
EXCERPTED FROM

The Intrinsic
Generation of
Randomness

SECTION 7.5

M E C H A N I S M S I N P R O G R A M S A N D N A T U R E C H A P T E R 7

315

The Intrinsic Generation of Randomness

In the past two sections, we have studied two possible mechanisms that

can lead to observed randomness. But as we have discussed, neither of

these in any real sense themselves generate randomness. Instead, what

they essentially do is just to take random input that comes from

outside, and transfer it to whatever system one is looking at.

One of the important results of this book, however, is that

there is also a third possible mechanism for randomness, in which no

random input from outside is needed, and in which randomness is

instead generated intrinsically inside the systems one is looking at.

The picture below shows the rule 30 cellular automaton in which

I first identified this mechanism for randomness. The basic rule for the

system is very simple. And the initial condition is also very simple.

Yet despite the lack of anything that can reasonably be considered

random input, the evolution of the system nevertheless intrinsically

yields behavior which seems in many respects random.

As we have discussed before, traditional intuition makes it hard

to believe that such complexity could arise from such a simple

The rule 30 cellular automaton from page 27 that was the first example I found of intrinsic
randomness generation. There is no random input to this system, yet its behavior seems in many
respects random. I suspect that this is how much of the randomness that we see in nature arises.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

316

underlying process. But the past several chapters have demonstrated

that this is not only possible, but actually quite common.

Yet looking at the cellular automaton on the previous page there

are clearly at least some regularities in the pattern it produces—like the

diagonal stripes on the left. But if, say, one specifically picks out the

color of the center cell on successive steps, then what one gets seems

like a completely random sequence.

But just how random is this sequence really?

For our purposes here the most relevant point is that so far as one

can tell the sequence is at least as random as sequences one gets from

any of the phenomena in nature that we typically consider random.

When one says that something seems random, what one usually

means in practice is that one cannot see any regularities in it. So when we

say that a particular phenomenon in nature seems random, what we

mean is that none of our standard methods of analysis have succeeded in

finding regularities in it. To assess the randomness of a sequence produced

by something like a cellular automaton, therefore, what we must do is to

apply to it the same methods of analysis as we do to natural systems.

As I will discuss in Chapter 10, some of these methods have been

well codified in standard mathematics and statistics, while others are

effectively implicit in our processes of visual and other perception. But

the remarkable fact is that none of these methods seem to reveal any

real regularities whatsoever in the rule 30 cellular automaton sequence.

And thus, so far as one can tell, this sequence is at least as random as

anything we see in nature.

But is it truly random?

Over the past century or so, a variety of definitions of true

randomness have been proposed. And according to most of these

definitions, the sequence is indeed truly random. But there are a certain

class of definitions which do not consider it truly random.

For these definitions are based on the notion of classifying as truly

random only sequences which can never be generated by any simple

procedure whatsoever. Yet starting with a simple initial condition and

then applying a simple cellular automaton rule constitutes a simple

M E C H A N I S M S I N P R O G R A M S A N D N A T U R E C H A P T E R 7

317

procedure. And as a result, the center column of rule 30 cannot be

considered truly random according to such definitions.

But while definitions of this type have a certain conceptual

appeal, they are not likely to be useful in discussions of randomness in

nature. For as we will see later in this book, it is almost certainly

impossible for any natural process ever to generate a sequence which is

guaranteed to be truly random according to such definitions.

For our purposes more useful definitions tend to concentrate not

so much on whether there exists in principle a simple way to generate a

particular sequence, but rather on whether such a way can realistically

be recognized by applying various kinds of analysis to the sequence. And

as discussed above, there is good evidence that the center column of rule

30 is indeed random according to all reasonable definitions of this kind.

So whether or not one chooses to say that the sequence is truly

random, it is, as far as one can tell, at least random for all practical

purposes. And in fact sequences closely related to it have been used

very successfully as sources of randomness in practical computing.

For many years, most kinds of computer systems and languages

have had facilities for generating what they usually call random numbers.

And in Mathematica—ever since it was first released—

has generated 0’s and 1’s using exactly the rule 30 cellular automaton.

The way this works is that every time is called,

another step in the cellular automaton evolution is performed, and the

value of the cell in the center is returned. But one difference from the

picture two pages ago is that for practical reasons the pattern is not

allowed to grow wider and wider forever. Instead, it is wrapped around

in a region that is a few hundred cells wide.

One consequence of this, as discussed on page 259, is that the

sequence of 0’s and 1’s that is generated must then eventually repeat. But

even with the fastest foreseeable computers, the actual period of repetition

will typically be more than a billion billion times the age of the universe.

Another issue is that if one always ran the cellular automaton

from page 315 with the particular initial condition shown there, then

one would always get exactly the same sequence of 0’s and 1’s. But by

using different initial conditions one can get completely different

Random�Integer�

Random�Integer�

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

318

sequences. And in practice if the initial conditions are not explicitly

specified, what Mathematica does, for example, is to use as an initial

condition a representation of various features of the exact state of the

computer system at the time when was first called.

The rule 30 cellular automaton provides a particularly clear and

good example of intrinsic randomness generation. But in previous

chapters we have seen many other examples of systems that also

intrinsically produce apparent randomness. And it turns out that one of

these is related to the method used since the late 1940s for generating

random numbers in almost all practical computer systems.

The pictures on the facing page show what happens if one

successively multiplies a number by various constant factors, and then

looks at the digit sequences of the numbers that result. As we first saw

on page 119, the patterns of digits obtained in this way seem quite

random. And the idea of so-called linear congruential random number

generators is precisely to make use of this randomness.

For practical reasons, such generators typically keep only, say, the

rightmost 31 digits in the numbers at each step. Yet even with this

restriction, the sequences generated are random enough that at least

until recently they were almost universally what was used as a source

of randomness in practical computing.

So in a sense linear congruential generators are another example

of the general phenomenon of intrinsic randomness generation. But it

turns out that in some respects they are rather unusual and misleading.

Keeping only a limited number of digits at each step makes it

inevitable that the sequences produced will eventually repeat. And one of

the reasons for the popularity of linear congruential generators is that

with fairly straightforward mathematical analysis it is possible to tell

exactly what multiplication factors will maximize this repetition period.

It has then often been assumed that having maximal repetition

period will somehow imply maximum randomness in all aspects of the

sequence one gets. But in practice over the years, one after another

linear congruential generator that has been constructed to have

maximal repetition period has turned out to exhibit very substantial

deviations from perfect randomness.

Random

M E C H A N I S M S I N P R O G R A M S A N D N A T U R E C H A P T E R 7

319

A typical kind of failure, illustrated in the pictures on the next

page, is that points with coordinates determined by successive numbers

from the generator turn out to be distributed in an embarrassingly

regular way. At first, such failures might suggest that more complicated

schemes must be needed if one is to get good randomness. And indeed

with this thought in mind all sorts of elaborate combinations of linear

congruential and other generators have been proposed. But although

some aspects of the behavior of such systems can be made quite

random, deviations from perfect randomness are still often found.

And seeing this one might conclude that it must be essentially

impossible to produce good randomness with any kind of system that has

reasonably simple rules. But the rule 30 cellular automaton that we

discussed above demonstrates that in fact this is absolutely not the case.

multiplier 37 multiplier 65539

multiplier 3 multiplier 5

Patterns of digits in base 2 produced by starting with the number 1 and then repeatedly multiplying by various fixed
constants. In all cases, the complete pattern has a triangular form, but except in the first case, it is truncated on the left here.
The mathematical structure of these systems is nevertheless such that digits further to the left do not affect those shown: at
each step the number obtained is effectively reduced modulo , where is the width of the picture. 2n n

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

320

multiplier 3

multiplier 37

multiplier 65539

Examples of three so-called linear congruential random number generators. In each case they start with the number 1, then
successively multiply by the specified multiplier, keeping only the rightmost 31 digits in the base 2 representation of the number
obtained at each step. A version of the case with multiplier 3 was already shown on page 120. Multiplier 65539 was used as the
random number generator on many computer systems, starting with mainframes in the 1960s. The last two pictures in each row
above give the distribution of points whose coordinates in two and three dimensions are obtained by taking successive numbers
from the linear congruential generator. If the output from the generator was perfectly random, then in each case these points would
be uniformly distributed. But as the pictures demonstrate, stripes are visible in either two or three dimensions, or both.

M E C H A N I S M S I N P R O G R A M S A N D N A T U R E C H A P T E R 7

321

Indeed, the rules for this cellular automaton are in some respects much

simpler than for even a rather basic linear congruential generator. Yet the

sequences it produces seem perfectly random, and do not suffer from any

of the problems that are typically found in linear congruential generators.

So why do linear congruential generators not produce better

randomness? Ironically, the basic reason is also the reason for their

popularity. The point is that unlike the rule 30 cellular automaton that

we discussed above, linear congruential generators are readily amenable

to detailed mathematical analysis. And as a result, it is possible for

example to guarantee that a particular generator will indeed have a

maximal repetition period.

Almost inevitably, however, having such a maximal period

implies a certain regularity. And in fact, as we shall see later in this

book, the very possibility of any detailed mathematical analysis tends to

imply the presence of at least some deviations from perfect randomness.

But if one is not constrained by the need for such analysis, then as

we saw in the cellular automaton example above, remarkably simple

rules can successfully generate highly random behavior.

And indeed the existence of such simple rules is crucial in

making it plausible that the general mechanism of intrinsic

randomness generations can be widespread in nature. For if the only

way for intrinsic randomness generation to occur was through very

complicated sets of rules, then one would expect that this mechanism

would be seen in practice only in a few very special cases.

But the fact that simple cellular automaton rules are sufficient to

give rise to intrinsic randomness generation suggests that in reality it is

rather easy for this mechanism to occur. And as a result, one can expect

that the mechanism will be found often in nature.

So how does the occurrence of this mechanism compare to the

previous two mechanisms for randomness that we have discussed?

The basic answer, I believe, is that whenever a large amount of

randomness is produced in a short time, intrinsic randomness

generation is overwhelmingly likely to be the mechanism responsible.

We saw in the previous section that random details of the initial

conditions for a system can lead to a certain amount of randomness in

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

322

the behavior of a system. But as we discussed, there is in most practical

situations a limit on the lengths of sequences whose randomness can

realistically be attributed to such a mechanism. With intrinsic

randomness generation, however, there is no such limit: in the cellular

automaton above, for example, all one need do to get a longer random

sequence is to run the cellular automaton for more steps.

But it is also possible to get long random sequences by continual

interaction with a random external environment, as in the first

mechanism for randomness discussed in this chapter.

The issue with this mechanism, however, is that it can take a

long time to get a given amount of good-quality randomness from it.

And the point is that in most cases, intrinsic randomness generation

can produce similar randomness in a much shorter time.

Indeed, in general, intrinsic randomness generation tends to be

much more efficient than getting randomness from the environment.

The basic reason is that intrinsic randomness generation in a sense puts

all the components in a system to work in producing new randomness,

while getting randomness from the environment does not.

Thus, for example, in the rule 30 cellular automaton discussed

above, every cell in effect actively contributes to the randomness we

see. But in a system that just amplifies randomness from the

environment, none of the components inside the system itself ever

contribute any new randomness at all. Indeed, ironically enough, the

more components that are involved in the process of amplification, the

slower it will typically be to get each new piece of random output. For

as we discussed two sections ago, each component in a sense adds what

one can consider to be more inertia to the amplification process.

But with a larger number of components it becomes progressively

easier for randomness to be generated through intrinsic randomness

generation. And indeed unless the underlying rules for the system

somehow explicitly prevent it, it turns out in the end that intrinsic

randomness generation will almost inevitably occur—often producing

so much randomness that it completely swamps any randomness that

might be produced from either of the other two mechanisms.

M E C H A N I S M S I N P R O G R A M S A N D N A T U R E C H A P T E R 7

323

Yet having said this, one can ask how one can tell in an actual

experiment on some particular system in nature to what extent

intrinsic randomness generation is really the mechanism responsible

for whatever seemingly random behavior one observed.

The clearest sign is a somewhat unexpected phenomenon: that

details of the random behavior can be repeatable from one run of the

experiment to another. It is not surprising that general features of the

behavior will be the same. But what is remarkable is that if intrinsic

randomness generation is the mechanism at work, then the precise

details of the behavior can also be repeatable.

In the mechanism where randomness comes from continual

interaction with the environment, no repeatability can be expected. For

every time the experiment is run, the state of the environment will be

different, and so the behavior one sees will also be correspondingly

different. And similarly, in the mechanism where randomness comes

from the details of initial conditions, there will again be little, if any,

repeatability. For the details of the initial conditions are typically

affected by the environment of the system, and cannot realistically be

kept the same from one run to another.

But the point is that with the mechanism of intrinsic randomness

generation, there is no dependence on the environment. And as a result,

so long as the setup of the system one is looking at remains the same,

the behavior it produces will be exactly the same. Thus for example,

however many times one runs a rule 30 cellular automaton, starting

with a single black cell, the behavior one gets will always be exactly the

same. And so for example the sequence of colors of the center cell,

while seemingly random, will also be exactly the same.

But how easy is it to disturb this sequence? If one makes a fairly

drastic perturbation, such as changing the colors of cells all the way

from white to black, then the sequence will indeed often change, as

illustrated in the pictures at the top of the next page.

But with less drastic perturbations, the sequence can be quite

robust. As an example, one can consider allowing each cell to be not

just black or white, but any shade of gray, as in the continuous cellular

automata we discussed on page 155. And in such systems, one can

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

324

investigate what happens if at every step one randomly perturbs the

gray level of each cell by a small amount.

The pictures on the facing page show results for perturbations of

various sizes. What one sees is that when the perturbations are

sufficiently large, the sequence of colors of the center cell does indeed

change. But the crucial point is that for perturbations below a certain

critical size, the sequence always remains essentially unchanged.

Even though small perturbations are continually being made, the

evolution of the system causes these perturbations to be damped out,

and produces behavior that is in practice indistinguishable from what

would be seen if there were no perturbations.

The question of what size of perturbations can be tolerated without

significant effect depends on the details of the underlying rules. And as

the pictures suggest, rules which yield more complex behavior tend to be

able to tolerate only smaller sizes of perturbations. But the crucial point is

that even when the behavior involves intrinsic randomness generation,

perturbations of at least some size can still be tolerated.

And the reason this is important is that in any real experiment,

there are inevitably perturbations on the system one is looking at.

With more care in setting up the experiment, a higher degree of

isolation from the environment can usually be achieved. But it is never

possible to eliminate absolutely all interaction with the environment.

4 5 6

1 2 3

The effect of changing the number of initial black cells in the rule 30 cellular automaton shown above. With only 2 or 3 black
cells, the sequence in the center of the pattern does not change. But as soon as more black cells are added, it does change.

M E C H A N I S M S I N P R O G R A M S A N D N A T U R E C H A P T E R 7

325

10% perturbations 15% perturbations

0% perturbations 5% perturbations

2% perturbations 5% perturbations

0.8% perturbations 1% perturbations

0% perturbations 0.5% perturbations

The effects of various levels of external randomness on the behavior of continuous cellular automata
with generalizations of rules 90 and 30. The value of each cell can be any gray level between 0 and 1.
For the generalization of rule 90, the values of the left and right cells are added together, and the
value of the cell on the next step is then found by applying the continuous generalization of the
modulo 2 function shown at the right. For the generalization of rule 30, a similar scheme based on an
algebraic representation of the rule is used. In both cases, every value at each step is also perturbed
by a random amount up to the percentage indicated for each picture.

0 1 2 3 4
0

0.2
0.4
0.6
0.8

1

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

326

And as a result, the system one is looking at will be subjected to at least

some level of random perturbations from the environment.

But what the pictures on the previous page demonstrate is that

when such perturbations are small enough, they will have essentially no

effect. And what this means is that when intrinsic randomness generation

is the dominant mechanism it is indeed realistic to expect at least some

level of repeatability in the random behavior one sees in real experiments.

So has such repeatability actually been seen in practice?

Unfortunately there is so far very little good information on this

point, since without the idea of intrinsic randomness generation there

was never any reason to look for such repeatability when behavior that

seemed random was observed in an experiment.

But scattered around the scientific literature—in various corners

of physics, chemistry, biology and elsewhere—I have managed to find at

least some cases where multiple runs of the same carefully controlled

experiment are reported, and in which there are clear hints of

repeatability even in behavior that looks quite random.

If one goes beyond pure numerical data of the kind traditionally

collected in scientific experiments, and instead looks for example at the

visual appearance of systems, then sometimes the phenomenon of

repeatability becomes more obvious. Indeed, for example, as I will

discuss in Chapter 8, different members of the same biological species

often have many detailed visual similarities—even in features that on

their own seem complex and apparently quite random.

And when there are, for example, two symmetrical sides to a

particular system, it is often possible to compare the visual patterns

produced on each side, and see what similarities exist. And as various

examples in Chapter 8 demonstrate, across a whole range of physical,

biological and other systems there can indeed be remarkable similarities.

So in all of these cases the randomness one sees cannot

reasonably be attributed to randomness that is introduced from the

environment—either continually or through initial conditions. And

instead, there is no choice but to conclude that the randomness must in

fact come from the mechanism of intrinsic randomness generation that

I have discovered in simple programs, and discussed in this section.

