
EXCERPTED FROM

The Problem of 
Satisfying Constraints

SECTION 7.8



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

342

So even if a system at some level follows continuous rules it is

still possible for the system to exhibit discrete overall behavior. And in

fact it is quite common for such behavior to be one of the most obvious

features of a system—which is why discrete systems like cellular

automata end up often being the most appropriate models.

The Problem of Satisfying Constraints

One feature of programs is that they immediately provide explicit rules

that can be followed to determine how a system will behave. But in

traditional science it is common to try to work instead with constraints

that are merely supposed implicitly to force certain behavior to occur.

At the end of Chapter 5 I gave some examples of constraints, and

I showed that constraints do exist that can force quite complex behavior

to occur. But despite this, my strong suspicion is that of all the

examples of complex behavior that we see in nature almost none can in

the end best be explained in terms of constraints.

The basic reason for this is that to work out what pattern of

behavior will satisfy a given constraint usually seems far too difficult

for it to be something that happens routinely in nature.

Many types of constraints—including those in Chapter 5—have

the property that given a specific pattern it is fairly easy to check

whether the pattern satisfies the constraints. But the crucial point is

that this fact by no means implies that it is necessarily easy to go from

the constraints to find a pattern that satisfies them.

The situation is quite different from what happens with explicit

evolution rules. For if one knows such rules then these rules

immediately yield a procedure for working out what behavior will

occur. Yet if one only knows constraints then such constraints do not

on their own immediately yield any specific procedure for working out

what behavior will occur.

In principle one could imagine looking at every possible pattern,

and then picking out the ones that satisfy the constraints. But even

with a 10 ä 10 array of black and white squares, the number of possible

patterns is already 1,267,650,600,228,229,401,496,703,205,376. And with a



M E C H A N I S M S  I N  P R O G R A M S  A N D  N A T U R E C H A P T E R  7

343

20 ä 20 array this number is larger than the total number of particles in

the universe. So it seems quite inconceivable that systems in nature

could ever carry out such an exhaustive search. 

One might imagine, however, that if such systems were just to

try patterns at random, then even though incredibly few of these

patterns would satisfy any given constraint exactly, a reasonable

number might at least still come close. But typically it turns out that

even this is not the case. And as an example, the pictures below show

what fraction of patterns chosen at random have a given percentage of

squares that violate the constraints described on page 211.

For the majority of patterns around 70% of the squares turn out

to violate the constraints. And in a 10 ä 10 array the chance of finding a

pattern where the fraction of squares that violate the constraints is even

less than 50% is only one in a thousand, while the chance of finding a

pattern where the fraction is less than 25% is one in four trillion. 

And what this means is that a process based on picking patterns

at random will be incredibly unlikely to yield results that are even close

to satisfying the constraints.

So how can one do better? A common approach used both in

natural systems and in practical computing is to have some form of

iterative procedure, in which one starts from a pattern chosen at

0% 25% 50% 75% 100%

5 × 5 array

0% 25% 50% 75% 100%

10 × 10 array

The fraction of all possible patterns in which a certain percentage of squares violate the
constraints discussed on page 211. Only a handful of patterns satisfy the constraints exactly (so
that 0% of the squares are wrong). For large arrays, the vast majority of possible patterns have
about 70% of the squares wrong. 



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

344

random, then progressively modifies the pattern so as to make it closer

to satisfying the constraints.

As a specific example consider taking a series of steps, and at each

step picking a square in the array discussed above at random, then

reversing the color of this square whenever doing so will not increase

the total number of squares in the array that violate the constraints.

The picture below shows results obtained with this procedure.

For the first few steps, there is rapid improvement. But as one goes on,

one sees that the rate of improvement gets slower and slower. And even

after a million steps, it turns out that 15% of the squares in a 10 ä 10

array will on average still not satisfy the constraints.

In practical situations this kind of approximate result can

sometimes be useful, but the pictures at the top of the facing page show

that the actual patterns obtained do not look much at all like the exact

results that we saw for this system in Chapter 5.

0% 25% 50% 75% 100%

step 1

0% 25% 50% 75% 100%

step 10

0% 25% 50% 75% 100%

step 100

0% 25% 50% 75% 100%

step 1000

0% 25% 50% 75% 100%

step 10,000

0%

25%

50%

75%

100%

0 200 400 600 800 1000

0%

25%

50%

75%

100%

0 200 400 600 800 1000

(average)

The results of a procedure intended to produce patterns that get progressively closer to satisfying the constraints described on
page 211. The procedure starts with a randomly chosen pattern, then at each step picks a square in the pattern at random, and
reverses the color of this square whenever doing so does not increase the total number of squares in the pattern that violate the
constraints. The top picture shows one particular run of this procedure. The second picture shows the average behavior obtained
from many runs. And finally, the bottom picture shows how the fraction of patterns with different percentages of squares violating
the constraints changes as the procedure progresses. In all cases 10 ä 10 patterns are used. 



M E C H A N I S M S  I N  P R O G R A M S  A N D  N A T U R E C H A P T E R  7

345

So why does the procedure not work better? The problem turns

out to be a rather general one. And as a simple example, consider a line

of black and white squares, together with the constraint that each

square should have the same color as its right-hand neighbor. This

constraint will be satisfied only if every square has the same color—

either black or white. But to what extent will an iterative procedure

succeed in finding this solution?

As a first example, consider a procedure that at each step picks a

square at random, then reverses its color whenever doing so reduces the

total number of squares that violate the constraint. The pictures at the top

of the next page show what happens in this case. The results are

step 100 step 1000 step 10,000 step 100,000

(c)

step 100 step 1000 step 10,000 step 100,000 exact

(b)

step 100 step 1000 step 10,000 step 100,000 exact

(a)

Patterns generated by using the same procedure as in the previous picture but with three different sets of constraints.
Case (a) uses the same constraints as in the previous picture, (b) requires every black square and every white square
to have exactly two adjacent black squares, and (c) requires every black square to have 3 adjacent black squares and 1
white square, and every white square to have 4 adjacent white squares. In cases (a) and (b) it is possible to satisfy the
constraints exactly; in case (c) it is not. The pictures show the evolution of a 30 ä 30 array, which is nearly 10 times the
area of the array shown in the previous picture. Although the fraction of squares that violate the constraints is less
than 20% after 100,000 steps, the overall patterns still do not look much like the exact results.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

346

remarkably poor: instead of steadily evolving to all black or all white, the

system quickly gets stuck in a state that contains regions of different colors.

And as it turns out, this kind of behavior is not uncommon among

iterative procedures; indeed it is even seen in such simple cases as trying to

find the lowest point on a curve. The most obvious iterative procedure to

use for such a problem involves taking a series of small steps, with the

direction of each step being chosen so as locally to go downhill. 

And indeed for the first curve shown below, this procedure works

just fine, and quickly leads to the lowest point. But for the second

Results of four tries at applying an iterative procedure to find configurations which satisfy the
simple constraint that every square should be the same color as the square to its right. (The squares
are assumed to be arranged cyclically, so that the right neighbor of the rightmost square is the
leftmost square.) The procedure starts from a random configuration of squares, and then at each
step picks a square at random, then reverses the color of this square whenever doing so reduces
the total number of squares that violate the constraint. The only configurations that ultimately
satisfy the constraints are all white and all black. But the procedure gets stuck long before it reaches
these configurations. The problem is that for any block more than one square across changing the
color of a square at either end will not reduce the total number of squares that violate the
constraint. And as a result, such blocks remain fixed and cannot disappear. 

Three examples of curves. In the first case, the most obvious mechanical or mathematical
procedure of continually going downhill will successfully lead one to the lowest point. But in the
other two cases, this procedure will usually end up getting stuck at a local minimum. This is the
basic phenomenon which makes it difficult to find patterns that satisfy constraints exactly using a
procedure that is based on progressive improvement. The third picture above is a representation of
the kind of curve that arises in almost all discrete systems based on constraints.



M E C H A N I S M S  I N  P R O G R A M S  A N D  N A T U R E C H A P T E R  7

347

curve, the procedure will already typically not work; it will usually get

stuck in one of the local minima and never reach a global minimum.

And for discrete systems involving, say, just black and white squares,

it turns out to be almost inevitable that the curves which arise have the

kind of jagged form shown in the third picture at the bottom of the facing

page. So this has the consequence that a simple iterative procedure that

always tries to go downhill will almost invariably get stuck. 

How can one avoid this? One general strategy is to add

randomness, so that in essence one continually shakes the system to

prevent it from getting stuck. But the details of how one does this tend

to have a great effect on the results one gets.

The procedure at the top of the facing page already in a sense

involved randomness, for it picked a square at random at each step. But

as we saw, with this particular procedure the system can still get stuck.

Modifying the procedure slightly, however, can avoid this. And as

an example the pictures below show what happens if at each step one

reverses the color of a random square not only if this will decrease the

total number of squares violating the constraints, but also if it leaves this

number the same. In this case the system never gets permanently stuck,

and instead will always eventually evolve to satisfy the constraints. 

Results from a slight modification to the
procedure used in the picture at the top of
the facing page. A random square is again
picked at each step. But now the color of
that square is reversed not only if doing so
actually changes the total number of
squares that violate the constraint, but
also if it leaves this number the same.
With this procedure, evolution from any
initial condition can visit every possible
configuration, so that the configurations
which satisfy the constraints will at least
eventually be reached. 



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

348

But this process may still take a very long time. And indeed in

the two-dimensional case discussed earlier in this section, the number

of steps required can be quite astronomically long.

So can one speed this up? The more one knows about a particular

system, the more one can invent tricks that work for that system. But

usually these turn out to lead only to modest speedups, and despite

various hopes over the years there seem in the end to be no techniques

that work well across any very broad range of systems.

So what this suggests is that even if in some idealized sense a

system in nature might be expected to satisfy certain constraints, it is

likely that in practice the system will actually not have a way to come

even close to doing this.

In traditional science the notion of constraints is often

introduced in an attempt to summarize the effects of evolution rules.

Typically the idea is that after a sufficiently long time a system should

be found only in states that are invariant under the application of its

evolution rules. And quite often it turns out that one can show that any

states that are invariant in this way must satisfy fairly simple

constraints. But the problem is that except in cases where the behavior

as a whole is very simple it tends not to be true that systems in fact

evolve to strictly invariant states. 

The two cellular automata on the left both have all white and all

black as invariant states. And in the first case, starting from random

initial conditions, the system quickly settles down to the all black

invariant state. But in the second case, nothing like this happens, and

instead the system continues to exhibit complicated and seemingly

random behavior forever.

The two-dimensional patterns that arise from the constraints at

the end of Chapter 5 all turn out to correspond to invariant states of

various two-dimensional cellular automata. And so for example the

pattern of page 211 is found to be the unique invariant state for 572,522

of the 4,294,967,296 possible five-neighbor cellular automaton rules.

But if one starts these rules from random initial conditions, one

typically never gets the pattern of page 211. Instead, as the pictures at

the top of the facing page show, one sees a variety of patterns that very

Two of the 28 elementary
cellular automata whose
only invariant states are
uniform in color. In the first
case one of these invariant
states is always reached;
in the second it is not.



M E C H A N I S M S  I N  P R O G R A M S  A N D  N A T U R E C H A P T E R  7

349

much more reflect explicit rules of evolution than the constraint

associated with the invariant state.

So what about actual systems in physics? Do they behave any

differently? As one example, consider a large number of circular coins

pushed together on a table. One can think of such a system as having an

invariant state that satisfies the constraint that the coins should be

packed as densely as possible. For identical coins this constraint is

satisfied by the simple repetitive pattern shown on the right. And it

turns out that in this particular case this pattern is quickly produced if

one actually pushes coins together on a table.

But with balls in three dimensions the situation is quite different.

In this case the constraint of densest packing is known to be satisfied

when the balls are laid out in the simple repetitive way shown on the

right. But if one just tries pushing balls together they almost always get

stuck, and never take on anything like the arrangement shown. And if

one jiggles the balls around one still essentially never gets this

arrangement. Indeed, the only way to do it seems to be to lay the balls

down carefully one after another.

In two dimensions similar issues arise as soon as one has coins of

more than one size. Indeed, even with just two sizes, working out how

to satisfy the constraint of densest packing is already so difficult that in

most cases it is still not known what configuration does it.

167812175

530763

176239055

18423119

1072764257

88710593

1840848327

89759053

2131825735

116497901

invariant state

Typical behavior of two-dimensional cellular automata that leave only the pattern on the right invariant. The
results shown come from 500 steps of evolution starting from random initial conditions. In no case does the
global behavior seen come even close to satisfying the simple constraints that determine the invariant state.

The densest packing of
identical circles in the
plane. Each circle is
surrounded by six others.

The densest packing of
identical spheres in three-
dimensional space. Each
sphere is surrounded by 12
others.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

350

ratio 1:0.8 ratio 1:0.7 ratio 1:0.5

ratio 1:1 ratio 1:0.95 ratio 1:0.9

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

ratio 1:0.9

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

ratio 1:1

Patterns obtained by successively laying down circles in such a way that the center of each new circle is as close as possible to the
center of the first circle. Except in the very first case, the extent to which these represent the densest possible packings is not clear,
and indeed it is quite possible that in most such actual packings circles of different sizes are just separated into several uniform regions.



M E C H A N I S M S  I N  P R O G R A M S  A N D  N A T U R E C H A P T E R  7

351

The pictures on the facing page show what happens if one starts

with a single circle, then successively adds new circles in such a way

that the center of each one is as close to the center of the first circle as

possible. When all circles are the same size, this procedure yields a

simple repetitive pattern. But as soon as the circles have significantly

different sizes, the pictures on the facing page show that this procedure

tends to produce much more complicated patterns—which in the end

may or may not have much to do with the constraint of densest packing.

One can look at all sorts of other physical systems, but so far as I can

tell the story is always more or less the same: whenever there is behavior of

significant complexity its most plausible explanation tends to be some

explicit process of evolution, not the implicit satisfaction of constraints.

One might still suppose, however, that the situation could be

different in biological systems, and that somehow the process of natural

selection might produce forms that are successfully determined by the

satisfaction of constraints. 

But what I strongly believe, as I discuss in the next chapter, is

that in the end, much as in physical systems, only rather simple forms

can actually be obtained in this way, and that when more complex

forms are seen they once again tend to be associated not with

constraints but rather with the effects of explicit evolution rules—

mostly those governing the growth of an individual organism.

Origins of Simple Behavior

There are many systems in nature that show highly complex behavior.

But there are also many systems that show rather simple behavior—

most often either complete uniformity, or repetition, or nesting. 

And what we have found in this book is that programs are very

much the same: some show highly complex behavior, while others

show only rather simple behavior.

Traditional intuition might have made one assume that there

must be a direct correspondence between the complexity of observed

behavior and the complexity of underlying rules. But one of the central

discoveries of this book is that in fact there is not. 




