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The Phenomenon of Continuity

Many systems that we encounter in nature have behavior that seems in

some way smooth or continuous. Yet cellular automata and most of the

other programs that we have discussed involve only discrete elements.

So how can such systems ever reproduce what we see in nature?

The crucial point is that even though the individual components

in a system may be discrete, the average behavior that is obtained by

looking at a large number of these components may still appear to be

smooth and continuous. And indeed, there are many familiar systems

in nature where exactly this happens. 

Thus, for example, air and water seem like continuous fluids,

even though we know that at a microscopic level they are both in fact

made up of discrete molecules. And in a similar way, sand flows much

like a continuous fluid, even though we can easily see that it is actually

made up of discrete grains. So what is the basic mechanism that allows

systems with discrete components to produce behavior that seems

smooth and continuous?

Most often, the key ingredient is randomness.

If there is no randomness, then the overall forms that one sees

tend to reflect the discreteness of the underlying components. Thus, for

example, the faceted shape of a crystal reflects the regular microscopic

arrangement of discrete atoms in the crystal.

But when randomness is present, such microscopic details often

get averaged out, so that in the end no trace of discreteness is left, and

the results appear to be smooth and continuous. The next page shows a

classic example of this phenomenon, based on so-called random walks.

Each random walk is made by taking a discrete particle, and then

at each step randomly moving the particle one position to the left or

right. If one starts off with several particles, then at any particular time,

each particle will be at a definite discrete position. But what happens if

one looks not at the position of each individual particle, but rather at

the overall distribution of all particles?

The answer, as illustrated on the next page, is that if there are

enough particles, then the distribution one sees takes on a smooth and
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continuous form, and shows no trace of the underlying discreteness of

the system; the randomness has in a sense successfully washed out

essentially all the microscopic details of the system.

The pictures at the top of the facing page show what happens if one

uses several different underlying rules for the motion of each particle. And

what one sees is that despite differences at a microscopic level, the overall

distribution obtained in each case has exactly the same continuous form.

10 particles 20 particles

1000 particles 10,000 particles 100,000 particles 1,000,000 particles

10 particles 20 particles 100 particles 200 particles

The distribution of positions by reached particles that follow random walks. The top left shows three individual examples of random
walks, in which each particle randomly moves one position to the left or right. Even though the individual particles are discrete, the
pictures show that when a large number of particles are considered, the overall behavior obtained seems smooth and continuous.
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Indeed, in the particular case of systems such as random walks,

the Central Limit Theorem suggested over two centuries ago ensures

that for a very wide range of underlying microscopic rules, the same

continuous so-called Gaussian distribution will always be obtained.

This kind of independence of microscopic details has many

important consequences. The pictures on the next page show, for

example, what happens if one looks at two-dimensional random walks

on square and hexagonal lattices. 

One might expect that the different underlying forms of these

lattices would lead to different shapes in overall distributions. But the

remarkable fact illustrated on the next page is that when enough

particles are considered, one gets in the end distributions that have a

purely circular shape that shows no trace of the different discrete

structures of the underlying lattices.

(a) (b) (c) (d)

(a)

(b)

(c)

(d)

A demonstration of the fact that for a wide range of underlying rules for each step in a random walk, the overall distribution
obtained always has the same continuous form. In case (a), each particle moves just one position to the left or right at
each step. In case (b), it can move between 0, 1 or 2 positions, while in case (c) it can move any distance between 0 and
1 at each step. Finally, in case (d), on alternate steps the particle moves either always to the right or always to the left.
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100 steps 101 steps 102 steps 103 steps 104 steps 105 steps

2000 steps; 1 particle 2000 steps; 20 particles 2000 steps; 1,000,000 particles

100 steps 101 steps 102 steps 103 steps 104 steps 105 steps

2000 steps; 1 particle 2000 steps; 20 particles 2000 steps; 1,000,000 particles

Examples of random walks on square and hexagonal lattices. Despite the different underlying lattices the average of sufficiently many
particles yields ultimately circular behavior in both cases—as implied by the Central Limit Theorem.
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Beyond random walks, there are many other systems based on

discrete components in which randomness at a microscopic level also

leads to continuous behavior on a large scale. The picture below shows

as one example what happens in a simple aggregation model. 

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

step 2500 step 5000 step 10,000

step 100,000 step 1,000,000

Behavior of a simple aggregation model, in which a single new black cell is added at each step at a randomly chosen position
adjacent to the existing cluster of black cells. The system is a version of the so-called Eden model. The shape obtained is
ultimately an almost perfect circle. 
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The idea of this model is to build up a cluster of black cells by

adding just one new cell at each step. The position of this cell is chosen

entirely at random, with the only constraint being that it should be

adjacent to an existing cell in the cluster.

At early stages, clusters that are grown in this way look quite

irregular. But after a few thousand steps, a smooth overall roughly

circular shape begins to emerge. Unlike for the case of random walks,

there is as yet no known way to make a rigorous mathematical analysis

of this process. But just as for random walks, it appears once again that

the details of the underlying rules for the system do not have much

effect on the main features of the behavior that is seen.

The pictures below, for example, show generalizations of the

aggregation model in which new cells are added only at positions that

have certain numbers of existing neighbors. And despite such changes

(a) (b)

(a) (b)

Patterns produced by generalized aggregation models in
which a new cell is added only if (a) it would have only one
immediate neighbor (out of four), or (b) it would have either
one or four neighbors. The pictures above show step
30,000, while those on the right show step 200. Despite
the difference in underlying rules, the same basic overall
shape of pattern is eventually produced. 
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in underlying rules, the overall shapes of the clusters produced remain

very much the same.

In all these examples, however, the randomness that is involved

comes from the same basic mechanism: it is explicitly inserted from

outside at each step in the evolution of the system.

But it turns out that all that really seems to matter is that

randomness is present: the mechanism through which it arises appears

to be largely irrelevant. And in particular what this means is that

randomness which comes from the mechanism of intrinsic randomness

generation discussed in the previous section is able to make systems

with discrete components behave in seemingly continuous ways.

The picture on the next page shows a two-dimensional cellular

automaton where this happens. There is no randomness in the rules or

the initial conditions for this system. But through the mechanism of

intrinsic randomness generation, the behavior of the system exhibits

considerable randomness. And this randomness turns out to lead to an

overall pattern of growth that yields the same basic kind of smooth

roughly circular form as in the aggregation model.

Having seen this, one might then wonder whether in fact any

system that involves randomness will ultimately produce smooth

overall patterns of growth. The answer is definitely no. In discussing

two-dimensional cellular automata in Chapter 5, for example, we saw

many examples where randomness occurs, but where the overall forms

of growth that are produced have a complicated structure with no

particular smoothness or continuity.

As a rough guide, it seems that continuous patterns of growth are

possible only when the rate at which small-scale random changes occur

is substantially greater than the overall rate of growth. For in a sense it

is only then that there is enough time for randomness to average out the

effects of the underlying discrete structure.

And indeed this same issue also exists for processes other than

growth. In general the point is that continuous behavior can arise in

systems with discrete components only when there are features that

evolve slowly relative to the rate of small-scale random changes.
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step 50 step 100 step 200

step 300 step 400

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

step 9 step 10 step 11 step 12 step 13 step 14 step 15 step 16

A two-dimensional cellular automaton first shown on page 178 with the rule that if out of the eight neighbors (including diagonals)
around a given cell, there are exactly three black cells, then the cell itself becomes black on the next step. If the cell has 1, 2 or 4
black neighbors, then it stays the same color as before, and if it has 5 or more black neighbors, then it becomes white on the next
step. (Outer totalistic code 746.) This simple rule produces randomness through the mechanism of intrinsic randomness generation,
and this randomness in turn leads to a pattern of growth that takes on an increasingly smooth more-or-less circular form.



M E C H A N I S M S  I N  P R O G R A M S  A N D  N A T U R E C H A P T E R  7

335

The pictures on the next page show an example where this

happens. The detailed pattern of black and white cells in these pictures

changes at every step. But the point is that the large domains of black

and white that form have boundaries which move only rather slowly.

And at an overall level these boundaries then behave in a way that

looks quite smooth and continuous. 

It is still true, however, that at a small scale the boundaries

consist of discrete cells. But as the picture below shows, the detailed

configuration of these cells changes rapidly in a seemingly random way.

And just as in the other systems we have discussed, what then emerges

on average from all these small-scale random changes is overall

behavior that again seems in many ways smooth and continuous.

step 1 step 2 step 3 step 4 step 5 step 6

step 10 step 20 step 30 step 40 step 50 step 60

step 100 step 150 step 200 step 250 step 300 step 350

step 400 step 450 step 500 step 550 step 600 step 650

The behavior of an individual domain of black cells in the cellular automaton shown on the next page. The boundary of the domain
exhibits seemingly random fluctuations. But at an overall level, the behavior that is produced seems in many respects quite smooth
and continuous. The domain effectively behaves as if it has a surface tension, so that it first evolves to a roughly circular shape, then
shrinks eventually to nothing. The main black rectangle is initially 39 ä 29 cells in size.
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step 1 step 2 step 3 step 4 step 5

step 10 step 20 step 30 step 40 step 50

step 100 step 150 step 200 step 250 step 300

step 350 step 400 step 450 step 500 step 550

Behavior of a two-dimensional cellular automaton
starting from a random initial condition. At each
step, each cell looks at the total number of black
cells in the 9-cell neighborhood consisting of the
cell itself and the 8 cells adjacent to it (including
diagonals). If this total is less than 4, then the cell
becomes white on the next step, while if the total
is greater than 6, it becomes black. If the total is
exactly 5, then the cell becomes white, and if the
total is exactly 4, then it becomes black. (The rule has totalistic code 976.) The pictures show that on a large scale, the rule leads to
regions of black and white whose boundaries behave in a seemingly smooth and continuous way. Note that each picture is 80 cells
across, and is effectively wrapped around so that the left neighbor of the leftmost cell is the rightmost cell, and so on. 

step 600 step 700 step 800




