (See
page 839.)

â The concept of rules. Processes based on rules occur in a
great many areas of human endeavor. Sometimes the rules
serve mainly as a constraint. But it is not uncommon for them
to be used—like in a cellular automaton—as a way of
specifying how structures should be built up. Almost
without exception, however, the rules have in the past been
chosen to yield only rather specific and simple results.
Beyond ornamental art, examples with long histories include: 

Architecture. Structures such as ziggurats and pyramids were
presumably constructed by assembling collections of stones
according to simple rules. The Great Pyramid in Egypt was
built around 2500 BC and contains about two million large
stones. (By comparison, the pictures of rule 30 on pages 29
and 30 contain a total of about a million cells.) Starting
perhaps as long ago as 1000 BC Hindu temples were
constructed with similar elements on different scales,
yielding a form of approximate nesting. In Roman and later
architecture, rooms in buildings have quite often been
arranged in roughly nested patterns (an extreme example
being the Castel del Monte from the 1200s). From the
Middle Ages many Persian gardens (such as those of the Taj
Mahal from around 1650) have had fairly regular nested
structures obtained by a few successive fourfold
subdivisions. And starting in the early 1200s, Gothic
windows were often constructed with levels of roughly tree-
like nested forms (see above). Nesting does not appear to
have been used in physical city plans (except to a small
extent in Vauban star fortifications), though it is common in
organizational structures. (As indicated above, architectural
ornament has also often in effect been constructed using
definite rules.) 

Textile making. Since early in human history there appear to
have been definite rules used for weaving. But insofar as the
purpose is to produce fabric the basic arrangement of threads
is normally always repetitive. 

Rope.  Since at least 3000 BC rope has been made by twisting
together strands themselves made by twisting, yielding
cross-sections with some nesting, as in the second picture
below. (Since the development of wire rope in the 1870s
precise designs have been used, including at least recently
the  one shown last below.) 7�7�7
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Knots and string figures. For many thousands of years definite
rules have been used for tying knots and presumably also for
making string figures. But when the rules have more than a
few steps they tend to be repetitive.

Paperfolding. Although paperfolding has presumably been
practiced for at least 2000 years, even the nested form on
page 892 seems to have been noticed only very recently.

Mathematics. Ever since Babylonian times arithmetic has been
done by repeatedly applying simple rules to digits in numbers.
And ever since ancient Greek times iterative methods have been
used to construct geometrical figures. In the late 1600s the idea
also emerged that mathematical proofs could be thought of as
consisting of repeated applications of definite rules. But the idea
of studying possible simple rules independent of their purpose in
generating results seems never to have arisen. And as
mathematics began to focus on continuous systems the notion of
enumerating possible rules became progressively more difficult.

Logic. Rules of logic have been used since around 400 BC. But
beyond forms like syllogisms little seems to have been
studied in the way of generating identifiable patterns from
them. (See page 1099.)

Grammar. The idea that human language is constructed from
words according to definite grammatical rules has existed
since at least around perhaps 500 BC when Panini gave a
grammar for Sanskrit. (Less formal versions of the idea were
also common in ancient Greek times.) But for the most part it
was not until about the 1950s that rules of grammar began to
be viewed as specifications for generating structures, rather
than just constraints. (See page 1103.) 

Poetry.  Definite rules for rhythm in poetry were already well
developed in antiquity—and by perhaps 200 BC Indian work
on enumerating their possible forms appears to have led to
both Pascal’s triangle and Fibonacci numbers. Patterns of
rhyme involving iterated length-6 permutations (sestina) and
interleaved repetitive sequences (terza rima) were in use by
the 1300s, notably by Dante. 

Music. Simple progressions and various forms of repetition
have presumably been used in music since at least the time of
Pythagoras. Beginning in the 1200s more complex forms of
interleaving such as those of canons have occasionally been
used. And in the past century a few composers have
implicitly or explicitly used structures based on simple
Fibonacci and other substitution systems. Note that rules
such as those of counterpoint are used mainly as constraints,
not as ways of generating structure.

Military drill. The notion of using definite rules to organize
and maneuver formations of soldiers appears to have existed

in Babylonian and Assyrian times, and to be well codified by
Roman times. Fairly elaborate cases were described for
example by Niccolò Machiavelli in 1521, but all were set up
to yield only rather simple behavior, such as a column of
soldiers being rearranged into lines. (See the firing squad
problem on page 1035.)

Games. Games are normally based on definite rules, but are
set up so that at each step they involve choosing one of many
possibilities, either by skill or randomness. The game of Go,
which originated before 500 BC and perhaps as early as 2300
BC, is a case where particularly simple rules manage to allow
remarkably complex patterns of play to occur. (Go involves
putting black and white stones on a grid, making it visually
similar to a cellular automaton.)

Puzzles. Geometric and arithmetic puzzles surprisingly close
to those common today seem to have existed since as long
ago as 2000 BC. Usually they are based on constraints, and
occasionally they can be thought of as providing evidence
that simple constraints can have complicated solutions. 

Cryptography.  Rules for encrypting messages have been used
since perhaps 2000 BC, with non-trivial repetitive schemes
becoming common in the 1500s, but more complex schemes
not appearing until well into the 1900s. (See page 1085.)

Maze designs.  From antiquity until about the 1500s the
majority of mazes followed a small number of designs—most
often based directly on the one shown on page 873, or with
subunits like it. (It is now known that there are many other
designs that are also possible.)

Rule-based pictures. It is rather common for geometric doodles
to be based on definite rules, but it is rare for the rules to be
carried far, or for the doodles to be preserved. Some of
Leonardo da Vinci’s planned book on “Geometrical Play”
from the early 1500s has, however, survived, and shows
elaborate patterns satisfying particular constraints. Various
attempts to enumerate all possible patterns of particular
simple kinds have been made—a notable example being
Sébastien Truchet in 1704 drawing 2D patterns formed by
combining , , ,  in various possible ways.

â Page 44 · Understanding nature. In Greek times it was noted
that simple geometrical rules could explain many features of
astronomy—the most obvious being the apparent revolution
of the stars and the circular shapes of the Sun and Moon. But
it was noted that with few exceptions—like beehives—
natural objects that occur terrestrially did not appear to
follow any simple geometrical rules. (The most complicated
curves in Greek geometry were things like cissoids and
conchoids.) So from this it was concluded that only certain
supposedly perfect objects like the heavenly bodies could be
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expected to be fully amenable to human understanding.
What rules for natural objects might in effect have been tried
in the Judeo-Christian tradition is less clear—though for
example the Book of Job does comment on the difficulty of
“numbering the clouds by wisdom”. And with the notable
exception of the alchemists it continued to be believed
throughout the Middle Ages that the wonders of nature were
beyond human understanding. 

â Atomism. The idea that everything might be made up from
large numbers of discrete elements was discussed around
perhaps 450 BC by Leucippus and Democritus. Sometime later
the Epicureans then suggested that a few types of elements
might suffice, and an analogy was made (notably by Lucretius
around 100 AD) to the fact that different configurations of
letters can make up all the words in a language. But only some
schools of Greek philosophy ever supported atomism, and it
soon fell out of favor. It was revived in the late 1600s, when
corpuscular theories of both light and matter began to be
widely discussed. In the early 1800s arguments based on
atoms led to success in chemistry, and in the late 1800s
statistical mechanics of large assemblies of atoms were used to
explain properties of matter (see page 1019). With the rise of
quantum theory in the early 1900s it became firmly established
that physical systems contain discrete particles. But it was
normally assumed that one should think only about explicit
particles with realistic mechanical properties—so that abstract
idealizations like cellular automata did not arise. (See also
pages 1027 and 1043.)

â History of cellular automata. Despite their very simple
construction, nothing like general cellular automata appear
to have been considered before about the 1950s. Yet in the
1950s—inspired in various ways by the advent of electronic
computers—several different kinds of systems equivalent to
cellular automata were independently introduced. A variety
of precursors can be identified. Operations on sequences of
digits had been used since antiquity in doing arithmetic.
Finite difference approximations to differential equations
began to emerge in the early 1900s and were fairly well
known by the 1930s. And Turing machines invented in 1936
were based on thinking about arbitrary operations on
sequences of discrete elements. (Notions in physics like the
Ising model do not appear to have had a direct influence.)

The best-known way in which cellular automata were
introduced (and which eventually led to their name) was
through work by John von Neumann in trying to develop an
abstract model of self-reproduction in biology—a topic which
had emerged from investigations in cybernetics. Around
1947—perhaps based on chemical engineering—von
Neumann began by thinking about models based on 3D

factories described by partial differential equations. Soon he
changed to thinking about robotics and imagined perhaps
implementing an example using a toy construction set. By
analogy to electronic circuit layouts he realized however that
2D should be enough. And following a 1951 suggestion from
Stanislaw Ulam (who may have already independently
considered the problem) he simplified his model and ended
up with a 2D cellular automaton (he apparently hoped later
to convert the results back to differential equations). The
particular cellular automaton he constructed in 1952–3 had
29 possible colors for each cell, and complicated rules
specifically set up to emulate the operations of components
of an electronic computer and various mechanical devices. To
give a mathematical proof of the possibility of self-
reproduction, von Neumann then outlined the construction
of a 200,000 cell configuration which would reproduce itself
(details were filled in by Arthur Burks in the early 1960s).
Von Neumann appears to have believed—presumably in part
from seeing the complexity of actual biological organisms
and electronic computers—that something like this level of
complexity would inevitably be necessary for a system to
exhibit sophisticated capabilities such as self-reproduction. In
this book I show that this is absolutely not the case, but with
the intuition he had from existing mathematics and
engineering von Neumann presumably never imagined this.

Two immediate threads emerged from von Neumann’s work.
The first, mostly in the 1960s, was increasingly whimsical
discussion of building actual self-reproducing automata—
often in the form of spacecraft. The second was an attempt to
capture more of the essence of self-reproduction by
mathematical studies of detailed properties of cellular
automata. Over the course of the 1960s constructions were
found for progressively simpler cellular automata capable of
self-reproduction (see page 1179) and universal computation
(see page 1115). Starting in the early 1960s a few rather simple
general features of cellular automata thought to be relevant
to self-reproduction were noticed—and were studied with
increasingly elaborate technical formalism. (An example was
the so-called Garden of Eden result that there can be
configurations in cellular automata that arise only as initial
conditions; see page 961.) There were also various explicit
constructions done of cellular automata whose behavior
showed particular simple features perhaps relevant to self-
reproduction (such as so-called firing squad synchronization,
as on page 1035).

By the end of the 1950s it had been noted that cellular
automata could be viewed as parallel computers, and
particularly in the 1960s a sequence of increasingly detailed
and technical theorems—often analogous to ones about
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Turing machines—were proved about their formal
computational capabilities. At the end of the 1960s there then
began to be attempts to connect cellular automata to
mathematical discussions of dynamical systems—although
as discussed below this had in fact already been done a
decade earlier, with different terminology. And by the mid-
1970s work on cellular automata had mostly become quite
esoteric, and interest in it largely waned. (Some work
nevertheless continued, particularly in Russia and Japan.)
Note that even in computer science various names for
cellular automata were used, including tessellation automata,
cellular spaces, iterative automata, homogeneous structures
and universal spaces.

As mentioned in the main text, there were by the late 1950s
already all sorts of general-purpose computers on which
simulations of cellular automata would have been easy to
perform. But for the most part these computers were used to
study traditional much more complicated systems such as
partial differential equations. Around 1960, however, there
were a couple of simulations related to 2D cellular automata
done. Stanislaw Ulam and others used computers at Los
Alamos to produce a handful of examples of what they called
recursively defined geometrical objects—essentially the
results of evolving generalized 2D cellular automata from
single black cells (see page 928). Especially after obtaining
larger pictures in 1967, Ulam noted that in at least one case
fairly simple growth rules generated a complicated pattern,
and mentioned that this might be relevant to biology. But
perhaps because almost no progress was made on this with
traditional mathematical methods, the result was not widely
known, and was never pursued. (Ulam tried to construct a
1D analog, but ended up not with a cellular automaton, but
instead with the sequences based on numbers discussed on
page 908.) Around 1961 Edward Fredkin simulated the 2D
analog of rule 90 on a PDP-1 computer, and noted its self-
reproduction properties (see page 1179), but was generally
more interested in finding simple physics-like features.

Despite the lack of investigation in science, one example of a
cellular automaton did enter recreational computing in a
major way in the early 1970s. Apparently motivated in part
by questions in mathematical logic, and in part by work on
“simulation games” by Ulam and others, John Conway in
1968 began doing experiments (mostly by hand, but later on
a PDP-7 computer) with a variety of different 2D cellular
automaton rules, and by 1970 had come up with a simple set
of rules he called “The Game of Life”, that exhibit a range of
complex behavior (see page 249). Largely through
popularization in Scientific American by Martin Gardner, Life
became widely known. An immense amount of effort was

spent finding special initial conditions that give particular
forms of repetitive or other behavior, but virtually no
systematic scientific work was done (perhaps in part because
even Conway treated the system largely as a recreation), and
almost without exception only the very specific rules of Life
were ever investigated. (In 1978 as a possible 1D analog of
Life easier to implement on early personal computers
Jonathan Millen did however briefly consider what turns out
to be the code 20 ,  totalistic rule from page 283.) 

Quite disconnected from all this, even in the 1950s, specific
types of 2D and 1D cellular automata were already being
used in various electronic devices and special-purpose
computers. In fact, when digital image processing began to
be done in the mid-1950s (for such applications as optical
character recognition and microscopic particle counting) 2D
cellular automaton rules were usually what was used to
remove noise. And for several decades starting in 1960 a long
line of so-called cellular logic systems were built to
implement 2D cellular automata, mainly for image
processing. Most of the rules used were specifically set up to
have simple behavior, but occasionally it was noted as a
largely recreational matter that for example patterns of
alternating stripes (“custering”) could be generated. 

In the late 1950s and early 1960s schemes for electronic
miniaturization and early integrated circuits were often
based on having identical logical elements laid out on lines or
grids to form so-called cellular arrays. In the early 1960s there
was for a time interest in iterative arrays in which data would
be run repeatedly through such systems. But few design
principles emerged, and the technology for making chips
with more elaborate and less uniform circuits developed
rapidly. Ever since the 1960s the idea of making array or
parallel computers has nevertheless resurfaced repeatedly,
notably in systems like the ILLIAC IV from the 1960s and
1970s, and systolic arrays and various massively parallel
computers from the 1980s. Typically the rules imagined for
each element of such systems are however immensely more
complicated than for any of the simple cellular automata I
consider. 

From at least the early 1940s, electronic or other digital delay
lines or shift registers were a common way to store data such
as digits of numbers, and by the late 1940s it had been noted
that so-called linear feedback shift registers (see page 974)
could generate complicated output sequences. These systems
turn out to be essentially 1D additive cellular automata (like
rule 90) with a limited number of cells (compare page 259).
Extensive algebraic analysis of their behavior was done
starting in the mid-1950s, but most of it concentrated on
issues like repetition periods, and did not even explicitly

k = 2 r = 2
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uncover nested patterns. (Related analysis of linear
recurrences over finite fields had been done in a few cases in
the 1800s, and in some detail in the 1930s.) General 1D
cellular automata are related to nonlinear feedback shift
registers, and some explorations of these—including ones
surprisingly close to rule 30 (see page 1088)—were made
using special-purpose hardware by Solomon Golomb in
1956–9 for applications in jamming-resistant radio control—
though again concentrating on issues like repetition periods.
Linear feedback shift registers quickly became widely used in
communications applications. Nonlinear feedback shift
registers seem to have been used extensively for military
cryptography, but despite persistent rumors the details of
what was done continue to be secret.

In pure mathematics, infinite sequences of 0’s and 1’s have
been considered in various forms since at least the late 1800s.
Starting in the 1930s the development of symbolic dynamics
(see page 960) led to the investigation of mappings of such
sequences to themselves. And by the mid-1950s studies were
being made (notably by Gustav Hedlund) of so-called shift-
commuting block maps—which turn out to be exactly 1D
cellular automata (see page 961). In the 1950s and early 1960s
there was work in this area (at least in the U.S.) by a number
of distinguished pure mathematicians, but since it was in
large part for application to cryptography, much of it was
kept secret. And what was published was mostly abstract
theorems about features too global to reveal any of the kind
of complexity I discuss.

Specific types of cellular automata have also arisen—usually
under different names—in a vast range of situations. In the
late 1950s and early 1960s what were essentially 1D cellular
automata were studied as a way to optimize circuits for
arithmetic and other operations. From the 1960s onward
simulations of idealized neural networks sometimes had
neurons connected to neighbors on a grid, yielding a 2D
cellular automaton. Similarly, various models of active
media—particularly heart and other muscles—and reaction-
diffusion processes used a discrete grid and discrete
excitation states, corresponding to a 2D cellular automaton.
(In physics, discrete idealizations of statistical mechanics and
dynamic versions of systems like the Ising model were
sometimes close to cellular automata, except for the crucial
difference of having randomness built into their underlying
rules.) Additive cellular automata such as rule 90 had
implicitly arisen in studies of binomial coefficient modulo
primes in the 1800s (see page 870), but also appeared in
various settings such as the “forests of stunted trees” studied
around 1970. 

Yet by the late 1970s, despite all these different directions,
research on systems equivalent to cellular automata had
largely petered out. That this should have happened just
around the time when computers were first becoming widely
available for exploratory work is ironic. But in a sense it was
fortunate, because it allowed me when I started working on
cellular automata in 1981 to define the field in a new way
(though somewhat to my later regret I chose—in an attempt
to recognize history—to use the name “cellular automata” for
the systems I was studying). The publication of my first
paper on cellular automata in 1983 (see page 881) led to a
rapid increase of interest in the field, and over the years since
then a steadily increasing number of papers (as indicated by
the number of source documents in the Science Citation
Index shown below) have been published on cellular
automata—almost all following the directions I defined.

â Close approaches. The basic phenomena in this chapter
have come at least somewhat close to being discovered many
times in the past. The historical progression of primary
examples of this seem to be as follows:

ä 500s–200s BC: Simply-stated problems such as finding 
primes or perfect numbers are presumably seen to have 
complicated solutions, but no general significance is 
attached to this (see pages 132 and 910). 

ä 1200s: Fibonacci sequences, Pascal’s triangle and other 
rule-based numerical constructions are studied, but are 
found to show only simple behavior. 

ä 1500s: Leonardo da Vinci experiments with rules 
corresponding to simple geometrical constraints (see page 
875), but finds only simple forms satisfying these 
constraints. 

ä 1700s: Leonhard Euler and others compute continued 
fraction representations for numbers with simple formulas 
(see pages 143 and 915), noting regularity in some cases, 
but making no comment in other cases.

ä 1700s and 1800s: The digits of  and other transcendental 
numbers are seen to exhibit apparent randomness (see 
page 136), but the idea of thinking about this randomness 
as coming from the process of calculation does not arise.

ä 1800s: The distribution of primes is studied extensively—
but mostly its regularities, rather than its irregularities, are 
considered. (See page 132.) 
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ä 1800s: Complicated behavior is found in the three-body 
problem, but it is assumed that with better mathematical 
techniques it will eventually be resolved. (See page 972.)

ä 1880s: John Venn and others note the apparent 
randomness of the digits of , but somehow take it for 
granted.

ä 1906: Axel Thue studies simple substitution systems (see 
page 893) and finds behavior that seems complicated—
though it turns out to be nested.

ä 1910s: Gaston Julia and others study iterated maps, but 
concentrate on properties amenable to simple description. 

ä 1920: Moses Schönfinkel introduces combinators (see 
page 1121) but considers mostly cases specifically 
constructed to correspond to ordinary logical functions.

ä 1921: Emil Post looks at a simple tag system (see page 894) 
whose behavior is difficult to predict, but failing to prove 
anything about it, goes on to other problems.

ä 1920: The Ising model is introduced, but only statistics of 
configurations, and not any dynamics, are studied.

ä 1931: Kurt Gödel establishes Gödel’s Theorem (see 
page 782), but the constructions he uses are so complicated 
that he and others assume that simple systems can never 
exhibit similar phenomena.

äMid-1930s: Alan Turing, Alonzo Church, Emil Post, etc. 
introduce various models of computation, but use them in 
constructing proofs, and do not investigate the actual 
behavior of simple examples.

ä 1930s: The  problem (see page 904) is posed, and 
unpredictable behavior is found, but the main focus is on 
proving a simple result about it. 

äLate 1940s and 1950s: Pseudorandom number generators 
are developed (see page 974), but are viewed as tricks 
whose behavior has no particular scientific significance. 

äLate 1940s and early 1950s: Complex behavior is 
occasionally observed in fairly simple electronic devices 
built to illustrate ideas of cybernetics, but is usually 
viewed as something to avoid.

ä 1952: Alan Turing applies computers to studying 
biological systems, but uses traditional mathematical 
models rather than, say, Turing machines. 

ä 1952–1953: John von Neumann makes theoretical studies 
of complicated cellular automata, but does not try looking 
at simpler cases, or simulating the systems on a computer.

äMid-1950s: Enrico Fermi and collaborators simulate 
simple systems of nonlinear springs on a computer, but do 

not notice that simple initial conditions can lead to 
complicated behavior. 

äMid-1950s to mid-1960s: Specific 2D cellular automata are 
used for image processing; a few rules showing slightly 
complex behavior are noticed, but are considered of purely 
recreational interest. 

äLate 1950s: Computer simulations of iterated maps are 
done, but concentrate mostly on repetitive behavior. (See 
page 918.)

äLate 1950s: Ideas from dynamical systems theory begin to 
be applied to systems equivalent to 1D cellular automata, 
but details of specific behavior are not studied except in 
trivial cases.

äLate 1950s: Idealized neural networks are simulated on 
digital computers, but the somewhat complicated 
behavior seen is considered mainly a distraction from the 
phenomena of interest, and is not investigated. (See 
page 1099.)

äLate 1950s: Berni Alder and Thomas Wainwright do 
computer simulations of dynamics of hard sphere 
idealized molecules, but concentrate on large-scale 
features that do not show complexity. (See page 999.)

ä 1956–1959: Solomon Golomb simulates nonlinear feedback 
shift registers—some with rules close to rule 30—but 
studies mainly their repetition periods not their detailed 
complex behavior. (See page 1088.)

ä 1960, 1967: Stanislaw Ulam and collaborators simulate 
systems close to 2D cellular automata, and note the 
appearance of complicated patterns (see above).

ä 1961: Edward Fredkin simulates the 2D analog of rule 90 
and notes features that amount to nesting (see above).

äEarly 1960s: Students at MIT try running many small 
computer programs, and in some cases visualizing their 
output. They discover various examples (such as 
“munching foos”) that produce nested behavior (see 
page 871), but do not go further. 

ä 1962: Marvin Minsky and others study many simple 
Turing machines, but do not go far enough to discover the 
complex behavior shown on page 81.

ä 1963: Edward Lorenz simulates a differential equation that 
shows complex behavior (see page 971), but concentrates 
on its lack of periodicity and sensitive dependence on 
initial conditions.

äMid-1960s: Simulations of random Boolean networks are 
done (see page 936), but concentrate on simple average 
properties.

p

3 n + 1



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

880

ä 1970: John Conway introduces the Game of Life 2D 
cellular automaton (see above).

ä 1971: Michael Paterson considers a class of simple 2D 
Turing machines that he calls worms and that exhibit 
complicated behavior (see page 930).

ä 1973: I look at some 2D cellular automata, but force the 
rules to have properties that prevent complex behavior 
(see page 864).

äMid-1970s: Benoit Mandelbrot develops the idea of fractals 
(see page 934), and emphasizes the importance of 
computer graphics in studying complex forms. 

äMid-1970s: Tommaso Toffoli simulates all 4096 2D cellular 
automata of the simplest type, but studies mainly just their 
stabilization from random initial conditions.

äLate 1970s: Douglas Hofstadter studies a recursive 
sequence with complicated behavior (see page 907), but 
does not take it far enough to conclude much.

ä 1979: Benoit Mandelbrot discovers the Mandelbrot set (see 
page 934) but concentrates on its nested structure, not its 
overall complexity.

ä 1981: I begin to study 1D cellular automata, and generate a 
small picture analogous to the one of rule 30 on page 27, 
but fail to study it. 

ä 1984: I make a detailed study of rule 30, and begin to 
understand the significance of it and systems like it.

â The importance of explicitness. Looking through this book,
one striking difference with most previous scientific accounts
is the presence of so many explicit pictures that show how
every element in a system behaves. In the past, people have
tended to consider it more scientific to give only numerical
summaries of such data. But most of the phenomena I discuss
in this book could not have been found without such explicit
pictures. (See also page 108.)

â My work on cellular automata. I began serious work on
cellular automata in the middle of 1981. I had been thinking
for some time about how complicated patterns could arise in
natural systems—in apparent violation of the Second Law of
Thermodynamics. I had been particularly interested in self-
gravitating gases where the basic physics seemed clear, but
where complex phenomena like galaxy formation seemed to
occur. I had also been interested in neural networks, where
there had been fairly simple models developed by Warren
McCulloch and Walter Pitts in the 1940s. I came up with
cellular automata as an attempt to capture the essential
features of a range of systems, from self-gravitating gases to
neural networks. I wanted to find models that had a simple

structure like the Ising model in statistical mechanics
(studied since the 1920s), but which had definite rules for
time evolution and could easily be simulated on a computer.
Ironically enough, while cellular automata are good for many
things, they turn out to be rather unsuitable for modelling
either self-gravitating gases or neural networks. (See page
1021). But by the time I realized this, it was clear that cellular
automata were of great interest for many other purposes.

I did my first major computer experiments on cellular
automata late in 1981 (see page 19). Two features initially
struck me most. First, that starting from random initial
conditions, cellular automata could organize themselves to
produce complex patterns. And second, that in cases like rule
90 simple initial conditions led to nested or fractal patterns.
During the first half of 1982, I worked hard to analyze the
behavior of cellular automata using ideas from statistical
mechanics, dynamical systems theory and discrete
mathematics. And in June 1982, I finished my first paper on
cellular automata, entitled “Statistical Mechanics of Cellular
Automata”. Published in the journal Reviews of Modern
Physics in July 1983, this paper already presents in raw form
many of the key ideas that led to the development of the
science described in this book. It discusses the fact that by not
using traditional mathematical equations, simple models can
potentially be made to reproduce complex phenomena, and
it mentions some of the consequences of viewing models like
cellular automata as computational systems. The paper also
contained a small picture of rule 30 started from a single
black cell. But at the time, I did not study this picture in
detail, and I tacitly assumed that whenever I saw
randomness it must come from the random initial conditions
that I used. (See page 112.)

It was some time in the fall of 1981 that I first found out (at a
dinner with some then-young MIT computer scientists) that a
version of the systems I had invented had been studied
before under the name of “cellular automata”. (I had been
aware of the Game of Life, but its recreational emphasis had
put me off studying it.) Knowing the name cellular automata,
I was able to track down quite a number of relevant papers
from the 1950s and 1960s. But I found that active research on
what had been called cellular automata had more or less
petered out (with the slight exception of a group at MIT at
that time mainly concerned with building special-purpose
hardware for 2D cellular automata). By late 1982 preprints of
my paper on cellular automata had created quite a stir, and I
got involved in organizing a conference held in March 1983 at
Los Alamos to bring together many people newly interested
in cellular automata with earlier workers in the field.
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As part of preparing for that conference, I decided to use the
graphics capabilities of the new workstation computer I had
just obtained (a very early unit from Sun Microsystems) to
investigate in a systematic way the behavior of a large
collection of different cellular automata. And after spending
several weeks looking at screen after screen of patterns—and
trying to analyze their properties—I came to the conclusion
that one could identify in the behavior of cellular automata
with random initial conditions just four basic classes, each
with its own characteristic features (see page 231).

In 1982 and early 1983, my efforts to analyze cellular
automata were mainly based on ideas from discrete
mathematics and dynamical systems theory. In the course of
1983, I also began to make serious use of formal language
theory and the theory of computation. But for the most part
I concentrated on characterizing behavior obtained from all
possible initial conditions. And in fact I still vaguely
assumed that if simple initial conditions were used, only
fairly simple behavior would be obtained. Several of my
papers had actually shown quite detailed pictures where
this was not the case. I had noticed them, but they had
never been among the examples I had studied in depth,
partly for the superficial reason that the rules they involved
were not symmetrical, or inevitably led to patterns that were
otherwise not convenient for display. I do not know exactly
what made me start looking more carefully at simple initial
conditions, though I believe that I first systematically
generated high-resolution pictures of all the , 
cellular automata as an exercise for an early laserprinter—
probably at the beginning of 1984. And I do know that for
example on June 1, 1984 I printed out pictures of rule 30,
rule 110 and ,  totalistic code 10 (see note below),
took them with me on a flight from New York to London,
and a few days later was in Sweden talking about
randomness in rule 30 and its potential significance. 

A month or so later, writing an article for Scientific
American—nominally on the subject of software in science
and mathematics—led me to think more carefully about
basic issues of computation and modelling, and to describe
for the first time the idea of computational irreducibility
(see page 737). In the fall of 1984 I began to investigate
some of the implications of what I had discovered about
cellular automata for foundational questions in science.
And by early 1985 I had written what I consider to be my
two most fundamental (if excessively short) papers from
the period: one on undecidability and intractability in
theoretical physics, and the other on intrinsic randomness
generation and the origins of randomness in physical
systems. 

In the early summer of 1985 I was doing consulting at a
startup company called Thinking Machines Corporation,
which had developed a massively parallel computer called
the Connection Machine that was fairly well suited to cellular
automaton simulation. Partly as an application for this
computer I then ended up making a detailed study of rule 30
and its randomness—among other things proposing it as a
practical random sequence generator and cryptosystem.

I had always thought that cellular automata could be a way
to get at foundational questions in thermodynamics and
hydrodynamics. And in mid-1985, partly in an attempt to
find uses for the Connection Machine, I devised a practical
scheme for doing fluid mechanics with cellular automata (see
page 378). Then over the course of that winter and the
following spring I analyzed the scheme and worked out its
correspondence to the traditional continuum approach. 

By 1986, however, I felt that I had answered at least the first
round of obvious questions about cellular automata, and it
increasingly seemed that it would not be easier to go further
with the computational tools available. In June 1986 I
organized one last conference on cellular automata—then in
August 1986 essentially left the field to begin the
development of Mathematica. 

Over the years, I have come back to look at cellular automata
again and again, and every time I have been amazed and
delighted by the richness of the phenomena they exhibit. As I
argue in this book, a vast range of systems must in the end
show the same basic phenomena. But cellular automata—
and especially 1D ones—make the phenomena particularly
clear, which is why even after investigating all sorts of other
systems 1D cellular automata are still the most common
examples that I use in this book.

â My papers. The primary papers that I published about
cellular automata and other issues related to this book were
(the dates indicate when I finished my work on each paper;
the papers were actually published 6–12 months later):

ä “Statistical mechanics of cellular automata” (June 1982) 
(introducing 1D cellular automata and studying many of 
their properties)

ä “Algebraic properties of cellular automata” (with Olivier 
Martin and Andrew Odlyzko) (February 1983) (analyzing 
additive cellular automata such as rule 90)

ä “Universality and complexity in cellular automata” (April 
1983) (classifying cellular automaton behavior)

ä “Computation theory of cellular automata” (November 
1983) (characterizing behavior using formal language 
theory)

k = 2 r = 1
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ä “Two-dimensional cellular automata” (with Norman 
Packard) (October 1984) (extending results to two 
dimensions)

ä “Undecidability and intractability in theoretical physics” 
(October 1984) (introducing computational irreducibility)

ä “Origins of randomness in physical systems” (February 
1985) (introducing intrinsic randomness generation)

ä “Random sequence generation by cellular automata” (July 
1985) (a detailed study of rule 30)

ä “Thermodynamics and hydrodynamics of cellular 
automata” (with James Salem) (November 1985) 
(continuum behavior from cellular automata)

ä “Approaches to complexity engineering” (December 1985) 
(finding systems that achieve specified goals)

ä “Cellular automaton fluids: Basic theory” (March 1986) 
(deriving the Navier-Stokes equations from cellular 
automata)

The ideas in the first five and the very last of these papers
have been reasonably well absorbed over the past fifteen or
so years. But those in the other five have not, and indeed
seem to require the whole development of this book to be
able to present in an appropriate way. 

Other significant publications of mine providing relevant
summaries were (the dates here are for actual publication—
sometimes close to writing, but sometimes long delayed):

ä “Computers in science and mathematics” (September 
1984) (Scientific American article about foundations of the 
computational approach to science and mathematics)

ä “Cellular automata as models of complexity” (October 
1984) (Nature article introducing cellular automata)

ä “Geometry of binomial coefficients” (November 1984) 
(additive cellular automata and nested patterns)

ä “Twenty problems in the theory of cellular automata” 
(1985) (a list of unsolved problems to attack—most now 
finally resolved in this book)

ä “Tables of cellular automaton properties” (June 1986) 
(features of elementary cellular automata)

ä “Cryptography with cellular automata” (1986) (using rule 
30 as a cryptosystem)

ä “Complex systems theory” (1988) (1984 speech suggesting 
the research direction for the new Santa Fe Institute)

â Code 10. Rule 30 is by many measures the simplest cellular
automaton that generates randomness from a single black initial
cell. But there are other simple examples—that historically I
noticed slightly earlier than rule 30, though did not study—that
occur in ,  totalistic rules. And indeed among the 64
such rules, 13 show randomness. An example shown below is
code 10, which specifies that if 1 or 3 cells out of 5 are black then
the next cell is black; otherwise it is white.

k = 2 r = 2




