
EXCERPTED FROM

Elementary Arithmetic

SECTION 4.2



S Y S T E M S  B A S E D  O N  N U M B E R S C H A P T E R  4

117

0 through 9. But as the picture at the bottom of the facing page shows,

one can equally well use other bases. And in practical computers, for

example, base 2 is almost always what is used. 

So what this means is that in a computer numbers are

represented by sequences of 0’s and 1’s, much like sequences of white

and black cells in systems like cellular automata. And operations on

numbers then correspond to ways of updating sequences of 0’s and 1’s.

In traditional mathematics, the details of how operations

performed on numbers affect sequences of digits are usually considered

quite irrelevant. But what we will find in this chapter is that precisely

by looking at such details, we will be able to see more clearly how

complexity develops in systems based on numbers.

In many cases, the behavior we find looks remarkably similar to

what we saw in the previous chapter. Indeed, in the end, despite some

confusing suggestions from traditional mathematics, we will discover

that the general behavior of systems based on numbers is very similar

to the general behavior of simple programs that we have already

discussed.

Elementary Arithmetic

The operations of elementary arithmetic are so simple that it

seems impossible that they could ever lead to behavior of any great

complexity. But what we will find in this section is that in fact they can. 

To begin, consider what is perhaps the simplest conceivable

arithmetic process: start with the number 1 and then just progressively

add 1 at each of a sequence of steps.

The result of this process is to generate the successive numbers

1, 2, 3, 4, 5, 6, 7, 8, … The sizes of these numbers obviously form a

very simple progression. 

But if one looks not at these overall sizes, but rather at digit

sequences, then what one sees is considerably more complicated. And

in fact, as the picture on the right demonstrates, these successive digit

sequences form a pattern that shows an intricate nested structure.
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Digit sequences of 
successive numbers 
written in base 2. The 
overall pattern has an 
intricate nested form. 
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The pictures below show what happens if one adds a number

other than 1 at each step. Near the right-hand edge, each pattern is

somewhat different. But at an overall level, all the patterns have exactly

the same basic nested structure.

If instead of addition one uses multiplication, however, then the

results one gets can be very different. The first picture at the top of the

facing page shows what happens if one starts with 1 and then

successively multiplies by 2 at each step. 

It turns out that if one represents numbers as digit sequences in

base 2, then the operation of multiplying by 2 has a very simple effect:

it just shifts the digit sequence one place to the left, adding a 0 digit on

the right. And as a result, the overall pattern obtained by successive

multiplication by 2 has a very simple form.

n ! n+ 1 n ! n+ 2 n ! n+ 3 n ! n+ 4 n ! n+ 5 n ! n+ 6 n ! n+ 7 n ! n+ 8

Digit sequences in base 2 of numbers obtained by starting with 1 and then successively adding a
constant at each step. All these patterns ultimately have the same overall nested form.
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But if the multiplication factor at each step is 3, rather than 2,

then the pattern obtained is quite different, as the second picture above

shows. Indeed, even though the only operation used was just simple

multiplication, the final pattern obtained in this case is highly complex.

The picture on the next page shows more steps in the evolution of

the system. At a small scale, there are some obvious triangular and

other structures, but beyond these the pattern looks essentially random. 

So just as in simple programs like cellular automata, it seems

that simple systems based on numbers can also yield behavior that is

highly complex and apparently random.

But we might imagine that the complexity we see in pictures like

the one on the next page must somehow be a consequence of the fact that

we are looking at numbers in terms of their digit sequences—and would

not occur if we just looked at numbers in terms of their overall size. 

A few examples, however, will show that this is not the case. 

To begin the first example, consider what happens if one

multiplies by , or 1.5, at each step. Starting with 1, the successive

numbers that one obtains in this way are 1, , ,

, , , , …

Patterns produced by starting with the number 1, and then successively multiplying by a factor of 2, and a factor of 3. In each
case, the digit sequence of the number obtained at each step is shown in base 2. Multiplication by 2 turns out to correspond just
to shifting all digits in base 2 one position to the left, so that the overall pattern produced in this case is very simple. But
multiplication by 3 yields a much more complicated pattern, as the picture on the right shows. Note that in these pictures the
complete numbers obtained at each step correspond respectively to the successive integer powers of 2 and of 3. 

1
1 0

1 0 0
1 0 0 0

1 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

n ! 2 n 1
1 1

1 0 0 1
1 1 0 1 1

1 0 1 0 0 0 1
1 1 1 1 0 0 1 1

1 0 1 1 0 1 1 0 0 1
1 0 0 0 1 0 0 0 1 0 1 1

n ! 3 n

3�2

3�2 � 1.5 9�4 � 2.25

27�8 � 3.375 81�16 � 5.0625 243�32 � 7.59375 729�64 � 11.390625
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The first 500 powers of 3, shown in base 2. Some small-scale structure is visible, but on a larger scale the pattern seems for all practical
purposes random. Note that the pattern shown here has been truncated at the edge of the page on the left, although in fact the whole
pattern continues to expand to the left forever with an average slope of . Log[2, 3] ; 1.58
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The picture below shows the digit sequences for these numbers

given in base 2. The digits that lie directly below and to the left of the

original 1 at the top of the pattern correspond to the whole number part

of each successive number (e.g. 3 in 3.375), while the digits that lie to

the right correspond to the fractional part (e.g. 0.375 in 3.375).

And instead of looking explicitly at the complete pattern of digits,

one can consider just finding the size of the fractional part of each

successive number. These sizes are plotted at the top of the next page.

And the picture shows that they too exhibit the kind of complexity and

apparent randomness that is evident at the level of digits.

1
1 1

1 0 0 1
1 1 0 1 1

1 0 1 0 0 0 1
1 1 1 1 0 0 1 1

1 0 1 1 0 1 1 0 0 1
1 0 0 0 1 0 0 0 1 0 1 1
1 1 0 0 1 1 0 1 0 0 0 0 1

1 0 0 1 1 0 0 1 1 1 0 0 0 1 1
1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1

1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1
1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1
1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1

1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1
1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1

n�!�
3
�������
2
�n

Successive powers of 3/2, shown in base 2. Multiplication by 3/2 can be thought of as multiplication by 3 combined with division by 2.
But division by 2 just does the opposite of multiplication by 2, so in base 2 it simply shifts all digits one position to the right. The overall
pattern is thus a shifted version of the pattern shown on the facing page. 
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The example just given involves numbers with fractional parts.

But it turns out that similar phenomena can also be found in systems

that involve only whole numbers.

As a first example, consider a slight variation on the operation of

multiplying by  used above: if the number at a particular step is even

(divisible by 2), then simply multiply that number by , getting a

whole number as the result. But if the number is odd, then first add 1—

so as to get an even number—and only then multiply by .

0

0.5

1

0 50 100 150 200

Sizes of the fractional parts of successive powers of 3/2. These sizes are completely independent of what base is used to represent
the numbers. Only the dots are significant; the shading and lines between them are just included to make the plot easier to read. 

3�2

3�2

3�2

11011000110100110101001101001010000011010000000101111100110101101010010011110110
11111101000001101101011001001111000110001110111101001010110111010111010101000000
00101011111000001100010101111011000001001100011111110000101100110001101110110000
10101010110010100011000100011011010110001101001010101110101000010110101010000000
00110001101101111001100111010000101110011010100011000000110101101010000100001001
10000010000101101110010011011110010110110000111100000100111110111001101011010010
10000100111100001101101000011100110011000100100111100000101010010011011100111111
00110111100010010111011011110100010101100100011100101011011011000000000001001101
10101011010011111011010001110101110100000010111110011010010011011011111010010001
00101000010110100110000100100101001100011001011110010110011000111000100010011000
11000001000111010111110111010101100101011001000010100000010101110001111110001111
01110001011010010110010010010011110100001101111001100101010110011001111111000001
00111110110110111101111110100110001001001110111000001101111011010101000010000100
01001100111110000011111001110011111010001010111100001101110101100011011110010000
11111100010111111110101011010000010110000100110110111100000011011110010101010001
11110011001111100110100000001111101111110110000000011100001100011101011011110011
11001000010110001101011000100100011101111111010101110110010011000100110110001000
01010101010110110011100100100011111100110100110110110111010101110010011101011110

Results of starting with the number 1, then applying the following rule: if
the number at a particular step is even, multiply by 3/2; otherwise, add 1,
then multiply by 3/2. This procedure yields a succession of whole numbers
whose digit sequences in base 2 are shown at the right. The rightmost
digits obtained at each step are shown above. The digit is 0 when the
number is even and 1 when it is odd, and, as shown, the digits alternate in
a seemingly random way. It turns out that the system described here is
closely related to one that arose in studying the register machine shown
on page 100. The system here can be represented by the rule

, while the one on page 100 follows the
rule . After the first step these systems
give the same sequence of numbers, except for an overall factor of 3. 

n ! If [EvenQ[n], 3 n/2, 3 (n+ 1) /2]

n ! If [EvenQ[n], 3 n/2, (3 n+ 1) /2]

1
1 1

1 1 0
1 0 0 1
1 1 1 1

1 1 0 0 0
1 0 0 1 0 0
1 1 0 1 1 0

1 0 1 0 0 0 1
1 1 1 1 0 1 1

1 0 1 1 1 0 1 0
1 0 0 0 1 0 1 1 1
1 1 0 1 0 0 1 0 0

1 0 0 1 1 1 0 1 1 0
1 1 1 0 1 1 0 0 0 1
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This procedure is always guaranteed to give a whole number. And

starting with 1, the sequence of numbers one gets is 1, 3, 6, 9, 15, 24, 36,

54, 81, 123, 186, 279, 420, 630, 945, 1419, 2130, 3195, 4794, … 

Some of these numbers are even, while some are odd. But as the

results at the bottom of the facing page illustrate, the sequence of which

numbers are even and which are odd seems to be completely random.

Despite this randomness, however, the overall sizes of the

numbers obtained still grow in a rather regular way. But by changing

the procedure just slightly, one can get much less regular growth. 

As an example, consider the following procedure: if the number

obtained at a particular step is even, then multiply this number by ;

otherwise, add 1 and then multiply the result by .

If one starts with 1, then this procedure simply gives 1 at every

step. And indeed with many starting numbers, the procedure yields

purely repetitive behavior. But as the picture below shows, it can also

give more complicated behavior. 

Starting for example with the number 6, the sizes of the numbers

obtained on successive steps show a generally increasing trend, but

there are considerable fluctuations, and these fluctuations seem to be

essentially random. Indeed, even after a million steps, when the

5�2

1�2

1 2 3 4 5 6 7 8 9 10

Results of applying the rule , starting with different initial choices of
. In many cases, the behavior obtained is purely repetitive. But in some cases it is not. 

n ! If [EvenQ[n], 5 n/2, (n+ 1) /2]

n
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number obtained has 48,554 (base 10) digits, there is still no sign of

repetition or of any other significant regularity.

So even if one just looks at overall sizes of whole numbers it is

still possible to get great complexity in systems based on numbers. 

But while complexity is visible at this level, it is usually

necessary to go to a more detailed level in order to get any real idea of

why it occurs. And indeed what we have found in this section is that if

one looks at digit sequences, then one sees complex patterns that are

remarkably similar to those produced by systems like cellular automata.

The underlying rules for systems like cellular automata are

however usually rather different from those for systems based on

numbers. The main point is that the rules for cellular automata are

always local: the new color of any particular cell depends only on the

previous color of that cell and its immediate neighbors. But in systems

based on numbers there is usually no such locality. 

One knows from hand calculation that even an operation such as

addition can lead to “carry” digits which propagate arbitrarily far to the

left. And in fact most simple arithmetic operations have the property

0 5 10 15 20 25 30

10

100

1000

10000

0 200 400 600 800 1000

The results of following the same rule as on the previous page, starting from the value 6. Plotted on the right are the
overall sizes of the numbers obtained for the first thousand steps. The plot is on a logarithmic scale, so the height of each
point is essentially the length of the digit sequence for the number that it represents—or the width of the row on the left. 
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that a digit which appears at a particular position in their result can

depend on digits that were originally far away from it.

But despite fundamental differences like this in underlying rules,

the overall behavior produced by systems based on numbers is still very

similar to what one sees for example in cellular automata. 

So just like for the various kinds of programs that we discussed in

the previous chapter, the details of underlying rules again do not seem

to have a crucial effect on the kinds of behavior that can occur.

Indeed, despite the lack of locality in their underlying rules, the

pictures below and on the pages that follow show that it is even

possible to find systems based on numbers that exhibit something like

the localized structures that we saw in cellular automata on page 32. 

1 0 0 0 0
1 0 0 0 1

1 0 0 0 1 0
1 1 0 0 1 1

1 1 0 0 1 1 0
1 0 0 1 1 0 0 1

1 0 0 1 1 0 0 1 0
1 1 1 0 0 1 0 1 1

1 1 0 1 1 1 0 0 1 0
1 0 0 1 0 1 0 1 1 0 1

1 0 1 0 0 1 0 1 0 1 1 0
1 0 0 0 0 1 1 1 1 1 0 1 1

1 0 1 1 0 0 1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 0 1 0 1 0 0 1

1 1 0 0 0 0 1 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 0 1 1 0 0 0 1 1

An example of a system defined by the
following rule: at each step, take the number
obtained at that step and write its base 2
digits in reverse order, then add the resulting
number to the original one. For many
possible starting numbers, the behavior
obtained is very simple. This picture shows
what happens when one starts with the
number 16. After 180 steps, it turns out that
all that survives are a few objects that one
can view as localized structures. 
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A thousand steps in
the evolution of a
system with the same
rule as on the previous
page, but now starting
with the number 512.
Localized structures are
visible, but the overall
pattern never seems to
take on any kind of
simple repetitive form. 



S Y S T E M S  B A S E D  O N  N U M B E R S C H A P T E R  4

127

Continuation of the
pattern on the facing
page, starting at the
millionth step. The
picture shows the
right-hand edge of the
pattern; the complete
pattern extends about
700 times the width of
the page to the left. 




