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Systems Based on Constraints 

In the course of this book we have looked at many different kinds of

systems. But in one respect all these systems have ultimately been set

up in the same basic way: they are all based on explicit rules that

specify how the system evolves from step to step. 

In traditional science, however, it is common to consider systems

that are set up in a rather different way: instead of having explicit rules

for evolution, the systems are just given constraints to satisfy.

As a simple example, consider a line of cells in which each cell is

colored black or white, and in which the arrangement of colors is subject

to the constraint that every cell should have exactly one black and one

white neighbor. Knowing only this constraint gives no explicit procedure

for working out the color of each cell. And in fact it may at first not be

clear that there will be any arrangement of colors that can satisfy the

constraint. But it turns out that there is—as shown below.

And having seen this picture, one might then imagine that there

must be many other patterns that would also satisfy the constraint.

After all, the constraint is local to neighboring cells, so one might

suppose that parts of the pattern sufficiently far apart should always be

independent. But in fact this is not true, and instead the system works a

bit like a puzzle in which there is only one way to fit in each piece. And

in the end it is only the perfectly repetitive pattern shown above that

can satisfy the required constraint at every cell.

Other constraints, however, can allow more freedom. Thus, for

example, with the constraint that every cell must have at least one

neighbor whose color is different from its own, any of the patterns in the

picture at the top of the facing page are allowed, as indeed is any pattern

that involves no more than two successive cells of the same color.

A system consisting of a line of black and white cells whose form is defined by the constraint that
every cell should have exactly one black and one white neighbor. The pattern shown is the only
possible one that satisfies this constraint. The idea of implicitly determining the behavior of a system
by giving constraints that it must satisfy is common in traditional science and mathematics. 
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But while the first arrangement of colors shown above looks

somewhat random, the last two are simple and purely repetitive.

So what about other choices of constraints? We have seen in this

book many examples of systems where simple sets of rules give rise to

highly complex behavior. But what about systems based on constraints?

Are there simple sets of constraints that can force complex patterns?

It turns out that in one-dimensional systems there are not. For in

one dimension it is possible to prove that any local set of constraints

that can be satisfied at all can always be satisfied by some simple and

purely repetitive arrangement of colors. 

But what about two dimensions? The proof for one dimension

breaks down in two dimensions, and so it becomes at least conceivable

that a simple set of constraints could force a complex pattern to occur.

As a first example of a two-dimensional system, consider an array

of black and white cells in which the constraint is imposed that every

black cell should have exactly one black neighbor, and every white cell

should have exactly two white neighbors. 

A system consisting of a line of black and white cells whose form is defined by the constraint that
every cell should have at least one neighbor whose color is different from its own. There are many
possible arrangements of colors that satisfy this constraint. Some, like the first arrangement above,
look quite random. But others, like the second two arrangements above, are simple and repetitive. It
turns out that in a one-dimensional system no set of local constraints can force arrangements of
more complicated types. 

A system consisting of a grid of black and
white cells defined by the constraint that
every black cell should have exactly one
black neighbor among its four neighbors,
and every white cell should have exactly
two white neighbors. The infinite
repetitive pattern shown here, together
with its rotations and reflections, is the
only one that satisfies this constraint.
(The picture is assumed to wrap around
at each edge.) The pattern can be viewed
as a tessellation of 5 ä 5 blocks of cells. 
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As in one dimension, knowing the constraint does not

immediately provide a procedure for finding a pattern which satisfies it.

But a little experimentation reveals that the simple repetitive pattern

above satisfies the constraint, and in fact it is the only pattern to do so.

: 0 , 4
: 4 , 0

: 0 , 4
: 3 , 1

: 0 , 4
: 2 , 2

: 0 , 4
: 1 , 3

: 0 , 4
: 0 , 4

: 1 , 3
: 4 , 0

: 1 , 3
: 3 , 1

: 1 , 3
: 2 , 2

: 1 , 3
: 1 , 3

: 1 , 3
: 0 , 4

: 2 , 2
: 4 , 0

: 2 , 2
: 3 , 1

: 2 , 2
: 2 , 2

: 2 , 2
: 1 , 3

: 2 , 2
: 0 , 4

: 3 , 1
: 4 , 0

: 3 , 1
: 3 , 1

: 3 , 1
: 2 , 2

: 3 , 1
: 1 , 3

: 3 , 1
: 0 , 4

: 4 , 0
: 4 , 0

: 4 , 0
: 3 , 1

: 4 , 0
: 2 , 2

: 4 , 0
: 1 , 3

: 4 , 0
: 0 , 4

Patterns satisfying constraints which specify that every black cell and every white cell must have a certain fixed number of black
and white neighbors. The blank rectangles in the upper right indicate constraints that cannot be satisfied by any pattern
whatsoever. Most of the constraints are satisfied by a single pattern, together with its rotations and reflections. In some cases,
two distinct patterns are possible, and in a few cases, an infinite set of patterns are possible. In all cases where the constraints can
be satisfied at all, a simple repetitive pattern nevertheless suffices.
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What about other constraints? The pictures on the facing page

show schematically what happens with constraints that require each

cell to have various numbers of black and white neighbors. 

Several kinds of results are seen. In the two cases shown as blank

rectangles on the upper right, there are no patterns at all that satisfy the

constraints. But in every other case the constraints can be satisfied, though

typically by just one or sometimes two simple infinite repetitive patterns.

In the three cases shown in the center a whole range of mixtures of different

repetitive patterns are possible. But ultimately, in every case where some

pattern can work, a simple repetitive pattern is all that is needed. 

So what about more complicated constraints? The pictures below

show examples based on constraints that require the local arrangement

of colors around every cell to match a fixed set of possible templates.

There are a total of 4,294,967,296 possible sets of such templates.

And of these, 766,979,044 lead to constraints that cannot be satisfied by

any pattern. But among the 3,527,988,252 that remain, it turns out that

every single one can be satisfied by a simple repetitive pattern. In fact the

number of different repetitive patterns that are ever needed is quite small:

if a particular constraint can be satisfied by any pattern, then one of the

set of 171 repetitive patterns on the next two pages is always sufficient.

Systems specified by the constraint that the local arrangement of colors around every cell must match
the fixed set of possible templates shown. Note that these templates apply to every cell, with
templates of neighboring cells overlapping. Pattern (a) can be viewed as formed from a tessellation of
5 ä 10 blocks of cells; pattern (b) from a tessellation of 24 ä 24 blocks. With the numbering scheme for
constraints used on the next two pages the cases shown here correspond to 1384774 and 328778790. 
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1 65814 66578 69958 81922 135492 147456 201794 262672

332354 397888 1319746 1384774 1385794 1451330 4465152 17111122 17371734

17373270 17437268 18094438 18226274 18358598 18359362 18387014 18625090 18637378

18638930 22581798 34078996 34082880 35398994 38017056 38091074 38351652 39331108

40163602 40171778 43259180 43267650 43277346 43279658 43802950 43803666 43803970

55056436 55874154 56135974 56152110 56153142 56938506 60043594 60055562 60058658

60320822 62707734 64251906 65304582 102262930 102508882 106232194 106467876 106468652

107518484 107796498 108323082 112777238 122972562 123222150 125342342 125358086 127177326

129028110 129558550 134217744 152310376 177484134 177496358 190091370 190107690 194286694

194303014 257478694 261132398 261148718 272703878 272770436 272998726 273064262 273065282
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289768238 289834346 289974358 289974470 289974838 289974950 290009798 290033734 290034358

290035862 290038086 290038566 290098358 290099270 290099894 290101398 290104868 290732486

291279468 292080182 292080294 293636134 293906502 294819366 295213206 306742564 307004786

307011942 307134822 310649160 310783442 310976876 311141734 311176658 311338306 311697798

311698732 311730502 311731522 312225124 312240466 312263982 312271186 314911014 314912066

315172404 315174246 315212076 323786902 323791270 323799090 328494146 328762534 328766598

328767030 328778790 329050134 330066002 331924534 334010518 334288918 373916010 373916076

373917112 373918136 373918388 373987748 373991844 374114744 374122834 375100806 376228178

378638726 394823830 395358286 428057710 429441830 511809130 511816044 545259780 616635046

The complete collection of all 171 patterns needed to satisfy constraints of the type shown on the previous page. If none of these 171
patterns satisfy a particular constraint, then it follows that no pattern at all will satisfy the constraint. The patterns are labelled by
numbers which specify the minimal constraint which requires the given pattern. Patterns differing by overall reflection, rotation or
interchange of black and white are not shown. 
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So how can one force more complex patterns to occur?

The basic answer is that one must extend at least slightly the

kinds of constraints that one considers. And one way to do this is to

require not only that the colors around each cell match a set of

templates, but also that a particular template from this set must appear

at least somewhere in the array of cells.

The pictures below show a few examples of patterns determined

by constraints of this kind. A typical feature is that the patterns are

divided into several separate regions, often emanating from some kind

of center. But at least in all the examples below, the patterns that occur

in each individual region are still simple and repetitive.

So how can one find constraints that force more complex

patterns? To do so has been fairly difficult, and in fact has taken almost

as much computational effort as any other single result in this book.

The basic problem is that given a constraint it can be extremely

difficult to find out what pattern—if any—will satisfy the constraint.

In a system like a cellular automaton that is based on explicit

rules, it is always straightforward to take the rule and apply it to see

106389882 1125528937 339833662 375604536 1378162297

151828 86294 4670324 1428252506 1143305038

Examples of patterns produced by systems in which not only must the arrangement of colors in each neighborhood match one of a
fixed set of templates, but also a certain template from this set must occur at least once in the pattern. The constraints are numbered
as before, and in each picture the template that must occur is shown at the center. Constraint 1125528937 leads to a pattern that
repeats in 98 ä 98 blocks. The last pattern shown is also repetitive, repeating every 56 cells on the diagonal. 
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what pattern is produced. But in a system that is based on constraints,

there is no such direct procedure, and instead one must in effect always

go outside of the system to work out what patterns can occur.

The most straightforward approach might just be to enumerate

every single possible pattern and then see which, if any, of them satisfy

a particular constraint. But in systems containing more than just a few

cells, the total number of possible patterns is absolutely astronomical,

and so enumerating them becomes completely impractical. 

A more practical alternative is to build up patterns iteratively,

starting with a small region, and then adding new cells in essentially all

possible ways, at each stage backtracking if the constraint for the

system does not end up being satisfied.

The pictures on the next page show a few sequences of patterns

produced by this method. In some cases, there emerge quite quickly

simple repetitive patterns that satisfy the constraint. But in other

cases, a huge number of possibilities have to be examined in order to

find any suitable pattern.

And what if there is no pattern at all that can satisfy a particular

constraint? One might think that to demonstrate this would effectively

require examining every conceivable pattern on the infinite grid of

cells. But in fact, if one can show that there is no pattern that satisfies

the constraint in a limited region, then this proves that no pattern can

satisfy the constraint on the whole grid. And indeed for many

constraints, there are already quite small regions for which it is possible

to establish that no pattern can be found.

But occasionally, as in the third picture on the next page, one

runs into constraints that can be satisfied for regions containing

thousands of cells, but not for the whole grid. And to analyze such cases

inevitably requires examining huge numbers of possible patterns.

But with an appropriate collection of tricks, it is in the end

feasible to take almost any system of the type discussed here, and

determine what pattern, if any, satisfies its constraint.

So what kinds of patterns can be needed? In the vast majority of

cases, simple repetitive patterns, or mixtures of such patterns, are the

only ones that are needed.
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But if one systematically examines possible constraints in the

order shown on pages 214 and 215, then it turns out that after

examining more than 18 million of them, one finally discovers the

system shown on the facing page. And in this system, unlike all others

before it, no repetitive pattern is possible; the only pattern that satisfies

the constraint is the non-repetitive nested pattern shown in the picture.

After testing millions of constraints, and tens of billions of

candidate patterns, therefore, it is finally possible to establish that a

system based on simple constraints of the type discussed here can be

forced to exhibit behavior more complex than pure repetition.

(a)

(b)

(c)

Stages in finding patterns that satisfy constraints (a) 4670324, (b) 373384574, and (c) 387520105. Gray is
used to indicate cells whose colors have not yet been determined. The first stage shown in each case
corresponds to cells whose colors can be deduced immediately from the presence of a particular
template at the center. In case (a) choices for additional cells can be made straightforwardly, and an infinite
regular pattern can be built up without any backtracking. In case (b), many choices for additional cells have
to be tried, with much backtracking, and in the end the automatic procedure fails to find a repetitive
pattern. Nevertheless, as the last stage demonstrates, a repetitive pattern does in fact exist. In case (c),
the automatic procedure finds a fairly large and almost regular pattern that satisfies the constraints, but in
this case it turns out that no infinite pattern exists.
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The simplest system based on constraints that is forced to
exhibit a non-repetitive pattern. The constraint requires that the
arrangement of colors around each cell must match one of the

12 templates shown, and that at least somewhere in the pattern a template containing a pair of stacked black cells must occur. In the
numbering scheme used on preceding pages, the constraint is number 18762389. The pattern shown is unique, in that no variations of
it, except for trivial translations, will satisfy the constraints. The nested structure on the diagonal essentially corresponds to a
progression of base 2 digit sequences for positive and negative numbers. 
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What about still more complex behavior? 

There are altogether 137,438,953,472 constraints of the type

shown on page 216. And of the millions of these that I have tested, none

have forced anything more complicated than the kind of nested

behavior seen on the previous page. But if one extends again the type of

constraints one considers, it turns out to become possible to construct

examples that force more complex behavior. 

The idea is to set up templates that involve complete 3 ä 3 blocks

of cells, including diagonal neighbors. The picture below then shows an

example of such a system, in which by allowing only a specific set of 33

templates, a nested pattern is forced to occur.

What about more complex patterns? Searches have not succeeded

in finding anything. But explicit construction, based on correspondence

with one-dimensional cellular automata, leads to the example shown at

the top of the facing page: a system with 56 allowed templates in which

the only pattern satisfying the constraint is a complex and largely

random one, derived from the rule 30 cellular automaton.

An example of a system based on a constraint involving
3 ä 3 templates of cells. In this particular system, only
the 33 templates shown above (out of the 512 possible
ones) are allowed to occur. This constraint, together
with the requirement that the first template must appear
at least somewhere, then turns out to force a nested
pattern to occur. The system shown was specifically
constructed in correspondence with the rule 60
elementary one-dimensional cellular automaton.
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So finally this shows that it is indeed possible to force complex

behavior to occur in systems based on constraints. But from what we

have seen in this section such behavior appears to be quite rare: unlike

many of the simple rules that we have discussed in this book, it seems

that almost all simple constraints lead only to fairly simple patterns.

Any phenomenon based on rules can always ultimately also be

described in terms of constraints. But the results of this section indicate

that these descriptions can have to be fairly complicated for complex

behavior to occur. So the fact that traditional science and mathematics

tends to concentrate on equations that operate like constraints provides

yet another reason for their failure to identify the fundamental

phenomenon of complexity that I discuss in this book. 

A system based on a constraint, in which a complex and largely
random pattern is forced to occur. The constraint specifies that
only the 56 3 ä 3 templates shown at left can occur anywhere in
the pattern, with the first template appearing at least once. The
pattern required to satisfy this constraint corresponds to a
shifted version of the one generated by the evolution of the rule
30 elementary one-dimensional cellular automaton. 




