
EXCERPTED FROM

The World of Simple
Programs

CHAPTER 3

51

3
The World of Simple Programs

The Search for General Features

At the beginning of the last chapter we asked the basic question of what

simple programs typically do. And as a first step towards answering this

question we looked at several specific examples of a class of programs

known as cellular automata.

The basic types of behavior that we found are illustrated in the

pictures on the next page. In the first of these there is pure repetition,

and a very simple pattern is formed. In the second, there are many

intricate details, but at an overall level there is still a very regular

nested structure that emerges.

In the third picture, however, one no longer sees such regularity,

and instead there is behavior that seems in many respects random. And

finally in the fourth picture there is what appears to be still more

complex behavior—with elaborate localized structures being generated

that interact in complex ways.

At the outset there was no indication that simple programs could

ever produce behavior so diverse and often complex. But having now

seen these examples, the question becomes how typical they are. Is it

only cellular automata with very specific underlying rules that produce

such behavior? Or is it in fact common in all sorts of simple programs?

My purpose in this chapter is to answer this question by looking

at a wide range of different kinds of programs. And in a sense my

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

52

approach is to work like a naturalist—exploring and studying the

various forms that exist in the world of simple programs.

I start by considering more general cellular automata, and then I

go on to consider a whole sequence of other kinds of programs—with

underlying structures further and further away from the array of black

and white cells in the cellular automata of the previous chapter.

And what I discover is that whatever kind of underlying rules one

uses, the behavior that emerges turns out to be remarkably similar to

the basic examples that we have already seen in cellular automata.

Throughout the world of simple programs, it seems, there is great

universality in the types of overall behavior that can be produced. And

in a sense it is ultimately this that makes it possible for me to construct

the coherent new kind of science that I describe in this book—and to

use it to elucidate a large number of phenomena, independent of the

particular details of the systems in which they occur.

randomness (rule 30) localized structures (rule 110)

repetition (rule 250) nesting (rule 90)

Four basic examples from the previous chapter of behavior produced by cellular automata with simple underlying rules. In
each case, the most obvious features that are seen are different. Note that all the pictures are shown on the same scale;
the last picture appears coarser because the structures it contains are larger.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

53

More Cellular Automata

The pictures below show the rules used in the four cellular automata on

the facing page. The overall structure of these rules is the same in each

case; what differs is the specific choice of new colors for each possible

combination of previous colors for a cell and its two neighbors.

There turn out to be a total of 256 possible sets of choices that

can be made. And following my original work on cellular automata

these choices can be numbered from 0 to 255, as in the picture below.

But so how do cellular automata with all these different rules

behave? The next page shows a few examples in detail, while the

following two pages show what happens in all 256 possible cases.

At first, the diversity of what one sees is a little overwhelming.

But on closer investigation, definite themes begin to emerge.

In the very simplest cases, all the cells in the cellular automaton

end up just having the same color after one step. Thus, for example, in

rule 30 rule 110

rule 250 rule 90

The rules used for the four examples of cellular automata on the facing page. In each case, these
specify the new color of a cell for each possible combination of colors of that cell and its immediate
neighbors on the previous step. The rules are numbered according to the scheme described below.

0 0 0 0 0 0 0 0 = 0

0 0 0 0 0 0 0 1 = 1

0 0 0 0 0 0 1 0 = 2

1 1 1 1 1 1 1 1 = 255

The sequence of 256 possible cellular
automaton rules of the kind shown
above. As indicated, the rules can
conveniently be numbered from 0 to
255. The number assigned is such that
when written in base 2, it gives a
sequence of 0’s and 1’s that correspond
to the sequence of new colors chosen
for each of the eight possible cases
covered by the rule.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

54

rule 136 rule 137 rule 138 rule 139

rule 132 rule 133 rule 134 rule 135

rule 128 rule 129 rule 130 rule 131

rule 124 rule 125 rule 126 rule 127

rule 120 rule 121 rule 122 rule 123

rule 116 rule 117 rule 118 rule 119

rule 112 rule 113 rule 114 rule 115

rule 108 rule 109 rule 110 rule 111

rule 104 rule 105 rule 106 rule 107

rule 100 rule 101 rule 102 rule 103

Evolution of cellular automata with a sequence of different possible rules, starting in all cases from a single black cell.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

55

rule 120 rule 121 rule 122 rule 123 rule 124 rule 125 rule 126 rule 127

rule 112 rule 113 rule 114 rule 115 rule 116 rule 117 rule 118 rule 119

rule 104 rule 105 rule 106 rule 107 rule 108 rule 109 rule 110 rule 111

rule 96 rule 97 rule 98 rule 99 rule 100 rule 101 rule 102 rule 103

rule 88 rule 89 rule 90 rule 91 rule 92 rule 93 rule 94 rule 95

rule 80 rule 81 rule 82 rule 83 rule 84 rule 85 rule 86 rule 87

rule 72 rule 73 rule 74 rule 75 rule 76 rule 77 rule 78 rule 79

rule 64 rule 65 rule 66 rule 67 rule 68 rule 69 rule 70 rule 71

rule 56 rule 57 rule 58 rule 59 rule 60 rule 61 rule 62 rule 63

rule 48 rule 49 rule 50 rule 51 rule 52 rule 53 rule 54 rule 55

rule 40 rule 41 rule 42 rule 43 rule 44 rule 45 rule 46 rule 47

rule 32 rule 33 rule 34 rule 35 rule 36 rule 37 rule 38 rule 39

rule 24 rule 25 rule 26 rule 27 rule 28 rule 29 rule 30 rule 31

rule 16 rule 17 rule 18 rule 19 rule 20 rule 21 rule 22 rule 23

rule 8 rule 9 rule 10 rule 11 rule 12 rule 13 rule 14 rule 15

rule 0 rule 1 rule 2 rule 3 rule 4 rule 5 rule 6 rule 7

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

56

rule 248 rule 249 rule 250 rule 251 rule 252 rule 253 rule 254 rule 255

rule 240 rule 241 rule 242 rule 243 rule 244 rule 245 rule 246 rule 247

rule 232 rule 233 rule 234 rule 235 rule 236 rule 237 rule 238 rule 239

rule 224 rule 225 rule 226 rule 227 rule 228 rule 229 rule 230 rule 231

rule 216 rule 217 rule 218 rule 219 rule 220 rule 221 rule 222 rule 223

rule 208 rule 209 rule 210 rule 211 rule 212 rule 213 rule 214 rule 215

rule 200 rule 201 rule 202 rule 203 rule 204 rule 205 rule 206 rule 207

rule 192 rule 193 rule 194 rule 195 rule 196 rule 197 rule 198 rule 199

rule 184 rule 185 rule 186 rule 187 rule 188 rule 189 rule 190 rule 191

rule 176 rule 177 rule 178 rule 179 rule 180 rule 181 rule 182 rule 183

rule 168 rule 169 rule 170 rule 171 rule 172 rule 173 rule 174 rule 175

rule 160 rule 161 rule 162 rule 163 rule 164 rule 165 rule 166 rule 167

rule 152 rule 153 rule 154 rule 155 rule 156 rule 157 rule 158 rule 159

rule 144 rule 145 rule 146 rule 147 rule 148 rule 149 rule 150 rule 151

rule 136 rule 137 rule 138 rule 139 rule 140 rule 141 rule 142 rule 143

rule 128 rule 129 rule 130 rule 131 rule 132 rule 133 rule 134 rule 135

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

57

rules 0 and 128 all the cells become white, while in rule 255 all of them

become black. There are also rules such as 7 and 127 in which all cells

alternate between black and white on successive steps.

But among the rules shown on the last few pages, the single most

common kind of behavior is one in which a pattern consisting of a

single cell or a small group of cells persists. Sometimes this pattern

remains stationary, as in rules 4 and 123. But in other cases, such as

rules 2 and 103, it moves to the left or right.

It turns out that the basic structure of the cellular automata

discussed here implies that the maximum speed of any such motion

must be one cell per step. And in many rules, this maximum speed is

achieved—although in rules such as 3 and 103 the average speed is

instead only half a cell per step.

In about two-thirds of all the cellular automata shown on the last

few pages, the patterns produced remain of a fixed size. But in about

one-third of cases, the patterns instead grow forever. Of such growing

patterns, the simplest kind are purely repetitive ones, such as those

seen in rules 50 and 109. But while repetitive patterns are by a small

margin the most common kind, about 14% of all the cellular automata

shown yield more complicated kinds of patterns.

The most common of these are nested patterns, like those on the

next page. And it turns out that although 24 rules in all yield such

nested patterns, there are only three fundamentally different forms that

occur. The simplest and by far the most common is the one exemplified

by rules 22 and 60. But as the pictures on the next page show, other

nested forms are also possible. (In the case of rule 225, the width of the

overall pattern does not grow at a fixed rate, but instead is on average

proportional to the square root of the number of steps.)

The behavior of all 256 possible cellular automata with rules involving two colors and nearest
neighbors. In each case, thirty steps of evolution are shown, starting from a single black cell. Note
that some of the rules are related just by interchange of left and right or black and white (e.g. rules 2
and 16 or rules 126 and 129). There are 88 fundamentally inequivalent such elementary rules.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

58

Repetition and nesting are widespread themes in many cellular

automata. But as we saw in the previous chapter, it is also possible for

cellular automata to produce patterns that seem in many respects

random. And out of the 256 rules discussed here, it turns out that 10

yield such apparent randomness. There are three basic forms, as

illustrated on the facing page.

rule 150

rule 105

rule 22

rule 225 rule 225 (shifted)

rule 129

rule 60

Examples of cellular automata that produce nested or fractal patterns. Rule 22—like rule 90 from page 26—gives a pattern with
fractal dimension ; rule 150 gives one with fractal dimension . The width of the pattern
obtained from rule 225 increases like the square root of the number of steps.

Log[2, 3] ; 1.59 Log[2, 1+
�!!!!

5] ; 1.69

Examples of cellular automata that produce patterns with many apparently random features.
Three hundred steps of evolution are shown, starting in each case from a single black cell.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

59

rule 73

rule 45

rule 30

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

60

Beyond randomness, the last example in the previous chapter was

rule 110: a cellular automaton whose behavior becomes partitioned into

a complex mixture of regular and irregular parts. This particular cellular

automaton is essentially unique among the 256 rules considered here:

of the four cases in which such behavior is seen, all are equivalent if one

just interchanges the roles of left and right or black and white.

So what about more complicated cellular automaton rules?

The 256 “elementary” rules that we have discussed so far are by

most measures the simplest possible—and were the first ones I studied.

But one can for example also look at rules that involve three colors,

rather than two, so that cells can not only be black and white, but also

gray. The total number of possible rules of this kind turns out to be

immense—7,625,597,484,987 in all—but by considering only so-called

“totalistic” ones, the number becomes much more manageable.

The idea of a totalistic rule is to take the new color of each cell to

depend only on the average color of neighboring cells, and not on their

individual colors. The picture below shows one example of how this

works. And with three possible colors for each cell, there are 2187

possible totalistic rules, each of which can conveniently be identified

by a code number as illustrated in the picture. The facing page shows a

representative sequence of such rules.

We might have expected that by allowing three colors rather than

two we would immediately get noticeably more complicated behavior.

1 0 0 1 2 1 0 = 777

Example of a totalistic cellular automaton with three
possible colors for each cell. The rule is set up so that
the new color of every cell is determined by the
average of the previous colors of the cell and its
immediate neighbors. With 0 representing white, 1
gray and 2 black, the rightmost element of the rule
gives the result for average color 0, while the element
immediately to its left gives the result for average
color 1/3—and so on. Interpreting the sequence of
new colors as a sequence of base 3 digits, one can
assign a code number to each totalistic rule.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

61

code 1128 code 1131 code 1134 code 1137 code 1140

code 1113 code 1116 code 1119 code 1122 code 1125

code 1098 code 1101 code 1104 code 1107 code 1110

code 1083 code 1086 code 1089 code 1092 code 1095

code 1068 code 1071 code 1074 code 1077 code 1080

code 1053 code 1056 code 1059 code 1062 code 1065

code 1038 code 1041 code 1044 code 1047 code 1050

code 1023 code 1026 code 1029 code 1032 code 1035

code 1008 code 1011 code 1014 code 1017 code 1020

code 993 code 996 code 999 code 1002 code 1005

A sequence of totalistic cellular automata with three possible colors for each cell. Although their basic rules are more
complicated, the cellular automata shown here do not seem to have fundamentally more complicated behavior than the
two-color cellular automata shown on previous pages. Note that in the sequence of rules shown here, those that change the
white background are not included. The symmetry of all the patterns is a consequence of the basic structure of totalistic rules.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

62

But in fact the behavior we see on the previous page is not unlike what

we already saw in many elementary cellular automata a few pages back.

Having more complicated underlying rules has not, it seems, led to

much greater complexity in overall behavior.

And indeed, this is a first indication of an important general

phenomenon: that at least beyond a certain point, adding complexity to

the underlying rules for a system does not ultimately lead to more

complex overall behavior. And so for example, in the case of cellular

automata, it seems that all the essential ingredients needed to produce

even the most complex behavior already exist in elementary rules.

Using more complicated rules may be convenient if one wants, say,

to reproduce the details of particular natural systems, but it does not add

fundamentally new features. Indeed, looking at the pictures on the

previous page one sees exactly the same basic themes as in elementary

cellular automata. There are some patterns that attain a definite size, then

repeat forever, as shown below, others that continue to grow, but have a

repetitive form, as at the top of the facing page, and still others that

produce nested or fractal patterns, as at the bottom of the page.

code 600 code 843 code 870 code 1086 code 1167 code 1329 code 1572 code 1815 code 1842

Examples of three-color
totalistic rules that yield
patterns which attain a certain
size, then repeat forever. The
maximum repetition period is
found to be 78 steps, and is
achieved by the rule with code
number 1329. In the pictures
shown here and on the following
pages, the initial condition used
contains a single gray cell.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

63

code 966 code 1884

code 219 code 957

code 948 code 1749

code 237 code 420

Examples of three-color totalistic rules that yield patterns which grow forever but have a fundamentally repetitive structure.

Examples of three-color totalistic rules which yield nested patterns. In most cases, these patterns have an overall form that is
similar to what was found with two-color rules. But code 420, for example, yields a pattern with a slightly different structure.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

64

code 2040

code 912

code 177

Examples of three-color totalistic rules that yield patterns with seemingly random features. Three
hundred steps of evolution are shown in each case.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

65

In detail, some of the patterns are definitely more complicated

than those seen in elementary rules. But at the level of overall behavior,

there are no fundamental differences. And in the case of nested patterns

even the specific structures seen are usually the same as for elementary

rules. Thus, for example, the structure in codes 237 and 948 is the most

common, followed by the one in code 1749. The only new structure not

already seen in elementary rules is the one in code 420—but this occurs

only quite rarely.

About 85% of all three-color totalistic cellular automata produce

behavior that is ultimately quite regular. But just as in elementary cellular

automata, there are some rules that yield behavior that seems in many

respects random. A few examples of this are given on the facing page.

Beyond fairly uniform random behavior, there are also cases

similar to elementary rule 110 in which definite structures are

produced that interact in complicated ways. The next page gives a few

examples. In the first case shown, the pattern becomes repetitive after

about 150 steps. In the other two cases, however, it is much less clear

what will ultimately happen. The following pages continue these

patterns for 3000 steps. But even after this many steps it is still quite

unclear what the final behavior will be.

Looking at pictures like these, it is at first difficult to believe that

they can be generated just by following very simple underlying cellular

automaton rules. And indeed, even if one accepts this, there is still a

tendency to assume that somehow what one sees must be a

consequence of some very special feature of cellular automata.

As it turns out, complexity is particularly widespread in cellular

automata, and for this reason it is fortunate that cellular automata were

the very first systems that I originally decided to study.

But as we will see in the remainder of this chapter, the fundamental

phenomena that we discovered in the previous chapter are in no way

restricted to cellular automata. And although cellular automata remain

some of the very best examples, we will see that a vast range of utterly

different systems all in the end turn out to exhibit extremely similar

types of behavior.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

66

code 2049

code 1635

code 1041

Examples of three-color totalistic rules with highly complex behavior showing a mixture of regularity and
irregularity. The partitioning into identifiable structures is similar to what we saw in rule 110 on page 32.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

67

code 1635

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

68

code 2049

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

69

The pictures below show totalistic cellular automata whose

overall patterns of growth seem, at least at first, quite complicated. But

it turns out that after only about 100 steps, three out of four of these

patterns have resolved into simple forms.

The one remaining pattern is, however, much more complicated.

As shown on the next page, for several thousand steps it simply grows,

albeit somewhat irregularly. But then its growth becomes slower. And

inside the pattern parts begin to die out. Yet there continue to be

occasional bursts of growth. But finally, after a total of 8282 steps, the

pattern resolves into 31 simple repetitive structures.

code 357 code 600 code 1599 code 2058

Examples of rules that yield patterns
which seem to be on the edge between
growth and extinction. For all but code
1599, the fate of these patterns in fact
becomes clear after less than 100 steps. A
total of 250 steps are shown here.

 Three thousand steps in the evolution of the last two cellular automata from page 66.
Despite the simplicity of their underlying rules, the final patterns produced show
immense complexity. In neither case is it clear what the final outcome will be—whether
apparent randomness will take over, or whether a simple repetitive form will emerge.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

70

code 1599

Nine thousand steps in the evolution of the three-color totalistic cellular automaton with code number 1599. Starting from a
single gray cell, each column corresponds to 3000 steps. The outcome of the evolution finally becomes clear after 8282
steps, when the pattern resolves into 31 simple repetitive structures.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

71

Mobile Automata

One of the basic features of a cellular automaton is that the colors of all

the cells it contains are updated in parallel at every step in its evolution.

But how important is this feature in determining the overall

behavior that occurs? To address this question, I consider in this section

a class of systems that I call “mobile automata”.

Mobile automata are similar to cellular automata except that

instead of updating all cells in parallel, they have just a single “active

cell” that gets updated at each step—and then they have rules that

specify how this active cell should move from one step to the next.

The picture below shows an example of a mobile automaton. The

active cell is indicated by a black dot. The rule applies only to this

active cell. It looks at the color of the active cell and its immediate

neighbors, then specifies what the new color of the active cell should

be, and whether the active cell should move left or right.

Much as for cellular automata, one can enumerate all possible rules

of this kind; it turns out that there are 65,536 of them. The pictures at the

top of the next page show typical behavior obtained with such rules. In

cases (a) and (b), the active cell remains localized to a small region, and the

behavior is very simple and repetitive. Cases (c) through (f) are similar,

An example of a mobile automaton. Like a cellular automaton, a
mobile automaton consists of a line of cells, with each cell having
two possible colors. But unlike a cellular automaton, a mobile
automaton has only one “active cell” (indicated here by a black dot)
at any particular step. The rule for the mobile automaton specifies
both how the color of this active cell should be updated, and
whether it should move to the left or right. The result of evolution
for a larger number of steps with the particular rule shown here is
given as example (f) on the next page.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

72

except that the whole pattern shifts systematically to the right, and in

cases (e) and (f) a sequence of stripes is left behind.

But with a total of 218 out of the 65,536 possible rules, one gets

somewhat different behavior, as cases (g) and (h) above show. The active

cell in these cases does not move in a strictly repetitive way, but instead

sweeps backwards and forwards, going progressively further every time.

The overall pattern produced is still quite simple, however. And

indeed in the compressed form below, it is purely repetitive.

(a) (b) (c) (d) (e) (f) (g) (h)

(e) (f) (g) (h)

(a) (b) (c) (d)

Examples of mobile automata with various rules. In cases (a) through (f) the motion of the active cell is purely repetitive. In cases
(g) and (h) it is not. The width of the pattern in these cases after steps grows roughly like . t

�!!!!!!!
2 t

Compressed versions of the evolution of mobile automata (g) and (h) above, obtained by showing only
those steps at which the active cell is further to the left or right than it has ever been before.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

73

Of the 65,536 possible mobile automata with rules of the kind

discussed so far it turns out that not a single one shows more complex

behavior. So can such behavior then ever occur in mobile automata?

One can extend the set of rules one considers by allowing not

only the color of the active cell itself but also the colors of its

immediate neighbors to be updated at each step. And with this

extension, there are a total of 4,294,967,296 possible rules.

If one samples these rules at random, one finds that more than

99% of them just yield simple repetitive behavior. But once in every

few thousand rules, one sees behavior of the kind shown below—that is

not purely repetitive, but instead has a kind of nested structure.

compressed

A mobile automaton with slightly more
complicated rules that yields a nested
pattern. Each column on the left shows
200 steps in the mobile automaton
evolution. The compressed form of the
pattern is based on a total of 8000 steps.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

74

The overall pattern is nevertheless still very regular. But after

searching through perhaps 50,000 rules, one finally comes across a rule

of the kind shown below—in which the compressed pattern exhibits

very much the same kind of apparent randomness that we saw in

cellular automata like rule 30.

But even though the final pattern left behind by the active cell in

the picture above seems in many respects random, the motion of the

active cell itself is still quite regular. So are there mobile automata in

which the motion of the active cell is also seemingly random? At first, I

believed that there might not be. But after searching through a few

million rules, I finally found the example shown on the facing page.

compressed

A mobile automaton that yields a pattern with
seemingly random features. The motion of the active
cell is still quite regular, as the picture on the right
shows. But when viewed in compressed form, as
below, the overall pattern of colors seems in many
respects random. Each column on the right shows
200 steps of evolution; the compressed form below
corresponds to 50,000 steps.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

75

compressed

A mobile automaton in which the position of the
active cell moves in a seemingly random way. Each
column above shows 400 steps; the compressed
form corresponds to 50,000 steps. It took searching
through a few million mobile automata to find one
with behavior as complex as what we see here.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

76

Despite the fact that mobile automata update only one cell at a

time, it is thus still possible for them to produce behavior of great

complexity. But while we found that such behavior is quite common in

cellular automata, what we have seen in this section indicates that it is

rather rare in mobile automata.

One can get some insight into the origin of this difference by

studying a class of generalized mobile automata, that in a sense

interpolate between ordinary mobile automata and cellular automata.

The basic idea of such generalized mobile automata is to allow

more than one cell to be active at a time. And the underlying rule is

then typically set up so that under certain circumstances an active cell

can split in two, or can disappear entirely.

Thus in the picture below, for example, new active cells end up

being created every few steps.

If one chooses generalized mobile automata at random, most of

them will produce simple behavior, as shown in the first few pictures

on the facing page. But in a few percent of all cases, the behavior is

much more complicated. Often the arrangement of active cells is still

quite regular, although sometimes it is not.

But looking at many examples, a certain theme emerges: complex

behavior almost never occurs except when large numbers of cells are

active at the same time. Indeed there is, it seems, a significant

correlation between overall activity and the likelihood of complex

behavior. And this is part of why complex behavior is so much more

common in cellular automata than in mobile automata.

A generalized mobile automaton in which any number
of cells can be active at a time. The rule given above is
applied to every cell that is active at a particular step. In
many cases, the rule specifies just that the active cell
should move to the left or right. But in some cases, it
specifies that the active cell should split in two,
thereby creating an additional active cell.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

77

(a) (b) (c)

(d) (e)

(e) (f) (g) (h)

(a) (b) (c) (d)

Examples of generalized mobile automata with various rules. In case (a), only a limited number of cells ever become active. But in
all the other cases shown active cells proliferate forever. In case (d), almost all cells are active, and the system operates
essentially like a cellular automaton. In the remaining cases somewhat complicated patterns of cells are active. Note that unlike in
ordinary mobile automata, examples of complex behavior like those shown here are comparatively easy to find.

(f) (g) (h)

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

78

Turing Machines

In the history of computing, the first widely understood theoretical

computer programs ever constructed were based on a class of systems

now called Turing machines.

Turing machines are similar to mobile automata in that they

consist of a line of cells, known as the “tape”, together with a single

active cell, known as the “head”. But unlike in a mobile automaton, the

head in a Turing machine can have several possible states, represented

by several possible arrow directions in the picture below.

And in addition, the rule for a Turing machine can depend on the

state of the head, and on the color of the cell at the position of the head,

but not on the colors of any neighboring cells.

Turing machines are still widely used in theoretical computer

science. But in almost all cases, one imagines constructing examples to

perform particular tasks, with a huge number of possible states and a

huge number of possible colors for each cell.

But in fact there are non-trivial Turing machines that have just

two possible states and two possible colors for each cell. The pictures

on the facing page show examples of some of the 4096 machines of this

kind. Both repetitive and nested behavior are seen to occur, though

nothing more complicated is found.

An example of a Turing machine. Like a
mobile automaton, the Turing machine
has one active cell or “head”, but now the
head has several possible states,
indicated by the directions of the arrows
in this picture.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

79

From our experience with mobile automata, however, we expect

that there should be Turing machines that have more complex behavior.

With three states for the head, there are about three million

possible Turing machines. But while some of these give behavior that

looks slightly more complicated in detail, as in cases (a) and (b) on the

next page, all ultimately turn out to yield just repetitive or nested

patterns—at least if they are started with all cells white.

With four states, however, more complicated behavior

immediately becomes possible. Indeed, in about five out of every

million rules of this kind, one gets patterns with features that seem in

many respects random, as in the pictures on the next two pages.

So what happens if one allows more than four states for the head?

It turns out that there is almost no change in the kind of behavior one

sees. Apparent randomness becomes slightly more common, but

otherwise the results are essentially the same.

Once again, it seems that there is a threshold for complex

behavior—that is reached as soon as one has at least four states. And

just as in cellular automata, adding more complexity to the underlying

rules does not yield behavior that is ultimately any more complex.

(a) (b) (c) (d) (e) (f)

Examples of Turing machines with two possible states for the head. There are a total of 4096 rules
of this kind. Repetitive and nested patterns are seen, but nothing more complicated ever occurs.

(f)

(e)

(d)

(c)

(b)

(a)

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

80

(a) (b) (c) (d) (e) (f) (g) (h)

compressed

(e) (f) (g) (h)

(a) (b) (c) (d)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Examples of Turing machines with three and four possible states. With three possible states, only repetitive and nested
patterns are ever ultimately produced, at least starting with all cells white. But with four states, more complicated patterns
are generated. The top set of pictures show the first 150 steps of evolution according to various different rules, starting with
the head in the first state (arrow pointing up), and all cells white. The bottom set of pictures show the evolution in each case
in a compressed form. Each of these pictures includes the first 50 steps at which the head is further to the left or right than
it has ever been before.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

81

compressed

A Turing machine that exhibits behavior
which seems in many respects random. The
Turing machine has four possible states for
its head, and two possible colors for each
cell on its tape. It starts with all cells white,
corresponding to a blank tape. Each column
above shows 250 steps of evolution; the
compressed form on the left corresponds to
a total of 20,000 steps.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

82

Substitution Systems

One of the features that cellular automata, mobile automata and Turing

machines all have in common is that at the lowest level they consist of

a fixed array of cells. And this means that while the colors of these cells

can be updated according to a wide range of different possible rules, the

underlying number and organization of cells always stays the same.

Substitution systems, however, are set up so that the number of

elements can change. In the typical case illustrated below, one has a

sequence of elements—each colored say black or white—and at each step

each one of these elements is replaced by a new block of elements.

In the simple cases shown, the rules specify that each element of

a particular color should be replaced by a fixed block of new elements,

independent of the colors of any neighboring elements.

And with these kinds of rules, the total number of elements

typically grows very rapidly, so that pictures like those above quickly

become rather unwieldy. But at least for these kinds of rules, one can

make clearer pictures by thinking of each step not as replacing every

element by a sequence of elements that are drawn the same size, but

rather of subdividing each element into several that are drawn smaller.

In the cases on the facing page, I start from a single element

represented by a long box going all the way across the picture. Then on

successive steps the rules for the substitution system specify how each

box should be subdivided into a sequence of shorter and shorter boxes.

Examples of substitution systems with two possible kinds of elements, in which at every step each
kind of element is replaced by a fixed block of new elements. In the first case shown, the total number
of elements obtained doubles at every step; in the second case, it follows a Fibonacci sequence, and
increases by a factor of roughly at every step. The two substitution systems
shown here correspond to the second and third examples in the pictures on the following two pages.

(1+
�!!!!

5) /2 ; 1.618

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

83

The pictures at the top of the next page show a few more examples.

And what we see is that in all cases there is obvious regularity in the

patterns produced. Indeed, if one looks carefully, one can see that every

pattern just consists of a collection of identical nested pieces.

And ultimately this is not surprising. After all, the basic rules for

these substitution systems specify that any time an element of a

particular color appears it will always get subdivided in the same way.

The nested structure becomes even clearer if one represents

elements not as boxes, but instead as branches on a tree. And with this

setup the idea is to start from the trunk of the tree, and then at each

step to use the rules for the substitution system to determine how

every branch should be split into smaller branches.

(d)

(c)

(b)

(a)

Examples of substitution systems in which every element is drawn as being subdivided into a
sequence of new elements at each step. In all cases the overall patterns obtained can be seen to
have a very regular nested form. Rule (b) gives the so-called Thue-Morse sequence, which we will
encounter many times in this book. Rule (c) is related to the Fibonacci sequence. Rule (d) gives a
version of the Cantor set.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

84

Then the point is that because the rules depend only on the color of

a particular branch, and not on the colors of any neighboring branches, the

subtrees that are generated from all the branches of the same color must

have exactly the same structure, as in the pictures below.

(i) (j)

(g) (h)

(e) (f)

(c) (d)

(a) (b)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

More examples of neighbor-independent substitution systems like those on the previous page. Each rule yields a different sequence
of elements, but all of them ultimately have simple nested forms.

The evolution of the same substitution systems as on the previous page, but now shown in terms of trees. Starting from the trunk at
the bottom, the rules specify that at each step every branch of a particular color should split into smaller branches in the same way.
The result is that each tree consists of a collection of progressively smaller subtrees with the same structure. On page 400 I will use
similar systems to discuss the growth of actual trees and leaves.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

85

To get behavior that is more complicated than simple nesting, it

follows therefore that one must consider substitution systems whose

rules depend not only on the color of a single element, but also on the

color of at least one of its neighbors. The pictures below show examples

in which the rules for replacing an element depend not only on its own

color, but also on the color of the element immediately to its right.

In the first example, the pattern obtained still has a simple nested

structure. But in the second example, the behavior is more complicated,

and there is no obvious nested structure.

One feature of both examples, however, is that the total number

of elements never decreases from one step to the next. The reason for

this is that the basic rules we used specify that every single element

should be replaced by at least one new element.

Examples of substitution systems whose rules depend not just on the color of an element itself, but
also on the color of the element immediately to its right. Rules of this kind cannot readily be
interpreted in terms of simple subdivision of one element into several. And as a result, there is no
obvious way to choose what size of box should be used to represent each element in the picture.
What I do here is simply to divide the whole width of the picture equally among all elements that
appear at each step. Note that on every step the rightmost element is always dropped, since no rule
is given for how to replace it.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

86

It is, however, also possible to consider substitution systems in

which elements can simply disappear. If the rate of such disappearances

is too large, then almost any pattern will quickly die out. And if there

are too few disappearances, then most patterns will grow very rapidly.

But there is always a small fraction of rules in which the creation

and destruction of elements is almost perfectly balanced.

The picture above shows one example. The number of elements

does end up increasing in this particular example, but only by a fixed

amount at each step. And with such slow growth, we can again

represent each element by a box of the same size, just as in our original

pictures of substitution systems on page 82.

When viewed in this way, however, the pattern produced by the

substitution system shown above is seen to have a simple repetitive

form. And as it turns out, among substitution systems with the same

type of rules, all those which yield slow growth also seem to produce

only such simple repetitive patterns.

Knowing this, we might conclude that somehow substitution

systems just cannot produce the kind of complexity that we have seen

in systems like cellular automata. But as with mobile automata and

with Turing machines, we would again be wrong. Indeed, as the

pictures on the facing page demonstrate, allowing elements to have

three or four colors rather than just two immediately makes much more

complicated behavior possible.

Two views of a substitution system whose
rules allow both creation and destruction of
elements. In the view on the left, the boxes
representing each element are scaled to keep
the total width the same, whereas on the
right each box has a fixed size, as in our
original pictures of substitution systems on
page 82. The right-hand view shows that the
rates of creation and destruction of elements
are balanced closely enough that the total
number of elements grows by only a fixed
amount at each step.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

87

(a) (b) (c)

(d) (e) (f)

(a) (b)

(c) (d)

(e)

(f)

Examples of substitution systems that have three and four possible colors for
each element. The particular rules shown are ones that lead to slow growth
in the total number of elements. Note that on each line in each picture, only
the order of elements is ever significant: as the insets show, a particular
element may change its position as a result of the addition or subtraction of
elements to its left. Note that the pattern in case (a) does eventually repeat,
while the one in case (b) eventually shows a nested structure.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

88

As it turns out, the first substitution system shown works almost

exactly like a cellular automaton. Indeed, away from the right-hand

edge, all the elements effectively behave as if they were lying on a

regular grid, with the color of each element depending only on the

previous color of that element and the element immediately to its right.

The second substitution system shown again has patches that

exhibit a regular grid structure. But between these patches, there are

regions in which elements are created and destroyed. And in the other

substitution systems shown, elements are created and destroyed

throughout, leaving no trace of any simple grid structure. So in the end

the patterns we obtain can look just as random as what we have seen in

systems like cellular automata.

Sequential Substitution Systems

None of the systems we have discussed so far in this chapter might at first

seem much like computer programs of the kind we typically use in

practice. But it turns out that there are for example variants of

substitution systems that work essentially just like standard text editors.

The first step in understanding this correspondence is to think

of substitution systems as operating not on sequences of colored

elements but rather on strings of elements or letters. Thus for

example the state of a substitution system at a particular step can be

represented by the string , where the ’s correspond to

white elements and the ’s to black ones.

The substitution systems that we discussed in the previous

section work by replacing each element in such a string by a new

sequence of elements—so that in a sense these systems operate in

parallel on all the elements that exist in the string at each step.

But it is also possible to consider sequential substitution

systems, in which the idea is instead to scan the string from left to

right, looking for a particular sequence of elements, and then to

perform a replacement for the first such sequence that is found. And

this setup is now directly analogous to the search-and-replace

function of a typical text editor.

ABBBABA A

B

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

89

The picture below shows an example of a sequential substitution

system in which the rule specifies simply that the first sequence of the

form found at each step should be replaced with the sequence .

The behavior in this case is very simple, with longer and longer

strings of the same form being produced at each step. But one can get

more complicated behavior if one uses rules that involve more than just

one possible replacement. The idea in this case is at each step to scan

the string repeatedly, trying successive replacements on successive

scans, and stopping as soon as a replacement that can be used is found.

The picture on the next page shows a sequential substitution

system with rule involving two possible

replacements. Since the sequence occurs in the initial string that is

given, the first replacement is used on the first step. But the string

 that is produced at the second step does not contain , so now

the first replacement cannot be used. Nevertheless, since the string does

contain the single element , the second replacement can still be used.

Despite such alternation between different replacements,

however, the final pattern that emerges is very regular. Indeed, if one

allows only two possible replacements—and two possible elements—

BA ABA

An example of a very simple sequential substitution
system. The light squares can be thought of as
corresponding to the element A, and the dark squares
to the element B. At each step, the rule then specifies
that the string which exists at that step should be
scanned from left to right, and the first sequence BA
that is found should be replaced by ABA. In the picture,
the black dots indicate which elements are being
replaced at each step. In the case shown, the initial
string is BABA. At each step, the rule then has the
effect of adding an A inside the string.

�ABA � AAB, A � ABA�

ABA

BAAB ABA

A

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

90

then it seems that no rule ever gives behavior that is much more

complicated than in the picture above.

And from this one might be led to conclude that sequential

substitution systems could never produce behavior of any substantial

complexity. But having now seen complexity in many other kinds of

systems, one might suspect that it should also be possible in sequential

substitution systems.

And it turns out that if one allows more than two possible

replacements then one can indeed immediately get more complex

behavior. The pictures on the facing page show a few examples. In many

cases, fairly regular repetitive or nested patterns are still produced.

But about once in every 10,000 randomly selected rules, rather

different behavior is obtained. Indeed, as the picture on the following

page demonstrates, patterns can be produced that seem in many

respects random, much like patterns we have seen in cellular

automata and other systems.

So this leads to the rather remarkable conclusion that just by

using the simple operations available even in a very basic text editor, it

is still ultimately possible to produce behavior of great complexity.

A sequential substitution system
whose rule involves two possible
replacements. At each step, the
whole string is scanned once to try to
apply the first replacement, and is
then scanned again if necessary to
try to apply the second replacement.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

91

(a) (b) (c) (d) (e) (f) (g) (h)

Examples of sequential substitution systems whose rules
involve three possible replacements. In all cases, the
systems are started from the initial string BAB. The black
dots indicate the elements that are replaced at each step.

(e) (f) (g) (h)

(a) (b) (c) (d)

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

92

An example of a sequential substitution system that yields apparently random behavior. Each column
on the right-hand side shows the evolution of the system for 250 steps. The compressed picture on the
left is made by evolving for a million steps, but showing only steps at which the string becomes longer
than it has ever been before. (The rule is the same as (g) on the previous page.)

compressed

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

93

Tag Systems

One of the goals of this chapter is to find out just how simple the

underlying structure of a system can be while the system as a whole is

still capable of producing complex behavior. And as one example of a

class of systems with a particularly simple underlying structure, I

consider here what are sometimes known as tag systems.

A tag system consists of a sequence of elements, each colored say

black or white. The rules for the system specify that at each step a fixed

number of elements should be removed from the beginning of the

sequence. And then, depending on the colors of these elements, one of

several possible blocks is tagged onto the end of the sequence.

The pictures below show examples of tag systems in which just

one element is removed at each step. And already in these systems one

sometimes sees behavior that looks somewhat complicated.

But in fact it turns out that if only one element is removed at

each step, then a tag system always effectively acts just like a slow

version of a neighbor-independent substitution system of the kind we

discussed on page 83. And as a result, the pattern it produces must

ultimately have a simple repetitive or nested form.

If two elements are removed at each step, however, then this is no

longer true. And indeed, as the pictures on the next page demonstrate,

the behavior that is obtained in this case can often be very complicated.

Examples of tag systems in which a single element is removed from the beginning of the sequence at each step, and a new
block of elements is added to the end of the sequence according to the rules shown. Because only a single element is
removed at each step, the systems effectively just cycle through all elements, replacing each one in turn. And after every
complete cycle, the sequences obtained correspond exactly to the sequences produced on successive steps in the first
three ordinary neighbor-independent substitution systems shown on page 83.

(a) (b) (c)

(a)

(b)

(c)

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

94

(a) (b) (c) (d) (e) (f)

(a)

(d)

(b)

(e)

(c)

(f)

0

20

40

60

0 200 400 600 800 1000
0

50

100

150

0 200 400 600 800 1000
0

200

400

0 200 400 600 800 1000

0

200

400

0 200 400 600 800 1000
0

50

100

0 200 400 600 800 1000
0

20

40

0 200 400 600 800 1000

(d) (e) (f)

(a) (b) (c)

0

5000

10,000

10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

(f) (extended)

Examples of tag systems in which at each step two elements are removed from the beginning of the sequence and then,
based on what these elements are, a specified block of new elements is added to the end of the sequence. (The three dots
in the representation of each rule stand for the rest of the elements in the sequence.) The pictures at the top show the first
hundred steps in evolution according to various rules starting from a pair of black elements. The plots show the total lengths
of the sequences obtained in each case. Note that in case (c), all the elements are eventually removed from the sequence.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

95

Cyclic Tag Systems

The basic operation of the tag systems that we discussed in the previous

section is extremely simple. But it turns out that by using a slightly

different setup one can construct systems whose operation is in some

ways even simpler. In an ordinary tag system, one does not know in

advance which of several possible blocks will be added at each step. But

the idea of a cyclic tag system is to make the underlying rule already

specify exactly what block can be added at each step.

In the simplest case there are two possible blocks, and the rule

simply alternates on successive steps between these blocks, adding a

block at a particular step when the first element in the sequence at that

step is black. The picture below shows an example of how this works.

The next page shows examples of several cyclic tag systems. In

cases (a) and (b) simple behavior is obtained. In case (c) the behavior is

slightly more complicated, but if the pattern is viewed in the

appropriate way then it turns out to have the same nested form as the

third neighbor-independent substitution system shown on page 83.

So what about cases (d) and (e)? In both of these, the sequences

obtained at successive steps grow on average progressively longer. But if

one looks at the fluctuations in this growth, as in the plots on the next

page, then one finds that these fluctuations are in many respects random.

rule summary:

An example of a cyclic tag system. There are two cases in the rule,
and these cases are used on alternate steps, as indicated by the circle
icons on the left. In each case a single element is removed from the
beginning of the sequence, and then a new block is added at the end
whenever the element removed is black. The rule can be summarized
just by giving the blocks to be used in each case, as shown below.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

96

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Examples of cyclic tag systems. In each case the initial condition consists of a single black element. In case (c), alternate steps in the
leftmost column (which in all cyclic tag systems determines the overall behavior) have the same nested form as the third
neighbor-independent substitution system shown on page 83.

-2

0

2

4

6

0 100 200 300 400 500 600 700 800 900 1000

(d)

-60
-40
-20

0
20
40

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

(d)

0
10
20
30
40
50

0 100 200 300 400 500 600 700 800 900 1000

(e)

0

200

400

600

800

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

(e)

Fluctuations in the growth of sequences for cyclic tag systems (d) and (e) above. The fluctuations are shown with respect to growth at
an average rate of half an element per step.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

97

Register Machines

All of the various kinds of systems that we have discussed so far in this

chapter can readily be implemented on practical computers. But none of

them at an underlying level actually work very much like typical

computers. Register machines are however specifically designed to be

very simple idealizations of present-day computers.

Under most everyday circumstances, the hardware construction

of the computers we use is hidden from us by many layers of software.

But at the lowest level, the CPUs of all standard computers have

registers that store numbers, and any program we write is ultimately

converted into a sequence of simple instructions that specify operations

to be performed on these registers.

Most practical computers have quite a few registers, and support

perhaps tens of different kinds of instructions. But as a simple

idealization one can consider register machines with just two registers—

each storing a number of any size—and just two kinds of instructions:

“increments” and “decrement-jumps”. The rules for such register

machines are then idealizations of practical programs, and are taken to

consist of fixed sequences of instructions, to be executed in turn.

Increment instructions are set up just to increase by one the

number stored in a particular register. Decrement-jump instructions, on

the other hand, do two things. First, they decrease by one the number in

a particular register. But then, instead of just going on to execute the

next instruction in the program, they jump to some specified other

point in the program, and begin executing again from there.

Since we assume that the numbers in our registers cannot be

negative, however, a register that is already zero cannot be decremented.

And decrement-jump instructions are then set up so that if they are

applied to a register containing zero, they just do essentially nothing:

they leave the register unchanged, and then they go on to execute the

next instruction in the program, without jumping anywhere.

This feature of decrement-jump instructions may seem like a

detail, but in fact it is crucial—for it is what makes it possible for our

register machines to take different paths depending on values in

registers through the programs they are given.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

98

And with this setup, the pictures above show three very simple

examples of register machines with two registers. The programs for

each of the machines are given at the top, with representing an

increment instruction, and a decrement-jump. The successive steps

in the evolution of each machine are shown on successive lines down

the page. The instruction being executed is indicated at each step by the

position of the dot on the left, while the numbers in each of the two

registers are indicated by the gray blocks on the right.

All the register machines shown start by executing the first

instruction in their programs. And with the particular programs used

here, the machines are then set up just to execute all the other

instructions in their programs in turn, jumping back to the beginning of

their programs whenever they reach the end.

Both registers in each machine are initially zero. And in the first

machine, the first register alternates between 0 and 1, while the second

remains zero. In the second machine, however, the first register again

Examples of simple register machines, set up to mimic the low-level operation of practical computers. The machines shown
have two registers, whose values on successive steps are given on successive lines down the page. Each machine follows
a fixed program given at the top. The program consists of a sequence of increment and decrement-jump instructions.
Instructions that are shown as light gray boxes refer to the first register; those shown as dark gray boxes refer to the second
one. On each line going down the page, the black dot on the left indicates which instruction in the program is being executed
at the corresponding step. With the particular programs shown here, each machine just executes successive instructions in
turn, jumping to the beginning again when it reaches the end of the program.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

99

alternates between 0 and 1, but the second register progressively grows.

And finally, in the third machine both registers grow.

But in all these three examples, the overall behavior is essentially

repetitive. And indeed it turns out that among the 10,552 possible

register machines with programs that are four or fewer instructions

long, not a single one exhibits more complicated behavior.

However, with five instructions, slightly more complicated

behavior becomes possible, as the picture below shows. But even in this

example, there is still a highly regular nested structure.

And it turns out that even with up to seven instructions, none of

the 276,224,376 programs that are possible lead to substantially more

complicated behavior. But with eight instructions, 126 out of the

11,019,960,576 possible programs finally do show more complicated

behavior. The next page gives an example.

A register machine that shows nested
rather than strictly repetitive behavior.
The register machine has a program
which is five instructions long. It turns
out that this program is one of only
two (which differ just by interchange of
the first and second registers) out of
the 248,832 possible programs with
five instructions that yield anything
other than strictly repetitive behavior.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

100

Looking just at the ordinary evolution labelled (a), however, the

system might still appear to have quite simple and regular behavior. But

a closer examination turns out to reveal irregularities. Part (b) of the

picture shows a version of the evolution compressed to include only

1
1

2
4

3
7

5
13

8
22

12
34

18
52

27
79

41
121

62
184

93
277

140
418

210
628

315
943

473
1417

710
2128

1065
3193

1598
4792

2397
7189

3596
10786

5394
16180

8091
24271

12137
36409

18206
54616

27309
81925

40964
122890

61446
184336

92169
276505

138254
414760

207381
622141

311072
933214

466608
1399822

699912
2099734

1049868
3149602

1574802
4724404

2362203
7086607

3543305
10629913

5314958
15944872

7972437
23917309

11958656
35875966

17937984
(b) (d)(a)

(c)

A register machine whose behavior seems in some ways random. The program for this register machine is eight instructions long.
Testing all 11,019,960,576 possible programs of length eight revealed just this and 125 similar cases of complex behavior. Part (b)
shows the evolution in compressed form, with only those steps included at which either of the registers has just decreased to zero.
The values of the nonzero registers are shown using a logarithmic scale. Part (c) shows the instructions that are executed for the first
400 times that one of the registers is decreased to zero. Finally, part (d) gives the successive values attained by the second register at
steps where the first register has just decreased to zero. These values are given here as binary digit sequences. As discussed on page
122, the values can in fact be obtained by a simple arithmetic rule, without explicitly following each step in the evolution of the register
machine. If one value is , then the next value is if is even, and if is odd. The initial condition is .n 3 n/2 n (3 n+ 1) /2 n n = 1

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

101

those steps at which one of the two registers has just decreased to zero.

And in this picture one immediately sees some apparently random

variation in the instructions that are executed.

Part (c) of the picture then shows which instructions are executed

for the first 400 times one of the registers has just decreased to zero.

And part (d) finally shows the base 2 digits of the successive values

attained by the second register when the first register has just decreased

to zero. The results appear to show considerable randomness.

So even though it may not be as obvious as in some of the other

systems we have studied, the simple register machine on the facing

page can still generate complex and seemingly quite random behavior.

So what about more complicated register machines?

An obvious possibility is to allow more than two registers. But it

turns out that very little is normally gained by doing this. With three

registers, for example, seemingly random behavior can be obtained with

a program that is seven rather than eight instructions long. But the

actual behavior of the program is almost indistinguishable from what

we have already seen with two registers.

Another way to set up more complicated register machines is to

extend the kinds of underlying instructions one allows. One can for

example introduce instructions that refer to two registers at a time,

adding, subtracting or comparing their contents. But it turns out that the

presence of instructions like these rarely seems to have much effect on

either the form of complex behavior that can occur, or how common it is.

Yet particularly when such extended instruction sets are used,

register machines can provide fairly accurate idealizations of the

low-level operations of real computers. And as a result, programs for

register machines are often very much like programs written in actual

low-level computer languages such as C, BASIC, Java or assembler.

In a typical case, each variable in such a program simply

corresponds to one of the registers in the register machine, with no

arrays or pointers being allowed. And with this correspondence, our

general results on register machines can also be expected to apply to

simple programs written in actual low-level computer languages.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

102

Practical details make it somewhat difficult to do systematic

experiments on such programs. But the experiments I have carried out

do suggest that, just as with simple register machines, searching

through many millions of short programs typically yields at least a few

that exhibit complex and seemingly random behavior.

Symbolic Systems

Register machines provide simple idealizations of typical low-level

computer languages. But what about Mathematica? How can one set up a

simple idealization of the transformations on symbolic expressions that

Mathematica does? One approach suggested by the idea of combinators

from the 1920s is to consider expressions with forms such as

 and then to make transformations on these by repeatedly

applying rules such as , where and stand for any

expression.

The picture below shows an example of this. At each step the

transformation is done by scanning once from left to right, and applying

the rule wherever possible without overlapping.

e�e�e��e���e��e�

e�x_��y_� � x�x�y�� x_ y_

− [− [−] [−]] [−] [−]

− [−] [−] [− [−] [−] [−]] [−]

− [− [−]] [− [− [−]] [−]] [−]

− [−] [− [−] [− [− [−]] [−]]] [−]

− [− [− [−] [− [− [−]] [−]]]] [−]

− [− [−] [− [− [−]] [−]]] [− [− [−] [− [− [−]] [−]]] [−]]

− [−] [− [− [−]] [−]] [− [−] [− [− [−]] [−]] [− [− [−] [− [− [−]] [−]]] [−]]]

− [− [− [− [−]] [−]]] [− [− [− [− [−]] [−]]] [− [−] [− [− [−]] [−]] [− [−] [− [− [−]] [−]] [−]]]]

− [− [− [−]] [−]] [− [− [− [−]] [−]] [− [− [− [− [−]] [−]]] [− [−] [− [− [−]] [−]] [− [−] [− [− [−]] [−]] [−]]]]]

− [− [−]] [−] [− [− [−]] [−] [− [− [− [−]] [−]] [− [− [− [− [−]] [−]]] [− [−] [− [− [−]] [−]] [− [−] [− [− [−]] [−]] [−]]]]]]

− [−] [− [−] [−]] [− [−] [− [−] [−]] [− [− [−]] [−] [− [− [−]] [−] [− [− [− [− [−]] [−]]] [− [−] [− [− [−]] [−]] [− [−] [− [− [−]] [−]] [−]]]]]]]

− [− [− [−] [−]]] [− [− [− [−] [−]]] [− [−] [− [−] [−]] [− [−] [− [−] [−]] [− [− [− [−]] [−]] [− [− [− [−]] [−]] [− [−] [− [− [−]] [−]] [− [−] [− [− [−]] [−]] [−]]]]]]]]

− [x _] [y _]

x [x [y]]

A sequence of steps in the evolution of a
simple symbolic system. At each step each
boxed region is transformed according to the
rule shown. This transformation corresponds
to applying the basic Mathematica operation

.expression /. rule

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

103

The structure of expressions like those on the facing page is

determined just by their sequence of opening and closing brackets. And

representing these brackets by dark and light squares respectively, the

picture below shows the overall pattern of behavior generated.

[[] []] [] []
[] [] [[] [] []] []
[[]] [[[]] []] []
[] [[] [[[]] []]] []
[[[] [[[]] []]]] []
[[] [[[]] []]] [[[] [[[]
[] [[[]] []] [[] [[[]] []
[[[[]] []]] [[[[[]] []]
[[[]] []] [[[[]] []] [[[
[[]] [] [[[]] [] [[[[]] [
[] [[] []] [[] [[] []] [[[
[[[] []]] [[[[] []]] [[]
[[] []] [[[] []] [[[[] []
[] [] [[] [] [[[] []] [[[[
[[]] [[[]] [[] [] [[] [] [
[] [[] [[[]] [[] [] [[] []
[[[] [[[]] [[] [] [[] [] [
[[[[[[]] [[] [] [[] [] [[
[[[[[] [[] [[] [] [[] [] [
[[[[[[[] [[] [] [[] [] [[
[[[[[[[[[] [] [[] [] [[[
[[[[[[[[[[]] [[[]] [[[
[[[[[[[[[] [[] [[[]] [[
[[[[[[[[[[[] [[[]] [[[
[[[[[[[[[[[[[[]] [[[]
[[[[[[[[[[[[[] [[] [[[
[[[[[[[[[[[[[[[] [[[]
[[[[[[[[[[[[[[[[[[] [
[[[[[[[[[[[[[[[[[] []
[[[[[[[[[[[[[[[[[[]]
[[[[[[[[[[[[[[[[[] [[

− x�_] y �_] ![[x [x [y]]

[[] []] [] [] [] [] [] [] []

More steps in the evolution on the previous page, with opening brackets represented by dark squares and closing brackets by light
ones. In each case configurations wider than the picture are cut off on the right. For the initial condition from the previous page, the
system evolves after 264 steps to a fixed configuration involving 256 opening brackets followed by 256 closing brackets. For the initial
condition on the bottom right, the system again evolves to a fixed configuration, but now this takes 65,555 steps, and the configuration
involves 65,536 opening and closing brackets. Note that the evolution rules are highly non-local, and are rather unlike those, say, in a
cellular automaton. It turns out that this particular system always evolves to a fixed configuration, but for initial conditions of size can
take roughly iterated powers of 2 (or) to do so.

n

n 222?

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

104

With the particular rule shown, the behavior always eventually

stabilizes—though sometimes only after an astronomically long time.

But it is quite possible to find symbolic systems where this does

not happen, as illustrated in the pictures below. Sometimes the

behavior that is generated in such systems has a simple repetitive or

nested form. But often—just as in so many other kinds of systems—the

behavior is instead complex and seemingly quite random.

20

40

0 50 100 150 200 250 300

10

20

30

0 50 100 150 200 250 300

2
4
6
8

0 50 100 150 200 250 300

−[x_][y_] ! x[−[y]][x] −[x_][y_] ! x[y][−[y]] −[x_][y_] ! x[y[−][−]]

0

500

1000

1500

0 50 100 150 200 250 300

500
1000
1500
2000

0 50 100 150 200 250 300

200

400

0 50 100 150 200 250 300

−[x_][y_] ! x[y[x]] −[x_][y_] ! −[x[−][y[−]]] −[x_][y_] ! −[y[−[−][−]][x]]

The behavior of various symbolic systems starting from the initial condition . The plots at the bottom show the difference
in size of the expressions obtained on successive steps.

−[−[−][−]][−][−]

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

105

Some Conclusions

In the chapter before this one, we discovered the remarkable fact that

even though their underlying rules are extremely simple, certain cellular

automata can nevertheless produce behavior of great complexity.

Yet at first, this seems so surprising and so outside our normal

experience that we may tend to assume that it must be a consequence

of some rare and special feature of cellular automata, and must not

occur in other kinds of systems.

For it is certainly true that cellular automata have many special

features. All their elements, for example, are always arranged in a rigid

array, and are always updated in parallel at each step. And one might

think that features like these could be crucial in making it possible to

produce complex behavior from simple underlying rules.

But from our study of substitution systems earlier in this chapter

we know, for example, that in fact it is not necessary to have elements

that are arranged in a rigid array. And from studying mobile automata,

we know that updating in parallel is also not critical.

Indeed, I specifically chose the sequence of systems in this

chapter to see what would happen when each of the various special

features of cellular automata were taken away. And the remarkable

conclusion is that in the end none of these features actually matter

much at all. For every single type of system in this chapter has

ultimately proved capable of producing very much the same kind of

complexity that we saw in cellular automata.

So this suggests that in fact the phenomenon of complexity is quite

universal—and quite independent of the details of particular systems.

But when in general does complexity occur?

The examples in this chapter suggest that if the rules for a

particular system are sufficiently simple, then the system will only ever

exhibit purely repetitive behavior. If the rules are slightly more

complicated, then nesting will also often appear. But to get complexity

in the overall behavior of a system one needs to go beyond some

threshold in the complexity of its underlying rules.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

106

The remarkable discovery that we have made, however, is that

this threshold is typically extremely low. And indeed in the course of

this chapter we have seen that in every single one of the general kinds

of systems that we have discussed, it ultimately takes only very simple

rules to produce behavior of great complexity.

One might nevertheless have thought that if one were to increase

the complexity of the rules, then the behavior one would get would also

become correspondingly more complex. But as the pictures on the

facing page illustrate, this is not typically what happens.

Instead, once the threshold for complex behavior has been

reached, what one usually finds is that adding complexity to the

underlying rules does not lead to any perceptible increase at all in the

overall complexity of the behavior that is produced.

The crucial ingredients that are needed for complex behavior are,

it seems, already present in systems with very simple rules, and as a

result, nothing fundamentally new typically happens when the rules

are made more complex. Indeed, as the picture on the facing page

demonstrates, there is often no clear correlation between the

complexity of rules and the complexity of behavior they produce. And

this means, for example, that even with highly complex rules, very

simple behavior still often occurs.

One observation that can be made from the examples in this

chapter is that when the behavior of a system does not look complex, it

tends to be dominated by either repetition or nesting. And indeed, it

seems that the basic themes of repetition, nesting, randomness and

localized structures that we already saw in specific cellular automata in

the previous chapter are actually very general, and in fact represent the

dominant themes in the behavior of a vast range of different systems.

The details of the underlying rules for a specific system can

certainly affect the details of the behavior it produces. But what we

have seen in this chapter is that at an overall level the typical types of

behavior that occur are quite universal, and are almost completely

independent of the details of underlying rules.

And this fact has been crucial in my efforts to develop a coherent

science of the kind I describe in this book. For it is what implies that

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

107

2-color code 7

2-color code 6

2-color code 5

2-color code 4

2-color code 3

2-color code 2

2-color code 1

2-color code 0

3-color code 585

3-color code 584

3-color code 583

3-color code 582

3-color code 581

3-color code 580

3-color code 579

3-color code 578

4-color code 107402

4-color code 107401

4-color code 107400

4-color code 107399

4-color code 107398

4-color code 107397

4-color code 107396

4-color code 107395

5-color code 180197748

5-color code 180197747

5-color code 180197746

5-color code 180197745

5-color code 180197744

5-color code 180197743

5-color code 180197742

5-color code 180197741

Examples of cellular automata with rules of varying complexity. The rules used are of the so-called totalistic type
described on page 60. With two possible colors, just 4 cases need to be specified in such rules, and there are 16 possible
rules in all. But as the number of colors increases, the rules rapidly become more complex. With three colors, there are 7
cases to be specified, and 2187 possible rules; with five colors, there are 13 cases to be specified, and 1,220,703,125
possible rules. But even though the underlying rules increase rapidly in complexity, the overall forms of behavior that we
see do not change much. With two colors, it turns out that no totalistic rules yield anything other than repetitive or nested
behavior. But as soon as three colors are allowed, much more complex behavior is immediately possible. Allowing four or
more colors, however, does not further increase the complexity of the behavior, and, as the picture shows, even with five
colors, simple repetitive and nested behavior can still occur.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

108

there are general principles that govern the behavior of a wide range of

systems, independent of the precise details of each system.

And it is this that means that even if we do not know all the

details of what is inside some specific system in nature, we can still

potentially make fundamental statements about its overall behavior.

Indeed, in most cases, the important features of this behavior will

actually turn out to be ones that we have already seen with the various

kinds of very simple rules that we have discussed in this chapter.

How the Discoveries in This Chapter Were Made

This chapter—and the last—have described a series of surprising

discoveries that I have made about what simple programs typically do. And

in making these discoveries I have ended up developing a somewhat new

methodology—that I expect will be central to almost any fundamental

investigation in the new kind of science that I describe in this book.

Traditional mathematics and the existing theoretical sciences

would have suggested using a basic methodology in which one starts

from whatever behavior one wants to study, then tries to construct

examples that show this behavior. But I am sure that had I used this

approach, I would not have got very far. For I would have looked only

for types of behavior that I already believed might exist. And in

studying cellular automata, this would for example probably have

meant that I would only have looked for repetition and nesting.

But what allowed me to discover much more was that I used instead

a methodology fundamentally based on doing computer experiments.

In a traditional scientific experiment, one sets up a system in

nature and then watches to see how it behaves. And in much the same

way, one can set up a program on a computer and then watch how it

behaves. And the great advantage of such an experimental approach is

that it does not require one to know in advance exactly what kinds of

behavior can occur. And this is what makes it possible to discover

genuinely new phenomena that one did not expect.

Experience in the traditional experimental sciences might suggest,

however, that experiments are somehow always fundamentally imprecise.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

109

For when one deals with systems in nature it is normally impossible to set

up or measure them with perfect precision—and indeed it can be a

challenge even to make a traditional experiment be at all repeatable.

But for the kinds of computer experiments I do in this book, there

is no such issue. For in almost all cases they involve programs whose

rules and initial conditions can be specified with perfect precision—so

that they work exactly the same whenever and wherever they are run.

In many ways these kinds of computer experiments thus manage

to combine the best of both theoretical and experimental approaches to

science. For their results have the kind of precision and clarity that one

expects of theoretical or mathematical statements. Yet these results can

nevertheless be found purely by making observations.

Yet as with all types of experiments it requires considerable skill

and judgement to know how to set up a computer experiment that will

yield meaningful results. And indeed, over the past twenty years or so my

own methodology for doing such experiments has become vastly better.

Over and over again the single most important principle that I

have learned is that the best computer experiments are ones that are as

simple and straightforward as possible. And this principle applies both

to the structure of the actual systems one studies—and to the

procedures that one uses for studying them.

At some level the principle of looking at systems with the

simplest possible structure can be viewed as an abstract aesthetic one.

But it turns out also to have some very concrete consequences.

For a start, the simpler a structure is, the more likely it is that it

will show up in a wide diversity of different places. And this means that

by studying systems with the simplest possible structure one will tend

to get results that have the broadest and most fundamental significance.

In addition, looking at systems with simpler underlying

structures gives one a better chance of being able to tell what is really

responsible for any phenomenon one sees—for there are fewer features

that have been put into the system and that could lead one astray.

At a purely practical level, there is also an advantage to studying

systems with simpler structures; for these systems are usually easier to

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

110

implement on a computer, and can thus typically be investigated more

extensively with given computational resources.

But an obvious issue with saying that one should study systems

with the simplest possible structure is that such systems might just not

be capable of exhibiting the kinds of behavior that one might consider

interesting—or that actually occurs in nature.

And in fact, intuition from traditional science and mathematics

has always tended to suggest that unless one adds all sorts of

complications, most systems will never be able to exhibit any very

relevant behavior. But the results so far in this book have shown that

such intuition is far from correct, and that in reality even systems with

extremely simple rules can give rise to behavior of great complexity.

The consequences of this fact for computer experiments are quite

profound. For it implies that there is never an immediate reason to go

beyond studying systems with rather simple underlying rules. But to

absorb this point is not an easy matter. And indeed, in my experience

the single most common mistake in doing computer experiments is to

look at systems that are vastly more complicated than is necessary.

Typically the reason this happens is that one just cannot imagine

any way in which a simpler system could exhibit interesting behavior.

And so one decides to look at a more complicated system—usually with

features specifically inserted to produce some specific form of behavior.

Much later one may go back and look at the simpler system

again. And this is often a humbling experience, for it is common to find

that the system does in fact manage to produce interesting behavior—

but just in a way that one was not imaginative enough to guess.

So having seen this many times I now always try to follow the

principle that one can never start with too simple a system. For at

worst, one will just establish a lower limit on what is needed for

interesting behavior to occur. But much more often, one will instead

discover behavior that one never thought was possible.

It should however be emphasized that even in an experiment it is

never entirely straightforward to discover phenomena one did not

expect. For in setting up the experiment, one inevitably has to make

assumptions about the kinds of behavior that can occur. And if it turns

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

111

out that there is behavior which does not happen to fit in with these

assumptions, then typically the experiment will fail to notice it.

In my experience, however, the way to have the best chance of

discovering new phenomena in a computer experiment is to make the

design of the experiment as simple and direct as possible. It is usually

much better, for example, to do a mindless search of a large number of

possible cases than to do a carefully crafted search of a smaller number.

For in narrowing the search one inevitably makes assumptions, and

these assumptions may end up missing the cases of greatest interest.

Along similar lines, I have always found it much better to look

explicitly at the actual behavior of systems, than to work from some

kind of summary. For in making a summary one inevitably has to pick

out only certain features, and in doing this one can remove or obscure

the most interesting effects.

But one of the problems with very direct experiments is that they

often generate huge amounts of raw data. Yet what I have typically

found is that if one manages to present this data in the form of pictures

then it effectively becomes possible to analyze very quickly just with

one’s eyes. And indeed, in my experience it is typically much easier to

recognize unexpected phenomena in this way than by using any kind of

automated procedure for data analysis.

It was in a certain sense lucky that one-dimensional cellular

automata were the first examples of simple programs that I

investigated. For it so happens that in these systems one can usually get

a good idea of overall behavior just by looking at an array of perhaps

10,000 cells—which can easily be displayed in few square inches.

And since several of the 256 elementary cellular automaton rules

already generate great complexity, just studying a couple of pages of

pictures like the ones at the beginning of this chapter should in

principle have allowed one to discover the basic phenomenon of

complexity in cellular automata.

But in fact I did not make this discovery in such a straightforward

way. I had the idea of looking at pictures of cellular automaton

evolution at the very beginning. But the technological difficulty of

producing these pictures made me want to reduce their number as

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

112

much as possible. And so at first I looked only at the 32 rules which had

left-right symmetry and made blank backgrounds stay unchanged.

Among these rules I found examples of repetition and nesting.

And with random initial conditions, I found more complicated behavior.

But since I did not expect that any complicated behavior would be

possible with simple initial conditions, I did not try looking at other

rules in an attempt to find it. Nevertheless, as it happens, the first paper

that I published about cellular automata—in 1983—did in fact include a

picture of rule 30 from page 27, as an example of a non-symmetric rule.

But the picture showed only 20 steps of evolution, and at the time I did

not look carefully at it, and certainly did not appreciate its significance.

For several years, I did progressively more sophisticated computer

experiments on cellular automata, and in the process I managed to

elucidate many of their properties. But finally, when technology had

advanced to the point where it became almost trivial for me to do so, I

went back and generated some straightforward pages of pictures of all

256 elementary rules evolving from simple initial conditions. And it

was upon seeing these pictures that I finally began to appreciate the

remarkable phenomenon that occurs in systems like rule 30.

Seven years later, after I had absorbed some basic intuition from

looking at cellular automata like rule 30, I resolved to find out whether

similar phenomena also occurred in other kinds of systems. And the

first such systems that I investigated were mobile automata.

Mobile automata in a sense evolve very slowly relative to cellular

automata, so to make more efficient pictures I came up with a scheme

for showing their evolution in compressed form. I then started off by

generating pictures of the first hundred, then the first thousand, then

the first ten thousand, mobile automata. But in all of these pictures I

found nothing beyond repetitive and nested behavior.

Yet being convinced that more complicated behavior must be

possible, I decided to persist, and so I wrote a program that would

automatically search through large numbers of mobile automata. I set

up various criteria for the search, based on how I expected mobile

automata could behave. And quite soon, I had made the program search

a million mobile automata, then ten million.

T H E W O R L D O F S I M P L E P R O G R A M S C H A P T E R 3

113

But still I found nothing.

So then I went back and started looking by eye at mobile

automata with large numbers of randomly chosen rules. And after some

time what I realized was that with the compression scheme I was using

there could be mobile automata that would be discarded according to

my search criteria, but which nevertheless still had interesting

behavior. And within an hour of modifying my search program to

account for this, I found the example shown on page 74.

Yet even after this, there were still many assumptions implicit in

my search program. And it took some time longer to identify and

remove them. But having done so, it was then rather straightforward to

find the example shown on page 75.

A somewhat similar pattern has been repeated for most of the

other systems described in this chapter. The main challenge was always

to avoid assumptions and set up experiments that were simple and

direct enough that they did not miss important new phenomena.

In many cases it took a large number of iterations to work out the

right experiments to do. And had it not been for the ease with which I

could set up new experiments using Mathematica, it is likely that I

would never have gotten very far in investigating most of the systems

discussed in this chapter. But in the end, after running programs for a

total of several years of computer time—corresponding to more than a

million billion logical operations—and creating the equivalent of tens

of thousands of pages of pictures, I was finally able to find all of the

various examples shown in this chapter and the ones that follow.

4 NOTES
Sytems Based on Numbers
N O T E S

X
TitleName
P A R T N A M E

883

0 255 0 255 32 251 32 251 64 253 8 239 96 249 40 235 128 254 128 254 160 250 160 250 192 252 136 238 224 248 168 234

1 127 1 127 33 123 33 123 65 125 9 111 97 121 41 107 129 126 129 126 161 122 161 122 193 124 137 110 225 120 169 106

2 191 16 247 34 187 48 243 66 189 24 231 98 185 56 227 130 190 144 246 162 186 176 242 194 188 152 230 226 184 184 226

3 63 17 119 35 59 49 115 67 61 25 103 99 57 57 99 131 62 145 118 163 58 177 114 195 60 153 102 227 56 185 98

4 223 4 223 36 219 36 219 68 221 12 207 100 217 44 203 132 222 132 222 164 218 164 218 196 220 140 206 228 216 172 202

5 95 5 95 37 91 37 91 69 93 13 79 101 89 45 75 133 94 133 94 165 90 165 90 197 92 141 78 229 88 173 74

6 159 20 215 38 155 52 211 70 157 28 199 102 153 60 195 134 158 148 214 166 154 180 210 198 156 156 198 230 152 188 194

7 31 21 87 39 27 53 83 71 29 29 71 103 25 61 67 135 30 149 86 167 26 181 82 199 28 157 70 231 24 189 66

8 239 64 253 40 235 96 249 72 237 72 237 104 233 104 233 136 238 192 252 168 234 224 248 200 236 200 236 232 232 232 232

9 111 65 125 41 107 97 121 73 109 73 109 105 105 105 105 137 110 193 124 169 106 225 120 201 108 201 108 233 104 233 104

10 175 80 245 42 171 112 241 74 173 88 229 106 169 120 225 138 174 208 244 170 170 240 240 202 172 216 228 234 168 248 224

11 47 81 117 43 43 113 113 75 45 89 101 107 41 121 97 139 46 209 116 171 42 241 112 203 44 217 100 235 40 249 96

12 207 68 221 44 203 100 217 76 205 76 205 108 201 108 201 140 206 196 220 172 202 228 216 204 204 204 204 236 200 236 200

13 79 69 93 45 75 101 89 77 77 77 77 109 73 109 73 141 78 197 92 173 74 229 88 205 76 205 76 237 72 237 72

14 143 84 213 46 139 116 209 78 141 92 197 110 137 124 193 142 142 212 212 174 138 244 208 206 140 220 196 238 136 252 192

15 15 85 85 47 11 117 81 79 13 93 69 111 9 125 65 143 14 213 84 175 10 245 80 207 12 221 68 239 8 253 64

16 247 2 191 48 243 34 187 80 245 10 175 112 241 42 171 144 246 130 190 176 242 162 186 208 244 138 174 240 240 170 170

17 119 3 63 49 115 35 59 81 117 11 47 113 113 43 43 145 118 131 62 177 114 163 58 209 116 139 46 241 112 171 42

18 183 18 183 50 179 50 179 82 181 26 167 114 177 58 163 146 182 146 182 178 178 178 178 210 180 154 166 242 176 186 162

19 55 19 55 51 51 51 51 83 53 27 39 115 49 59 35 147 54 147 54 179 50 179 50 211 52 155 38 243 48 187 34

20 215 6 159 52 211 38 155 84 213 14 143 116 209 46 139 148 214 134 158 180 210 166 154 212 212 142 142 244 208 174 138

21 87 7 31 53 83 39 27 85 85 15 15 117 81 47 11 149 86 135 30 181 82 167 26 213 84 143 14 245 80 175 10

22 151 22 151 54 147 54 147 86 149 30 135 118 145 62 131 150 150 150 150 182 146 182 146 214 148 158 134 246 144 190 130

23 23 23 23 55 19 55 19 87 21 31 7 119 17 63 3 151 22 151 22 183 18 183 18 215 20 159 6 247 16 191 2

24 231 66 189 56 227 98 185 88 229 74 173 120 225 106 169 152 230 194 188 184 226 226 184 216 228 202 172 248 224 234 168

25 103 67 61 57 99 99 57 89 101 75 45 121 97 107 41 153 102 195 60 185 98 227 56 217 100 203 44 249 96 235 40

26 167 82 181 58 163 114 177 90 165 90 165 122 161 122 161 154 166 210 180 186 162 242 176 218 164 218 164 250 160 250 160

27 39 83 53 59 35 115 49 91 37 91 37 123 33 123 33 155 38 211 52 187 34 243 48 219 36 219 36 251 32 251 32

28 199 70 157 60 195 102 153 92 197 78 141 124 193 110 137 156 198 198 156 188 194 230 152 220 196 206 140 252 192 238 136

29 71 71 29 61 67 103 25 93 69 79 13 125 65 111 9 157 70 199 28 189 66 231 24 221 68 207 12 253 64 239 8

30 135 86 149 62 131 118 145 94 133 94 133 126 129 126 129 158 134 214 148 190 130 246 144 222 132 222 132 254 128 254 128

31 7 87 21 63 3 119 17 95 5 95 5 127 1 127 1 159 6 215 20 191 2 247 16 223 4 223 4 255 0 255 0

NOTES FOR CHAPTER 3

The World of Simple Programs

More Cellular Automata

â Page 53 · Numbering scheme. I introduced the numbering
scheme used here in the 1983 paper where I first discussed
one-dimensional cellular automata (see page 881). I termed
two-color nearest-neighbor cellular automata “elementary”
to reflect the idea that their rules are as simple as possible.

â Page 55 · Rule equivalences. The table below gives basic
equivalences between elementary cellular automaton rules. In each
block the second entry is the rule obtained by interchanging black
and white, the third entry is the rule obtained by interchanging left

and right, and the fourth entry the rule obtained by applying both
operations. (The smallest rule number is given in boldface.) For a
rule with number the two operations correspond respectively to
computing and with

.

â Special rules. Rule 51: complement; rule 170: left shift; rule
204: identity; rule 240: right shift. These rules only ever
depend on one cell in each neighborhood.

â Rule expressions. The table on the next page gives Boolean
expressions for each of the elementary rules. The expressions

n
1 -Reverse[list] list0{1, 5, 3, 7, 2, 6, 4, 8}1

list = IntegerDigits[n, 2, 8]

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

884

rule 0 : 0 rule 64 : p © q © (¨ r) rule 128 : p © q © r rule 192 : p © q
rule 1 : ¨ (p ª q ª r) rule 65 : ¨ ((p Ò q) ª r) rule 129 : ¨ ((p Ò q) ª (p Ò r)) rule 193 : p Ò (p ª q ª (¨ r)) Ò q
rule 2 : (¨ p) © (¨ q) © r rule 66 : (p Ò r) © (q Ò r) rule 130 : (p Ò q Ò r) © r rule 194 : p Ò (p ª q ª r) Ò q
rule 3 : ¨ (p ª q) rule 67 : p Ò (p © q © r) Ò (¨ q) rule 131 : p Ò (p © q © (¨ r)) Ò (¨ q) rule 195 : p Ò (¨ q)
rule 4 : (¨ (p ª r)) © q rule 68 : q © (¨ r) rule 132 : (p Ò q Ò r) © q rule 196 : (p ª (¨ r)) © q
rule 5 : ¨ (p ª r) rule 69 : ((¨ p) ª q ª r) Ò r rule 133 : p Ò (p © (¨ q) © r) Ò (¨ r) rule 197 : (¨ (p ª (q Ò r))) Ò q
rule 6 : (¨ p) © (q Ò r) rule 70 : ((p © r) ª q) Ò r rule 134 : (p © (q ª r)) Ò q Ò r rule 198 : (p © r) Ò q Ò r
rule 7 : ¨ (p ª (q © r)) rule 71 : ((p Ò (¨ r)) ª q) Ò r rule 135 : (¨ p) Ò (q © r) rule 199 : p Ò (p ª (¨ q) ª r) Ò q
rule 8 : (¨ p) © q © r rule 72 : (p © q) Ò (q © r) rule 136 : q © r rule 200 : (p ª r) © q
rule 9 : ¨ (p ª (q Ò r)) rule 73 : ¨ ((p © r) ª (p Ò q Ò r)) rule 137 : ((¨ p) ª q ª r) Ò q Ò r rule 201 : (¨ (p ª r)) Ò q
rule 10 : (¨ p) © r rule 74 : (p © (q ª r)) Ò r rule 138 : (p © (¨ q) © r) Ò r rule 202 : (p © (q Ò r)) Ò r
rule 11 : p Ò (p ª (¨ q) ª r) rule 75 : p Ò ((¨ q) ª r) rule 139 : ¨ ((p ª q) Ò (q © r)) rule 203 : (p Ò (¨ q)) ª (q © r)
rule 12 : (p © q) Ò q rule 76 : (p © q © r) Ò q rule 140 : ((¨ p) ª r) © q rule 204 : q
rule 13 : p Ò (p ª q ª (¨ r)) rule 77 : p Ò ((p Ò q) ª (p Ò (¨ r))) rule 141 : p Ò ((p Ò q) ª (¨ r)) rule 205 : (¨ (p ª r)) ª q
rule 14 : p Ò (p ª q ª r) rule 78 : p Ò ((p Ò q) ª r) rule 142 : p Ò ((p Ò q) ª (p Ò r)) rule 206 : ((¨ p) © r) ª q
rule 15 : ¨ p rule 79 : (¨ p) ª (q © (¨ r)) rule 143 : (¨ p) ª (q © r) rule 207 : ¨ (p © (¨ q))
rule 16 : p © (¨ q) © (¨ r) rule 80 : p © (¨ r) rule 144 : p © (p Ò q Ò r) rule 208 : p © (q ª (¨ r))
rule 17 : ¨ (q ª r) rule 81 : (p ª (¨ q) ª r) Ò r rule 145 : ((¨ p) © q © r) Ò q Ò (¨ r) rule 209 : ¨ ((p © q) Ò (q ª r))
rule 18 : (p Ò q Ò r) © (¨ q) rule 82 : (p ª (q © r)) Ò r rule 146 : p Ò ((p ª r) © q) Ò r rule 210 : p Ò (q © r) Ò r
rule 19 : ¨ ((p © r) ª q) rule 83 : (p ª (q Ò (¨ r))) Ò r rule 147 : (p © r) Ò (¨ q) rule 211 : p Ò ((¨ p) ª q ª r) Ò q
rule 20 : (p Ò q) © (¨ r) rule 84 : (p ª q ª r) Ò r rule 148 : p Ò ((p ª q) © r) Ò q rule 212 : ((p Ò q) ª (p Ò r)) Ò r
rule 21 : ¨ ((p © q) ª r) rule 85 : ¨ r rule 149 : (p © q) Ò (¨ r) rule 213 : (p © q) ª (¨ r)
rule 22 : p Ò (p © q © r) Ò q Ò r rule 86 : (p ª q) Ò r rule 150 : p Ò q Ò r rule 214 : (p © q) ª (p Ò q Ò r)
rule 23 : p Ò ((p Ò (¨ q)) ª (q Ò r)) rule 87 : ¨ ((p ª q) © r) rule 151 : p Ò (¨ (p ª q ª r)) Ò q Ò r rule 215 : ¨ ((p Ò q) © r)
rule 24 : (p Ò q) © (p Ò r) rule 88 : p Ò ((p ª q) © r) rule 152 : (p ª q ª r) Ò q Ò r rule 216 : p Ò ((p Ò q) © r)
rule 25 : (p © q © r) Ò q Ò (¨ r) rule 89 : (p ª (¨ q)) Ò r rule 153 : q Ò (¨ r) rule 217 : (p © q) ª (q Ò (¨ r))
rule 26 : p Ò ((p © q) ª r) rule 90 : p Ò r rule 154 : p Ò (p © q) Ò r rule 218 : p Ò (p © q © r) Ò r
rule 27 : p Ò ((p Ò (¨ q)) ª r) rule 91 : p Ò (¨ (p ª q ª r)) Ò r rule 155 : (p ª q ª (¨ r)) Ò q Ò r rule 219 : (p Ò r) ª (p Ò (¨ q))
rule 28 : p Ò ((p © r) ª q) rule 92 : (p ª (q Ò r)) Ò r rule 156 : p Ò (p © r) Ò q rule 220 : (p © (¨ r)) ª q
rule 29 : p Ò ((p Ò (¨ r)) ª q) rule 93 : ¨ ((p ª (¨ q)) © r) rule 157 : (p ª (¨ q) ª r) Ò q Ò r rule 221 : q ª (¨ r)
rule 30 : p Ò (q ª r) rule 94 : (p © r) Ò (p ª q ª r) rule 158 : (p Ò q Ò r) ª (q © r) rule 222 : (p Ò q Ò r) ª q
rule 31 : ¨ (p © (q ª r)) rule 95 : ¨ (p © r) rule 159 : ¨ (p © (q Ò r)) rule 223 : ¨ (p © (¨ q) © r)
rule 32 : p © (¨ q) © r rule 96 : p © (q Ò r) rule 160 : p © r rule 224 : p © (q ª r)
rule 33 : ¨ ((p Ò q Ò r) ª q) rule 97 : ¨ ((p Ò q Ò r) ª (q © r)) rule 161 : p Ò (p ª (¨ q) ª r) Ò r rule 225 : p Ò (¨ (q ª r))
rule 34 : (¨ q) © r rule 98 : ((p ª r) © q) Ò r rule 162 : (p ª (¨ q)) © r rule 226 : (p © q) Ò (q © r) Ò r
rule 35 : ((¨ p) ª q ª r) Ò q rule 99 : ((¨ p) ª r) Ò q rule 163 : ((¨ p) ª (q Ò r)) Ò q rule 227 : (p © r) ª (p Ò (¨ q))
rule 36 : (p Ò q) © (q Ò r) rule 100 : ((p ª q) © r) Ò q rule 164 : p Ò (p ª q ª r) Ò r rule 228 : ((p Ò q) © r) Ò q
rule 37 : p Ò (p © q © r) Ò (¨ r) rule 101 : p Ò (p © q) Ò (¨ r) rule 165 : p Ò (¨ r) rule 229 : (p © q) ª (p Ò (¨ r))
rule 38 : ((p © q) ª r) Ò q rule 102 : q Ò r rule 166 : (p © q) Ò q Ò r rule 230 : (p © q © r) Ò q Ò r
rule 39 : ((p Ò (¨ q)) ª r) Ò q rule 103 : (¨ (p ª q ª r)) Ò q Ò r rule 167 : p Ò (p ª q ª (¨ r)) Ò r rule 231 : (p Ò (¨ q)) ª (q Ò r)
rule 40 : (p Ò q) © r rule 104 : p Ò (p ª q ª r) Ò q Ò r rule 168 : (p ª q) © r rule 232 : (p © q) ª ((p ª q) © r)
rule 41 : ¨ ((p © q) ª (p Ò q Ò r)) rule 105 : p Ò q Ò (¨ r) rule 169 : (¨ (p ª q)) Ò r rule 233 : p Ò (p © q © r) Ò q Ò (¨ r)
rule 42 : (p © q © r) Ò r rule 106 : (p © q) Ò r rule 170 : r rule 234 : (p © q) ª r
rule 43 : p Ò ((p Ò r) ª (p Ò (¨ q))) rule 107 : p Ò (p ª q ª (¨ r)) Ò q Ò r rule 171 : (¨ (p ª q)) ª r rule 235 : (p Ò (¨ q)) ª r
rule 44 : (p © (q ª r)) Ò q rule 108 : (p © r) Ò q rule 172 : (p © (q Ò r)) Ò q rule 236 : (p © r) ª q
rule 45 : p Ò (q ª (¨ r)) rule 109 : p Ò (p ª (¨ q) ª r) Ò q Ò r rule 173 : (p Ò (¨ r)) ª (q © r) rule 237 : (p Ò (¨ r)) ª q
rule 46 : (p © q) Ò (q ª r) rule 110 : ((¨ p) © q © r) Ò q Ò r rule 174 : ((p © q) Ò q) ª r rule 238 : q ª r
rule 47 : (¨ p) ª ((¨ q) © r) rule 111 : (¨ p) ª (q Ò r) rule 175 : (¨ p) ª r rule 239 : (¨ p) ª q ª r
rule 48 : p © (¨ q) rule 112 : p Ò (p © q © r) rule 176 : p © ((¨ q) ª r) rule 240 : p
rule 49 : (p ª q ª (¨ r)) Ò q rule 113 : p Ò (¨ ((p Ò q) ª (p Ò r))) rule 177 : p Ò (¨ ((p Ò q) ª r)) rule 241 : p ª (¨ (q ª r))
rule 50 : (p ª q ª r) Ò q rule 114 : ((p Ò q) ª r) Ò q rule 178 : ((p Ò q) ª (p Ò r)) Ò q rule 242 : p ª ((¨ q) © r)
rule 51 : ¨ q rule 115 : (p © (¨ r)) ª (¨ q) rule 179 : (p © r) ª (¨ q) rule 243 : p ª (¨ q)
rule 52 : (p ª (q © r)) Ò q rule 116 : (p ª q) Ò (q © r) rule 180 : p Ò q Ò (q © r) rule 244 : p ª (q © (¨ r))
rule 53 : (p ª (q Ò (¨ r))) Ò q rule 117 : (p © (¨ q)) ª (¨ r) rule 181 : p Ò ((¨ p) ª q ª r) Ò r rule 245 : p ª (¨ r)
rule 54 : (p ª r) Ò q rule 118 : (p ª q ª r) Ò (q © r) rule 182 : (p © r) ª (p Ò q Ò r) rule 246 : p ª (q Ò r)
rule 55 : ¨ ((p ª r) © q) rule 119 : ¨ (q © r) rule 183 : (p Ò q Ò r) ª (¨ q) rule 247 : p ª (¨ q) ª (¨ r)
rule 56 : p Ò ((p ª r) © q) rule 120 : p Ò (q © r) rule 184 : p Ò (p © q) Ò (q © r) rule 248 : p ª (q © r)
rule 57 : (p ª (¨ r)) Ò q rule 121 : p Ò ((¨ p) ª q ª r) Ò q Ò r rule 185 : (p © r) ª (q Ò (¨ r)) rule 249 : p ª (q Ò (¨ r))
rule 58 : (p ª (q Ò r)) Ò q rule 122 : p Ò (p © (¨ q) © r) Ò r rule 186 : (p © (¨ q)) ª r rule 250 : p ª r
rule 59 : ((¨ p) © r) ª (¨ q) rule 123 : ¨ ((p Ò q Ò r) © q) rule 187 : (¨ q) ª r rule 251 : p ª (¨ q) ª r
rule 60 : p Ò q rule 124 : p Ò (p © q © (¨ r)) Ò q rule 188 : p Ò (p © q © r) Ò q rule 252 : p ª q
rule 61 : p Ò (p ª q ª r) Ò (¨ q) rule 125 : (p Ò q) ª (¨ r) rule 189 : (p Ò q) ª (p Ò (¨ r)) rule 253 : p ª q ª (¨ r)
rule 62 : (p © q) Ò (p ª q ª r) rule 126 : (p Ò q) ª (p Ò r) rule 190 : (p Ò q) ª r rule 254 : p ª q ª r
rule 63 : ¨ (p © q) rule 127 : ¨ (p © q © r) rule 191 : (¨ p) ª (¨ q) ª r rule 255 : 1

T H E W O R L D O F S I M P L E P R O G R A M S N O T E S F O R C H A P T E R 3

885

use the minimum possible number of operators; when there
are several equivalent forms, I give the most uniform and
symmetrical one. Note that stands for .

â Rule orderings. The fact that successive rules often show
very different behavior does not appear to be affected by
using alternative orderings such as Gray code (see
page 901.)

â Page 58 · Algebraic forms. The rules here can be expressed
in algebraic terms (see page 869) as follows:

äRule 22:

äRule 60:

äRule 105:

äRule 129:

äRule 150:

äRule 225:

Note that rules 60, 105 and 150 are additive, like rule 90.

â Rule 150. This rule can be viewed as an analog of rule 90 in
which the values of three cells, rather than two, are added
modulo 2. Corresponding to the result on page 870 for rule
90, the number of black cells at row in the pattern from rule
150 is given by

There are a total of black cells in the
pattern obtained up to step , implying fractal dimension

. (See also page 956.)

The value at step in the column immediately adjacent to
the center is the nested sequence discussed on page 892
and given by . The cell at
position on row turns out to be given by

, as discussed on page 612.

â Rule 225. The width of the pattern after steps varies
between (achieved when) and

 (achieved when). The pattern scales
differently in the horizontal and vertical direction,
corresponding to fractal dimensions and
respectively. Note that with more complicated initial
conditions rule 225 often no longer yields a regular nested
pattern, as shown on page 951. The resulting patterns
typically grow at a roughly constant average rate.

â Rule 22. With more complicated initial conditions the
pattern is often no longer nested, as shown on page 263.

â Page 59 · Algebraic forms. The rules here can be expressed in
algebraic terms (see page 869) as follows:

äRule 30:

äRule 45:

äRule 73:

â Rule 45. The center column of the pattern appears for
practical purposes random, just as in rule 30. The left edge of
the pattern moves 1 cell every 2 steps; the boundary between
repetition and randomness moves on average 0.17 cells
per step.

â Rule 73. The pattern has a few definite regularities. The
center column of cells is repetitive, alternating between black
and white on successive steps. And in all cases black cells
appear only in blocks that are an odd number of cells wide.
(Any block in rule 73 consisting of an even number of black
cells will evolve to a structure that remains fixed forever, as
mentioned on page 954.) The more complicated central
region of the pattern grows 4 cells every 7 steps; the outer
region consists of blocks that are 12 cells wide and repeat
every 3 steps.

â Alternating colors. The pictures below show rules 45 and 73
with the colors of cells on alternate steps reversed.

â Two-cell neighborhoods. By having cells on successive steps
be arranged like hexagons or staggered bricks, as in the
pictures below, one can set up cellular automata in which the
new color of each cell depends on the previous colors of two
rather than three neighboring cells.

With possible colors for each cell, there are a total of
possible rules of this type, each specified by a -digit
number in base (7743 for the rule shown above). For

, there are 16 possible rules, and the most complicated
pattern obtained is nested like the rule 90 elementary
cellular automaton. With , there are 19,683 possible
rules, 1734 of which are fundamentally inequivalent, and
many more complicated patterns are seen, as in the
pictures at the top of the next page.

Ò Xor

Mod[p + q + r + p q r, 2]

Mod[p + q, 2]

Mod[1+ p + q + r, 2]

Mod[1+ p + q + r + p q + q r + p r, 2]

Mod[p + q + r, 2]

Mod[1+ p + q + r + q r, 2]

t

Apply[Times, Map[(2#+2 - (-1)#+2)/3 &,
Cases[Split[IntegerDigits[t, 2]], k : {(1) ..} " Length[k]]]]

2m Fibonacci[m+ 2]
2m

Log[2, 1+
�!!!!5]

t

Mod[IntegerExponent[t, 2], 2]
n t

Mod[GegenbauerC[n, -t, -1/2], 2]

t
Sqrt[3/2]�!!!t t = 3622 n+1

Sqrt[9/2]�!!!t t = 22 n+1

Log[2, 5] Log[4, 5]

Mod[p + q + r + q r, 2]

Mod[1+ p + r + q r, 2]

Mod[1+ p + q + r + p r + p q r, 2]

k kk2

k2

k
k = 2

k = 3

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

886

With given by a single step of
evolution can be implemented as

â Page 60 · Numbers of rules. Allowing possible colors for
each cell and considering neighbors on each side, there are

 possible cellular automaton rules in all, of which
 are symmetric, and are totalistic. (For

, there are therefore 256 possible rules altogether, of
which 16 are totalistic. For , there are 4,294,967,296
rules in all, of which 64 are totalistic. And for ,
there are 7,625,597,484,987 rules in all, with 2187 totalistic
ones.) Note that for , a particular rule will in general be
totalistic only for a specific assignment of values to colors. I
first introduced totalistic rules in 1983.

â Implementation of general cellular automata. With colors
and neighbors on each side, a single step in the evolution of
a general cellular automaton is given by

where is obtained from a rule number by
. (See also page 927.)

â Implementation of totalistic cellular automata. To handle
totalistic rules that involve colors and nearest neighbors,
one can add the definition

to what was given on page 867. The following definition also
handles the more general case of neighbors:

One can generate the representation of totalistic rules used by
these functions from code numbers using

â Common framework. The Mathematica built-in function
 discussed on page 867 handles general and

totalistic rules in the same framework by using
 and taking the weights to be

respectively and .

â Page 63 · Mod 3 rule. Code 420 is an example of an additive
rule, and yields a pattern corresponding to Pascal’s triangle
modulo 3, as discussed on page 870.

â Compositions of cellular automata. One way to construct
more complicated rules is from compositions of simpler
rules. One can, for example, consider each step applying first
one elementary cellular automaton rule, then another. The
result is in effect a , rule. Usually the order in which
the two elementary rules are applied will matter, and the
overall behavior obtained will have no simple relationship to
that of either of the individual rules. (See also page 956.)

â Rules based on algebraic systems. If the values of cells are
taken to be elements of some finite algebraic system, then one
can set up a cellular automaton with rule

where is the analog of multiplication for the system (see also
page 1094). The pattern obtained after steps is then given by

The pictures below show results with being , and
cells having values (a) , (b) the unit complex numbers

, (c) the unit quaternions.

In general, with elements can be specified by an
“multiplication table”. For , the patterns obtained are at
most nested. Pictures (a) and (b) below however correspond
to the multiplication tables
and . Note that for (b) the table is
symmetric, corresponding to a commutative multiplication
operation.

If is associative (flat), so that , then
the algebraic system is known as a semigroup. (See also

rule 12294 rule 16963 rule 17989

rule 7743 rule 8364 rule 8701

rule 3826 rule 5451 rule 6385

rule IntegerDigits[num, k, k2]

CAStep[{k_, rule_}, a_List] := rule0k2 -RotateLeft[a] - k a1

k
r

kk2 r+1

k1/2 kr+1 (1+kr) k1+(k-1) (2 r+1)

k = 2 r = 1
k = 2 r = 2

k = 3 r = 1

k > 2

k
r

CAStep[CARule[rule_List, k_, r_], a_List] :=
rule0-1 - ListConvolve[k^Range[0, 2 r], a, r + 1]1

rule num
IntegerDigits[num, k, k2 r+1]

k

CAStep[TotalisticCARule[rule_List, 1], a_List] :=
rule0-1 - (RotateLeft[a] + a +RotateRight[a])1

r
CAStep[TotalisticCARule[rule_List, r_Integer], a_List] :=

rule0-1 - Sum[RotateLeft[a, i], {i, -r, r}]1

ToTotalisticCARule[num_Integer, k_Integer, r_Integer] :=
TotalisticCARule[IntegerDigits[num, k, 1+ (k - 1) (2 r + 1)], r]

CellularAutomaton

ListConvolve[w, a, r + 1] w
k^Table[i - 1, {i, 2 r + 1}] Table[1, {2 r + 1}]

k = 2 r = 2

a[t_, i_] := f [a[t - 1, i - 1], a[t - 1, i]]

f
t

NestList[f [RotateRight[#], #] &, init, t]

f Times
{1, -1}

{1, 5, -1, -5}

(a) (b) (c)

n f n7n
n = 2

n = 3 {{1, 1, 3}, {3, 3, 2}, {2, 2, 1}}

{{3, 1, 3}, {1, 3, 1}, {3, 1, 2}}

(a) (b) (c)

f f [f [i, j], k] 2 f [i, f [j , k]]

T H E W O R L D O F S I M P L E P R O G R A M S N O T E S F O R C H A P T E R 3

887

page 805.) With a single cell seed, no pattern more
complicated than nested can be obtained in such a system.
And with any seed, it appears to require a semigroup with at
least six elements to obtain a more complicated pattern.

If has an identity element, so that for all , and has
inverses, so that for some , then the system is a
group. (See page 945.) If the group is Abelian, so that

, then only nested patterns are ever produced
(see page 955). But it turns out that the very simplest possible
non-Abelian group yields the pattern in (c) above. The group
used is S3, which has six elements and multiplication table

The initial condition contains surrounded by ’s.

Mobile Automata

â Implementation. The state of a mobile automaton at a
particular step can conveniently be represented by a pair

, where gives the values of the cells, and
specifies the position of the active cell (the value of the active
cell is thus). Then, for example, the rule for the mobile
automaton shown on page 71 can be given as

where the left-hand side in each case gives the value of the
active cell and its left and right neighbors, while the right-
hand side consists of a pair containing the new value of the
active cell and the displacement of its position. (In analogy
with cellular automata, this rule can be labelled
where the first number refers to colors, and the second
displacements.) With a rule given in this form, each step in
the evolution of the mobile automaton corresponds to the
function

The complete evolution for many steps can then be obtained
with

(The program will run more efficiently if is applied
to the rule before giving it as input.)

For the mobile automaton on page 73, the rule can be given
as

and must be rewritten as

â Compressed evolution. An alternative compression scheme
for mobile automata is discussed on page 488.

â Page 72 · Distribution of behavior. The pictures below show
the distributions of transient and of period lengths for the
65,318 mobile automata of the type described here that yield
ultimately repetitive behavior. Rule (f) has a period equal to
the maximum of 16.

â Page 75 · Active cell motion. The pictures below show the
positions of the active cell for 20,000 steps of evolution in
various mobile automata. (a), (b) and (c) correspond
respectively to the rules on pages 73, 74 and 75. (c) has an
outer envelope whose edges grow at rates . (d)
yields logarithmic growth as shown on page 496 (like Turing
machine (f) on page 79). In most cases where the behavior is
ultimately repetitive, transients and periods seem to follow
the same approximate exponential distribution as in the note
above. (g) however suddenly yields repetitive behavior with
period 4032 after 405,941 steps. (h) does not appear to evolve
to strict repetition or nesting, but does show progressively
longer patches with fairly orderly behavior. (c) shows no
obvious deviation from randomness in at least the first
billion steps (after which the pattern it produces is 57,014
cells wide).

â Implementation of generalized mobile automata. The state
of a generalized mobile automaton at a particular step can be

f f [1, i] 2 i i
f [i, j] 2 1 j

f [i, j] 2 f [j , i]

{{1, 2, 3, 4, 5, 6}, {2, 1, 5, 6, 3, 4}, {3, 4, 1, 2, 6, 5},
{4, 3, 6, 5, 1, 2}, {5, 6, 2, 1, 4, 3}, {6, 5, 4, 3, 2, 1}}

{5, 6} 1

{list, n} list n

list0n1

{{1, 1, 1} ! {0, 1}, {1, 1, 0} ! {0, 1},
{1, 0, 1} ! {1, -1}, {1, 0, 0} ! {0, -1}, {0, 1, 1} ! {0, -1},
{0, 1, 0} ! {0, 1}, {0, 0, 1} ! {1, 1}, {0, 0, 0} ! {1, -1}}

{35, 57}

MAStep[rule_, {list_List, n_Integer}] /; 1 < n < Length[list] :=
Apply[{ReplacePart[list, #1, n], n+#2} &,

Replace[Take[list, {n - 1, n+ 1}], rule]]

MAEvolveList[rule_, init_List, t_Integer] :=
NestList[MAStep[rule, #] &, init, t]

Dispatch

{{1, 1, 1} ! {{0, 0, 0}, -1}, {1, 1, 0} ! {{1, 0, 1}, -1},
{1, 0, 1} ! {{1, 1, 1}, 1}, {1, 0, 0} ! {{1, 0, 0}, 1},
{0, 1, 1} ! {{0, 0, 0}, 1}, {0, 1, 0} ! {{0, 1, 1}, -1},
{0, 0, 1} ! {{1, 0, 1}, 1}, {0, 0, 0} ! {{1, 1, 1}, 1}}

MAStep

MAStep[rule_, {list_List, n_Integer}] /; 1 < n < Length[list] :=
Apply[{Join[Take[list, {1, n - 2}], #1, Take[list, {n+ 2, -1}]],

n+#2} &, Replace[Take[list, {n - 1, n+ 1}], rule]]

0.000001

0.0001

0.01

1

5 10 15 20
0.000001

0.0001

0.01

1

5 10 15 20

{-1.5, 0.3}�!!!t

(g) (h)

(e) (f)

(c) (d)

(a) (b)

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

888

specified by , where gives the values of the
cells, and is a list of the positions of active cells. The rule
can be given by specifying a list of cases such as

, where in each case the second sublist
specifies the new relative positions of active cells. With this
setup successive steps in the evolution of the system can be
obtained from

Turing Machines

â Implementation. The state of a Turing machine at a
particular step can be represented by the triple ,
where gives the state of the head, gives the values of the
cells, and specifies the position of the head (the cell under
the head thus has value). Then, for example, the rule
for the Turing machine shown on page 78 can be given as

where the left-hand side in each case gives the state of the
head and the value of the cell under the head, and the right-
hand side consists of a triple giving the new state of the head,
the new value of the cell under the head and the
displacement of the head.

With a rule given in this form, a single step in the evolution of
the Turing machine can be implemented with the function

The evolution for many steps can then be obtained using

An alternative approach is to represent the complete state of
the Turing machine by , and then to use

The result of steps of evolution from a blank tape can also
be obtained from (see also page 1143)

â Number of rules. With possible colors for each cell and
possible states, there are a total of possible Turing
machine rules. Often many of these rules are immediately
equivalent, or can show only very simple behavior (see
page 1120).

â Numbering scheme. One can number Turing machines and
get their rules using

The examples on page 79 have numbers 3024, 982, 925, 1971,
2506 and 1953.

â Page 79 · Counter machine. Turing machine (f) operates like
a base 2 counter: at steps where its head is at the leftmost
position, the colors of the cells correspond to the reverse of
the base 2 digit sequences of successive numbers. All possible
arrangements of colors are thus eventually produced. The
overall pattern attains width after steps.

â Page 80 · Distribution of behavior. With 2 possible states
and 2 possible colors for each cell, starting from a blank
tape, the maximum repetition period obtained is 9 steps,
and 12 out of the 4096 possible rules (or about 0.29%) yield
non-repetitive behavior. With 3 states and 2 colors, the
maximum period is 24, and about 0.37% of rules yield non-
repetitive behavior, always nested. (Usually I have not
found more complicated behavior in such rules even with
initial conditions in which there are both black and white
cells, though see page 761.) With 2 states and 3 colors, the
maximum repetition period is again 24, about 0.65% of rules
yield non-repetitive behavior, and the 14 rules discussed on
page 709 yield more complex behavior. With more colors or
more states, the percentage of rules that yield non-repetitive
behavior steadily increases, as shown below, roughly like

. (Compare page 1120.)

â Page 81 · Head motion. The picture below shows the motion
of the head for the first million steps. After about 20,000
steps, the width of the pattern produced grows at a rate close
to .

â Localized structures. Even when the overall behavior of a
Turing machine is complicated, it is possible for simple
localized structures to exist, much as in cellular automata

{list, nlist} list
nlist

{0, 0, 0} ! {1, {1, -1}}

GMAStep[rules_, {list_, nlist_}] := Module[{a, na}, {a, na} =
Transpose[Map[Replace[Take[list, {# - 1, # + 1}], rules] &,
nlist]]; {Fold[ReplacePart[#1, Last[#2], First[#2]] &,
list, Transpose[{nlist, a}]], Union[Flatten[nlist + na]]}]

{s, list, n}
s list

n
list0n1

{{1, 0} ! {3, 1, -1}, {1, 1} ! {2, 0, 1}, {2, 0} ! {1, 1, 1},
{2, 1} ! {3, 1, 1}, {3, 0} ! {2, 1, 1}, {3, 1} ! {1, 0, -1}}

TMStep[rule_List, {s_, a_List, n_}] /; 1 < n < Length[a] :=
Apply[{#1, ReplacePart[a, #2, n], n+#3} &,

Replace[{s, a0n1}, rule]]

TMEvolveList[rule_, init_List, t_Integer] :=
NestList[TMStep[rule, #] &, init, t]

MapAt[{s, #} &, list, n]

TMStep[rule_, c_] := Replace[c,
{a___, x_, h_List, y_, b___} " Apply[{{a, x, #2, {#1, y}, b},

{a, {#1, x}, #2, y, b}}0#31 &, h /. rule]]

t

s = 1; a[_] = 0; n = 0;
Do[{s, a[n], d} = {s, a[n]} /. rule; n += d, {t}]

k s
(2 s k)s k

Flatten[MapIndexed[{1, -1} #2 + {0, k} ! {1, 1, 2}
Mod[Quotient[#1, {2 k, 2, 1}], {s, k, 2}] + {1, 0, -1} &,

Partition[IntegerDigits[n, 2 s k, s k], k], {2}]]

j 2 j - j

0.28 (s - 1) (k - 1)

2
4

6
8

10

colors
2

4

6
8

10

states

0
5�%

10�%

15�%

2
4

6
8

10

colors

�!!!t

-1200
-1000
-800
-600
-400
-200

0

0 200,000 400,000 600,000 800,000

T H E W O R L D O F S I M P L E P R O G R A M S N O T E S F O R C H A P T E R 3

889

such as rule 110. What can happen is that with certain specific
repetitive backgrounds, the head can move in a simple
repetitive way, as shown in the pictures below for the Turing
machine from page 81.

â History. Turing machines were invented by Alan Turing in
1936 to serve as idealized models for the basic processes of
mathematical calculation (see page 1128). As discussed on
page 1110, Turing's main interest was in showing what his
machines could in principle be made to do, not in finding out
what simple examples of them actually did. Indeed, so far as
I know, even though he had access to the necessary
technology, Turing never explicitly simulated any Turing
machine on a computer.

Since Turing’s time, Turing machines have been extensively
used as abstract models in theoretical computer science. But
in almost no cases has the explicit behavior of simple Turing
machines been considered. In the early 1960s, however,
Marvin Minsky and others did work on finding the simplest
Turing machines that could exhibit certain properties. Most
of their effort was devoted to finding ingenious constructions
for creating appropriate machines (see page 1119). But
around 1961 they did systematically study all 4096 2-state 2-
color machines, and simulated the behavior of some simple
Turing machines on a computer. They found repetitive and
nested behavior, but did not investigate enough examples to
discover the more complex behavior shown in the main text.

As an offshoot of abstract studies of Turing machines, Tibor
Radó in 1962 formulated what he called the Busy Beaver
Problem: to find a Turing machine with a specified number of
states that “keeps busy” for as many steps as possible before
finally reaching a particular “halt state” (numbered 0 below).
(A variant of the problem asks for the maximum number of
black cells that are left when the machine halts.) By 1966 the
results for 2, 3 and 4 states had been found: the maximum
numbers of steps are 6, 21 and 107, respectively, with 4, 5 and
13 final black cells. Rules achieving these bounds are:

The result for 5 states is still unknown, but a machine taking
47,176,870 steps and leaving 4098 black cells was found by
Heiner Marxen and Jürgen Buntrock in 1990. Its rule is:

The pictures below show (a) the first 500 steps of evolution,
(b) the first million steps in compressed form and (c) the

number of black cells obtained at each step. Perhaps not
surprisingly for a system optimized to run as long as
possible, the machine operates in a rather systematic and
regular way. With 6 states, a machine is known that takes
about steps to halt, and leaves about

 black cells. (See also page 1144.)

Substitution Systems

â Implementation. The rule for a neighbor-independent
substitution system such as the first one on page 82 can
conveniently be given as . And with
this representation, the evolution for steps is given by

where in the first example on page 82, the initial condition is .

An alternative approach is to use strings, representing the
rule by and the initial condition by

. In this case, the evolution can be obtained using

For a neighbor-dependent substitution system such as the
first one on page 85 the rule can be given as

And with this representation, the evolution for steps is
given by

where the initial condition for the first example on page 85 is
.

â Page 83 · Properties. The examples shown here all appear in
quite a number of different contexts in this book. Note that
each of them in effect yields a single sequence that gets
progressively longer at each step; other rules make the colors
of elements alternate on successive steps.

(a) (Successive digits sequence) The sequence produced is
repetitive, with the element at position being black for

3.002 × 101730

1.29 × 10865

0

5000

10000

15000

0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000

{1 ! {1, 0}, 0 ! {0, 1}}
t

SSEvolveList[rule_, init_List, t_Integer] :=
NestList[Flatten[# /. rule] &, init, t]

{1}

{"B" ! "BA", "A" ! "AB"}
"B"

SSEvolveList[rule_, init_String, t_Integer] :=
NestList[StringReplace[#, rule] &, init, t]

{{1, 1} ! {0, 1}, {1, 0} ! {1, 0}, {0, 1} ! {0}, {0, 0} ! {0, 1}}

t

SS2EvolveList[rule_, init_List, t_Integer] :=
NestList[Flatten[Partition[#, 2, 1] /. rule] &, init, t]

{0, 1, 1, 0}

n n

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

890

odd and white for even. There are a total of elements
after steps. The complete pattern formed by looking at all
the steps together has the same structure as the arrangement
of base 2 digits in successive numbers shown on page 117.

(b) (Thue-Morse sequence) The color of the element at
position is given by . These
colors satisfy
with . There are a total of elements in the sequence
after steps. The sequence on step can be obtained from

. The number of black and
white elements at each step is always the same. All four
possible pairs of successive elements occur, though not with
equal frequency. Runs of three identical elements never
occur, and in general no block of elements can ever occur
more than twice. The first elements in the sequence can be
obtained from (see page 1081)

The first elements can also be obtained from (see page 1092)

The sequence occurs many times in this book; it can for
example be derived from a column of values in the rule 150
cellular automaton pattern discussed on page 885.

(c) (Fibonacci-related sequence) The sequence at step can be obtained
from . This
sequence has length (or approximately)
(see note below). The color of the element at position is given by

 (see page
904), while the position of the th white element is given by the so-
called Beatty sequence . The ratio of the
number of white elements to black at step is

, which approaches
for large . For all , the number of distinct
blocks of successive elements that actually appear out of the
possibilities is (making it a so-called Sturmian sequence as
discussed on page 1084).

(d) (Cantor set) The color of the element at position is given
by , which turns out
to be equivalent to

There are elements after steps, of which are black. The
picture below shows the number of black cells that occur
before position . The resulting curve has a nested form, with
envelope .

â Growth rates. The total number of elements of each color that
occur at each step in a neighbor-independent substitution
system can be found by forming the matrix where
gives the number of elements of color that appear in the
block that replaces an element of color . For case (c) above,

. A list that gives the number of elements of
each color at step can then be found from

, where gives the initial number of
elements of each color— for case (c) above. For large ,
the total number of elements typically grows like , where
is the largest eigenvalue of the relative numbers of
elements of each color are given by the corresponding
eigenvector. For case (c), is , or .
There are exceptional cases where , so that the growth is
not exponential. For the rule ,

, and the number of elements at step
starting with is just . For ,

, and the number of elements
starting with is . For neighbor-independent
rules, the growth for large must follow an exponential or an
integer power less than the number of possible colors. For
neighbor-dependent rules, any form of growth can in principle
be obtained.

â Fibonacci numbers. The Fibonacci numbers
(for short) can be generated by the recurrence relation

The first few Fibonacci numbers are: 1, 1, 2, 3, 5, 8, 13, 21, 34,
55, 89, 144, 233, 377. For large the ratio
approaches or .

 can be obtained in many ways:

ä

ä

ä

ä

ä

ä

ä

ä

A fast method for evaluating is

Fibonacci numbers appear to have first arisen in perhaps 200
BC in work by Pingala on enumerating possible patterns of

n 2t

t

s[n]
n 1 -Mod[DigitCount[n - 1, 2, 1], 2]

s[n_] := If[EvenQ[n], 1 - s[n/2], s[(n+ 1)/2]]
s[1] = 1 2t

t t
Nest[Join[#, 1 - #] &, {1}, t - 1]

2m

(CoefficientList[Product[1 - z 2s

, {s, 0, m - 1}], z] + 1)/2

n
Mod[CoefficientList[Series[(1+Sqrt[(1 - 3 x)/ (1+ x)]) /

(2 (1+ x)), {x, 0, n - 1}], x], 2]

t
a[t_] := Join[a[t - 1], a[t - 2]]; a[1] = {0}; a[2] = {0, 1}

Fibonacci[t + 1] 1.618t+1

n
2 - (Floor[(n+ 1) GoldenRatio] - Floor[n GoldenRatio])

k
Floor[k GoldenRatio]

t
Fibonacci[t - 1] /Fibonacci[t - 2] GoldenRatio

t m < Fibonacci[t - 1]
m 2m

m+ 1

n
If[FreeQ[IntegerDigits[n - 1, 3], 1], 1, 0]

If[OddQ[n], Sign[Mod[Binomial[n - 1, (n - 1)/2], 3]], 0, 1]

3t t 2t

n
n^Log[3, 2]

0

20

40

60

100 200 300 400 500 600 700

m m0i, j1
j + 1
i + 1

m = {{1, 1}, {1, 0}}
t

init�.�MatrixPower[m, t] init
{1, 0} t

lt l

m;

l GoldenRatio (1+
�!!!!5)/2

l 2 1
{0 ! {0, 1}, 1 ! {1}}

m = {{1, 1}, {0, 1}} t
{0} t {0 ! {0, 1}, 1 ! {1, 2}, 2 ! {2}}

m = {{1, 1, 0}, {0, 1, 1}, {0, 0, 1}}
{0} (t2 - t + 2)/2

t

Fibonacci[n]
f [n]

f [n_] := f [n] = f [n - 1] + f [n - 2]

f [1] = f [2] = 1

n f [n] / f [n - 1]
GoldenRatio (1+

�!!!!5)/2 ; 1.618

Fibonacci[n]

(GoldenRation - (-GoldenRatio)-n)/�!!!!5

Round[GoldenRation /�!!!!5]

21-n Coefficient[(1+
�!!!!5)n, �!!!!5]

MatrixPower[{{1, 1}, {1, 0}}, n - 1]01, 11

Numerator[NestList[1/ (1+#) &, 1, n]]

Coefficient[Series[1/ (1 - t - t2), {t, 0, n}], tn-1]

Sum[Binomial[n - i - 1, i], {i, 0, (n - 1)/2}]

2n-2 -Count[IntegerDigits[Range[0, 2n-2], 2], {___, 1, 1, ___}]

Fibonacci[n]

First[Fold[f , {1, 0, -1}, Rest[IntegerDigits[n, 2]]]]

f [{a_, b_, s_}, 0] = {a (a + 2 b), s + a (2 a - b), 1}

f [{a_, b_, s_}, 1] = {-s + (a + b) (a + 2 b), a (a + 2 b), -1}

T H E W O R L D O F S I M P L E P R O G R A M S N O T E S F O R C H A P T E R 3

891

poetry formed from syllables of two lengths. They were
independently discussed by Leonardo Fibonacci in 1202 as
solutions to a mathematical puzzle concerning rabbit
breeding, and by Johannes Kepler in 1611 in connection with
approximations to the pentagon. Their recurrence relation
appears to have been understood from the early 1600s, but it
has only been in the past very few decades that they have in
general become widely discussed.

For , the value of for which is
.

The sequence is always purely
repetitive; the maximum period is , achieved when

 (compare page 975).

 has the fairly complicated form shown
below. It appears to be zero only when is of the form or

, where is not prime ().

The number appears to have been used in art
and architecture since antiquity. is the default

 for Mathematica graphics. In addition:

ä is the solution to or

äThe right-hand rectangle in is similar to the whole
rectangle when the aspect ratio is

ä

äThe ratio of the length of the diagonal to the length of a
side in a regular pentagon is

äThe corners of an icosahedron are at coordinates

ä approximates
 to digits, as does

äA successive angle difference of radians yields
points maximally separated around a circle (see page 1006).

â Lucas numbers. Lucas numbers satisfy the same
recurrence relation as Fibonacci
numbers, but with the initial conditions ; .
Among the relations satisfied by Lucas numbers are:

ä

ä

â Generalized Fibonacci sequences. Any linear recurrence
relation yields sequences with many properties in common

with the Fibonacci numbers—though with
replaced by other algebraic numbers. The Perrin sequence

; ; has the
peculiar property that mostly but not
always only for prime. (For more on recurrence relations
see page 128.)

â Connections with digit sequences. In a sequence generated
by a neighbor-independent substitution system the color of
the element at position turns out always to be related to the
digit sequence of the number in an appropriate base. The
basic reason for this is that as shown on page 84 the evolution
of the substitution system always yields a tree, and the
successive digits in determine which branch is taken at
each level in order to reach the element at position . In cases
(a) and (b) on pages 83 and 84, the tree has two branches at
every node, and so the base 2 digits of determine the
successive left and right branches that must be taken. Given
that a branch with a certain color has been reached, the color
of the branch to be taken next is then determined purely by
the next digit in the digit sequence of . For case (b) on pages
83 and 84, the rule that gives the color of the next branch in
terms of the color of the current branch and the next digit is

. In terms of this
rule, the color of the element at position is given by

The rule used here can be thought of as a finite automaton
with two states. In general, the behavior of any neighbor-
independent substitution system where each element is
subdivided into exactly elements can be reproduced by a
finite automaton with states operating on digit sequences
in base . The nested structure of the patterns produced is
thus a direct consequence of the nesting seen in the patterns
of these digit sequences, as shown on page 117.

Note that if the rule for the finite automaton is represented
for example as where each sublist corresponds
to a particular state, and the elements of the sublist give the
successor states with inputs , then the th

element in the output sequence can be obtained from

while the first elements can be obtained from

To treat examples such as case (c) where elements can
subdivide into blocks of several different lengths one must
generalize the notion of digit sequences. In base a number
is constructed from a digit sequence , , ,
(with) according to . But
given a sequence of digits that are each 0 or 1, it is also
possible for example to construct numbers according to

m > 1 n m 2 Fibonacci[n]
Round[Log[GoldenRatio, �!!!!5 m]]

Mod[Fibonacci[n], k]
6 k

k = 10 5m

Mod[Fibonacci[n], n]
n 5m

12 q q q > 5

0

50

100

150

200

0 50 100 150 200

GoldenRatio
1/GoldenRatio

AspectRatio

GoldenRatio x 2 1+ 1/x x2 2 x + 1

GoldenRatio

Cos[p /5] 2 Cos[36 8] 2 GoldenRatio/2

GoldenRatio

Flatten[Array[NestList[RotateRight,
{0, (-1)#1 GoldenRatio, (-1)#2}, 3] &, {2, 2}], 2]

1+ FixedPoint[N[1/ (1+#), k] &, 1]
GoldenRatio k
FixedPoint[N[Sqrt[1+#], k] &, 1]

GoldenRatio

Lucas[n]
f [n_] := f [n - 1] + f [n - 2]

f [1] = 1 f [2] = 3

Lucas[n_] := Fibonacci[n - 1] + Fibonacci[n+ 1]

GoldenRation 2 (Lucas[n] + Fibonacci[n]�!!!!5)/2

GoldenRatio

f [n_] := f [n - 2] + f [n - 3] f [0] = 3; f [1] = 0 f [2] = 2
Mod[f [n], n] 2 0

n

n
n

n
n

n

n

{{0, 0} ! 0, {0, 1} ! 1, {1, 0} ! 1, {1, 1} ! 0}
n

Fold[Replace[{#1, #2}, rule] &, 1, IntegerDigits[n - 1, 2]]

k
k

k

{{1, 2}, {2, 1}}

Range[0, k - 1] n

Fold[rule0#1, #21 &, 1, IntegerDigits[n - 1, k] + 1] - 1

km

Nest[Flatten[rule0#1] &, 1, m] - 1

k
a[r] ? a[1] a[0]

0 < a[i] < k Sum[a[i] k i, {i, 0, r}]

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

892

. (As discussed on page
1070, this representation is unique so long as one does not
allow any pairs of adjacent 1’s in the digit sequence.) It then
turns out that if one expresses the position as a
generalized digit sequence of this kind, then the color of the
corresponding element in substitution system (c) is just the
last digit in this sequence.

â Connections with square roots. Substitution systems such
as (c) above are related to projections of lines with quadratic
irrational slopes, as discussed on page 904.

â Spectra of substitution systems. See page 1080.

â Representation by paths. An alternative to representing
substitution systems by 1D sequences of black and white
squares is to use 2D paths consisting of sequences of left and
right turns. The paths obtained at successive steps for rule (b)
above are shown below.

The pictures below show paths obtained with the rule
, starting from . Note the similarity

to the 2D system shown on page 190.

When the paths do not cross themselves, nested structure is
evident. But in a case like the rule
starting with , the presence of many crossings tends to
hide such regularity, as in the pictures below.

â Paperfolding sequences. The sequence of up and down
creases in a strip of paper that is successively folded in half
is given by a substitution system; after steps the sequence
turns out to be .
The corresponding path (effectively obtained by making
each crease a right angle) is shown below. (See page 189.)

â 2D representations. Individual sequences from 1D
substitution systems can be displayed in 2D by breaking
them into a succession of rows. The pictures below show
results for the substitution systems on page 83. In case (b),
with rows chosen to be elements in length, the leftmost
column will always be identical to the beginning of the
sequence, and in addition every interior element will be
black exactly when the cell at the top of its column has the
same color as the one at the beginning of its row. In case (c),
stripes appear at angles related to .

â Page 84 · Other examples.

(a) (Period-doubling sequence) After steps, there are a total of
 elements, and the sequence is given by

. It contains a total
of black elements, and if the last element is
dropped, it forms a palindrome. The th element is given by

. As discussed on page 885, the
sequence appears in a vertical column of cellular automaton
rule 150. The Thue-Morse sequence discussed on page 890
can be obtained from it by applying

(b) The th element is simply .

(c) Same as (a), after the replacement in each
sequence. Note that the spectra of (a) and (c) are nevertheless
different, as discussed on page 1080.

(d) The length of the sequence at step satisfies
, so that

for . The number of white elements at step is then
. Much like example (c) on page 83 there are

 distinct blocks of length , and with
 the th element of the

sequence is given by (see page 903).

Sum[a[i] Fibonacci[i + 2], {i, 0, r}]

n

{1 ! {1}, 0 ! {0, 0, 1}} {0}

{1 ! {0, 0, 1}, 0 ! {1, 0}}
{1}

t
NestList[Join[#, {0}, Reverse[1 - #]] &, {0}, t]

2j

GoldenRatio

(a) (b) (c) (d)

t
2t

Nest[MapAt[1 - # &, Join[#, #], -1] &, {0}, t]
Round[2t /3]

n
Mod[IntegerExponent[n, 2], 2]

1 -Mod[Flatten[Partition[FoldList[Plus, 0, list], 1, 2]], 2]

n Mod[n, 2]

1 ! {1, 1}

t
a[t] 2 2 a[t - 1] + a[t - 2] a[t] = Round[(1+

�!!!!2)t-1 /2]
t > 1 t

Round[a[t] /�!!!!2]

m+ 1 m
f = Floor[(1 - 1/�!!!!2) (# + 1/�!!!!2)] & n

f [n+ 1] - f [n]

T H E W O R L D O F S I M P L E P R O G R A M S N O T E S F O R C H A P T E R 3

893

(e) For large the number of elements increases like with
; there are always times as many white

elements as black ones.

(f) The number of elements at step is , and
the th element is given by (see
page 903).

(g) The number of elements is the same as in (f).

(h) The number of black elements is ; the total number of
elements is .

(i) and (j) The total number of elements is .

â History. In their various representations, 1D substitution
systems have been invented independently many times for
many different purposes. (For the history of fractals and 2D
substitution systems see page 934.) Viewed as generators of
sequences with certain combinatorial properties, substitution
systems such as example (b) on page 83 appeared in the work
of Axel Thue in 1906. (Thue’s stated purpose in this work
was to develop the science of logic by finding difficult
problems with possible connections to number theory.) The
sequence of example (b) was rediscovered by Marston Morse
in 1917 in connection with his development of symbolic
dynamics—and in finding what could happen in discrete
approximations to continuous systems. Studies of general
neighbor-independent substitution systems (sometimes
under such names as sequence homomorphisms, iterated
morphisms and uniform tag systems) have continued in this
context to this day. In addition, particularly since the 1980s,
they have been studied in the context of formal language
theory and the so-called combinatorics of words. (Period-
doubling phenomena also led to contact with physics starting
in the late 1970s.)

Independent of work in symbolic dynamics, substitution
systems viewed as generators of sequences were reinvented
in 1968 by Aristid Lindenmayer under the name of L systems
for the purpose of constructing models of branching plants
(see page 1005). So-called 0L systems correspond to my
neighbor-independent substitution systems; 1L systems
correspond to the neighbor-dependent substitution systems
on page 85. Work on L systems has proceeded along two
quite different lines: modelling specific plant systems, and
investigating general computational capabilities. In the mid-
1980s, particularly through the work of Alvy Ray Smith, L
systems became widely used for realistic renderings of plants
in computer graphics.

The idea of constructing abstract trees such as family trees
according to definite rules presumably goes back to antiquity.

The tree representation of rule (c) from page 83 was for
example probably drawn by Leonardo Fibonacci in 1202.

The first six levels of the specific pattern in example (a) on
page 83 correspond exactly to the segregation diagram for
the I Ching that arose in China as early as 2000 BC. Black
regions represent yin and white ones yang. The elements on
level six correspond to the 64 hexagrams of the I Ching. At
what time the segregation diagram was first drawn is not
clear, but it was almost certainly before 1000 AD, and in the
1600s it appears to have influenced Gottfried Leibniz in his
development of base 2 numbers.

Viewed in terms of digit sequences, example (d) from page 83
was discussed by Georg Cantor in 1883 in connection with his
investigations of the idea of continuity. General relations
between digit sequences and sequences produced by neighbor-
independent substitution systems were found in the 1960s.
Connections of sequences such as (c) to algebraic numbers (see
page 903) arose in precursors to studies of wavelets.

Paths representing sequences from 1D substitution systems can
be generated by 2D geometrical substitution systems, as on
page 189. The “C” curve shown on the facing page and on page
190 was for example described by Paul Lévy in 1937, and was
rediscovered as the output of a simple computer program by
William Gosper in the 1960s. Paperfolding or so-called dragon
curves (as shown above) were discussed by John Heighway in
the mid-1960s, and were analyzed by Chandler Davis, Donald
Knuth and others. These curves have the property that they
eventually fill space. Space-filling curves based on slightly more
complicated substitution systems were already discussed by
Giuseppe Peano in 1890 and by David Hilbert in 1891 in
connection with questions about the foundations of calculus.

Sequences from substitution systems have no doubt
appeared over the years as incidental features of great many
pieces of mathematical work. As early as 1851, for example,
Eugène Prouhet showed that if sequences of integers were
partitioned according to sequence (b) on page 83, then sums
of powers of these integers would be equal: thus

 is equal for and
if is a sequence of the form (b) on page 83 with length ,

. The optimal solution to the Towers of Hanoi puzzle
invented in 1883 also turns out to be an example of a
substitution system sequence.

Sequential Substitution Systems

â Implementation. Sequential substitution systems can be
implemented quite directly by using Mathematica’s standard

t lt

l = (�!!!!!!!13 + 1)/2 l

t Round[(1+
�!!!!2)t /2]

n Floor[�!!!!2 (n+ 1)] - Floor[�!!!!2 n]

2t-1

2t-2 (t + 1)

3t-1

Apply[Plus, Flatten[Position[s, i]]k] i = 0 i = 1
s 2m

m > k

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

894

mechanism for applying transformation rules to symbolic
expressions. Having made the definition

the state of a sequential substitution system at a particular
step can be represented by a symbolic expression such as

. The rule on page 82 can then be given simply as

while the rule on page 85 becomes

The attribute of makes these rules apply not only for
example to the whole sequence but also to any
subsequence such as . (With being ,

 is equivalent to and so on. A
 function has the mathematical property of being

associative.) And with this setup, steps of evolution can be
found with

Note that as an alternative to having be , one can
explicitly set up rules based on patterns such as

. And by using rules such as
 one can

keep track of the positions at which substitutions are made.
(replaces all occurrences of a given substring,
not just the first one, so cannot be used directly as an
alternative to having a flat function.)

â Capabilities. Even with the single rule , a
sequential substitution system can sort its initial conditions
so that all 0’s occur before all 1’s. (See also page 1113.)

â Order of replacements. For many sequential substitution
systems the evolution effectively stops because a string is
produced to which none of the replacements given apply. In
most sequential substitution systems there is more than one
possible replacement that can in principle apply at a
particular step, so the order in which the replacements are
tried matters. (Multiway systems discussed on page 497 are
what result if all possible replacements are performed at each
step.) There are however special sequential substitution
systems (those with the so-called confluence property
discussed on page 1036) in which in a certain sense the order
of replacements does not matter.

â History. Sequential substitution systems are closely related
to the multiway systems discussed on page 938, and are often
considered examples of production systems or string
rewriting systems. In the form I discuss here, they seem to
have arisen first under the name “normal algorithms” in the
work of Andrei Markov in the late 1940s on computability
and the idealization of mathematical processes. Starting in

the 1960s text editors like TECO and ed used sequential
substitution system rules, as have string-processing
languages such as SNOBOL and perl. Mathematica uses an
analog of sequential substitution system rules to transform
general symbolic expressions. The fact that new rules can be
added to a sequential substitution system incrementally
without changing its basic structure has made such systems
popular in studies of adaptive programming.

Tag Systems

â Implementation. With the rules for case (a) on page 94 given
for example by

the evolution of a tag system can be obtained from

An alternative implementation is based on applying to the
list at each step rules such as

There are a total of possible rules if blocks
up to length can be added at each step and colors are
allowed. For , and this is 50,625.

â Page 94 · Randomness. To get some idea of the randomness
of the behavior, one can look at the sequence of first elements
produced on successive steps. In case (a), the fraction of black
elements fluctuates around 1/2; in (b) it approaches 3/4; in
(d) it fluctuates around near 0.3548, while in (e) and (f) it does
not appear to stabilize.

â History. The tag systems that I consider are generalizations
of those first discussed by Emil Post in 1920 as simple
idealizations of certain syntactic reduction rules in Alfred
Whitehead and Bertrand Russell’s Principia Mathematica (see
page 1149). Post’s tag systems differ from mine in that his
allow the choice of block that is added at each step to
depend only on the very first element in the sequence at
that step (see however page 670). (The lag systems studied
in 1963 by Hao Wang allow dependence on more than just
the first element, but remove only the first element.) It turns
out that in order to get complex behavior in such systems,
one needs either to allow more than two possible colors for
each element, or to remove more than two elements from
the beginning of the sequence at each step. Around 1921,
Post apparently studied all tag systems of his type that
involve removal and addition of no more than two elements
at each step, and he concluded that none of them produced
complicated behavior. But then he looked at rules that

Attributes[s] = Flat

s[1, 0, 1, 0]

s[1, 0] ! s[0, 1, 0]

{s[0, 1, 0] ! s[0, 0, 1], s[0] ! s[0, 1, 0]}

Flat s
s[1, 0, 1, 0]

s[1, 0] s Flat
s[s[1, 0], 1, s[0]] s[1, 0, 1, 0]
Flat

t

SSSEvolveList[rule_, init_s, t_Integer] :=
NestList[# /. rule &, init, t]

s Flat

s[x___, 1, 0, y___] ! s[x, 0, 1, 0, y]
s[x___, 1, 0, y___] " {s[x, 0, 1, 0, y], Length[s[x]]}

StringReplace

{s[1, 0] ! s[0, 1]}

{2, {{0, 0} ! {1, 1}, {1, 0} ! {}, {0, 1} ! {1, 0}, {1, 1} ! {0, 0, 0}}}

TSEvolveList[{n_, rule_}, init_, t_] := NestList[If[Length[#] <
n, {}, Join[Drop[#, n], Take[#, n] /. rule]] &, init, t]

{{0, 0, s___} ! {s, 1, 1}, {1, 0, s___} ! {s},
{0, 1, s___} ! {s, 1, 0}, {1, 1, s___} ! {s, 0, 0, 0}}

((k r+1 - 1)/ (k - 1))kn

r k
r = 3 k = 2 n = 2

T H E W O R L D O F S I M P L E P R O G R A M S N O T E S F O R C H A P T E R 3

895

remove three elements at each step, and he discovered the
rule . As he noted,
the behavior of this rule varies considerably with the initial
conditions used. But at least for all the initial conditions up
to length 28, the rule eventually just leads to behavior that
repeats with a period of 1, 2, 6, 10, 28 or 40. With more than
two colors, one finds that rules of Post’s type which remove
just two elements at each step can yield complex behavior,
even starting from an initial condition such as . An
example is .
(See also pages 1113 and 1141.)

Cyclic Tag Systems

â Implementation. With the rules for the cyclic tag system on
page 95 given as , the evolution can be obtained
from

The leading elements on many more than successive steps
can be obtained directly from

â Page 95 · Generalizations. The implementation above
immediately allows cyclic tag systems which cycle through a
list of more than two blocks. (With just one block the
behavior is always repetitive.) Cyclic tag systems which
allow any value for each element can be obtained by adding
the rule

The leading elements in this case can be obtained using

â Mechanical implementation. Cyclic tag systems admit a
particularly straightforward mechanical implementation.
Black and white balls are kept in a trough as in the picture
below. At each step the leftmost ball in the trough is released,
and if this ball is black (as determined, for example, by size) a
mechanism causes a new block of balls to be added at the
right-hand end of the trough. This mechanism can work in

several ways; typically it will involve a rotary element that
determines which case of the rule to use at each step. Rule (e)
from the main text allows a particularly simple supply of
new balls. Note that the system will inevitably fail if the
trough overflows with balls.

â Page 96 · Properties. Assuming that black and white
elements occur in an uncorrelated way, then the sequences in
a cyclic tag system with blocks should grow by an average
of elements at each step. With

 blocks, this means that growth can occur only if the
total number of black elements in both blocks is more than 3.
Rules such as and therefore yield
repetitive behavior with sequences of limited length.

Note that if all blocks in a cyclic tag system with blocks
have lengths divisible by , then one can tell in advance on
which steps blocks will be added, and the overall behavior
obtained must correspond to a neighbor-independent
substitution system. The rules for the relevant substitution
system may however depend on the initial conditions for the
cyclic tag system.

gives for example the Thue-Morse substitution system
.

In example (a), the elements are correlated, so that slower
growth occurs than in the estimate above. In example (c), the
elements are again correlated: the growth is by an average of

 elements at each step, and the first
elements on alternate steps form the same nested sequence as
obtained from the substitution system . In
example (d), the frequency of 1’s among the first elements of
sequence is approximately 3/4; never occurs, and the
frequency of is approximately 1/2. In example (e), the
frequency of 1’s is again about 3/4, but now occurs
with frequency 0.05, occurs with frequency 0.55, while

 and cannot occur.

â History. Cyclic tag systems were studied by Matthew Cook
in 1994 in connection with working on the rule 110 cellular
automaton for this book. The sequence
defined by the property was
suggested as a mathematical puzzle by William Kolakoski in
1965 and is equivalent to

It is known that this sequence does not repeat, contains no
more than two identical consecutive blocks, and has at least
very close to equal numbers of 1’s and 2’s. Replacing 2 by 3
yields a sequence which has a fairly simple nested form.

{3, {{0, _, _} ! {0, 0}, {1, _, _} ! {1, 1, 0, 1}}}

{0, 0}
{2, {{0, _} ! {2, 1}, {1, _} ! {0}, {2, _} ! {0, 2, 1, 2}}}

{{1, 1}, {1, 0}}

CTEvolveList[rules_, init_, t_] :=
Map[Last, NestList[CTStep, {rules, init}, t]]

CTStep[{{r_, s___}, {0, a___}}] := {{s, r}, {a}}

CTStep[{{r_, s___}, {1, a___}}] := {{s, r}, Join[{a}, r]}

CTStep[{u_, {}}] := {u, {}}

t

CTList[rules_, init_, t_] :=
Flatten[Map[Last, NestList[CTListStep, {rules, init}, t]]]

CTListStep[{rules_, list_}] :=
{RotateLeft[rules, Length[list]], Flatten[rules0

Mod[Flatten[Position[list, 1]], Length[rules], 1]1]}

CTStep[{{r_, s___}, {n_, a___}}] :=
{{s, r}, Flatten[{a, Table[r, {n}]}]}

CTListStep[{rules_, list_}] :=
{RotateLeft[rules, Length[list]], With[{n = Length[rules]},

Flatten[Apply[Table[#1, {#2}] &, Map[Transpose[
{rules, #}] &, Partition[list, n, n, 1, 0]], {2}]]]}

n
Count[Flatten[rules], 1] /n - 1

n = 2

{{1, 0}, {0, 1}} {{1, 1}, {0}}

n
n

Flatten[{1, 0, CTList[{{1, 0, 0, 1}, {0, 1, 1, 0}}, {0, 1}, t]}]

{1 ! {1, 0}, 0 ! {0, 1}}

(�!!!!5 - 1)/2 ; 0.618

{1 ! {1, 0}, 0 ! {1}}

{0, 0}
{1, 1}

{0, 0}
{1, 1}

{0, 0, 0} {0, 1, 0}

{1, 2, 2, 1, 1, 2, ?}

list 2 Map[Length, Split[list]]

Join[{1, 2}, Map[First, CTEvolveList[{{1}, {2}}, {2}, t]]]

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

896

Register Machines

â Implementation. The state of a register machine at a
particular step can be represented by the pair , where

 gives the position in the program of current instruction
being executed (the “program counter”) and gives the
values of the registers. The program for the register machine
on page 99 can then be given as

where represents an increment instruction, and a
decrement jump.

With this setup, the evolution of any register machine can be
implemented using the functions (a typical initial condition is

)

The total number of possible programs of length using
registers is . Note that by prepending suitable
instructions one can effectively set up initial conditions with
arbitrary values in registers.

â Halting. It is sometimes convenient to think of register
machines as going into a special halt state if they try to
execute instructions beyond the end of their program. (See
page 1137.) The fraction of possible register machines that do
this starting from initial condition decreases
steadily with program length , reaching about 0.76 for .
The most common number of steps before halting is always

, while the maximum numbers of steps for up to 8 is
 where in the last case this is

achieved by

â Page 101 · Extended instruction sets. One can consider also
including instructions such as

Note that by being able to add and subtract only 1 at each step,
the register machines shown in the main text necessarily operate
quite slowly: they always take at least steps to build up a
number of size . But while extending the instruction set can
increase the speed of operations, it does not appear to yield a
much larger density of machines with complex behavior.

â History. Register machines (also known as counter
machines and program machines) are a fairly obvious
idealization of practical computers, and have been invented
in slightly different forms several times. Early uses of them
were made by John Shepherdson and Howard Sturgis
around 1959 and Marvin Minsky around 1960. Somewhat
similar constructs were part of Kurt Gödel’s 1931 work on
representing logic within arithmetic (see page 1158).

â Page 102 · Random programs. See page 1182.

Symbolic Systems

â Implementation. The evolution for steps of the first
symbolic system shown can be implemented simply by

â Symbolic expressions. Expressions like and that
give values of functions are familiar from mathematics and
from typical computer languages. Expressions like
giving compositions of functions are also familiar. But in
general, as in Mathematica, it is possible to have expressions in
which the head in can itself be any expression—not just
a single symbol. Thus for example , and

 are all possible expressions. And these kinds of
expressions often arise in Mathematica when one manipulates
functions as a whole before applying them to arguments.
(for example gives which is .)
(In principle one can imagine representing all objects with
forms such as by so-called currying as , and
indeed I tried this in the early 1980s in SMP. But although this
can be convenient when is a discrete function such as a
matrix, it is inconsistent with general mathematical and other
usage in which for example and are
both treated as values of functions.)

â Representations. Among the representations that can be
used for expressions are:

Typical transformation rules are non-local in all these
representations. Polish representation (whose reverse form
has been used in HP calculators) for an expression can be
obtained using (see also page 1173)

{n, list}
n

list

{i[1], d[2, 1], i[2], d[1, 3], d[2, 1]}

i[_] d[_, _]

{1, {0, 0}}
RMStep[prog_, {n_Integer, list_List}] := If[n > Length[prog],

{n, list}, RMExecute[prog0n1, {n, list}]]
RMExecute[i[r_], {n_, list_}] := {n+ 1, MapAt[# + 1 &, list, r]}

RMExecute[d[r_, m_], {n_, list_}] :=
If[list0r1 > 0, {m, MapAt[# - 1 &, list, r]}, {n+ 1, list}]

RMEvolveList[prog_, init : {_Integer, _List}, t_Integer] :=
NestList[RMStep[prog, #] &, init, t]

n k
(k (1+ n))n i[r]

{1, {0, 0}}
n n = 8

n n
{1, 3, 5, 10, 16, 37, 215, 1280}

{i[1], d[2, 7], d[2, 1], i[2], i[2], d[1, 4], i[1], d[2, 3]}

RMExecute[eq[r1_, r2_, m_], {n_, list_}] :=
If[list0r11 2 list0r21, {m, list}, {n+ 1, list}]

RMExecute[add[r1_, r2_], {n_, list_}] :=
{n+ 1, ReplacePart[list, list0r11+ list0r21, r1]}

RMExecute[jmp[r1_], {n_, list_}] := {list0r11, list}

n
n

t

NestList[# /. −[x_][y_] ! x[x[y]] &, init, t]

Log[x] f [x]

f [g[x]]

h h[x]
f [g][x] f [g[h]][x]

f [g][h][x]

$xx f [x] f �[x] Derivative[2][f][x]

f [x, y] f [x][y]

f

Gamma[x] Gamma[a, x]

a[b[c[d]]]

{�, a, �, b, �, c, d}

a�� �(b�� �(c�� �d))

{a, {b, {c, d}}}

a[b][c[d]]

{�, �, a, b, �, c, d}

(a�� �b)�� �(c�� �d)

{{a, b}, {c, d}}

a[b[c][d]]

{�, a, �, �, b, c, d}

a�� �((b�� �c)�� �d)

{a, {{b, c}, d}}

a[b][c][d]

{�, �, �, a, b, c, d}

((a�� �b)�� �c)�� �d

{{{a, b}, c}, d}

functional

Polish

operator

tree

a
b

c d
a b c d

a

b c
d

a b
c

d

Flatten[expr //. x_[y_] ! {¬, x, y}]

T H E W O R L D O F S I M P L E P R O G R A M S N O T E S F O R C H A P T E R 3

897

The original expression can be recovered using

(Pictures of symbolic system evolution made with Polish
notation differ in detail but look qualitatively similar to those
made as in the main text with functional notation.)

The tree representation of an expression can be obtained
using , and when each object has just
one argument, the tree is binary, as in LISP.

If only a single symbol ever appears, then all that matters is
the overall structure of an expression, which can be captured
as in the main text by the sequence of opening and closing
brackets, given by

â Possible expressions. gives the number of
symbols that appear anywhere in an expression, while

 gives the number of closing brackets at the end
of its functional representation—equal to the number of
levels in the rightmost branch of the tree representation. (The
maximum number of levels in the tree can be computed from

.)

With a list of possible symbols, gives all possible
expressions with :

There are a total of such
expressions. When the expressions correspond
to possible balanced sequences of opening and closing
brackets (see page 989).

â Page 103 · Properties. All initial conditions eventually evolve to
expressions of the form , which then remain fixed.
The quantity turns out to remain
constant through the evolution, so this gives the final value of
for any initial condition. The maximum is
(compare page 906), achieved for initial conditions of the form

. (By analogy with page 1122 any expression
can be interpreted as a Church numeral

, so that
evolves to .) During the evolution the rule can apply
only to the inner part
of an expression. The depth of this inner part for initial condition

 is shown below. For all initial conditions this
depth seems at first to increase linearly, then to decrease in a
nested way according to

This quantity alternates between value at position and
value at position . It reaches a fixed point as soon as

the depth reaches 0. For initial conditions of size , this
occurs after at most steps.
(See also page 1145.)

â Other rules. If only a single variable appears in the rule,
then typically only nested behavior can be generated—
though in an example like it can be
quite complex. The left-hand side of each rule can consist of
any expression; and are two
possibilities. However, at least with small initial conditions it
seems easier to achieve complex behavior with rules based
on . Note that rules with no explicit ’s on the left-
hand side always give trees with regular nested structures;

 (or in Mathematica), for
example, yields balanced binary trees.

â Long halting times. Symbolic systems with rules of the form
 always evolve to fixed points—

though with initial conditions of size this can take of order
 steps (see above). In general there will be

symbolic systems where the number of steps to evolve to a
fixed point grows arbitrarily rapidly with (see page 1145),
and indeed I suspect that there are even systems with quite
simple rules where proving that a fixed point is always
reached in a finite number of steps is beyond, for example,
the axiom system for arithmetic (see page 1163).

â Trees. The rules given on pages 103 and 104 correspond to
the transformations on trees shown below.

The first few steps in evolution from two initial conditions
of the system on page 103 correspond to the sequences of
trees below.

First[Reverse[list] //. {w___, x_, y_, ¬, z___} ! {w, y[x], z}]

expr //. x_[y_] ! {x, y}

Flatten[Characters[ToString[expr]] /.
{"[" ! 1, "]" ! 0, "−" ! {}}]

LeafCount[expr]

Depth[expr]

expr /. _Symbol ! 1 //. x_[y_] ! 1+Max[x, y]

s c[s, n]
LeafCount[expr] 2 n

c[s_, 1] = s; c[s_, n_] := Flatten[
Table[Outer[#1[#2] &, c[s, n -m], c[s, m]], {m, n - 1}]]

Binomial[2 n - 2, n - 1] Length[s]n /n
Length[s] 2 1

Nest[−, −, m]

expr //. {− ! 0, x_[y_] ! 2x + y}
m

Nest[2# &, 0, n]

Nest[#[−] &, −, n] −

u = expr //. {− ! 2, x_[y_] ! y x} = 22m

expr[a][b]
Nest[a, b, u]

FixedPoint[Replace[#, −[x_] ! x] &, expr]

−[−][−][−][−][−]

FoldList[Plus, 0, Flatten[Table[
{1, 1, Table[-1, {IntegerExponent[i, 2] + 1}]}, {i, m}]]]

1 2j

j 2 j - j + 1

n
Sum[Nest[2# &, 0, i] - 1, {i, n}] + 1

0

10

20

30

0 20,000 40,000 60,000

−[x_][_] ! −[x[−[−][−]][−]]

−[−[x_]][y_] −[−][x_[y_]]

−[x_][y_] −

x_[y_] ! x[y][x[y]] x_ ! x[x]

−[x_][y_] ! Nest[x, y, r]
n

Nest[r # &, 0, n]

n

− x y x
−y

x
− x y x y − y − x y x

y− −

− x y x y x − x y −
x−y−

− x y x x y

− x y −
y x

− −
−

−[−][−][−]

−[−[−][−]][−][−]

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

898

â Order dependence. The operation in
Mathematica has the effect of scanning the functional
representation of from left to right, and applying rules
whenever possible while avoiding overlaps. (Standard
evaluation in Mathematica is equivalent to and
uses the same ordering, while uses a different order.)
One can have a rule be applied only once using

Many symbolic systems (including the one on page 103) have
the so-called Church-Rosser property (see page 1036) which
implies that if a fixed point is reached in the evolution of the
system, this fixed point will be the same regardless of the
order in which rules are applied.

â History. Symbolic systems of the general type I discuss here
seem to have first arisen in 1920 in the work of Moses
Schönfinkel on what became known as combinators. As
discussed on page 1121 Schönfinkel introduced certain specific
rules that he suggested could be used to build up functions
defined in logic. Beginning in the 1930s there were a variety of
theoretical studies of how logic and mathematics could be set
up with combinators, notably by Haskell Curry. For the most
part, however, only Schönfinkel’s specific rules were ever
used, and only rather specific forms of behavior were
investigated. In the 1970s and 1980s there was interest in using
combinators as a basis for compilation of functional
programming languages, but only fairly specific situations of
immediate practical relevance were considered. (Combinators
have also been used as logic recreations, notably by Raymond
Smullyan.)

Constructs like combinators appear to have almost never been
studied in mainstream pure mathematics. Most likely the reason
is that building up functions on the basis of the structure of
symbolic expressions has never seemed to have much obvious
correspondence to the traditional mathematical view of
functions as mappings. And in fact even in mathematical logic,
combinators have usually not been considered mainstream.
Most likely the reason is that ever since the work of Bertrand
Russell in the early 1900s it has generally been assumed that it is
desirable to distinguish a hierarchy of different types of
functions and objects—analogous to the different types of data
supported in most programming languages. But combinators
are set up not to have any restrictions associated with types.
And it turns out that among programming languages
Mathematica is almost unique in also having this same feature.
And from experience with Mathematica it is now clear that
having a symbolic system which—like combinators—has no
built-in notion of types allows great generality and flexibility.
(One can always set up the analog of types by having rules only
for expressions whose heads have particular structures.)

â Operator systems. One can generalize symbolic systems by
having rules that define transformations for any Mathematica
pattern. Often these can be thought of as one-way versions of
axioms for operator systems (see page 1172), but applied only
once per step (as does), rather than in all possible ways (as
in a multiway system)—so that the evolution is just given by

. The rule then for example
generates a balanced binary tree. The pictures below show
the patterns of opening and closing parentheses obtained
from operator system evolution rules in a few cases.

â Network analogs. The state of a symbolic system can always
be viewed as corresponding to a tree. If a more general
network is allowed then rules based on analogs of network
substitution systems from page 508 can be used. (One can
also construct an infinite tree from a general network by
following all its possible paths, as on page 277, but in most
cases there will be no simple way to apply symbolic system
rules to such a tree.)

How the Discoveries in This Chapter Were Made

â Page 109 · Repeatability and numerical analysis. The discrete
nature of the systems that I consider in most of this book
makes it almost inevitable that computer experiments on them
will be perfectly repeatable. But if, as in the past, one tries to do
computer experiments on continuous mathematical systems,
then the situation can be different. For in such cases one must
inevitably make discrete approximations for the underlying
representation of numbers and for the operations that one
performs on them. And in many practical situations, one relies
for these approximations on “machine arithmetic”—which can
differ from one computer system to another.

â Page 109 · Studying simple systems. Over the years, I have
watched with disappointment the continuing failure of most
scientists and mathematicians to grasp the idea of doing
computer experiments on the simplest possible systems.
Those with physical science backgrounds tend to add
features to their systems in an attempt to produce some kind
of presumed realism. And those with mathematical
backgrounds tend to add features to make their systems fit in
with complicated and abstract ideas—often related to
continuity—that exist in modern mathematics. The result of
all this has been that remarkably few truly meaningful
computer experiments have ended up ever being done.

expr /. lhs ! rhs

expr

expr //. rules
Map

Module[{i = 1}, expr /. lhs " rhs /; i ++ 2 1]

/.

NestList[# /. rule &, init, t] x_ ! x Æx

x_ ! x Æx x_Æy_ ! (y Æx)Æy x_Æy_ ! (y Æy)Æ (x Æx) x_Æy_ ! y Æ (x Æx)

T H E W O R L D O F S I M P L E P R O G R A M S N O T E S F O R C H A P T E R 3

899

â Page 111 · The relevance of theorems. Following traditional
mathematical thinking, one might imagine that the best way
to be certain about what could possibly happen in some
particular system would be to prove a theorem about it. But
in my experience, proofs tend to be subject to many of the
same kinds of problems as computer experiments: it is easy
to end up making implicit assumptions that can be violated
by circumstances one cannot foresee. And indeed, by now I
have come to trust the correctness of conclusions based on
simple systematic computer experiments much more than I
trust all but the simplest proofs.

â Attitudes of mathematicians. Mathematicians often seem to
feel that computer experimentation is somehow less precise
than their standard mathematical methods. It is true that in
studying questions related to continuous mathematics,
imprecise numerical approximations have often been made
when computers are used (see above). But discrete or
symbolic computations can be absolutely precise. And in a
sense presenting a particular object found by experiment
(such as a cellular automaton whose evolution shows some
particular property) can be viewed as a constructive
existence proof for such an object. In doing mathematics
there is often the idea that proofs should explain the result
they prove—and one might not think this could be achieved
if one just presents an object with certain properties. But
being able to look in detail at how such an object works will
in many cases provide a much better understanding than a
standard abstract mathematical proof. And inevitably it is
much easier to find new results by the experimental
approach than by the traditional approach based on proofs.

â History of experimental mathematics. The general idea of
finding mathematical results by doing computational
experiments has a distinguished, if not widely discussed,
history. The method was extensively used, for example, by
Carl Friedrich Gauss in the 1800s in his studies of number
theory, and presumably by Srinivasa Ramanujan in the early
1900s in coming up with many algebraic identities. The
Gibbs phenomenon in Fourier analysis was noticed in 1898
on a mechanical computer constructed by Albert Michelson.
Solitons were rediscovered in experiments done around
1954 on an early electronic computer by Enrico Fermi and
collaborators. (They had been seen in physical systems by
John Scott Russell in 1834, but had not been widely

investigated.) The chaos phenomenon was noted in a
computer experiment by Edward Lorenz in 1962 (see page
971). Universal behavior in iterated maps (see page 921) was
discovered by Mitchell Feigenbaum in 1975 by looking at
examples from an electronic calculator. Many aspects of
fractals were found by Benoit Mandelbrot in the 1970s using
computer graphics. In the 1960s and 1970s a variety of
algebraic identities were found using computer algebra,
notably by William Gosper. (Starting in the mid-1970s I
routinely did computer algebra experiments to find
formulas in theoretical physics—though I did not mention
this when presenting the formulas.) The idea that as a
matter of principle there should be truths in mathematics
that can only be reached by some form of inductive
reasoning—like in natural science—was discussed by Kurt
Gödel in the 1940s and by Gregory Chaitin in the 1970s. But
it received little attention. With the release of Mathematica in
1988, mathematical experiments began to emerge as a
standard element of practical mathematical pedagogy, and
gradually also as an approach to be tried in at least some
types of mathematical research, especially ones close to
number theory. But even now, unlike essentially all other
branches of science, mainstream mathematics continues to
be entirely dominated by theoretical rather than
experimental methods. And even when experiments are
done, their purpose is essentially always just to provide
another way to look at traditional questions in traditional
mathematical systems. What I do in this book—and started
in the early 1980s—is, however, rather different: I use
computer experiments to look at questions and systems that
can be viewed as having a mathematical character, yet have
never in the past been considered in any way by traditional
mathematics.

â Page 113 · Practicalities. The investigations described in this
chapter were done using Mathematica, mostly in 1992. For
larger searches, I sometimes created optimized C programs
that were controlled via MathLink from within Mathematica—
though with the versions of Mathematica that exist today this
would now be unnecessary. For my very largest searches, I
used Mathematica to dispatch programs to a large number of
different computers on a network, then had the computers
send me email whenever they found interesting results. (See
also page 854.)

