
EXCERPTED FROM

Origins of Simple 
Behavior

SECTION 7.9



M E C H A N I S M S  I N  P R O G R A M S  A N D  N A T U R E C H A P T E R  7

351

The pictures on the facing page show what happens if one starts

with a single circle, then successively adds new circles in such a way

that the center of each one is as close to the center of the first circle as

possible. When all circles are the same size, this procedure yields a

simple repetitive pattern. But as soon as the circles have significantly

different sizes, the pictures on the facing page show that this procedure

tends to produce much more complicated patterns—which in the end

may or may not have much to do with the constraint of densest packing.

One can look at all sorts of other physical systems, but so far as I can

tell the story is always more or less the same: whenever there is behavior of

significant complexity its most plausible explanation tends to be some

explicit process of evolution, not the implicit satisfaction of constraints.

One might still suppose, however, that the situation could be

different in biological systems, and that somehow the process of natural

selection might produce forms that are successfully determined by the

satisfaction of constraints. 

But what I strongly believe, as I discuss in the next chapter, is

that in the end, much as in physical systems, only rather simple forms

can actually be obtained in this way, and that when more complex

forms are seen they once again tend to be associated not with

constraints but rather with the effects of explicit evolution rules—

mostly those governing the growth of an individual organism.

Origins of Simple Behavior

There are many systems in nature that show highly complex behavior.

But there are also many systems that show rather simple behavior—

most often either complete uniformity, or repetition, or nesting. 

And what we have found in this book is that programs are very

much the same: some show highly complex behavior, while others

show only rather simple behavior.

Traditional intuition might have made one assume that there

must be a direct correspondence between the complexity of observed

behavior and the complexity of underlying rules. But one of the central

discoveries of this book is that in fact there is not. 
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For even programs with some of the very simplest possible rules

yield highly complex behavior, while programs with fairly complicated

rules often yield only rather simple behavior. And indeed, as we have

seen many times in this book, and as the pictures below illustrate, even

rules that are extremely similar can produce quite different behavior. 

If one just looks at a rule in its raw form, it is usually almost

impossible to tell much about the overall behavior it will produce. But

in cases where this behavior ends up being simple, one can often

recognize in it specific mechanisms that seem to be at work.

If the behavior of a system is simple, then this inevitably means

that it will have many regularities. And usually there is no definite way

to say which of these regularities should be considered causes of what

one sees, and which should be considered effects.

But it is still often useful to identify simple mechanisms that can

at least serve as descriptions of the behavior of a system.

In many respects the very simplest possible type of behavior in

any system is pure uniformity. And uniformity in time is particularly

straightforward, for it corresponds just to no change occurring in the

evolution of a system. But uniformity in space is already slightly more

complicated, and indeed there are several different mechanisms that can

be involved in it. A rather straightforward one, illustrated in the pictures

A sequence of elementary cellular automata whose rules differ from one to the next only at one
position (a Gray code sequence). Despite the similarity of their rules, the overall behavior of these
cellular automata differs considerably.
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below, is that some process can start at one point in space and then

progressively spread, doing the same thing at every point it reaches.

Another mechanism is that every part of a system can evolve

completely independently to the same state, as in the pictures below.

A slightly less straightforward mechanism is illustrated in the

pictures below. Here different elements in the system do interact, but

the result is still that all of them evolve to the same state. 

So far all the mechanisms for uniformity I have mentioned

involve behavior that is in a sense simple at every level. But in nature

uniformity often seems to be associated with quite complex

microscopic behavior. Most often what happens is that on a small scale

a system exhibits randomness, but on a larger scale this randomness

averages out to leave apparent uniformity, as in the pictures below.

Homogenous growth from a single point is
one straightforward way that uniformity in
space can be produced, here illustrated in a
mobile automaton and a cellular automaton.

Uniformity in space can be achieved
almost trivially if each element in a
system independently evolves to the
same state. 

Class 1 cellular automata
that exhibit evolution to a
uniform state, as discussed
in Chapter 6. 

Averaging out small-scale randomness yields apparent uniformity, as shown here for a rule 30 pattern. 
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It is common for uniform behavior to be quite independent of

initial conditions or other input to a system. But sometimes different

uniform behavior can be obtained with different input.

One way this can happen, illustrated in the pictures below, is for

the system to conserve some quantity—such as total density of black—

and for this quantity to end up being spread uniformly throughout the

system by its evolution.

An alternative is that the system may always evolve to certain

specific uniform phases, but the choice of which phase may depend on

the total value of some quantity, as in the pictures below.

Constraints are yet another basis for uniformity. And as a trivial

example, the constraint in a line of black or white cells that every cell

should be the same color as both its neighbors immediately implies that

the whole line must be either uniformly black or uniformly white.

Beyond uniformity, repetition can be considered the next-simplest

form of behavior. Repetition in time corresponds just to a system

repeatedly returning to a particular state.

This can happen if, for example, the behavior of a system in

effect follows some closed curve such as a circle which always leads

back to the same point. And in general, in any system with definite

rules that only ever visits a limited number of states, it is

With each cell at each step having a
gray level that is the average of its
predecessor and its two neighbors the
total amount of black is conserved, but
eventually becomes spread uniformly
throughout the system.

With different initial conditions this cellular automaton from page 339 can evolve either to uniform white or
uniform black. Such discrete transitions are somewhat less common in one dimension than elsewhere. 
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inevitable—as discussed on page 255 and illustrated above—that the

behavior of the system will eventually repeat.

In some cases the basic structure of a system may allow only a

limited number of possible states. But in other cases what happens is

instead just that the actual evolution of a system never reaches more

than a limited number of states.

Often it is very difficult to predict whether this will be so just by

looking at the underlying rules. But in a system like a cellular

automaton the typical reason for it is just that in the end effects never

spread beyond a limited region, as in the examples shown below.

Given repetition in time, repetition in space will follow

whenever elements that repeat systematically move in space. The

pictures below show two cases of this, with the second picture

illustrating the notion of waves that is common in traditional physics.

Growth from a simple seed can also readily lead to repetition in

both space and time, as in the pictures below.

The behavior of a system will be repetitive in time
whenever it effectively follows a closed curve—either
literally in space, or in terms of states that it visits.

Examples of behavior in mobile
automata and cellular automata that
remains localized to a limited region
and thus always eventually repeats. 

Examples where repetition
in time leads directly to
repetition in space. The
second picture shows
standard wave motion. 

Cellular automata in
which a repetitive pattern
in both space and time is
generated by evolution
from a simple seed.
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But what about random initial conditions? Repetition in time is

still easy to achieve—say just by different parts of a system behaving

independently. But repetition in space is slightly more difficult to

achieve. For even if localized domains of repetition form, they need to

have some mechanism for combining together.

And the walls between different domains often end up not being

mobile enough to allow this to happen, as in the examples below.

But there are certainly cases—in one dimension and particularly

above—where different domains do combine, and exact repetition is

achieved. Sometimes this happens quickly, as in the picture on the left.

But in other cases it happens only rather slowly. An example is

rule 110, in which repetitive domains form with period 14 in space and

7 in time, but as the picture below illustrates, the localized structures

which separate these domains take a very long time to disappear.

As we saw at the end of Chapter 5, many systems based on

constraints also in principle yield repetition—though from the

discussion of the previous section it seems likely that this is rarely a

good explanation for actual repetition that we see in nature.

rule 50 rule 54 rule 62

Cellular automata in which domains of repetitive behavior form, but in which walls typically remain forever between these domains.

A cellular automaton (rule 184)
in which domains quickly
combine to make the whole
system repetitive in space.

from step 1 from step 1000 from step 5000

The behavior of rule 110 starting from random initial conditions. Domains of repetitive behavior are formed, which in most cases
gradually combine as the localized structures which separate them disappear.
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Beyond uniformity and repetition, the one further type of simple

behavior that we have often encountered in this book is nesting. And as

with uniformity and repetition, there are several quite different ways

that nesting seems to arise.

Nesting can be defined by thinking in terms of splitting into

smaller and smaller elements according to some fixed rule. And as the

pictures below illustrate, nested patterns are generated very directly in

substitution systems by each element successively splitting explicitly

into blocks of smaller and smaller elements.

An essentially equivalent process involves every element

branching into smaller and smaller elements and eventually forming a

tree-like structure, as in the pictures below.

So what makes a system in nature operate in this way? Part of it

is that the same basic rules must apply regardless of physical scale. But

on its own this would be quite consistent with various kinds of uniform

or spiral growth, and does not imply that there will be what we usually

think of as nesting. And indeed to get nesting seems to require that

there also be some type of discrete splitting or branching process in

which several distinct elements arise from an individual element.

step 4 step 5 step 6

step 1 step 2 step 3

Nesting in one- and two-dimensional neighbor-independent
substitution systems in which each element breaks into a block of
smaller elements at each step.

Nested patterns generated by simple branching processes. (Compare page 406.)
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A somewhat related source of nesting relevant in many

mathematical systems is the nested pattern formed by the digit

sequences of successive numbers, as illustrated on page 117.

But in general nesting need not just arise from larger elements

being broken down into smaller ones: for as we have discovered in this

book it can also arise when larger elements are built up from smaller

ones—and indeed I suspect that this is its more common origin in nature.

As an example, the pictures below show how nested patterns

with larger and larger features can be built up by starting with a single

black cell, and then following simple additive cellular automaton rules.

It turns out that the very same patterns can also be produced—as

the pictures below illustrate—by processes in which new branches form

at regular intervals, and annihilate when any pair of them collide.

But what about random initial conditions? Can nesting also arise

from these? It turns out that it can. And the basic mechanism is

typically some kind of progressive annihilation of elements that are

initially distributed randomly.

Nested patterns built by the evolution of the rule 90 and rule 150 additive cellular automata starting
from a single black cell.

Nested patterns obtained by processes in which either two or three branches are formed at regular
intervals, and annihilate when any pair of them collide. 
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The pictures below show an example, based on the rule 184

cellular automaton. Starting from random initial conditions this rule

yields a collection of stripes which annihilate whenever they meet,

leading to a sequence of progressively larger nested regions.

And as the pictures show, these regions form a pattern that

corresponds to a random tree that builds up from its smallest branches,

much in the way that a river builds up from its tributaries.

Nesting in rule 184 is easiest to see when the initial conditions

contain exactly equal numbers of black and white cells, so that the

numbers of left and right stripes exactly balance, and all stripes

eventually annihilate. But even when the initial conditions are such

that some stripes survive, nested regions are still formed by the stripes

that do annihilate. And indeed in essentially any system where there

are domains that grow fairly independently and then progressively

merge the same basic overall nesting will be seen.

As an example, the picture below shows the rule 110 cellular

automaton evolving from random initial conditions. The picture

The generation of a nested pattern by rule 184 starting from random initial conditions. The pattern consists of a collection of
stripes, highlighted in the second picture, which form the tree-like structure shown in the third picture. The initial condition used
has exactly equal numbers of black and white cells, causing all the stripes eventually to annihilate. 

A highly compressed representation of
the evolution of rule 110 from random
initial conditions in which only the first cell
in every 14 ä 7 block is sampled. 
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samples just the first cell in every 14 ä 7 block of cells, making each

domain of repetitive behavior stand out as having a uniform color. 

In the detailed behavior of the various localized structures that

separate these domains of repetitive behavior there is all sorts of

complexity. But what the picture suggests is that at some rough overall

level these structures progressively tend to annihilate each other, and in

doing so form an approximate nested pattern.

It turns out that this basic process is not restricted to systems

which produce simple uniform or repetitive domains. And the

pictures below show for example cases where the behavior inside each

domain is quite random. 

Instead of following simple straight lines, the boundaries of these

domains now execute seemingly random walks. But the fact that they

annihilate whenever they meet once again tends to lead to an overall

nested pattern of behavior.

So what about systems based on constraints? Can these also lead

to nesting? In Chapter 5 I showed that they can. But what I found is that

whereas at least in principle both uniformity and repetition can be

forced fairly easily by constraints, nesting usually cannot be. 

At the outset, one might have thought that there would be just

one definite mechanism for each type of simple behavior. But what we

k=3 totalistic code 1893 elementary rule 18 (compressed)

Examples involving domains containing apparent randomness. In the second picture, each element shown represents a
2 ä 2 block of original cells. In both cases, the boundaries between domains appear to follow random walks, annihilating
when they meet and thus forming a nested overall pattern. 
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have seen in this section is that in fact there are usually several

apparently quite different mechanisms possible.

Often one can identify features in common between the various

mechanisms for any particular kind of behavior. But typically these end

up just being inevitable consequences of the fact that some specific

kind of behavior is being produced.

And so, for example, one might notice that most mechanisms for

nesting can at some level be viewed as involving hierarchies in which

higher components affect lower ones, but not the other way around. But

in a sense this observation is nothing more than a restatement of a

property of nesting itself.

So in the end one can indeed view most of the mechanisms that I

have discussed in this section as being in some sense genuinely

different. Yet as we have seen all of them can be captured by quite

simple programs. And in Chapter 12 I will discuss how this is related to

the fact that so few fundamentally different types of overall behavior

ultimately seem to occur.




