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4
Systems Based on Numbers 

The Notion of Numbers

Much of science has in the past ultimately been concerned with trying

to find ways to describe natural systems in terms of numbers.

Yet so far in this book I have said almost nothing about numbers.

The purpose of this chapter, however, is to investigate a range of

systems that are based on numbers, and to see how their behavior

compares with what we have found in other kinds of systems.

The main reason that systems based on numbers have been so

popular in traditional science is that so much mathematics has been

developed for dealing with them. Indeed, there are certain kinds of

systems based on numbers whose behavior has been analyzed almost

completely using mathematical methods such as calculus.

Inevitably, however, when such complete analysis is possible, the

final behavior that is found is fairly simple. 

So can systems that are based on numbers ever in fact yield

complex behavior? Looking at most textbooks of science and

mathematics, one might well conclude that they cannot. But what one

must realize is that the systems discussed in these textbooks are usually

ones that are specifically chosen to be amenable to fairly complete

analysis, and whose behavior is therefore necessarily quite simple.

And indeed, as we shall see in this chapter, if one ignores the

need for analysis and instead just looks at the results of computer
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experiments, then one quickly finds that even rather simple systems

based on numbers can lead to highly complex behavior.

But what is the origin of this complexity? And how does it relate

to the complexity we have seen in systems like cellular automata?

One might think that with all the mathematics developed for

studying systems based on numbers it would be easy to answer these

kinds of questions. But in fact traditional mathematics seems for the

most part to lead to more confusion than help.

One basic problem is that numbers are handled very differently in

traditional mathematics from the way they are handled in computers

and computer programs. For in a sense, traditional mathematics makes

a fundamental idealization: it assumes that numbers are elementary

objects whose only relevant attribute is their size. But in a computer,

numbers are not elementary objects. Instead, they must be represented

explicitly, typically by giving a sequence of digits.

The idea of representing a number by a sequence of digits is

familiar from everyday life: indeed, our standard way of writing

numbers corresponds exactly to giving their digit sequences in base 10.

What base 10 means is that for each digit there are 10 possible choices:

9

9 × 1

2

2 × 10

8

8 × 100

3

3 × 1000 +++3829 =

(base 10)

4

4 × 1

2

2 × 9

2

2 × 81

5

5 × 729 +++3829 =

(base 9)

5

5 × 1

6

6 × 8

3

3 × 64

7

7 × 512 +++3829 =

(base 8)

0

0 × 1

1

1 × 7

1

1 × 49

4

4 × 343

1

1 × 2401 ++++3829 =

(base 7)

1

1 × 1

2

2 × 6

4

4 × 36

5

5 × 216

2

2 × 1296 ++++3829 =

(base 6)

4

4 × 1

0

0 × 5

3

3 × 25

0

0 × 125

1

1 × 625

1

1 × 3125 +++++3829 =

(base 5)

1

1 × 1

1

1 × 4

3

3 × 16

3

3 × 64

2

2 × 256

3

3 × 1024 +++++3829 =

(base 4)

1

1 × 1

1

1 × 3

2

2 × 9

0

0 × 27

2

2 × 81

0

0 × 243

2

2 × 729

1

1 × 2187 +++++++3829 =

(base 3)

1

1 × 1

0

0 × 2

1

1 × 4

0

0 × 8

1

1 × 16

1

1 × 32

1

1 × 64

1

1 × 128

0

0 × 256

1

1 × 512

1

1 × 1024

1

1 × 2048 +++++++++++3829 =

(base 2)

Representations of the number 3829 in various bases. The
most familiar case is base 10, where starting from the right
successive digits correspond to units, tens, hundreds and so
on. In base 10, there are 10 possible digits: 0 through 9. In
other bases, there are a different number of possible digits. In
base 2, as used in practical computers, there are just two
possible digits: 0 and 1. And in this base, successive digits
starting from the right have coefficients , , ,

, etc.
1 2 4 = 272

8 = 27272
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0 through 9. But as the picture at the bottom of the facing page shows,

one can equally well use other bases. And in practical computers, for

example, base 2 is almost always what is used. 

So what this means is that in a computer numbers are

represented by sequences of 0’s and 1’s, much like sequences of white

and black cells in systems like cellular automata. And operations on

numbers then correspond to ways of updating sequences of 0’s and 1’s.

In traditional mathematics, the details of how operations

performed on numbers affect sequences of digits are usually considered

quite irrelevant. But what we will find in this chapter is that precisely

by looking at such details, we will be able to see more clearly how

complexity develops in systems based on numbers.

In many cases, the behavior we find looks remarkably similar to

what we saw in the previous chapter. Indeed, in the end, despite some

confusing suggestions from traditional mathematics, we will discover

that the general behavior of systems based on numbers is very similar

to the general behavior of simple programs that we have already

discussed.

Elementary Arithmetic

The operations of elementary arithmetic are so simple that it

seems impossible that they could ever lead to behavior of any great

complexity. But what we will find in this section is that in fact they can. 

To begin, consider what is perhaps the simplest conceivable

arithmetic process: start with the number 1 and then just progressively

add 1 at each of a sequence of steps.

The result of this process is to generate the successive numbers

1, 2, 3, 4, 5, 6, 7, 8, … The sizes of these numbers obviously form a

very simple progression. 

But if one looks not at these overall sizes, but rather at digit

sequences, then what one sees is considerably more complicated. And

in fact, as the picture on the right demonstrates, these successive digit

sequences form a pattern that shows an intricate nested structure.

1
1 0
1 1

1 0 0
1 0 1
1 1 0
1 1 1

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

1 0 0 0 0 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 0 1 1
1 0 0 1 0 0
1 0 0 1 0 1
1 0 0 1 1 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 0 1
1 0 1 0 1 0
1 0 1 0 1 1
1 0 1 1 0 0
1 0 1 1 0 1
1 0 1 1 1 0
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 0 1 1
1 1 0 1 0 0
1 1 0 1 0 1
1 1 0 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 1
1 1 1 0 1 0
1 1 1 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
1 1 1 1 1 0
1 1 1 1 1 1

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:

Digit sequences of 
successive numbers 
written in base 2. The 
overall pattern has an 
intricate nested form. 
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The pictures below show what happens if one adds a number

other than 1 at each step. Near the right-hand edge, each pattern is

somewhat different. But at an overall level, all the patterns have exactly

the same basic nested structure.

If instead of addition one uses multiplication, however, then the

results one gets can be very different. The first picture at the top of the

facing page shows what happens if one starts with 1 and then

successively multiplies by 2 at each step. 

It turns out that if one represents numbers as digit sequences in

base 2, then the operation of multiplying by 2 has a very simple effect:

it just shifts the digit sequence one place to the left, adding a 0 digit on

the right. And as a result, the overall pattern obtained by successive

multiplication by 2 has a very simple form.

n ! n+ 1 n ! n+ 2 n ! n+ 3 n ! n+ 4 n ! n+ 5 n ! n+ 6 n ! n+ 7 n ! n+ 8

Digit sequences in base 2 of numbers obtained by starting with 1 and then successively adding a
constant at each step. All these patterns ultimately have the same overall nested form.
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But if the multiplication factor at each step is 3, rather than 2,

then the pattern obtained is quite different, as the second picture above

shows. Indeed, even though the only operation used was just simple

multiplication, the final pattern obtained in this case is highly complex.

The picture on the next page shows more steps in the evolution of

the system. At a small scale, there are some obvious triangular and

other structures, but beyond these the pattern looks essentially random. 

So just as in simple programs like cellular automata, it seems

that simple systems based on numbers can also yield behavior that is

highly complex and apparently random.

But we might imagine that the complexity we see in pictures like

the one on the next page must somehow be a consequence of the fact that

we are looking at numbers in terms of their digit sequences—and would

not occur if we just looked at numbers in terms of their overall size. 

A few examples, however, will show that this is not the case. 

To begin the first example, consider what happens if one

multiplies by , or 1.5, at each step. Starting with 1, the successive

numbers that one obtains in this way are 1, , ,

, , , , …

Patterns produced by starting with the number 1, and then successively multiplying by a factor of 2, and a factor of 3. In each
case, the digit sequence of the number obtained at each step is shown in base 2. Multiplication by 2 turns out to correspond just
to shifting all digits in base 2 one position to the left, so that the overall pattern produced in this case is very simple. But
multiplication by 3 yields a much more complicated pattern, as the picture on the right shows. Note that in these pictures the
complete numbers obtained at each step correspond respectively to the successive integer powers of 2 and of 3. 

1
1 0

1 0 0
1 0 0 0

1 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

n ! 2 n 1
1 1

1 0 0 1
1 1 0 1 1

1 0 1 0 0 0 1
1 1 1 1 0 0 1 1

1 0 1 1 0 1 1 0 0 1
1 0 0 0 1 0 0 0 1 0 1 1

n ! 3 n

3�2

3�2 � 1.5 9�4 � 2.25

27�8 � 3.375 81�16 � 5.0625 243�32 � 7.59375 729�64 � 11.390625
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The first 500 powers of 3, shown in base 2. Some small-scale structure is visible, but on a larger scale the pattern seems for all practical
purposes random. Note that the pattern shown here has been truncated at the edge of the page on the left, although in fact the whole
pattern continues to expand to the left forever with an average slope of . Log[2, 3] ; 1.58
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The picture below shows the digit sequences for these numbers

given in base 2. The digits that lie directly below and to the left of the

original 1 at the top of the pattern correspond to the whole number part

of each successive number (e.g. 3 in 3.375), while the digits that lie to

the right correspond to the fractional part (e.g. 0.375 in 3.375).

And instead of looking explicitly at the complete pattern of digits,

one can consider just finding the size of the fractional part of each

successive number. These sizes are plotted at the top of the next page.

And the picture shows that they too exhibit the kind of complexity and

apparent randomness that is evident at the level of digits.

1
1 1

1 0 0 1
1 1 0 1 1

1 0 1 0 0 0 1
1 1 1 1 0 0 1 1

1 0 1 1 0 1 1 0 0 1
1 0 0 0 1 0 0 0 1 0 1 1
1 1 0 0 1 1 0 1 0 0 0 0 1

1 0 0 1 1 0 0 1 1 1 0 0 0 1 1
1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1

1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1
1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1
1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1

1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1
1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1

n�!�
3
�������
2
�n

Successive powers of 3/2, shown in base 2. Multiplication by 3/2 can be thought of as multiplication by 3 combined with division by 2.
But division by 2 just does the opposite of multiplication by 2, so in base 2 it simply shifts all digits one position to the right. The overall
pattern is thus a shifted version of the pattern shown on the facing page. 
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The example just given involves numbers with fractional parts.

But it turns out that similar phenomena can also be found in systems

that involve only whole numbers.

As a first example, consider a slight variation on the operation of

multiplying by  used above: if the number at a particular step is even

(divisible by 2), then simply multiply that number by , getting a

whole number as the result. But if the number is odd, then first add 1—

so as to get an even number—and only then multiply by .

0

0.5

1

0 50 100 150 200

Sizes of the fractional parts of successive powers of 3/2. These sizes are completely independent of what base is used to represent
the numbers. Only the dots are significant; the shading and lines between them are just included to make the plot easier to read. 

3�2

3�2

3�2

11011000110100110101001101001010000011010000000101111100110101101010010011110110
11111101000001101101011001001111000110001110111101001010110111010111010101000000
00101011111000001100010101111011000001001100011111110000101100110001101110110000
10101010110010100011000100011011010110001101001010101110101000010110101010000000
00110001101101111001100111010000101110011010100011000000110101101010000100001001
10000010000101101110010011011110010110110000111100000100111110111001101011010010
10000100111100001101101000011100110011000100100111100000101010010011011100111111
00110111100010010111011011110100010101100100011100101011011011000000000001001101
10101011010011111011010001110101110100000010111110011010010011011011111010010001
00101000010110100110000100100101001100011001011110010110011000111000100010011000
11000001000111010111110111010101100101011001000010100000010101110001111110001111
01110001011010010110010010010011110100001101111001100101010110011001111111000001
00111110110110111101111110100110001001001110111000001101111011010101000010000100
01001100111110000011111001110011111010001010111100001101110101100011011110010000
11111100010111111110101011010000010110000100110110111100000011011110010101010001
11110011001111100110100000001111101111110110000000011100001100011101011011110011
11001000010110001101011000100100011101111111010101110110010011000100110110001000
01010101010110110011100100100011111100110100110110110111010101110010011101011110

Results of starting with the number 1, then applying the following rule: if
the number at a particular step is even, multiply by 3/2; otherwise, add 1,
then multiply by 3/2. This procedure yields a succession of whole numbers
whose digit sequences in base 2 are shown at the right. The rightmost
digits obtained at each step are shown above. The digit is 0 when the
number is even and 1 when it is odd, and, as shown, the digits alternate in
a seemingly random way. It turns out that the system described here is
closely related to one that arose in studying the register machine shown
on page 100. The system here can be represented by the rule

, while the one on page 100 follows the
rule . After the first step these systems
give the same sequence of numbers, except for an overall factor of 3. 

n ! If [EvenQ[n], 3 n/2, 3 (n+ 1) /2]

n ! If [EvenQ[n], 3 n/2, (3 n+ 1) /2]

1
1 1

1 1 0
1 0 0 1
1 1 1 1

1 1 0 0 0
1 0 0 1 0 0
1 1 0 1 1 0

1 0 1 0 0 0 1
1 1 1 1 0 1 1

1 0 1 1 1 0 1 0
1 0 0 0 1 0 1 1 1
1 1 0 1 0 0 1 0 0

1 0 0 1 1 1 0 1 1 0
1 1 1 0 1 1 0 0 0 1
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This procedure is always guaranteed to give a whole number. And

starting with 1, the sequence of numbers one gets is 1, 3, 6, 9, 15, 24, 36,

54, 81, 123, 186, 279, 420, 630, 945, 1419, 2130, 3195, 4794, … 

Some of these numbers are even, while some are odd. But as the

results at the bottom of the facing page illustrate, the sequence of which

numbers are even and which are odd seems to be completely random.

Despite this randomness, however, the overall sizes of the

numbers obtained still grow in a rather regular way. But by changing

the procedure just slightly, one can get much less regular growth. 

As an example, consider the following procedure: if the number

obtained at a particular step is even, then multiply this number by ;

otherwise, add 1 and then multiply the result by .

If one starts with 1, then this procedure simply gives 1 at every

step. And indeed with many starting numbers, the procedure yields

purely repetitive behavior. But as the picture below shows, it can also

give more complicated behavior. 

Starting for example with the number 6, the sizes of the numbers

obtained on successive steps show a generally increasing trend, but

there are considerable fluctuations, and these fluctuations seem to be

essentially random. Indeed, even after a million steps, when the

5�2

1�2

1 2 3 4 5 6 7 8 9 10

Results of applying the rule , starting with different initial choices of
. In many cases, the behavior obtained is purely repetitive. But in some cases it is not. 

n ! If [EvenQ[n], 5 n/2, (n+ 1) /2]

n
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number obtained has 48,554 (base 10) digits, there is still no sign of

repetition or of any other significant regularity.

So even if one just looks at overall sizes of whole numbers it is

still possible to get great complexity in systems based on numbers. 

But while complexity is visible at this level, it is usually

necessary to go to a more detailed level in order to get any real idea of

why it occurs. And indeed what we have found in this section is that if

one looks at digit sequences, then one sees complex patterns that are

remarkably similar to those produced by systems like cellular automata.

The underlying rules for systems like cellular automata are

however usually rather different from those for systems based on

numbers. The main point is that the rules for cellular automata are

always local: the new color of any particular cell depends only on the

previous color of that cell and its immediate neighbors. But in systems

based on numbers there is usually no such locality. 

One knows from hand calculation that even an operation such as

addition can lead to “carry” digits which propagate arbitrarily far to the

left. And in fact most simple arithmetic operations have the property

0 5 10 15 20 25 30

10

100

1000

10000

0 200 400 600 800 1000

The results of following the same rule as on the previous page, starting from the value 6. Plotted on the right are the
overall sizes of the numbers obtained for the first thousand steps. The plot is on a logarithmic scale, so the height of each
point is essentially the length of the digit sequence for the number that it represents—or the width of the row on the left. 
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that a digit which appears at a particular position in their result can

depend on digits that were originally far away from it.

But despite fundamental differences like this in underlying rules,

the overall behavior produced by systems based on numbers is still very

similar to what one sees for example in cellular automata. 

So just like for the various kinds of programs that we discussed in

the previous chapter, the details of underlying rules again do not seem

to have a crucial effect on the kinds of behavior that can occur.

Indeed, despite the lack of locality in their underlying rules, the

pictures below and on the pages that follow show that it is even

possible to find systems based on numbers that exhibit something like

the localized structures that we saw in cellular automata on page 32. 

1 0 0 0 0
1 0 0 0 1

1 0 0 0 1 0
1 1 0 0 1 1

1 1 0 0 1 1 0
1 0 0 1 1 0 0 1

1 0 0 1 1 0 0 1 0
1 1 1 0 0 1 0 1 1

1 1 0 1 1 1 0 0 1 0
1 0 0 1 0 1 0 1 1 0 1

1 0 1 0 0 1 0 1 0 1 1 0
1 0 0 0 0 1 1 1 1 1 0 1 1

1 0 1 1 0 0 1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 0 1 0 1 0 0 1

1 1 0 0 0 0 1 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 0 1 1 0 0 0 1 1

An example of a system defined by the
following rule: at each step, take the number
obtained at that step and write its base 2
digits in reverse order, then add the resulting
number to the original one. For many
possible starting numbers, the behavior
obtained is very simple. This picture shows
what happens when one starts with the
number 16. After 180 steps, it turns out that
all that survives are a few objects that one
can view as localized structures. 



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

126

A thousand steps in
the evolution of a
system with the same
rule as on the previous
page, but now starting
with the number 512.
Localized structures are
visible, but the overall
pattern never seems to
take on any kind of
simple repetitive form. 
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Continuation of the
pattern on the facing
page, starting at the
millionth step. The
picture shows the
right-hand edge of the
pattern; the complete
pattern extends about
700 times the width of
the page to the left. 
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Recursive Sequences 

In the previous section, we saw that it is possible to get behavior

of considerable complexity just by applying a variety of operations

based on simple arithmetic. In this section what I will show is that with

the appropriate setup just addition and subtraction turn out to be in a

sense the only operations that one needs.

The basic idea is to consider a sequence of numbers in which

there is a definite rule for getting the next number in the sequence from

previous ones. It is convenient to refer to the first number in each

sequence as , the second as , and so on, so that the th number is

denoted . And with this notation, what the rule does is to specify

how  should be calculated from previous numbers in the sequence. 

In the simplest cases,  depends only on the number

immediately before it in the sequence, denoted . But it is also

possible to set up rules in which  depends not only on , but

also on , as well as on numbers still earlier in the sequence.

The table below gives results obtained with a few specific rules. In

all the cases shown, these results are quite simple, consisting of

sequences that increase uniformly or fluctuate in a purely repetitive way.

f �1� f �2� n

f �n�

f �n�

f �n�

f �n � 1�

f �n� f �n � 1�

f �n � 2�

f [n] = 1+ f [n - 1], f [1] = 1

(a)� 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ?

f [n] = 1 - f [n - 1], f [1] = 1

(b)� 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ?

f [n] = 2 f [n - 1], f [1] = 1

(c)� 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 ?

f [n] = f [n - 1] + f [n - 2], f [1] = 1, f [2] = 1

(d)� 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 ?

f [n] = f [n - 1] - f [n - 2], f [1] = 1, f [2] = 1

(e)� 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 ?

f [n] = -f [n - 1] + f [n - 2], f [1] = 1, f [2] = 1

(f)� 1 1 0 1 -1 2 -3 5 -8 13 -21 34 -55 89 -144 233 -377 610 -987 1597 -2584 4181 -6765 10946 -17711 28657 -46368 ?

Examples of some simple recursive sequences. The th element in each sequence is denoted , and the rule specifies how
this element is determined from previous ones. With all the rules shown here, successive elements either increase smoothly or
fluctuate in a purely repetitive way. Sequence (c) is the powers of two; (d) is the so-called Fibonacci sequence, related to powers
of the golden ratio . All rules of the kind shown here lead to sequences where  can be expressed in terms
of a simple sum of powers of the form . 

n f[n]

(1+
�!!!!

5 ) /2 ; 1.618 f[n]

an



S Y S T E M S  B A S E D  O N  N U M B E R S C H A P T E R  4

129

But it turns out that with slightly more complicated rules it is

possible to get much more complicated behavior. The key idea is to

consider rules which look at numbers that are not just a fixed distance

back in the sequence. And what this means is that instead of depending

only on quantities like  and , the rule for  can also

for example depend on a quantity like .

There is some subtlety here because in the abstract nothing

guarantees that  will necessarily be a positive number. And

if it is not, then results obtained by applying the rule can involve

meaningless quantities such as ,  and . 

f �n � 1� f �n � 2� f �n�

f �n � f �n � 1��

n � f �n � 1�

f �0� f ��1� f ��2�

f [n] = 1+ f [n - f [n - 1]], f [1] = 1

(a)� 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 ?

f [n] = 2 + f [n - f [n - 1]], f [1] = 1, f [2] = 1

(b)� 1 1 3 3 3 5 3 5 5 5 7 5 7 5 7 7 7 9 7 9 7 9 7 9 9 9 11 9 11 9 11 9 11 9 11 11 11 13 11 13 11 13 11 13 ?

f [n] = f [f [n - 1]] + f [n - f [n - 1]], f [1] = 1, f [2] = 1

(c)� 1 1 2 2 3 4 4 4 5 6 7 7 8 8 8 8 9 10 11 12 12 13 14 14 15 15 15 16 16 16 16 16 17 18 19 20 21 21 22 23 ?

f [n] = f [n - f [n - 1]] + f [n - f [n - 2] - 1], f [1] = 1, f [2] = 1

(d)� 1 1 2 2 3 4 4 4 5 6 6 7 8 8 8 8 9 10 10 11 12 12 12 13 14 14 15 16 16 16 16 16 17 18 18 19 20 20 20 21 ?

f [n] = f [n - f [n - 1]] + f [n - f [n - 2]], f [1] = 1, f [2] = 1

(e)� 1 1 2 3 3 4 5 5 6 6 6 8 8 8 10 9 10 11 11 12 12 12 12 16 14 14 16 16 16 16 20 17 17 20 21 19 20 22 21 22 ?

f [n] = f [n - f [n - 1] - 1] + f [n - f [n - 2] - 1], f [1] = 1, f [2] = 1

(f)� 1 1 2 2 2 4 3 4 4 4 8 5 5 8 8 6 8 12 8 11 9 9 10 13 16 9 12 20 10 12 23 12 15 21 13 17 18 19 19 22 21 19 ?

f [n] = f [f [n - 1]] + f [n - f [n - 2] - 1], f [1] = 1, f [2] = 1

(g)� 1 1 2 2 2 3 4 4 4 4 5 6 7 8 8 8 8 8 8 9 10 10 10 11 13 15 15 14 15 16 16 16 16 16 16 16 17 18 18 18 18 ?

f [n] = f [f [n - 1]] + f [n - 2 f [n - 1] + 1], f [1] = 1, f [2] = 1

(h)� 1 1 2 2 2 3 3 4 3 4 4 4 5 4 6 5 6 6 7 6 7 6 7 7 7 8 8 9 7 9 7 10 8 11 8 11 9 10 10 11 10 11 10 11 11 ?
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Examples of sequences generated by rules that do not depend only on elements a fixed distance back. Most such rules eventually
end up involving meaningless quantities such as  and , but the particular rules shown here all avoid this problem. f[0] f[-1]
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(c) f [n] = �f [f [n�1]]+f[n�f [n�1]]� ( f [n]�n/ 2 shown)
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(d) f [n] = �f [n�f [n�1]]+f[n�f [n�2n]�1]� ( f [n]�n/ 2 shown)
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(f ) f [n] = �f [n�f [n�1]�1]+f[n�f [n]�2]�1]� ( f [n]�n/ 2 shown)
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(g) f [n] = �f [f [n�1]]+f[n�f [n�2]�1]� ( f [n]�n/ 2 shown)
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(h) f [n] = �f [f [n�1]]+f[n�2f[n�1]+1] �( f [n]�0.42 n0.818 shown)

Fluctuations in the overall increase of sequences from the previous page. In cases (c) and (d), the fluctuations have a regular nested
form, and turn out to be directly related to the base 2 digit sequence of . In the other cases, the fluctuations are more
complicated, and seem in many respects random. All the rules shown start with . 

n

f[1] = f[2] = 1
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For the vast majority of rules written down at random, such

problems do indeed occur. But it is possible to find rules in which they

do not, and the pictures on the previous two pages show a few examples

I have found of such rules. In cases (a) and (b), the behavior is fairly

simple. But in the other cases, it is considerably more complicated.

There is a steady overall increase, but superimposed on this

increase are fluctuations, as shown in the pictures on the facing page.

In cases (c) and (d), these fluctuations turn out to have a very

regular nested form. But in the other cases, the fluctuations seem

instead in many respects random. Thus in case (f), for example, the

number of positive and negative fluctuations appears on average to be

equal even after a million steps.

But in a sense one of the most surprising features of the facing

page is that the fluctuations it shows are so violent. One might have

thought that in going say from  to  there would only ever

be a small change. After all, between  and  there is only a

0.05% change in the size of .

But much as we saw in the previous section it turns out that it is

not so much the size of  that seems to matter as various aspects of its

representation. And indeed, in cases (c) and (d), for example, it so

happens that there is a direct relationship between the fluctuations in

 and the base 2 digit sequence of .

In case (d), the fluctuation in each  turns out to be essentially

just the number of 1’s that occur in the base 2 digit sequence for . And

in case (c), the fluctuations are determined by the total number of 1’s

that occur in the digit sequences of all numbers less than . 

There are no such simple relationships for the other rules shown

on the facing page. But in general one suspects that all these rules can

be thought of as being like simple computer programs that take some

representation of  as their input.

And what we have discovered in this section is that even though

the rules ultimately involve only addition and subtraction, they

nevertheless correspond to programs that are capable of producing

behavior of great complexity. 

f �2000� f �2001�

n � 2000 2001

n

n

f �n� n

f �n�

n

n

n
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The Sequence of Primes 

In the sequence of all possible numbers 1, 2, 3, 4, 5, 6, 7, 8, … most are

divisible by others—so that for example 6 is divisible by 2 and 3. But

this is not true of every number. And so for example 5 and 7 are not

divisible by any other numbers (except trivially by 1). And in fact it has

been known for more than two thousand years that there are an infinite

sequence of so-called prime numbers which are not divisible by other

numbers, the first few being 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, …

The picture below shows a simple rule by which such primes can

be obtained. The idea is to start out on the top line with all possible

numbers. Then on the second line, one removes all numbers larger than 2

that are divisible by 2. On the third line one removes numbers divisible

by 3, and so on. As one goes on, fewer and fewer numbers remain. But

some numbers always remain, and these numbers are exactly the primes.

Given the simplicity of this rule, one might imagine that the

sequence of primes it generates would also be correspondingly simple.

But just as in so many other examples in this book, in fact it is not. And

indeed the plots on the facing page show various features of this

sequence which indicate that it is in many respects quite random.

2
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5

6

7

8

9

10

11

12

13

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

A filtering process that yields the prime numbers. One starts on the top line with all numbers between 1 and 100. Then on the
second line, one removes numbers larger than 2 that are divisible by 2—as indicated by the gray dots. On the third line, one
removes numbers larger than 3 that are divisible by 3. If one then continues forever, there are some numbers that always remain,
and these are exactly the primes. The process shown is essentially the sieve of Eratosthenes, already known in 200 BC.
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(f ) Gaps between successive primes

(e) The excess of primes of the form 4 k - 1 over ones of the form 4 k + 1

(d) The excess of primes of the form 3 k - 1 over ones of the form 3 k + 1

(c) The difference LogIntegral[n] - PrimePi[n]

Features of the sequence of primes. Despite the simplicity of the rule on the facing page that generates the primes, the actual
sequence of primes that is obtained seems in many respects remarkably random. 
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(a) The sequence of primes (Prime[n]) (b) The number of primes smaller than n (PrimePi[n]),
together with the estimate LogIntegral[n]
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The examples of complexity that I have shown so far in this book

are almost all completely new. But the first few hundred primes were

no doubt known even in antiquity, and it must have been evident that

there was at least some complexity in their distribution. 

However, without the whole intellectual structure that I have

developed in this book, the implications of this observation—and its

potential connection, for example, to phenomena in nature—were not

recognized. And even though there has been a vast amount of

mathematical work done on the sequence of primes over the course of

many centuries, almost without exception it has been concerned not

with basic issues of complexity but instead with trying to find

specific kinds of regularities.

Yet as it turns out, few regularities have in fact been found, and

often the results that have been established tend only to support the

idea that the sequence has many features of randomness. And so, as one

example, it might appear from the pictures on the previous page that (c),

(d) and (e) always stay systematically above the axis. But in fact with

considerable effort it has been proved that all of them are in a sense

more random—and eventually cross the axis an infinite number of

times, and indeed go any distance up or down. 

So is the complexity that we have seen in the sequence of primes

somehow unusual among sequences based on numbers? The pictures

on the facing page show a few other examples of sequences generated

according to simple rules based on properties of numbers. 

And in each case we again see a remarkable level of complexity. 

Some of this complexity can be understood if we look at each

number not in terms of its overall size, but rather in terms of its digit

sequence or set of possible divisors. But in most cases—often despite

centuries of work in number theory—considerable complexity remains.

And indeed the only reasonable conclusion seems to be that just

as in so many other systems in this book, such sequences of numbers

exhibit complexity that somehow arises as a fundamental consequence

of the rules by which the sequences are generated.



S Y S T E M S  B A S E D  O N  N U M B E R S C H A P T E R  4

135

0

50

100

150

200

200 400 600 800 1000 1200 1400 1600 1800 2000

0

5000

10000

15000

20000

25000

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

100 200 300 400 500 600 700 800 900 1000

-1000

-500

0

500

1000

0 100 200 300 400 500 600 700 800 900 1000

0

10

20

30

100 200 300 400 500 600 700 800 900 1000

(e) The number of ways of expressing an even number n as the sum of two primes

(d) The number of ways of expressing n as a sum of four squares

(c) The number of ways of expressing n as a sum of three squares

(b) The sum of the divisors of n (excluding n) minus n

(a) The number of divisors of n ( including n)

Sequences based on various simple properties of numbers. Extensive work in number theory has managed to establish only a few
properties of these. It is for example known that (d) never reaches zero, while curve (c) reaches zero only for numbers of the form

. Sequence (b) is zero at so-called perfect numbers. Even perfect numbers always have a known form, but whether any odd
perfect numbers exist is a question that has remained unresolved for more than two thousand years. The claim that sequence (e)
never reaches zero is known as Goldbach’s Conjecture. It was made in 1742 but no proof or counterexample has ever been found. 

4r (8 s + 7)
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Mathematical Constants 

The last few sections have shown that one can set up all sorts of

systems based on numbers in which great complexity can occur. But it

turns out that the possibility of such complexity is already suggested by

some well-known facts in elementary mathematics. 

The facts in question concern the sequences of digits in numbers

like  (pi). To a very rough approximation,  is 3.14. A more accurate

approximation is 3.14159265358979323846264338327950288. 

But how does this sequence of digits continue?

One might suppose that at some level it must be quite simple and

regular. For the value of  is specified by the simple definition of being

the ratio of the circumference of any circle to its diameter.

But it turns out that even though this definition is simple, the

digit sequence of  is not simple at all. The facing page shows the first

4000 digits in the sequence, both in the usual case of base 10, and in

base 2. And the picture below shows a pictorial representation of the

first 20,000 digits in the sequence.

Π Π

Π

Π

00

-50

-100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

00

-50

-100

10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

A pictorial representation of the first 20,000 digits of  in base 2. The curve drawn goes up every time a digit is 1, and
down every time it is 0. Great complexity is evident. If the curve were continued further, it would spend more time above
the axis, and no aspect of what is seen provides any evidence that the digit sequence is anything but perfectly random. 

p
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3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384
46095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091
45648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820
46652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912
98336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857
71342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960
51870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753
32083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989
38095257201065485863278865936153381827968230301952035301852968995773622599413891249721775283479131515574857242454150695950829
53311686172785588907509838175463746493931925506040092770167113900984882401285836160356370766010471018194295559619894676783744
94482553797747268471040475346462080466842590694912933136770289891521047521620569660240580381501935112533824300355876402474964
73263914199272604269922796782354781636009341721641219924586315030286182974555706749838505494588586926995690927210797509302955
32116534498720275596023648066549911988183479775356636980742654252786255181841757467289097777279380008164706001614524919217321
72147723501414419735685481613611573525521334757418494684385233239073941433345477624168625189835694855620992192221842725502542
56887671790494601653466804988627232791786085784383827967976681454100953883786360950680064225125205117392984896084128488626945
60424196528502221066118630674427862203919494504712371378696095636437191728746776465757396241389086583264599581339047802759009
94657640789512694683983525957098258226205224894077267194782684826014769909026401363944374553050682034962524517493996514314298
09190659250937221696461515709858387410597885959772975498930161753928468138268683868942774155991855925245953959431049972524680
84598727364469584865383673622262609912460805124388439045124413654976278079771569143599770012961608944169486855584840635342207
22258284886481584560285060168427394522674676788952521385225499546667278239864565961163548862305774564980355936345681743241125
15076069479451096596094025228879710893145669136867228748940560101503308617928680920874760917824938589009714909675985261365549
78189312978482168299894872265880485756401427047755513237964145152374623436454285844479526586782105114135473573952311342716610
21359695362314429524849371871101457654035902799344037420073105785390621983874478084784896833214457138687519435064302184531910
48481005370614680674919278191197939952061419663428754440643745123718192179998391015919561814675142691239748940907186494231961
56794520809514655022523160388193014209376213785595663893778708303906979207734672218256259966150142150306803844773454920260541
46659252014974428507325186660021324340881907104863317346496514539057962685610055081066587969981635747363840525714591028970641
40110971206280439039759515677157700420337869936007230558763176359421873125147120532928191826186125867321579198414848829164470
60957527069572209175671167229109816909152801735067127485832228718352093539657251210835791513698820914442100675103346711031412
67111369908658516398315019701651511685171437657618351556508849099898599823873455283316355076479185358932261854896321329330898
57064204675259070915481416549859461637180270981994309924488957571282890592323326097299712084433573265489382391193259746366730
58360414281388303203824903758985243744170291327656180937734440307074692112019130203303801976211011004492932151608424448596376
69838952286847831235526582131449576857262433441893039686426243410773226978028073189154411010446823252716201052652272111660397

The first 4000 digits of  in bases 10 and 2. Despite the simple definition of  as the ratio of the circumference to the diameter of a
circle, its digit sequence is sufficiently complicated as to seem for practical purposes random.

p p

11.00100100001111110110101010001000100001011010001100001000110100110001001100011001100010100010111000000011011100000111001101000
10010100100000010010011100000100010001010011001111100110001110100000000100000101110111110101001100011101100010011100110110010
00100101000101001010000010000111100110001110001101000000010011011101111011111001010100011001101100111100110100111010010000110
00110110011000000101011000010100110110111110010010111110001010000110111010011111110000100110101011011010110110101010001110000
10010001011110010010000101101101010111011001100010010111100111111011000110111101000100110001000010111010011010011000110111111
01101011010110000101111111111010111001011011011110100000001101011011111101101111011100011100001101011111110110101101010001001
10011111101001011010111010011111001001000001000101111100010010110001111111100110010010010010100001100110010100011110110011100
10001011011001111011100001000000000011111001011100010100001011000111011111100000101100110001101101001001000001101100001110001
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00001001011010010110011011010110011100001100001101010100111001001010101111001001100000000100111100010111010001101100000010001
10010100001100000100001011111000011001010010000010111100100011000101110001101101100111000111011111000111001111001110111001011
00000110000000111010000110000000111001101100100111100000111010001011101100000001111010001010001111101101011100010101011101111
10000011011110100110001010010110010011101111000101011110010111111011010010101010110000001011100011000001110011001010101001001
01111100111010101001010101101010111001010001010111010010001001100001100010011000111110100000010100010000000101010111001010001
11001011010100010101010101011000100001011011010110100110011000101110000110100000100010100000111101000110011101010000101010100
10000110101011110111110001110010111010011001001110110011111011100001010000010001011000110110111110111100001010100010101110101
00111000101010111010111010000011000001100011111011011001110010111000011111000010110100110111000011110010011000111101010111111
01011010111010001100110110110000100100110011110101110001111010001100100101001110000001001010001001010110000110011101110011101
11000111101001000100110000110101101001011101110011010111111000100101111111110100000011011011001100010100000100001100100110110
00011101100000001001110011001111101100100001101010011001000101001000011111001010110001100000010111011110110010000000001100101
11011111000010001011101010111011110100110000101011101011011000111011100001001100010001100000010111010110110010100011011100010
00001000111000100100111110100000011101001110010110101011001100010100001111011011010110111111110011100000111111010001000010001
11001001011100000101101000100100000101010010010000100001000000000010001101001110010001111000001001010100111100001111110011011
01011110001000011100011001101000010000101111011011101001011011001001101001100111000011001001110001100001101010111101001110001
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In no case are there any obvious regularities. Indeed, in all the

more than two hundred billion digits of  that have so far been

computed, no significant regularity of any kind has ever been found.

Despite the simplicity of its definition, the digit sequence of  seems

for practical purposes completely random. 

But what about other numbers? Is  a special case, or are there

other familiar mathematical constants that have complicated digit

sequences? There are some numbers whose digit sequences effectively

have limited length. Thus, for example, the digit sequence of  in base

10 is 0.375. (Strictly, the digit sequence is 0.3750000000…, but the 0’s

do not affect the value of the number, so are normally suppressed.) 

It is however easy to find numbers whose digit sequences do not

terminate. Thus, for example, the exact value of  in base 10 is

0.3333333333333…, where the 3’s repeat forever. And similarly,  is

0.142857142857142857142857142857…, where now the block of digits

142857 repeats forever. The table below gives the digit sequences for

several rational numbers obtained by dividing pairs of whole numbers.

In all cases what we see is that the digit sequences of such numbers

have a simple repetitive form. And in fact, it turns out that absolutely

all rational numbers have digit sequences that eventually repeat.

We can get some understanding of why this is so by looking at

the details of how processes for performing division work. The pictures

Π

Π

Π

3�8

1�3

1�7

1/3�=� 0.333333333333333333333333333333333333333333333333333333333333333333333333333333333?

1/7 �=� 0.142857142857142857142857142857142857142857142857142857142857142857142857142857142?

1/9�=� 0.111111111111111111111111111111111111111111111111111111111111111111111111111111111?

1/11�=� 0.090909090909090909090909090909090909090909090909090909090909090909090909090909090?

1/81�=� 0.012345679012345679012345679012345679012345679012345679012345679012345679012345679?

1/3�=� 0.010101010101010101010101010101010101010101010101010101010101010101010101010101010?

1/7 �=� 0.001001001001001001001001001001001001001001001001001001001001001001001001001001001?

1/9�=� 0.000111000111000111000111000111000111000111000111000111000111000111000111000111000?

1/11�=� 0.000101110100010111010001011101000101110100010111010001011101000101110100010111010?

1/81�=� 0.000000110010100100010110000111111001101011011101001111000000110010100100010110000?

Digit sequences for various rational numbers, given in base 10 (above) and base 2 (below). For a
number of the form , the digit sequence always repeats with a period of at most  steps. p/q q - 1
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below show successive steps in a particular method for computing the

base 2 digit sequence for the rational numbers .

The method is essentially standard long division, although it is

somewhat simpler in base 2 than in the usual case of base 10. The idea is

to have a number  which essentially keeps track of the remainder at each

step in the division. One starts by setting  equal to . Then at each step,

one compares the values of  and . If  is less than , the digit

generated at that step is 0, and  is replaced by . Otherwise,  is

replaced by . With this procedure, the value of  is always less than

. And as a result, the digit sequence obtained always repeats at most

every  steps.

It turns out, however, that rational numbers are very unusual in

having such simple digit sequences. And indeed, if one looks for

example at square roots the story is completely different.

Perfect squares such as  and  are specifically set

up to have square roots that are just whole numbers. But as the table at

the top of the next page shows, other square roots have much more

complicated digit sequences. In fact, so far as one can tell, all whole

numbers other than perfect squares have square roots whose digit

sequences appear completely random. 

p�q

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1/ 2

0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1/ 3

0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1/ 4

0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0

1/ 5

0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

1/ 6

0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1

1/ 7

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1/ 8

0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1

1/ 9

0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0

1/ 10

0
0
0
0
1
0
1
1
1
0
1
0
0
0
1
0
1
1
1
0
1
0
0
0
1
0
1
1
1
0
1

1/ 11

Successive steps in the computation of various rational numbers. In each case, the column on the right shows the sequence of
base 2 digits in the number, while the box on the left shows the remainder at each of the steps in the computation. 

r

r p

2 r q 2 r q

r 2 r r

2 r � q r

q

q � 1

4 � 2�2 9 � 3�3
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But how is such randomness produced? The picture at the top of

the facing page shows an example of a procedure for generating the base

2 digit sequence for the square root of a given number .

The procedure is only slightly more complicated than the one for

division discussed above. It involves two numbers  and , which are

initially set to be  and 0, respectively. At each step it compares the

values of  and , and if  is larger than  it replaces  and  by 

and  respectively; otherwise it replaces them just by  and .

And it then turns out that the base 2 digits of  correspond exactly to the

base 2 digits of —with one new digit being generated at each step.

As the picture shows, the results of the procedure exhibit

considerable complexity. And indeed, it seems that just like so many

other examples that we have discussed in this book, the procedure for

generating square roots is based on simple rules but nevertheless yields

behavior of great complexity.

�!!!!2 �=� 1.414213562373095048801688724209698078569671875376948073176679737990732478462107039?

�!!!!3 �=� 1.732050807568877293527446341505872366942805253810380628055806979451933016908800037?

�!!!!5 �=� 2.236067977499789696409173668731276235440618359611525724270897245410520925637804899?

�!!!!6 �=� 2.449489742783178098197284074705891391965947480656670128432692567250960377457315027?

�!!!!7 �=� 2.645751311064590590501615753639260425710259183082450180368334459201068823230283628?

�!!!!8 �=� 2.828427124746190097603377448419396157139343750753896146353359475981464956924214078?

�!!!!!!!10 �=� 3.162277660168379331998893544432718533719555139325216826857504852792594438639238221?

�!!!!!!!11 �=� 3.316624790355399849114932736670686683927088545589353597058682146116484642609043847?

�!!!!2 �=� 1.011010100000100111100110011001111111001110111100110010010000100010110010111110110?

�!!!!3 �=� 1.101110110110011110101110100001011000010011001010101001110011101100100101011101000?

�!!!!5 �=� 10.00111100011011101111001101110010111111101001010011111000001010111110011100111001?

�!!!!6 �=� 10.01110011000100011100001010000001001001000010010111001111101000000110010000110010?

�!!!!7 �=� 10.10100101010011111111010100111010010111110001110100110110111100011100111010100111?

�!!!!8 �=� 10.11010100000100111100110011001111111001110111100110010010000100010110010111110110?

�!!!!!!!10 �=� 11.00101001100010110000011101011011010010110110101001010010010000001001010001010111?

�!!!!!!!11 �=� 11.01010001000011100101001001111111101011011110011010000010110100011101111001001001?

Digit sequences for various square roots, given at the top in base 10 and at the bottom in base 2.
Despite their simple definition, all these sequences seem for practical purposes random.

n

r s

n

r s r s r s 4 �r � s � 1�

2 �s � 2� 4 r 2 s

s
�!!!

n
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It turns out that square roots are certainly not alone in having

apparently random digit sequences. As an example, the table on the next

page gives the digit sequences for some cube roots and fourth roots, as well

as for some logarithms and exponentials. And so far as one can tell, almost

all these kinds of numbers also have apparently random digit sequences.

In fact, rational numbers turn out to be the only kinds of

numbers that have repetitive digit sequences. And at least in square

roots, cube roots, and so on, it is known that no nested digit sequences

r s

1101110110110011110100

r s

1011010100000100111100

�!!!!
3

�!!!!
2

A procedure for generating the digit sequences of square roots. Two numbers,  and , are involved.
To find  one starts by setting  and . Then at each step one applies the rule

. The result is that the digits of  in base 2 turn out to
correspond exactly to the digits of . Note that if  is not between 1 and 4, it must be multiplied
or divided by an appropriate power of 4 before starting this procedure. 

r s
�!!!!

n r = n s = 0

{r, s} ! If [r > s, {4 (r - s - 1), 2 (s + 2)}, {4 r, 2 s}] s
�!!!!

n n
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ever occur. It is straightforward to construct a nested digit sequence

using for example the substitution systems on page 83, but the point is

that such a digit sequence never corresponds to a number that can be

obtained by the mathematical operation of taking roots.

So far in this chapter we have always used digit sequences as

our way of representing numbers. But one might imagine that perhaps

this representation is somehow perverse, and that if we were just to

choose another one, then numbers generated by simple mathematical

operations would no longer seem complex. 

Any representation for a number can in a sense be thought of as

specifying a procedure for constructing that number. Thus, for example, the

pictures at the top of the facing page show how the base 10 and base 2 digit

sequence representations of  can be used to construct the number .

�!!!!
2

3
= 1.2599210498948731647672106072782283505702514647015079800819751121552996765139594837293965624362550941543102560 ?

�!!!!
3

3
= 1.4422495703074083823216383107801095883918692534993505775464161945416875968299973398547554797056452566868350808 ?

�!!!!
2

4
= 1.1892071150027210667174999705604759152929720924638174130190022247194666682269171598707813445381376737160373947 ?

�!!!!
3

4
= 1.3160740129524924608192189017969990551600685902058221767319226585958667951973021330507431502466019315200477423 ?

Log[2] �=�0� .6931471805599453094172321214581765680755001343602552541206800094933936219696947156058633269964186875420014810?

Log[3] �=� 1.0986122886681096913952452369225257046474905578227494517346943336374942932186089668736157548137320887879700290 ?

4 �= � 2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919 ?

42 �= � 7.3890560989306502272304274605750078131803155705518473240871278225225737960790577633843124850791217947737531612?

�!!!!
2

3
�=� 1.0100001010001010001011111001100011010111001010001010111000100010001111011101101010110111000101011011111000100 ?

�!!!!
3

3
�=� 1.0111000100110111010001001001000100100011111011110110010111001101110111100111111100010110110001010110111000110 ?

�!!!!
2

4
�=� 1.0011000001101111111000001010001100011011011100010101001011011110100011010101101001000110001100000101110010000 ?

�!!!!
3

4
�=� 1.0101000011101010001110011111110010111111000101100110010111110110110111000011001100111111000101000001101001101?

Log[2]�=�0� .10110001011100100001011111110111110100011100111101111001101010111100100111100011101100111001100000000011111100 ?

Log[3]�=� 1.0001100100111110101001111010101011010000001100001010100101110110101001000001100110001101010101010000010100111?

4�=� 10.101101111110000101010001011000101000101011101101001010100110101010111111011100010101100010000000100111001111?

42 �=� 111.01100011100110010010111000110101001101110110101101110011000011001110100011101110100010000001101011011010001?

Digit sequences for cube roots, fourth roots, logarithms and exponentials, given at the top in base 10 and the bottom in base 2. Once
again, these sequences seem for practical purposes random.

Π Π
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By replacing the addition and multiplication that appear above by

other operations one can then get other representations for numbers. A

common example are so-called continued fraction representations, in

which the operations of addition and division are used, as shown below.

The table on the next page gives the continued fraction

representations for various numbers. In the case of rational numbers,

the results are always of limited length. But for other numbers, they go

on forever. Square roots turn out to have purely repetitive continued

fraction representations. And the representations of  and all its

roots also show definite regularity. But for , as well as for cube roots,

fourth roots, and so on, the continued fraction representations one gets

seem essentially random. 

What about other representations of numbers? At some level, one

can always use symbolic expressions like  to represent

numbers. And almost by definition, numbers that can be obtained by

simple mathematical operations will correspond to simple such

expressions. But the problem is that there is no telling how difficult it

may be to compute the actual value of a number from the symbolic

expression that is used to represent it. 

And in thinking about representations of numbers, it seems

appropriate to restrict oneself to cases where the effort required to find

the value of a number from its representation is essentially the same for

Procedures for building up  from its base 10 and base 2 digit sequence representations. p

3.141592653�? �=�3 + 1����������
10

�(1+ 1����������
10

�(4 + 1����������
10

�(1+ 1����������
10

�(5 + 1����������
10

�(9 + 1����������
10

�(2 + 1����������
10

�(6 + 1����������
10

�(5 + 1����������
10

�(3 + ? )))))))))

11.001001000�? �=�2 � 1+ 1������
2
�(0 + 1������

2
�(0 + 1������

2
�(1+ 1������

2
�(0 + 1������

2
�(0 + 1������

2
�(1+ 1������

2
�(0 + 1������

2
�(0 + 1������

2
�(0 + ? )))))))))

3 + 1 / (7 + 1 / (15 + 1 / (1+ 1 / (292 + 1 / (1+ 1 / (1+ 1 / (1+ 1 / (2 + 1 / (1+ 1 / (3 + 1 / (1+ 1 / (14 + ? ))))))))))))
????????????????????????????????????????????????????

{3,�7,�15,�1,�292,�1,�1,�1,�2,�1,�3,�1,�14,�2,�1,�1,�2,�2,�2,�2,�1,�84,�2,�1,�1,�15,�3,�13,�1,�4,�2,�6,�6,�99,�1,�2,�2,�6,�3,�5,�1,� ? }

The continued fraction representation of . In this representation the value of  is built up by
successive additions and divisions, rather than successive additions and multiplications. 

p p

	 � 2.718

Π

�!!!
2 � 	

�!!!!
3
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all numbers. If one does this, then the typical experience is that in any

particular representation, some class of numbers will have simple

forms. But other numbers, even though they may be the result of simple

mathematical operations, tend to have seemingly random forms.

And from this it seems appropriate to conclude that numbers

generated by simple mathematical operations are often in some

intrinsic sense complex, independent of the particular representation

that one uses to look at them. 

1 / 7 �=�{0,�7]

7 / 11�=�{0,�1,�1,�1,�3]

�!!!!2 = {1,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,�2,� ?}

�!!!!3 = {1,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,�2,�1,� ?}

�!!!!5 = {2,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,�4,� ?}

�!!!!7 = {2,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,�4,�1,�1,�1,� ?}

(1 +�!!!!5 ) / 2 = {1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,�1,� ?}

�!!!!2
3

= {1,�3,�1,�5,�1,�1,�4,�1,�1,�8,�1,�14,�1,�10,�2,�1,�4,�12,�2,�3,�2,�1,�3,�4,�1,�1,�2,�14,�3,�12,�1,�15,�3,�1,�4,�534,�1,�1,�5,�1,�1,�121,�1,�2,�2,�4,�10,�3,�2,�2,� ?}

�!!!!3
3

= {1,�2,�3,�1,�4,�1,�5,�1,�1,�6,�2,�5,�8,�3,�3,�4,�2,�6,�4,�4,�1,�3,�2,�3,�4,�1,�4,�9,�1,�8,�4,�3,�1,�3,�2,�6,�1,�6,�1,�3,�1,�1,�1,�1,�12,�3,�1,�3,�1,�1,�4,�1,�6,�1,�5,� ?}

�!!!!2
4

= {1,�5,�3,�1,�1,�40,�5,�1,�1,�25,�2,�3,�1,�6,�2,�1,�1,�2,�1,�2,�1,�1,�1,�2,�2,�1,�7,�2,�7,�1,�1,�1,�2,�1,�1,�32,�4,�1,�6,�2,�1,�1,�1,�15,�1,�5,�1,�4,�1,�1,�1,�3,�1,�3,� ?}

�!!!!3
4

= {1,�3,�6,�9,�1,�1,�2,�1,�2,�1,�2,�5,�1,�12,�5,�1,�4,�1,�13,�1,�6,�1,�22,�1,�8,�21,�3,�142,�1,�1,�2,�1,�2,�2,�7,�1,�2,�1,�1,�1,�5,�3,�1,�1,�2,�1,�1,�3,�1,�1,�1,�1,� ?}

Log[2] = {0,�1,�2,�3,�1,�6,�3,�1,�1,�2,�1,�1,�1,�1,�3,�10,�1,�1,�1,�2,�1,�1,�1,�1,�3,�2,�3,�1,�13,�7,�4,�1,�1,�1,�7,�2,�4,�1,�1,�2,�5,�14,�1,�10,�1,�4,�2,�18,�3,�1,�4,�1,�6,� ?}

Log[3] = {1,�10,�7,�9,�2,�2,�1,�3,�1,�32,�2,�17,�1,�15,�1,�1,�7,�3,�1,�35,�1,�1,�1,�2,�5,�3,�2,�1,�4,�2,�1,�3,�1,�5,�3,�13,�1,�1,�1,�6,�2,�3,�1,�152,�1,�2,�3,�1,�7,�9,�2,� ?}

4 = {2,�1,�2,�1,�1,�4,�1,�1,�6,�1,�1,�8,�1,�1,�10,�1,�1,�12,�1,�1,�14,�1,�1,�16,�1,�1,�18,�1,�1,�20,�1,�1,�22,�1,�1,�24,�1,�1,�26,�1,�1,�28,�1,�1,�30,�1,�1,�32,�1,� ?}

�!!!!
4 = {1,�1,�1,�1,�5,�1,�1,�9,�1,�1,�13,�1,�1,�17,�1,�1,�21,�1,�1,�25,�1,�1,�29,�1,�1,�33,�1,�1,�37,�1,�1,�41,�1,�1,�45,�1,�1,�49,�1,�1,�53,�1,�1,�57,�1,�1,�61,�1,�1,� ?}

�!!!!
4

3
= {1,�2,�1,�1,�8,�1,�1,�14,�1,�1,�20,�1,�1,�26,�1,�1,�32,�1,�1,�38,�1,�1,�44,�1,�1,�50,�1,�1,�56,�1,�1,�62,�1,�1,�68,�1,�1,�74,�1,�1,�80,�1,�1,�86,�1,�1,�92,�1,�1,� ?}

42 = {7,�2,�1,�1,�3,�18,�5,�1,�1,�6,�30,�8,�1,�1,�9,�42,�11,�1,�1,�12,�54,�14,�1,�1,�15,�66,�17,�1,�1,�18,�78,�20,�1,�1,�21,�90,�23,�1,�1,�24,�102,�26,�1,�1,�27,� ?}

43 = {20,�11,�1,�2,�4,�3,�1,�5,�1,�2,�16,�1,�1,�16,�2,�13,�14,�4,�6,�2,�1,�1,�2,�2,�2,�3,�5,�1,�3,�1,�1,�68,�7,�5,�1,�4,�2,�1,�1,�1,�1,�1,�1,�7,�3,�1,�6,�1,�2,�5,�4,�7,� ?}

p = {3,�7,�15,�1,�292,�1,�1,�1,�2,�1,�3,�1,�14,�2,�1,�1,�2,�2,�2,�2,�1,�84,�2,�1,�1,�15,�3,�13,�1,�4,�2,�6,�6,�99,�1,�2,�2,�6,�3,�5,�1,�1,�6,�8,�1,�7,�1,�2,�3,�7,�1,�2,� ?}

p2 = {9,�1,�6,�1,�2,�47,�1,�8,�1,�1,�2,�2,�1,�1,�8,�3,�1,�10,�5,�1,�3,�1,�2,�1,�1,�3,�15,�1,�1,�2,�2,�1,�3,�2,�7,�1,�9,�18,�30,�2,�145,�1,�1,�17,�9,�1,�1,�1,�1,�7,�12,�1,� ?}

Sinh[1] = {1,�5,�1,�2,�2,�2,�1,�2,�7,�5,�1,�1,�1,�2,�2,�19,�1,�2,�1,�7,�1,�1,�9,�1,�3,�1,�1,�2,�1,�1,�1,�1,�1,�3,�1,�2,�4,�5,�3,�5,�1,�3,�1,�1,�1,�2,�7,�1,�9,�1,�1,�2,�1,�21,�1,� ?}

Tanh[1] = {0,�1,�3,�5,�7,�9,�11,�13,�15,�17,�19,�21,�23,�25,�27,�29,�31,�33,�35,�37,�39,�41,�43,�45,�47,�49,�51,�53,�55,�57,�59,�61,�63,�65,�67,�69,�71,�73,� ?}

Continued fraction representations for several numbers. Square roots yield repetitive sequences in this representation, but cube roots
and higher roots yield seemingly random sequences. 
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Mathematical Functions 

The last section showed that individual numbers obtained by applying

various simple mathematical functions can have features that are quite

complex. But what about the functions themselves?

The pictures below show curves obtained by plotting standard

mathematical functions. All of these curves have fairly simple,

essentially repetitive forms. And indeed it turns out that almost all the

standard mathematical functions that are defined, for example, in

Mathematica, yield similarly simple curves.

But if one looks at combinations of these standard functions, it is

fairly easy to get more complicated results. The pictures on the next

page show what happens, for example, if one adds together various sine

functions. In the first picture, the curve one gets has a fairly simple

repetitive structure. In the second picture, the curve is more

complicated, but still has an overall repetitive structure. But in the

third and fourth pictures, there is no such repetitive structure, and

indeed the curves look in many respects random.

                                      
-2

-1

0

1
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SinIntegral[x]

-30 -20 -10 0 10 20 30
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1

BesselJ[0,x]
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-0.4

-0.2

0
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0.4

AiryAi[x]

-15 -10 -5 0 5

                                      
-1

-0.5

0

0.5

1

Sin[x]

-15 -10 -5 0 5 10 15
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0
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15
Tan[x]

-10 -5 0 5 10
                          

-10

-5

0

5

10

Sec[x]

-10 -5 0 5 10

Plots of some standard mathematical functions. The top row shows three trigonometric functions. The bottom row shows
three so-called special functions that are commonly encountered in mathematical physics and other areas of traditional
science. In all cases the curves shown have fairly simple repetitive forms. 
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In the third picture, however, the points where the curve crosses

the axis come in two regularly spaced families. And as the pictures on

the facing page indicate, for any curve like  the relative

arrangements of these crossing points turn out to be related to the

output of a generalized substitution system in which the rule at each

step is obtained from a term in the continued fraction representation of

.

When  is a square root, then as discussed in the previous

section, the continued fraction representation is purely repetitive,

0

1

2

0

-1

-2

0 50 100 150 200 250

Sin[x] + Sin[3/ 2 x]

0

1

2

0

-1

-2

0 50 100 150 200 250

Sin[x] + Sin[10/ 7 x]

0

1

2

0

-1

-2

0 50 100 150 200 250

Sin[x] + Sin[
�!!!!

2 x]

0

1

2

3

0

-1

-2

-3

0 50 100 150 200 250

Sin[x] + Sin[
�!!!!

2 x] + Sin[
�!!!!

3 x]

Curves obtained by adding together various sine functions. In the first two cases, the curves are ultimately repetitive; in the second two
cases they are not. If viewed as waveforms for sounds, then these curves correspond to chords. The first curve yields a perfect fifth,
while the third curve yields a diminished fifth (or tritone) in an equal temperament scale. 

Sin�x� � Sin�Α x�

�Α � 1���Α � 1�

Α
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2
2
2
2
2

Cos[x] - Cos[ (1 +
�!!!!2 ) x]

1
1
1
1
1
1
1
1
1

Cos[x] - Cos[ (2 +
�!!!!5 ) x]

2
4
1
2
1
1

Cos[x] - Cos[ (2 +
�!!!!5
3

) x]

3
2
1
4
2

Cos[x] - Cos[ (1 +
�!!!!
4 ) x]

1

2

3

4

5

Curves obtained by adding or subtracting exactly two sine or cosine functions turn out to have a pattern
of axis crossings that can be reproduced by a generalized substitution system. In general there is an axis
crossing within an interval when the corresponding element in the generalized substitution system is
black, and there is not when the element is white. In the case of  each step in the
generalized substitution system has a rule determined as shown on the left from a term in the continued
fraction representation of . In the first two examples shown  is a quadratic irrational, so
that the continued fraction is repetitive, and the pattern obtained is purely nested. (The second example
is analogous to the Fibonacci substitution system on page 83.) In the last two examples, however, there
is no such regularity. Note that successive terms in each continued fraction are shown alongside
successive steps in the substitution system going up the page. 

Cos[x] -Cos[a x]

(a - 1) / (a+ 1) a



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

148

making the generated pattern nested. But when  is not a square root

the pattern can be more complicated. And if more than two sine

functions are involved there no longer seems to be any particular

connection to generalized substitution systems or continued fractions. 

Among all the various mathematical functions defined, say, in

Mathematica it turns out that there are also a few—not traditionally

common in natural science—which yield complex curves but which do

not appear to have any explicit dependence on representations of

individual numbers. Many of these are related to the so-called Riemann

zeta function, a version of which is shown in the picture below. 

The basic definition of this function is fairly simple. But in the

end the function turns out to be related to the distribution of primes—

and the curve it generates is quite complicated. Indeed, despite

immense mathematical effort for over a century, it has so far been

impossible even to establish for example the so-called Riemann

Hypothesis, which in effect just states that all the peaks in the curve lie

above the axis, and all the valleys below.

Α

0

2

4

6

0

-2

-4
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0
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0

-2

-4

-6

-8

250 300 350 400 450 500

A curve associated with the so-called Riemann zeta function. The zeta function  is defined as . The
curve shown here is the so-called Riemann-Siegel Z function, which is essentially . The celebrated Riemann
Hypothesis in effect states that all peaks after the first one in this curve must lie above the axis. 

Zeta[s] Sum[1/ks, {k, ¥}]

Zeta[1/2 + 5 t]



S Y S T E M S  B A S E D  O N  N U M B E R S C H A P T E R  4

149

Iterated Maps and the Chaos Phenomenon 

The basic idea of an iterated map is to take a number between 0 and 1,

and then in a sequence of steps to update this number according to a

fixed rule or “map”. Many of the maps I will consider can be expressed

in terms of standard mathematical functions, but in general all that is

needed is that the map take any possible number between 0 and 1 and

yield some definite number that is also between 0 and 1.

The pictures on the next two pages show examples of behavior

obtained with four different possible choices of maps. 

Cases (a) and (b) on the first page show much the same kind of

complexity that we have seen in many other systems in this chapter—

in both digit sequences and sizes of numbers. Case (c) shows complexity

in digit sequences, but the sizes of the numbers it generates rapidly tend

to 0. Case (d), however, seems essentially trivial—and shows no

complexity in either digit sequences or sizes of numbers.

On the first of the next two pages all the examples start with the

number —which has a simple digit sequence. But the examples on

the second of the next two pages instead start with the number —

which has a seemingly random digit sequence.

Cases (a), (b) and (c) look very similar on both pages, particularly

in terms of sizes of numbers. But case (d) looks quite different. For on

the first page it just yields 0’s. But on the second page, it yields numbers

whose sizes continually vary in a seemingly random way.

If one looks at digit sequences, it is rather clear why this happens.

For as the picture illustrates, the so-called shift map used in case (d)

simply serves to shift all digits one position to the left at each step. And

this means that over the course of the evolution of the system, digits

further to the right in the original number will progressively end up all

the way to the left—so that insofar as these digits show randomness,

this will lead to randomness in the sizes of the numbers generated.

It is important to realize, however, that in no real sense is any

randomness actually being generated by the evolution of this system.

Instead, it is just that randomness that was inserted in the digit

sequence of the original number shows up in the results one gets.

1�2

Π�4
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(a) (b) (c) (d)

0

0.25

0.5

0.75

1

(a)
0

0.25

0.5

0.75

1

(b)

0

0.25

0.5

0.75

1

(c)
0

0.25

0.5

0.75

1

(d)

Examples of iterated maps starting from simple initial conditions. At each step there is a number  between 0 and 1 that is updated
by applying a fixed mapping. The four mappings considered here are given above both as formulas and in terms of plots. The pictures
at the top of the page show the base 2 digit sequences of successive numbers obtained by iterating this mapping, while the pictures
in the middle of the page plot the sizes of these numbers. In all cases, the initial conditions consist of the number 1/2—which has a
very simple digit sequence. Yet despite this simplicity, cases (a) and (b) show considerable complexity in both the digit sequences
and the sizes of the numbers produced (compare page 122). In case (c), the digit sequences are complicated but the sizes of the
numbers tend rapidly to zero. And finally, in case (d), neither the digit sequences nor the sizes of numbers are anything but trivial.
Note that in the pictures above each horizontal row of digits corresponds to a number, and that digits further to the left contribute
progressively more to the size of this number. 

x

0 12/3
0

1

1/2(a)

x � FractionalPart[3/ 2 x]

0 11/2
0

1

3 /4

(b)

x � If [x < 1/ 2, 3/ 2 x, 3/ 2 (1 - x)]

0 1
0

1

3/4

(c)

x � FractionalPart[3/ 4 x]

0 11/2
0

1

1/2(d)

x � FractionalPart[2 x]
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(a) (b) (c) (d)
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1

(a)
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0.25
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1

(b)

0
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0.5

0.75

1

(c)
0
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0.75

1

(d)

0 12 /3
0

1

1/2(a)

x � FractionalPart[3/ 2 x]

0 11/2
0

1

3 /4

(b)

x � If [x < 1/ 2, 3/ 2 x, 3/ 2 (1 - x)]

0 1
0

1

3/4

(c)

x � FractionalPart[3/ 4 x]

0 11/2
0

1

1/2(d)

x � FractionalPart[2 x]

The same iterated maps as on the facing page, but now started from the initial condition —a number with a seemingly random
digit sequence. After fairly few steps, cases (a) and (b) yield behavior that is almost indistinguishable from what was seen with simple
initial conditions on the facing page. And in case (c), the same exponential decay in the sizes of numbers occurs as before. But in case
(d), the behavior is much more complicated. Indeed, if one just looked at the sizes of numbers produced, then one sees the same kind
of complexity as in cases (a) and (b). But looking at digit sequences one realizes that this complexity is actually just a direct
transcription of complexity introduced by giving an initial condition with a seemingly random digit sequence. Case (d) is the so-called
shift map—a classic example of a system that exhibits the sensitive dependence on initial conditions often known as chaos. 

p /4
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This is very different from what happens in cases (a) and (b). For

in these cases complex and seemingly random results are obtained even

on the first of the previous two pages—when the original number has a

very simple digit sequence. And the point is that these maps actually do

intrinsically generate complexity and randomness; they do not just

transcribe it when it is inserted in their initial conditions.

In the context of the approach I have developed in this book this

distinction is easy to understand. But with the traditional mathematical

approach, things can get quite confused. The main issue—already

mentioned at the beginning of this chapter—is that in this approach the

only attribute of numbers that is usually considered significant is their

size. And this means that any issue based on discussing explicit digit

sequences for numbers—and whether for example they are simple or

complicated—tends to seem at best bizarre. 

Indeed, thinking about numbers purely in terms of size, one

might imagine that as soon as any two numbers are sufficiently close in

size they would inevitably lead to results that are somehow also close.

And in fact this is for example the basis for much of the formalism of

calculus in traditional mathematics.

But the essence of the so-called chaos phenomenon is that there

are some systems where arbitrarily small changes in the size of a

number can end up having large effects on the results that are produced.

And the shift map shown as case (d) on the previous two pages turns out

to be a classic example of this. 

The pictures at the top of the facing page show what happens if

one uses as the initial conditions for this system two numbers whose

sizes differ by just one part in a billion billion. And looking at the plots

of sizes of numbers produced, one sees that for quite a while these two

different initial conditions lead to results that are indistinguishably

close. But at some point they diverge and soon become quite different.

And at least if one looks only at the sizes of numbers, this seems

rather mysterious. But as soon as one looks at digit sequences, it

immediately becomes much clearer. For as the pictures at the top of the

facing page show, the fact that the numbers which are used as initial

conditions differ only by a very small amount in size just means that

their first several digits are the same. And for a while these digits are
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what is important. But since the evolution of the system continually

shifts digits to the left, it is inevitable that the differences that exist in

later digits will eventually become important.

The fact that small changes in initial conditions can lead to large

changes in results is a somewhat interesting phenomenon. But as I will

discuss at length in Chapter 7 one must realize that on its own this

cannot explain why randomness—or complexity—should occur in any

particular case. And indeed, for the shift map what we have seen is that

randomness will occur only when the initial conditions that are given

happen to be a number whose digit sequence is random.

But in the past what has often been confusing is that traditional

mathematics implicitly tends to assume that initial conditions of this

kind are in some sense inevitable. For if one thinks about numbers

initial condition 0.785398163397448310 initial condition 0.785398163397448311 difference

0

0.25

0.5

0.75

1

initial condition 0.785398163397448310

0

0.25

0.5

0.75

1

initial condition 0.785398163397448311

0

0.25

0.5

0.75

1

difference

The effect of making a small change in the initial conditions for the
shift map—shown as case (d) on pages 150 and 151. The first
picture shows results for the same initial condition as on page
151. The second picture shows what happens if one changes the
size of the number in this initial condition by just one part in a
billion billion. The plots to the left indicate that for a while the sizes
of numbers obtained by the evolution of the system in these two
cases are indistinguishable. But suddenly the results diverge and
become completely different. Looking at the digit sequences
above shows why this happens. The point is that a small change in
the size of the number in the initial conditions corresponds to a
change in digits far to the right. But the evolution of the system
progressively shifts digits to the left, so that the digits which differ
eventually become important. The much-investigated chaos
phenomenon consists essentially of this effect.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

154

purely in terms of size, one should make no distinction between

numbers that are sufficiently close in size. And this implies that in

choosing initial conditions for a system like the shift map, one should

therefore make no distinction between the exact number  and

numbers that are sufficiently close in size to .

But it turns out that if one picks a number at random subject only

to the constraint that its size be in a certain range, then it is

overwhelmingly likely that the number one gets will have a digit

sequence that is essentially random. And if one then uses this number

as the initial condition for a shift map, the results will also be

correspondingly random—just like those on the previous page.

In the past this fact has sometimes been taken to indicate that

the shift map somehow fundamentally produces randomness. But as I

have discussed above, the only randomness that can actually come out

of such a system is randomness that was explicitly put in through the

details of its initial conditions. And this means that any claim that the

system produces randomness must really be a claim about the details of

what initial conditions are typically given for it.

I suppose in principle it could be that nature would effectively follow

the same idealization as in traditional mathematics, and would end up

picking numbers purely according to their size. And if this were so, then it

would mean that the initial conditions for systems like the shift map

would naturally have digit sequences that are almost always random. 

But this line of reasoning can ultimately never be too useful. For

what it says is that the randomness we see somehow comes from

randomness that is already present—but it does not explain where that

randomness comes from. And indeed—as I will discuss in Chapter 7—if

one looks only at systems like the shift map then it is not clear any new

randomness can ever actually be generated. 

But a crucial discovery in this book is that systems like (a) and (b)

on pages 150 and 151 can show behavior that seems in many respects

random even when their initial conditions show no sign of randomness

and are in fact extremely simple.

Yet the fact that systems like (a) and (b) can intrinsically generate

randomness even from simple initial conditions does not mean that they

1�2

1�2
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do not also show sensitive dependence on initial conditions. And indeed

the pictures below illustrate that even in such cases changes in digit

sequences are progressively amplified—just like in the shift map case (d).

But the crucial point that I will discuss more in Chapter 7 is that

the presence of sensitive dependence on initial conditions in systems

like (a) and (b) in no way implies that it is what is responsible for the

randomness and complexity we see in these systems. And indeed, what

looking at the shift map in terms of digit sequences shows us is that

this phenomenon on its own can make no contribution at all to what

we can reasonably consider the ultimate production of randomness.

Continuous Cellular Automata 

Despite all their differences, the various kinds of programs discussed in

the previous chapter have one thing in common: they are all based on

elements that can take on only a discrete set of possible forms, typically

just colors black and white. And in this chapter, we have introduced a

similar kind of discreteness into our study of systems based on numbers

(a) (b) (c) (d)

Differences in digit sequences produced by a small change in initial conditions for the four iterated maps discussed in this
section. Cases (a), (b) and (d) exhibit sensitive dependence on initial conditions, in the sense that a change in insignificant digits
far to the right eventually grows to affect all digits. Case (c) does not show such sensitivity to initial conditions, but instead
always evolves to 0, independent of its initial conditions. 
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by considering digit sequences in which each digit can again have only a

discrete set of possible values, typically just 0 and 1.

So now a question that arises is whether all the complexity we

have seen in the past three chapters somehow depends on the

discreteness of the elements in the systems we have looked at. 

And to address this question, what I will do in this section is to

consider a generalization of cellular automata in which each cell is not

just black or white, but instead can have any of a continuous range of

possible levels of gray. One can update the gray level of each cell by

using rules that are in a sense a cross between the totalistic cellular

automaton rules that we discussed at the beginning of the last chapter

and the iterated maps that we just discussed in the previous section.

The idea is to look at the average gray level of a cell and its

immediate neighbors, and then to get the gray level for that cell at the

next step by applying a fixed mapping to the result. The picture below

shows a very simple case in which the new gray level of each cell is

exactly the average of the one for that cell and its immediate neighbors.

Starting from a single black cell, what happens in this case is that the

gray essentially just diffuses away, leaving in the end a uniform pattern.

The picture on the facing page shows what happens with a

slightly more complicated rule in which the average gray level is

multiplied by , and then only the fractional part is kept if the result

of this is greater than 1.

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0.333 0.333 0.333 0 0 0 0

0 0 0 0.111 0.222 0.333 0.222 0.111 0 0 0

0 0 0.037 0.111 0.222 0.259 0.222 0.111 0.037 0 0

0 0.012 0.049 0.123 0.198 0.235 0.198 0.123 0.049 0.012 0

0.004 0.021 0.062 0.123 0.185 0.21 0.185 0.123 0.062 0.021 0.004

A continuous cellular automaton in
which each cell can have any level of
gray between white (0) and black (1).
The rule shown here takes the new
gray level of each cell to be the average
of its own gray level and those of its
immediate neighbors. 

3�2
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And what we see is that despite the presence of continuous gray

levels, the behavior that is produced exhibits the same kind of

complexity that we have seen in many ordinary cellular automata and

other systems with discrete underlying elements.

FractionalPart[3/ 2 x]

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0.5 0.5 0.5 0 0 0 0

0 0 0 0.25 0.5 0.75 0.5 0.25 0 0 0

0 0 0.125 0.375 0.75 0.875 0.75 0.375 0.125 0 0

0 0.063 0.25 0.625 0 0.188 0 0.625 0.25 0.063 0

0.031 0.156 0.469 0.438 0.406 0.094 0.406 0.438 0.469 0.156 0.031

A continuous cellular automaton with a slightly more complicated rule.
The rule takes the new gray level of each cell to be the fractional part of
the average gray level of the cell and its neighbors multiplied by 3/2. The
picture shows that starting from a single black cell, this rule yields
behavior of considerable complexity. Note that the operation performed
on individual average gray levels is exactly iterated map (a) from page 150.
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In fact, it turns out that in continuous cellular automata it takes

only extremely simple rules to generate behavior of considerable

complexity. So as an example the picture below shows a rule that

determines the new gray level for a cell by just adding the constant 

to the average gray level for the cell and its immediate neighbors, and

then taking the fractional part of the result.

The facing page and the one after show what happens when one

chooses different values for the constant that is added. A remarkable

diversity of behavior is seen. Sometimes the behavior is purely

repetitive, but often it has features that seem effectively random. 

And in fact, as the picture in the middle of page 160 shows, it is

even possible to find cases that exhibit localized structures very much

like those occasionally seen in ordinary cellular automata.

1�4

0 0 0 0 0 1 0 0 0 0 0

0.25 0.25 0.25 0.25 0.583 0.583 0.583 0.25 0.25 0.25 0.25

0.5 0.5 0.5 0.611 0.722 0.833 0.722 0.611 0.5 0.5 0.5

0.75 0.75 0.787 0.861 0.972 0.009 0.972 0.861 0.787 0.75 0.75

0 0.012 0.049 0.123 0.864 0.901 0.864 0.123 0.049 0.012 0

0.254 0.271 0.312 0.596 0.88 0.127 0.88 0.596 0.312 0.271 0.254

FractionalPart[x+1/ 4]

A continuous cellular automaton whose rule adds the constant 1/4 to the
average gray level for a cell and its immediate neighbors, and takes the
fractional part of the result. The background simply repeats every 4 steps,
but the main pattern has a complex and in many respects random form. 

Continuous cellular automata with the same kind of rules as in the picture
above, but with a variety of different constants being added. Note that it is not
so much the size of the constant as properties like its digit sequence that
seem to determine the overall form of behavior produced in each case. 
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0.45 0.475 0.5

0.375 0.4 0.425

0.3 0.325 0.35

0.225 0.25 0.275

0.15 0.175 0.2

0.075 0.1 0.125

0 0.025 0.05
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0.475 0.495 0.9

0.3299 0.3299 (differences) 0.35

0.1 0.3 0.325

More steps in the evolution of continuous cellular automata with the same kind of rules as on the previous page. In order to remove
the uniform stripes, the picture in the middle shows the difference between the gray level of each cell and its immediate neighbor.
Note the presence of discrete localized structures even though the underlying rules for the system involve continuous gray levels. 



S Y S T E M S  B A S E D  O N  N U M B E R S C H A P T E R  4

161

Partial Differential Equations

By introducing continuous cellular automata with a continuous range

of gray levels, we have successfully removed some of the discreteness

that exists in ordinary cellular automata. But there is nevertheless

much discreteness that remains: for a continuous cellular automaton is

still made up of discrete cells that are updated in discrete time steps.

So can one in fact construct systems in which there is absolutely

no such discreteness? The answer, it turns out, is that at least in

principle one can, although to do so requires a somewhat higher level of

mathematical abstraction than has so far been necessary in this book.

The basic idea is to imagine that a quantity such as gray level can

be set up to vary continuously in space and time. And what this means

is that instead of just having gray levels in discrete cells at discrete time

steps, one supposes that there exists a definite gray level at absolutely

every point in space and every moment in time—as if one took the limit

of an infinite collection of cells and time steps, with each cell being an

infinitesimal size, and each time step lasting an infinitesimal time.

But how does one give rules for the evolution of such a system?

Having no explicit time steps to work with, one must instead just

specify the rate at which the gray level changes with time at every point

in space. And typically one gives this rate as a simple formula that

depends on the gray level at each point in space, and on the rate at

which that gray level changes with position.

Such rules are known in mathematics as partial differential

equations, and in fact they have been widely studied for about two

hundred years. Indeed, it turns out that almost all the traditional

mathematical models that have been used in physics and other areas of

science are ultimately based on partial differential equations. Thus, for

example, Maxwell’s equations for electromagnetism, Einstein’s

equations for gravity, Schrödinger’s equation for quantum mechanics

and the Hodgkin-Huxley equation for the electrochemistry of nerve

cells are all examples of partial differential equations.

It is in a sense surprising that systems which involve such a high

level of mathematical abstraction should have become so widely used
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in practice. For as we shall see later in this book, it is certainly not that

nature fundamentally follows these abstractions.

And I suspect that in fact the current predominance of partial

differential equations is in many respects a historical accident—and

that had computer technology been developed earlier in the history of

mathematics, the situation would probably now be very different.

But particularly before computers, the great attraction of partial

differential equations was that at least in simple cases explicit

mathematical formulas could be found for their behavior. And this

meant that it was possible to work out, for example, the gray level at a

particular point in space and time just by evaluating a single

mathematical formula, without having in a sense to follow the

complete evolution of the partial differential equation.

The pictures on the facing page show three common partial

differential equations that have been studied over the years. 

The first picture shows the diffusion equation, which can be

viewed as a limiting case of the continuous cellular automaton on page

156. Its behavior is always very simple: any initial gray progressively

diffuses away, so that in the end only uniform white is left.

The second picture shows the wave equation. And with this

equation, the initial lump of gray shown just breaks into two identical

pieces which propagate to the left and right without change.

The third picture shows the sine-Gordon equation. This leads to

slightly more complicated behavior than the other equations—though

the pattern it generates still has a simple repetitive form.

Considering the amount of mathematical work that has been

done on partial differential equations, one might have thought that a

vast range of different equations would by now have been studied. But

in fact almost all the work—at least in one dimension—has

concentrated on just the three specific equations on the facing page,

together with a few others that are essentially equivalent to them. 

And as we have seen, these equations yield only simple behavior.

So is it in fact possible to get more complicated behavior in

partial differential equations? The results in this book on other kinds of

systems strongly suggest that it should be. But traditional
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diffusion equation: $t u[t, x] Ð 1/4 $xx u[t, x]

wave equation: $tt u[t, x] Ð $xx u[t, x]

sine-Gordon soliton equation: $tt u[t, x] Ð $xx u[t, x] + Sin[u[t, x]]

Three partial differential equations that have historically been studied extensively. Just like in other pictures in this book, position goes
across the page, and time down the page. In each equation  is the gray level at a particular point,  is the rate of change (derivative)
of the gray level with time, and  is the rate of change of that rate of change (second derivative). Similarly,  is the rate of change
with position in space, and  is the rate of change of that rate of change. On this page and the ones that follow the initial
conditions used are , . 

u $t u

$tt u $x u

$xx u

u = 4-x
2

$t u = 0
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mathematical methods give very little guidance about how to find such

behavior. Indeed, it seems that the best approach is essentially just to

search through many different partial differential equations, looking for

ones that turn out to show complex behavior.

But an immediate difficulty is that there is no obvious way to

sample possible partial differential equations. In discrete systems such

as cellular automata there are always a discrete set of possible rules. But

in partial differential equations any mathematical formula can appear.

Nevertheless, by representing formulas as symbolic expressions

with discrete sets of possible components, one can devise at least some

schemes for sampling partial differential equations.

But even given a particular partial differential equation, there is

no guarantee that the equation will yield self-consistent results. Indeed,

for a very large fraction of randomly chosen partial differential equations

what one finds is that after just a small amount of time, the gray level

one gets either becomes infinitely large or starts to vary infinitely

quickly in space or time. And whenever such phenomena occur, the

original equation can no longer be used to determine future behavior.

But despite these difficulties I was eventually able to find the

partial differential equations shown on the next two pages. 

The mathematical statement of these equations is fairly simple.

But as the pictures show, their behavior is highly complex. 

Indeed, strangely enough, even though the underlying equations

are continuous, the patterns they produce seem to involve patches that

have a somewhat discrete structure.

But the main point that the pictures on the next two pages make

is that the kind of complex behavior that we have seen in this book is in

no way restricted to systems that are based on discrete elements. It is

certainly much easier to find and to study such behavior in these

discrete systems, but from what we have learned in this section, we

now know that the same kind of behavior can also occur in completely

continuous systems such as partial differential equations.
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$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ u[t, x])

$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ 2 u[t, x])

$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ 4 u[t, x])

Examples of partial differential equations I have found that have more complicated behavior. The background in each case purely is
repetitive, but the main part of the pattern is complex, and reminiscent of what is produced by continuous cellular automata and many
other kinds of systems discussed in this book.
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$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ u[t, x])

$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ 2 u[t, x])

$tt u[t, x] Ð $xx u[t, x] + (1 - u[t, x]2) (1+ 4 u[t, x])
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Continuous Versus Discrete Systems

One of the most obvious differences between my approach to science

based on simple programs and the traditional approach based on

mathematical equations is that programs tend to involve discrete

elements while equations tend to involve continuous quantities.

But how significant is this difference in the end?

One might have thought that perhaps the basic phenomenon of

complexity that I have identified could only occur in discrete systems. But

from the results of the last few sections, we know that this is not the case.

What is true, however, is that the phenomenon was immensely

easier to discover in discrete systems than it would have been in

continuous ones. Probably complexity is not in any fundamental sense

rarer in continuous systems than in discrete ones. But the point is that

discrete systems can typically be investigated in a much more direct

way than continuous ones.

Indeed, given the rules for a discrete system, it is usually a rather

straightforward matter to do a computer experiment to find out how

the system will behave. But given an equation for a continuous system,

it often requires considerable analysis to work out even approximately

how the system will behave. And in fact, in the end one typically has

rather little idea which aspects of what one sees are actually genuine

features of the system, and which are just artifacts of the particular

methods and approximations that one is using to study it.

With all the work that was done on continuous systems in the

history of traditional science and mathematics, there were undoubtedly

many cases in which effects related to the phenomenon of complexity

were seen. But because the basic phenomenon of complexity was not

known and was not expected, such effects were probably always

dismissed as somehow not being genuine features of the systems being

studied. Yet when I came to investigate discrete systems there was no

Solutions to the same equations as on the previous page over a longer period of time. Note
the appearance of discrete structures. Particularly in the last picture some details are sensitive
to the numerical approximation scheme used in computing the solution to the equation. 
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possibility of dismissing what I saw in such a way. And as a result I was

in a sense forced into recognizing the basic phenomenon of complexity.

But now, armed with the knowledge that this phenomenon

exists, it is possible to go back and look again at continuous systems.

And although there are significant technical difficulties, one finds

as the last few sections have shown that the phenomenon of complexity

can occur in continuous systems just as it does in discrete ones.

It remains much easier to be sure of what is going on in a discrete

system than in a continuous one. But I suspect that essentially all of the

various phenomena that we have observed in discrete systems in the

past several chapters can in fact also be found even in continuous

systems with fairly simple rules. 
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NOTES FOR CHAPTER 4

Systems Based on Numbers

The Notion of Numbers

â Implementation of digit sequences. A whole number  can
be converted to a sequence of digits in base  using

 or (see also page 1094)

and from a sequence of digits using  or 

For a number  between 0 and 1, the first  digits in its digit
sequence in base  are given by  or 

and from these digits one can reconstruct an approximation
to the number using  or 

â Gray code. In looking at digit sequences, it is sometimes useful
to consider ordering numbers by a criterion other than their
size. An example is Gray code ordering, in which successive
numbers are arranged to differ in only one digit. One possible
such ordering for numbers with a total of  digits is

The succession of sizes and digit sequences of numbers
ordered in this way are shown below. (Note that the digit
sequence picture is turned on its side relative to those in the
main text). The number which appears at position  is given
by . (Iterating the related function

 yields numbers whose digit sequences
correspond to the rule 60 cellular automaton).

â A note for mathematicians. Some mathematicians will at
first find what I say in this chapter quite bizarre. It may help

however to point out that the traditional view of numbers
already shows signs of breaking down in many studies of
dynamical systems done over the past few decades. Thus for
example, instead of getting results in terms of continuous
functions, Cantor sets very often appear. Indeed, the
symbolic dynamics approach that is often used in dynamical
systems theory is quite close to the digit sequence approach I
use here—Markov partitions in dynamical systems theory
are essentially just generalizations of digit expansions.

However, in the cases that are analyzed in dynamical systems
theory, only shifts and other very simple operations are
typically performed on digit sequences. And as a result, most
of the phenomena that I discuss in this chapter have not been
seen in work done in dynamical systems theory.

â History of numbers. Numbers were probably first used
many thousands of years ago in commerce, and initially only
whole numbers and perhaps rational numbers were needed.
But already in Babylonian times, practical problems of
geometry began to require square roots. Nevertheless, for a
very long time, and despite some development of algebra,
only numbers that could somehow in principle be
constructed mechanically were ever considered. The
invention of fluxions by Isaac Newton in the late 1600s,
however, introduced the idea of continuous variables—
numbers with a continuous range of possible sizes. But while
this was a convenient and powerful notion, it also involved a
new level of abstraction, and it brought with it considerable
confusion about fundamental issues. In fact, it was really
only through the development of rigorous mathematical
analysis in the late 1800s that this confusion finally began to
clear up. And already by the 1880s Georg Cantor and others
had constructed completely discontinuous functions, in
which the idea of treating numbers as continuous variables
where only the size matters was called into question. But
until almost the 1970s, and the emergence of fractal geometry
and chaos theory, these functions were largely considered as

n
k

IntegerDigits[n, k]

Reverse[Mod[NestWhileList[Floor[# / k] &, n, # > k &], k]]

FromDigits[ list, k]

Fold[k #1+#2 &, 0, list]

x m
k RealDigits[x, k, m]

Floor[k NestList[Mod[k #, 1] &, x, m - 1]]

FromDigits[{list, 0}, k]

Fold[#1/k +#2 &, 0, Reverse[ list]] / k

m
GrayCode[m_] :=

Nest[Join[#, Length[#] +Reverse[#]] &, {0}, m]

i
BitXor[ i, Floor[ i / 2]]

BitXor[ i, 2 i]

0

100

200

300

0 50 100 150 200 250
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mathematical curiosities, of no practical relevance. (See also
page 1168.)

Independent of pure mathematics, however, practical
applications of numbers have always had to go beyond the
abstract idealization of continuous variables. For whether
one does calculations by hand, by mechanical calculator or
by electronic computer, one always needs an explicit
representation for numbers, typically in terms of a sequence
of digits of a certain length. (From the 1930s to 1960s, some
work was done on so-called analog computers which used
electrical voltages to represent continuous variables, but such
machines turned out not to be reliable enough for most
practical purposes.) From the earliest days of electronic
computing, however, great efforts were made to try to
approximate a continuum of numbers as closely as possible.
And indeed for studying systems with fairly simple behavior,
such approximations can typically be made to work. But as
we shall see later in this chapter, with more complex
behavior, it is almost inevitable that the approximation
breaks down, and there is no choice but to look at the explicit
representations of numbers. (See also page 1128.)

â History of digit sequences. On an abacus or similar device
numbers are in effect represented by digit sequences. In
antiquity however most systems for writing numbers were
like the Roman one and not based on digit sequences. An
exception was the Babylonian base 60 system (from which
hours:minutes:seconds notation derives). The Hindu-Arabic
base 10 system in its modern form probably originated
around 600 AD, and particularly following the work of
Leonardo Fibonacci in the early 1200s, became common by
the 1400s. Base 2 appears to have first been considered
explicitly in the early 1600s (notably by John Napier in 1617),
and was studied in detail by Gottfried Leibniz starting in
1679. The possibility of arbitrary bases was stated by Blaise
Pascal in 1658. Various bases were used in puzzles, but rarely
in pure mathematics (work by Georg Cantor in the 1860s
being an exception). The first widespread use of base 2 was in
electronic computers, starting in the late 1940s. Even in the
1980s digit sequences were viewed by most mathematicians
as largely irrelevant for pure mathematical purposes. The
study of fractals and nesting, the appearance of many
algorithms involving digit sequences and the routine use of
long numbers in Mathematica have however gradually made
digit sequences be seen as more central to mathematics.

Elementary Arithmetic

â Page 117 · Substitution systems. There are many connections
between digit sequences and substitution systems, as

discussed on page 891. The pattern shown here is essentially
a rotated version of the pattern generated by the first
substitution system on page 83. 

â Page 117 · Digit counts. The number of black squares on row
 in the pattern shown here is given by 

and is plotted below. This function appeared on page 870 in
the discussion of binomial coefficients modulo 2, and will
appear again in several other places in this book. Note the
inequality . Formulas for

 include  and 

Straightforward generalizations of  can be defined
for integer and non-integer bases and by looking not only at
the total number of digits but also at correlations between
digits. In all cases the analogs of the picture below have a
nested structure. 

â Negative bases. Given a suitable list of digits from 0 to 
one can obtain any positive or negative number using

. The picture below shows the digit
sequences of successive numbers in base -2; the row  from
the bottom turns out to consist of alternating black and white
blocks of length . (In ordinary base 2 a number  can be
represented as on a typical electronic computer by
complementing each digit, including leading 0’s.) (See also
page 1093.)

â Non-power bases. One can consider representing numbers
by  where the  need not be .
So long as  grows less rapidly than  (as when

 or ), digits 0 and 1 will suffice,
though the representation is not generally unique. (See
page 1070.)

â Multiplicative digit sequences. One can consider
generalizations of digit sequences in which numbers are
broken into parts combined not by addition but by
multiplication. Since numbers can be factored uniquely into
products of powers of primes, a number can be specified by a
list in which 1’s appear at the positions of the appropriate

 (which can be sorted by size) and 0’s appear
elsewhere, as shown below. Note that unlike the case of
ordinary additive digits, far more than  digits are
required to specify a number . 

n DigitCount[n, 2, 1]

1 < DigitCount[n, 2, 1] < Log[2, n]
DigitCount[n, 2, 1] n - IntegerExponent[n!, 2]

2 n - Log[2, Denominator[Derivative[n][( 1 - #)-1/2 &][0] /n!]]

DigitCount

4 8 16 32 64 128

0
1
2
3
4
5
6
7

k - 1

FromDigits[ list, -k]
j

2 j -n

-42 -10 0 5 21 85

Sum[a[n] f [n], {n, 0, ¥}] f [n] kn

f [n] 2n

f = Fibonacci f = Prime

Prime[m]n

Log[m]

m



S Y S T E M S  B A S E D  O N  N U M B E R S N O T E S  F O R  C H A P T E R  4

903

 

 

â Page 120 · Powers of three in base 2. The th row in the
pattern shown can be obtained simply as .
Even such individual rows seem in many respects random.
The picture below shows the fraction of 1’s that appear on
successive rows. The fraction seems to tend to 1/2. 

If one looks only at the rightmost  columns of the pattern,
one sees repetition—but the period of the repetition grows
like . Typical vertical columns have one obvious deviation
from randomness: it is twice as probable for the same colors
to occur on successive steps than for opposite colors. (For
multiplier  in base , the relative frequencies of pairs 
are given by .)

The sequence  obtained from the rightmost 
digits corresponds to a simple linear congruential
pseudorandom number generator. Such generators are
widely used in practical computer systems, as discussed
further on page 974. (Note that in the particular case used
here, pairs of numbers  always lie on
lines; with multipliers other than 3, such regularities may
occur for longer blocks of numbers.)

Note that if one uses base 6 rather than base 2, then as shown
on page 614 powers of 3 still yield a complicated pattern, but
all operations are strictly local, and the system corresponds to
a cellular automaton with 6 possible colors for each cell and
rule  (see page 1093). 

â Leading digits. In base  the leading digits of powers are
not equally probable, but follow the logarithmic law from
page 914. 

â Page 122 · Powers of 3/2. The th value shown in the plot
here is . Measurements suggest that these
values are uniformly distributed in the range 0 to 1, but
despite a fair amount of mathematical work since the 1940s,
there has been no substantial progress towards proving this. 

In base 6,  is a cellular automaton with rule

(Note that this rule is invertible.) Looking at  then
corresponds to studying the cellular automaton with an initial

condition given by the base 6 digits of . It is then possible to
find special values of  (an example is 0.166669170371...)
which make the first digit in the fractional part of 
always nonzero, so that . In general, it
seems that  can be kept as large as about 
(e.g. with ) but no larger.

â General powers. It has been known in principle since the
1930s that  is uniformly distributed in the range 0
to 1 for almost all values of . However, no specific value of 
for which this is true has ever been explicitly found. (Some
attempts to construct such values were made in the 1970s.)
Exceptions are known to include so-called Pisot numbers
such as ,  and  (the
numerically smallest of all Pisot numbers) for which

 becomes 0 or 1 for large . Note that 
effectively extracts successive digits of  in base  (see pages
149 and 919).

â Multiples of irrational numbers. Instead of powers one can
consider successive multiples  of a number . The
pictures below show results obtained as a function of  for
various choices of . (These correspond to positions of a
particle bouncing around in an idealized box, as discussed on
pages 971 and 1022.)

When  is a rational number, the sequence always repeats.
But in all other cases, the sequence does not repeat, and in
fact it is known that a uniform distribution of values is
obtained. (The average difference of successive values is
maximized for , as mentioned on page 891.)

â Relation to substitution systems. Despite the uniform
distribution result in the note above, the sequence

 is definitely not completely
random, and can in fact be generated by a sequence of
substitution rules. The first  rules (which yield far more
than  elements of the original sequence) are obtained for
any  that is not a rational number from the continued
fraction form (see page 914) of  by 

Given these rules, the original sequence is given by

If  is the solution to a quadratic equation, then the continued
fraction form is repetitive, and so there are a limited number

0 20 40 60 80 100

n
IntegerDigits[3n, 2]

0.45

0.5

0.55

1 10 100 1,000 10,000 100,000 1,000,000

s

2s

m k {i, j}
Quotient[a i - j - 1+m, k] -Quotient[m i - j - 1, k]

Mod[3n, 2s] s

Mod[{3n, 3n+1}, 2s]

{a_, b_, c_} ! 3 Mod[b, 2] + Floor[c/2]

b

n
Mod[( 3 /2)n, 1]

( 3 /2)n

{a_, b_, c_} ! 3 Mod[a +Quotient[b, 2], 2] +
Quotient[3 Mod[b, 2] +Quotient[c, 2], 2]

u (3/2)n

u
u

u (3/2)n

Mod[u (3/2)n, 1] > 1/6
Mod[u (3/2)n, 1] 0.3
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Mod[hn, 1]
h h

GoldenRatio �!!!!2 + 1 Root[#3 - # - 1 &, 1]

Mod[hn, 1] n Mod[x hn, 1]
x h

Mod[h n, 1] h
n

h
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3
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2

h

h = GoldenRatio

Floor[( n+ 1) h] - Floor[n h]

m
m
h

h
Map[( {0 ! Join[#, {1}], 1 ! Join[#, {1, 0}]} &)[Table[0,

{# - 1}]] &, Reverse[Rest[ContinuedFraction[h, m]]]]

Floor[h] + Fold[Flatten[#1 /. #2] &, {0}, rules]
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of different substitution rules. In this case, therefore, the
original sequence can be found by a neighbor-independent
substitution system of the kind discussed on page 82. For

 the substitution system is 
(see page 890), for  it is  (see
page 892) and for  it is .
(The presence of nested structure is particularly evident in

.) (See also
pages 892, 916, 932 and 1084.) 

â Other uniformly distributed sequences. Cases in which
 is uniformly distributed include , ,

, ,  and  (  irrational)
and probably . (See also page 914.) 

â Page 122 · Implementation. The evolution for  steps of the
system at the top of the page can be computed simply by 

â Page 122 · The 3n+1 problem. The system described here is
similar to the so-called  problem, in which one looks at
the rule  and asks whether
for any initial value of  the system eventually evolves to 1
(and thereafter simply repeats the sequence 1, 2, 1, 2, ...). It
has been observed that this happens for all initial values of 
up to at least , but despite a fair amount of mathematical
effort since the problem was first posed in the 1930s, no
general proof for all values of  has ever been found. (For
negative initial , the evolution appears always to reach -1, -5
or -17, and then repeat with periods 1, 3 or 11 respectively.)
An alternative formulation is to ask whether for all 

With the rule  used in the
main text, the sequence produced repeats if  ever reaches 2,
4 or 40 (and possibly higher numbers). But with initial
values of  up to 10,000, this happens in only 642 cases, and
with values up to 100,000 it happens in only 2683 cases. In
all other cases, the values of  in the sequence appear to
grow forever.

To get some idea about the origin of this behavior, one can
assume that successive values of  are randomly even and odd
with equal probability. And with this assumption,  should
increase by a factor of 5/2 half the time, and decrease by a factor
close to 1/2 the rest of the time—so that after  steps it should be
multiplied by an overall factor of about . Starting with

, the effective exponents for  are
. One reason

that all sequences do not grow forever is that even with perfect
randomness, there will be fluctuations, and occasionally  will
reach a low value that makes it get stuck in a repetitive
sequence.

If one applies the same kind of argument to the standard
 problem, then one concludes that  should on average

decrease by a factor of  at each step, making it
unsurprising that at least in most cases  eventually reaches
the value 1. Indeed, averaging over many initial values of ,
there is good quantitative agreement between the predictions
of the randomness approximation and the actual 
problem. But since there is no fundamental basis for the
randomness approximation, it is still conceivable that a
particular value of  exists that does not follow its
predictions.

The pictures below show how many steps are needed to
reach value 1 starting from different values of . Case (a) is
the standard  problem. Cases (b) and (c) use somewhat
different rules that yield considerably simpler behavior. In
case (b), the number of steps is equal to the number of base 2
digits in , while in case (c) it is determined by the number of
1’s in the base 2 digit sequence of .

â 3n+1 problem as cellular automaton. If one writes the digits
of  in base 6, then the rule for updating the digit sequence is
a cellular automaton with 7 possible colors (color 6 works as
an end marker that appears to the left and right of the actual
digit sequence):

The  problem can then be viewed as a question about
the existence of persistent structure in this cellular
automaton. 

â Reconstructing initial conditions. Given a particular starting
value of , it is difficult to predict what precise sequence of even
and odd values will be obtained in the system on page 122. But
given  steps in this sequence as a list of 0’s and 1’s, the

h = GoldenRatio {0 ! {1}, 1 ! {1, 0}}

h =
�!!!!2 {0 ! {0, 1}, 1 ! {0, 1, 0}}
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following function will reconstruct the rightmost  digits in the
starting value of :

â A reversible system. In both the ordinary  problem
and in the systems discussed in the main text different
numbers often evolve to the same value so that there is no
unique way to reverse the evolution. However, with the rule 

it is always possible to go backwards by the rule

The picture shows the number of base 10 digits in numbers
obtained by backward and forward evolution from . For

, the system always enters a short cycle. Starting at ,
there is also a length 12 cycle. But apart from these cycles, the
numbers produced always seem to grow without bound at an
average rate of  in the forward direction, and 
in the backward direction (at least all numbers up to 10,000
grow to above 10100). Approximately one number in 20 has the
property that evolution either backward or forward from it
never leads to a smaller number.

â Page 125 · Reversal-addition systems. The operation that is
performed here is 

After a few steps, the digit sequence obtained is typically
reversal symmetric (a generalized palindrome) except for the
interchange of 0 and 1, and for the presence of localized
structures. The sequence expands by at least one digit every two
steps; more rapid expansion is typically correlated with
increased randomness. For most initial , the overall pattern
obtained quickly becomes repetitive, with an effective period of
4 steps. But with the initial condition , no repetition
occurs for at least a million steps, at which point  has 568418
base 2 digits. The plot below shows the lengths of the successive
regions of regularity visible on the right-hand edge of the
picture on page 126 over the course of the first million steps.

If one works directly with a digit sequence of fixed length,
dropping any carries on the left, then a repetitive pattern is
typically obtained fairly quickly. If one always includes one

new digit on the left at every step, even when it is 0, then a
rather random pattern is produced.

â History. Systems similar to the one described here (though
often in base 10) were mentioned in the recreational
mathematics literature at least as long ago as 1939. A few small
computer experiments were done around 1970, but no large-
scale investigations seem to have previously been made.

â Digit reversal. Sequences of the form 

shown below appear in algorithms such as the fast Fourier
transform and, with different values of  for different
coordinates, in certain quasi-Monte Carlo schemes. (See
pages 1073 and 1085.) Such sequences were considered by
Johannes van der Corput in 1935. 

â Iterated run-length encoding. Starting say with  consider
repeatedly replacing  by (see page 1070) 

The resulting sequences contain only the numbers 1, 2 and 3,
but otherwise at first appear fairly random. However, as
noticed by John Conway around 1986, the sequences can
actually be obtained by a neighbor-independent substitution
system, acting on 92 subsequences, with rules such as

.
The system thus in the end produces patterns that are purely
nested, though formed from rather complicated elements.
The length of the sequence at the th step grows like ,
where  is the root of a degree 71 polynomial,
corresponding to the largest eigenvalue of the transition
matrix for the substitution system. 

â Digit count sequences. Starting say with  repeatedly
replace  by

The resulting sequences grow in length roughly like .
The picture below shows the fluctuations around  of the
cumulative number of 1’s up to position  in the sequence
obtained at step 1000. A definite nested structure similar to
picture (c) on page 130 is evident. 

t
n

IntegerDigits[First[Fold[{Mod[If[OddQ[#2], 2 First[#1] - 1,
2 First[#1]PowerMod[5, -1, Last[#1]]], Last[#1]],

2 Last[#1]} &, {0, 2}, Reverse[ list]]], 2, Length[ list]]
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â Iterated bitwise operations. The pictures below show digit
sequences generated by repeatedly applying combinations of
bitwise and arithmetic operations. The first example
corresponds to elementary cellular automaton rule 60. Note
that any cellular automaton rule can be reproduced by some
appropriate combination of bitwise and arithmetic
operations. 

Recursive Sequences

â Page 128 · Recurrence relations. The rules for the sequences
given here all have the form of linear recurrence relations. An
explicit formula for the th term in each sequence can be
found by solving the algebraic equation obtained by
applying the replacement  to the recurrence
relation. (In case (e), for example, the equation is

.) Note that (d) is the Fibonacci sequence,
discussed on page 890.

Standard examples of recursive sequences that do not come
from linear recurrence relations include factorial

and Ackermann functions (see below). These two sequences
both grow rapidly, but smoothly. 
A recurrence relation like 

corresponds to an iterated map of the kind discussed on page
920, and has complicated behavior for many rational . 

â Ackermann functions. A convenient example is

The original function constructed by Wilhelm Ackermann
around 1926 is essentially 

or

For successive  (following the so-called Grzegorczyk
hierarchy) this is , , , , .... 
can also be written  and is sometimes
called tetration and denoted .

â Page 129 ·  Computation of sequences. It is straightforward
to compute the various sequences given here, but to avoid a
rapid increase in computer time, it is essential to store all the

values of  that one has already computed, rather than
recomputing them every time they are needed. This is
achieved for example by the definitions 

The question of which recursive definitions yield
meaningful sequences can depend on the details of how the
rules are applied. For example,  may occur, but if the
complete expression is , then the actual value of

 is irrelevant. The default form of evaluation for
recursive functions implemented by all standard computer
languages (including Mathematica) is the so-called leftmost
innermost scheme, which attempts to find explicit values for
each  that occurs first, and will therefore never notice if

 in fact occurs only in the combination . (The
SMP system that I built around 1980 allowed different
schemes—but they rarely seemed useful and were difficult
to understand.) 

â Page 131 · Properties of sequences. Sequence (d) is given by 

The list of elements in the sequence up to value  is given by 

The differences between the first  of these elements is

The largest  for which  is given by
 or 

(this satisfies ).

The form of sequence (c) is similar to that obtained from
concatenation numbers on page 913. Hump  in the picture
of sequence (c) shown is given by

The first  elements in the sequence can also be generated
in terms of reordered base 2 digit sequences by

Note that the positive and negative fluctuations in sequence
(f) are not completely random: although the probability for
individual fluctuations in each direction seems to be the
same, the probability for two positive fluctuations in a row is
smaller than for two negative fluctuations in a row.

In the sequences discussed here,  always has the form
. The plots at the top of the next page show

 and  as a function of . 

BitXor[2 n, n] BitXor[3 + 2 n, n] BitXor[3 n, n] BitXor[6 n, n] BitOr[2 n, n] BitOr[6 n, n]

n

f [m_] ! tm

tn 2 -tn-1 + tn-2

f [1] = 1; f [n_] := n f [n - 1]

f [0] = x; f [n_] := a f [n - 1] ( 1 - f [n - 1])

x

f [1, n_] := n; f [m_, 1] := f [m - 1, 2]

f [m_, n_] := f [m - 1, f [m, n - 1] + 1]

f [1, x_, y_] := x + y;
f [m_, x_, y_] := Nest[f [m - 1, x, #] &, x, y - 1]

f [m_, x_, y_] :=
Nest[Function[z, Nest[#1, x, z - 1]] &, x +# &, m - 1][y]

m
x + y x y xy Nest[x# &, 1, y] f [4, x, y]

Array[x &, y, 1, Power]
xàày

f [n]

f [n_] := f [n] = f [n - f [n - 1]] + f [n - f [n - 2]]

f [1] = f [2] = 1

f [-1]
f [-1] - f [-1]

f [-1]

f [k]
f [k] f [k] - f [k]

f [n_] := (n+ g[IntegerDigits[n, 2]]) /2

g[{( 1) ..}] = 1; g[{1, (0) ..}] = 0

g[{1, s__}] := 1+ g[IntegerDigits[FromDigits[{s}, 2] + 1, 2]]

m

Flatten[Table[Table[n, {IntegerExponent[n, 2] + 1}], {n, m}]]

2 (2k - 1)

Nest[Replace[#, {x___} ! {x, 1, x, 0}] &, {}, k]

n f [n] 2 m
2 m+ 1 -DigitCount[m, 2, 1] IntegerExponent[( 2 m)!, 2] + 1

h[1] = 2; h[m_] := h[Floor[m/2]] +m

m

FoldList[Plus, 0, Flatten[Nest[Delete[NestList[Rest, #,
Length[#] - 1], 2] &, Append[Table[1, {m}], 0], m]] - 1/2]

2m

FoldList[Plus, 1, Map[Last[Last[#]] &,
Sort[Table[( {Length[#], Apply[Plus, #], 1 - #} &)[

IntegerDigits[ i, 2]], {i, 2m}]]]]

f [n_]
f [p[n]] + f [q[n]]
p[n] q[n] n
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The process of evaluating  for a particular  can be
thought of as yielding a tree where each node is a particular

 which has two successors,  and . The
distinct nodes reached starting from  for sequence (f)
are then for example . The total
lengths of these chains (corresponding to the depth of the
evaluation tree) seem to increase roughly like  for all
the rules on this page. For the Fibonacci sequence, it is
instead . The maximum number of distinct nodes at any
level in the tree has large fluctuations but its peaks seem to
increase roughly linearly for all the rules on this page (in the
Fibonacci case it is ).

â History. The idea of sequences in which later terms are
deduced from earlier ones existed in antiquity, notably in the
method of induction and in various approximation schemes
(compare page 918). The Fibonacci sequence also appears to
have arisen in antiquity (see page 890). A fairly clear idea of
integer recurrence relations has existed since about the 1600s,
but until very recently mainstream mathematics has almost
never investigated them. In the late 1800s and early 1900s
issues about the foundations of mathematics (see note below)
led to the formal definition of so-called recursive functions.
But almost without exception the emphasis was on studying
what such functions could in principle do, not on looking at
the actual behavior of particular ones. And indeed, despite
their simple forms, recursive sequences of the kind I discuss
here do not for the most part ever appear to have been
studied before—although sequence (c) was mentioned in
lectures by John Conway around 1988, and the first 17 terms
of sequence (e) were given by Douglas Hofstadter in 1979.

â Primitive recursive functions. As part of trying to formalize
foundations of arithmetic Richard Dedekind began around
1888 to discuss possible functions that could be defined using
recursion (induction). By the 1920s there had then emerged a
definite notion of primitive recursive functions. The proof of
Gödel’s Theorem in 1931 made use of both primitive and
general recursive functions—and by the mid-1930s emphasis
had shifted to discussion of general recursive functions. 

Primitive recursive functions are defined to deal with non-
negative integers and to be set up by combining the basic
functions  (zero),  (successor) and

 (projection) using the operations of
composition and primitive recursion

 and  can then for example be defined as

Most familiar integer mathematical functions also turn out to
be primitive recursive—examples being , ,

,  and . And indeed in the early 1900s it
was thought that perhaps any function that could reasonably
be computed would be primitive recursive (see page 1125).
But the construction in the late 1920s of the Ackermann
function  discussed above showed that this was not
correct. For any primitive recursive function can grow for
large  at most like  with fixed . Yet  will
always eventually grow faster than this—demonstrating that
the whole Ackermann function cannot be primitive
recursive. (See page 1162.)

A crucial feature of primitive recursive functions is that the
number of steps they take to evaluate is always limited, and
can always in effect be determined in advance, since the basic
operation of primitive recursion can be unwound simply as

And what this means is that any computation that for
example fundamentally involves a search that might not
terminate cannot be implemented by a primitive recursive
function. General recursive functions, however, also allow 

which can perform unbounded searches. (Ordinary
primitive recursive functions are always total functions, that
give definite values for every possible input. But general
recursive functions can be partial functions, that do not
terminate for some inputs.) As discussed on page 1121 it
turns out that general recursive functions are universal, so
that they can be used to represent any possible computable
function. (Note that any general recursive function can be
expressed in the form  where  and  are primitive
recursive.)

In enumerating recursive functions it is convenient to use
symbolic definitions for composition and primitive recursion

where the more efficient unwound form is

And in terms of these, for example, . 
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f [n] n

f [k] f [p[k]] f [q[k]]
f [12]

{{12}, {3, 7}, {1, 2, 4}, {1, 2}, {1}}

Log[n]

n - 1

Ceiling[n/2]

z = 0 & s = # + 1 &

p[ i_] := Slot[ i] &

f [0, y___Integer] := g[y]

f [x_Integer, y___Integer] := h[f [x - 1, y], x - 1, y]

Plus Times

plus[0, y_] = y; plus[x_, y_] := s[plus[x - 1, y]]

times[0, y_] = 0; times[x_, y_] := plus[times[x - 1, y], y]

Power Mod
Binomial GCD Prime

f [m, x, y]

x f [m, x, x] m f [x, x, x]

f [x_, y___] := Fold[h[#1, #2, y] &, g[y], Range[0, x - 1]]

m[f_] = NestWhile[# + 1 &, 0, Function[n, f [n, ##1] 9 0]] &

c[f , m[g]] f g

c[g_, h___] = Apply[g, Through[{h}[##]]] &

r[g_, h_] =
If[#1 2 0, g[##2], h[#0[#1 - 1, ##2], #1 - 1, ##2]] &

r[g_, h_] = Fold[Function[{u, v}, h[u, v, ##2]],
g[##2], Range[0, # - 1]] &

plus = r[p[1], s]
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The total number of recursive functions grows roughly
exponentially in the size ( ) of such expressions, and
roughly linearly in the number of arguments.

Most randomly selected primitive recursive functions show
very simple behavior—either constant or linearly increasing
when fed successive integers as arguments. The smallest
examples that show other behavior are: 

ä , which is , with quadratic 
growth

ä , which is , with exponential 
growth

ä , which is , 
which shows very simple nesting

ä , which is , with repetitive 
behavior 

ä  which is 
, growing like 

. 

 is the first function to show
significantly more complex behavior, and indeed as the picture
below indicates, it already shows remarkable randomness.
From its definition, the function can be written as

Its first zeros are at .

Each zero is immediately followed by a maximum equal to ,
and as picture below shows, values tend to accumulate for
example on lines of the form . 

Note that functions of the form 
are given in terms of the original Ackermann function in the
note above by . 

Before the example above one might have thought that
primitive recursive functions would always have to show
rather simple behavior. But already an immediate
counterexample is . And it turns out that if they never
sample values below  the functions in the main text are
also all primitive recursive. (Their definitions have a

primitive recursive structure, but to operate correctly they
must be given integers that are non-negative.) 

Among functions with simple explicit definitions, essentially
the only examples known fundamentally to be not primitive
recursive are ones closely related to the Ackermann
function. But given an enumeration of primitive recursive
functions (say ordered first by , then with ) in
which the th function is  diagonalization (see page
1128) yields the function  shown below which
cannot be primitive recursive. It is inevitable that the
function shown must eventually grow faster than any
primitive recursive function (at  its value is 63190,
while at  it is 1073844). But by reducing the results
modulo 2 one gets a function that does not grow—and has
seemingly quite random behavior—yet is presumably again
not primitive recursive.

(Note that multiple arguments to a recursive function can be
encoded as a single argument using functions like the  of
page 1120—though the irregularity of such functions tends to
make it difficult then to tell what is going on in the
underlying recursive function.)

â Ulam sequences. Slightly more complicated definitions in
terms of numbers yield all sorts of sequences with very
complicated forms. An example suggested by Stanislaw
Ulam around 1960 (in a peculiar attempt to get a 1D analog
of a 2D cellular automaton; see pages 877 and 928) starts
with , then successively appends the smallest number
that is the sum of two previous numbers in just one way,
yielding 

With this initial condition, the sequence is known to go on
forever. At least up to  terms, it increases roughly
like , but as shown below the fluctuations seem
random. 

The Sequence of Primes

â History of primes. Whether the Babylonians had the notion
of primes is not clear, but before 400 BC the Pythagoreans
had introduced primes as numbers of objects that can be
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arranged only in a single line, and not in any other
rectangular array. Around 300 BC Euclid discussed various
properties of primes in his Elements, giving for example a
proof that there are an infinity of primes. The sieve of
Eratosthenes was described in 200 BC, apparently following
ideas of Plato. Then starting in the early 1600s various
methods for factoring were developed, and conjectures
about formulas for primes were made. Pierre Fermat
suggested  as a source for primes and Marin
Mersenne  (see page 911). In 1752 Christian
Goldbach showed that no ordinary polynomial could
generate only primes, though as pointed out by Leonhard
Euler  does so for . (With  or 
included there are at least complicated cases known where
polynomial-like formulas can be set up whose evaluation
corresponds to explicit prime-generating procedures—see
page 1162.) Starting around 1800 extensive work was done
on analytical approximations to the distribution of primes
(see below). There continued to be slow progress in finding
specific large primes;  was found prime around 1750
and  in 1876. (  was found composite in 1732,
as have now all  for .) Then starting in the
1950s with the use of electronic computers many new large
primes were found. The number of digits in the largest
known prime has historically increased roughly
exponentially with time over the past two decades, with a
prime of over 4 million digits ( ) now being
known (see page 911). 

â Page 132 · Finding primes. The sieve of Eratosthenes
shown in the picture is an appropriate procedure if one
wants to find every prime, but testing whether an
individual number is prime can be done much more
efficiently, as in  in Mathematica, for example by
using Fermat’s so-called little theorem that 
whenever  is prime. The th prime  can also be
computed fairly efficiently using ideas from analytic
number theory (see below). 

â Decimation systems. A somewhat similar system starts with
a line of cells, then at each step removes every th cell that
remains, as in the pictures below. The number of steps for
which a cell at position  will survive can be computed as

If a cell is going to survive for  steps, then it turns out that
this can be determined by looking at the last  digits in the
base  representation of its position. For , a cell
survives for  steps if these digits are all 0 (so that
s== ). But for , no such simple
characterization appears to exist.

If the cells are arranged on a circle of size , the question of
which cell is removed last is the so-called Josephus problem.
The solution is , or

 for .

â Page 132 · Divisors. The picture below shows as black
squares the divisors of each successive number (which
correspond to the gray dots in the picture in the main text).
Primes have divisors 1 and  only. (See also pages 902
and 747.)

â Page 133 · Results about primes.  is given
approximately by . (  is
22,801,763,489 while the approximation gives .) A
first approximation to  is . A somewhat
better approximation is , equal to

. This was found empirically by
Carl Friedrich Gauss in 1792, based on looking at a table of
primes. (  is 50,847,534 while  is
about 50,849,235.) A still better approximation is obtained by
subtracting  where the  are
the complex zeros of the Riemann zeta function ,
discussed on page 918. According to the Riemann
Hypothesis, the difference between  and

 is of order . More refined analytical
estimates of  are good enough that they are used
by Mathematica to compute  for large . 

It is known that the ratio of the number of primes of the form
 and  asymptotically approaches 1, but almost

nothing has been proved about the fluctuations.

The gap between successive primes  is
thought to grow on average at most like . It is
known that for sufficiently large  a gap of any size must
exist. It is believed but not proved that there are an infinite
number of “twin primes” with a gap of exactly 2. 

â History of number theory. Most areas of mathematics go
from inception to maturity within at most a century. But in
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number theory there are questions that were formulated
more than 2000 years ago (such as whether any odd perfect
numbers exist) that have still not been answered. Of the
principles that have been established in number theory, a
great many were first revealed by explicit experiments.
From its inception in classical times, through its
development in the 1600s to 1800s, number theory was
largely separate from other fields of mathematics. But
starting at the end of the 1800s, increasing connections were
found to other areas of both continuous and discrete
mathematics. And through these connections, sophisticated
proofs of such results as Fermat’s Last Theorem—open for
350 years—have been constructed. Long considered a rather
esoteric branch of mathematics, number theory has in recent
years grown in practical importance through its use in areas
such as coding theory, cryptography and statistical
mechanics. Properties of numbers and certain elementary
aspects of number theory have also always played a central
role in amateur and recreational mathematics. And as this
chapter indicates, number theory can also be used to
provide many examples of the basic phenomena discussed
in this book.

â Page 134 · Tables of primes. No explicit tables of primes
appear to have survived from antiquity, but it seems likely
that all primes up to somewhere between 5000 and 10000
were known. (In 348 BC, Plato mentioned divisors of 5040,
and by 100 AD there is evidence that the fifth perfect number
was known, requiring the knowledge that 8191 is prime.) In
1202 Leonardo Fibonacci explicitly gave as an example a list
of primes up to 100. And by the mid-1600s there were printed
tables of primes up to 100,000, containing as much data as in
plots (c) and (d). In the 1700s and 1800s many tables of
number factorizations were constructed; by the 1770s there
was a table up to 2 million, and by the 1860s up to 100
million. A table of primes up to a trillion could now be
generated fairly easily with current computer technology—
though for most purposes computation of specific primes is
more useful.

â Page 134 · Numbers of primes. The fact that curve (c) must
cross the axis was proved by John Littlewood in 1914, and it
is known to have at least one crossing below 10317. Somewhat
related to the curves shown here is the function

, equal to 0 if  has a repeated prime factor and
otherwise . The quantity

 behaves very
much like a random walk. The so-called Mertens Conjecture
from 1897 stated that the magnitude of this quantity is less
than . But this was disproved in 1983, although the
necessary  is not known explicitly. 

â Relative primes. A single number is prime if it has no non-
trivial factors. Two numbers are said to be relatively prime if
they share no non-trivial factors. The pattern formed by
numbers with this property is shown on page 613. 

â Page 135 · Properties. (a) The number of divisors of  is
given by , equal to . For
large  this number is on average of order

. 

(b) (Aliquot sums) The quantity that is plotted is
, equal to .

This quantity was considered of great significance in
antiquity, particularly by the Pythagoreans. Numbers were
known as abundant, deficient or perfect depending on
whether the quantity was positive, negative or zero. (See
notes on perfect numbers below.) For large ,

 is known to grow at most like
, and on average like 

(see page 1093). As discovered by Srinivasa Ramanujan in
1918 its fluctuations (see below) can be obtained from the
formula

(c) Squares are taken to be of positive or negative integers, or
zero. The number of ways of expressing an integer  as the
sum of two such squares is .
This is nonzero when all prime factors of  of the form 
appear with even exponents. There is no known simple
formula for the number of ways of expressing an integer as a
sum of three squares, although part of the condition in the
main text for integers to be expressible in this way was
established by René Descartes in 1638 and the rest by Adrien
Legendre in 1798. Note that the total number of integers less
than  which can be expressed as a sum of three squares
increases roughly like , with fluctuations related to

. It is known that the directions of all
vectors  for which  are uniformly
distributed in the limit of large .

The total number of ways that integers less than  can be
expressed as a sum of  squares is equal to the number of
integer lattice points that lie inside a sphere of radius  in

-dimensional space. For , this approaches  for large
, with an error of order , where . 

(d) All numbers  can be expressed as the sum of four squares,
in exactly 
ways, as established by Carl Jacobi in 1829. Edward Waring
stated in 1770 that any number can be expressed as a sum of at
most 9 cubes and 19 fourth powers. Seven cubes appear to
suffice for all but 17 numbers, the last of which is 455; four
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cubes may suffice for all but 113936676 numbers, the last of
which is 7373170279850. (See also page 1166.)

(e) Goldbach’s Conjecture has been verified for all even
numbers up to . In 1973 it was proved that any
even number can be written as the sum of a prime and a
number that has at most two prime factors, not necessarily
distinct. The number of ways of writing an integer  as a
sum of two primes can be calculated explicitly as

.
This quantity was conjectured by G. H. Hardy and John
Littlewood in 1922 to be proportional to 

It was proved in 1937 by Ivan Vinogradov that any large odd
integer can be expressed as a sum of three primes.

â Trapezoidal primes. If one lays out  objects in an 
rectangular array, then  is prime if either  or  must be .
Following the Pythagorean idea of figurate numbers one can
instead consider laying out objects in an array of  rows,
containing successively , , … objects. It turns out all
numbers except powers of 2 can be represented this way.

â Other integer functions.  gives nested
behavior as for decimation systems on page 909, while

 and  yield more
complicated behavior, as shown on pages 257 and 1093. 

â Spectra. The pictures below show frequency spectra
obtained from the sequences in the main text. Some
regularity is evident, and in cases (a) and (b) it can be
understood from trigonometric sum formulas of Ramanujan
discussed above (see also pages 586 and 1081).

â Perfect numbers. Perfect numbers with the property that
 have been studied since at least

the time of Pythagoras around 500 BC. The first few perfect
numbers are  (a total of 39 are
currently known). It was shown by Euclid in 300 BC that

 is a perfect number whenever  is prime.
Leonhard Euler then proved around 1780 that every even
perfect number must have this form. The values of  for the
known Mersenne primes  are shown below. These values
can be found using the so-called Lucas-Lehmer test

, and in all cases  itself
must be prime.

 

 

Whether any odd perfect numbers exist is probably the single
oldest unsolved problem in mathematics. It is known that any odd
perfect number must be greater than , must have a factor of at
least , and must be less than  if it has only  prime factors.
Looking at curve (b) on page 135, however, it does not seem
inconceivable that an odd perfect number could exist. For odd  up
to 500 million the only values near 0 that appear in the curve are

, with, for example, the first 6
occurring at  and last 18 occurring at .
Various generalizations of perfect numbers have been considered,
requiring for example 
(pluperfect) or  (quasiperfect). 

â Iterated aliquot sums. Related to case (b) above is a system
which repeats the replacement 
or equivalently . The fixed points of
this procedure are the perfect numbers (see above). Other
numbers usually evolve to perfect numbers, or to short
repetitive sequences of numbers. But if one starts, for
example, with the number 276, then the picture below shows
the number of base 10 digits in the value obtained at each
step.

After 500 steps, the value is the 53-digit number
39448887705043893375102470161238803295318090278129552

The question of whether such values can increase forever was
considered by Eugène Catalan in 1887, and has remained
unresolved since.

Mathematical Constants

â Page 137 · Digits of pi. The digits of  shown here can be
obtained in less than a second from Mathematica on a typical
current computer using . Historically, the
number of decimal digits of  that have been computed is
roughly as follows: 2000 BC (Babylonians, Egyptians): 2
digits; 200 BC (Archimedes): 5 digits; 1430 AD: 14 digits;
1610: 35 digits; 1706: 100 digits; 1844: 200 digits; 1855: 500
digits; 1949 (ENIAC computer): 2037 digits; 1961: 100,000
digits (IBM 7090); 1973: 1 million; 1983: 16 million; 1989: 1
billion; 1997: 50 billion; 1999: 206 billion. In the first 200
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billion digits, the frequencies of 0 through 9 differ from 20
billion by

An early approximation to  was 

30 digits were obtained with 

An efficient way to compute  to  digits of precision is

This requires about  steps, or a total of roughly
 operations (see page 1134).

â Computing nth digits directly. Most methods for computing
mathematical constants progressively generate each
additional digit. But following work by Simon Plouffe and
others in 1995 it became clear that it is sometimes possible to
generate, at least with overwhelming probability, the th digit
without explicitly finding previous ones. As an example, the

th digit of  in base 2 is formally given by
. And in practice

the th digit can be found just by computing slightly over 
terms of the sum, according to

where several values of  can be tried to check that the result
does not change. (Note that with finite-precision arithmetic,
some exponentially small probability exists that truncation of
numbers will lead to incorrect results.) The same basic
approach as for  can be used to obtain base 16 digits in

 from the following formula for :

A similar approach can also be used for many other constants
that can be viewed as related to values of .

â Page 139 · Rational numbers. The pictures above show the
base 2 digit sequences of numbers  for successive .

The digits of  in base  repeat with period 

which is equal to  for prime , and is
at most . Each repeating block of digits typically seems
quite random, and has properties such as all possible
subblocks of digits up to a certain length appearing (see
page 1084). 

â Page 139 · Digit sequence properties. Empirical evidence for
the randomness of the digit sequences of , , etc. has
been accumulating since early computer experiments in the
1940s. The evidence is based on applying various standard
statistical tests of randomness, and remains somewhat
haphazard. (Already in 1888 John Venn had noted for
example that the first 707 digits of  lead to an apparently
typical 2D random walk.) (See page 1089.)

The fact that  is not a rational number was discovered by
the Pythagoreans. Numbers that arise as solutions of
polynomial equations are called algebraic; those that do not
are called transcendental.  and  were proved to be
transcendental in 1873 and 1882 respectively. It is known that

 and  for whole numbers  (except 0 and 1
respectively) are transcendental. It is also known for example
that  and  are transcendental. It is
not known for example whether  is even
irrational. 

A number is said to be “normal” in a particular base if every
digit and every block of digits of any length occur with equal
frequency. Note that the fact that a number is normal in one
base does not imply anything about its normality in another
base (unless the bases are related for example by both being
powers of 2). Despite empirical evidence, no number
expressed just in terms of standard mathematical functions
has ever been rigorously proved to be normal. It has
nevertheless been known since the work of Emile Borel in
1909 that numbers picked randomly on the basis of their
value are almost always normal. And indeed with explicit
constructions in terms of digits, it is quite straightforward to
get numbers that are normal. An example of this is the
number 0.1234567891011121314... obtained by concatenating
the digits of successive integers in base 10 (see below). This
number was discussed by David Champernowne in 1933,
and is known to be transcendental. A few other results are
also known. One based on gradual extension of work by
Richard Stoneham from 1971 is that numbers of the form

 for prime  are normal in base 
(for ), and are transcendental.

{30841, -85289, 136978, 69393, -78309,
-82947, -118485, -32406, 291044, -130820}
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â Page 141 · Square roots. A standard way to compute  is
Newton's method (actually used already in 2000 BC by the
Babylonians), in which one takes an estimate of the value 
and then successively applies the rule . After
 steps, this method yields a result accurate to about  digits.

Another approach to computing square roots is based on the
fact that the ratio of successive terms in for example the
sequence  with  tends to

. This method yields about  base 2 digits after 
steps.

The method of computing square roots shown in the main
text is less efficient (it computes  digits in  steps), but
illustrates more of the mechanisms involved. The basic idea
is at every step  to maintain the relation ,
keeping  as small as possible so as to make .
Note that the method works not only for integers, but for any
rational number  for which . 

â Nested digit sequences. The number obtained from the
substitution system  is approximately
0.587545966 in base 10. It is certainly conceivable that a
quantity such as Feigenbaum’s constant (approximately
4.6692016091) could have a digit sequence with this kind of
nested structure.

From the result on page 890, the number whose digits are
obtained from  is given by

. This number is
known to be transcendental. The th term in its continued
fraction representation turns out to be . 

The fact that nested digit sequences do not correspond to
algebraic numbers follows from work by Alfred van der
Poorten and others in the early 1980s. The argument is based
on showing that an algebraic function always exists for
which the coefficients in its power series correspond to any
given nested sequence when reduced modulo some . (See
page 1092.) But then there is a general result that if a
particular sequence of power series coefficients can be
obtained from an algebraic (but not rational) function
modulo a particular , then it can only be obtained from
transcendental functions modulo any other —or over the
integers.

â Concatenation sequences. One can consider forming
sequences by concatenating digits of successive integers in
base , as in . In the
limit, such sequences contain with equal frequency all
possible blocks of any given length, but as shown on page
597, they exhibit other obvious deviations from randomness.
The picture below shows the  sequence chopped into
length 256 blocks.

 

 

Applying  to the whole sequence
yields the pattern shown below. 

The systematic increase is a consequence of the leading 1 in
each concatenated sequence. Dropping this 1 yields the
pattern below.

This is similar to picture (c) on page 131, and is a digit-by-
digit version of 

Note that although the picture above has a nested structure,
the original concatenation sequences are not nested, and so
cannot be generated by substitution systems. The element at
position  in the first sequence discussed above can however
be obtained in about  steps using

where the result of the  can be expressed as

Following work by Maxim Rytin in the late 1990s about 
digits of a concatenation sequence can be found fairly
efficiently from

Concatenation sequences can also be generated by joining
together digits from other representations of numbers; the
picture below shows results for the Gray code representation
from page 901.

�!!!!n

x
x ! 1/2 ( x + n/x)

t t2

f [ i] = 2 f [ i - 1] + f [ i - 2] f [1] = f [2] = 1
1+

�!!!!2 2.5 t t

t t

t s2 + 4 r 2 4t n
r s < 2t �!!!!n < s + 4

n 1 < n < 4

{1 ! {1, 0}, 0 ! {0, 1}}

{1 ! {1, 0}, 0 ! {1}}
Sum[2^ ( -Floor[n GoldenRatio]), {n, ¥}]

n
2^Fibonacci[n - 2]

p

p
p

k Flatten[Table[IntegerDigits[ i, k], {i, n}]]

k = 2

FoldList[Plus, 0, 2 list - 1]

0

500

1000

1500

2000

0 5,000 10,000 15,000 20,000

-800

-600

-400

-200

0

0 5,000 10,000 15,000

FoldList[Plus, 0,
Table[Apply[Plus, 2 Rest[IntegerDigits[ i, 2]] - 1], {i, n}]]

n
Log[n]

( ( IntegerDigits[#3 +Quotient[#1, #2], 2]0
Mod[#1, #2] + 11 &)[n - (# - 2) 2#-1 - 2, #,

2#-1] &)[NestWhile[# + 1 &, 0, (# - 1) 2# + 1 < n &]]

NestWhile

Ceiling[1+ProductLog[1/2 (n - 1) Log[2]] /Log[2]]

kn+1

k / ( k - 1)2 -
( k - 1) Sum[k (ks-1) (1+s-s k)/(k-1) ( 1/ ( ( k - 1) ( ks - 1)2) -

k / ( ( k - 1) ( ks+1 - 1)2) + 1/ ( ks+1 - 1)), {s, n}]

0

200

400

600

0 5,000 10,000 15,000



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

914

â Specially constructed transcendental numbers. Numbers
known to be transcendental include ones whose digit
sequences contain 1’s only at positions ,  or .
Concatenation sequences, as well as generalizations formed
by concatenating values of polynomials at successive integer
points, are also known to yield numbers that are
transcendental.

â Runs of digits. One can consider any base 2 digit sequence as
consisting of successive runs of 0’s and 1’s, constructed from
the list of run lengths by

This representation is related to so-called surreal numbers
(though with the first few digits different). The number with
run lengths corresponding to successive integers (so that the

th digit is ) turns out to be
, and

appears at least not to be algebraic.

â Leading digits. Even though in individual numbers
generated by simple mathematical procedures all possible
digits often appear to occur with equal frequency, leading
digits in sequences of numbers typically do not. Instead it is
common for a leading digit  in base  to occur with
frequency  (so that in base 10 1’s occur 30% of
the time and 9’s 4.5%). This will happen whenever

 is uniformly distributed, which, as
discussed on page 903, is known to be true for sequences such
as  (with  irrational), , , , but not

,  or . A logarithmic law for leading digits is
also found in many practical numerical tables, as noted by
Simon Newcomb in 1881 and Frank Benford in 1938.

â Page 143 · Continued fractions. The first  terms in the
continued fraction representation for a number  can be
found from the built-in Mathematica function

, or from

A rational approximation to the number  can be
reconstructed from the continued fraction using

 or by

The pictures below show the digit sequences of successive
iterates obtained from  for
several numbers .

Unlike ordinary digits, the individual terms in a continued
fraction can be of any size. In the continued fraction for a
randomly chosen number, the probability to find a term of
size  is , so that the
probability of getting a 1 is about 41.50%, and the probability
of getting a large term falls off like . If one looks at many
terms, then their geometric mean is finite, and approaches
Khinchin’s constant . 

In the first 1000 terms of the continued fraction for , there
are 412 1’s, and the geometric mean is about 2.6656. The
largest individual term is the 432th one, which is equal to
20,776. In the first million terms, there are 414,526 1’s, the
geometric mean is 2.68447, and the largest term is the
453,294th one, which is 12,996,958.

Note that although the usual continued fraction for  looks
quite random, modified forms such as 

can be very regular. 

The continued fractions for  and  have simple
forms (as discussed by Leonhard Euler in the mid-1700s); other
rational powers of  and tangents do not appear to. The sequence
of odd numbers gives the continued fraction for ; the
sequence of even numbers for . In
general, continued fractions whose th term is  correspond
to numbers given by .
Numbers whose continued fraction terms are polynomials in 
can presumably also be represented in terms of suitably
generalized hypergeometric functions. (All so-called Hurwitz
numbers have continued fractions that consist of interleaved
polynomial sequences—a property left unchanged by

.) 

As discovered by Jeffrey Shallit in 1979, numbers of the form
 that have nonzero digits in base  only

at positions  turn out to have continued fractions with
terms of limited size, and with a nested structure that can be
found using a substitution system according to

The continued fractions for square roots are always periodic;
for higher roots they never appear to show any significant
regularities. The first million terms in the continued fraction
for  contain 414,983 1’s, have geometric mean 2.68505,
and have largest term 4,156,269 at position 484,709. Terms of
any size presumably in the end always occur in continued
fractions for higher roots, though this is not known for
certain. Fairly large terms are sometimes seen quite early: in

 term 19 is 3052, while in  term 34
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is 1,501,790. The presence of a large term indicates a close
approximation to a rational number. In a few known cases
simple formulas yield numbers that are close but not equal to
integers. An example discovered by Srinivasa Ramanujan
around 1913 is , which is an integer to one part
in , and has second continued fraction term
1,333,462,407,511. (This particular example can be understood
from the fact that as  increases  becomes
extremely close to , which
turns out to be an integer whenever there is unique
factorization of numbers of the form —and 
is the largest of the 9 cases for which this is so.) Other less
spectacular examples include  and .

Numbers with digits given by concatenation sequences in
any base  (see note above) seem to have unusual continued
fractions, in which most terms are fairly small, but some are
extremely large. Thus with , term 30 is 4,534,532, term 64
is 4,682,854,730,443,938, term 152 is about  and term
669,468 is about . (For the  case of the original
Champernowne number, even term 18 is already about

.) The plots below of the numbers of digits in
successive terms turn out to have patterns of peaks that show
some signs of nesting. 

In analogy to digits in a concatenation sequence the terms in
the sequence

are known to occur with the same frequencies as they would
in the continued fraction representation for a randomly
chosen number. 

The pictures below show as a function of  the quantity 

which gives a measure of the closeness of successive rational
approximations to . For any irrational number this quantity
cannot be less than 2, while for algebraic irrationals Klaus
Roth showed in 1955 that it can only have finitely many
peaks that reach above any specified level.

â History. Euclid’s algorithm states that starting from
integers  iterating 
eventually leads to . (See page 1093.) The
pictures below show how this works. The numbers of
successively smaller squares (corresponding to the numbers
of steps in the algorithm) turn out to be exactly

. 

It was discovered in antiquity that Euclid’s algorithm starting
with  terminates only when  is rational. In all cases,
however, the relationship with continued fractions remains,
as below.

Infinite continued fractions appear to have first been
explicitly written down in the mid-1500s, and to have
become popular in many problems in number theory by the
1700s. Leonhard Euler studied many continued fractions,
while Joseph Lagrange seems to have thought that it might
be possible to recognize any algebraic number from its
continued fraction. The periodicity of continued fractions for
quadratic irrationals was proved by Evariste Galois in 1828.
From the late 1800s interest in continued fractions as such
waned; it finally increased again in the 1980s in connection
with problems in dynamical systems theory. 

â Egyptian fractions. Following the ancient Egyptian number
system, rational numbers can be represented by sums of
reciprocals, as in . With suitable
distinct integers  one can represent any number by

. The representation is not unique;
,  and  all yield . Simple choices

for  yield many standard transcendental numbers: :
; : ; : ; : ;

: ; : ; :
. (See also page 902.)

â Nested radicals. Given a list of integers acting like digits one
can consider representing numbers in the form

. A sequence of identical
digits  then corresponds to the number .
(Note that .) Repeats
of a digit block  give numbers that solve

. It appears that digits 0, 1, 2 are
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sufficient to represent uniquely all numbers between 1 and 2.
For any number  the first  digits are given by 

Even rational numbers such as  do not yield simple digit
sequences. For random , digits 0, 1, 2 appear to occur with
limiting frequencies .

â Digital slope representation. One can approximate a line of
any slope  as in the picture below by a sequence of segments
on a square grid (such as a digital display device). The
vertical distance moved at the th horizontal position is

, and the sequence obtained from
this (which contains only terms  and )
provides a unique representation for . As discussed on page
903 this sequence can be generated by applying substitution
rules derived from the continued fraction form of . If  is
rational, the sequence is repetitive, while if  is a quadratic
irrational, it is nested. Given a sequence of length , an
approximation to  can be reconstructed using 

The fractional part of the result obtained is always an
element of the Farey sequence

(See also pages 892, 932 and 1084.) 

â Representations for integers. See page 560.

â Operator representations. Instead of repeatedly applying an
operation to a sequence of digits one can consider forming
integers (or other numbers) by performing trees of operations on
a single constant. Thus, for example, any integer  can be
obtained by a tree of  additions of 1’s such as

. Another operator that can be used to generate
any integer is . In this case 6 is , and
an integer  can be obtained by 
or at most  applications of . The operator

 can be used for any . It also turns out that
 works, though in this case even for 2 the

smallest representation is . (For
 the number of applications needed is

.)
The pictures below show the smallest number of operator
applications required for successive integers. With the pair of
operators  and  (a case considered in recreational

mathematics for -ary operators) numbers of the form  have
particularly small representations. Note that in all cases the size of
the smallest representation must at some level increase like

 (compare pages 1067 and 1070), but there may be some
“algorithmically simple” integers that have shorter
representations.

â Number classification. One can imagine classifying real
numbers in terms of what kinds of operations are needed to
obtain them from integers. Rational numbers require only
division (or solving linear equations), while algebraic
numbers require solving polynomial equations. Rather little
is known about numbers that require solving transcendental
equations—and indeed it can even be undecidable (see page
1138) whether two equations can yield the same number.
Starting with integers and then applying arithmetic
operations and fractional powers one can readily reproduce
all algebraic numbers up to degree 4, but not beyond. The
sets of numbers that can be obtained by applying elementary
functions like ,  and  seem in various ways to be
disjoint from algebraic numbers. But if one applies
multivariate elliptic or hypergeometric functions it was
established in the late 1800s and early 1900s that one can in
principle reach any algebraic number. One can also ask what
numbers can be generated by integrals (or by solving
differential equations). For rational functions ,

 must always be a linear function of
 and  applied to algebraic numbers

(  for example yields ). Multiple integrals
of rational functions can be more complicated, as in 

and presumably often cannot be expressed at all in terms of
standard mathematical functions. Integrals of rational
functions over regions defined by polynomial inequalities
have recently been discussed under the name “periods”.
Many numbers associated with  and  can readily
be generated, though apparently for example  and

 cannot. One can also consider numbers
obtained from infinite sums (or by solving recurrence
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equations). If  is a rational function, 
must just be a linear combination of  functions,
but again the multivariate case can be much more
complicated. 

Mathematical Functions

â Page 145 · Mathematical functions. (See page 1091.)
 goes like  for large  while 

goes like . Other standard mathematical
functions that oscillate at large  include  and

. Most hypergeometric-type functions either
increase or decrease exponentially for large arguments,
though in the directions of Stokes lines in the complex plane
they can oscillate sinusoidally. (For  the Stokes lines
are in directions .)

â Lissajous figures. Plotting multiple sine functions each on
different coordinate axes yields so-called Lissajous or
Bowditch figures, as illustrated below. If the coefficients
inside all the sine functions are rational, then going from

 to  yields a
closed curve. Irrational ratios of coefficients lead to curves
that never close and eventually fill space uniformly. 

â Page 146 · Two sine functions.  can be
rewritten as  (using

), implying that the function has two families of
equally spaced zeros:  and  . 

â Differential equations. The function  can
be obtained as the solution of the differential equation

 with the initial conditions
, .

â Musical chords. In a so-called equal temperament scale the
12 standard musical notes that make up an octave have a
progression of frequencies . Most schemes for musical
tuning use rational approximations to these numbers. Until
the past century, and since at least the 1300s, diminished fifth
or tritone chords that consist of two notes (such as C and )
with frequency ratio  have generally been avoided as
sounding discordant. (See also page 1079.) 

â Page 146 · Three sine functions. All zeros of the function
 lie on the real axis. But for

, there are usually zeros off the

real axis (even say for , , ), as shown in the
pictures below. 

If ,  and  are rational,  is
periodic with period , and there are a limited
number of different spacings between zeros. But in a case like

 there is a continuous
distribution of spacings between zeros, as shown on a
logarithmic scale below. (For  there are a total of
448,494 zeros, with maximum spacing  and minimum
spacing .)

â Page 147 · Substitution systems.  has two
families of zeros:  and . Assuming

, the number of zeros from the second family which
appear between the th and th zero from the first family is

and as discussed on page 903 this sequence can be obtained
by applying a sequence of substitution rules. For

 a more complicated sequence of
substitution rules yields the analogous sequence in which

 is inserted in each . 

â Many sine functions. Adding many sine functions yields a
so-called Fourier series (see page 1074). The pictures below
show  for various numbers of terms .
Apart from a glitch that gets narrower with increasing  (the
so-called Gibbs phenomenon), the result has a simple
triangular form. Other so-called Fourier series in which the
coefficient of  is a smooth function of  for all
integer  yield similarly simple results. 

The pictures below show , where in
effect all coefficients of  other than those where  is
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a perfect square are set to zero. The result is a much more
complicated curve. Note that for  of the form , the

 sum is just

The pictures below show  (as studied
by Karl Weierstrass in 1872). The curves obtained in this case
show a definite nested structure, in which the value at a point

 is essentially determined directly from the base 2 digit
sequence of . (See also page 1080.) 

The curves below are approximations to
. They can be thought of as having

dimensions  and smoothed power spectra . 

â FM synthesis. More complicated curves can be obtained for
example using FM synthesis, as discussed on page 1079.

â Page 148 · Zeta function. For real  the Riemann zeta
function  is given by  or

. The zeta function as
analytically continued for complex  was studied by
Bernhard Riemann in 1859, who showed that 
could be approximated (see page 909) up to order  by

, where
the  are the complex zeros of . The Riemann
Hypothesis then states that all  satisfy ,
which implies a certain randomness in the distribution of
prime numbers, and a bound of order  on

. The Riemann Hypothesis is also
equivalent to the statement that a bound of order 
exists on .

The picture in the main text shows ,
defined as , where

The first term in an approximation to  is
; to get results to a given

precision requires summing a number of terms that

increases like , making routine computation possible up
to .

It is known that: 

äThe average spacing between zeros decreases like 
.

äThe amplitude of wiggles grows with , but more slowly 
than .

äAt least the first 10 billion zeros have .

The statistical distribution of zeros was studied by Andrew
Odlyzko and others starting in the late 1970s (following ideas
of David Hilbert and George Pólya in the early 1900s), and it
was found that to a good approximation, the spacings
between zeros are distributed like the spacings between
eigenvalues of random unitary matrices (see page 977). 

In 1972 Sergei Voronin showed that  has a
certain universality in that there always in principle exists
some  (presumably in practice usually astronomically large)
for which it can reproduce to any specified precision over say
the region  any analytic function without zeros. 

Iterated Maps and the Chaos Phenomenon

â History of iterated maps. Newton’s method from the late
1600s for finding roots of polynomials (already used in
specific cases in antiquity) can be thought of as a smooth
iterated map (see page 920) in which a rational function is
repeatedly applied (see page 1101). Questions of convergence
led in the late 1800s and early 1900s to interest in iteration
theory, particularly for rational functions in the complex
plane (see page 933). There were occasional comments about
complicated behavior (notably by Arthur Cayley in 1879) but
no real investigation seems to have been made. In the 1890s
Henri Poincaré studied so-called return maps giving for
example positions of objects on successive orbits. Starting in
the 1930s iterated maps were sometimes considered as
possible models in fields like population biology and
business cycle theory—usually arising as discrete annualized
versions of continuous equations like the Verhulst logistic
differential equation from the mid-1800s. In most cases the
most that was noted was simple oscillatory behavior,
although for example in 1954 William Ricker iterated
empirical reproduction curves for fish, and saw more
complex behavior—though made little comment on it. In the
1950s Paul Stein and Stanislaw Ulam did an extensive
computer study of various iterated maps of nonlinear
functions. They concentrated on questions of convergence,
but nevertheless noted complicated behavior. (Already in the
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late 1940s John von Neumann had suggested using
 as a random number generator, commenting on

its extraction of initial condition digits, as mentioned on page
921.) Some detailed analytical studies of logistic maps of the
form  were done in the late 1950s and early
1960s—and in the mid-1970s iterated maps became popular,
with much analysis and computer experimentation on them
being done. But typically studies have concentrated on
repetition, nesting and sensitive dependence on initial
conditions—not on more general issues of complexity.

In connection with his study of continued fractions Carl
Friedrich Gauss noted in 1799 complexity in the behavior of
the iterated map . Beginning in the late
1800s there was number theoretical investigation of the
sequence  associated with the map

 (see page 903), notably by G. H. Hardy
and John Littlewood in 1914. Various features of randomness
such as uniform distribution were established, and
connections to smooth iterated maps emerged after the
development of symbolic dynamics in the late 1930s.

â History of chaos theory. See page 971.

â Page 150 · Exact iterates. For any integer  the th iterate of
 can be written as ,

or equivalently . In the specific
case  the iterates of  have the
form . (See pages 903 and 1098.)

â Page 151 · Problems with computer experiments. The
defining characteristic of a system that exhibits chaos is that on
successive steps the system samples digits which lie further
and further to the right in its initial condition. But in a practical
computer, only a limited number of digits can ever be stored.
In Mathematica, one can choose how many digits to store (and
in the pictures shown in the main text, enough digits were
used to avoid the problems discussed in this note). But a low-
level language such as FORTRAN, C or Java always stores a
fixed number of digits, typically around 53, in its standard
double-precision floating-point representation of numbers. 

So what happens when a system one is simulating tries to
sample digits in its initial conditions beyond the ones that are
stored? The answer depends on the way that arithmetic is
handled in the computer system one uses. 

When doing high-precision arithmetic, Mathematica follows
the principle that it should only ever give digits that are
known to be correct on the basis of the input that was
provided. This means that in simulating chaotic systems,
the numbers produced will typically have progressively
fewer digits: later digits cannot be known to be correct
without more precise knowledge of this initial condition.

(An example is ;
 gives the number of significant digits of

each element in the list.) 

But most current languages and hardware systems follow a
rather different approach. (For low-precision machine
arithmetic, Mathematica is also forced to follow this
approach.) What they do is to give a fixed number of digits as
the result of every computation, whether or not all those
digits are known to be correct. It is then the task of numerical
analysis to establish that in a particular computation, the
final results obtained are not unduly affected by digits that
are not known to be correct. And in practice, for many kinds
of computations, this is to a large extent the case. But
whenever chaos is involved, it is inevitably not. 

As an example, consider the iterated map 
discussed in the main text. At each step, this map shifts all the
base 2 digits in  one position to the left. But if the computer
gives a fixed number of digits at each step, then additional digits
must be filled in on the right. On most computers, these
additional digits are always 0. And so after some number of
steps, all the digits in  are 0, and thus the value of  is simply 0. 

But it turns out that a typical pocket calculator gives a different
result. For pocket calculators effectively represent numbers in
base 10 (actually so-called binary-coded decimal) not base 2,
and fill in unknown digits with 0 in base 10. (Base 10 is used so
that multiplying for example 1/3 by 3 gives exactly 1 rather
than the more confusing result 0.9999... obtained with base 2.) 

Pictures (a) and (c) below show simulations of the shift map on a
typical computer, while pictures (b) and (d) show
corresponding simulations on a pocket calculator. (Starting with
initial condition  the digit sequence at step  is essentially 

on the computer, and

on the calculator. In both cases the limited number of digits
implies behavior that ultimately repeats—but only long after
the other effects we discuss have occurred.) 

x ! 4 x (1 - x)

x ! a x (1 - x)

x ! FractionalPart[1/x]

FractionalPart[an x]
x ! FractionalPart[a x]

a n
x ! FractionalPart[a x] FractionalPart[an x]

1/2 -ArcTan[Cot[an p x]] /p
a = 2 If[x < 1/2, a x, a (1 - x)]
ArcCos[Cos[2n p x]] /p

NestList[Mod[2 #, 1] &, N[p /4, 40], 200]
Map[Precision, list]

x ! Mod[2 x, 1]

x

x x

x n

IntegerDigits[Mod[2n Floor[253 x], 253], 2, 53]

Flatten[IntegerDigits[IntegerDigits[
Mod[2n Floor[1012 x], 1012], 10, 12], 2, 4]]
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For the first several steps, the results as shown at the top of
each corresponding picture agree. But as soon as the effect of
sampling beyond the digits explicitly stored in the initial
condition becomes important, the results are completely
different. The computer gives simply 0, but the pocket
calculator yields apparently random sequences—which turn
out to be analogous to those discussed on page 319.

Other chaotic systems have a similar sensitivity to the details
of computer arithmetic. But the simple behavior of the shift
map turns out to be rather rare: in most cases—such as the
multiplication by 3/2 shown in the pictures below—apparent
randomness is produced, even on a typical computer.

It is important to realize however that this randomness has
little to do with the details of the initial conditions. Instead,
just as in other examples in this book, the randomness arises
from an intrinsic process that occurs even with the simple
repetitive initial condition shown in pictures (c) and (d)
above. 

Computer simulations of chaotic systems have been done
since the 1950s. And it has often been observed that the
sequences generated in these simulations look quite random.
But as we now see, such randomness cannot in fact be a
consequence of the chaos phenomenon and of sensitive
dependence on initial conditions.

Nevertheless, confusingly enough, even though it does not
come from sensitive dependence on initial conditions, such
randomness is what makes the overall properties of
simulations typically follow the idealized mathematical
predictions of chaos theory. The point is that the presence of
randomness makes the system behave on different steps as if
it were evolving from slightly different initial conditions. But
statistical averages over different initial conditions typically
yield essentially the results one would get by evolution from
a single initial condition containing an infinite number of
randomly chosen digits.

â Page 152 ·  Mathematical perspectives. Mathematicians may
be confused by my discussion of complexity in iterated maps.

The first point to make is that the issues I am studying are
rather different from the ones that are traditionally studied in
the mathematics of these systems. The next point is that I
have specifically chosen not to make the idealizations about
numbers and operations on numbers that are usually made
in mathematics. 

In particular, it is usually assumed that performing some
standard mathematical operation, such as taking a square
root, cannot have a significant effect on the system one is
studying. But in trying to track down the origins of
complex behavior, the effects of such operations can be
significant. Indeed, as we saw on page 141, taking square
roots can for example generate seemingly random digit
sequences.

Many mathematicians may object that digit sequences are
just too fragile an entity to be worth studying. They may
argue that it is only robust and invariant concepts that are
useful. But robustness with respect to mathematical
operations is a different issue from robustness with respect to
computational operations. Indeed, we will see later in this
book that large classes of digit sequences can be considered
equivalent with respect to computational operations, but
these classes are quite different ones from those that are
considered equivalent with respect to mathematical
operations.

â Information content of initial conditions. Common sense
suggests that it is a quite different thing to specify a simple
initial condition containing, say, a single black cell on a white
background, than to specify an initial condition containing an
infinite sequence of randomly chosen cells. But in traditional
mathematics no distinction is usually made between these
kinds of specifications. And as a result, mathematicians may
find it difficult to understand my distinction between
randomness generated intrinsically by the evolution of a
system and randomness from initial conditions (see
page 299). The distinction may seem more obvious if one
considers, for example, sequential substitution systems or
cyclic tag systems. For such systems cannot meaningfully be
given infinite random initial conditions, yet they can still
perfectly well generate highly random behavior. (Their initial
conditions correspond in a sense to integers rather than real
numbers.)

â Smooth iterated maps. In the main text, all the functions
used as mappings consist of linear pieces, usually joined
together discontinuously. But the same basic phenomena
seen with such mappings also occur when smooth functions
are used. A particularly well-studied example (see page 918)
is the so-called logistic map . The base 2 digit

(a) (b) (c) (d)

x ! a x (1 - x)
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sequences obtained with this map starting from  are
shown below for various values of . The quadratic nature
of the map typically causes the total number of digits to
double at each step. But at least for small , progressively
more digits on the left show purely repetitive behavior. As 
increases, the repetition period goes through a series of
doublings. The detailed behavior is different for every value
of , but whenever the repetition period is , it turns out
that with any initial condition the leftmost digit always
eventually follows a sequence that consists of repetitions of
step  in the evolution of the substitution system

 starting either from  or . As 
approaches 3.569946, the period doublings get closer and
closer together, and eventually a point is reached at which
the sequence of leftmost digits is no longer repetitive but
instead corresponds to the nested pattern formed after an
infinite number of steps in the evolution of the substitution
system. (An important result discovered by Mitchell
Feigenbaum in 1975 is that this basic setup is universal to all
smooth maps whose functions have a single hump.) When 
is increased further, there is usually no longer repetitive or
nested behavior. And although there are typically some
constraints, the behavior obtained tends to depend on the
details of the digit sequence of the initial conditions. In the
special case , it turns out that replacing  by 
makes the mapping become just ,
revealing simple shift map dependence on the initial digit
sequence. (See pages 1090 and 1098.) 

â Higher-dimensional generalizations. One can consider so-
called Anosov maps such as  where

 is a matrix such as . Any initial condition
containing only rational numbers will then yield repetitive
behavior, much as in the shift map. But as soon as  itself
contains rational numbers, complicated behavior can be
obtained even with an initial condition such as .

â Distribution of chaotic behavior. For iterated maps, unlike
for discrete systems such as cellular automata, one can get
continuous ranges of rules by varying parameters. With
maps based on piecewise linear functions the regions of
parameters in which chaotic behavior occurs typically have
simple shapes; with maps based, say, on quadratic

functions, however, elaborate nested shapes can occur. (See
page 934.)

â Page 155 · Lyapunov exponents. The number of new digits
that are affected at each step by a small change in initial
conditions gives the so-called Lyapunov exponent  for the
evolution. After  steps, the difference in size resulting from
the change in initial conditions will be multiplied by
approximately —at least until this difference is of order 1.
(See page 950.)

â Chaos in nature. See page 304.

â Bitwise operations. Cellular automata can be thought of as
analogs of iterated maps in which bitwise operations such as

 are used instead of ordinary arithmetic ones. (See
page 906.) 

Continuous Cellular Automata

â Implementation. The state of a continuous cellular
automaton at a particular step can be represented by a list of
numbers, each lying between 0 and 1. This list can then be
updated using

where for the rule on page 157  is 
while for the rule on page 158 it is . 

Note that in the definitions above, the elements of  can be
either exact rational numbers, or approximate numbers
obtained using . For rough calculations, standard machine-
precision numbers may sometimes suffice, but for detailed
calculations exact rational numbers are essential. Indeed, the
presence of exponentially increasing errors would make the
bottom of the picture on page 157 qualitatively wrong if just
64-bit double-precision numbers had been used. On page 160
the effect is much larger, and almost all the pictures would be
completely wrong—with the notable exception of the one
that shows localized structures. 

â History. Continuous cellular automata have been
introduced independently several times, under several
different names. In all cases the rules have been at least
slightly more complicated than the ones I consider here, and
behavior starting from simple initial conditions does not
appear to have been studied before. Versions of continuous
cellular automata arose in the mid-1970s as idealizations of
coupled ordinary differential equations for arrays of
nonlinear oscillators, and implicitly in finite difference
approximations to partial differential equations. They began

x = 1/8
a

a
a

a 2 j

j
{1 ! {1, 0}, 0 ! {1, 1}} {0} {1} a

a

a = 4 x Sin[p u]2

u ! FractionalPart[2 u]

a = 2.5 a = 3.3 a = 3.4 a = 3.5 a = 3.6 a = 4

{x, y} ! Mod[m�.�{x, y}, 1]
m {{2, 1}, {1, 1}}

m

{1, 1}

l

t

2l t

BitXor

CCAEvolveStep[f_, list_List] :=
Map[f , (RotateLeft[ list] + list +RotateRight[ list]) /3]

CCAEvolveList[f_, init_List, t_Integer] :=
NestList[CCAEvolveStep[f , #] &, init, t]
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FractionalPart[# + 1/4] &
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to be studied with extensive computer simulations in the
early 1980s, probably following my work on ordinary cellular
automata. Most often considered, notably by Kunihiko
Kaneko and co-workers, were so-called “coupled map
lattices” or “lattice dynamical systems” in which an iterated
map (typically a logistic map) was applied at each step to a
combination of neighboring cell value. A transition from
regular class 2 to irregular class 3 behavior, with class 4
behavior involving localized structures in between, was
observed, and was studied in detail by Hugues Chaté and
Paul Manneville, starting in the late 1980s. 

â Page 158 · Properties. At step  the background is
. For rational  this always repeats, cycling

through  possible values (compare page 255).
In most patterns generated from initial conditions
containing say a single black cell most cells whose values
are not forced to be the same end up being at least slightly
different—even in cases like . Note that in cases
like  there is some trace of a pattern at every step—
but it only becomes obvious when it makes values wrap
around from 1 to 0. The pictures below show successive
colors of (a) the background (compare page 950) and (b) the
center cell for each  from 0 to 1 for the systems on
page 159. (Compare page 243.)

If  is not a rational number the background never repeats,
but the main features of patterns obtained seem similar. 

â Additive rules. In the case  the systems on page 159 are
purely additive. A simpler example is the rule

With a single nonzero initial cell with value  the pattern
produced is just Pascal’s triangle modulo . If  is a rational
number only a limited set of values appear, and the pattern
has a nested form analogous to those shown on page 870. If 
is irrational then equidistribution of 
implies that all possible values eventually appear; the
corresponding patterns seem fairly irregular, as shown
below. (Compare pages 953 and 1092.)

â Probabilistic cellular automata. As an alternative to having
continuous values at each cell, one can consider ordinary
cellular automata with discrete values, but introduce
probabilities for, say, two different rules to be applied at each
cell. Examples of probabilistic cellular automata are shown
on page 591; their behavior is typically quite similar to
continuous cellular automata.

Partial Differential Equations

â Ordinary differential equations. It is also possible to set up
systems which have a finite number of continuous variables
(say , , etc.) that change continuously with time. The
rules for such systems correspond to ordinary differential
equations. Over the past century, the field of dynamical
systems theory has produced many results about such
systems. If all equations are of the form

, etc. then it is known for example that
it is necessary to have at least three equations in order to get
behavior that is not ultimately fixed or repetitive. (The
Lorenz equations are an example.) If the function  depends
explicitly on time, then two equations suffice. (The van der
Pol equations are an example.)

Just as in iterated maps, a small change in the initial values 
etc. can often lead to an exponentially increasing difference in
later values of , etc. But as in iterated maps, the main part of
this process that has been analyzed is simply the excavation of
progressively less significant digits in the number . 

(Note that numerical simulations of ODEs on computers
must approximate continuous time by discrete steps, making
the system essentially an iterated map, and often yielding
spurious complicated behavior.)

â Klein-Gordon equation. The behavior of the Klein-Gordon
equation  is visually very
similar to that shown for the sine-Gordon equation. For the
Klein-Gordon equation, however, there is an exact solution: 

â Origins of the equations. The diffusion equation arises in
physics from the evolution of temperature or of gas density.

t
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a[t]

a[0]

$tt u[t, x] 2 $xx u[t, x] - u[t, x]

u[t, x] = If[x2 > t2, 0, BesselJ[0, Sqrt[t2 - x2]]]
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The wave equation represents the propagation of linear
waves, for example along a compressible spring. The sine-
Gordon equation represents nonlinear waves obtained for
example as the limit of a very large number of pendulums all
connected to a spring. The traditional name of the equation is
a pun on the Klein-Gordon equation that appears in
relativistic quantum mechanics and in describing strings in
elastic media. It is notable that unlike with ODEs, essentially
all PDEs that have been widely studied come quite directly
from physics. My PDE on page 165 is however an exception. 

â Nonlinearity. The pictures below show behavior with initial
conditions containing two Gaussians (and periodic boundary
conditions). The diffusion and wave equations are linear, so
that results are linear sums of those with single Gaussians.
The sine-Gordon equation is nonlinear, but its solutions
satisfy a generalized linear superposition principle. The
equation from page 165 shows no such simple superposition
principle. Note that even with a linear equation, fairly
complicated patterns of behavior can sometimes emerge as a
result of boundary conditions. 

â Higher dimensions. The pictures below show as examples
the solution to the wave equation in 1D, 2D and 3D starting
from a stationary square pulse.

In each case a 1D slice through the solution is shown, and the
solution is multiplied by . For the wave equation, and for
a fair number of other equations, even and odd dimensions
behave differently. In 1D and 3D, the value at the origin
quickly becomes exactly 0; in 2D it is given by

, which tends to zero only like 
(which means that a sound pulse cannot propagate in a
normal way in 2D).

â Page 164 · Singular behavior. An example of an equation
that yields inconsistent behavior is the diffusion equation
with a negative diffusion constant:

This equation makes any variation in  as a function of 
eventually become infinitely rapid.

Many equations used in physics can lead to singularities:
the Navier-Stokes equations for fluid flow yield shock
waves, while the Einstein equations yield black holes. At a
physical level, such singularities usually indicate that
processes not captured by the equations have become
important. But at a mathematical level one can simply ask
whether a particular equation always has solutions which
are at least as regular as its initial conditions. Despite much
work, however, only a few results along these lines are
known. 

â Existence and uniqueness. Unlike systems such as cellular
automata, PDEs do not have a built-in notion of “evolution”
or “time”. Instead, as discussed on page 940, a PDE is
essentially just a constraint on the values of a function at
different times or different positions. In solving a PDE, one is
usually interested in determining values that satisfy this
constraint inside a particular region, based on information
about values on the edges. It is then a fundamental question
how much can be specified on the edges in order to obtain a
unique solution. If too little is specified, there may be many
possible solutions, while if too much is specified there may
be no consistent solution at all. For some very simple PDEs,
the conditions for unique solutions are known. So-called
hyperbolic equations (such as the wave equation, the sine-
Gordon equation and my equation) work a little like cellular
automata in that in at least one dimension information can
propagate only at a limited speed, say . The result is that in
such equations, giving values for  at  for 
will uniquely determine  at larger  for

. In other PDEs, such as so-called elliptic
ones, there is no such limit on the rate of information
propagation, and as a result, it is immediately necessary to
know values of  at all , and on the boundaries of the
region, in order to determine  for any . 

â Page 165 · Field equations. Any equation of the form

can be thought of as a classical field equation for a scalar
field. Defining

the field then has Lagrangian density

and conserves the Hamiltonian (energy function)

With the choice for  made here (with ),  is
bounded from below, and as a result it follows that no
singularities ever occur in . 

wave equation sine-Gordon equation my equation
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â Equation for the background. If  is independent of ,
as it is sufficiently far away from the main pattern, then the
partial differential equation on page 165 reduces to the
ordinary differential equation

For , the solution to this equation can be written in terms
of Jacobi elliptic functions as 

In general the solution is 

where

and , ,  are determined by the equation

In all cases (except when ), the solution is
periodic and non-singular. For , the period is

. For , the period is about 4.01;
for , it is about 3.62; while for , it is about 3.18. For

, the solution can be written without Jacobi elliptic
functions, and is given by

â Numerical analysis. To find numerical solutions to PDEs
on a digital computer one has no choice but to make
approximations. In the typical case of the finite difference
method one sets up a system with discrete cells in space
and time that is much like a continuous cellular automaton,
and then hopes that when the cells in this system are made
small enough its behavior will be close to that of the
continuous PDE.

Several things can go wrong, however. The pictures below
show as one example what happens with the diffusion
equation when the cells have size  in time and  in space.
So long as the so-called Courant condition  is
satisfied, the results are correct. But when  is made
larger, an instability develops, and the discrete
approximation yields completely different results from the
continuous PDE. 

Many methods beyond finite differences have been invented
over the past 30 years for finding numerical solutions to
PDEs. All however ultimately involve discretization, and can
suffer from difficulties that are similar—though often more
insidious—to those for finite differences.

For equations where one can come at least close to having
explicit algebraic formulas for solutions, it has often been
possible to prove that a certain discretization procedure will
yield correct results. But when the form of the true solution is
more complicated, such proofs are typically impossible.

And indeed in practice it is often difficult to tell whether
complexity that is seen is actually a consequence of the
underlying PDE, or is instead merely a reflection of the
discretization procedure. I strongly suspect that many
equations, particularly in fluid dynamics, that have been
studied over the past few decades exhibit highly complex
behavior. But in most publications such behavior is never
shown, presumably because the authors are not sure whether
the behavior is a genuine consequence of the equations they
are studying. 

â Implementation. All the numerical solutions shown were
found using the  function built into Mathematica. In
general, finite difference methods, the method of lines and
pseudospectral methods can be used. For equations of the form

one can set up a simple finite difference method by taking 
in the form of pure function and creating from it a kernel
with space step  and time step :

Iteration for  steps is then performed by

With this approach an approximation to the top example on
page 165 can be obtained from

For both this example and the middle one the results
converge rapidly as  decreases. But for the bottom
example, the pictures below show that convergence is not so
rapid, and indeed, as is typical in working with PDEs,
despite having used large amounts of computer time I do not
know whether the details of the picture in the main text are
really correct. The energy function (see above) is at least
roughly conserved, but it seems quite likely that the “shocks”
visible are merely a consequence of the discretization
procedure used. 
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â Different powers. The equations

with , , , etc. appear to show similar behavior to the
 equation in the main text.

â Other PDEs. The pictures above show three PDEs that have
been studied in recent years. All are of the so-called
parabolic type, so that, unlike my equation, they have no

limit on the rate of information propagation, and thus a
solution in any region immediately depends on values on
the boundary—which in the pictures below is taken to be
periodic. (The deterministic Kardar-Parisi-Zhang equation

 yields behavior
like Burger’s equation, but symmetrical. Note that  is
plotted in the second picture, while for the last equation a
common less symmetrical form replaces the last term by

.) 

Continuous Versus Discrete Systems

â History. From the late 1600s when calculus was invented it
took about two centuries before mathematicians came to
terms with the concepts of continuity that it required. And to
do so it was necessary to abandon concrete intuition, and
instead to rely on abstract mathematical theorems. (See page
1149.) The kind of discrete systems that I consider in this
book allow a return to a more concrete form of mathematics,
without the necessity for such abstraction.

â “Calculus”. It is an irony of language that the word
“calculus” now associated with continuous systems comes
from the Latin word which means a small pebble of the kind
used for doing discrete calculations (same root as “calcium”).

$tt u[t, x] 2 $xx u[t, x] + ( 1 - u[t, x]n) ( 1+ a u[t, x])

n = 4 6 8
n = 2
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nonlinear Schrödinger equation: 5 $t u[t, x] Ð -$xx u[t, x] + 4 Abs[u[t, x]]2 u[t, x]

Kuramoto-Sivashinsky equation: $t u[t, x] Ð -$xx u[t, x] - 1/ 2 $xxxx u[t, x] + ($x u[t, x])2
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