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Partial Differential Equations

By introducing continuous cellular automata with a continuous range

of gray levels, we have successfully removed some of the discreteness

that exists in ordinary cellular automata. But there is nevertheless

much discreteness that remains: for a continuous cellular automaton is

still made up of discrete cells that are updated in discrete time steps.

So can one in fact construct systems in which there is absolutely

no such discreteness? The answer, it turns out, is that at least in

principle one can, although to do so requires a somewhat higher level of

mathematical abstraction than has so far been necessary in this book.

The basic idea is to imagine that a quantity such as gray level can

be set up to vary continuously in space and time. And what this means

is that instead of just having gray levels in discrete cells at discrete time

steps, one supposes that there exists a definite gray level at absolutely

every point in space and every moment in time—as if one took the limit

of an infinite collection of cells and time steps, with each cell being an

infinitesimal size, and each time step lasting an infinitesimal time.

But how does one give rules for the evolution of such a system?

Having no explicit time steps to work with, one must instead just

specify the rate at which the gray level changes with time at every point

in space. And typically one gives this rate as a simple formula that

depends on the gray level at each point in space, and on the rate at

which that gray level changes with position.

Such rules are known in mathematics as partial differential

equations, and in fact they have been widely studied for about two

hundred years. Indeed, it turns out that almost all the traditional

mathematical models that have been used in physics and other areas of

science are ultimately based on partial differential equations. Thus, for

example, Maxwell’s equations for electromagnetism, Einstein’s

equations for gravity, Schrödinger’s equation for quantum mechanics

and the Hodgkin-Huxley equation for the electrochemistry of nerve

cells are all examples of partial differential equations.

It is in a sense surprising that systems which involve such a high

level of mathematical abstraction should have become so widely used
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in practice. For as we shall see later in this book, it is certainly not that

nature fundamentally follows these abstractions.

And I suspect that in fact the current predominance of partial

differential equations is in many respects a historical accident—and

that had computer technology been developed earlier in the history of

mathematics, the situation would probably now be very different.

But particularly before computers, the great attraction of partial

differential equations was that at least in simple cases explicit

mathematical formulas could be found for their behavior. And this

meant that it was possible to work out, for example, the gray level at a

particular point in space and time just by evaluating a single

mathematical formula, without having in a sense to follow the

complete evolution of the partial differential equation.

The pictures on the facing page show three common partial

differential equations that have been studied over the years. 

The first picture shows the diffusion equation, which can be

viewed as a limiting case of the continuous cellular automaton on page

156. Its behavior is always very simple: any initial gray progressively

diffuses away, so that in the end only uniform white is left.

The second picture shows the wave equation. And with this

equation, the initial lump of gray shown just breaks into two identical

pieces which propagate to the left and right without change.

The third picture shows the sine-Gordon equation. This leads to

slightly more complicated behavior than the other equations—though

the pattern it generates still has a simple repetitive form.

Considering the amount of mathematical work that has been

done on partial differential equations, one might have thought that a

vast range of different equations would by now have been studied. But

in fact almost all the work—at least in one dimension—has

concentrated on just the three specific equations on the facing page,

together with a few others that are essentially equivalent to them. 

And as we have seen, these equations yield only simple behavior.

So is it in fact possible to get more complicated behavior in

partial differential equations? The results in this book on other kinds of

systems strongly suggest that it should be. But traditional
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diffusion equation: $t u[t, x] Ð 1/4 $xx u[t, x]

wave equation: $tt u[t, x] Ð $xx u[t, x]

sine-Gordon soliton equation: $tt u[t, x] Ð $xx u[t, x] + Sin[u[t, x]]

Three partial differential equations that have historically been studied extensively. Just like in other pictures in this book, position goes
across the page, and time down the page. In each equation  is the gray level at a particular point,  is the rate of change (derivative)
of the gray level with time, and  is the rate of change of that rate of change (second derivative). Similarly,  is the rate of change
with position in space, and  is the rate of change of that rate of change. On this page and the ones that follow the initial
conditions used are , . 

u $t u

$tt u $x u

$xx u

u = 4-x
2

$t u = 0
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mathematical methods give very little guidance about how to find such

behavior. Indeed, it seems that the best approach is essentially just to

search through many different partial differential equations, looking for

ones that turn out to show complex behavior.

But an immediate difficulty is that there is no obvious way to

sample possible partial differential equations. In discrete systems such

as cellular automata there are always a discrete set of possible rules. But

in partial differential equations any mathematical formula can appear.

Nevertheless, by representing formulas as symbolic expressions

with discrete sets of possible components, one can devise at least some

schemes for sampling partial differential equations.

But even given a particular partial differential equation, there is

no guarantee that the equation will yield self-consistent results. Indeed,

for a very large fraction of randomly chosen partial differential equations

what one finds is that after just a small amount of time, the gray level

one gets either becomes infinitely large or starts to vary infinitely

quickly in space or time. And whenever such phenomena occur, the

original equation can no longer be used to determine future behavior.

But despite these difficulties I was eventually able to find the

partial differential equations shown on the next two pages. 

The mathematical statement of these equations is fairly simple.

But as the pictures show, their behavior is highly complex. 

Indeed, strangely enough, even though the underlying equations

are continuous, the patterns they produce seem to involve patches that

have a somewhat discrete structure.

But the main point that the pictures on the next two pages make

is that the kind of complex behavior that we have seen in this book is in

no way restricted to systems that are based on discrete elements. It is

certainly much easier to find and to study such behavior in these

discrete systems, but from what we have learned in this section, we

now know that the same kind of behavior can also occur in completely

continuous systems such as partial differential equations.
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$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ u[t, x])

$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ 2 u[t, x])

$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ 4 u[t, x])

Examples of partial differential equations I have found that have more complicated behavior. The background in each case purely is
repetitive, but the main part of the pattern is complex, and reminiscent of what is produced by continuous cellular automata and many
other kinds of systems discussed in this book.
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$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ u[t, x])

$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ 2 u[t, x])

$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ 4 u[t, x])




