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Starting from Randomness

The Emergence of Order

In the past several chapters, we have seen many examples of behavior
that simple programs can produce. But while we have discussed a whole
range of different kinds of underlying rules, we have for the most part
considered only the simplest possible initial conditions—so that for
example we have usually started with just a single black cell.

My purpose in this chapter is to go to the opposite extreme, and
to consider completely random initial conditions, in which, for
example, every cell is chosen to be black or white at random.

One might think that starting from such randomness no order
would ever emerge. But in fact what we will find in this chapter is that
many systems spontaneously tend to organize themselves, so that even
with completely random initial conditions they end up producing
behavior that has many features that are not at all random.

The picture at the top of the next page shows as a simple first
example a cellular automaton which starts from a typical random
initial condition, then evolves down the page according to the very
simple rule that a cell becomes black if either of its neighbors are black.

What the picture then shows is that every region of white that
exists in the initial conditions progressively gets filled in with black, so
that in the end all that remains is a uniform state with every cell black.
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A cellular automaton that evolves to a simple uniform state when started from any random initial condition. The rule in
this case was first shown on page 24, and is number 254 in the scheme described on page 53. It specifies that a cell
should become black whenever either of its neighbors is already black.

The pictures below show examples of other cellular automata
that exhibit the same basic phenomenon. In each case the initial
conditions are random, but the system nevertheless quickly organizes

itself to become either uniformly white or uniformly black.
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Four more examples of cellular automata that evolve from random initial conditions to completely uniform states. The
rules shown here correspond to numbers 0, 32, 160 and 250.

The facing page shows cellular automata that exhibit slightly
more complicated behavior. Starting from random initial conditions,
these cellular automata again quickly settle down to stable states. But
now these stable states are not just uniform in color, but instead
involve a collection of definite structures that either remain fixed on
successive steps, or repeat periodically.

So if they have simple underlying rules, do all cellular automata
started from random initial conditions eventually settle down to give
stable states that somehow look simple?
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Examples of cellular automata that evolve from random initial conditions to produce a definite set of simple structures.
For any particular rule, the form of these structures is always the same. But their positions depend on the details of the
initial conditions given, and in many cases the final arrangement of structures can be thought of as a kind of filtered
version of the initial conditions. Thus for example in the first rule shown here a structure consisting of a black cell occurs
wherever there was an isolated black cell in the initial conditions. The rules shown are numbers 4, 108, 218 and 232.

It turns out that they do not. And indeed the picture on the next
page shows one of many examples in which starting from random
initial conditions there continues to be very complicated behavior
forever. And indeed the behavior that is produced appears in many
respects completely random. But dotted around the picture one sees
many definite white triangles and other small structures that indicate
at least a certain degree of organization.
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A cellular automaton that never settles down to a stable state, but instead continues to show

behavior that seems in many respects random. The rule is number 126.
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rule 22 rule 30

rule 150 rule 182

Other examples of cellular automata that never settle down to stable states when started from random initial conditions. Each picture
is a total of 300 cells across. Note the presence of triangles and other small structures dotted throughout all of the pictures.
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rule 90 rule 105

Two more cellular automata that generate various small structures but continue to show seemingly quite random behavior forever.
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The pictures above and on the previous page show more
examples of cellular automata with similar behavior. There is
considerable randomness in the patterns produced in each case. But
despite this randomness there are always triangles and other small
structures that emerge in the evolution of the system.

So just how complex can the behavior of a cellular automaton
that starts from random initial conditions be? We have seen some
examples where the behavior quickly stabilizes, and others where it
continues to be quite random forever. But in a sense the greatest
complexity lies between these extremes—in systems that neither
stabilize completely, nor exhibit close to uniform randomness forever.

The facing page and the one that follows show as an example the
cellular automaton that we first discussed on page 32. The initial
conditions used are again completely random. But the cellular
automaton quickly organizes itself into a set of definite localized
structures. Yet now these structures do not just remain fixed, but
instead move around and interact with each other in complicated ways.
And the result of this is an elaborate pattern that mixes order and
randomness—and is as complex as anything we have seen in this book.
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A continuation of the pattern from the previous page. Each page shows 700 steps in the evolution of the cellular automaton.
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STARTING FROM RANDOMNESS

Four Classes of Behavior

In the previous section we saw what a number of specific cellular
automata do if one starts them from random initial conditions. But in
this section I want to ask the more general question of what arbitrary
cellular automata do when started from random initial conditions.

One might at first assume that such a general question could
never have a useful answer. For every single cellular automaton after all
ultimately has a different underlying rule, with different properties and
potentially different consequences.

But the next few pages show various sequences of cellular
automata, all starting from random initial conditions.

And while it is indeed true that for almost every rule the specific
pattern produced is at least somewhat different, when one looks at all
the rules together, one sees something quite remarkable: that even
though each pattern is different in detail, the number of fundamentally
different types of patterns is very limited.

Indeed, among all kinds of cellular automata, it seems that the
patterns which arise can almost always be assigned quite easily to one
of just four basic classes illustrated below.

CHAPTER 6

class 1 class 2 class 3

class 4

Examples of the four basic classes of behavior seen in the evolution of cellular automata from random initial conditions. | first

developed this classification in 1983.

These classes are conveniently numbered in order of increasing
complexity, and each one has certain immediate distinctive features.

In class 1, the behavior is very simple, and almost all initial
conditions lead to exactly the same uniform final state.
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rule 0 rule 4 rule 18

e e g g et e u— L | mara o -

gl T o5k ST,
i ol ol St

rule 32 rule 36 rule 50 rule 54

rule 72 rule 76 rule 94

T e e

rule 104 rule 108

rule 128 rule 132 rule 146 rule 150
BT I T e ——— o T | T | T -

rule 160 rule 164 rule 178 rule 182

rule 200 rule 204 rule 218 rule 222

rule 232 rule 236 rule 250 rule 254

The behavior of all cellular automata that involve only nearest neighbors in a symmetrical way, have two possible colors for
each cell, and leave states consisting only of white cells unchanged.
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code 62

code 60

code 58

code 56

and where each cell has two possible colors.

Totalistic cellular automata whose rules involve nearest and next-nearest neighbors
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code 1002

code 1005

code 1008

code 1011

code 1014 code 1017 code 1020 code 1023
T e g | | e B
code 1026 code 1032 code 1035

code 1038

code 1041

code 1044

code 1047

e T

code 1050 code 1053 code 1056 code 1059
P L Lt =1
code 1062 code 1068

B i e

code 1074

code 1077

code 1080

code 1083

code 1086

code 1089

code 1092

code 1095

A sequence of totalistic cellular automata with rules that involve only nearest neighbors, but where each cell can have

three possible colors.



STARTING FROM RANDOMNESS

In class 2, there are many different possible final states, but all of
them consist just of a certain set of simple structures that either remain
the same forever or repeat every few steps.

In class 3, the behavior is more complicated, and seems in many
respects random, although triangles and other small-scale structures are
essentially always at some level seen.

And finally, as illustrated on the next few pages, class 4 involves a
mixture of order and randomness: localized structures are produced
which on their own are fairly simple, but these structures move around
and interact with each other in very complicated ways.

I originally discovered these four classes of behavior some seventeen
years ago by looking at thousands of pictures similar to those on the last
few pages. And at first, much as I have done here, I based my classification
purely on the general visual appearance of the patterns I saw.

But when I studied more detailed properties of cellular automata,
what I found was that most of these properties were closely correlated
with the classes that I had already identified. Indeed, in trying to predict
detailed properties of a particular cellular automaton, it was often
enough just to know what class the cellular automaton was in.

And in a sense the situation was similar to what is seen, say, with
the classification of materials into solids, liquids and gases, or of living
organisms into plants and animals. At first, a classification is made
purely on the basis of general appearance. But later, when more detailed
properties become known, these properties turn out to be correlated
with the classes that have already been identified.

Often it is possible to use such detailed properties to make more
precise definitions of the original classes. And typically all reasonable

definitions will then assign any particular system to the same class.

Examples of class 4 cellular automata with totalistic rules involving nearest neighbors and three possible
colors for each cell. Each picture shows 1500 steps of evolution from random initial conditions. p

CHAPTER 6
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code 2007
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code 1659
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But with almost any general classification scheme there are
inevitably borderline cases which get assigned to one class by one
definition and another class by another definition. And so it is with
cellular automata: there are occasionally rules like those in the pictures
below that show some features of one class and some of another.

[ C [ W T L

g
B :

code 438 code 1380 code 1632

Rare examples of borderline cellular automata that do not fit squarely into any one of the four basic classes described in the text.
Different definitions based on different specific properties will place these cellular automata into different classes. The rules shown

are totalistic ones involving nearest neighbors and three possible colors for each cell. The first rule can be either class 2 or class 4,
the second class 3 or 4, the third class 2 or 3 and the fourth class 1, 2 or 3.

240

But such rules are quite unusual, and in most cases the behavior
one sees instead falls squarely into one of the four classes described above.

So given the underlying rule for a particular cellular automaton,
can one tell what class of behavior the cellular automaton will produce?

In most cases there is no easy way to do this, and in fact there is
little choice but just to run the cellular automaton and see what it does.

But sometimes one can tell at least a certain amount simply from
the form of the underlying rule. And so for example all rules that lie in
the first two columns on page 232 can be shown to be unable ever to
produce anything besides class 1 or class 2 behavior.

In addition, even when one can tell rather little from a single rule,
it is often the case that rules which occur next to each other in some
sequence have similar behavior. This can be seen for example in the
pictures on the facing page. The top row of rules all have class 1
behavior. But then class 2 behavior is seen, followed by class 4 and then
class 3. And after that, the remainder of the rules are mostly class 3.

The fact that class 4 appears between class 2 and class 3 in the
pictures on the facing page is not uncommon. For while class 4 is above

class 3 in terms of apparent complexity, it is in a sense intermediate
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code 1000816 code 1000820 code 1000824 code 1000828
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code 1000928 code 1000932 code 1000936 code 1000940

A sequence of totalistic rules involving nearest neighbors and four possible colors for each cell chosen to show transitions
between rules with different classes of behavior. Note that class 4 seems to occur between class 2 and class 3.
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between class 2 and class 3 in terms of what one might think of as
overall activity.

The point is that class 1 and 2 systems rapidly settle down to
states in which there is essentially no further activity. But class 3
systems continue to have many cells that change at every step, so that
they in a sense maintain a high level of activity forever. Class 4 systems
are then in the middle: for the activity that they show neither dies out
completely, as in class 2, nor remains at the high level seen in class 3.

And indeed when one looks at a particular class 4 system, it often
seems to waver between class 2 and class 3 behavior, never firmly
settling on either of them.

In some respects it is not surprising that among all possible
cellular automata one can identify some that are effectively on the
boundary between class 2 and class 3. But what is remarkable about
actual class 4 systems that one finds in practice is that they have
definite characteristics of their own—most notably the presence of
localized structures—that seem to have no direct relation to being
somehow on the boundary between class 2 and class 3.

And it turns out that class 4 systems with the same general
characteristics are seen for example not only in ordinary cellular
automata but also in such systems as continuous cellular automata.

The facing page shows a sequence of continuous cellular
automata of the kind we discussed on page 155. The underlying rules in
such systems involve a parameter that can vary smoothly from O to 1.

For different values of this parameter, the behavior one sees is
different. But it seems that this behavior falls into essentially the same
four classes that we have already seen in ordinary cellular automata.
And indeed there are even quite direct analogs of for example the
triangle structures that we saw in ordinary class 3 cellular automata.

But since continuous cellular automata have underlying rules
based on a continuous parameter, one can ask what happens if one
smoothly varies this parameter—and in particular one can ask what
sequence of classes of behavior one ends up seeing.

The answer is that there are normally some stretches of class 1 or
2 behavior, and some stretches of class 3 behavior. But at the transitions
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Examples of the evolution of continuous cellular automata from random initial conditions. As discussed on page 155, each
cell here can have any gray level between 0 and 1, and at each step the gray level of a given cell is determined by averaging
the gray levels of the cell and its two neighbors, adding the specified constant, and then keeping only the fractional part of
the result. The behavior produced once again falls into distinct classes that correspond well to the four classes seen on

previous pages in ordinary cellular automata.
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Examples of continuous cellular automata that exhibit class 4 behavior. The rules are of the same kind as in the previous
picture, except that in the third case shown here, the gray level of each neighboring cell is multiplied by 1.13 before the
average is done. In addition, the actual gray levels in these pictures are obtained by taking the difference between the
gray level of each cell and its neighbor, thus removing the uniform stripes visible in the previous picture. It is remarkable
that class 4 behavior with discrete localized structures can still occur in the continuous systems shown here.
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it turns out that class 4 behavior is typically seen—as illustrated on the
facing page. And what is particularly remarkable is that this behavior
involves the same kinds of localized structures and other features that
we saw in ordinary discrete class 4 cellular automata.

So what about two-dimensional cellular automata? Do these also
exhibit the same four classes of behavior that we have seen in one
dimension? The pictures on the next two pages show various steps in
the evolution of some simple two-dimensional cellular automata
starting from random initial conditions. And just as in one dimension a
few distinct classes of behavior can immediately be seen.

But the correspondence with one dimension becomes much more
obvious if one looks not at the complete state of a two-dimensional
cellular automaton at a few specific steps, but rather at a one-dimensional
slice through the system for a whole sequence of steps.

The pictures on page 248 show examples of such slices. And what
we see is that the patterns in these slices look remarkably similar to the
patterns we already saw in ordinary one-dimensional cellular automata.
Indeed, by looking at such slices one can readily identify the very same
four classes of behavior as in one-dimensional cellular automata.

So in particular one sees class 4 behavior. In the examples on page
248, however, such behavior always seems to occur superimposed on
some kind of repetitive background—much as in the case of the rule
110 one-dimensional cellular automaton on page 229.

So can one get class 4 behavior with a simple white background?
Much as in one dimension this does not seem to happen with the very
simplest possible kinds of rules. But as soon as one goes to slightly more
complicated rules—though still very simple—one can find examples.

And so as one example page 249 shows a two-dimensional
cellular automaton often called the Game of Life in which all sorts of
localized structures occur even on a white background. If one watches a
movie of the behavior of this cellular automaton its correspondence to a
one-dimensional class 4 system is not particularly obvious. But as soon
as one looks at a one-dimensional slice—as on page 249—what one sees
is immediately strikingly similar to what we have seen in many

one-dimensional class 4 cellular automata.

CHAPTER 6
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code 4

code 12

code 24

code 30

code 38

step 500

code 52

"

F-.

Examples of the evolution of two-dimensional cellular automata with various totalistic rules starting from random
initial conditions. The rules involve a cell and its four immediate neighbors. Each successive base 2 digit in the code
number for the rule gives the outcome when the total of the cell and its four neighbors runs from 5 down to 0.

step 100 step 500
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Patterns produced after 500 steps in the evolution of a sequence of two-dimensional cellular automata starting from
random initial conditions. The rules shown are of the same kind as on the facing page, and include most of the 64
possibilities that leave a state that contains only white cells unchanged.
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code 4 code 12

AT T AP T TR

code 24 code 38

code 30 code 52
One-dimensional slices through the evolution of various two-dimensional cellular automata. In each picture black cells further back

from the position of the slice are shown in progressively lighter shades of gray, as if they were receding into a kind of fog. Note the
presence of examples of both class 3 and class 4 behavior that look strikingly similar to examples in one dimension.
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-
The behavior of a class 4 two-dimensional cellular automaton often known in
recreational computing as the Game of Life. Localized structures that move
(so-called gliders) show up as streaks in the pictures given here. The rule for
this cellular automaton considers the 8 neighbors of a cell (including
diagonals): if two of these neighbors are black, then the cell stays the same
color as before; if three are black, then the cell becomes black; and if any
other number of neighbors are black, then the cell becomes white. This rule step 1000

is outer totalistic 9-neighbor code 224. The pictures on the right show cells
that were black on preceding steps in progressively lighter shades of gray.
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Sensitivity to Initial Conditions

In the previous section we identified four basic classes of cellular
automata by looking at the overall appearance of patterns they produce.
But these four classes also have other significant distinguishing
features—and one important example of these is their sensitivity to
small changes in initial conditions.

The pictures below show the effect of changing the initial color of
a single cell in a typical cellular automaton from each of the four classes
of cellular automata identified in the previous section.

rule 160 rule 108

rule 126 rule 110

The effect of changing the color of a single cell in the initial conditions for typical cellular automata from each of the
four classes identified in the previous section. The black dots indicate all the cells that change. The way that such
changes behave is characteristically different for each of the four classes of systems.

The results are rather different for each class.

In class 1, changes always die out, and in fact exactly the same
final state is reached regardless of what initial conditions were used. In
class 2, changes may persist, but they always remain localized in a
small region of the system. In class 3, however, the behavior is quite

different. For as the facing page shows, any change that is made
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The effect of changing the color of a single initial cell in three typical class 3 cellular automata.
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typically spreads at a uniform rate, eventually affecting every part of the
system. In class 4, changes can also spread, but only in a sporadic way—
as illustrated on the facing page and the one that follows.

So what is the real significance of these different responses to
changes in initial conditions? In a sense what they reveal are basic
differences in the way that each class of systems handles information.

In class 1, information about initial conditions is always rapidly
forgotten—for whatever the initial conditions were, the system quickly
evolves to a single final state that shows no trace of them.

In class 2, some information about initial conditions is retained
in the final configuration of structures, but this information always
remains completely localized, and is never in any way communicated
from one part of the system to another.

A characteristic feature of class 3 systems, on the other hand, is
that they show long-range communication of information—so that any
change made anywhere in the system will almost always eventually be
communicated even to the most distant parts of the system.

Class 4 systems are once again somewhat intermediate between
class 2 and class 3. Long-range communication of information is in
principle possible, but it does not always occur—for any particular
change is only communicated to other parts of the system if it happens
to affect one of the localized structures that moves across the system.

There are many characteristic differences between the four
classes of systems that we identified in the previous section. But their
differences in the handling of information are in some respects
particularly fundamental. And indeed, as we will see later in this book,
it is often possible to understand some of the most important features
of systems that occur in nature just by looking at how their handling of
information corresponds to what we have seen in the basic classes of

systems that we have identified here.

The effect of small changes in initial conditions in the rule 110 class 4 cellular automaton. The changes
spread only when they are in effect carried by localized structures that propagates across the system. P
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Systems of Limited Size and Class 2 Behavior

In the past two sections we have seen two important features of class 2
systems: first, that their behavior is always eventually repetitive, and
second, that they do not support any kind of long-range communication.

So what is the connection between these two features?

The answer is that the absence of long-range communication
effectively forces each part of a class 2 system to behave as if it were a
system of limited size. And it is then a general result that any system of
limited size that involves discrete elements and follows definite rules
must always eventually exhibit repetitive behavior. Indeed, as we will
discuss in the next chapter, it is this phenomenon that is ultimately
responsible for much of the repetitive behavior that we see in nature.

The pictures below show a very simple example of the basic
phenomenon. In each case there is a dot that can be in one of six possible
positions. And at every step the dot moves a fixed number of positions to

the right, wrapping around as soon as it reaches the right-hand end.

012345 012345 012345 012345 012345
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] (]
(] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
(] [ ] [ ] [ ] [ ]
[ J [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] (]
[ ] [ ] [ ] [ ] [ ]
(] [ ] [ ] [ ] [ ]
(] [ ] [ ] [ ] [ ]
[ J [ ] [ ] [ ] [ ]
moving by 1 moving by 2 moving by 3 moving by 4 moving by 5
(period 6) (period 3) (period 2) (period 3) (period 6)

A simple system that contains a single dot which can be in one of six possible positions. At each step,
the dot moves some number of positions to the right, wrapping around as soon as it reaches the
right-hand end. The behavior of this system, like other systems of limited size, is always repetitive.
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Looking at the pictures we then see that the behavior which
results is always purely repetitive—though the period of repetition is
different in different cases. And the basic reason for the repetitive
behavior is that whenever the dot ends up in a particular position, it
must always repeat whatever it did when it was last in that position.

But since there are only six possible positions in all, it is
inevitable that after at most six steps the dot will always get to a
position where it has been before. And this means that the behavior
must repeat with a period of at most six steps.

The pictures below show more examples of the same setup,
where now the number of possible positions is 10 and 11. In all cases,
the behavior is repetitive, and the maximum repetition period is equal

to the number of possible positions.

o] ] 0 o] o] 0 O o] 0
0 O 0 0 O 0 O 0 0
0 0 0 0 g g g g g
g o] 0 0 Oi g g 0 0
0 O 0 O O O 0 0 o
0 O 0 o Oi 0 0 g g
g g o] g g 0 0 0 0
0 0 O 0 O O 0 O 0
0 0 g 0 g g 0 0 g
g g g Oi Oi Oi O 0 0
ol o] 0 ol g 0 oi g 0
0 g 0 0 Oi 0 g 0 0
0 0 0 0 g g g g g
g g 0 0 Oi g g 0 0
0 g 0 Oi g Oi 0 0 0
0 o] o] g Oi 0 0 g g
g g o] o] g 0 0 0 0
0 0 g 0 Oi g 0 g 0
0 g g 0 g g Oi 0 g
g g ol Oi Oi Oi Oi 0 0
g ] 0 g g 0 Oi g 0
0 g 0 o] Oi 0 g 0 0
0 0 0 0 g g g g g
g 0 0 0 Oi g g 0 0
g g o] Oi g Oi 0 0 0
0 o] o] ol Oi 0 0 g g
g g 0 0 g 0 0 0 0
o] 0 g 0 Oi g ol g 0
0 o] g 0 g g 0 0 g
g g g Oi Oi Oi 0 0 0
g o] 0 g g 0 Oi g 0
0 ol 0 o] Oi 0 g 0 0
0 0 0 0 ! ol ol ol ol

moving by 1 moving by 2 moving by 3 moving by 4  moving by 5  moving by 6  moving by 7 moving by 8  moving by 9
(period 10) (period 5) (period 10) (period 5) (period 2) (period 5) (period 10) (period 5) (period 10)

moving by 1 moving by 2 moving by 3 moving by 4 moving by 5 moving by 6 moving by 7 moving by 8 moving by 9 moving by 10
(period 11) (period 11) (period 11) (period 11) (period 11) (period 11) (period 11) (period 11) (period 11) (period 11)

More examples of the type of system shown on the previous page, but now with 10 and 11 possible positions for the dot.
The behavior always repeats itself in at most 10 or 11 steps. But the exact number of steps in each case depends on the
prime factors of the numbers that define the system.
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value. But often it is smaller. And indeed it is a common feature of
systems of limited size that the repetition period one sees can depend

greatly on the exact size of the system and the exact rule that it follows.

the repetition period is maximal whenever the number of positions
moved at each step shares no common factor with the total number of
possible positions—and this is achieved for example whenever either of
these quantities is a prime number.

size based on a simple rule. The particular rule is at each step to double

the number that represents the position of the dot, wrapping around as

STARTING

soon as this goes past the right-hand end.

FROM

Sometimes the actual repetition period is equal to this maximum

In the type of system shown on the facing page, it turns out that

The pictures below show another example of a system of limited
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A system where the number that represents the
position of the dot doubles at each step, wrapping
around whenever it reaches the right-hand end.
(After t steps the dot is thus at position Mod[2*, n]
in a size n system.) The plot at left gives the
repetition period for this system as a function of

its size; for odd n this period

MultiplicativeOrder[2, n].

is equal to
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Once again, the behavior that results is always repetitive, and the
repetition period can never be greater than the total number of possible
positions for the dot. But as the picture shows, the actual repetition
period jumps around considerably as the size of the system is changed.
And as it turns out, the repetition period is again related to the factors
of the number of possible positions for the dot—and tends to be
maximal in those cases where this number is prime.

So what happens in systems like cellular automata?

The pictures on the facing page show some examples of cellular
automata that have a limited number of cells. In each case the cells are
in effect arranged around a circle, so that the right neighbor of the
rightmost cell is the leftmost cell and vice versa.

And once again, the behavior of these systems is ultimately
repetitive. But the period of repetition is often quite large.

The maximum possible repetition period for any system is
always equal to the total number of possible states of the system.

For the systems involving a single dot that we discussed above,
the possible states correspond just to possible positions for the dot, and
the number of states is therefore equal to the size of the system.

But in a cellular automaton, every possible arrangement of black
and white cells corresponds to a possible state of the system. With # cells
there are thus 2" possible states. And this number increases very rapidly
with the size n: for 5 cells there are already 32 states, for 10 cells 1024
states, for 20 cells 1,048,576 states, and for 30 cells 1,073,741,824 states.

The pictures on the next page show the actual repetition periods
for various cellular automata. In general, a rapid increase with size is
characteristic of class 3 behavior. Of the elementary rules, however,
only rule 45 seems to yield periods that always stay close to the
maximum of 2”. And in all cases, there are considerable fluctuations in
the periods that occur as the size changes.

So how does all of this relate to class 2 behavior? In the examples
we have just discussed, we have explicitly set up systems that have
limited size. But even when a system in principle contains an infinite
number of cells it is still possible that a particular pattern in that
system will only grow to occupy a limited number of cells. And in any
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size 15
(period 15)

size 16
(period 1)

size 17
(period 15)

size 18
(period 14)

size 19
(period 511)

size 20
(period 12)

size 21
(period 63)

size 22
(period 62)

size 23
(period 2047)

size 24
(period 8)

size 25
(period 1023)

size 15

(period 1455) (period 6016) (period 10,846) (period 2844)

The behavior of cellular automata with a limited number of cells. In each case the right neighbor of the rightmost cell is
taken to be the leftmost cell and vice versa. The pattern produced always eventually repeats, but the period of
repetition can increase rapidly with the size of the system.
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(period 247)
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(period 597)

size 22
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(period 38,249)
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(period 588,425)
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1,000,000,000,000 - rule 90
100,000,000,000 -
10,000,000,000
1,000,000,000 |
100,000,000
10,000,000
1,000,000 -
100,000 |
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1000
100
nor

s

1,000,000,000 1ule 30 e 1,000,000,000 e d5
100,000,000 100,000,000

10,000,000 10,000,000

1,000,000 1,000,000

100,000 100,000

10,000 10,000

1000 1000

100 100

or 10

= 1

0 10 20 20 0 0 10 20 0

1,000,000
100,000 © rule 110
10,000
1000
100

0 10 20 30 40 50 60 70 80 90 100

Repetition periods for various cellular automata as a function of size. The initial conditions used in each case consist of
a single black cell, as in the pictures on the previous page. The dashed gray line indicates the maximum possible
repetition period of 2" . The maximum repetition period for rule 90 is 2™"/2 - 1. For rule 30, the peak repetition periods
are of order 229" while for rule 45, they are close to 2" (for n =29, for example, the period is 463,347,935, which is
86% of the maximum possible). For rule 110, the peaks seem to increase roughly like n®.

such case, the pattern must repeat itself with a period of at most 2”
steps, where 7 is the size of the pattern.

In a class 2 system with random initial conditions, a similar
thing happens: since different parts of the system do not
communicate with each other, they all behave like separate patterns
of limited size. And in fact in most class 2 cellular automata these
patterns are effectively only a few cells across, so that their repetition

periods are necessarily quite short.

260



STARTING FROM RANDOMNESS CHAPTER

Randomness in Class 3 Systems

When one looks at class 3 systems the most obvious feature of their
behavior is its apparent randomness. But where does this randomness
ultimately come from? And is it perhaps all somehow just a reflection
of randomness that was inserted in the initial conditions?

The presence of randomness in initial conditions—together with
sensitive dependence on initial conditions—does imply at least some
degree of randomness in the behavior of any class 3 system. And indeed
when T first saw class 3 cellular automata I assumed that this was the
basic origin of their randomness.

But the crucial point that I discovered only some time later is
that random behavior can also occur even when there is no randomness
in initial conditions. And indeed, in earlier chapters of this book we
have already seen many examples of this fundamental phenomenon.

The pictures below now compare what happens in the rule 30
cellular automaton from page 27 if one starts from random initial

conditions and from initial conditions involving just a single black cell.
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Comparison of the patterns produced by the rule 30 cellular automaton starting from random initial conditions and from simple
initial conditions involving just a single black cell. Away from the edge of the second picture, the patterns look remarkably similar.

261

6



STEPHEN WOLFRAM ‘ANEW KIND OF SCIENCE

The behavior we see in the two cases rapidly becomes almost
indistinguishable. In the first picture the random initial conditions
certainly affect the detailed pattern that is obtained. But the crucial
point is that even without any initial randomness much of what we see
in the second picture still looks like typical random class 3 behavior.

So what about other class 3 cellular automata? Do such systems
always produce randomness even with simple initial conditions?

The pictures below show an example in which random class 3
behavior is obtained when the initial conditions are random, but where
the pattern produced by starting with a single black cell has just a

simple nested form.
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Patterns produced by the rule 22 cellular automaton starting from random initial conditions and from an initial condition containing
a single black cell. With random initial conditions typical class 3 behavior is seen. But with the specific initial condition shown on
the right, a simple nested pattern is produced.

Nevertheless, the pictures on the facing page demonstrate that if
one uses initial conditions that are slightly different—though still
simple—then one can still see randomness in the behavior of this

particular cellular automaton.
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Rule 22 with various different simple initial conditions. In the top four cases, the pattern produced ultimately has a

simple nested form. But in the bottom case, it is instead in many respects random, much like rule 30.
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There are however a few cellular automata in which class 3
behavior is obtained with random initial conditions, but in which no
significant randomness is ever produced with simple initial conditions.

The pictures below show one example. And in this case it turns
out that all patterns are in effect just simple superpositions of the basic
nested pattern that is obtained by starting with a single black cell.

EEEEEE EEEEENEENEENEEEE EEEEEE random initial conditions

Patterns generated by rule 90 with various initial conditions. This particular cellular automaton rule has the special property of
additivity which implies that with any initial conditions the patterns that it produces can be obtained as simple superpositions
of the first pattern shown above. Any initial condition that contains black cells only in a limited region will thus lead to a pattern
that ultimately has a simple nested form. Unlike rule 30 or rule 22 therefore, rule 90 cannot intrinsically generate randomness
starting from simple initial conditions. The randomness in the last picture shown here is thus purely a consequence of the
randomness in its initial conditions. Note that the pictures above show only half as many steps of evolution as the
corresponding pictures of rule 22 on the previous page.

As a result, when the initial conditions involve only a limited
region of black cells, the overall pattern produced always ultimately has
a simple nested form. Indeed, at each of the steps where a new white
triangle starts in the center, the whole pattern consists just of two
copies of the region of black cells from the initial conditions.

The only way to get a random pattern therefore is to have an
infinite number of randomly placed black cells in the initial conditions.
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And indeed when random initial conditions are used, rule 90 does

manage to produce random behavior of the kind expected in class 3.

But if there are deviations from perfect randomness in the initial

conditions, then these will almost inevitably show up in the evolution

of the system. And thus, for example, if the initial density of black cells

is low, then correspondingly low densities will occur again at various

later steps, as in the second picture below.

With rule 22, on the other hand, there is no such effect, and

instead after just a few steps no visible trace remains of the low density

of initial black cells.
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rule 22

rule 90

Examples of evolution from random initial conditions with a low density of black cells. In rule 22 the low initial density has no
long-term effect. But in rule 90 its effect continues forever. The reason for this difference is that in rule 22 the randomness we
see is intrinsically generated by the evolution of the system, while in rule 90 it comes from randomness in the initial conditions.

CHAPTER 6
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A couple of sections ago we saw that all class 3 systems have the
property that the detailed patterns they produce are highly sensitive to
detailed changes in initial conditions. But despite this sensitivity at the
level of details, the point is that any system like rule 22 or rule 30 yields
patterns whose overall properties depend very little on the form of the
initial conditions that are given.

By intrinsically generating randomness such systems in a sense
have a certain fundamental stability: for whatever is done to their
initial conditions, they still give the same overall random behavior,
with the same large-scale properties. And as we shall see in the next few
chapters, there are in fact many systems in nature whose apparent

stability is ultimately a consequence of just this kind of phenomenon.

Special Initial Conditions

We have seen that cellular automata such as rule 30 generate seemingly
random behavior when they are started both from random initial
conditions and from simple ones. So one may wonder whether there are
in fact any initial conditions that make rule 30 behave in a simple way.

As a rather trivial example, one certainly knows that if its initial
state is uniformly white, then rule 30 will just yield uniform white forever.
But as the pictures below demonstrate, it is also possible to find less trivial
initial conditions that still make rule 30 behave in a simple way.

‘_ ‘ = ‘ o] ‘ ] ‘ mm ‘ = ‘ m ‘ Djj‘ Examples of special initial conditions that make the rule 30 cellular automaton yield simple

gjojgmm/m |/ ® |0 repetitive behavior. Small patches with the same structures as shown here can be seen
embedded in typical random patterns produced by rule 30. At left is a representation of rule 30. Finding initial conditions that make cellular
automata yield behavior with certain repetition periods is closely related to the problem of satisfying constraints discussed on page 210.
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In fact, it turns out that in any cellular automaton it is inevitable
that initial conditions which consist just of a fixed block of cells
repeated forever will lead to simple repetitive behavior.

For what happens is that each block in effect independently acts
like a system of limited size. The right-hand neighbor of the rightmost
cell in any particular block is the leftmost cell in the next block, but
since all the blocks are identical, this cell always has the same color as
the leftmost cell in the block itself. And as a result, the block evolves
just like one of the systems of limited size that we discussed on page
255. So this means that given a block that is # cells wide, the repetition
period that is obtained must be at most 2" steps.

But if one wants a short repetition period, then there is a question
of whether there is a block of any size which can produce it. The
pictures on the next page show the blocks that are needed to get
repetition periods of up to ten steps in rule 30. It turns out that no block
of any size gives a period of exactly two steps, but blocks can be found
for all larger periods at least up to 15 steps.

But what about initial conditions that do not just consist of a
single block repeated forever? It turns out that for rule 30, no other kind
of initial conditions can ever yield repetitive behavior.

But for many rules—including a fair number of class 3 ones—the
situation is different. And as one example the picture on the right below
shows an initial condition for rule 126 that involves two different

blocks but which nevertheless yields repetitive behavior.

Rule 126 with a typical random initial condition, and with an initial condition that consists of a random
sequence of the blocks mem and mmm. Rule 126 in general shows class 3 behavior, as on the left. But
with the special initial condition on the right it acts like a simple class 2 rule. Note the patches of
class 2 behavior even in the picture on the left.

CHAPTER 6
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period 10, block size 155

period 9, block size 15

consist of a fixed block of cells that is repeated over and over again. Note that there are no initial conditions that

All patterns that repeat in 10 or less steps under evolution according to rule 30. In each case the initial conditions
yield a repetition period of exactly 2 steps. To get period 11, a block that contains 275 cells is required.
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In a sense what is happening here is that even though rule 126
usually shows class 3 behavior, it is possible to find special initial
conditions that make it behave like a simple class 2 rule.

And in fact it turns out to be quite common for there to exist
special initial conditions for one cellular automaton that make it
behave just like some other cellular automaton.

Rule 126 will for example behave just like rule 90 if one starts it
from special initial conditions that contain only blocks consisting of
pairs of black and white cells.

The pictures below show how this works: on alternate steps the
arrangement of blocks in rule 126 corresponds exactly to the
arrangement of individual cells in rule 90. And among other things this
explains why it is that with simple initial conditions rule 126 produces

exactly the same kind of nested pattern as rule 90.

CHAPTER 6

rule 126 rule 90

Two examples of the fact that with special initial conditions rule 126 behaves exactly like rule
m — . B} — D 90. The initial conditions that are used consist of blocks of cells where each block contains
either two black cells or two white cells. If one looks only on every other step, then the

blocks behave exactly like individual cells in rule 90. This correspondence is the basic reason that rule 126 produces the same

kind of nested patterns as rule 90 when it is started from simple initial conditions.
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The point is that these initial conditions in effect contain only
blocks for which rule 126 behaves like rule 90. And as a result, the
overall patterns produced by rule 126 in this case are inevitably exactly
like those produced by rule 90.

So what about other cellular automata that can yield similar
patterns? In every example in this book where nested patterns like
those from rule 90 are obtained it turns out that the underlying rules
that are responsible can be set up to behave exactly like rule 90.
Sometimes this will happen, say, for any initial condition that has black
cells only in a limited region. But in other cases—like the example of
rule 22 on page 263—rule 90 behavior is obtained only with rather
specific initial conditions.

So what about rule 90 itself? Why does it yield nested patterns?

The basic reason can be thought of as being that just as other
rules can emulate rule 90 when their initial conditions contain only
certain blocks, so also rule 90 is able to emulate itself in this way.

The picture below shows how this works. The idea is to consider
the initial conditions not as a sequence of individual cells, but rather as
a sequence of blocks each containing two adjacent cells. And with an
appropriate form for these blocks what one finds is that the
configuration of blocks evolves exactly according to rule 90.

The fact that both individual cells and whole blocks of cells
evolve according to the same rule then means that whatever pattern is

rule 90 rule 90

B} D A demonstration of the fact that in rule 90 blocks of cells can behave just like individual cells. One
consequence of this is that the patterns produced by rule 90 have a nested or self-similar form.
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produced must have exactly the same structure whether it is looked at
in terms of individual cells or in terms of blocks of cells. And this can
be achieved in only two ways: either the pattern must be essentially
uniform, or it must have a nested structure—just like we see in rule 90.

So what happens with other rules? It turns out that the property
of self-emulation is rather rare among cellular automaton rules. But one

other example is rule 150—as illustrated in the picture below.

rule 150

So what else is there in common between rule 90 and rule 1502 It
turns out that they are both additive rules, implying that the patterns
they produce can be superimposed in the way we discussed on page 264.
And in fact one can show that any rule that is additive will be able to
emulate itself and will thus yield nested patterns. But there are rather
few additive rules, and indeed with two colors and nearest neighbors
the only fundamentally different ones are precisely rules 90 and 150.

Ultimately, however, additive rules are not the only ones that can
emulate themselves. An example of another kind is rule 184, in which

blocks of three cells can act like a single cell, as shown below.

Another example of a rule in which blocks of cells can behave just like individual cells. Rule

E — . H} — D 90 and rule 150 are also essentially the only fundamentally different elementary cellular
automaton rules that have the property of being additive (see page 264).

Bl I |

A rule that is not additive, but in
which blocks of cells can again
behave just like individual cells.

rule 184 rule 184

6
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With simple initial conditions of the type we have used so far this
rule will always produce essentially trivial behavior. But one way to see
the properties of the rule is to use nested initial conditions, obtained for
example from substitution systems of the kind we discussed on page 82.

With most rules, including 90 and 150, such nested initial
conditions typically yield results that are ultimately indistinguishable
from those obtained with typical random initial conditions. But for rule
184, an appropriate choice of nested initial conditions yields the highly
regular pattern shown below.

‘-‘-:l‘l:l‘l:\j‘t-‘tlj‘mil‘mjj‘ The pattern produced by rule 184 (shown at left) evolving from a nested initial
B 0|m | m ® | 0] 0] 0] conditon. The particular initial condition shown can be obtained by applying the
substitution system m— mm, 0 — T, starting from a single black element m (see page 83). With this initial condition, rule 184
exhibits an equal number of black and white stripes, which annihilate in pairs so as to yield a regular nested pattern.
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The nested structure seen in this pattern can then be viewed as a
consequence of the fact that rule 184 is able to emulate itself. And the
picture below shows that rule 184—unlike any of the additive rules—
still produces recognizably nested patterns even when the initial

conditions that are used are random.

Rule 184 evolving from a random initial condition. Nested structure similar to what we saw in the previous picture is still visible.
The presence of such structure is most obvious when there are equal numbers of black and white cells in the initial conditions,
but it does not rely on any regularity in the arrangement of these cells.

As we will see on page 338 the presence of such patterns is
particularly clear when there are equal numbers of black and white cells
in the initial conditions—but how these cells are arranged does not
usually matter much at all. And in general it is possible to find quite a
few cellular automata that yield nested patterns like rule 184 even from
random initial conditions. The picture on the next page shows a
particularly striking example in which explicit regions are formed that

contain patterns with the same overall structure as rule 90.

6
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Another example of a cellular automaton that produces a nested pattern even from random initial conditions. The particular rule shown
involves next-nearest as well as nearest neighbors and has rule number 4067213884. As in rule 184, the nested behavior seen here is
most obvious when the density of black and white cells in the initial conditions is equal.
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The Notion of Attractors

In this chapter we have seen many examples of patterns that can be
produced by starting from random initial conditions and then following
the evolution of cellular automata for many steps.

But what can be said about the individual configurations of black
and white cells that appear at each step? In random initial conditions,
absolutely any sequence of black and white cells can be present. But it
is a feature of most cellular automata that on subsequent steps the
sequences that can be produced become progressively more restricted.

The first picture below shows an extreme example of a class 1
cellular automaton in which after just one step the only sequences that

can occur are those that contain only black cells.

CHAPTER 6
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Examples of simple cellular automata that evolve after just one step to attractors in which only certain sequences of black and
white cells can occur. In the first case, the sequences that can occur are ones that involve only black cells. In the second case,

the sequences are ones in which every black cell is surrounded by white cells. The rules shown are numbers 255 and 4.

The resulting configuration can be thought of as a so-called
attractor for the cellular automaton evolution. It does not matter what
initial conditions one starts from: one always reaches the same all-black
attractor in the end. The situation is somewhat similar to what happens
in a mechanical system like a physical pendulum. One can start the
pendulum swinging in any configuration, but it will always tend to
evolve to the configuration in which it is hanging straight down.

The second picture above shows a class 2 cellular automaton that
once again evolves to an attractor after just one step. But now the

attractor does not just consist of a single configuration, but instead

275



STEPHEN WOLFRAM

A NEW KIND OF SCIENCE

consists of all configurations in which black cells occur only when they
are surrounded on each side by at least one white cell.

The picture below shows that for any particular configuration of
this kind, there are in general many different initial conditions that can
lead to it. In a mechanical analogy each possible final configuration is
like the lowest point in a basin—and a ball started anywhere in the

basin will then always roll to that lowest point.

Four different initial conditions that all lead to the same final state in the rule 4 cellular automaton shown on the previous page.
The final state can be thought of as one of the possible attractors for the evolution of the cellular automaton; the initial
conditions shown then represent different elements in the basin of attraction for this attractor.
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For one-dimensional cellular automata, it turns out that there is a
rather compact way to summarize all the possible sequences of black
and white cells that can occur at any given step in their evolution.

The basic idea is to construct a network in which each such
sequence of black and white cells corresponds to a possible path.

In the pictures at the top of the facing page, the first network in
each case represents random initial conditions in which any possible
sequence of black and white cells can occur. Starting from the node in
the middle, one can go around either the left or the right loop in the
network any number of times in any order—representing the fact that
black and white cells can appear any number of times in any order.

At step 2 in the rule 255 example on the facing page, however, the
network has only one loop—representing the fact that at this step the
only sequences which can occur with this rule are ones that consist
purely of black cells, just as we saw on the previous page.

The case of rule 4 is slightly more complicated: at step 2, the
possible sequences that can occur are now represented by a network
with two nodes. Starting at the right-hand node one can go around the
loop to the right any number of times, corresponding to sequences of
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any number of white cells. At any point one can follow the arrow to the
left to get a black cell, but the form of the network implies that this
black cell must always be followed by at least one white cell.

The pictures on the next page show more examples of class 1 and
2 cellular automata. Unlike in the picture above, these rules do not
reach their final states after one step, but instead just progressively
evolve towards these states. And in the course of this evolution, the set
of sequences that can occur becomes progressively smaller.

In rule 128, for example, the fact that regions of black shrink by
one cell on each side at each step means that any region of black that
exists after ¢t steps must have at least t white cells on either side of it.

The networks shown on the next page capture all effects like this.
And to do this we see that on successive steps they become somewhat
more complicated. But at least for these class 1 and 2 examples, the

progression of networks always continues to have a fairly simple form.

RANDOMNESS

o0
»

CHAPTER 6

Networks representing possible
sequences of black and white
cells that can occur at successive
steps in the evolution of the two
cellular automata shown on the
left. In each case the possible
seguences correspond to possible
paths through the network. Both
rules start on step 1 from random
initial  conditions in  which all
sequences of black and white
cells are allowed. On subsequent
steps, rule 255 allows only
seguences containing just black
cells, while rule 4 allows
seguences that contain both black
and white cells, but requires that
every black cell be surrounded by
white cells.
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rule 132 step 1 step 2 step 3 step 4
rule 160 step 1 step 2 step 3 step 4
. i
rule 184 step 1 step 2 step 3 step 4

Networks representing possible sequences of black and white cells that can occur at successive steps in the evolution of several
class 1 and 2 cellular automata. These networks never have more than about t° nodes after t steps.

So what happens with class 3 and 4 systems? The pictures on the
facing page show a couple of examples. In rule 126, the only effect at
step 2 is that black cells can no longer appear on their own: they must
always be in groups of two or more. By step 3, it becomes difficult to see
any change if one just looks at an explicit picture of the cellular
automaton evolution. But from the network, one finds that now an
infinite collection of other blocks are forbidden, beginning with the
length 12 block rmss wwwmwi. And on later steps, the set of sequences
that are allowed rapidly becomes more complicated—as reflected in a

rapid increase in the complexity of the corresponding networks.
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Networks representing possible sequences of black and white cells that can occur at successive steps in the evolution of typical
class 3 and 4 cellular automata. The number of nodes in these networks seems to increase at a rate that is at least exponential.

Indeed, this kind of rapid increase in network complexity is a

general characteristic of most class 3 and 4 rules. But it turns out that

there are a few rules which at first appear to be exceptions.

The pictures at the top of the next page show four different rules

that each have the property that if started from initial conditions in

which all possible sequences of cells are allowed, these same sequences

can all still occur at any subsequent step in the evolution.

The first two rules that are shown exhibit very simple class 2

behavior. But the last two show typical class 3 behavior.

What is going on, however, is that in a sense the particular initial

conditions that allow all possible sequences are special for these rules.
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Examples of cellular automata which continue to allow all possible sequences of black and white cells at any step in
their evolution. Such cellular automata in effect define what are known as surjective or onto mappings.

And indeed if one starts with almost any other initial
conditions—say for example ones that do not allow any pair of black
cells together, then as the pictures below illustrate, rapidly increasing
complexity in the sets of sequences that are allowed is again observed.
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rule 90
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rule 30
step 1 step 2 step 3

step 4

Networks representing possible sequences that can occur in the evolution of the cellular automata at the top of the
page, starting from initial conditions in which black cells are only allowed to appear in pairs.
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Structures in Class 4 Systems

The next page shows three typical examples of class 4 cellular
automata. In each case the initial conditions that are used are
completely random. But after just a few steps, the systems organize
themselves to the point where definite structures become visible.

Most of these structures eventually die out, sometimes in rather
complicated ways. But a crucial feature of any class 4 systems is that
there must always be certain structures that can persist forever in it.

So how can one find out what these structures are for a particular
cellular automaton? One approach is just to try each possible initial
condition in turn, looking to see whether it leads to a new persistent
structure. And taking the code 20 cellular automaton from the top of
the next page, the page that follows shows what happens in this system
with each of the first couple of hundred possible initial conditions.

In most cases everything just dies out. But when we reach initial
condition number 151 we finally see a structure that persists.

This particular structure is fairly simple: it just remains fixed in
position and repeats every two steps. But not all persistent structures are
that simple. And indeed at initial condition 187 we see a considerably
more complicated structure, that instead of staying still moves
systematically to the right, repeating its basic form only every 9 steps.

The existence of structures that move is a fundamental feature of
class 4 systems. For as we discussed on page 252, it is these kinds of
structures that make it possible for information to be communicated
from one part of a class 4 system to another—and that ultimately allow
the complex behavior characteristic of class 4 to occur.

But having now seen the structure obtained with initial condition
187, we might assume that all subsequent structures that arise in the
code 20 cellular automaton must be at least as complicated. It turns
out, however, that initial condition 189 suddenly yields a much simpler
structure—that just stays unchanged in one position at every step.

But going on to initial condition 195, we again find a more
complicated structure—this time one that repeats only every 22 steps.

CHAPTER 6
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TR

2 colors, next-nearest neighbors, code 20

3 colors, nearest neighbors, code 357

3 colors, nearest neighbors, code 1329

Three typical examples of class 4 cellular automata. In each case various kinds of persistent structures are seen.
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The behavior of the code 20 cellular automaton from the top of the facing page for all initial conditions with black cells in a region of
size less than nine. In most cases the patterns produced simply die out. But with some initial conditions, persistent structures are
formed. Each initial condition is assigned a number whose base 2 digit sequence gives the configuration of black and white cells in
that initial condition. Note that initial conditions 195 and 219 both yield the period 22 persistent structure shown on the next page.
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So just what set of structures does the code 20 cellular automaton
ultimately support? There seems to be no easy way to tell, but the
picture below shows all the structures that I found by explicitly looking

at evolution from the first twenty-five billion possible initial conditions.

284

e w O U
151 187 189 195 635 125,231 595,703 610,999 14,871,103 256,296,063
(period 2) (period 9R) (period 1) (period 22) (period 1R) (period 38) (period 4) (period 4) (period 2R) (period 5)

Persistent structures found by testing the first twenty-five billion possible initial conditions for the code 20 cellular automaton
shown on the previous page. Note that reflected versions of the structures shown are also possible. The base 2 digit sequences of
the numbers given correspond to the initial conditions in each case, as on the previous page.

Are other structures possible? The largest structure in the picture
above starts from a block that is 30 cells wide. And with the more than
ten billion blocks between 30 and 34 cells wide, no new structures at all
appear. Yet in fact other structures are possible. And the way to tell this
is that for small repetition periods there is a systematic procedure that
allows one to find absolutely all structures with a given period.

The picture on the facing page shows the results of using this
procedure for repetition periods up to 15. And for all repetition periods
up to 10—with the exception of 7—at least one fixed or moving
structure ultimately turns out to exist. Often, however, the smallest
structures for a given period are quite large, so that for example in the
case of period 6 the smallest possible structure is 64 cells wide.
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189 635 151 14,871,103 222,678,959,859
(period 1) (period 1R) (period 2) (period ZR)

595,703 610,999

(period 3)

(period 4)  (period 4) (period 5)

(period 6)

3
E
k.
X
E:
k.
k.
k.
3
E:
S
5
3
E:
3
k.
E:
3
E
k.
3

. - "
10,495,070,598,767

187 360,759,087,837,221 2,197,520,782,601,119 142,082,121,178,470,981,231
(period 9R) (period 10) (period 10) (period 10)

(period 8)

All the persistent structures with repetition periods up to 15 steps in the code 20 cellular automaton.

The structures shown were found by a systematic method similar to the one used to find all
sequences that satisfy the constraints on page 268.

So what about other class 4 cellular automata—Ilike the ones I
showed at the beginning of this section? Do they also end up having
complicated sets of possible persistent structures?
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The picture below shows the structures one finds by explicitly
testing the first two billion possible initial conditions for the code 357
cellular automaton from page 282.

28 7,795 1,706,588 4,803,890 154,596,664 514,454,827
(period 48) (period 19) (period 26) (period 41R) (period 12) (period 48)

Persistent structures in the code 357 cellular automaton from page 282 obtained by testing the first
two billion possible initial conditions. This cellular automaton allows three possible colors for each
cell; the initial conditions thus correspond to the base 3 digits of the numbers given. No persistent
structures of any size exist in this cellular automaton with repetition periods of less than 5 steps.

Already with initial condition number 28 a fairly complicated
structure with repetition period 48 is seen. But with all the first million
initial conditions, only one other structure is produced, and this
structure is again one that does not move.

So are moving structures in fact possible in the code 357 cellular
automaton? My experience with many different rules is that whenever
sufficiently complicated persistent structures occur, structures that
move can eventually be found. And indeed with code 357, initial

condition 4,803,890 yields just such a structure.
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So if moving structures are inevitable in class 4 systems, what
other fundamentally different kinds of structures might one see if one
were to look at sufficiently many large initial conditions?

The picture below shows the first few persistent structures found
in the code 1329 cellular automaton from the bottom of page 282. The
smallest structures are stationary, but at initial condition 916 a
structure is found that moves—all much the same as in the two other

class 4 cellular automata that we have just discussed.

1 52 400 800 916 2,617 2,669 97,357 659,197
(period 78)  (period 7)  (period 2)  (period 12) (period 31R) (period 9) (period 48R) (period 2) (period 9)

Persistent structures in the code 1329 cellular automaton shown on page 282.

But when initial condition 54,889 is reached, one suddenly sees
the rather different kind of structure shown on the next page. The
right-hand part of this structure just repeats with a period of 256 steps,
but as this part moves, it leaves behind a sequence of other persistent
structures. And the result is that the whole structure continues to grow

forever, adding progressively more and more cells.

CHAPTER

6
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Unbounded growth in code 1329. The initial
condition contains a block of 10 cells. The
right-hand side of the pattern repeats every
256 steps, and as it moves it leaves behind
an infinite sequence of persistent structures.

initial condition number 54,889

Yet looking at the picture above, one might suppose that when
unlimited growth occurs, the pattern produced must be fairly complicated.
But once again code 1329 has a surprise in store. For the facing page shows
that when one reaches initial condition 97,439 there is again unlimited
growth—but now the pattern that is produced is very simple. And in fact if
one were just to see this pattern, one would probably assume that it came

from a rule whose typical behavior is vastly simpler than code 1329.
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initial condition 54,889 initial condition 97,439 initial condition 166,426

initial condition 115,396 initial condition 2,069,116

Further examples of unbounded growth in code 1329. Most of the patterns produced are complex—but some are
simple.
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initial conditions. The background pattern consists of

A typical example of the behavior of the rule 110 cellular automaton with random

blocks of 14 cells that repeat every 7 steps.
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Indeed, it is a general feature of class 4 cellular automata that
with appropriate initial conditions they can mimic the behavior of all
sorts of other systems. And when we discuss computation and the
notion of universality in Chapter 11 we will see the fundamental reason
this ends up being so. But for now the main point is just how diverse
and complex the behavior of class 4 cellular automata can be—even
when their underlying rules are very simple.

And perhaps the most striking example is the rule 110 cellular
automaton that we first saw on page 32. Its rule is extremely simple—
involving just nearest neighbors and two colors of cells. But its overall
behavior is as complex as any system we have seen.

The facing page shows a typical example with random initial
conditions. And one immediate slight difference from other class 4 rules
that we have discussed is that structures in rule 110 do not exist on a blank
background: instead, they appear as disruptions in a regular repetitive
pattern that consists of blocks of 14 cells repeating every 7 steps.

The next page shows the kinds of persistent structures that can be
generated in rule 110 from blocks less than 40 cells wide. And just like in
other class 4 rules, there are stationary structures and moving structures—
as well as structures that can be extended by repeating blocks they contain.

So are there also structures in rule 110 that exhibit unbounded
growth? It is certainly not easy to find them. But if one looks at blocks
of width 41, then such structures do eventually show up, as the picture
on page 293 demonstrates.

So how do the various structures in rule 110 interact? The
answer, as pages 294-296 demonstrate, can be very complicated.

In some cases, one structure essentially just passes through another
with a slight delay. But often a collision between two structures produces
a whole cascade of new structures. Sometimes the outcome of a collision
is evident after a few steps. But quite often it takes a very large number of
steps before one can tell for sure what is going to happen.

So even though the individual structures in class 4 systems like
rule 110 may behave in fairly repetitive ways, interactions between

these structures can lead to behavior of immense complexity.

CHAPTER 6
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; the central structure moves 20 cells to the left

during each cycle so that the structures on the left are separated by 37 steps while those on the right are separated by 107 steps.

An example of unbounded growth in rule 110. The initial condition consists of a block of length 41 inserted between blocks of the

background. New structures on both left and right are produced every 77 steps
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Collisions between structures (e) and (o) from page 292.
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A collision between structures () and (i) from page 292. It takes more than 4000 steps for the final outcome involving 8 separate
structures to become clear. The height of the picture corresponds to 2000 steps, and the third picture ends at step 4300.
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NOTES FOR CHAPTER 6

Starting from Randomness

The Emergence of Order

n Page 226 - Properties of pattemns. For a random initial
condition, the average density of black cells is exactly 1/2.
For rule 126, the density after many steps is still 1/2. For rule
22, it is approximately 0.35095. For rule 30 and rule 150 it is
exactly 1/2, while for rule 182 it is 3/4. And insofar as rule
110 converges to a definite density, the density is 4/7. (See

page 953 for a method of estimating these densities.)

Even after many steps, individual lines in the patterns
produced by rules 30 and 150 remain in general completely
random. But in rule 126, black cells always tend to appear in
pairs, while in rule 182, every white cell tends to be
surrounded by black ones. And in rule 22, there are more
complicated conditions involving blocks of 4 cells.

The density of triangles of size n goes roughly like 27 for
rules 126, 30 (see also page 871), 150 and 182 and roughly like
1.3 for rule 22.

In the algebraic representation discussed on page 869,

rule 22 is Mod[p+q+r+pqr, 2], rule 126 is

Mod[(p+q)(qg+r)+(p+r), 2], rule 150 is Mod[p +q+r, 2]
and rule 182 is Mod[pr(1+q)+(p+q+r), 2].

rule 30 rule 62 rule 90

et

rule 108 rule 110 rule 126

n Continual injection of randomness. In the main text we
discuss what happens when one starts from random initial
conditions and then evolves according to a definite cellular
automaton rule. As an alternative one can consider starting
with very simple initial conditions, such as all cells white,
and then at each step randomly changing the color of the
center cell. Some examples of what happens are shown at the
bottom of the previous column. The results are usually very
similar to those obtained with random initial conditions.

n History. The fact that despite initial randomness processes
like friction can make systems settle down into definite
configurations has been the basis for all sorts of engineering
throughout history. The rise of statistical mechanics in the late
1800s emphasized the idea of entropy increase and the
fundamental tendency for systems to become progressively
more disordered as they evolve to thermodynamic
equilibrium. Theories were nevertheless developed for a few
cases of

spontaneous pattern

convection, cirrus clouds and ocean waves. When the study of

formation—notably in

feedback and stability became popular in the 1940s, there were
many results about how specific simple fixed or repetitive
behaviors in time could emerge despite random input. In the
1950s it was suggested that reaction-diffusion processes might
be responsible for spontaneous pattern formation in biology
(see page 1012)—and starting in the 1970s such processes were
discussed as prime examples of the phenomenon of self-
organization. But in their usual form, they yield essentially
only rather simple repetitive patterns. Ever since around 1900
it tended to be assumed that any fundamental theory of
systems with many components must be based on statistical
mechanics. But almost all work in the field of statistical
mechanics concentrated on systems in or very near thermal
equilibrium—in which in a sense there is almost complete
disorder. In the 1970s there began to be more discussion of
phenomena far from equilibrium, although typically it got no
further than to consider how external forces could lead to
reaction-diffusion-like phenomena. My own work on cellular
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automata in 1981 emerged in part from thinking about self-

gravitating systems (see page 880) where it seemed
conceivable that there might be very basic rules quite different
from those usually studied in statistical mechanics. And when
I first generated pictures of the behavior of arbitrary cellular
automaton rules, what struck me most was the order that
emerged even from random initial conditions. But while it was
immediately clear that most cellular automata do not have the
kind of reversible underlying rules assumed in traditional
statistical mechanics, it still seemed initially very surprising
that their overall behavior could be so elaborate—and so far
from the complete orderlessness one might expect on the basis

of traditional ideas of entropy maximization.

Four Classes of Behavior

n Different runs. The qualitative behavior seen with a given
cellular automaton rule will normally look exactly the same
for essentially all different large random initial conditions—
just as it does for different parts of a single initial condition.
And as discussed on page 597 any obvious differences could
in effect be thought of as revealing deviations from
randomness in the initial conditions.

u Page 232 - Elementary rules. The examples shown have rule

numbers n for which IntegerDigits[n, 2, 8] matches

Iy oy

n Page 235 - States of matter. As suggested by pages 944 and
1193, working out whether a particular substance at a
particular temperature will be a solid, liquid or gas may in
fact be computationally comparable in difficulty to working
out what class of behavior a particular cellular automaton
will exhibit.

u Page 235 - Class 4 rules. Other examples of class 4 totalistic
rules with k =3 colors include 357 (page 282), 438, 600, 792,
924, 1038, 1041, 1086, 1329 (page 282), 1572, 1599 (see page
70), 1635 (see page 67), 1662, 1815 (page 236), 2007 (page 237)
and 2049 (see page 68).

n Frequencies of classes. The pie charts below show results for
1D totalistic cellular automata with k colors and range r. Class
3 tends to become more common as the number of elements in
the rule increases because as soon as any of these elements
yield class 3 behavior, that behavior dominates the system.

k=2,r=3 k=3r=1
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n History. I discovered the classification scheme for cellular
automata described here late in 1983, and announced it in
January 1984. Much work has been done by me and others on
ways to make the classification scheme precise. The notion
that class 4 can be viewed as intermediate between class 2
and class 3 was studied particularly by Christopher Langton,
Wentian Li and Norman Packard in 1986 for ordinary cellular
automata, by Hyman Hartman in 1985 for probabilistic
cellular automata and by Hugues Chaté and Paul Manneville
in 1990 for continuous cellular automata.

u Subclasses within class 4. Different class 4 systems can show
localized structures with strikingly similar forms, and this
may allow subclasses within class 4 to be identified. In
addition, class 4 systems show varying levels of activity, and
it is possible that there may be discrete transitions—perhaps
analogous to percolation—that can be used to define
boundaries between subclasses.

n Page 240 - Undecidability. Almost any definite procedure for
determining the class of a particular rule will have the feature
that in borderline cases it can take arbitrarily long, often
formally showing undecidability, as discussed on page 1138.
(An example would be a test for class 1 based on checking
that no initial pattern of any size can survive. Including
probabilities can help, but there are still always borderline
cases and potential undecidability.)

u Page 244 - Continuous cellular automata. In ordinary cellular
automata, going from one rule to the next in a sequence
involves some discrete change. But in continuous cellular
automata, the parameters of the rule can be varied smoothly.
Nevertheless, it still turns out that there are discrete
transitions in the overall behavior that is produced. In fact,
there is often a complicated set of transitions that depends
more on the digit sequence of the parameter than its size.
And between these transitions there are usually ranges of
parameter values that yield definite class 4 behavior.
(Compare page 922.)

u Nearby cellular automaton rules. In a range r cellular
automaton the new color of a particular cell depends only on
cells at most a distance r away. One can make an equivalent
cellular automaton of larger range by having a rule in which
cells at distance more than r have no effect. One can then
define nearby cellular automata to be those where the
differences in the rule involve only cells close to the edge of
the range. With larger and larger ranges one can then
construct closer approximations to continuous sequences of
cellular automata.

u 2D class 4 cellular automata. No 5- or 9-neighbor totalistic
rules nor 5-neighbor outer totalistic ones appear to yield
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class 4 behavior with a white background. But among 9-
neighbor outer totalistic rules there are examples with codes
224 (Game of Life), 226, 4320 (sometimes called HighLife),
5344, 6248, 6752, 6754 and 8416, etc. It turns out that the
simplest moving structures are the same in codes 224, 226
and 4320.

n Page 249 - Game of Life. Invented by John Conway around
1970 (see page 877), the Life 2D cellular automaton has been
much studied in recreational computing, and as described
on page 964 many localized structures in it have been
identified. Each step in its evolution can be implemented
using
LifeStep[a_List] :=
MapThread[If[#1==1&&#2 ==4|[#2==3,1,0] &
{a, Sum[RotateLeft[a, {i, j}], {i, -1, 1}, {j, -1, 1}]}, 2]

A more efficient implementation can be obtained by
operating not on a complete array of black and white cells
but rather just on a list of positions of black cells. With this
setup, each step then corresponds to

LifeStep[list_] :=
With[{p = Flatten[Array[List, {3, 3}, -1], 1]},
With[{u = Split[Sort[Flatten[ Outer[Plus, list, p, 11, 1111},
Union[Cases[u, {x_, _, _} > x],
Intersection[Cases|[u, {x_, _, _, _} = x], list]]]]

(A still more efficient implementation is based on finding
runs of length 3 and 4 in Sort[u].)

1 3D class 4 rules. With a cubic lattice of the type shown on
page 183, and with updating rules of the form
LifeStep3D[{p_, q_, r_}, a_List] := MapThread[If[

#1=1&&p=H#H2=q|[#2==r, 1, 0] & {a, Sum[RotateLeft[
a {i j, k1 A, =1, 13 4j, -1, 1} {k, -1, 1}]-a}, 3]

Carter Bays discovered between 1986 and 1990 the three

examples {5, 7, 6}, {4, 5, 5}, and {5, 6, 5}. The pictures below

show successive steps in the evolution of a moving structure

in the second of these rules.

LY

» Random initial conditions in other systems. Whenever the
initial conditions for a system can involve an infinite
sequence of elements these elements can potentially be
chosen at random. In systems like mobile automata and
Turing machines the colors of initial cells can be random,
but the active cell must start at a definite location, and
depending on the behavior only a limited region of initial
cells near this location may ever be sampled. Ordinary
substitution systems can operate on infinite sequences of
elements chosen at random. Sequential substitution systems,
however, rely on scanning limited sequences of elements,

RANDOMNESS NOTES FOR CHAPTER 6

and so cannot readily be given infinite random initial
conditions. The same is true of ordinary and cyclic tag
systems. Systems based on continuous numbers involve
infinite sequences of digits which can readily be chosen at
random (see page 154). But systems based on integers
(including register machines) always deal with finite
sequences of digits, for which there is no unique definition
of randomness. (See however the discussion of number
representations on page 1070.) Random networks (see pages
963 and 1038) can be used to provide random initial
conditions for network systems. Multiway systems cannot
meaningfully be given infinite random initial conditions
since these would typically lead to an infinite number of
possible states. Systems based on constraints do not have
initial conditions. (See also page 920.)

Sensitivity to Initial Conditions

n Page 251 - Properties. In rule 126, the outer edges of the
region of change always expand by exactly one cell per step.
The same is true of the right-hand edge in rule 30—though
the left-hand edge in this case expands only about 0.2428
cells on average per step. In rule 22, both edges expand about
0.7660 cells on average per step.

The motion of the right-hand edge in rule 30 can be
understood by noting that with this rule the color of a
particular cell will always change if the color of the cell to its
left is changed on the previous step (see page 601). Nothing
as simple is true for the left-hand edge, and indeed this seems
to execute an essentially random walk—with an average
motion of about 0.2428 cells per step. Note that in the
approximation that the colors of all cells in the pattern are
assumed completely independent and random there should
be motion by 0.25 cells per step. Curiously, as discussed on
page 871, the region of non-repetitive behavior in evolution
from a single black cell according to rule 30 seems to grow at
a similar but not identical rate of about 0.252 cells per step.
(For rule 45, the left-hand edge of the difference pattern
moves about 0.1724 cells per step; for rule 54 both edges
move about 0.553 cells per step.)

n Difference patterns. The maximum rate at which a region of
change can grow is determined by the range of the
underlying cellular automaton rule. If the rule involves up to
r nearest neighbors, then at each step a change in the color of
a given cell can affect cells up to r away—so that the edge of
the region of change can move by r cells.

For most class 3 rules, once one is inside the region of change,
the colors of cells usually become essentially uncorrelated.
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However, for additive rules the pattern of differences is just
exactly the pattern that would be obtained by evolution from
an initial condition consisting only of the changes made. In
general the pattern of probabilities for changes can be
thought of as being somewhat like a Green’s function in
mathematical physics—though the nonadditivity of most
cellular automata makes this analogy less useful. (Note that
the pattern of differences between two initial conditions in a
rule with k possible colors can always be reproduced by
looking at the evolution from a single initial condition of a
suitable rule with 2k colors.) In 2D class 3 cellular automata,
the region of change usually ends up having a roughly
circular shape—a result presumably related to the Central
Limit Theorem (see page 976).

For any additive or partially additive class 3 cellular
automaton (such as rule 90 or rule 30) any change in initial
conditions will always lead to expanding differences. But in
other rules it sometimes may not. And thus, for example, in
rule 22, changing the color of a single cell has no effect after
even one step if the cell has a m block on either side. But
while there are a few other initial conditions for which
differences can die out after several steps most forms of
averaging will say that the majority of initial conditions lead
to growing patterns of differences.

» Lyapunov exponents. If one thinks of cells to the right of a
point in a 1D cellular automaton as being like digits in a real
number, then linear growth in the region of differences
associated with a change further to the right is analogous to
the exponentially sensitive dependence on initial conditions
shown on page 155. The speed at which the region of
differences expands in the cellular automaton can thus be
thought of as giving a Lyapunov exponent (see page 921) that
characterizes instability in the system.

Systems of Limited Size and Class 2 Behavior

u Page 255 - Cyclic addition. After t steps, the dot will be at
position Mod[mt, n] where n is the total number of
positions, and m is the number of positions moved at each
step. The repetition period is given by n/GCD[m, n]. The
picture on page 613 shows the values of m and n for which
this is equal to n.

An alternative interpretation of the system discussed here
involves arranging the possible positions in a circle, so that at
each step the dot goes a fraction m/n of the way around the
circle. The repetition period is maximal when m/n is a fraction
in lowest terms. The picture below shows the repetition
periods as a function of the numerical size of the quantity m/n.

950

SCIENCE

1/61/5 1/4 /3 2/5 172 35 283 3/4 _4/55/6

oo a @ N

0 0.1 02 03 04 05 0.6 0.7 08 09 1

n Page 257 - Cyclic multiplication. With multiplication by k at
each step the dot will be at position Mod[k', n] after ¢ steps. If
k and n have no factors in common, there will be a t for which
Mod[k', n]==1, so that the dot returns to position 1. The
smallest such t is given by MultiplicativeOrder[k, n], which
always divides EulerPhi[n] (see page 1093), and has a value
between Log[k, n] and n-1, with the upper limit being
attained only if n is prime. (This value is related to the
repetition period for the digit sequence of 7/n in base k, as
discussed on page 912). When GCD[k, n] == 1 the dot can never
visit position 0. But if n == k°, the dot reaches 0 after s steps,
and then stays there. In general, the dot will visit position
m = k ~IntegerExponent[n, k] every MultiplicativeOrder[k, n/m]
steps.

n Page 260 - Maximum periods. A cellular automaton with n
cells and k colors has k" possible states, but if the system has
cyclic boundary conditions, then the maximum repetition
period is smaller than k”. The reason is that different states of
the cellular automaton have different symmetry properties,
and thus cannot be on the same cycle. In particular, if a state of
a cellular automaton has a certain spatial period, given by the
minimum positive m for which RotateLeft[list, m] == list, then
this state can never evolve to one with a larger spatial period.
The number of states with spatial period m is given by
s[m_, k_] :=
k™ - Apply[Plus, Map[s[#, k] &, Drop[Divisors[m], -1]]]
or equivalently
s[m_, k_] := Apply[Plus,
(MoebiusMulm/#]k* &)[Divisors[m]]]
In a cellular automaton with a total of n cells, the maximum
possible repetition period is thus s[n, k]. For k=2, the
maximum  periods for n up to 10  are:
{2,2,6, 12, 30, 54, 126, 240, 504, 990}. In all cases, s[n, k] is
divisible by n. For prime n, s[n, k] is k" -k. For large n,
s[n, k] oscillates between about k"-k" and k"-k. (See
page 963.)
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u Additive cellular automata. In the case of additive rules such
as rule 90 and rule 60, a mathematical analysis of the
repetition periods can be given (as done by Olivier Martin,
Andrew Odlyzko and me in 1983). One starts by converting
the list of cell colors at each step to a polynomial
FromDigits[list, x]. Then for the case of rule 60 with n cells
and cyclic boundary conditions, the state obtained after t
steps is given by
PolynomialMod[(1+x)"z, {x" -1, 2}]

where z is the polynomial representing the initial state, and
z =1 for a single black cell in the first position. The state z = 7
evolves after one step to the state z = 7 + x, and for odd n this
latter state always eventually appears again. Using the result
that 7+x%" == (1+x)?" modulo 2 for any m, one then finds
that the repetition period always divides the quantity
pln] =2 ~MultiplicativeOrder[2, n]- 1, which in turn is at most
27 -1. The actual periods are often smaller than p[n], with
the following ratios occurring:

[ n[i1]18[19]25]27] 29] 37[41]43] 53]
[ratio] 3] 5]27]41]19]565 |21255]| 25| 3] 1266205]

There appears to be no case for n>5 where the period
achieves the absolute maximum 27 - 1.

In the case of rule 90 a similar analysis can be given, with the
7+x used at each step replaced by 7/x +x. And now the
repetition period for odd n divides
qln] = 2~ MultiplicativeOrder([2, n, {1, -1}]- 1

The exponent here always lies between Log(k, n] and
(n-1)/2, with the upper bound being attained only if n is
prime. Unlike for the case of rule 60, the period is usually
equal to g/n] (and is assumed so for the picture on page 260),
with the first exception occurring at n = 37.

n Rules 30 and 45. Maximum periods are often achieved with
initial conditions consisting of a single black cell. Particularly
for rule 30, however, there are quite a few exceptions. For
n=13, for example, the maximum period is 832 but the
period with a single black cell is 260. For rule 45, the
maximum possible period discussed above is achieved for
n =29, but does not appear to be achieved for any larger n.
(See page 962.)

» Comparison of rules. Rules 45, 30 and 60, together with their
conjugates and reflections, yield the longest repetition
periods of all elementary rules (see page 1087). The picture
below compares their periods as a function of n.

rule 45
——= rule 30
———- rule 60

1,000,000,000

1,000,000

1,000

5 10 15 20 25 30
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the
representation discussed on page 865, 0's outside of a width n
can be implemented by applying BitAnd[a, 2" - 1] at each step.
Cyclic boundary conditions can be implemented efficiently in
assembler on computers that support cyclic shift instructions.

» Implementing boundary conditions.  In bitwise

Randomness in Class 3 Systems

n Page 263 - Rule 22. Randomness is obtained with initial
conditions consisting of two black squares 4 m positions apart
for any m = 2. The base 2 digit sequences for 19, 25, 37, 39, 41,
45, 47, 51, 57, 61, ... also give initial conditions that yield
randomness. Despite its overall randomness there are some
regularities in the pattern shown at the bottom of the page. The
overall density of black cells is not 1/2 but is instead
approximately 0.35, just as for random initial conditions. And
if one looks at the center cell in the pattern one finds that it is
never black on two successive steps, and the probability for
white to follow white is about twice the probability for black to
follow white. There is also a region of repetitive behavior on
each side of the pattern; the random part in the middle
expands at about 0.766 cells per step—the same speed that we
found on page 949 that changes spread in this rule.

u Rule 225. With initial conditions consisting of a single black

cell, this class 3 rule yields a regular nested pattern, as shown on
page 58. But with the initial condition mwrm, it yields the much

more complicated pattern shown below. With a background
consisting of repetitions of the block mC, insertion of a single
initial white cell yields a largely random pattern that expands by
one cell per step. Rule 225 can be expressed as = p v (q Vr).

"= !

ﬁg‘%‘“ﬁ@ it HE“'“IWEW%;”FE%

4

n Rule 94. With appropriate initial conditions this class 2 rule
can yield both nested and random behavior, as shown below.
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u Rule 218. If pairs of adjacent black cells appear anywhere in
its initial conditions this class 2 rule gives uniform black, but
if none do it gives a rule 90 nested pattern.

n Additive rules. Of the 256 elementary cellular automata 8
are additive: {0, 60, 90, 102, 150, 170, 204, 240}. All of these are
either trivial or essentially equivalent to rules 90 or 150.

Of all k¥’ rules with k colors and range r it turns out that

k?*! additive ones—each obtained

there are always exactly
by taking the cells in the neighborhood and adding them
modulo k with weights between 0 and k- 7. As discussed on
page 955, any rule based on addition modulo k must yield a
nested pattern, and it therefore follows that any rule that is
additive must give a nested pattern, as in the examples

below. (See also page 870.)

b,
A‘ﬁ o £ e
e oo
s BN - A, A

Note that each step in the evolution of any additive cellular
automaton can be computed as
Mod[ListCorrelate[w, list, Ceiling[Length[w]/2]], k]

(See page 1087 for a discussion of partial additivity.)

n Page 264 - Generalized additivity. In general what it means
for a system to be additive is that some addition operation &
can be used to combine any set of evolution histories to yield
another possible evolution history. If ¢ is the rule for the
system, this then requires for any states u and v the
distributive property
pluev]=¢lule ¢[v]

(In mathematical terms this is equivalent to the statement
that ¢ is conjugate to itself under the action of & —or
alternatively that ¢ defines a homomorphism with respect to
the @ operation.) uev is just
Mod[u + v, k], yielding say for rule 90 the results below.

¢lul (247 ¢ludv] plul®dlv]

In the wusual case,

But it turns out that some elementary rules show additivity
with respect to other addition operations. An example as
shown below is rule 250 with v @ v taken as Max[u, v] (Or).

¢lul (247 ¢lusv] plul®lv]
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If a system is additive it means that one can work out how
the system will behave from any initial condition just by
combining the patterns (“Green’s functions”) obtained from
certain basic initial conditions—say ones containing a single
black cell. To get all the familiar properties of additivity one
needs an addition operation that is associative (Flat) and
commutative (Orderless), and has an identity element (white
or 0 in the cases above)—so that it defines a commutative
monoid. (Usually it is also convenient to be able to get all
possible elements by combining a small number of basic
generator elements.)

The inequivalent commutative monoids with up to k=4
colors are (in total there are 1, 2, 5, 19, 78, 421, 2637, ...
objects):

such

=l-N |
o
m
[

19650

P G P N o 0 0 (G o R O 0

For k=2, r =1 the number of rules additive with respect to
these is respectively: {8, 9}; for k =2, r = 2: {32, 33}; for k = 3,
r=1:{28, 27,635,244, 28};for k =4,r = 1:
{1001, 65, 540, 577, 126, 4225, 540, 9065,
757, 408, 65, 133, 862, 224, 72, 72, 91, 4096, 64}

om om =W | D= m =W | =N |
o o o o o o
= m = =
n u [ ] [] L] L]
6 14 4017 8229 13008 19569

It turns out to be possible to show that any rules ¢ additive
with respect to some addition operation @ must work by
applying that operation to values associated with cells in
their neighborhood. The values are obtained by applying to
cells at each position one of the unary operations
(endomorphisms) o that satisfy o[aeb]==0[a]®o[b] for
individual cell values a and b. (For Xor, there are 2 possible
o, while for Or there are 3.)

The basic examples are then rules of the form
RotatelLeft[a] @ RotateRight[a]—analogs of rule 90, but with
other addition operations (compare page 886). The o can be
used to give analogs of the weights that appear in the note
above. And rules that involve more than two cells can be
obtained by having several instances of @ —which can
always be flattened. But in all cases the general results for
associative rules on page 956 show that the patterns obtained
must be at most nested.

If instead of an ordinary cellular automaton with a limited
number of possible colors one considers a system in which
every cell can have any integer value then additivity with
respect to ordinary addition becomes just traditional linearity.
And the only way to achieve this is to have a rule in which the
new value of a cell is given by a linear form such as ax + by . If
the values of cells are allowed to be any real number then
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linear forms such as ax+by again yield additivity with
respect to ordinary addition. But in general one can apply to
each cell value any function o that obeys the so-called Cauchy
functional equation o[x +y] == o[x] + o[y].If o[x] is required
to be continuous, then the only form it can have is ¢ x. But if
one allows o to be discontinuous then there can be some other
exotic possibilities. It is inevitable that within any rationally
related set of values x one must have o/[x] = cx with fixed c.
But if one assumes the Axiom of Choice then in principle it
becomes possible to construct o[x] which have different ¢ for
different sets of x values. (Note however that I do not believe
that such o could ever actually be constructed in any explicit
way by any real computational system—or in fact by any
system in our universe.)

In general @ need not be ordinary addition, but can be any
operation that defines a commutative monoid—including an
infinite one. An example is ordinary numbers modulo an
irrational. And indeed a cellular automaton whose rule is
based on Mod[x +y, ] will show additivity with respect to
this operation (see page 922). If @ has an inverse, so that it
defines a group, then the only continuous (Lie group)
examples turn out to be combinations of ordinary addition
and modular addition (the group U(1)). This assumes,
however, that the underlying cellular automaton has
discrete cells. But one can also imagine setting up systems
whose states are continuous functions of position. ¢ then
defines a mapping from one such function to another. To be
analogous to cellular automata one can then require this
mapping to be local, in which case if it is continuous it must
be just a linear differential operator
Derivative[n]—and at some level its behavior must be fairly
simple. (Compare page 161.)

involving

n Probabilistic estimates. One way to get estimates for density
and other properties of class 3 cellular automata is to make
the assumption that the color of each cell at each step is
completely random. And with this assumption, if the overall
density of black cells at a particular step is p, then each cell at
that step should independently have probability p to be
black. This means that for example the probability to find a
black cell followed by two white cells is p(7-p)?. And in
general, the probabilities for all 8 possible combinations of 3
cells are given by

probs = Apply[Times, Table[IntegerDigits[8 -1, 2, 3],

{i,81]/.{1>p, 0> 1-p} {1}]

In terms of these probabilities the density at the next step in
the evolution of cellular automaton with rule number m is
then given by

Simplify[probs . IntegerDigits[m, 2, 8]]
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For rule 22, for example, this means that if the density at a
particular step is p, then the density on the next step should be
3p(1-p)?, and the densities on subsequent steps should be
obtained by iterating this function. (At least for the 256
elementary cellular automata this iterated map is never chaotic.)
The stable density after many steps is then given by
Solve[3p(1-p)? ==p,p], so that p->1-1/V3 or
approximately 0.42. The actual density for rule 22 is however
0.35095. The reason for the discrepancy is that the probabilities
for different cells are in fact correlated. One can systematically
include more such correlations by looking at more steps of
evolution at once. For two steps, one must consider probabilities
for all 32 combinations of 5 cells, and for rule 22 the function
becomes p (1-p)? (2 +3p?), yielding density 0.35012; for three
steps it is p(71-p)?(p?-18p° +41p?-22p+6) yielding
density 0.379. The plot below shows what happens with more
steps: the results seem to converge slowly to the exact result
indicated by the gray line.

042 rule 22 0.65 rule 126
04 06
038 055
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(For rules 90 and 30 the functions obtained after one step are
respectively 2p(7-p) and p (2p?-5p+3), both of which
turn out to imply correct final densities of 1/2).

Probabilistic approximation schemes like this are often used
in statistical physics under the name of mean field theories.
In general, such approximations tend to work better for
systems in larger numbers of dimensions, where correlations
tend to be less important.

Probabilistic estimates can also be used for other quantities,
such as growth rates of difference patterns (see page 949). In
most cases, however, buildup of correlations tends to prevent
systematic improvement of such approximations.

n Density in rule 90. From the superposition principle above
and the number of black cells at step t in a pattern starting
from a single black cell (see page 870) one can compute the
density after t steps in the evolution of rule 90 with initial
conditions of density p to be (see also page 602)
1/2(1-(1-2p))~(2*DigitCount(t, 2, 1])

n Densities in other rules. The pictures below show how the
densities on successive steps depend on the initial density.
Densities are indicated by gray levels. Initial densities are
shown across each picture. Successive steps are shown
down the page. Rule 236 is class 2, and the density retains
a memory of its initial value. But in the class 3 rules 126
and 30, the densities converge quickly to a fixed value.
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Page 339 shows a cellular automaton with very different
behavior.

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

rule 236 rule 126 rule 30

u Density oscillations in rule 73. Although there are always
some fluctuations, most rules yield densities that converge
more or less uniformly to their final values. One exception is
rule 73, which yields densities that continue to oscillate with
a period of 3 steps forever. The origin of this phenomenon is
that with completely random initial conditions rule 73
evolves to a collection of independent regions, as in the
picture below, and many of these regions contain patterns
that repeat with period 3. The boundaries between regions
come from blocks of even numbers of black cells in the initial
conditions, and if one does not allow any such blocks, the
density oscillations no longer occur. (See also page 699.)

Special Initial Conditions

u Page 267 - Repeating blocks. The discussion in the main text
is mostly about repetition strictly every p steps, and no
sooner. (If a system repeats for example every 3 steps, then it
is inevitable that it will also repeat in the same way every 6, 9,
12, 15, etc. steps.) Finding configurations in a 1D cellular
automaton that repeat with a particular period is equivalent
to satisfying the kind of constraints we discussed on page
211. And as described there, if such constraints can be
satisfied at all, then it must be possible to satisfy them with a
configuration that consists of a repetition of identical blocks.
Indeed, for period p, the length of blocks required is at most
22P (or 2?P" for range r rules).
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The pictures at the bottom of the previous column summarize
which periods can be obtained with various rules. Periods
from 1 to 15 are represented by different rows, with period 1 at
the bottom. Within each row a gray bar indicates that a
particular period can be obtained with blocks of some length.
The black dots indicate specific block sizes up to 25 that work.

In rule 90 (as well as other additive rules such as 60 and 150)
any period can occur, but all configurations that repeat must
consist of a sequence of identical blocks. For periods up to 10,
examples of such blocks in rule 90 are given by the digits of

{0, 40, 24, 2176, 107904, 640, 96, 8421376,
7666031296234863392, 156661286137}

For period 1 the possible blocks are ~ and mm; for period 2
wwT and mmwm. The total number of configurations in rule
90 that repeat with any period that divides p is always 4°.

Rules 30 and 45 (as well as other one-sided additive rules)
also have the property that all configurations that repeat
must consist of a sequence of identical blocks. The total
number of configurations in rule 30 that repeat with periods
that divide 1 through 10 are {3, 3, 15, 10, 8, 99, 18, 14, 30, 163}.
In general for one-sided additive rules the number of such
configurations increases for large p like k"« ”, where h,, is the
spacetime entropy of page 960. (This is the analog of a
standard result in dynamical systems theory about expansive
homeomorphisms.)

For rules that do not show at least one-sided additivity there
can be an infinite number of configurations that repeat with a
given period. To find them one considers all possible blocks
of length 2pr+1 and picks out those that after p steps
evolve so that their center cell ends up the same color as it
was originally. The possible configurations that repeat with
period p then correspond to the finite complement language
(see page 958) obtained by stringing together these blocks.
For p =2, rule 18 leaves 20 of the 32 possible length 5 blocks
invariant, but these blocks can only be strung together to
yield repetitions of {a, b, 0, 0}, where now a and b are not
fixed, but in every case can each be either {7} or {0, 7}.

(See also page 700.)
n Localized structures. See pages 281 and 1118.

u 2D cellular automata. As expected from the discussion of
constraints on page 942, the problem of finding repeating
configurations is much more difficult in two dimensions than
in one dimension. Thus for example unlike in 1D there is no
guarantee in 2D that among repeating configurations of a
particular period there is necessarily one that consists just of
a repetitive array of fixed blocks. Indeed, as discussed on
page 1139, it is in a sense possible that the only repeating
configurations are arbitrarily complex. Note that if one
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considers configurations in 2D that consist only of infinitely
long stripes, then the problem reduces again to the 1D case.
(See also page 349.)

u Systems based on numbers. An iterated map of the kind
discussed on page 150 with rule x— Mod[ax, 1] (with
rational a) will yield repetitive behavior when its initial
condition is a rational number. The same is true for higher-
dimensional generalizations such as so-called Anosov maps
{x, y}—> Mod[m . {x, y} 1].
x> Mod[1/x, 1] discussed on page 914 becomes repetitive
whenever its initial condition is a solution to a quadratic

The continued fraction map

equation.

For a map x- f[x] where f[x] is a polynomial such as
ax(71-x) the real initial conditions that yield period p are
given by

Select[x /. Solve[Nest[f, x, p] == x, x], Im[#] == 0 &]
For x - ax(1-x) the results usually cannot be expressed in
terms of explicit radicals beyond period 2. (See page 961.)

n Sarkovskii’s theorem. For any iterated map based on a
continuous function such as a polynomial it was shown in
1962 that if an initial condition exists that gives period 3, then
other initial conditions must exist that give any other period.
In general, if a period m is possible then so must all periods n
for which p = {m, n} satisfies
OrderedQ[(Transpose[If[MemberQ[p/#, 1], Map[Reverse,
{p/8, #}1, (#, p/#}] &)[2 " IntegerExponent[p, 2]]]

Extensions of this to other types of systems seem difficult to
find, but it is conceivable that when viewed as continuous
mappings on a Cantor set (see page 869) at least some cellular
automata might exhibit similar properties.

u Page 269 - Rule emulations. See pages 702 and 1118.

» Renormalization group. The notion of studying systems by
seeing the effect of changing the scale on which one looks at
them has been widely used in physics since about 1970, and
there is some analogy between this and what I do here with
cellular automata. In the lattice version in physics one
typically considers what happens to averages over all
possible configurations of a system if one does a so-called
blocking transformation that replaces blocks of elements by
individual elements. And what one finds is that in certain
cases—notably in connection with nesting at critical points
associated with phase transitions (see page 981)—certain
averages turn out to be the same as one would get if one did
no blocking but just changed parameters (“coupling
constants”) in the underlying rules that specify the weighting
of different configurations. How such effective parameters
then governed by
renormalization group differential equations. And when one

change with scale is so-called
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looks at large scales the versions of these equations that arise
in practice essentially always show fixed points, whose
properties do not depend much on details of the equations—
leading to certain universal results across many different
underlying systems (see page 983).

What I do in the main text can be thought of as carrying out
blocking transformations on cellular automata. But only
rarely do such transformations yield cellular automata
whose rules are of the same type one started from. And in
most cases such rules will not suffice even if one takes
averages. And indeed, so far as I can tell, only in those cases
where there is fairly simple nested behavior is any direct
analog of renormalization group methods useful. (See
page 989.)

u Page 271 - Self-similarity of additive rules. The fact that rule
90 can emulate itself can be seen fairly easily from a symbolic
description of the rule. Given three cells {a,, a,, a;} the rule
specifies that the new value of the center cell will be
Mod[a, + a5, 2]. But given {a,, 0, a,, 0, a;, 0} the value after
one step is {Mod[a, +a,, 2], 0, Mod[a, +a,, 2], 0} and after
two steps is again {Mod[a, +a;, 2], 0}. It turns out that this
argument generalizes (by interspersing k - 7 0’s and going for
k steps) to any additive rule based on reduction modulo k
(see page 952) so long as k is prime. And it follows that in this
case the pattern generated after a certain number of steps
from a single non-white cell will always be the same as one
gets by going k times that number of steps and then keeping
only every k™ row and column. And this immediately
implies that the pattern must always have a nested form. If k
is not prime the pattern is no longer strictly invariant with
respect to keeping only every k™ row and column—but is in
effect still a superposition of patterns with this property for
factor of k. (Compare page 870.)

u Fractal dimensions. The total number of nonzero cells in the
first t rows of the pattern generated by the evolution of an
additive cellular automaton with k colors and weights w (see
page 952) from a single initial 7 can be found using

glw_, k_, t_] := Apply[Plus, Sign[NestList[Mod[
ListCorrelate[w, #, {-1, 1}, 0], k] &, {1}, t-1]], {0, 1}]

The fractal dimension of this pattern is then given by the
large m limit of
Loglk, glw, k, k™ ]/g[w, k, k™]]

When k is prime it turns out that this can be computed as
dlw_, k_:2]:=Log[k, Max[Abs[Eigenvalues[With[

{s = Length[w]- 1}, (Map[Function[u, Map[Count[u, #] &,
#1]], Map[Flatten[ Map[Partition[ Take[#, k +s-1], s, 1] &,
NestList[Mod[ListConvolve[w, #], k] & #, k-1]], 1] &,
Map[Flatten[Map[{Table[O, {k - 1}], #} & Append[#,

0]]] &, #1]1] &)[Array [IntegerDigits[#, k, s] & k*-1]]1111]
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For rule 90 one gets d[{7, 0, 1}] = Log[2, 3] ~1.58. For rule
150 d[{1, 1, 1}] =Log[2, 1+ 5 ]~ 1.69. (See page 58.) For the
other rules on page 952:

dl{1,1,0, 1,0} =
Log[2, Root[4+2#-2#%2-3#° +#* &, 2]]~1.72

al{1,1,0,1, 131 =
Log[2, Root[-4 +4# +#° -4#° +#* & 2]]~1.8

Other cases include (see page 870):

d[f{1,0, 1}, k] =1+Loglk, (k+1)/2]

dl{1, 1,1}, 3] =Log[3, 6]~ 1.63

d[{1, 1,1}, 6] =Log[5, 19] ~1.83

d[{1, 1,1}, 7] =Log[7, Root[-27136 + 23280 # -

7288 #7 + 1008 #° - 59#* +#° &, 1]]~1.85

n General associative rules. With a cellular automaton rule in
which the new color of a cell is given by f[a,, a,] (compare
page 886) it turns out that the pattern generated by evolution
from a single non-white cell is always nested if the function f
has the property of being associative or Flat. In fact, for a
system involving k colors the pattern produced will always
be essentially just one of the patterns obtained from an
additive rule with k or less colors. In general, the pattern
produced by evolution for t steps is given by

NestList[
Inner[f, Prepend[#, 0], Append[#, 0], List] &, {a}, t]
so that the first few steps yield
{a}
{f[0, a], f[a, 0]}
{f[0, [0, all, f[f[0, a], f[a, O], f[f[a, O, O]}
{f[0, f[0, [0, al]l, f[f[0, f[0, a]], f[f[0, a], f[a, O]]],
fIf[f[0, al, f[a, O]], f[f[a, O], O]], f[f[f[a, O], 0], O]}
If f is Flat, however, then the last two lines here become
{f[0, 0, a], f[0, a, &, 0], f[a, 0, 0]}
{f[0,0, 0,a], f[0,0, a0 a,a 0],
f[0,a a, 0,8 0, 0], fla 0,0, 0]}
and in general the number of a’s that appear in a particular
element is given as in Pascal’s triangle by a binomial
coefficient. If f is commutative (Orderless) then all that can
ever matter to the value of an element is its number of a’s. Yet
since there are a finite set of possible values for each element
it immediately follows that the resulting pattern must be
essentially Pascal’s triangle modulo some integer. And even
if f is not commutative, the same result will hold so long as
f[0, a] =a and f[a, 0] == a—since then any element can be
reduced to f[a, a, a, ...]. The result can also be generalized to
cellular automata with basic rules involving more than two
elements—since if f is Flat, f[a,, a, a;] is always just
flfla, a,] as].

If one starts from more than a single non-0 element, then it is
still true that a nested pattern will be produced if f is both
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associative and commutative. And from the discussion on
page 952 this means that any rule that shows generalized
additivity must always yield a nested pattern. But if f is not
commutative, then even if it is associative, non-nested
patterns can be produced. And indeed page 887 shows an
example of this based on the non-commutative group S;. (In
general f can correspond to an almost arbitrary semigroup,
but with a single initial element only a cyclic subgroup of it is
ever explored.)

n Nesting in rule 45. As illustrated on page 701, starting from
a single black cell on a background of repeated = blocks,
rule 45 yields a slanted version of the nested rule 90 pattern.

n Uniqueness of patterns. Starting from a particular initial
condition, different rules can often yield the same pattern.
The picture below shows in sorted order the configurations
obtained at each successive step in the evolution of all 256
elementary cellular automata starting from a single black cell.
After a large number of steps, between 94 and 105 distinct
individual configurations are obtained, together with 143
distinct complete patterns. (Compare page 1186.)

|
i

1 2 3 4 5 6

u Square root of rule 30. Although rule 30 cannot apparently
be decomposed into other k=2, r=1 cellular automata, it
can be viewed as the square of the k=3, r=1/2 cellular
automata with rule numbers 11736, 11739 and 11742.

u Page 272 - Nested initial conditions.
show patterns generated by rule 90 starting from the nested
sequences on page 83. (See page 1091.)

The pictures below

The Notion of Attractors

mathematics

traditional

n Page 275 - Discrete systems. In
mechanical and other systems are assumed continuous, so
that for example a pendulum may get exponentially close to
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the attractor state where it has stopped, but it will never
strictly reach this attractor. In discrete systems like cellular
automata, however, there is no problem in explicitly reaching
at least simple attractors.

» Implementation. One can represent a network by a list such
as {{1-2} {03 1-2},{0-3 1> 1}} where each element
represents a node whose number corresponds to the position
of the element, and for each node there are rules that specify
to which nodes arcs with different values lead. Starting with
a list of nodes, the nodes reached by following arcs with
value a for one step are given by

NetStep[net_, i_, a_] :=

Union[ReplaceList[a, Flatten[net[[i]l]]]

A list of values then corresponds to a path in the network
starting from any node if

Fold[NetStep[net, #1, #2] &,

Range[Length[net]], list] =!={}

Given a set of sequences of values represented by a particular
network, the set obtained after one step of cellular automaton
evolution is given by

NetCAStep[{k_, r_, rtab_}, net_] := Flatten[
Map[Table[#/ (a_— s_) - rtabl[ik +a+ 1] » k?" (s-1) +
1+Mod[ik +a, k?7], {i, 0, K’ - 1}] & net], 1]

where here elementary rule 126 is specified for example by
{2, 1, Reverse[IntegerDigits[ 126, 2, 8]]}. Starting from the set
of all possible sequences, as given by
AlINet[k_ : 2] := {Thread[Range[k]-1—- 1]}
this then yields for rule 126 the network
{{0->1, 152}, {153 154}, {1-1,1-2} {1->3, 0-4}}
It is always possible to find a minimal network that
represents a set of sequences. This can be done by first
creating a “deterministic” network in which at most one arc
of each value comes out of each node, then combining
equivalent nodes. The whole procedure can be performed
using
MinNet[net_, k_:2] := Module[{d = DSets[net, k], q, b},
If[First[d] =!={}, AllNet[k], q = ISets[b = Map[Table[
Position[d, NetStep[net, #, a]ll[1, 1]], {a, 0, k- 1}] & d]],
DeleteCases[MapIndexed[#2[[2]]- 1 —» #1 &, Rest[
Map[Position[q, #][[1, 1] & Transpose[Map[#[ Map[
First, qll & Transpose[b]]], {2}]1]1-1, {2}], _— 0, {2}]]]
DSets[net_, k_:2] :=
FixedPoint[ Union[ Flatten[Map[ Table[ NetStep[net, #, a],
{a, 0, k-1}]& #], 111 & {Range[Length[net]]}]
ISets[list_] := FixedPoint[Function[g, Flatten[Map[
Map[Last, Split[Sort[Transpose[{Map[Position[g, #][1,
111 &, list, {2}], Range[Length[list]]}][#]1], First[#1] =
First[#2] &], {2}] &, g], 1]], {{1}, Range[2, Length[list]]}]

If net has g nodes, then in general MinNet[net] can have as
many as 29 - 7 nodes. The form of MinNet given here can take
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up to about n? steps to generate a result with n nodes; an
nLog[n] procedure is known. The result from MinNet for rule
126is {{1-5 3}, {052,151} {052, 1> 3}}.

In general MinNet will yield a network with the property that
any allowed sequence of values corresponds to a path which
starts from node 1. In the main text, however, the networks
allow paths that start at any node. To obtain such trimmed
networks one can apply the function
TrimNet[net_] .=
With[{m = Apply[Intersection, Map[FixedPoint[
Union[#, Flatten[Map[Last, net{[#]], {2}]]] &,
#] & Map[List, Range[Length[net]]]]]},
netl[m]l /. Table[(a_ - m[[i]l) > a— i, {i, Length[m]}]]

n Finite automata. The networks discussed in the main text
can be viewed as finite automata (also known as finite state
machines). Each node in the network corresponds to a state
in the automaton, and each arc represents a transition that
occurs when a particular value is given as input. NetCAStep
above in general produces a non-deterministic finite
automaton (NDFA) for which a particular sequence of values
does not determine a unique path through the network.
MinNet creates an equivalent DFA, then minimizes this. The
Myhill-Nerode theorem ensures that a unique minimal DFA
can always be found (though to do so is in general a PSPACE-
complete problem).

The total number of distinct minimal finite automata with
k = 2 possible labels for each arc grows with the number of
nodes as follows: 3,7, 78, 1388, ... (The simple result (n + 1)k
based on the number of ways to connect up n nodes is a
significant overestimate because of equivalence between
automata with different patterns of connections.)

u Regular languages. The set of sequences obtained by
following possible paths through a finite network is often
called a regular language, and appears in studies of many
kinds of systems. (See page 939.)

u Regular expressions. The sequences in a regular language
correspond to those that can be matched by Mathematica
patterns that use no explicit pattern names. Thus for example
{(0/1)...} corresponds to all possible sequences of 0’s and
T’s, {1,1,(1)... 0,(0)..}... the
sequences that can occur after 2 steps in rule 126 and
{(0)..., 1,{0,(0).... 1, 1}[{1,(1)..., O}}...
occur after 2 steps in rule 110 (see page 279).

while corresponds  to

to those that can

n Generating functions. The sequences in a regular language
can be thought of as corresponding to products of non-
commuting variables that appear as coefficients in a formal
power series expansion of a generating function. A basic
result is that for regular languages this generating function
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is always rational. (Compare the discussion of entropies
below.)

n History. Simple finite automata have implicitly been used
in electromechanical machines for over a century. A formal
version of them appeared in 1943 in McCulloch-Pitts neural
network models. (An earlier analog had appeared in Markov
chains.) Intensive work on them in the 1950s (sometimes
under the name sequential machines) established many basic
properties, including interpretation as regular languages and
equivalence to regular expressions. Connections to formal
power series and to substitution systems (see page 891) were
studied in the 1960s. And with the development of the Unix
operating system in the 1970s regular expressions began to be
widely used in practical computing in lexical analysis (lex)
and text searching (ed and grep). Regular languages also
arose in dynamical systems theory in the early 1970s under
the name of sofic systems.

u Page 278 - Network properties. The number of nodes and
connections at step t> 7 are: rule 108: 8, 13; rule 128: 2t,
2t+2;rule132: 2t+ 1, 3t+3;rule 160: (t+1)%, (t+1)(t +3);
rule 184: 2t, 3t + 1. For rule 126 the first few cases are

{{1,2}, {3, 5}, {13, 23}, {106, 196}, {2866, 5474}}
and for rule 110 they are

{{1,2}, {5, 9}, {20, 38}, {206, 403}, {1353, 2666}}
The maximum size of network that can possibly be generated
after t steps of cellular automaton evolution is 2" _1. For

=1 the maximum of 15 (with 29 connections) is achieved for

16 out of the 256 possible elementary rules, including 22, 37,
73, 94, 104, 122, 146 and 164. For t=2, rule 22 gives the
largest network, with 280 nodes and 551 arcs. The k =2, r =2
totalistic rule with code 20 gives a network with 65535 nodes
after just 1 step. Note that rules which yield maximal size
networks are in a sense close to allowing all possible
sequences. (The shortest excluded block for code 20 is of
length 36.)

n Excluded blocks. As the evolution of a cellular automaton
proceeds, the set of sequences that can appear typically
shrinks, with progressively more blocks being excluded. In
some cases the set of allowed sequences forms a so-called
finite complement language (or subshift of finite type) that
can be characterized completely just by saying that some
finite set of blocks are excluded. But whenever the overall
behavior is at all complex, there tend to be an infinite set of
blocks excluded, making it necessary to use a network of
the kind discussed in the main text. If there are n nodes in
such a network, then if any blocks are excluded, the
shortest one of them must be of length less than n. And if
there are going to be an infinite number of excluded blocks,
there must be additional excluded blocks with lengths
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between n and 2n. In rule 126, the lengths of the shortest
newly excluded blocks on successive steps are 0, 3, 12, 13,
14, 14, 17, 15.
progressively increase, although in principle they can

It is common to see such lengths

decrease by as much as 2r from one step to the next. (As
an example, in rule 54 they decrease from 9 to 7 between
steps 4 and 5.)

= Entropies and dimensions. There are 2" sequences possible
for n cells that are each either black or white. But as we
have seen, in most cellular automata not all these
sequences can occur except in the initial conditions. The
number of sequences s, of length n that can actually occur
is given by

Apply[Plus, Flatten[ MatrixPower[m, n]]]
where the adjacency matrix m is given by

MapAt[1+# &, Table[O, {Length[net]}, {Length[net]}],
Flatten[MapIndexed[{First[#2], Last[#1]} &, net, {2}], 1]]

For rule 32, for example, s, turns out to be Fibonacci[n + 3],
so that for large n it is approximately GoldenRatio”. For any
rule, s, for large n will behave like «”, where « is the largest
eigenvalue of m. For rule 126 after 1 step, the characteristic
polynomial for m is x°-2x? + x- 1, giving « ~ 1.755. After 2
steps, the polynomial is
x®-4x?+6x"-5x"0+3x%-3x% +
5x7-3x5-x° +4ax?-2x% +x% -x+1
giving k =~ 1.732. Note that « is always an algebraic number—
or strictly a so-called Perron number, obtained from a
polynomial with leading coefficient 1. (Note that any possible
Perron number can be obtained for example from some finite
complement language.)

It is often convenient to fit s, for large n to the form 2",
where h is the so-called spatial (topological) entropy (see
page 1084), given by Log[2, k]. The value of this for
successive t never increases; for the first 3 steps in rule 126 it
is for example approximately 1, 0.811, 0.793. The exact value
of h after more steps tends to be very difficult to find, and
indeed the question of whether its limiting value after
infinitely many steps satisfies a given bound—say even being
nonzero—is in general undecidable (see page 1138).

If one associates with each possible sequence of length n a
number Sum(a; 27, {i, n}], then the set of sequences that
actually occur at a given step form a Cantor set (see note
below), whose Hausdorff dimension turns out to be exactly h.

u Cycles and zeta functions. The number of sequences of n
cells that can occur repeatedly, corresponding to cycles in the
network, is given in terms of the adjacency matrix m by
Tr[MatrixPower[m, n]]. These numbers can also be obtained

as the coefficients of x" in the series expansion of
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x38,Log[T[m, x]], with the so-called zeta function, which is
always a rational function of x, given by

C[m_, x_] := 1/Det[IdentityMatrix[Length[m]]-mx]
and corresponds to the product over all cycles of 7/(7-x").

u 2D generalizations. Above 1D no systematic method seems
to exist for finding exact formulas for entropies (as expected
from the discussion at the end of Chapter 5). Indeed, even
working out for large n how many of the 2” possible
configurations of a nxn grid of black and white squares
contain no pair of adjacent black cells is difficult. Fitting the
result to 2" one finds h ~ 0.589, but no exact formula for h
has ever been found. With hexagonal cells, however, the
exact solution of the so-called hard hexagon lattice gas model
in 1980 showed that h~0.481 is the logarithm of the largest
root of a degree 12 polynomial. (The solution of the so-called
dimer problem in 1961 also showed that for complete
coverings of a square grid by 2-cell dominoes
h = Catalan/(7 Log[2]) ~ 0.421.)

u Probability-based entropies. This section has concentrated
on characterizing what sequences can possibly occur in 1D
cellular automata, with no regard to their probability. It turns
out to be difficult to extend the discussion of networks to
include probabilities in a rigorous way. But it is
straightforward to define versions of entropy that take
account of probabilities—and indeed the closest analog to the
usual entropy in physics or information theory is obtained by
taking the probabilities p[i] for the k" blocks of length n
(assuming k colors), then constructing

-Limit{Sum[p[i] Loglk, p[il], {i, k" }1/n, n— e]
I'have tended to call this quantity measure entropy, though in
other contexts, it is often just called entropy or information,
and is sometimes called information dimension. The quantity

Limit[Sum[UnitStep[pl[ill, {i, k" }]/n, n — co]
is the entropy discussed in the notes above, and is variously
called set entropy, topological entropy, capacity and fractal
dimension. An example of a generalization is the quantity
given for blocks of size n by

hla., n_]:=Loglk, Suml[pli]?, {i, kK" N]1/(n(q-1))
where g =0 yields set entropy, the limit g— 7 measure
entropy, and g =2 so-called correlation entropy. For any g
the maximum h[q, n] =1 occurs when all p[i]==k™. It is
always the case that h[q + 1, n] < h[q, n]. The h[q] have been
introduced in almost identical form several times, notably by
Alfréd Rényi in the 1950s as information measures for
probability distributions, in the 1970s as part of the
thermodynamic formalism for dynamical systems, and in the
1980s as generalized dimensions for multifractals. (Related
objects have also arisen in connection with Holder exponents
for discontinuous functions.)

RANDOMNESS NOTES FOR CHAPTER 6

» Entropy estimates. Entropies h[n] computed from blocks of
size n always decrease with n; the quantity nh[n] is always
convex (negative second difference) with respect to n. At
least at a basic level, to compute topological entropy one
needs in effect to count every possible sequence that can be
generated. But one can potentially get an estimate of measure
entropy just by sampling possible sequences. One problem,
however, is that even though such sampling may give
estimates of probabilities that are unbiased (and have
Gaussian errors), a direct computation of measure entropy
from them will tend to give a value that is systematically too
small. (A potential way around this is to use the theory of
unbiased estimators for polynomials just above and below
p Loglp].)

u Nested structure of attractors.  Associating  with
sequence of length n (and k possible colors for each element)
a number Sum[a[i] k™, {i, n}], the set of sequences that occur
in the limit n— o forms a Cantor set. For k = 3, the set of

each

sequences where the second color never occurs corresponds
to the standard middle-thirds Cantor set. In general,
whenever the possible sequences correspond to paths
through a finite network, it follows that the Cantor set
obtained has a nested structure. Indeed, constructing the
Cantor set in levels by considering progressively longer
sequences is effectively equivalent to following successive
steps in a substitution system of the kind discussed on page
83. (To see the equivalence first set up s kinds of elements in
the substitution system corresponding to the s nodes in the
network.) Note that if the possible sequences cannot be
described by a network, then the Cantor set obtained will
inevitably not have a strictly nested form.

n Surjectivity and injectivity. One can think of a cellular
automaton rule as a mapping (endomorphism) from the
space of possible states of the cellular automaton to itself.
(See page 869.) Usually this mapping is contractive, so that
not all the states which appear as input to the mapping can
also appear as output. But in some cases, the mapping is
surjective or onto, meaning that any state which appears as
input can also appear as output. Among k=2, r=1
elementary cellular automata it turns out that this happens
precisely for those 30 rules that are additive with respect to
at least the first or last position on which they depend (see
pages 601 and 1087); this includes both rules 90 and 150 and
rules 30 and 45. With k=2, r=2 there are a total of
4,294,967,296 possible rules. Out of these 141,884 are onto—
and 11,388 of these turn out not to be additive with respect
to any position. The easiest way to test whether a particular
rule is onto seems to be essentially just to construct the
minimal finite automaton discussed on page 957. The onto
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k =2, r =2 rules were found in 1961 in a computer study by
Gustav Hedlund and others; they later apparently provided
input in the design of S-boxes for DES cryptography (see
page 1085).

Even when a cellular automaton mapping is surjective, it is
still often many-to-one, in the sense that several input states
can yield the same output state. (Thus for example additive
rules such as 90 and 150, as well as one-sided additive rules
such as 30 and 45 are always 4-to-1.) But some surjective rules
also have the property of being injective, so that different
input states always yield different output states. And in such
a case the cellular automaton mapping is one-to-one or
bijective (an automorphism). This is equivalent to saying that
the rule is reversible, as discussed on page 1017.

(In 2D such properties are in general undecidable; see
page 1138.)

n Temporal sequences. So far we have considered possible
sequences of cells that can occur at a particular step in the
evolution of a cellular automaton. But one can also consider
sequences formed from the color of a particular cell on a
succession of steps. For class 1 and 2 cellular automata,
there are typically only a limited number of possible
sequences of any length allowed. And when the length is
large, the sequences are almost always either just uniform or
repetitive. For class 3 cellular automata, however, the
number of sequences of length n typically grows rapidly
with n. For additive rules such as 60 and 90, and for
partially additive rules such as 30 and 45, any possible
sequence can occur if an appropriate initial condition is
given. For rule 18, it appears that any sequence can occur
that never contains more than one adjacent black cell. I
know of no general characterization of temporal sequences
analogous to the finite automaton one used for spatial
sequences above. However, if one defines the entropy or
dimension h, for temporal sequences by analogy with the
definition for spatial sequences above, then it follows for
example that h, =2Xh,, where A is the maximum rate at
which changes grow in the cellular automaton. The origin of
this inequality is indicated in the picture below. The basic
idea is that the size of the region that can affect a given cell
in the course of t steps is 2 A t. But for large sizes x the total
number of possible configurations of this region is k™*.
(Inequalities between entropies and Lyapunov exponents
are also common in dynamical systems based on numbers,
but are more difficult to derive.) Note that in effect, h, gives
the information content of spatial sequences in units of bits
per unit distance, while h, gives the corresponding quantity
for temporal sequences in units of bits per unit time. (One
can also define directional entropies based on sequences at
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different slopes; the values of such entropies tend to change
discontinuously when the slope crosses 1.)

2rt
22t

Different classes of cellular automata show characteristically
different entropy values. Class 1 has h, =0 and h, = 0. Class 2
has h, #0 but h, =0. Class 3 has h, #0 and h, # 0. Class 4
tends to show fluctuations which prevent definite values of
h, and h; from being found.

» Spacetime patches. One can imagine defining entropies and
dimensions associated with regions of any shape in the
spacetime history of a cellular automaton. As an example,
one can consider patches that extend x cells across in space
and t cells down in time. If the color of every cell in such a
patch could be chosen independently then there would be
k'™ possible configurations of the complete patch. But in fact,
having just specified a block of length x +2rt in the initial
conditions, the cellular automaton rule then uniquely
determines the color of every cell in the patch, allowing a
total of at most s[t, x] = k**?'! configurations. One can define
a topological spacetime entropy h,, as
Limit[Limit[Log[k, s[t, x]]/t, t = eo], X = oo]

and a measure spacetime entropy h, by replacing s with
plLoglp]. In general, h,<h,=<2Xh, and h=2rh,. For
additive rules like rule 90 and rule 150 every possible
configuration of the initial block leads to a different
configuration for the patch, so that h, =2r =2. But for other
rules many different configurations of the initial block can
lead to the same configuration for the patch, yielding
potentially much smaller values of h,,. Just as for most other
entropies, when a cellular automaton shows complicated
behavior it tends to be difficult to find much more than upper
bounds for h,,. For rule 30, hf < 1.755, and there is some
evidence that its true value may actually be 1. For rule 18 it
appears that hfj, = 7, while for rule 22, h, < 0.975 and for rule
54 b <0.25.

n History. The analysis of cellular automata given in this
section is largely as I worked it out in the early 1980s. Parts
of
particularly in dynamical systems theory. Starting in the

it, however, are related to earlier investigations,
1930s the idea of symbolic dynamics began to emerge, in
which one partitions continuous values in a system into bins
represented by discrete symbols, and then looks at the
sequences of such symbols that can be produced by the

evolution of the system. In connection with early work on
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chaos theory, it was noted that there are some systems that
act like “full shifts”, in the sense that the set of sequences
they generate includes all possibilities—and corresponds to
what one would get by starting with any possible number,
then successively shifting digits to the left, and at each step
picking off the leading digit. It was noted that some systems
could also yield various kinds of subshifts that are subsets
of full shifts. But since—unlike in cellular automata—the
symbol sequences being studied were obtained by rather
arbitrary partitionings of continuous values, the question
arose of what effect using different partitionings would
have. One approach was to try to find invariants that would
remain unchanged in different partitionings—and this is
what led, for example, to the study of topological entropy in
the 1960s. Another approach was to look at actual possible
transformations between partitionings, and this led from the
late 1950s to various studies of so-called shift-commuting
block maps (or sliding-block codes)—which turn out to be
exactly 1D cellular automata (see page 878). The locality of
cellular automaton rules was thought of as making them the
analog for symbol sequences of continuous functions for
real numbers (compare page 869). Of particular interest
were invertible (reversible) cellular automaton rules, since
systems related by these were considered conjugate or
topologically equivalent.

In the 1950s and 1960s—quite independent of symbolic
dynamics—there was a certain amount of work done in
connection with ideas about self-reproduction (see page 876)
on the question of what configurations one could arrange to
produce in 1D and 2D cellular automata. And this led for
example to the study of so-called Garden of Eden states that
can appear only in initial conditions—as well as to some
general discussion of properties such as surjectivity.

When I started working on cellular automata in the early
1980s 1 wanted to see how far one could get by following
ideas of statistical mechanics and dynamical systems theory
and trying to find global characterizations of the possible
behavior of individual cellular automata. In the traditional
symbolic dynamics of continuous systems it had always
been assumed that meaningful quantities must be invariant
under continuous invertible transformations of symbol
sequences. It turns out that the spacetime (or “invariant”)
entropy defined in the previous note has this property. But
the spatial and temporal entropies that I introduced do
not—and indeed in studying specific cellular automata there
seems to be no particular reason why such a property would
be useful.

u Attractors in systems based on numbers. Particularly for

systems based on ordinary differential equations (see
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page 922) a geometrical classification of possible attractors
exists. There are fixed points, limit cycles and so-called
strange attractors. (The first two of these were identified
around the end of the 1800s; the last with clarity only in the
1960s.) Fixed points correspond to zero-dimensional subsets
of the space of possible states, limit cycles to one-dimensional
subsets (circles, solenoids, etc.). Strange attractors often have
a nested structure with non-integer fractal dimension. But
even in cases where the behavior obtained with a particular
random initial condition is very complicated the structure of
the attractor is almost invariably quite simple.

u Iterated maps. For maps of the form x - ax (7-x) discussed
on page 920 the attractor for small a is a fixed point, then a
period 2 limit cycle, then period 4, 8, 16, etc. There is an
accumulation of limit cycles at a ~ 3.5669946 where the system
has a special nested structure. (See pages 920 and 955.)

u Attractors in Turing machines. In theoretical studies Turing
machines are often set up so that if their initial conditions
follow a particular formal grammar (see page 938) then they
evolve to “accept” states—which can be thought of as being
somewhat like attractors.

n Systems of limited size. For any system with a limited total
number of states, it is possible to create a finite network that
gives a global representation of the behavior of the system.
The idea of this network (which is very different from the
finite automata networks discussed above) is to have each
node represent a complete state of the system. At each step in
the evolution of the system, every state evolves to some new
state, and this process is represented in the network by an arc
that joins each node to a new node. The picture below gives
the networks obtained for systems of the kind shown on page
255. Each node is labelled by a possible position for the dot.
In the first case shown, starting for example at position 4 the
dot then visits positions 5, 0, 1, 2 and so on, at each step going
from one node in the network to the next.

01,2345 012345 012345 012345 012345
o o
1 0 5 0
>4 1< >4 D.2
2 5 2 1 0 >3 4 . 4 1
D5 28 »5 D3
3 4 3 5 3 2

The pictures below give networks obtained from the system
shown on page 257 for various values of n. For odd n, the
networks consist purely of cycles. But for even n, there are
also trees of states that lead to these cycles.
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In general, any network that represents the evolution of a
system with definite rules will have the same basic form.
There are cycles which contain states that are visited
repeatedly, and there can also be trees that represent transient
states that can each only ever occur at most once in the
evolution of the system.

The picture below shows the network obtained from a class
1 cellular automaton (rule 254) with 4 cells and thus 16
possible states. All but one of these 16 states evolve after at
most two steps to state 15, which corresponds to all cells
being black.

2
S5
0 1 2 3 4 5 6 7

9 3
0 15 4
O
2
7 8
8 9 10 11 12 13 14 15

The pictures below show networks obtained when more cells

Iy

are included in the cellular automaton above. The same
convergence to a single fixed point is observed.

»

size &

size 7

size 6

The pictures below give corresponding results for a class 2
cellular automaton (rule 132). The number of distinct cycles
now increases with the size of the system. (As discussed
below, identical pieces of the network are often related by
symmetries of the underlying cellular automaton system.)
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In class 3, larger cycles are usually obtained, and often the
whole network is dominated by a single largest cycle. The
second set of pictures below summarize the results for some
larger cellular automata. Each distinct region corresponds to
a disjoint part of the network, with the area of the region
being proportional to the number of nodes involved. The
dark blobs represent cycles. (See page 1087.)
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For large sizes there is a rough correspondence with the
infinite size case, but many features are still different. (To
recover correct infinite size results one must increase size
while keeping the number of steps of evolution fixed; the
networks shown above, however, effectively depend on
arbitrarily many steps of evolution.)

» Symmetries. Many of the networks above contain large
numbers of identical pieces. Typically the reason is that the
states in each piece are shifted copies of each other, and in
such cases the number of pieces will be a divisor of n. (See
page 950.) If the underlying cellular automaton rule exhibits
an invariance—say under reflection in space or permutation
of colors—this will also often lead to the presence of identical
pieces in the final network, corresponding to cosets of the
symmetry transformation.

u Shift rules. The pictures below show networks obtained
with rule 170, which just shifts every configuration one
position to the left at each step. With any such shift rule, all
states lie on cycles, and the lengths of these cycles are the
divisors of the size n. Every cycle corresponds in effect to a
distinct necklace with n beads; with k colors the total number
of these is
Apply[Plus, (EulerPhi[n/#]k* &)[Divisors[n]]]/n

The number of cycles of length exactly m is s[m, k]/m,
where s[m, k] is defined on page 950. For prime k, each cycle
(except all 0’s) corresponds to a term in the product
Factor [x*""" - 1, Modulus — k]. (See page 975.)

oD .
<57 oo (488

size 4 size 6

size 5 size 7 size 8

n Additive rules. The pictures below show networks
obtained for the additive cellular automata with rules 60

and 90. The networks are highly regular and can be
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analyzed by the algebraic methods mentioned on page 951.
The lengths of the longest cycles are given on page 951; all
other cycles must have lengths which divide these. Rooted
at every state on each cycle is an identical structure. When
the number of cells n is odd this structure consists of a
single arc, so that half of all states lie on cycles. When n is
even, the a balanced depth
2+IntegerExponent[n, 2] and degree 2 for rule 60, and
depth 2~IntegerExponent[n/2, 2] and degree 4 for rule 90.
The total fraction of states on cycles is in both cases
2+(-2*IntegerExponent[n, 2]). States with a single black cell

structure is tree of

are always on the longest cycles. The state with no black
cells always forms a cycle of length 1.
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» Random networks. The pictures below show networks in
which each of a set of n nodes has as its successor a node that
is chosen at random from the set. The total number of
possible such networks is n”. For large n, the average
cycles in all such networks is
Sart[m/2]Log[n], and the average length of these cycles is
Sqrt[rn/8]. The average fraction of nodes that have no
predecessor is (7-1/n)" or 1/e in the limit n - . Note that
processes such as cellular automaton evolution do not yield

number of distinct

networks whose properties are particularly close to those of
purely random ones.
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Structures in Class 4 Systems

u Page 283 - Survival data. The number of steps for which the
pattern produced by each of the first 1000 initial conditions in
code 20 survive are indicated in the picture below. 72 of these
initial conditions lead to persistent structures. Among the
first million initial conditions, 60,171 lead to persistent
structures and among the first billion initial conditions the
number is 71,079,205.

400 600 800 1000

n Page 290 - Background. At every step the background

pattern in rule 110 consists of repetitions of the block
b={1,0011011,1,1,1,0,0, 0}, as shown in the picture
below. On step t the color of a cell at position x is given by
bl[Mod[x +4t, 14] + 1].

n Page 292 - Structures. The persistent structures shown can
be obtained from the following {n, w} by inserting the
sequences IntegerDigits[n, 2, w] between repetitions of the
background block b:

{{152, 8}, {183, 8}, (18472955, 25}, {732, 10}, {129643, 18],
{0, 5}, {1562, 13}, {39672, 21}, {619, 15}, {44, 7},
{334900605644, 39}, {8440, 15}, {248, 9}, {760, 11}, {38, 6}}

The repetition periods and distances moved in each period
for the structures are respectively
{{4, -2} {12, -6}, {12, -6}, {42, -14},

{42,-14}, {15, -4}, {15, -4}, {15, -4}, {15, -4},

{30, -8}, {92, -18}, {36, -4}, {7, 0}, {10, 2}, {3, 2}}
Note that the periodicity of the background forces all rule 110
structures  to periods and distances given by
{4,-2}r+{3, 2}s where r and s are non-negative integers.
Extended versions of structures (d)—(i) can be obtained by collisions
with (a). Extended versions of (b) and (c) can be obtained from

have
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Flatten[{IntegerDigits[ 1468, 2], Table[
IntegerDigits[ 102524348, 2], {n}], IntegerDigits[v, 2]}]

where n is a non-negative integer and v is one of

{1784, 801016, 410097400, 13304, 6406392, 3280778648 }
Note that in most cases multiple copies of the same structure
can travel next to each other, as seen on page 290.

n Page 293 - Glider gun. The initial conditions
correspond to {n, w}={1339191737336, 41}.

shown

u Page 294 - Collisions. A fundamental result is that the sum
of the widths of all persistent structures involved in an
interaction must be conserved modulo 14.

u The Game of Life. The 2D cellular automaton described on
page 949 supports a whole range of persistent structures,
many of which have been given quaint names by its
enthusiasts. With typical random initial conditions the most
common structures to occur are:

I oEE D DD

"block" “beehive” “blinker"

“glider”

The next most common moving structure is the so-called
“spaceship”:

The complete set of structures with less than 8 black cells that
remain unchanged at every step in the evolution are:

CEaE e e T

More complicated repetitive and moving structures are
shown in the pictures below. If one looks at the history of a
single row of cells, it typically looks much like the complete
histories we have seen in 1D class 4 cellular automata.

ees IR SE -

*26 oscillator”

“pulsar” “slow ship* “blinker ship"



STARTING FROM

Structures with all repetition periods up to 18 have been
found in Life; examples are shown in the pictures below.

Persistent structures with various speeds in the horizontal
and vertical direction have also been found, as shown below.

12> 25 13-

27~ 114 116 - 17151

The first example of unbounded growth in Life was the so-
called “glider gun”, discovered by William Gosper in 1970
and shown below. This object emits a glider every 30 steps.
The simplest known initial condition which leads to a glider
gun contains 21 black cells. The so-called “switch engine”
discovered in 1971 generates unbounded growth by leaving
a trail behind when it moves; it is now known that it can be
obtained from an initial condition with 10 black cells, or
black cells in just a 5x5 or 39x1 region. It is also known
that from less than 10 initial black cells no unbounded
growth is ever possible.
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Many more elaborate structures similar to the glider gun
were found in the 1970s and 1980s; two are illustrated below.
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A simpler kind of unbounded growth occurs if one starts
from an infinite line of black cells. In that case, the evolution
is effectively 1D, and turns out to follow elementary rule 22,
thus producing the infinitely growing nested pattern shown
on page 263.

For a long time it was not clear whether Life would support any
kind of uniform unbounded growth from a finite initial region
of black cells. However, in 1993 David Bell found starting from
206 black cells the “spacefiller” shown below. This object is
closely analogous to those shown for code 1329 on page 287.

step 5 step 50 (history)

As in other class 4 cellular automata, there are structures in
Life which take a very long time to settle down. The so-called
“puffer train” below which starts from 23 black cells becomes
repetitive with period 140 only after more than 1100 steps.
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step 500

u Other 2D cellular automata. The general problem of finding
persistent structures is much more difficult in 2D than in 1D,
and there is no completely general procedure, for example,
for finding all structures of any size that have a certain
repetition period.

n Structures in Turing machines. See page 888.
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