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8
Implications for 
Everyday Systems

Issues of Modelling

In the previous chapter I showed how various general forms of

behavior that are common in nature can be understood by thinking in

terms of simple programs. In this chapter what I will do is to take

what we have learned, and look at a sequence of fairly specific kinds

of systems in nature and elsewhere, and in each case discuss how the

most obvious features of their behavior arise.

The majority of the systems I consider are quite familiar from

everyday life, and at first one might assume that the origins of their

behavior would long ago have been discovered. But in fact, in almost all

cases, rather little turns out to be known, and indeed at any

fundamental level the behavior that is observed has often in the past

seemed quite mysterious. But what we will discover in this chapter is

that by thinking in terms of simple programs, the fundamental origins

of this behavior become much less mysterious.

It should be said at the outset that it is not my purpose to explain

every detail of all the various kinds of systems that I discuss. And in

fact, to do this for even just one kind of system would most likely take

at least another whole book, if not much more.

But what I do want to do is to identify the basic mechanisms that

are responsible for the most obvious features of the behavior of each

kind of system. I want to understand, for example, how in general
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snowflakes come to have the intricate shapes they do. But I am not

concerned, for example, with details such as what the precise curvature

of the tips of the arms of the snowflake will be.

In most cases the basic approach I take is to try to construct the

very simplest possible model for each system. From the intuition of

traditional science we might think that if the behavior of a system is

complex, then any model for the system must also somehow be

correspondingly complex. 

But one of the central discoveries of this book is that this is not in

fact the case, and that at least if one thinks in terms of programs rather

than traditional mathematical equations, then even models that are

based on extremely simple underlying rules can yield behavior of great

complexity. And in fact in the course of this chapter, I will construct a

whole sequence of remarkably simple models that do rather well at

reproducing the main features of complex behavior in a wide range of

everyday natural and other systems.

Any model is ultimately an idealization in which only certain

aspects of a system are captured, and others are ignored. And certainly

in each kind of system that I consider here there are many details that

the models I discuss do not address. But in most cases there have in the

past never really been models that can even reproduce the most obvious

features of the behavior we see. So it is already major progress that the

models I discuss yield pictures that look even roughly right.

In many traditional fields of science any model which could yield

such pictures would immediately be considered highly successful. But

in some fields—especially those where traditional mathematics has

been used the most extensively—it has come to be believed that in a

sense the only truly objective or scientific way to test a model is to look

at certain rather specific details.

Most often what is done is to extract a small set of numbers from

the observed behavior of a system, and then to see how accurately these

numbers can be reproduced by the model. And for systems whose

overall behavior is fairly simple, this approach indeed often works quite

well. But when the overall behavior is complex, it becomes impossible

to characterize it in any complete way by just a few numbers.
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And indeed in the literature of traditional science I have quite often

seen models which were taken very seriously because they could be made

to reproduce a few specific numbers, but which are shown up as

completely wrong if one works out the overall behavior that they imply.

And in my experience by far the best first step in assessing a model is not

to look at numbers or other details, but rather just to use one’s eyes, and

to compare overall pictures of a system with pictures from the model. 

If there are almost no similarities then one can reasonably

conclude that the model is wrong. But if there are some similarities and

some differences, then one must decide whether or not the differences

are crucial. Quite often this will depend, at least in part, on how one

intends to use the model. But with appropriate judgement it is usually

not too difficult from looking at overall behavior to get at least some

sense of whether a particular model is on the right track.

Typically it is not a good sign if the model ends up being almost

as complicated as the phenomenon it purports to describe. And it is an

even worse sign if when new observations are made the model

constantly needs to be patched in order to account for them.

It is usually a good sign on the other hand if a model is simple,

yet still manages to reproduce, even quite roughly, a large number of

features of a particular system. And it is an even better sign if a fair

fraction of these features are ones that were not known, or at least not

explicitly considered, when the model was first constructed.

One might perhaps think that in the end one could always tell

whether a model was correct by explicitly looking at sufficiently

low-level underlying elements in a system and comparing them with

elements in the model. But one must realize that a model is only ever

supposed to provide an abstract representation of a system—and there is

nothing to say that the various elements in this representation need

have any direct correspondence with the elements of the system itself.

Thus, for example, a traditional mathematical model might say

that the motion of a planet is governed by a set of differential equations.

But one does not imagine that this means that the planet itself contains

a device that explicitly solves such equations. Rather, the idea is that
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the equations provide some kind of abstract representation for the

physical effects that actually determine the motion of the planet.

When I have discussed models like the ones in this chapter with

other scientists I have however often encountered great confusion about

such issues. Perhaps it is because in a simple program it is so easy to see

the underlying elements and the rules that govern them. But countless

times I have been asked how models based on simple programs can

possibly be correct, since even though they may successfully reproduce

the behavior of some system, one can plainly see that the system itself

does not, for example, actually consist of discrete cells that, say, follow

the rules of a cellular automaton.

But the whole point is that all any model is supposed to do—

whether it is a cellular automaton, a differential equation, or anything

else—is to provide an abstract representation of effects that are

important in determining the behavior of a system. And below the level

of these effects there is no reason that the model should actually

operate like the system itself. 

Thus, for example, a cellular automaton can readily be set up to

represent the effect of an inhibition on growth at points on the surface

of a snowflake where new material has recently been added. But in the

cellular automaton this effect is just implemented by some rule for

certain configurations of cells—and there is no need for the rule to

correspond in any way to the detailed dynamics of water molecules.

So even though there need not be any correspondence between

elements in a system and in a model, one might imagine that there

must still be some kind of complete correspondence between effects.

But the whole point of a model is to have a simplified representation of

a system, from which those features in which one is interested can

readily be deduced or understood. And the only way to achieve this is to

pick out only certain effects that are important, and to ignore all others.

Indeed, in practice, the main challenge in constructing models is

precisely to identify which effects are important enough that they have

to be kept, and which are not. In some simple situations, it is

sometimes possible to set up experiments in which one can essentially

isolate each individual effect and explicitly measure its importance. But
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in the majority of cases the best evidence that some particular set of

effects are in fact the important ones ultimately comes just from the

success of models that are based on these effects.

The systems that I discuss in this chapter are mostly complicated

enough that there are at least tens of quite different effects that could

contribute to their overall behavior. But in trying to construct the

simplest possible models, I have always picked out just a few effects

that I believe will be the most important. Inevitably there will be

phenomena that depend on other effects, and which are therefore not

correctly reproduced by the models I consider. So if these phenomena

are crucial to some particular application, then there will be no choice

but to extend the model for that application. 

But insofar as the goal is to understand the basic mechanisms

that are responsible for the most obvious features of overall behavior, it

is important to keep the underlying model as simple as possible. For

even with just a few extensions models usually become so complicated

that it is almost impossible to tell where any particular feature of

behavior really comes from.

Over the years I have been able to watch the progress of perhaps a

dozen significant models that I have constructed—though in most cases

never published—for a variety of kinds of systems with complex

behavior. My original models have typically been extremely simple.

And the initial response to them has usually been great surprise that

such simple models could ever yield behavior that has even roughly the

right features. But experts in the particular types of systems involved

have usually been quick to point out that there are many details that

my models do not correctly reproduce. 

Then after an initial period where the models are often said to be

too simplistic to be worth considering, there begin to be all sorts of

extensions added that attempt to capture more effects and more details.

The result of this is that after a few years my original models have

evolved into models that are almost unrecognizably complex. But these

models have often then been used with great success for many practical

purposes. And at that point, with their success established, it

sometimes happens that the models are examined more carefully—and
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it is then discovered that many of the extensions that were added were

in fact quite unnecessary, so that in the end, after perhaps a decade has

passed, it becomes recognized that models equivalent to the simple

ones I originally proposed do indeed work quite well.

One might have thought that in the literature of traditional

science new models would be proposed all the time. But in fact the vast

majority of what is done in practically every field of science involves

not developing new models but rather accumulating experimental data

or working out consequences of existing models.

And among the models that have been used, almost all those that

have gone beyond the level of being purely descriptive have ended up

being formulated in very much the same kind of way: typically as

collections of mathematical equations. Yet as I emphasized at the very

beginning of this book, this is, I believe, the main reason that in the past

it has been so difficult to find workable models for systems whose

behavior is complex. And indeed it is one of the central ideas of this

book to go beyond mathematical equations, and to consider models that

are based on programs which can effectively involve rules of any kind.

It is in many respects easier to work with programs than with

equations. For once one has a program, one can always find out what its

behavior will be just by running it. Yet with an equation one may need

to do elaborate mathematical analysis in order to find out what

behavior it can lead to. It does not help that models based on equations

are often stated in a purely implicit form, so that rather than giving an

actual procedure for determining how a system will behave—as a

program does—they just give constraints on what the behavior must be,

and provide no particular guidance about finding out what, if any,

behavior will in fact satisfy these constraints.

And even when models based on equations can be written in an

explicit form, they still typically involve continuous variables which

cannot for example be handled directly by a practical computer. When

their overall behavior is sufficiently simple, complete mathematical

formulas to describe this behavior can sometimes be found. But as soon

as the behavior is more complex there is usually no choice but to use

some form of approximation. And despite many attempts over the past
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fifty or so years, it has almost never been possible to demonstrate that

results obtained from such approximations even correctly reproduce

what the original mathematical equations would imply.

Models based on simple programs, however, suffer from no such

problems. For essentially all of them involve only discrete elements which

can be handled quite directly on a practical computer. And this means that

it becomes straightforward in principle—and often highly efficient in

practice—to work out at least the basic consequences of such models.

Many of the models that I discuss in this chapter are actually

based on some of the very simplest kinds of programs that I consider

anywhere in this book. But as we shall see, even these models appear

quite sufficient to capture the behavior of a remarkably wide range of

systems from nature and elsewhere—establishing beyond any doubt, I

believe, the practical value of thinking in terms of simple programs.

The Growth of Crystals

At a microscopic level crystals consist of regular arrays of atoms laid

out much like the cells in a cellular automaton. A crystal forms when a

liquid or gas is cooled below its freezing point. Crystals always start

from a seed—often a foreign object such as a grain of dust—and then

grow by progressively adding more atoms to their surface.

As an idealization of this process, one can consider a cellular

automaton in which black cells represent regions of solid and white

cells represent regions of liquid or gas. If one assumes that any cell

which is adjacent to a black cell will itself become black on the next

step, then one gets the patterns of growth shown below.

step 1 step 2 step 3 step 4 step 5 step 6

step 1 step 2 step 3 step 4 step 5 step 6

Cellular automata with rules that
specify that a cell should become
black if any of its neighbors are
already black. The patterns produced
have a simple faceted form that
reflects directly the structure of the
underlying lattice of cells.
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The shapes produced in each case are very simple, and ultimately

consist just of flat facets arranged in a way that reflects directly the

structure of the underlying lattice of cells. And many crystals in

nature—including for example most gemstones—have similarly simple

faceted forms. But some do not. And as one well-known example,

snowflakes can have highly intricate forms, as illustrated below.

To a good approximation, all the molecules in a snowflake

ultimately lie on a simple hexagonal grid. But in the actual process of

snowflake growth, not every possible part of this grid ends up being

filled with ice. The main effect responsible for this is that whenever a

piece of ice is added to the snowflake, there is some heat released,

which then tends to inhibit the addition of further pieces of ice nearby.

One can capture this basic effect by having a cellular automaton

with rules in which cells become black if they have exactly one black

neighbor, but stay white whenever they have more than one black

neighbor. The pictures on the facing page show a sequence of steps in

the evolution of such a cellular automaton. And despite the simplicity

of its underlying rules, what one sees is that the patterns it produces are

strikingly similar to those seen in real snowflakes.

From looking at the behavior of the cellular automaton, one can

immediately make various predictions about snowflakes. For example,

Examples of typical forms of snowflakes. Note that the scales for different pictures are different.
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one expects that during the growth of a particular snowflake there

should be alternation between tree-like and faceted shapes, as new

branches grow but then collide with each other.

And if one looks at real snowflakes, there is every indication that

this is exactly what happens. And in fact, in general the simple cellular

automaton shown above seems remarkably successful at reproducing

all sorts of obvious features of snowflake growth. But inevitably there

are many details that it does not capture. And indeed some of the

photographs on the facing page do not in the end look much like

patterns produced at any step in the evolution shown above.

step 1 step 2 step 3 step 4 step 5 step 6 step 7

step 8 step 9 step 10 step 11 step 12 step 13

step 14 step 15 step 16 step 17 step 18 step 19

step 20 step 21 step 22 step 23 step 24 step 25

step 26 step 27 step 28 step 29 step 30 step 31

The evolution of a cellular automaton in which each cell on a hexagonal grid becomes black whenever exactly one of its
neighbors was black on the step before. This rule captures the basic growth inhibition effect that occurs in snowflakes. The
resulting patterns obtained at different steps look remarkably similar to many real snowflakes.
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But it turns out that as soon as one tries to make a more complete

model, there are immediately an immense number of issues that arise,

and it is difficult to know which are really important and which are not.

At a basic level, one knows that snowflakes are formed when water

vapor in a cloud freezes into ice, and that the structure of a given

snowflake is determined by the temperature and humidity of the

environment in which it grows, and the length of time it spends there. 

The growth inhibition mentioned above is a result of the fact that

when water or water vapor freezes into ice, it releases a certain amount

of latent heat—as the reverse of the phenomenon that when ice is

warmed to 0°C it still needs heat applied before it will actually melt.

But there are also many effects. The freezing temperature, for

example, effectively varies with the curvature of the surface. The rate of

heat conduction differs in different directions on the hexagonal grid.

Convection currents develop in the water vapor around the snowflake.

Mechanical stresses are produced in the crystal as it grows. 

Various models of snowflake growth exist in the standard

scientific literature, typically focusing on one or two of these effects.

But in most cases the models have at some basic level been rather

unsuccessful. For being based on traditional mathematical equations

they have tended to be able to deal only with what amount to fairly

simple smooth shapes—and so have never really been able to address

the kind of intricate structure that is so striking in real snowflakes. 

But with models based on simple programs such as cellular

automata, there is no problem in dealing with more complicated shapes,

and indeed, as we have seen, it is actually quite easy to reproduce the

basic features of the overall behavior that occurs in real snowflakes. 

So what about other types of crystals? 

In nature a variety of forms are seen. And as the pictures on the

facing page demonstrate, the same is true even in cellular automata

with very simple rules. Indeed, much as in nature, the diversity of

behavior is striking. Sometimes simple faceted forms are produced. But

in other cases there are needle-like forms, tree-like or dendritic forms, as

well as rounded forms, and forms that seem in many respects random.
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The occurrence of these last forms is at first especially surprising.

For one might have assumed that any apparent randomness in the final

shape of something like a crystal must always be a consequence of

randomness in its original seed, or in the environment in which it grew. 

But in fact, as the pictures above show—and as we have seen

many times in this book—it is also possible for randomness to arise

intrinsically just through the application of simple underlying rules.

And contrary to what has always been assumed, I suspect that this is

actually how the apparent randomness that one sometimes sees in

shapes formed by crystalline materials often comes about. 

{3, 5, 6} (7 initial cells) {3, 7} (5 initial cells) {2, 5, 7} (2 initial cells) {3, 5, 7} (13 initial cells)

{1, 5} (1 initial cell) {1, 3, 5} (1 initial cell) {3, 6} (5 initial cells) {2, 4, 6} (2 initial cells)

{2} (2 initial cells) {1, 2} (1 initial cell) {1, 3} (1 initial cell) {3, 4} (3 initial cells)

Examples of patterns produced by two-dimensional cellular automata set up to mimic the growth of crystals. The rules in each
case take a cell to become black if the specified number of its neighbors (including diagonals) on a square grid are black on the
step before. These rules are such that once a cell has become black, corresponding to solid, it never reverts to white again. In
each case a row of initial black cells of the specified length was used.
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The Breaking of Materials

In everyday life one of the most familiar ways to generate randomness is

to break a solid object. For although the details vary from one material to

another it is almost universally the case that the line or surface along

which fracture actually occurs seems rough and in many respects random. 

So what is the origin of this randomness? At first one might think

that it must be a reflection of random small-scale irregularities within

the material. And indeed it is true that in materials that consist of

many separate crystals or grains, fractures often tend to follow the

boundaries between such elements.

But what happens if one takes for example a perfect single

crystal—say a standard highly pure industrial silicon crystal—and

breaks it? The answer is that except in a few special cases the pattern of

fracture one gets seems to look just as random as in other materials.

And what this suggests is that whatever basic mechanism is

responsible for such randomness, it cannot depend on the details of

particular materials. Indeed, the fact that almost indistinguishable

patterns of fracture are seen both at microscopic scales and in geological

systems on scales of order kilometers is another clue that there must be

a more general mechanism at work.

So what might this mechanism be?

When a solid material breaks what typically happens is that a

crack forms—usually at the edge of the material—and then spreads.

Experience with systems from hand-held objects to engineering

structures and earthquakes suggests that it can take a while for a crack

to get started, but that once it does, the crack tends to move quickly

and violently, usually producing a lot of noise in the process.

One can think of the components of a solid—whether at the level

of atoms, molecules, or pieces of rock—as being bound together by

forces that act a little like springs. And when a crack propagates

through the solid, this in effect sets up an elaborate pattern of

vibrations in these springs. The path of the crack is then in turn

determined by where the springs get stretched so far that they break.
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There are many factors which affect the details of displacements

and vibrations in a solid. But as a rough approximation one can perhaps

assume that each element of a solid is either displaced or not, and that

the displacements of neighboring elements interact by some definite

rule—say a simple cellular automaton rule.

The pictures below show the behavior that one gets with a simple

model of this kind. And even though there is no explicit randomness

inserted into the model in any way, the paths of the cracks that emerge

nevertheless appear to be quite random.

There are certainly many aspects of real materials that this model

does not even come close to capturing. But I nevertheless suspect that

even when much more realistic models for specific materials are used,

the fundamental mechanisms responsible for randomness will still be

very much the same as in the extremely simple model shown here.

rule 150 rule 22 rule 122

A very simple cellular automaton model for fracture. At each step, the color of each cell, which roughly
represents the displacement of an element of the solid, is updated according to a cellular automaton
rule. The black dot, representing the location of a crack, moves from one cell to another based on the
displacements of neighboring cells, at each step setting the cell it reaches to be white. Even though no
randomness is inserted from outside, the paths of the cracks that emerge from this model nevertheless
appear to a large extent random. There is some evidence from physical experiments that dislocations
around cracks can form patterns that look similar to the gray and white backgrounds above. 
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Fluid Flow

A great many striking phenomena in nature involve the flow of fluids

like air and water—as illustrated on the facing page. Typical of what

happens is what one sees when water flows around a solid object. At

sufficiently slow speeds, the water in effect just slides smoothly around,

yielding a very simple laminar pattern of flow. But at higher speeds,

there starts to be a region of slow-moving water behind the object, and a

pair of eddies are formed as the water swirls into this region. 

As the speed increases, these eddies become progressively more

elongated. And then suddenly, when a critical speed is reached, the

eddies in effect start breaking off, and getting carried downstream. But

every time one eddy breaks off, another starts to form, so that in the end

a whole street of eddies are seen in the wake behind the object.

At first, these eddies are arranged in a very regular way. But as the

speed of the flow is increased, glitches begin to appear, at first far behind

the object, but eventually throughout the wake. Even at the highest

speeds, some overall regularity nevertheless remains. But superimposed

on this is all sorts of elaborate and seemingly quite random behavior. 

But this is just one example of the very widespread phenomenon of

fluid turbulence. For as the pictures on the facing page indicate—and as

common experience suggests—almost any time a fluid is made to flow

rapidly, it tends to form complex patterns that seem in many ways random.

So why fundamentally does this happen?

Traditional science, with its basis in mathematical equations, has

never really been able to provide any convincing underlying explanation.

But from my discovery that complex and seemingly random behavior is in

a sense easy to get even with very simple programs, the phenomenon of

fluid turbulence immediately begins to seem much less surprising. 

But can simple programs really reproduce the particular kinds of

behavior we see in fluids? At a microscopic level, physical fluids consist

of large numbers of molecules moving around and colliding with each

other. So as a simple idealization, one can consider having a large

number of particles move around on a fixed discrete grid, and undergo

collisions governed by simple cellular-automaton-like rules.
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convection cells hydraulic jump supersonic sphere milk splash nuclear fireball

creeping flow attached eddies convection plumes cloud patterns billowing smoke

vortices behind accelerated airfoil gas jet in air Jupiter atmosphere

attached eddies behind cylinder vortex street section of water jet

falling water stream ink dropped in water rising smoke oil fire soap film turbulence

Examples of typical patterns generated in various kinds of fluid flow. Note the frequent occurrence of seemingly random turbulence. 
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The pictures below give an example of such a system. In the top

row of pictures—as well as picture (a)—all one sees is a collection of

discrete particles bouncing around. But if one zooms out, and looks at

average motion of increasingly large blocks of particles—as in pictures

(b) and (c)—then what begins to emerge is behavior that seems smooth

and continuous—just like one expects to see in a fluid. 

(c) 25725 averages

step 1000 step 1001 step 1002 step 1003

(a) individual cells (b) 575 averages

(d) moving with fluid

A simple cellular automaton system set up to emulate the microscopic behavior of
molecules in a fluid. At each step the configuration of particles is updated according to the
simple collision rules shown above. Particles are reflected whenever they hit the plate. A
steady stream of particles is inserted in a regular way far to the left, with an average speed
3/10 of the maximum possible. Picture (a) shows the configuration of individual particles;
pictures (b) and (c) show total velocities of successively larger blocks of particles. Picture
(d) is obtained by transforming to a reference frame in which the fluid is on average at rest.
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This happens for exactly the same reason as in a real fluid, or, for

that matter, in various examples that we saw in Chapter 7: even though at

an underlying level the system consists of discrete particles, the effective

randomness of the detailed microscopic motions of these particles makes

their large-scale average behavior seem smooth and continuous.

We know from physical experiments that the characteristics of

fluid flow are almost exactly the same for air, water, and all other

ordinary fluids. Yet at an underlying level these different fluids consist

of very different kinds of molecules, with very different properties. But

somehow the details of such microscopic structure gets washed out if

one looks at large-scale fluid-like behavior. 

Many times in this book we have seen examples where different

systems can yield very much the same overall behavior, even though

the details of their underlying rules are quite different. But in the

particular case of systems like fluids, it turns out that one can show—as

I will discuss in the next chapter—that so long as certain physical

quantities such as particle number and momentum are conserved, then

whenever there is sufficient microscopic randomness, it is almost

inevitable that the same overall fluid behavior will be obtained. 

So what this means is that to reproduce the observed properties

of physical fluids one should not need to make a model that involves

realistic molecules: even the highly idealized particles on the facing

page should give rise to essentially the same overall fluid behavior. 

And indeed in pictures (c) and (d) one can already see the

formation of a pair of eddies, just as in one of the pictures on page 377.

So what happens if one increases the speed of the flow? Does one

see the same kinds of phenomena as on page 377? The pictures on the

next page suggest that indeed one does. Below a certain critical speed, a

completely regular array of eddies is formed. But at the speed used in the

pictures on the next page, the array of eddies has begun to show random

irregularities just like those associated with turbulence in real fluids.

So where does this randomness come from?

In the past couple of decades it has come to be widely believed

that randomness in turbulent fluids must somehow be associated with
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step 70000

step 60000

step 50000

step 30000 step 40000

step 10000 step 20000

A larger example of the cellular
automaton system shown on the
previous page. In each picture
there are a total of 30 million
underlying cells. The individual
velocity vectors drawn correspond
to averages over 20 ä 20 blocks of
cells. Particles are inserted in a
regular way at the left-hand end so
as to maintain an overall flow
speed equal to about 0.4 of the
maximum possible. To make the
patterns of flow easier to see, the
velocities shown are transformed
so that the fluid is on average at
rest, and the plate is moving. The
underlying density of particles is
approximately 1 per cell, or 1/6
the maximum possible—a density
which more or less minimizes the
viscosity of the fluid. The Reynolds
number of the flow shown is then
approximately 100. The agreement
with experimental results on actual
fluid flows is striking. 
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sensitive dependence on initial conditions, and with the chaos

phenomenon that we discussed in Chapter 4. 

But while there are certainly mathematical equations that

exhibit this phenomenon, none of those typically investigated have any

close connection to realistic descriptions of fluid flow. 

And in the model on the facing page it turns out that there is

essentially no sensitive dependence on initial conditions, at least at the

level of overall fluid behavior. If one looks at individual particles, then

changing the position of even one particle will typically have an effect

that spreads rapidly. But if one looks instead at the average behavior of

many particles, such effects get completely washed out. And indeed

when it comes to large-scale fluid behavior, it seems to be true that in

almost all cases there is no discernible difference between what

happens with different detailed initial conditions.

So is there ever sensitive dependence on initial conditions?

Presumably there do exist situations in which there is some kind

of delicate balance—say of whether the first eddy is shed at the top or

bottom of an object—and in which small changes in initial conditions

can have a substantial effect. But such situations appear to be very

much the exception rather than the rule. And in the vast majority of

cases, small changes instead seem to damp out rapidly—just as one

might expect from everyday experience with viscosity in fluids.

So what this means is that the randomness we observe in fluid

flow cannot simply be a reflection of randomness that is inserted

through the details of initial conditions. And as it turns out, in the

pictures on the facing page, the initial conditions were specifically set

up to be very simple. Yet despite this, there is still apparent randomness

in the overall behavior that is seen.

And so, once again, just as for many other systems that we have

studied in this book, there is little choice but to conclude that in a

turbulent fluid most of the randomness we see is not in any way

inserted from outside but is instead intrinsically generated inside the

system itself. In the pictures on page 378 considerable randomness was

already evident at the level of individual particles. But since changes in

the configurations of such particles do not seem to have any discernible
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effect on overall patterns of flow, one cannot realistically attribute the

large-scale randomness that one sees in a turbulent fluid to randomness

that exists at the level of individual particles.

Instead, what seems to be happening is that intrinsic randomness

generation occurs directly at the level of large-scale fluid motion. And

as an example of a simple approach to modelling this, one can consider

having a collection of discrete eddies that occur at discrete positions in

the fluid, and interact through simple cellular automaton rules. 

The picture on the left shows an example of what can happen. And

although many details are different from what one sees in real fluids, the

overall mixture of regularity and randomness is strikingly similar.

One consequence of the idea that there is intrinsic randomness

generation in fluids and that it occurs at the level of large-scale fluid

motion is that with sufficiently careful preparation it should be possible

to produce patterns of flow that seem quite random but that are

nevertheless effectively repeatable—so that they look essentially the

same on every successive run of an experiment. 

And even if one looks at existing experiments on fluid flow, there

turn out to be quite a few instances—particularly for example involving

interactions between small numbers of vortices—where there are

known patterns of fluid flow that look intricate, but are nevertheless

essentially repeatable. And while none of these yet look complicated

enough that they might reasonably be called random, I suspect that in

time similar but vastly more complex examples will be found.

Among the patterns of fluid flow on page 377 each has its own

particular details and characteristics. But while some of the simpler

ones have been captured quite completely by methods based on

traditional mathematical equations, the more complex ones have not.

And in fact from the perspective of this book this is not surprising. 

But now from the experience and intuition developed from the

discoveries in this book, I expect that there will in fact be remarkably

simple programs that can be found that will successfully manage to

reproduce the main features of even the most intricate and apparently

random forms of fluid flow. 

A cellular automaton (rule 225)
whose behavior is reminiscent
of turbulent fluid flow.
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Fundamental Issues in Biology

Biological systems are often cited as supreme examples of complexity in

nature, and it is not uncommon for it to be assumed that their complexity

must be somehow of a fundamentally higher order than other systems. 

And typically it is thought that this must be a consequence of the

rather unique processes of adaptation and natural selection that operate

in biological systems. But despite all sorts of discussion over the years,

no clear understanding has ever emerged of just why such processes

should in the end actually lead to much complexity at all. 

And in fact what I have come to believe is that many of the most

obvious examples of complexity in biological systems actually have

very little to do with adaptation or natural selection. And instead what I

suspect is that they are mainly just another consequence of the very

basic phenomenon that I have discovered in this book in the context of

simple programs: that in almost any kind of system many choices of

underlying rules inevitably lead to behavior of great complexity.

The general idea of thinking in terms of programs is, if anything,

even more obvious for biological systems than for physical ones. For in

a physical system the rules of a program must normally be deduced

indirectly from the laws of physics. But in a biological organism there is

genetic material which can be thought of quite directly as providing a

program for the development of the organism.

Most of the programs that I have discussed in this book, however,

have been very simple. Yet the genetic program for every biological

organism known today is long and complicated: in humans, for example, it

presumably involves millions of separate rules—making it by most

measures as complex as large practical software systems like Mathematica. 

So from this one might think that the complexity we see in

biological organisms must all just be a reflection of complexity in their

underlying rules—making discoveries about simple programs not really

relevant. And certainly the presence of many different types of organs

and other elements in a typical complete organism seems likely to be

related to the presence of many separate sets of rules in the underlying
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program. But what if one looks not at a complete organism but instead

just at some part of an organism? 

Particularly on a microscopic scale, the forms one sees are often

highly regular and quite simple, as in the pictures on the facing page.

And when one looks at these, it seems perfectly reasonable to suppose

that they are in effect produced by fairly simple programs.

But what about the much more complicated forms that one sees

in biological systems? On the basis of traditional intuition one might

assume that such forms could never be produced by simple programs.

But from the discoveries in this book we now know that in fact it is

possible to get remarkable complexity even from very simple programs.

So is this what actually happens in biological systems?

There is certainly no dramatic difference between the underlying

types of cells or other elements that occur in complex biological forms

and in the forms on the facing page. And from this one might begin to

suspect that in the end the kinds of programs which generate all these

forms are quite similar—and all potentially rather simple. 

For even though the complete genetic program for an organism is

long and complicated, the subprograms which govern individual aspects

of an organism can still be simple—and there are now plenty of specific

simple examples where this is known to be the case. But still one might

assume that to get significant complexity would require something more.

And indeed at first one might think that it would never really be possible

to say much at all about complexity just by looking at parts of organisms.

But in fact, as it turns out, a rather large fraction of the most

obvious examples of biological complexity seem to involve only

surprisingly limited parts of the organisms. Elaborate pigmentation

patterns, for instance, typically exist just on an outer skin, and are made

up of only a few types of cells. And the vast majority of complicated

Examples of highly regular forms occurring in biological systems. Most of these forms are simple
enough that it seems immediately plausible that they could in effect be generated by simple
programs. The majority show either simple geometrical shapes, or repetition of identical
elements. A few, however, show various types of nesting. Note that there seems to be no obvious
correlation between the sophistication of a form and when in geological time it first appeared. 
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octopus tentacle opened brachiopod starfish sea urchin armadillo skin

barnacle fly eye wasp nest fossil ammonite septa nautilus shell section

daisy corn insect muscle section Burgess Shale fossil trilobite

romanesco broccoli heather pollen cow parsley carrot leaf tobacco mosaic viruses

heliozoan axopod radiolarian thallus cactus chickweed pollen

protist microspine section alga chloroplast diatom coccolithophorid
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morphological structures get their forms from arrangements of very

limited numbers of types of cells or other elements.

But just how are the programs for these and other features of

organisms actually determined? Over the past century or so it has

become almost universally believed that at some level these programs

must end up being the ones that maximize the fitness of the organism,

and the number of viable offspring it produces. 

The notion is that if a line of organisms with a particular program

typically produce more offspring, then after a few generations there will

inevitably be vastly more organisms with this program than with other

programs. And if one assumes that the program for each new offspring

involves small random mutations then this means that over the course

of many generations biological evolution will in effect carry out a

random search for programs that maximize the fitness of an organism.

But how successful can one expect such a search to be?

The problem of maximizing fitness is essentially the same as the

problem of satisfying constraints that we discussed at the end of

Chapter 7. And what we found there is that for sufficiently simple

constraints—particularly continuous ones—iterative random searches

can converge fairly quickly to an optimal solution. But as soon as the

constraints are more complicated this is no longer the case. And indeed

even when the optimal solution is comparatively simple it can require an

astronomically large number of steps to get even anywhere close to it.

Biological systems do appear to have some tricks for speeding up

the search process. Sexual reproduction, for example, allows large-scale

mixing of similar programs, rather than just small-scale mutation. And

differentiation into organs in effect allows different parts of a program to

be updated separately. But even with a whole array of such tricks, it is still

completely implausible that the trillion or so generations of organisms

since the beginning of life on Earth would be sufficient to allow optimal

solutions to be found to constraints of any significant complexity.

And indeed one suspects that in fact the vast majority of features

of biological organisms do not correspond to anything close to optimal

solutions: rather, they represent solutions that were fairly easy to find,

but are good enough not to cause fatal problems for the organism.
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The basic notion that organisms tend to evolve to achieve a

maximum fitness has certainly in the past been very useful in providing

a general framework for understanding the historical progression of

species, and in yielding specific explanations for various fairly simple

properties of particular species. 

But in present-day thinking about biology the notion has tended to

be taken to an extreme, so that especially among those not in daily

contact with detailed data on biological systems it has come to be

assumed that essentially every feature of every organism can be explained

on the basis of it somehow maximizing the fitness of the organism.

It is certainly recognized that some aspects of current organisms

are in effect holdovers from earlier stages in biological evolution. And

there is also increasing awareness that the actual process of growth and

development within an individual organism can make it easier or more

difficult for particular kinds of structures to occur. 

But beyond this there is a surprisingly universal conviction that any

significant property that one sees in any organism must be there because it

in essence serves a purpose in maximizing the fitness of the organism.

Often it is at first quite unclear what this purpose might be, but

at least in fairly simple cases, some kind of hypothesis can usually be

constructed. And having settled on a supposed purpose it often seems

quite marvellous how ingenious biology has been in finding a solution

that achieves that purpose.

Thus, for example, the golden ratio spiral of branches on a plant stem

can be viewed as a marvellous way to minimize the shading of leaves,

while the elaborate patterns on certain mollusc shells can be viewed as

marvellous ways to confuse the visual systems of supposed predators.

But it is my strong suspicion that such purposes in fact have very

little to do with the real reasons that these particular features exist. For

instead, as I will discuss in the next couple of sections, what I believe is that

these features actually arise in essence just because they are easy to produce

with fairly simple programs. And indeed as one looks at more and more

complex features of biological organisms—notably texture and

pigmentation patterns—it becomes increasingly difficult to find any

credible purpose at all that would be served by the details of what one sees.
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In the past, the idea of optimization for some sophisticated

purpose seemed to be the only conceivable explanation for the level of

complexity that is seen in many biological systems. But with the

discovery in this book that it takes only a simple program to produce

behavior of great complexity, a quite different—and ultimately much

more predictive—kind of explanation immediately becomes possible.

In the course of biological evolution random mutations will in effect

cause a whole sequence of programs to be tried. And the point is that from

what we have discovered in this book, we now know that it is almost

inevitable that a fair fraction of these programs will yield complex behavior.

Some programs will presumably lead to organisms that are more

successful than others, and natural selection will cause these programs

eventually to dominate. But in most cases I strongly suspect that it is

comparatively coarse features that tend to determine the success of an

organism—not all the details of any complex behavior that may occur.

Thus in a very simple case it is easy to imagine for example that

an organism might be more likely to go unnoticed by its predators, and

thus survive and be more successful, if its skin was a mixture of brown

and white, rather than, say, uniformly bright orange. But it could then

be that most programs which yield any mixture of colors also happen to

be such that they make the colors occur in a highly complex pattern.

And if this is so, then in the course of random mutation, the

chances are that the first program encountered that is successful enough

to survive will also, quite coincidentally, exhibit complex behavior. 

On the basis of traditional biological thinking one would tend to

assume that whatever complexity one saw must in the end be carefully

crafted to satisfy some elaborate set of constraints. But what I believe

instead is that the vast majority of the complexity we see in biological

systems actually has its origin in the purely abstract fact that among

randomly chosen programs many give rise to complex behavior.

In the past it tends to have been implicitly assumed that to get

substantial complexity in a biological system must somehow be

fundamentally very difficult. But from the discoveries in this book I

have come to the conclusion that instead it is actually rather easy.

So how can one tell if this is really the case?
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One circumstantial piece of evidence is that one already sees

considerable complexity even in very early fossil organisms. Over the

course of the past billion or so years, more and more organs and other

devices have appeared. But the most obvious outward signs of

complexity, manifest for example in textures and other morphological

features, seem to have already been present even from very early times.

And indeed there is every indication that the level of complexity

of individual parts of organisms has not changed much in at least

several hundred million years. So this suggests that somehow the

complexity we see must arise from some straightforward and general

mechanism—and not, for example, from a mechanism that relies on

elaborate refinement through a long process of biological evolution.

Another circumstantial piece of evidence that complexity is in a

sense easy to get in biological systems comes from the observation that

among otherwise very similar present-day organisms features such as

pigmentation patterns often vary from quite simple to highly complex. 

Whether one looks at fishes, butterflies, molluscs or practically

any other kind of organism, it is common to find that across species or

even within species organisms that live in the same environment and

have essentially the same internal structure can nevertheless exhibit

radically different pigmentation patterns. In some cases the patterns

may be simple, but in other cases they are highly complex.

And the point is that no elaborate structural changes and no

sophisticated processes of adaptation seem to be needed in order to get

these more complex patterns. And in the end it is, I suspect, just that

some of the possible underlying genetic programs happen to produce

complex patterns, while others do not.

Two sections from now I will discuss a rather striking potential

example of this: if one looks at molluscs of various types, then it turns

out that the range of pigmentation patterns on their shells corresponds

remarkably closely with the range of patterns that are produced by

simple randomly chosen programs based on cellular automata.

And examples like this—together with many others in the next

couple of sections—provide evidence that the kind of complexity we see

in biological organisms can indeed successfully be reproduced by short



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

390

and simple underlying programs. But there still remains the question of

whether actual biological organisms really use such programs, or

whether somehow they instead use much more complicated programs.

Modern molecular biology should soon be able to isolate the

specific programs responsible, say, for the patterns on mollusc shells,

and see explicitly how long they are. But there are already indications

that these programs are quite short. 

For one of the consequences of a program being short is that it has

little room for inessential elements. And this means that almost any

mutation or change in the program—however small—will tend to have

a significant effect on at least the details of patterns it produces.

Sometimes it is hard to tell whether changes in patterns between

organisms within a species are truly of genetic origin. But in cases

where they appear to be it is common to find that different organisms

show a considerable variety of different patterns—supporting the idea

that the programs responsible for these patterns are indeed short.

So what about the actual process of biological evolution? How does

it pick out which programs to use? As a very simple idealization of

biological evolution, one can consider a sequence of cellular automaton

programs in which each successive program is obtained from the previous

one by a random mutation that adds or modifies a single element.

The pictures on the facing page then show a typical example of

what happens with such a setup. If one starts from extremely short

programs, the behavior one gets is at first quite simple. But as soon as

the underlying programs become even slightly longer, one immediately

sees highly complex behavior. 

Traditional intuition would suggest that if the programs were to

become still longer, the behavior would get ever richer and more

complex. But from the discoveries in this book we know that this will

not in general be the case: above a fairly low threshold, adding

complexity to an underlying program does not fundamentally change

the kind of behavior that it can produce.

And from this one concludes that biological systems should in a

sense be capable of generating essentially arbitrary complexity by using

short programs formed by just a few mutations.
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But if complexity is this easy to get, why is it not even more

widespread in biology? For while there are certainly many examples

of elaborate forms and patterns in biological systems, the overall

shapes and many of the most obvious features of typical organisms

are usually quite simple.

So why should this be? My guess is that in essence it reflects

limitations associated with the process of natural selection. For while

The behavior of a sequence of cellular automaton programs obtained by successive random mutations. The first program contains no rules
for changing the color of a cell with any neighborhood. Mutations in successive programs add rules for changing the colors of cells with
specific neighborhoods, or modify these rules. Each program in the sequence differs from the previous one by a single mutation, made
completely at random. The sequence provides a very simple idealization of biological evolution without explicit natural selection. The cellular
automata shown here all have 3 possible colors and nearest-neighbor rules. The label for each picture gives a representation of the rules for
each of the 27 possible 3-cell neighborhoods. A dot signifies that the rule does not change the color of the center cell in the neighborhood.
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natural selection is often touted as a force of almost arbitrary power, I

have increasingly come to believe that in fact its power is remarkably

limited. And indeed, what I suspect is that in the end natural selection

can only operate in a meaningful way on systems or parts of systems

whose behavior is in some sense quite simple.

If a particular part of an organism always grows, say, in a simple

straight line, then it is fairly easy to imagine that natural selection could

succeed in picking out the optimal length for any given environment.

But what if an organism can grow in a more complex way, say like in the

pictures on the previous page? My strong suspicion is that in such a case

natural selection will normally be able to achieve very little. 

There are several reasons for this, all somewhat related.

First, with more complex behavior, there are typically a huge

number of possible variations, and in a realistic population of

organisms it becomes infeasible for any significant fraction of these

variations to be explored.

Second, complex behavior inevitably involves many elaborate

details, and since different ones of these details may happen to be the

deciding factors in the fates of individual organisms, it becomes very

difficult for natural selection to act in a consistent and definitive way.

Third, whenever the overall behavior of a system is more

complex than its underlying program, almost any mutation in the

program will lead to a whole collection of detailed changes in the

behavior, so that natural selection has no opportunity to pick out

changes which are beneficial from those which are not.

Fourth, if random mutations can only, say, increase or decrease a

length, then even if one mutation goes in the wrong direction, it is easy for

another mutation to recover by going in the opposite direction. But if there

are in effect many possible directions, it becomes much more difficult to

recover from missteps, and to exhibit any form of systematic convergence.

And finally, as the results in Chapter 7 suggest, for anything

beyond the very simplest forms of behavior, iterative random searches

rapidly tend to get stuck, and make at best excruciatingly slow progress

towards any kind of global optimum.
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In a sense it is not surprising that natural selection can achieve

little when confronted with complex behavior. For in effect it is being

asked to predict what changes would need to be made in an underlying

program in order to produce or enhance a certain form of overall

behavior. Yet one of the main conclusions of this book is that even

given a particular program, it can be very difficult to see what the

behavior of the program will be. And to go backwards from behavior to

programs is a still much more difficult task.

In writing this book it would certainly have been convenient to

have had a systematic way to be able to find examples of programs that

exhibit specified forms of complex behavior. And indeed I have tried

hard to develop iterative search procedures that would do this. But even

using a whole range of tricks suggested by biology—as well as quite a

number that are not—I have never been successful. And in fact in every

single case I have in the end reverted either to exhaustive or to purely

random searches, with no attempt at iterative improvement.

So what does this mean for biological organisms? It suggests that

if a particular feature of an organism is successfully going to be

optimized for different environments by natural selection, then this

feature must somehow be quite simple.

And no doubt that is a large part of the reason that biological

organisms always tend to consist of separate organs or other parts, each

of which has at least some attributes that are fairly simple. For in this

way there end up being components that are simple enough to be

adjusted in a meaningful fashion by natural selection.

It has often been claimed that natural selection is what makes

systems in biology able to exhibit so much more complexity than

systems that we explicitly construct in engineering. But my strong

suspicion is that in fact the main effect of natural selection is almost

exactly the opposite: it tends to make biological systems avoid

complexity, and be more like systems in engineering.

When one does engineering, one normally operates under the

constraint that the systems one builds must behave in a way that is readily

predictable and understandable. And in order to achieve this one typically
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limits oneself to constructing systems out of fairly small numbers of

components whose behavior and interactions are somehow simple.

But systems in nature need not in general operate under the

constraint that their behavior should be predictable or understandable.

And what this means is that in a sense they can use any number of

components of any kind—with the result, as we have seen in this book,

that the behavior they produce can often be highly complex.

However, if natural selection is to be successful at systematically

molding the properties of a system then once again there are limitations

on the kinds of components that the system can have. And indeed, it

seems that what is needed are components that behave in simple and

somewhat independent ways—much as in traditional engineering.

At some level it is not surprising that there should be an analogy

between engineering and natural selection. For both cases can be viewed

as trying to create systems that will achieve or optimize some goal.

Indeed, the main difference is just that in engineering explicit

human effort is expended to find an appropriate form for the system,

whereas in natural selection an iterative random search process is used

instead. But the point is that the conditions under which these two

approaches work turn out to be not so different.

In fact, there are even, I suspect, similarities in quite detailed

issues such as the kinds of adjustments that can be made to individual

components. In engineering it is common to work with components

whose properties can somehow be varied smoothly, and which can

therefore be analyzed using the methods of calculus and traditional

continuous mathematics.

And as it turns out, much as we saw in Chapter 7, this same kind

of smooth variation is also what tends to make iterative search methods

such as natural selection be successful. 

In biological systems based on discrete genetic programs, it is far

from clear how smooth variation can emerge. Presumably in some cases

it can be approximated by the presence of varying numbers of repeats in

the underlying program. And more often it is probably the result of

combinations of large numbers of elements that each produce fairly

random behavior.
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But the possibility of smooth variation seems to be important

enough to the effectiveness of natural selection that it is extremely

common in actual biological systems. And indeed, while there are some

traits—such as eye color and blood type in humans—that are more or

less discrete, the vast majority of traits seen, say, in the breeding of

plants and animals, show quite smooth variation.

So to what extent does the actual history of biological evolution

reflect the kinds of simple characteristics that I have argued one should

expect from natural selection?

If one looks at species that exist today, and at the fossil record of

past species, then one of the most striking features is just how much is

in common across vast ranges of different organisms. The basic body

plans for animals, for example, have been almost the same for hundreds

of millions of years, and many organs and developmental pathways are

probably even still older. 

In fact, the vast majority of structurally important features seem

to have changed only quite slowly and gradually in the course of

evolution—just as one would expect from a process of natural selection

that is based on smooth variations in fairly simple properties.

But despite this it is still clear that there is considerable diversity,

at least at the level of visual appearance, in the actual forms of

biological organisms that occur. So how then does such diversity arise?

One effect, to be discussed at greater length in the next section, is

essentially just a matter of geometry. If the relative rates of growth of

different parts of an organism change even slightly, then it turns out

that this can sometimes have dramatic consequences for the overall

shape of the organism, as well as for its mechanical operation.

And what this means is that just by making gradual changes in

quantities such as relative rates of growth, natural selection can succeed

in producing organisms that at least in some respects look very different.

But what about other differences between organisms? To what

extent are all of them systematically determined by natural selection?

Following the discussion earlier in this section, it is my strong

suspicion that at least many of the visually most striking differences—
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associated for example with texture and pigmentation patterns—in the

end have almost nothing to do with natural selection.

And instead what I believe is that such differences are in essence

just reflections of completely random changes in underlying genetic

programs, with no systematic effects from natural selection.

Particularly among closely related species of organisms there is

certainly quite a contrast between the dramatic differences often seen

in features such as pigmentation patterns and the amazing constancy of

other features. And most likely those features in which a great degree of

constancy is seen are precisely the ones that have successfully been

molded by natural selection.

But as I mentioned earlier, it is almost always those features

which change most rapidly between species that show the most obvious

signs of complexity. And this observation fits precisely with the idea

that complexity is easy to get by randomly sampling simple programs,

but is hard for natural selection to handle in any kind of systematic way.

So in the end, therefore, what I conclude is that many of the most

obvious features of complexity in biological organisms arise in a sense

not because of natural selection, but rather in spite of it.

No doubt it will for many people be difficult to abandon the idea that

natural selection is somehow crucial to the presence of complexity in

biological organisms. For traditional intuition makes one think that to get

the level of complexity that one sees in biological systems must require

great effort—and the long and ponderous course of evolution revealed in the

fossil record seems like just the kind of process that should be involved.

But the point is that what I have discovered in this book shows

that in fact if one just chooses programs at random, then it is easy to get

behavior of great complexity. And it is this that I believe lies at the

heart of most of the complexity that we see in nature, both in biological

and non-biological systems.

Whenever natural selection is an important determining factor, I

suspect that one will inevitably see many of the same simplifying

features as in systems created through engineering. And only when

natural selection is not crucial, therefore, will biological systems be
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able to exhibit the same level of complexity that one observes for

example in many systems in physics.

In biology the presence of long programs with many separate

parts can lead to a certain rather straightforward complexity analogous

to having many physical objects of different kinds collected together.

But the most dramatic examples of complexity in biology tend to occur

in individual parts of systems—and often involve patterns or structures

that look remarkably like those in physics.

Yet if biology samples underlying genetic programs essentially at

random, why should these programs behave anything like programs

that are derived from specific laws of physics?

The answer, as we have seen many times in this book, is that

across a very wide range of programs there is great universality in the

behavior that occurs. The details depend on the exact rules for each

program, but the overall characteristics remain very much the same.

And one of the important consequences of this is that it suggests

that it might be possible to develop a rather general predictive theory of

biology that would tell one, for example, what basic forms are and are

not likely to occur in biological systems.

One might have thought that the traditional idea that organisms

are selected to be optimal for their environment would already long ago

have led to some kind of predictive theory. And indeed it has for example

allowed some simple numerical ratios associated with populations of

organisms to be successfully derived. But about a question such as what

forms of organisms are likely to occur it has much less to say. 

There are a number of situations where fairly complicated structures

appear to have arisen independently in several very different types of

organisms. And it is sometimes claimed that this kind of convergent

evolution occurs because these structures are in some ultimate sense

optimal, making it inevitable that they will eventually be produced. 

But I would be very surprised if this explanation were correct.

And instead what I strongly suspect is that the reason certain structures

appear repeatedly is just that they are somehow common among

programs of certain kinds—just as, for example, we have seen that the
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intricate nested pattern shown on the left arises from many different

simple programs.

Ever since the original development of the theory of evolution,

there has been a widespread belief that the general trend seen in the fossil

record towards the formation of progressively more complicated types of

organisms must somehow be related to an overall increase in optimality.

Needless to say, we do not know what a truly optimal organism

would be like. But if optimality is associated with having as many

offspring as possible, then very simple organisms such as viruses and

protozoa already seem to do very well.

So why then do higher organisms exist at all? My guess is that it

has almost nothing to do with optimality, and that instead it is essentially

just a consequence of strings of random mutations that happened to add

more and more features without introducing fatal flaws.

It is certainly not the case—as is often assumed—that natural

selection somehow inevitably leads to organisms with progressively

more elaborate structures and progressively larger numbers of parts.

For a start, some kinds of organisms have been subject to natural

selection for more than a billion years, but have never ended up

becoming much more complicated. And although there are situations

where organisms do end up becoming more complicated, they also

often become simpler.

A typical pattern—remarkably similar, as it happens, to what

occurs in the history of technology—is that at some point in the fossil

record some major new capability or feature is suddenly seen. At first

there is then rapid expansion, with many new species trying out all

sorts of possibilities that have been opened up. And usually some of

these possibilities get quite ornate and elaborate. But after a while it

becomes clear what makes sense and what does not. And typically

things then get simpler again.

So what is the role of natural selection in all of this? My guess is

that as in other situations, its main systematic contribution is to make

things simpler, and that insofar as things do end up getting more

complicated, this is almost always the result of essentially random

An example of a basic
pattern that is produced
in several variants by a
wide range of simple
programs.
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sampling of underlying programs—without any systematic effect of

natural selection.

For the more superficial aspects of organisms—such as

pigmentation patterns—it seems likely that among programs sampled at

random a fair fraction will produce results that are not disastrous for the

organism. But when one is dealing with the basic structure of organisms,

the vast majority of programs sampled at random will no doubt have

immediate disastrous consequences. And in a sense it is natural selection

that is responsible for the fact that such programs do not survive.

But the point is that in such a case its effect is not systematic or

cumulative. And indeed it is my strong suspicion that for essentially all

purposes the only reasonable model for important new features of

organisms is that they come from programs selected purely at random. 

So does this then mean that there can never be any kind of

general theory for all the features of higher organisms? Presumably the

pattern of exactly which new features were added when in the history

of biological evolution is no more amenable to general theory than the

specific course of events in human history. But I strongly suspect that

the vast majority of significant new features that appear in organisms

are at least at first associated with fairly short underlying programs.

And insofar as this is the case the results of this book should allow one

to develop some fairly general characterizations of what can happen.

So what all this means is that much of what we see in biology

should correspond quite closely to the typical behavior of simple

programs as we have studied them in this book—with the main caveat

being just that certain aspects will be smoothed and simplified by the

effects of natural selection. Seeing in earlier chapters of this book all the

diverse things that simple programs can do, it is easy to be struck by

analogies to books of biological flora and fauna. Yet what we now see is

that in fact such analogies may be quite direct—and that many of the

most obvious features of actual biological organisms may in effect be

direct reflections of typical behavior that one sees in simple programs. 
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Growth of Plants and Animals

Looking at all the elaborate forms of plants and animals one might at

first assume that the underlying rules for their growth must be highly

complex. But in this book we have discovered that even by following

very simple rules it is possible to obtain forms of great complexity. And

what I have come to believe is that in fact most aspects of the growth of

plants and animals are in the end governed by remarkably simple rules.

As a first example of biological growth, consider the stem of a

plant. It is usually only at the tip of a stem that growth can occur, and

much of the time all that ever happens is that the stem just gets

progressively longer. But the crucial phenomenon that ultimately leads

to much of the structure we see in many kinds of plants is that at the

tip of a stem it is possible for new stems to form and branch off. And in

the simplest cases these new stems are in essence just smaller copies of

the original stem, with the same basic rules for growth and branching.

With this setup the succession of branchings can then be

represented by steps in the evolution of a neighbor-independent

substitution system in which the tip of each stem is at each step

replaced by a collection of smaller stems in some fixed configuration.

Two examples of such substitution systems are shown in the

pictures below. In both cases the rules are set up so that every stem in

effect just branches into exactly three new stems at each step. And this

step 1 step 2 step 3 step 4 step 5 step 6 step 7

step 1 step 2 step 3 step 4 step 5 step 6 step 7

Steps in the evolution of substitution systems that provide simple models for the growth of plants.
At each step every growing stem is replaced by a collection of three new stems according to the
rules shown. For individual stems this type of branching is known in botany as monopodial.
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means that the network of connections between stems necessarily has a

very simple nested form. But if one looks at the actual geometrical

arrangement of stems there is no longer such simplicity; indeed, despite

the great simplicity of the underlying rules, considerable complexity is

immediately evident even in the pictures at the bottom of the facing page.

The pictures on the next page show patterns obtained with

various sequences of choices for the lengths and angles of new stems. In

a few cases the patterns are quite simple; but in most cases they turn

out to be highly complex—and remarkably diverse.

The pictures immediately remind one of the overall branching

patterns of all sorts of plants—from algae to ferns to trees to many

kinds of flowering plants. And no doubt it is from such simple rules of

growth that most such overall branching patterns come.

But what about more detailed features of plants? Can they also be

thought of as consequences of simple underlying rules of growth?

For many years I wondered in particular about the shapes of

leaves. For among different plants there is tremendous diversity in such

shapes—as illustrated in the pictures on page 403. Some plants have

leaves with simple smooth boundaries that one might imagine could be

described by traditional mathematical functions. Others have leaves

with various configurations of sharp points. And still others have leaves

with complex and seemingly somewhat random boundaries.

So given this diversity one might at first suppose that no single

kind of underlying rule could be responsible for what is seen. But

looking at arrays of pictures like the ones on the next page one makes a

remarkable discovery: among the patterns that can be generated by

simple substitution systems are ones whose outlines look extremely

similar to those of a wide variety of types of leaves.

There are patterns with smooth edges that look like lily pads.

There are patterns with sharp points that look like prickly leaves of

various kinds. And there are patterns with intricate and seemingly

somewhat random shapes that look like sycamore or grape leaves.

It has never in the past been at all clear how leaves get the shapes

they do. Presumably most of the processes that are important take place

while leaves are still folded up inside buds, and are not yet very solid.
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Limiting patterns produced by substitution systems of the type shown in the previous picture. The patterns on each
row are obtained from rules that are set up to give branches with particular relative lengths. The angles between the
branches are taken to increase by 15o in successive pictures across the row. Note that pictures shown on different
rows are scaled differently—so that the initial vertical stem does not always appear with the same height. The similarity
between pictures on this page and overall branching patterns and shapes of leaves in many kinds of plants is striking.
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Examples of different kinds of leaves, mostly from common flowering plants. The diversity of shapes is remarkable, as is the
similarity to the forms shown on the facing page. The leaves range in size from under an inch to many feet.
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For although leaves typically expand significantly after they come out,

the basic features of their shapes almost never seem to change.

There is some evidence that at least some aspects of the pattern of

veins in a leaf are laid down before the main surface of the leaf is filled

in, and perhaps the stems in the branching process I describe here

correspond to precursors of structures related to veins. Indeed, the

criss-crossing of veins in the leaves of higher plants may be not

unrelated to the fact that stems in the pictures two pages ago often cross

over—although certainly many of the veins in actual full-grown leaves

are probably added long after the shapes of the leaves are determined.

One might at the outset have thought that leaves would get their

shapes through some mechanism quite unrelated to other aspects of

plant growth. But I strongly suspect that in fact the very same simple

process of branching is ultimately responsible both for the overall forms

of plants, and for the shapes of their leaves.

Quite possibly there will sometimes be at least some correspondence

between the lengths and angles that appear in the rules for overall growth

and for the growth of leaves. But in general the details of all these rules will

no doubt depend on very specific characteristics of individual plants.

The distance before a new stem appears is, for example, probably

determined by the rates of production and diffusion of plant hormones

and related substances, and these rates will inevitably depend both on

the thickness and mechanical structure of the stem, as well as on all

kinds of biochemical properties of the plant. And when it comes to the

angles between old and new stems I would not be surprised if these

were governed by such microscopic details as individual shapes of cells

and individual sequences of cell divisions.

The traditional intuition of biology would suggest that whenever one

sees complexity—say in the shape of a leaf—it must have been generated

for some particular purpose by some sophisticated process of natural

selection. But what the pictures on the previous pages demonstrate is that

in fact a high degree of complexity can arise in a sense quite effortlessly just

as a consequence of following certain simple rules of growth.

No doubt some of the underlying properties of plants are indeed

guided by natural selection. But what I strongly suspect is that in the
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vast majority of cases the occurrence of complexity—say in the shapes

of leaves—is in essence just a side effect of the particular rules of growth

that happen to result from the underlying properties of the plant.

The pictures on the next page show the array of possible forms

that can be produced by rules in which each stem splits into exactly

two new stems at each step. The vertical black line on the left-hand

side of the page represents in effect the original stem at each step, and

the pictures are arranged so that the one which appears at a given

position on the page shows the pattern that is generated when the tip of

the right-hand new stem goes to that position relative to the original

stem shown on the left. 

In some cases the patterns obtained are fairly simple. But even in

these cases the pictures show that comparatively small changes in

underlying rules can lead to much more complex patterns. And so if in

the course of biological evolution gradual changes occur in the rules, it

is almost inevitable that complex patterns will sometimes be seen.

But just how suddenly can the patterns change? To get some idea

of this one can construct a kind of limit of the array on the next page in

which the total number of pictures is in effect infinite, but only a

specific infinitesimal region of each picture is shown. Page 407 gives

results for four choices of the position of this region relative to the

original stem. And instead of just displaying black or white depending

on whether any part of the pattern lies in the region, the picture uses

gray levels to indicate how close it comes.

The areas of solid black thus correspond to ranges of parameters

in the underlying rule for which the patterns obtained always reach a

particular position. But what we see is that at the edges of these areas

there are often intricate structures with an essentially nested form. And

the presence of such structures implies that at least with some ranges of

parameters, even very small changes in underlying rules can lead to

large changes in certain aspects of the patterns that are produced.

So what this suggests is that it is almost inevitable that features

such as the shapes of leaves can sometimes change greatly even when

the underlying properties of plants change only slightly. And I suspect
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The full array of patterns that can be produced by simple substitution systems in which each stem branches into exactly two symmetrical
stems at each step. The patterns are arranged on the page so that the pattern shown at a particular position corresponds to what is
obtained with a rule in which the tip of the right-hand stem goes to that position (corrected for the aspect ratio of the array) relative to the
original stem shown as a vertical line on the left-hand side of the page. In each case the result of 10 steps of evolution is shown, and the
pictures are scaled so that all points above the bottom of the original stem can be included. Note that for rules outside of a distorted
semicircle centered on the dot at the left-hand side of the page, and touching the three other sides of the page, the patterns generated
grow at each step, rather than tending to a limit of fixed size.
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Maps of where in the space of parameters for the substitution systems on the facing page the patterns obtained overlap the
region indicated in the icon at the top left of each picture. Black corresponds to complete overlap, while white corresponds to no
overlap. The maps shown can be thought of as being made by taking an infinitely dense limit of the array of pictures on the
facing page, but keeping only what one sees in each picture by looking through a peephole at a particular position relative to the
original stem.
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that this is precisely why such diverse shapes of leaves are occasionally

seen even in plants that otherwise appear very similar.

But while features such as the shapes of leaves typically differ

greatly between different plants, there are also some seemingly quite

sophisticated aspects of plants that typically remain almost exactly the

same across a huge range of species.

One example is the arrangement of sequences of plant organs or

other elements around a stem. In some cases successive leaves, say, will

always come out on opposite sides of a stem—180° apart. But

considerably more common is for leaves to come out less than 180°

apart, and in most plants the angle turns out to be essentially the same,

and equal to almost exactly 137.5°.

It is already remarkable that such a definite angle arises in the

arrangement of leaves—or so-called phyllotaxis—of so many plants. But it

turns out that this very same angle also shows up in all sorts of other

features of plants, as shown in the pictures at the top of the facing page. And

although the geometry is different in different cases, the presence of a fixed

angle close to 137.5° always leads to remarkably regular spiral patterns.

Over the years, much has been written about such patterns, and

about their mathematical properties. For it turns out that an angle

between successive elements of about 137.5° is equivalent to a rotation

by a number of turns equal to the so-called golden ratio

 which arises in a wide variety of mathematical

contexts—notably as the limiting ratio of Fibonacci numbers. 

And no doubt in large part because of this elegant

mathematical connection, it has usually come to be assumed that the

137.5° angle and the spiral patterns to which it leads must

correspond to some kind of sophisticated optimization found by an

elaborate process of natural selection.

But I do not believe that this is in fact the case. And instead what

I strongly suspect is that the patterns are just inevitable consequences

of a rather simple process of growth not unlike one that was already

discussed, at least in general terms, nearly a century ago.

�1 �
�!!!

5 ��2 � 1.618



I M P L I C A T I O N S  F O R  E V E R Y D A Y  S Y S T E M S C H A P T E R  8

409

The positions of new plant organs or other elements around a

stem are presumably determined by what happens in a small ring of

material near the tip of the growing stem. And what I suspect is that a

new element will typically form at a particular position around the ring

if at that position the concentration of some chemical has reached a

certain critical level.

But as soon as an element is formed, one can expect that it will

deplete the concentration of the chemical in its local neighborhood, and

thus inhibit further elements from forming nearby. Nevertheless,

general processes in the growing stem will presumably make the

concentration steadily rise throughout the ring of active material, and

eventually this concentration will again get high enough at some

position that it will cause another element to be formed.

Examples of spiral arrangements of elements in various plant systems. The details of the final geometry
are different in different cases. But in all cases it turns out that the original angle between successive
elements is almost exactly 137.5°. The first row shows red cabbage (cut open), artichoke, asparagus,
raspberry and strawberry. The first two objects on the last row are a pinecone and an acorn. 
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The pictures above show an example of this type of process. For

purposes of display the ring of active material is unrolled into a line, and

successive states of this line are shown one on top of each other going up

the page. At each step a new element, indicated by a black dot, is taken to

be generated at whatever position the concentration is maximal. And

around this position the new element is then taken to produce a dip in

concentration that is gradually washed out over the course of several steps. 

The way the pictures are drawn, the angles between successive

elements correspond to the horizontal distances between them. And

although these distances vary somewhat for the first few steps, what we

see in general is remarkably rapid convergence to a fixed distance—

which turns out to correspond to an angle of almost exactly 137.5°.

So what happens if one changes the details of the model? In the

extreme case where all memory of previous behavior is immediately

damped out the first picture at the top of the facing page shows that

successive elements form at 180° angles. And in the case where there is

very little damping the last two pictures show that at least for a while

elements can form at fairly random angles. But in the majority of cases

one sees rather rapid convergence to almost precisely 137.5°.

step 1 step 2 step 3 step 4 step 5 step 6

step 7 step 8 step 9 step 10 step 11 step 12 step 13 step 14 step 15 step 16

A simple model for the arrangement of leaves or other elements produced at the growing tip of a plant stem. The stem
is taken to grow up the page, and for purposes of display it is unrolled into a line. The positions of leaves or other
elements are indicated by black dots. The concentration of a chemical is indicated by gray level, and for the top line at
each step, it is also plotted. The rule for the system places a new black dot at whatever position this concentration is
largest. The black dot is then assumed to deplete the concentration around it, but the overall concentration is uniformly
increased before the next step. It turns out that successive black dots rapidly become spaced at almost exactly 137.5°.
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So just how does this angle show up in actual plant systems? As

the top pictures below demonstrate, the details depend on the geometry

and relative growth rates of new elements and of the original stem. But

in all cases very characteristic patterns are produced.

100% damping 95% damping 75% damping 50% damping 25% damping 5�% damping 0�% damping

Examples of changing the amount of damping used in the model on the facing page. 100% damping corresponds
to increasing the overall concentration at each step so much that no memory of previous steps remains. 0%
corresponds to no increase in overall concentration at each step. Away from these extreme cases, rapid
convergence is seen to a spacing between black dots of almost exactly 137.5°.

(a) (b) (c) (d) (e) (f ) (g)

Examples of structures formed in various geometries by successively adding elements at a golden ratio angle 137.5°. Each of these
structures is seen in one type of plant growth or another, as illustrated on page 409. 

120 � 130 � 137 � 137.5 � 138 � 140 � 150 �

Overall patterns formed by successively adding elements at a variety of different angles. In each case the th element appears at
coordinates . Stripes are seen if  (with  in radians) is easy to approximate by a rational number. (The size of
the region before stripes appear depends on .)

n
�!!!!

n {Cos[n q], Sin[n q]} q /p q

Length[ContinuedFraction[q /p]]
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And as the bottom pictures on the previous page demonstrate,

the forms of these patterns are very sensitive to the precise angle of

successive elements: indeed, even a small deviation leads to patterns

that are visually quite different. At first one might have assumed that to

get a precise angle like 137.5° would require some kind of elaborate and

highly detailed process. But just as in so many other situations that we

have seen in this book, what we have seen is that in fact a very simple

rule is all that is in the end needed.

One of the general features of plants is that most of their cells

tend to develop fairly rigid cellulose walls which make it essentially

impossible for new material to be added inside the volume of the plant,

and so typically force new growth to occur only on the outside of the

plant—most importantly at the tips of stems.

But when plants form sheets of material as in leaves or petals there

is usually some flexibility for growth to occur within the sheet. And the

pictures below show examples of what can happen if one starts with a flat

disk and then adds different amounts of material in different places.

If more material is added near the center than near the edge, as in

case (b), then the disk is forced to take on a cup shape similar to many

(a) (b) (c) (d)

Disks with varying amounts of material at different distances from their centers. In the top row the disks are always flat,
forcing the cells of material to vary in size and shape. In the bottom row, the disks form shapes in three dimensions in
which all cells are the same size and shape. Relative to case (a), the amount of material going out from the center
decreases linearly in case (b), increases linearly in case (c), and increases exponentially in case (d).
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flowers. But if more material is added near the edge than near the

center, as in case (c), then the sheet will become wavy at the edge, much

like some leaves. And if the amount of material increases sufficiently

rapidly from the center to the edge, as in case (d), then the disk will be

forced to become highly corrugated, somewhat like a lettuce leaf.

So what about animals? To what extent are their mechanisms of

growth the same as plants? If one looks at air passages or small blood

vessels in higher animals then the patterns of branching one sees look

similar to those in plants. But in most of their obvious structural

features animals do not typically look much like plants at all. And in

fact their mechanisms of growth mostly turn out to be rather different.

As a first example, consider a horn. One might have thought that,

like a stem in a plant, a horn would grow by adding material at its tip.

But in fact, like nails and hair, a horn instead grows by adding material

at its base. And an immediate consequence of this is that the kind of

branching that one sees in plants does not normally occur in horns.

But on the other hand coiling is common. For in order to get a

structure that is perfectly straight, the rate at which material is added

must be exactly the same on each side of the base. And if there is any

difference, one edge of the structure that is produced will always end

up being longer than the other, so that coiling will inevitably result,

as in the pictures below.

And as has been thought for several centuries, it turns out that a

three-dimensional version of this phenomenon is essentially what leads

to the elaborate coiled structures that one sees in mollusc shells. For in

a typical case, the animal which lives at the open end of the shell

0%

10%

20%

50%

100%

Idealized horns generated by progressively adding new material, with the amount of material on the
upper edge of the base always being the specified percentage larger than the amount on the lower
edge. These pictures can be viewed as one-dimensional analogs of those on the facing page.
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secretes new shell material faster on one side than the other, causing

the shell to grow in a spiral. The rates at which shell material is

secreted at different points around the opening are presumably

determined by details of the anatomy of the animal. And it turns out

that—much as we saw in the case of branching structures earlier in this

section—even fairly small changes in such rates can have quite

dramatic effects on the overall shape of the shell.

The pictures below show three examples of what can happen,

while the facing page shows the effects of systematically varying

certain growth rates. And what one sees is that even though the same

very simple underlying model is used, there are all sorts of visually very

different geometrical forms that can nevertheless be produced. 

(a)

(b)

(c)

A simple model for the growth of mollusc shells. In each case new shell material is progressively added at the open end of
the shell. The rule on the left shows the amount of material added at each stage at different points around the opening; the
line from the center indicates the progressive lateral displacement of the opening. Case (a) is typical of a nautilus shell, (b) of
a cone shell and (c) of one-half of a clam shell. All shells produced by adding material according to fixed rules of the kind
shown here have the property that throughout their growth they maintain the same overall shape. 
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So out of all the possible forms, which ones actually occur in real

molluscs? The remarkable fact illustrated on the next page is that

essentially all of them are found in some kind of mollusc or another.

If one just saw a single mollusc shell, one might well think that

its elaborate form must have been carefully crafted by some long

process of natural selection. But what we now see is that in fact all the

different forms that are observed are in effect just consequences of the

(a)

(b)

(c)

(d)

(e)

The effects of varying five simple features of the rule for the growth of a mollusc shell: (a) the overall factor by which the size increases
in the course of each revolution; (b) the relative amount by which the opening is displaced downward at each revolution; (c) the size of
the opening relative to the overall size of the shell; (d) the elongation of the opening; (e) the orientation of elongation in the opening.
The pictures at the beginning and end of each row correspond roughly to the following: (a) pond snail shell, cockle shell; (b) pond snail
shell, horn shell; (c) worm shell, bonnet shell; (d) periwinkle shell, cowrie shell; (e) olive shell, sundial shell.
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Shell shapes generated
by the simple model and
found in nature. The
array shows systematic
variation of the first two
parameters from the
previous page. Similar
arrays could be made for
the other parameters.
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application of three-dimensional geometry to very simple underlying

rules of growth. And so once again therefore natural selection cannot

reasonably be considered the source of the elaborate forms we see. 

Away from mollusc shells, coiled structures—like branched

ones—are not especially common in animals. Indeed, the vast majority

of animals do not tend to have overall forms that are dominated by any

single kind of structure. Rather, they are usually made up of a collection

of separate identifiable parts, like heads, tails, legs, eyes and so on, all

with their own specific structure.

Sometimes some of these parts are repeated, perhaps in a

sequence of segments, or perhaps in some kind of two-dimensional

array. And very often the whole animal is covered by a fairly uniform

outer skin. But the presence of many different kinds of parts is in the

end one of the most obvious features of many animals.

So how do all these parts get produced? The basic mechanism

seems to be that at different places and different times inside a

developing animal different sections of its genetic program end up

getting used—causing different kinds of growth to occur, and different

structures to be produced. And part of what makes this possible is that

particularly at the stage of the embryo most cells in an animal are not

extremely rigid—so that even when different pieces of the animal grow

quite differently they can still deform so as to fit together.

Usually there are some elements—such as bones—that

eventually do become rigid. But the crucial point is that at the stage

when the basic form of an animal is determined most of these elements

are not yet rigid. And this allows various processes to occur that would

otherwise be impossible. 

Probably the most important of these is folding. For folding is not

only involved in producing shapes such as teeth surfaces and human ear

lobes, but is also critical in allowing flat sheets of tissue to form the

kinds of pockets and tubes that are so common inside animals.

Folding seems to occur for a variety of reasons. Sometimes it is

most likely the direct result of tugging by microscopic fibers. And in

other cases it is probably a consequence of growth occurring at different

rates in different places, as in the pictures on page 412.
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But what kinds of shapes can folding produce? The pictures above

show what happens when the local curvature—which is essentially the

local rate of folding—is taken to vary according to several simple rules

as one goes along a curve. In a few cases the shapes produced are rather

simple. But in most cases they are fairly complicated. And it takes only

very simple rules to generate shapes that look like the villi and other

corrugated structures one often sees in animals.

In addition to folding, there are other kinds of processes that are

made possible by the lack of rigidity in a developing animal. One is

furrowing or tearing of tissue through a loss of adhesion between cells.

And another is explicit migration of individual cells based on chemical

or immunological affinities.

But how do all these various processes get organized to produce an

actual animal? If one looks at the sequence of events that take place in a

(a) (b) (c) (d)

(e) (f ) (g) (h)

( i)

( j)

(k)

Curves obtained by varying the local curvature according to definite rules as one goes from one end to the other. Each
sequence of curves shows what happens when the local curvature is multiplied by a progressively larger factor. The local
curvature at any particular point is defined to be the reciprocal of the radius of a circle that approximates the curve at that
point. The formulas for local curvature as a function of arc length for each set of pictures are as follows: 1 (circle);  (Cornu
spiral or clothoid); ; (involute of circle);  (logarithmic or equiangular spiral); ; ; ; . The
curvature functions  can be thought of as specifying how much to turn a vehicle at every moment in order to keep it
driving along the curve. The curves have been rotated so as to fit into the frames provided.
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typical animal embryo they at first seem remarkably haphazard. But

presumably the main thing that is going on—as mentioned above—is that

at different places and different times different sections of the underlying

genetic program are being used, and these different sections can lead to

very different kinds of behavior. Some may produce just uniform growth.

Others may lead to various kinds of local folding. And still others may

cause regions of tissue to die—thereby for example allowing separate

fingers and toes to emerge from a single sheet of tissue.

But just how is it determined what section of the underlying

genetic program should be used at what point in the development of the

animal? At first, one might think that each individual cell that comes

into existence might use a different section of the underlying genetic

program. And in very simple animals with just a few hundred cells this

is most likely what in effect happens.

But in general it seems to be not so much individual cells as regions

of the developing animal that end up using different sections of the

underlying program. Indeed, the typical pattern seems to be that

whenever a part of an animal has grown to be a few tenths of a millimeter

across, that part can break up into a handful of smaller regions which each

use a different section of the underlying genetic program.

So how does this work? What appears to be the case is that there

are cells which produce chemicals whose concentrations decrease over

distances of a few tenths of a millimeter. And what has been discovered

in the past decade or so is that in all animals—as well as plants—there

are a handful of so-called homeobox genes which seem to become

active or inactive at particular concentration levels and which control

what section of the underlying genetic program will be used.

The existence of a fixed length scale at which such processes

occur then almost inevitably implies that an embryo must develop in a

somewhat hierarchical fashion. For at a sufficiently early stage, the

whole embryo will be so small that it can contain only a handful of

regions that use different sections of the genetic program. And at this

stage there may, for example, be a leg region, but there will not yet be a

distinct foot region. 
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As the embryo grows, however, the leg region will eventually

become large enough that it can differentiate into several separate

regions. And at this point, a distinct foot region can appear. Then, when

the foot region becomes large enough, it too can break into separate

regions that will, say, turn into bone or soft tissue. And when a region

that will turn into bone becomes large enough, it can break into further

regions that will, say, yield separate individual bones.

If at every stage the tissue in each region produced grows at the

same rate, and all that differs is what final type of cells will exist in each

region, then inevitably a simple and highly regular overall structure will

emerge, as in the idealized picture below. With different substitution rules

for each type of cell, the structure will in general be nested. And in fact

there are, for example, some parts of the skeletons of animals that do

seem to exhibit, at least roughly, a few levels of nesting of this kind.

But in most cases there is no such obvious nesting of this kind. One

reason for this is that a region may break not into a simple line of smaller

regions, but into concentric circles or into some collection of regions in a

much more complicated arrangement—say of the kind that I discuss in

the next section. And perhaps even more important, a region may break

into smaller regions that grow at different rates, and that potentially fold

over or deform in other ways. And when this happens, the geometry that

develops will in turn affect the way that subsequent regions break up.

The idea that the basic mechanism for producing different parts

of animals is that regions a few tenths of a millimeter across break into

separate smaller regions turns out in the end to be strangely similar to

the idea that stems of plants whose tips are perhaps a millimeter across

step 1

step 2

step 3

A schematic illustration of the successive
subdivisions which presumably occur in
the growth of animals. Here the
subdivisions are taken to occur in two
directions, always giving three simple
rectangles which all grow at the same
rate. In practice, the geometry will
usually be much more complex. 
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grow by splitting off smaller stems. And indeed it is even known that

some of the genetic phenomena involved are extremely similar.

But the point is that because of the comparative rigidity of plants

during their most important period of growth, only structures that

involve fairly explicit branching can be produced. In animals, however,

the lack of rigidity allows a vastly wider range of structures to appear,

since now tissue in different regions need not just grow uniformly, but

can change shape in a whole variety of ways.

By the time an animal hatches or is born, its basic form is usually

determined, and there are bones or other rigid elements in place to

maintain this form. But in most animals there is still a significant

further increase in size. So how does this work?

Some bones in effect just expand by adding material to their outer

surface. But in many cases, bones are in effect divided into sections, and

growth occurs between these sections. Thus, for example, the long

bones in the arms and legs have regions of growth at each end of their

main shafts. And the skull is divided into a collection of pieces that

each grow around their edges.

Typically there are somewhat different rates of growth for

different parts of an animal—leading, for example, to the decrease in

relative head size usually seen from birth to adulthood. And this

inevitably means that there will be at least some changes in the shapes

of animals as they mature.

But what if one compares different breeds or species of animals?

At first, their shapes may seem quite different. But it turns out that

among animals of a particular family or even order, it is very common

to find that their overall shapes are in fact related by fairly simple and

smooth geometrical transformations.

And indeed it seems likely that—much like the leaves and shells

that we discussed earlier in this section—differences between the

shapes and forms of animals may often be due in large part merely to

different patterns in the rates of growth for their different parts.

Needless to say, just like with leaves and shells, such differences

can have effects that are quite dramatic both visually and mechanically—

turning, say, an animal that walks on four legs into one that walks on
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two. And, again just like with leaves and shells, it seems likely that

among the animals we see are ones that correspond to a fair fraction of the

possible choices for relative rates of growth.

We began this section by asking what underlying rules of growth

would be needed to produce the kind of diversity and complexity that

we see in the forms of plants and animals. And in each case that we

have examined what we have found is that remarkably simple rules

seem to suffice. Indeed, in most cases the basic rules actually seem to

be somewhat simpler than those that operate in many non-biological

systems. But what allows the striking diversity that we see in biological

systems is that different organisms and different species of organisms

are always based on at least slightly different rules.

In the previous section I argued that for the most part such rules

will not be carefully chosen by natural selection, but instead will just be

picked almost at random from among the possibilities. From experience

with traditional mathematical models, however, one might then

assume that this would inevitably imply that all plants and animals

would have forms that look quite similar.

But what we have discovered in this book is that when one uses

rules that correspond to simple programs, rather than, say, traditional

mathematical equations, it is very common to find that different rules lead

to quite different—and often highly complex—patterns of behavior. And it

is this basic phenomenon that I suspect is responsible for most of the

diversity and complexity that we see in the forms of plants and animals.

Biological Pigmentation Patterns

At a visual level, pigmentation patterns represent some of the most obvious

examples of complexity in biological organisms. And in the past it has

usually been assumed that to get the kind of complexity that one sees in

such patterns there must be some highly complex underlying mechanism,

presumably related to optimization through natural selection.

Following the discoveries in this book, however, what I strongly

suspect is that in fact the vast majority of pigmentation patterns in
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biological organisms are instead generated by processes whose basic

rules are extremely simple—and are often chosen essentially at random.

The pictures below shows some typical examples of patterns

found on mollusc shells. Many of these patterns are quite simple. But

some are highly complex. Yet looking at these patterns one notices a

remarkable similarity to patterns that we have seen many times before

in this book—generated by simple one-dimensional cellular automata.

Typical examples of pigmentation patterns on mollusc shells. In each close-up the pattern grows
from top to bottom, just like in a one-dimensional cellular automaton. Patterns with triangles are
often said to have a “tent” or “divaricate” form. The shell on the bottom right is a slightly rare
specimen where something close to an explicit nested pattern can be seen. Most of the shells are
between one and four inches long; the one on the bottom right is nine inches long. The patterns are
all various shades of brown on roughly white backgrounds. The shells are the following types: first
row: Elliot’s volute, vexillate volute, lettered cone; second row: music volute, banded marble cone,
tent olive; third row: bough cone, textile cone, false melon volute (Livonia mammilla).
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This similarity is, I believe, no coincidence. A mollusc shell, like

a one-dimensional cellular automaton, in effect grows one line at a time,

with new shell material being produced by a lip of soft tissue at the edge

of the animal inside the shell. Quite how the pigment on the shell is laid

down is not completely clear. There are undoubtedly elements in the

soft tissue that at any point either will or will not secrete pigment. And

presumably these elements have certain interactions with each other.

And given this, the simplest hypothesis in a sense is that the new state

of the element is determined from the previous state of its neighbors—

just as in a one-dimensional cellular automaton.

rule 0 rule 1 rule 4 rule 5 rule 18 rule 19 rule 22 rule 23

rule 32 rule 33 rule 36 rule 37 rule 50 rule 51 rule 54 rule 55

rule 72 rule 73 rule 76 rule 77 rule 90 rule 91 rule 94 rule 95

rule 104 rule 105 rule 108 rule 109 rule 122 rule 123 rule 126 rule 127

rule 128 rule 129 rule 132 rule 133 rule 146 rule 147 rule 150 rule 151

rule 160 rule 161 rule 164 rule 165 rule 178 rule 179 rule 182 rule 183

rule 200 rule 201 rule 204 rule 205 rule 218 rule 219 rule 222 rule 223

rule 232 rule 233 rule 236 rule 237 rule 250 rule 251 rule 254 rule 255

Examples of patterns produced by the evolution of each of the simplest possible symmetrical one-dimensional cellular automaton
rules, starting from a random initial condition. The types of patterns obtained show striking similarities to those seen on mollusc
shells from the previous page. 
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But which specific cellular automaton rule will any given

mollusc use? The pictures at the bottom of the facing page show all the

possible symmetrical rules that involve two colors and nearest

neighbors. And comparing the patterns in these pictures with patterns

on actual mollusc shells, one notices the remarkable fact that the range

of patterns that occur in the two cases is extremely similar. 

Traditional ideas might have suggested that each kind of mollusc

would carefully optimize the pattern on its shell so as to avoid predators

or to attract mates or prey. But what I think is much more likely is that

these patterns are instead generated by rules that are in effect chosen at

random from among a collection of the simplest possibilities. And what

this means is that insofar as complexity occurs in such patterns it is in a

sense a coincidence. It is not that some elaborate mechanism has

specially developed to produce it. Rather, it just arises as an inevitable

consequence of the basic phenomenon discovered in this book that

simple rules will often yield complex behavior. 

And indeed it turns out that in many species of molluscs the

patterns on their shells—both simple and complex—are completely

hidden by an opaque skin throughout the life of the animal, and so

presumably cannot possibly have been determined by any careful

process of optimization or natural selection.

So what about pigmentation patterns on other kinds of animals?

Mollusc shells are almost unique in having patterns that are built up

one line at a time; much more common is for patterns to develop all at

once all over a surface.

Most often what seems to happen is that at some point in the growth

of an embryo, precursors of pigment-producing cells appear on its surface,

and groups of these cells associated with pigments of different colors then

become arranged in a definite pattern. Typically each individual group of

cells is initially some fraction of a tenth of a millimeter across. But since

different parts of an animal usually grow at different rates, the final pattern

that one sees on an adult animal ends up being scaled differently in

different places—so that, for example, the pattern is smaller in scale on the

head of an animal, since the head grows more slowly.
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Typical examples of pigmentation patterns on animals. Note that many very different animals end up having remarkably similar patterns.
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The pictures on the facing page show typical examples of

pigmentation patterns in animals, and demonstrate that even across a

vast range of different types of animals just a few kinds of patterns

occur over and over again. So how are these patterns produced? Even

though some of them seem quite complex, it turns out that once again

there is a rather simple kind of rule that can account for them.

The idea is that when a pattern forms, the color of each element will

tend to be the same as the average color of nearby elements, and opposite to

the average color of elements further away. Such an effect could have its

origin in the production and diffusion of activator and inhibitor chemicals,

or, for example, in actual motion of different types of cells. But regardless of

its origin, the effect itself can readily be captured just by setting up a

two-dimensional cellular automaton with appropriate rules.

The pictures below show what happens with two slightly different

choices for the relative importance of elements that are further away. In

both cases, starting from a random distribution of black and white elements

there quickly emerge definite patterns—in the first case a collection of

spots, and in the second case a maze-like or labyrinthine structure.

The next page shows the final patterns obtained with a whole

array of different choices of weightings for elements at different

distances. A certain range of patterns emerges—almost all of which

turn out to be quite similar to patterns that one sees on actual animals.

step 1 step 2 step 3 step 4 step 5 step 6 step 7

step 1 step 2 step 3 step 4 step 5 step 6 step 7

Evolution of simple two-dimensional cellular automata in which the color of each cell at each step is determined by looking
at a weighted sum of the average colors of cells up to distance 3 away. In both rules shown the cell itself and its nearest
neighbors enter with weight 1. Cells at distances 2 and 3 enter with negative weights— -0.4 per cell for the first rule, and
-0.2 for the second. A cell becomes black if the weighted sum is positive, and white otherwise. Starting from random initial
conditions, both rules quickly evolve to stationary states that look very much like pigmentation patterns seen in animals.
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But all of these patterns in a sense have the same basic form in

every direction. Yet there are many animals whose pigmentation

patterns exhibit stripes with a definite orientation. Sometimes these

stripes are highly regular, and can potentially arise from any of the

possible mechanisms that yield repetitive behavior. But in cases where

the stripes are less regular they typically look very much like the

patterns generated in the pictures at the top of the facing page using a

version of the simple mechanism described above.

Patterns generated by rules of the type shown on the previous page, with a range of choices for the weights of cells at distances 2
and 3. Weights vary from -0.9 to 0 down the page for distance 2, and from -0.7 to 0.4 across the page for distance 3. In all cases the
evolution starts from the same random initial condition, and is continued until it stabilizes. Note that pigmentation patterns for actual
animals may contain either larger or smaller numbers of elements than the patterns shown here.
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Financial Systems

During the development of the ideas in this book I have been asked

many times whether they might apply to financial systems. There is no

doubt that they do, and as one example I will briefly discuss here what

is probably the most obvious feature of essentially all financial markets:

the apparent randomness with which prices tend to fluctuate.

Whether one looks at stocks, bonds, commodities, currencies,

derivatives or essentially any other kind of financial instrument, the

sequences of prices that one sees at successive times show some overall

trends, but also exhibit varying amounts of apparent randomness.

So what is the origin of this randomness?

In the most naive economic theory, price is a reflection of value,

and the value of an asset is equal to the total of all future earnings—

such as dividends—which will be obtained from it, discounted for the

interest that will be lost from having to wait to get these earnings.

With this view, however, it seems hard to understand why there

should be any significant fluctuations in prices at all. What is usually

said is that prices are in fact determined not by true value, but rather by

the best estimates of that value that can be obtained at any given time.

And it is then assumed that these estimates are ultimately affected by

all sorts of events that go on in the world, making random movements

step 1 step 2 step 3 step 4 step 5 step 6 step 7

step 1 step 2 step 3 step 4 step 5 step 6 step 7

Examples of rules in which cells in the horizontal and vertical directions are weighted differently. In the first case, cells at
distances 2 and 3 only have an effect in the vertical direction; in the second case, they only have an effect in the horizontal
direction. The result is the formation of either vertical or horizontal stripes.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

430

in prices in a sense just reflections of random changes going on in the

outside environment.

But while this may be a dominant effect on timescales of order

weeks or months—and in some cases perhaps even hours or days—it is

difficult to believe that it can account for the apparent randomness that

is often seen on timescales as short as minutes or even seconds.

In addition, occasionally one can identify situations of seemingly

pure speculation in which trading occurs without the possibility of any

significant external input—and in such situations prices tend to show

more, rather than less, seemingly random fluctuations.

And knowing this, one might then think that perhaps random

fluctuations are just an inevitable feature of the way that prices adjust

to their correct values. But in negotiations between two parties, it is

common to see fairly smooth convergence to a final price. And certainly

one can construct algorithms that operate between larger numbers of

parties that would also lead to fairly smooth behavior.

So in actual markets there is presumably something else going

on. And no doubt part of it is just that the sequence of trades whose

prices are recorded are typically executed by a sequence of different

entities—whether they be humans, organizations or programs—each of

which has its own detailed ways of deciding on an appropriate price.

But just as in so many other systems that we have studied in this

book, once there are sufficiently many separate elements in a system, it

is reasonable to expect that the overall collective behavior that one sees

will go beyond the details of individual elements.

It is sometimes claimed that it is somehow inevitable that

markets must be random, since otherwise money could be made by

predicting them. Yet many people believe that they make money in just

this way every day. And beyond certain simple situations, it is difficult

to see how feedback mechanisms could exist that would systematically

remove predictable elements whenever they were used.

No doubt randomness helps in maintaining some degree of

stability in markets—just as it helps in maintaining stability in many

other kinds of systems that we have discussed in this book. Indeed,

most markets are set up so that extreme instabilities associated with
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certain kinds of loss of randomness are prevented—sometimes by

explicit suspension of trading. 

But why is there randomness in markets in the first place?

Practical experience suggests that particularly on short

timescales much of the randomness that one sees is purely a

consequence of internal dynamics in the market, and has little if

anything to do with the nature or value of what is being traded.

So how can one understand what is going on? One needs a basic

model for the operation and interaction of a large number of entities in

a market. But traditional mathematics, with its emphasis on reducing

everything to a small number of continuous numerical functions, has

rather little to offer along these lines. 

The idea of thinking in terms of programs seems, however, much

more promising. Indeed, as a first approximation one can imagine that

much as in a cellular automaton entities in a market could follow

simple rules based on the behavior of other entities. 

To be at all realistic one would have to set up an elaborate

network to represent the flow of information between different entities.

And one would have to assign fairly complicated rules to each entity—

certainly as complicated as the rules in a typical programmed trading

system. But from what we have learned in this book it seems likely that

this kind of complexity in the underlying structure of the system will

not have a crucial effect on its overall behavior. 

And so as a minimal idealization one can for example try viewing

a market as being like a simple one-dimensional cellular automaton.

Each cell then corresponds to a single trading entity, and the color of the

cell at a particular step specifies whether that entity chooses to buy or

sell at that step. One can imagine all sorts of schemes by which such

colors could be updated. But as a very simple idealization of the way

that information flows in a market, one can, for example, take each

color to be given by a fixed rule that is based on each entity looking at

the actions of its neighbors on the previous step.

With traditional intuition one would assume that such a simple

model must have extremely simple behavior, and certainly nothing like

what is seen in a real market. But as we have discovered in this book,
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simple models do not necessarily have simple behavior. And indeed the

picture below shows an example of the behavior that can occur.

In real markets, it is usually impossible to see in detail what each

entity is doing. Indeed, often all that one knows is the sequence of

prices at which trades are executed. And in a simple cellular automaton

the rough analog of this is the running difference of the total numbers of

black and white cells obtained on successive steps.

And as soon as the underlying rule for the cellular automaton is

such that information will eventually propagate from one entity to all

others—in effect a minimal version of an efficient market hypothesis—

it is essentially inevitable that running totals of numbers of cells will

exhibit significant randomness.

One can always make the underlying system more complicated—

say by having a network of cells, or by allowing different cells to have

different and perhaps changing rules. But although this will make it

more difficult to recognize definite rules even if one looks at the

complete behavior of every element in the system, it does not affect the

basic point that there is randomness that can intrinsically be generated

by the evolution of the system.

An example of a very simple idealized model
of a market. Each cell corresponds to an entity

that either buys or sells on each step. The behavior of a given cell is
determined by looking at the behavior of its two neighbors on the
step before according to the rule shown. The plot below gives as a
rough analog of a market price the running difference of the total
numbers of black and white cells
at successive steps. And
although there are patches of
predictability that can be seen in
the complete behavior of the
system the plot on the right
looks in many respects random. 
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NOTES FOR CHAPTER 8

Implications for Everyday Systems

Issues of Modelling

â Page 363 · Uncertainties of this chapter. In earlier chapters of
this book what I have said can mostly be said with absolute
certainty, since it is based on observations about the behavior
of purely abstract systems that I have explicitly constructed.
But in this chapter, I study actual systems that exist in nature,
and as a result, most of what I say cannot be said with any
absolute certainty, but instead must involve a significant
component of hypothesis. For I no longer control the basic
rules of the systems I am studying, and instead I must just try
to deduce these rules from observation—with the potential
that despite my best efforts my deductions could simply be
incorrect.

â Experiences of modelling. Over the course of the past 25
years I have constructed an immense number of models for a
wide range of scientific, technical and business purposes. But
while these models have often proved extremely useful in
practice, I have usually considered them intellectually quite
unsatisfactory. For being models, they are inevitably
incomplete, and it is never in any definitive sense possible to
establish their validity. 

â Page 363 · Notes on this chapter. Much of this book is
concerned with topics that have never been discussed in any
concrete form before, so that between the main text and these
notes I have been able to include a large fraction of
everything that is known about them. But in this chapter (as
well as some of the ones that follow) the systems I consider
have often had huge amounts written about them before,
making any kind of complete summary quite impossible.

â Material for this chapter. Like the rest of this book, this
chapter is strongly based on my personal work and
observations. For almost all of the systems discussed I have
personally collected extensive data and samples, often over
the course of many years, and sometimes in quite unlikely
and amusing circumstances. I have also tried to study the

existing scientific literature, and indeed in working on this
chapter I have looked at many thousands of papers and
books—even though the vast majority of them tend to ignore
overall issues, and instead concentrate on details of often
excruciating specificity. 

â Page 365 · Models versus experiments. In modern science it
is usually said that the ultimate test of any model is its
agreement with experiment. But this is often interpreted to
mean that if an experiment ever disagrees with a model, then
the model must be wrong. Particularly when the model is
simple and the experiment is complex, however, my personal
experience has been that it is quite common for it to be the
experiment, rather than the model, that is wrong. When I
started doing particle physics in the mid-1970s I assumed—
like most theoretical scientists—that the results of
experiments could somehow always be treated as rigid
constraints on models. But in 1977 I worked on constructing
the first model based on QCD for heavy particle production
in high-energy proton-proton collisions. The model predicted
a certain rate for the production of such particles. But an
experiment which failed to see any of these particles implied
that the rate must be much lower. And on the basis of this I
spent great effort trying to see what might be wrong with the
model—only to discover some time later that in fact the
methodology of the experiment was flawed and its results
were wrong. At first I thought that perhaps this was an
isolated incident. But soon I had seen many examples where
the stated results of physics experiments were incorrect,
either through straightforward mistakes or through subtly
prejudiced analysis. And outside of physics, I have tended to
find still less reliability in the results of complex experiments.

â Page 366 · Models versus reality. Questions about the
correspondence between models and reality have been much
debated in the philosophy of science for many centuries, and
were, for example, central to the disagreement between
Galileo and the church in the early 1600s. Many successful
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models are in practice first introduced as convenient
calculational devices, but later turn out to have a direct
correspondence to reality. Two examples are planets orbiting
the Sun, and quarks being constituents of particles. It remains
to be seen whether such models as the imaginary time
statistical mechanics formalism for quantum mechanics (see
page 1061) turn out to have any direct correspondence to
reality. 

â History of modelling. Creation myths can in a sense be
viewed as primitive models. Early examples of models with
more extensive structure included epicycles. Traditional
mathematical models of the modern type originated in the
1600s. The success of such models in physics led to attempts
to imitate them in other fields, but for the most part these did
not succeed. The idea of modelling intricate patterns using
programs arose to some extent in the study of fractals in the
late 1970s. And the notion of models based on simple
programs such as cellular automata was central to my work
in the early 1980s. But despite quite a number of fairly well-
known successes, there is even now surprisingly little
understanding among most scientists of the idea of models
based on simple programs. Work in computer graphics—
with its emphasis on producing pictures that look right—has
made some contributions. And it seems likely that the
possibility of computerized and especially image-based data
taking will contribute further. (See also page 860.)

â Page 367 · Finding models. Even though a model may have
a simple form, it may not be at all easy to find. Indeed, many
of the models in this chapter took me a very long time to find.
By far my most common mistake was trying to build too
much into the basic structure of the model. Often I was sure
that some feature of the behavior of a system must be built
into the underlying model—yet I could see no simple way to
do it. But eventually what happened was that I tried a few
other very simple models, and to my great surprise one of
them ended up showing the behavior I wanted, even though
I had in no way explicitly built it in. 

â Page 369 · Consequences of models. Given a program it is
always possible to run the program to find out what it will
do. But as I discuss in Chapter 12, when the behavior is
complex it may take an irreducible amount of computational
work to answer any given question about it. However, this is
not a sign of imperfection in the model; it is merely a
fundamental feature of complex behavior.

â Universality in models. With traditional models based on
equations, it is usually assumed that there is a unique correct
version of any model. But in the previous chapter we saw
that it is possible for quite different programs to yield

essentially the same large-scale behavior, implying that with
programs there can be many models that have the same
consequences but different detailed underlying structure.

The Growth of Crystals

â Page 369 · Nucleation. In the absence of container walls or of
other objects that can act as seeds, liquids and gases can
typically be supercooled quite far below their freezing points.
It appears to be extremely unlikely for spontaneous
microscopic fluctuations to initiate crystal growth, and
natural snowflakes, for example, presumably nucleate
around dust or other particles in the air. Snowflakes in man-
made snow are typically nucleated by synthetic materials. In
this case and in experiments on cloud seeding it has been
observed that the details of seeds can affect the overall shapes
of crystals that grow from them. 

â Page 369 · Implementation. One can treat hexagonal lattices
as distorted square lattices, updated according to

where . On this page the rule
used is code 16382; on page 371 it is code 10926. The
centers of an array of regular hexagons are given by

. 

â Page 372 · Identical snowflakes. The widespread claim that
no two snowflakes are alike is not in practice true. It is
however the case that as a result of turbulent air currents a
collection of snowflakes that fall to the ground in a particular
region will often have come from very different regions of a
cloud, and therefore will have grown in different
environments. Note that the reason that the six arms of a
single snowflake usually look the same is that all of them
have grown in essentially the same environment. Deviations
are usually the result of collisions between falling
snowflakes.

â History of snowflake studies. Rough sketches of snowflakes
were published by Olaus Magnus of Uppsala around 1550.
Johannes Kepler made more detailed pictures and identified
hexagonal symmetry around 1611. Over the course of the
next few centuries, following work by René Descartes, Robert
Hooke and others, progressively more accurate pictures were
made and correlations between weather conditions and
snowflake forms were found. Thousands of photographs of
snowflakes were taken by Wilson Bentley over the period
1884–1931. Beginning in 1932 an extensive study of
snowflakes was made by Ukichiro Nakaya, who in 1936 also
produced the first artificial snowflakes. Most of the fairly

CAStep[rule_List, a_] := Map[rule014 - #1 &,
a + 2 ListConvolve[{{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}, a, 2], {2}]

rule = IntegerDigits[code, 2, 14]

Table[{i �!!!!3 , j}, {i, 1, m}, { j , Mod[ i, 2], n, 2}]
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small amount of more recent work on snowflakes has been
done as part of more general studies on dendritic crystal
growth. Note that tree-like snowflakes are what make snow
fluffy, while simple hexagons make it denser and more
slippery. The proportion of different types of snowflakes is
important in understanding phenomena such as avalanches. 

â History of crystal growth. The vast majority of work done on
crystal growth has been concerned with practical methods
rather than with theoretical analyses. The first synthetic
gemstones were made in the mid-1800s, and methods for
making high-quality crystals of various materials have been
developed over the course of the past century. Since the mid-
1970s such crystals have been crucial to the semiconductor
industry. Systematic studies of the symmetries of crystals
with flat facets began in the 1700s, and the relationship to
internal structure was confirmed by X-ray crystallography in
the 1920s. The many different possible external forms of
crystals have been noted in mineralogy since Greek times,
but although classification schemes have been given, these
forms have apparently still not been studied in a particularly
systematic way.

â Models of crystal growth. There are two common types of
models for crystal growth: ones based on the physics of
individual atoms, and ones based on continuum descriptions
of large collections of atoms. In the former category, it was
recognized in the 1940s that a single atom is very unlikely to
stick to a completely flat surface, so growth will always tend
to occur at steps on a crystal surface, often associated with
screw dislocations in the crystal structure. In practice,
however, as scanning tunnelling microscopes have revealed,
most crystal surfaces that are not grown at an extremely slow
rate tend to be quite rough at an atomic scale—and so it
seems that for example the aggregation model from page 331
may be more appropriate. In snowflakes and other crystals
features such as the branches of tree-like structures are much
larger than atomic dimensions, so a continuum description
can potentially be used. It is possible to write down a
nonlinear partial differential equation for the motion of the
solidification front, taking into account basic thermodynamic
effects. The first result (discovered by William Mullins and
Robert Sekerka in 1963) is that if every part of the front is at
the same temperature, then any deviations from planarity in
the front will tend to grow. The shape of the front is
presumably stabilized by the Gibbs-Thomson effect, which
implies that the freezing temperature is lower when the front
is more curved. The characteristic length for deformations of
the front turns out to be the geometric mean of a microscopic
length associated with surface energy and a macroscopic
length associated with diffusion. It is this characteristic

length that presumably determines the size of an individual
cell in the cellular automaton model. 

Dendritic crystals are commonly seen in ice formations on
windows, and in pieces of aluminum of the kind found at
typical hardware stores. 

â Hopper crystals. When a pool of molten bismuth solidifies it
tends to form crystals like those in the first two pictures
below. What seems to give these crystals their characteristic
“hoppered” shapes is that there is more rapid growth at the
edges of each face than at the center. (Spirals are probably
associated with underlying screw dislocations.) Hoppering
has not been much studied for scientific purposes, but has
been noticed in many substances, including galena, rose
quartz, gold, calcite, salt and ice. 

â Page 373 · Other models. There are many ways to extend
the simple cellular automata shown here. One possibility is
to allow dependence on next-nearest as well as nearest
neighbors. In this case it turns out that non-convex as well
as convex faceted shapes can be obtained. Another
possibility is to allow cells that have become black to turn
white again. In this case all the various kinds of patterns
that we saw in Chapter 5 can occur. A general feature of
cellular automaton rules is that they are fundamentally
local. Some models of crystal growth, however, call for long-
range effects such as a temperature field which changes
throughout the crystal in an effectively instantaneous way. It
turns out, however, that many seemingly long-range effects
can actually be captured quite easily in cellular automata. In
a typical case, this can be done by introducing a third
possible color for each cell, and then having rapidly
changing arrangements of this color.

â Polycrystalline materials. When solids with complicated
forms are seen, it has usually been assumed that they must be
aggregates of many separate crystals, with each crystal
having a simple faceted shape. But the results given here
indicate that in fact individual crystals can yield highly
complex shapes. There will nevertheless be cases however
where multiple crystals are involved. These can be modelled
by having a cellular automaton in which one starts from
several separated seeds. Sometimes the regions associated
with different seeds may have different characteristics; the
boundaries between these regions then form a Voronoi
diagram (see page 1038). 
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â Quasicrystals. In some special materials it was discovered in
1984 that atoms are arranged not on a purely repetitive grid,
but instead in a pattern with the nested type of structure
discussed on page 932. A characteristic feature of such
patterns is that they can have approximate pentagonal or
icosahedral symmetry, which is impossible for purely
repetitive patterns. It has usually been assumed that the
arrangement of atoms in a quasicrystal is determined by
satisfying a constraint analogous to minimization of energy.
And as we saw on page 932 it is indeed possible to get nested
patterns by requiring that certain constraints be satisfied. But
another explanation for such patterns is that they are the
result of growth processes that are some kind of cross
between those on pages 373 and 659. 

â Amorphous materials. When solidification occurs fairly
slowly, atoms have time to arrange themselves in a regular
crystalline way. But if the cooling is sufficiently rapid,
amorphous solids such as glasses are often formed. And in
such cases, the packing of atoms is quite random—except
that locally there is often approximate icosahedral structure,
analogous to that discussed on page 943. (See also page 986.)

â Diffusion-limited aggregation (DLA). DLA is a model for a
variety of natural growth processes that was invented by
Thomas Witten and Leonard Sander in 1981, and which at
first seems quite different from a cellular automaton. The
basic idea of DLA is to build up a cluster of black cells by
starting with a single black cell and then successively
introducing new black cells far away that undergo random
walks and stick to the cluster as soon as they come into
contact with it. The patterns that are obtained by this
procedure turn out for reasons that are still not particularly
clear to have a random but on average nested form.
(Depending on precise details of the underlying model, very
large clusters may sometimes not have nested forms, at least
in 2D.) The basic reason that DLA patterns are not very dense
is that once arms have formed on the outside of the cluster,
they tend to catch new cells before these cells have had a
chance to go inside. It turns out that at a mathematical level
DLA can be reproduced by solving the Laplace equation at
each step with a constant boundary condition on the cluster,
and then using the result to give the probability for adding a
new cell at each point on the cluster. To construct a cellular
automaton analog of DLA one can introduce gray as well as
black and white cells, and then have the gray cells represent
pieces of solid that have not yet become permanently
attached to the main cluster. Rapid rearrangement of gray
cells on successive steps can then have a similar effect to the
random walks that occur in the usual DLA model. Whether a
pattern with all the properties expected in DLA is produced

seems to depend in some detail on the rules for the gray cells.
But so long as there is effective randomness in the successive
positions of these cells, and so long as the total number of
them is conserved, then it appears that DLA-like results are
usually obtained. No doubt there are also simpler cellular
automaton rules that yield similar results. (See also page 979.)

â Boiling. The boiling of a liquid such as water involves a
kind of growth inhibition that is in some ways analogous to
that seen in dendritic crystal growth. When a particular piece
of liquid boils—forming a bubble of gas—a certain latent
heat is consumed, reducing the local temperature, and
inhibiting further boiling. In the pictures below the liquid is
divided into cells, with each cell having a temperature
from 0 to 1, corresponding exactly to a continuous cellular
automaton of the kind discussed on page 155. At each step,
the temperature of every cell is given by the average of its
temperature and the temperatures of its neighbors,
representing the process of heat diffusion, with a constant
amount added to represent external heating. If the
temperature of any cell exceeds 1, then only the fractional
part is kept, as in the systems on page 158, representing the
consumption of latent heat in the boiling process. The
pictures below illustrate the kind of seemingly random
pattern of bubble formation that can be heard in the noise
produced by boiling water. 

The Breaking of Materials

â Phenomenology of microscopic fracture. Different materials
show rather different characteristics depending on how
ductile or brittle they are. Ductile materials—such as taffy or
mild steel—bend and smoothly neck before breaking. Brittle
materials—such as chalk or glass—do not deform
significantly before catastrophic failure. Ductile materials in
effect flow slightly before breaking, and as a result their
fracture surfaces tend to be less jagged. In addition, in
response to stresses in the material, small voids often form—
perhaps nucleating around imperfections—yielding a pock-
marked surface. In brittle materials, the beginning of the
fracture surface typically looks quite mirror-like, then it starts
to look misty, and finally, often at a sharply defined point, it
begins to look complex and hackled. (This sequence is
qualitatively not unlike the initiation of randomness in
turbulent fluid flow and many other systems.) Cracks in

heating rate 0.05 heating rate 0.1
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brittle materials typically seem to start slowly, then accelerate
to about half the Rayleigh speed at which small deformation
waves on the surface would propagate. Brittle fracture
involves violent breaking of atomic bonds; it usually leaves a
jagged surface, and can lead to emission of both high-
frequency sound as well as light. Directly around a crack
complex patterns of stress are typically produced, though
away from the crack they resolve quickly to a fairly smooth
and simple form. It is known that ultrasound can affect the
course of cracks, suggesting that crack propagation is
affected by local stresses. There are many different detailed
geometries for fracture, associated with snapping, tearing,
shattering, pulling apart, and so on. In many situations,
individual cracks will split into multiple cracks as they
propagate, sometimes producing elaborate tree-like
structures. The statistical properties of fracture surfaces have
been studied fairly extensively. There is reasonable evidence
of self-similarity, typically associated with a fractal
dimension around 0.8 or slightly smaller.

â Models of microscopic fracture. Two kinds of models have
traditionally been studied: ones based on looking at arrays of
atoms, and ones based on continuum descriptions of
materials. At the atomic level, a simple model suggested
fairly recently is that atoms are connected by bonds with a
random distribution of strengths, and that cracks follow
paths that minimize the total strength of bonds to be broken.
It is not clear why in a crystal bonds should be of different
strengths, and there is some evidence that this model yields
incorrect predictions for the statistical properties of actual
cracks. A slightly better model, related to the one in the main
text, is that the bonds between atoms are identical, and act
like springs which break when they are stretched too far. In
recent years, computer simulations with millions of atoms
have been carried out—usually with realistic but complicated
interatomic force laws—and some randomness has been
observed, but its origins have not been isolated. A set of
nonlinear partial differential equations known as the Lamé
equations are commonly used as a continuum description of
elastic materials. Various instabilities have been found in
these equations, but the equations are based on small
deformations, and presumably cannot be relied upon to
provide information about fracture.

â History. Fracture has been a critical issue throughout the
history of engineering. Its scientific study was particularly
stimulated by failures of various types of ships and aircraft in
the 1940s and 1950s, and many quantitative empirical results
were obtained, so that by the 1960s ductile fracture as an
engineering issue became fairly well understood. In the
1980s, ideas about fractals suggested new interpretations of

fracture surfaces, and in the past few years, various models
of fracture based on ideas from statistical physics have been
tried. Atomic-level computer experiments on fracture began
in earnest in the late 1980s, but only very recently has it been
possible to include enough atoms to even begin addressing
questions about the structure of cracks. 

â Page 375 · Experimental data. To investigate the model in the
main text requires looking not only at the path of a crack, but
also at dislocations of atoms near it. To do this dynamically is
difficult, but in a perfect crystal final patterns of dislocations
that remain at the edge of a region affected by fracture can be
seen for example by electron diffraction. And it turns out that
these often look remarkably like patterns made by 1D class 3
cellular automata. (Similar patterns may perhaps also be seen
in recent detailed simulations of fracture processes in arrays
of idealized atoms.)

â Large-scale fractures. It is remarkable to what extent very
large-scale fractures can look like small-scale ones. If the
path of a crack were, say, a perfect random walk, then one
might imagine that large-scale cracks could simply be
combinations of many small-scale segments. But when one
looks at geological systems, for example, the smallest
relevant scales for the cracks one sees are certainly no
smaller than particles of soil. And as a result, one needs a
more general mechanism, not just one that just relates to
atoms and molecules.

â Alternate models. It is straightforward to set up 3-color
cellular automata with the same basic idea as in the main
text, but in which there is no need for a special cell to
represent the crack. In addition, instead of modelling the
displacement of atoms, one can try to model directly the
presence or absence of atoms at particular positions. And
then one can start from a repetitive array of cells, with a
perturbation to represent the beginning of the crack.

â Electric breakdown. Somewhat related to fracture is the
process of electric breakdown, visible for example in
lightning, Lichtenberg figures or plasma-filled glass globes
used as executive toys. At least in the case of lightning,
there is some evidence that small inhomogeneities in the
atmosphere can be important in producing at least some
aspects of the apparent randomness that is seen. (With
electric potential thought of like a diffusion field, models
based on diffusion-limited aggregation are sometimes
used.)

â Crushing. For a rather wide range of cases it appears that in
crushed solids such as rocks the probability of a particular
fragment having a diameter larger than  is given
approximately by . It seems likely that the origin of this is

r
r -2.5
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that each rock has a certain probability to break into, say, two
smaller rocks at each stage in the crushing process, much as
in a substitution system. 

â Effects of microscopic roughness. The two most obvious
features that are affected by the microscopic roughness of
materials are visual appearance and sliding friction. A
perfectly flat surface will reflect light like a mirror.
Roughness will lead to more diffuse reflection, although the
connection between observed properties of rough surfaces
and typical parametrizations used in computer graphics is
not clear.

The friction force that opposes sliding is usually assumed to
be proportional purely to the force with which surfaces are
pressed together. Presumably at least the beginning of the
explanation for this slightly bizarre fact is that most of the
friction force is associated with microscopic peaks in rough
surfaces, and that the number of these peaks that come into
close contact increases as surfaces are pushed together. 

â Crinkling. A question somewhat related to fracture
concerns the generation of definite creases in crumpled or
wrinkled objects such as pieces of paper or fabric. It is not too
difficult to make various statements about details of the
particular arrangements of creases that can occur, but
nothing seems to be known about the origin of the overall
randomness that is almost universally seen. 

Fluid Flow

â Page 376 · Reynolds numbers. If a system is to act like a
continuum fluid, then almost by definition its behavior can
involve only a limited number of macroscopic quantities,
such as density and velocity. And from this it follows that
patterns of flow should not depend separately on absolute
speeds and sizes. Instead, the character of a flow should
typically be determined by a single Reynolds number,

, where  is the characteristic speed of the flow
(measured say in ),  is a characteristic size (measured
say in ), and  is the kinematic viscosity of the fluid. For
water, , for air , and for glycerine ,
all in units of . In flow past a cylinder it is
conventional to take  to be the diameter of the cylinder. But
the fact that the form of flow should depend only on
Reynolds number means that in the pictures in the main text
for example it is not necessary to specify absolute sizes or
speeds: one need only know the product  that appears in
the Reynolds number. In practice, moving one’s finger slowly
through water gives a Reynolds number of about 100 (so that
a regular array of dimples corresponding to eddies are visible

behind one’s finger), walking in air about 10,000, a boat in the
millions, and a large airplane in the billions.

The Reynolds number roughly measures the ratio of inertial
to viscous effects. When the Reynolds number is small the
viscous damping dominates, and the flow is laminar and
smooth. When the Reynolds number is large, inertia
associated with fluid motions dominates, and the flow is
turbulent and complicated.

In different systems, the characteristic length used typically
in the definition of Reynolds number is different. In most
cases, however, the transition from laminar to turbulent flow
occurs at Reynolds numbers around a hundred. 

In some situations, however, Reynolds number alone does
not appear to be sufficient to determine when a flow will
become turbulent. Indeed, modern experiments on streams
of dye in water (or rising columns of smoke) typically show a
transition to turbulence at a significantly lower Reynolds
number than the original experiments on these systems done
by Osborne Reynolds in the 1880s. Presumably the reason for
this is that the transition point can be lowered by
perturbations from the environment, and such perturbations
are more common in the modern mechanized world. If
perturbations are indeed important, it implies that a
traditional fluid description is not adequate. I suspect,
however, that even though perturbations may determine the
precise point at which turbulence begins, intrinsic
randomness generation will dominate once turbulence has
been initiated.

â Navier-Stokes equations. The traditional model of fluids
used in physics is based on a set of partial differential
equations known as the Navier-Stokes equations. These
equations were originally derived in the 1840s on the basis of
conservation laws and first-order approximations. But if one
assumes sufficient randomness in microscopic molecular
processes they can also be derived from molecular dynamics,
as done in the early 1900s, as well as from cellular automata
of the kind shown on page 378, as I did in 1985 (see below).
For very low Reynolds numbers and simple geometries, it is
often possible to find explicit formulas for solutions to the
Navier-Stokes equations. But even in the regime of flow
where regular arrays of eddies are produced, analytical
methods have never yielded complete explicit solutions. In
this regime, however, numerical approximations are fairly
easy to find. Since about the 1960s computers have been
powerful enough to allow computations at least nominally to
be extended to considerably higher Reynolds numbers. And
indeed it has become increasingly common to see numerical
results given far into the turbulent regime—leading
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sometimes to the assumption that turbulence has somehow
been derived from the Navier-Stokes equations. But just what
such numerical results actually have to do with detailed
solutions to the Navier-Stokes equations is not clear. For in
particular it ends up being almost impossible to distinguish
whatever genuine instability and apparent randomness may
be implied by the Navier-Stokes equations from artifacts that
get introduced through the discretization procedure used in
solving the equations on a computer. One of the key
advantages of my cellular automaton approach to fluids is
precisely that it does not require any such approximations. 

At a mathematical level analysis of the Navier-Stokes has
never established the formal uniqueness and existence of
solutions. Indeed, there is even some evidence that
singularities might almost inevitably form, which would
imply a breakdown of the equations, and perhaps a need to
account for underlying molecular processes.

In turbulent flow at higher Reynolds numbers there begin to
be eddies with a wide range of sizes. And to capture all these
eddies in a computation eventually involves prohibitively
large amounts of information. In practice, therefore, semi-
empirical models of turbulence tend to be used—often “eddy
viscosities”—with no direct relation to the Navier-Stokes
equations. In airflow past an airplane there is however
typically only a one-inch layer on each surface where such
issues are important; the large-scale features of the remainder
of the flow, which nevertheless accounts for only about half
the drag on the airplane, can usually be studied without
reference to turbulence.

The Navier-Stokes equations assume that all speeds are small
compared to the speed of sound—and thus that the Mach
number giving the ratio of these speeds is much less than
one. In essentially all practical situations, Mach numbers
close to one occur only at extremely high Reynolds
numbers—where turbulence in any case would make it
impossible to work out the detailed consequences of the
Navier-Stokes equations. Nevertheless, in the case of cellular
automaton fluids, I was able in 1985 to work out the rather
complicated next order corrections to the Navier-Stokes
equations. 

Above the speed of sound, fluids form shocks where density
or velocity change over very small distances (see below).
And by Mach 4 or so, shocks are typically so sharp that
changes occur in less than the distance between molecular
collisions—making it essential to go beyond the continuum
fluid approximation, and account for molecular effects. 

â Models of turbulence. Traditional models typically view
turbulence as consisting of some form of cascade of eddies.

This notion was already suggested in pictures by Leonardo
da Vinci from around 1510, and in Japanese pictures (notably
by Katsushika Hokusai) from around 1800 showing ocean
waves breaking into precisely nested tongues of water. The
theoretical study of turbulence began in earnest in the early
1900s, with emphasis on issues such as energy transfer
among eddies and statistical correlations between velocities.
Most published work became increasingly mathematical, but
particularly following the ideas of Lewis Richardson in the
1920s, the underlying physical notion was that a large eddy,
formed say by fluid flowing around an object, would be
unstable, and would break up into smaller eddies, which in
turn would break up into still smaller eddies, until eventually
the eddies would be of such a size as to be readily damped by
viscosity. An important step was taken in 1941 by Andrei
Kolmogorov who argued that if the eddies in such a cascade
were in a statistical equilibrium, then dimensional analysis
would effectively imply that the spectrum of velocity
fluctuations associated with the eddies must have a 
distribution, with  being wavenumber. This result has
turned out to be in respectable agreement with a range of
experimental data, but its physical significance has remained
somewhat unclear. For there appear to be no explicit entities
in fluids that can be directly identified as cascades of eddies.
One possibility might be that an eddy could correspond to a
local patch of vorticity or rotation in the fluid. And it is a
general feature of fluids that interfaces between regions of
different velocity are unstable, typically first becoming wavy
and then breaking into separate pieces. But physical
experiments and simulations in the past few years have
suggested that vorticity in turbulent fluids in practice tends
to become concentrated on a complicated network of lines
that stretch and twist. Perhaps some interpretation can be
made involving eddies existing only in a fractal region, or
interacting with each other as well as branching. And
perhaps new forms of definite localized structures can be
identified. But no clear understanding has yet emerged, and
indeed most of the analysis that is done—which tends to be
largely statistical in nature—is not likely to shed much light
on the general question of why there is so much apparent
randomness in turbulence. 

â Chaos theory and turbulence. The full Navier-Stokes
equations for fluid flow are far from being amenable to
traditional mathematical analysis. But some simplified
ordinary differential equations which potentially
approximate various situations in fluid flow can be more
amenable to analysis—and can exhibit the chaos
phenomenon. Work in the 1950s by Lev Landau, Andrei
Kolmogorov and others focused on equations with periodic

k -5/3

k



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

998

and quasiperiodic behavior. But in 1962 Edward Lorenz
discovered more complicated behavior in computer
experiments on equations related to fluid flow (see page 971).
Analysis of this behavior was closely linked to the chaos
phenomenon of sensitive dependence on initial conditions.
And by the late 1970s it had become popular to believe that
the randomness in fluid turbulence was somehow associated
with this phenomenon.

Experiments in very restricted situations showed
correspondence with iterated maps in which the chaos
phenomenon is seen. But the details of the connection with
true turbulence remained unclear. And as I argue in the main
text, the chaos phenomenon in the end seems quite unlikely
to explain most of the randomness we see in turbulence. The
basic problem is that a complex pattern of flow in effect
involves a huge amount of information—and to extract this
information purely from initial conditions would require for
example going to a submolecular level, far below where
traditional models of fluids could possibly apply.

Even within the context of the Lorenz equations there are
already indications of difficulties with the chaos explanation.
The Lorenz equations represent a first-order approximation
to certain Navier-Stokes-like equations, in which viscosity is
ignored. And when one goes to higher orders progressively
more account is taken of viscosity, but the chaos phenomenon
becomes progressively weaker. I suspect that in the limit
where viscosity is fully included most details of initial
conditions will simply be damped out, as physical intuition
suggests. Even within the Lorenz equations, however, one
can see evidence of intrinsic randomness generation, in
which randomness is produced without any need for
randomness in initial conditions. And as it turns out I suspect
that despite subsequent developments the original ideas of
Andrei Kolmogorov about complicated behavior in ordinary
differential equations were probably more in line with my
notion of intrinsic randomness generation than with the
chaos phenomenon. 

â Flows past objects. By far the most experimental data has
been collected for flows past cylinders. The few
comparisons that have been done indicate that most results
are extremely similar for plates and other non-streamlined
or “bluff” objects. For spheres at infinitesimal Reynolds
numbers a fairly simple exact analytical solution to the
Navier-Stokes equations was found by George Stokes in
1851, giving a drag coefficient of . For a cylinder, there
are difficulties with boundary conditions at infinity, but the
drag coefficient was nevertheless calculated by William
Oseen in 1915 to be .
At infinitesimal Reynolds number the flow around a

symmetrical object is always symmetrical. As the Reynolds
number increases, it becomes progressively more
asymmetrical, and at  for a cylinder, closed eddies
begin to appear behind the object. The length of the region
associated with these eddies is found to grow almost
perfectly linearly with Reynolds number. At  for a
cylinder, oscillations are often seen in the eddies, and at

, a vortex street forms. Increasingly accurate
numerical calculations based on direct approximations to
the Navier-Stokes equations have been done in the regime
of attached eddies since the 1930s. For a vortex street no
analytical solution has ever been found, and indeed it is
only recently that the general paths of fluid elements have
even been accurately deduced. A simple model due to
Theodore von Kármán from 1911 predicts a relative spacing
of  between vortices, and bifurcation theory
analyses have provided some justification for some such
result. Over the range  vortices are found to be
generated at a cylinder with almost perfect periodicity at a
dimensionless frequency (Strouhal number) that increases
smoothly from about 0.12 to 0.19. But even though
successive vortices are formed at fixed intervals,
irregularities can develop as the array of vortices goes
downstream, and such irregularities seem to occur at lower
Reynolds numbers for flows past plates than cylinders.
Some direct calculations of interactions between vortices
have been done in the context of the Navier-Stokes
equations, but the cellular automaton approach of page 378
seems to provide essentially the first reliable global results.
In both calculations and experiments, there is often
sensitivity to details of whatever boundary conditions are
imposed on the fluid, even if they are far from the object.
Results can also be affected by the history of the flow. In
general, the early way the flow develops over time typically
mirrors quite precisely the long-time behavior seen at
successively greater Reynolds numbers. In experiments, the
process of vortex generation at a cylinder first becomes
irregular somewhere between  and . After
this surprisingly few qualitative changes are seen even up to
Reynolds numbers as high as 100,000. There is overall
periodicity much like in a vortex street, but the detailed
motion of the fluid is increasingly random. Typically the
scale of the smallest eddies gets smaller in rough
correspondence with the  prediction of Kolmogorov’s
general arguments about turbulence. In flow past a cylinder,
there are various quite sudden changes in the periodicity,
apparently associated with 3D phenomena in which the
flow is not uniform along the axis of the cylinder. The drag
coefficient remains almost constant at a value around 1 until

, at which point it drops precipitously for a while.
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This phenomenon is associated with details of flow close to
the cylinder. At lower Reynolds numbers, the flow is still
laminar when it first comes around the cylinder; but there is
a transition to turbulence in this boundary layer after which
the fluid can in effect slide more easily around the cylinder.
When the speed of the flow passes the speed of sound in the
fluid, shocks appear. Usually they form simple geometrical
patterns (see below), and have the effect of forcing the
turbulent wake behind the cylinder to become narrower. 

â 2D fluids. The cellular automaton shown in the main text
is purely two-dimensional. Experiments done on soap films
since the 1980s indicate, however, that at least up to
Reynolds numbers of several hundred, the patterns of flow
around objects such as cylinders are almost identical to
those seen in ordinary 3D fluids. The basic argument for
Kolmogorov’s  result for the spectrum of turbulence is
independent of dimension, but there are reasons to believe
that in 2D eddies will tend to combine, so that after
sufficiently long times only a small number of large eddies
will be left. There is some evidence for this kind of process
in the Earth’s atmosphere, as well as in such phenomena as
the Red Spot on Jupiter. At a microscopic level, there are
some not completely unrelated issues in 2D about whether
perturbations in a fluid made up of discrete molecules
damp quickly enough to lead to ordinary viscosity.
Formally, there is evidence that the Navier-Stokes equations
in 2D might have a  viscosity term, rather than a

 one. But this effect, even if it is in fact present in
principle, is almost certainly irrelevant on the scales of
practical experiments.

â Cellular automaton fluids. A large number of technical
issues can be studied in connection with cellular automaton
fluids. Many were already discussed in my original 1985
paper. Others have been covered in some of the many papers
that have appeared since then. Of particular concern are
issues about how rotation and translation invariance emerge
at the level of fluid processes even though they are absent in
the underlying cellular automaton structure. The very
simplest rules turn out to have difficulties in these regards
(see page 1024), which is why the model shown in the main
text, for example, is on a hexagonal rather than a square grid
(compare page 980). The model can be viewed as a block
cellular automaton of the type discussed on page 460, but on
a 2D hexagonal grid. In general a block cellular automaton
works by making replacements for overlapping blocks of
cells on alternating steps. In the 1D case of page 460, the
blocks that are replaced consist of pairs of adjacent cells with
two different alignments. On a 2D square grid, one can use
overlapping  square blocks. But on a 2D hexagonal grid,

one must instead alternate on successive steps between
hexagons and their dual triangles. 

â Vorticity-based models. As an alternative to models of
fluids based on elements with discrete velocities, one can
consider using elements with discrete vorticities.

â History of cellular automaton fluids. Following the
development of the molecular model for gases in the late
1800s (see page 1019), early mathematical derivations of
continuum fluid behavior from underlying molecular
dynamics were already complete by the 1920s. More
streamlined approaches with the same basic assumptions
continued to be developed over the next several decades. In
the late 1950s Berni Alder and Thomas Wainwright began
to do computer simulations of idealized molecular
dynamics of 2D hard spheres—mainly to investigate
transitions between solids, liquids and gases. In 1967 they
observed so-called long-time tails not expected from
existing calculations, and although it was realized that these
were a consequence of fluid-like behavior not readily
accounted for in purely microscopic approximations, it did
not seem plausible that large-scale fluid phenomena could
be investigated with molecular dynamics. The idea of
setting up models with discrete approximations to the
velocities of molecules appears to have arisen first in the
work of James Broadwell in 1964 on the dynamics of
rarefied gases. In the 1960s there was also interest in so-
called lattice gases in which—by analogy with spin systems
like the Ising model—discrete particles were placed in all
possible configurations on a lattice subject to certain local
constraints, and average equilibrium properties were
computed. By the early 1970s more dynamic models were
sometimes being considered, and for example Yves Pomeau
and collaborators constructed idealized models of gases in
which both positions and velocities of molecules were
discrete. As it happens, in 1973, as one of my earliest
computer programs, I created a simulation of essentially the
same kind of system (see page 17). But it turned out that
this particular kind of system, set up as it was on a square
grid, was almost uniquely unable to generate the kind of
randomness that we have seen so often in this book, and
that is needed to obtain standard large-scale fluid behavior.
And as a result, essentially no further development on
discrete models of fluids was then done until after my work
on cellular automata in the early 1980s. I had always
viewed turbulent fluids as an important potential
application for cellular automata. And in 1984, as part of
work I was doing on massively parallel computing, I
resolved to develop a practical approach to fluid mechanics
based on cellular automata. I initiated discussions with
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various members of the fluid dynamics community, who
strongly discouraged me from pursuing my ideas. But I
persisted, and by the summer of 1985 I had managed to
produce pictures like those on page 378. Meanwhile,
however, some of the very same individuals who had
discouraged me had in fact themselves pursued exactly the
line of research I had discussed. And by late 1985, cellular
automaton fluids were generating considerable interest
throughout the fluid mechanics community. Many claims
were made that existing computational methods were
necessarily far superior. But in practice over the years since
1985, cellular automaton methods have grown steadily in
popularity, and are now widely used in physics and
engineering. Yet despite all the work that has been done,
the fundamental issues about the origins of turbulence that
I had originally planned to investigate in cellular
automaton fluids have remained largely untouched. 

â Computational fluid dynamics. From its inception in the
mid-1940s until the invention of cellular automaton fluids in
the 1980s, essentially all computational fluid dynamics
involved taking the continuum Navier-Stokes equations and
then approximating these equations using some form of
discrete mesh in space and time, and arguing that when the
mesh becomes small enough, correct results would be
obtained. Cellular automaton fluids start from a
fundamentally discrete system which can be simulated
precisely, and thus avoid the need for any such arguments.
One issue however is that in the simplest cellular automaton
fluids molecules are in effect counted in unary: each molecule
is traced separately, rather than just being included as part of
a total number that can be manipulated using standard
arithmetic operations. A variety of tricks, however, maintain
precision while in effect allowing a large number of
molecules to be handled at the same time.

â Sound waves and shocks. Sound waves in a fluid
correspond to periodic variations in density. The pictures
below show how a density perturbation leads to a sound
wave in a cellular automaton fluid. The sound wave turns
out to travel at a fraction  of the microscopic particle
speed.

When the speed of a fluid relative to an object becomes
comparable to the speed of sound, the fluid will inevitably

show variations in density. Typically shocks develop at the
front and back of an object, as illustrated below.

It turns out that when two shocks meet, they usually have
little effect on each other, and when there are boundaries,
shocks are usually reflected in simple ways. The result of this
is that in most situations patterns of shocks generated have a
fairly simple geometrical structure, with none of the
randomness of turbulence. 

â Splashes. Particularly familiar everyday examples of
complex fluid behavior are splashes made by objects falling
into water. When a water drop hits a water surface, at first a
symmetrical crater forms. But soon its rim becomes unstable,
and several peaks (often with small drops at the top) appear
in a characteristic coronet pattern. If the original drop was
moving quickly, a whole hemisphere of water then closes in
above. But in any case a peak appears at the center,
sometimes with a spherical drop at the top. If a solid object is
dropped into water, the overall structure of the splash made
can depend in great detail on its shape and surface
roughness. Splashes were studied using flash photography
by Arthur Worthington around 1900 (as well as Harold
Edgerton in the 1950s), but remarkably little theoretical
investigation of them has ever been made.

â Generalizations of fluid flow. In the simplest case the local
state of a fluid is characterized by its velocity and perhaps
density. But there are many situations where there are also
other quantities relevant, notably temperature and chemical
composition. And it turns out to be rather straightforward to
generalize cellular automaton fluids to handle these.

â Convection. When there is a temperature difference
between the top and bottom of a fluid, hot fluid tends to rise,
and cold fluid then comes down again. At low temperature
differences (characterized by a low dimensionless Rayleigh
number) a regular pattern of hexagonal Bénard convection
cells is formed (see page 377). But as the temperature
difference increases, a transition to turbulence is seen, with
most of the same characteristics as in flow past an object. A
cellular automaton model can be made by allowing particles
with more than one possible energy: the average particle
energy in a region corresponds to fluid temperature.
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â Atmospheric turbulence. Convection occurs because air near
the ground is warmer than air at higher altitudes. On a clear
night over flat terrain, air flow can be laminar near the
ground. Usually, however, it is turbulent near the ground—
producing, for example, random gusting in wind—but
becomes laminar at higher altitudes. Turbulent convection
nevertheless occurs in most clouds, leading to random
billowing shapes. The “turbulence” that causes bumps in
airplanes is often associated with clouds, though sometimes
with larger-scale wave-like fluid motions such as the jet
stream. 

â Ocean surfaces. At low wind speeds, regular ripples are
seen; at higher wind speeds, a random pattern of creases
occurs. It seems likely that randomness in the wind has little
to do with the behavior of the ocean surface; instead it is the
intrinsic dynamics of the water that is most important.

â Granular materials. Sand and other granular materials show
many phenomena seen in fluids. (Sand dunes are the rough
analog of ocean waves.) Vortices have recently been seen, and
presumably under appropriate conditions turbulence will
eventually also be seen.

â Geological structures. Typical landscapes on Earth are to a
first approximation formed by regions of crust being uplifted
through tectonic activity, then being sculpted by progressive
erosion (and redeposition of sediment) associated with the
flow of water. (Visually very different special cases include
volcanos, impact craters and wind-sculpted deserts.)
Eventually erosion and deposition will in effect completely
smooth out a landscape. But at intermediate times one will
see all sorts of potentially dramatic gullies that reflect the
pattern of drainage, and the formation of a whole tree of
streams and rivers. (Such trees have been studied since at
least the early 1900s, with typical examples of concepts being
Horton stream order, equal to  for trees given as
Mathematica expressions.) If one imagines a uniform slope
with discrete streams of water going randomly in each
direction at the top, and then merging whenever they meet,
one immediately gets a simple tree structure a little like in the
pictures at the top of page 359. (More complicated models
based for example on aggregation, percolation and energy
minimization have been proposed in recent years—and
perhaps because most random spanning trees are similar,
they tend to give similar results.) As emphasized by Benoit
Mandelbrot in the 1970s and 1980s, topography and contour
lines (notably coastlines) seem to show apparently random
structure on a wide range of scales—with definite power
laws being measured in quite a few cases. And presumably at
some level this is the result of the nested patterns in which
erosion occurs. (An unrelated effect is that as a result of the

dynamics of flow in it, even a single river on a featureless
landscape will typically tend to increase the curvature of its
meanders, until they break off and form oxbow lakes.) 

Fundamental Issues in Biology

â Page 383 · History. The origins of biological complexity have
been debated since antiquity. For a long time it was assumed
that the magnitude of the complexity was so great that it
could never have arisen from any ordinary natural process,
and therefore must have been inserted from outside through
some kind of divine plan. However, with the publication of
Charles Darwin’s Origin of Species in 1859 it became clear that
there were natural processes that could in fact shape features
of biological organisms. There was no specific argument for
why natural selection should lead to the development of
complexity, although Darwin appears to have believed that
this would emerge somewhat like a principle in physics. In
the century or so after the publication of Origin of Species
many detailed aspects of natural selection were elucidated,
but the increasing use of traditional mathematical methods
largely precluded serious analysis of complexity. Continuing
controversy about contradictions with religious accounts of
creation caused most scientists to be adamant in assuming
that every aspect of biological systems must be shaped
purely by natural selection. And by the 1980s natural
selection had become firmly enshrined as a force of
practically unbounded power, assumed—though without
specific evidence—to be capable of solving almost any
problem and producing almost any degree of complexity.

My own work on cellular automata in the early 1980s
showed that great complexity could be generated just from
simple programs, without any process like natural selection.
But although I and others believed that my results should be
relevant to biological systems there was still a pervasive
belief that the level of complexity seen in biology must
somehow be uniquely associated with natural selection. In
the late 1980s the study of artificial life caused several
detailed computer simulations of natural selection to be
done, and these simulations reproduced various known
features of biological evolution. But from looking at such
simulations, as well as from my own experiments done from
1980 onwards, I increasingly came to believe that almost any
complexity being generated had its origin in phenomena
similar to those I had seen in cellular automata—and had
essentially nothing to do with natural selection.

â Attitudes of biologists. Over the years, I have discussed
versions of the ideas in this section with many biologists of
different kinds. Most are quick to point out at least anecdotal
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cases in which features of organisms do not seem to have
been shaped by natural selection. But if asked about
complexity—either in specific examples or in general—the
vast majority soon end up trying to give explanations based
on natural selection. Those with a historical bent often
recognize that the origins of complexity have always been
somewhat mysterious in biology, and indeed sometimes state
that this has laid the field open to many attacks. But generally
my experience has been that the further one goes from those
involved with specific molecular or other details of biological
systems the more one encounters a fundamental conviction
that natural selection must be the ultimate origin of any
important feature of biological systems.

â Page 383 · Genetic programs. Genetic programs are
encoded as sequences of four possible nucleotide bases on
strands of DNA or RNA. The simplest known viruses have
programs that are a few thousand elements in length;
bacteria typically have programs that are a few million
elements; fruit flies a few hundred million; and humans
around four billion. There is not a uniform correspondence
between apparent sophistication of organisms and lengths
of genetic programs: different species of amphibians, for
example, have programs that can differ in length by a factor
of a hundred, and can be as many as tens of billions of
elements long. Genetic programs are normally broken into
sections, many of which are genes that provide templates
for making particular proteins. In humans, there are
perhaps around 40,000 genes, specifying proteins for about
200 distinct cell types. Many of the low-level details of how
proteins are produced is now known, but higher-level
issues about organization into different cell types remain
somewhat mysterious. Note that although most of the
information necessary to construct an organism is encoded
in its genetic program, other material in the original egg cell
or the environment before birth can probably also
sometimes be relevant.

â Page 386 · Tricks in evolution. Among the tricks used are:
sexual reproduction, causing large-scale mixing of similar
programs; organs, suborganisms, symbiosis and parasitism,
allowing different parts of programs to be optimized
separately; mutation rate enzymes, allowing parts that need
change to be searched more quickly; learnability in
individual organisms, allowing larger local deviations from
optimality to be tried.

â Page 387 · Belief in optimality. The notion that features of
biological organisms are always somehow optimized for a
particular purpose has become extremely deep seated—and
indeed it has been discussed since antiquity. Most modern
biologists at least pay lip service to historical accidents and

developmental constraints, but if pressed revert surprisingly
quickly to the notion of optimization for a purpose.

â Page 390 · Studying natural selection. From the basic
description of natural selection one might have thought that
it would correspond to a unique simple program. But in fact
there are always many somewhat arbitrary details,
particularly centering around exactly how to prune less fit
organisms. And the consequence of this is that in my
experience it is essentially impossible to come up with
precise definitive conclusions about natural selection on the
basis of specific simple computer experiments. Using the
Principle of Computational Equivalence discussed in
Chapter 12, however, I suspect that it will nevertheless be
possible to develop a general theory of what natural selection
typically can and cannot do.

â Page 391 · Other models. Sequential substitution systems
are probably more realistic than cellular automata as models
of genetic programs, since elements can explicitly be added
to their rules at will. As a rather different approach, one can
consider a fixed underlying rule—say a class 4 cellular
automaton—with modifications in initial conditions. The
notion of universality in Chapter 11 implies that under
suitable conditions this should be equivalent to modifications
in rules. As an alternative to modelling individual organisms,
one can also consider substitution systems which directly
generate genealogical trees for populations of organisms,
somewhat like Leonardo Fibonacci’s original model of a
rabbit population. 

â Page 391 · Adaptive value of complexity. One might think
that the reason complexity is not more widespread in biology
is that somehow it is too sensitive to perturbations. But in
fact, as discussed in Chapter 7, randomness and complexity
tend to lead to more, rather than less, robustness in overall
behavior. Indeed, many even seemingly simple biological
processes appear to be stabilized by randomness—leading,
for example, to random fluctuations in interbeat intervals for
healthy hearts. And some biological processes rely directly
on complex or random phenomena—for example, finding
good paths for foraging for food, avoiding predators or
mounting suitable immune responses. (Compare page 1192.)

â Page 393 · Genetic algorithms. As mentioned on page 985, it
is straightforward to apply natural selection to computer
programs, and for certain kinds of practical tasks with
appropriate continuity properties this may be a useful
approach. 

â Page 394 · Smooth variables. Despite their importance in
understanding natural selection both in biology and in
potential computational applications, the fundamental
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origins of smooth variables or so-called quantitative traits
seem to have been investigated rather little. Within
populations of organisms such traits are often found to have
Gaussian distributions (as, for example, in heights of
humans), but this gives little clue as to their origin. (Weights
of humans nevertheless have closer to a lognormal
distribution.) It is generally assumed that smooth variables
must be associated with so-called polygenes that effectively
include a large number of individual discrete genes. In pre-
Mendelian genetics, observations on smooth variables are
presumably what led to the theory that traits of offspring are
determined by smoothly mixing the blood of their parents.

â Page 395 · Species. One feature of biological organisms is
that they normally occur in discrete species, with distinct
differences between different species. It seems likely that the
existence of such discreteness is related to the discreteness of
underlying genetic programs. Currently there are a few
million species known. Most are distinguished just by their
habitats, visual appearance or various simple numerical
characteristics. Sometimes, however, it is known that
members of different species have the traditional defining
characteristic that they cannot normally mate, though this
may well be more a matter of the mechanics of mating and
development than a fundamental feature.

â Defining life. See pages 823 and 1178. 

â Page 397 · Analogies with thermodynamics. Over the past
century there have been a number of attempts to connect the
development of complexity in biological systems with the
increase of entropy in thermodynamic systems. In fact, when
it was first introduced the very term “entropy” was supposed
to suggest an analogy with biological evolution. But despite
this, no detailed correspondence between thermodynamics
and evolution has ever been forthcoming. However, my
statement here that complexity in biology can occur because
natural selection cannot control complex behavior is rather
similar to my statement in Chapter 9 that entropy can
increase because physical experiments in a sense also cannot
control complex behavior.

â Page 398 · Major new features. Traditional groupings of
living organisms into kingdoms and phyla are typically
defined by the presence of major new features. Standard
examples from higher animals include regulation of body
temperature and internal gestation of young. Important
examples from earlier in the history of life include nuclear
membranes, sexual reproduction, multicellularity, protective
shells and photosynthesis. 

Trilobites are a fairly clear example of organisms where over
the course of a few hundred million years the fossil record

shows increases in apparent morphological complexity,
followed by decreases. Something similar can be seen in the
historical evolution of technological systems such as cars.

â Software statistics. Empirical analysis of the million or so
lines of source code that make up Mathematica suggests that
different functions—which are roughly analogous to
different genes—rather accurately follow an exponential
distribution of sizes, with a slightly elevated tail.

â Proteins. At a molecular level much of any living cell is
made up of proteins formed from chains of tens to thousands
of amino acids. Of the thousands of proteins now known
some (like keratin and collagen) are fibrous, and have a
simple repetitive underlying structure. But many are
globular, and have at least a core in which the 3D packing of
amino acids seems quite random. Usually there are some
sections that consist of simple  helices,  sheets, or
combinations of these. But other parts—often including sites
important for function—seem more like random walks. At
some level the 3D shapes of proteins (tertiary structure) are
presumably determined by energy minimization. But in
practice very different shapes can probably have almost
identical energies, so that in as much as a given protein
always takes on the same shape this must be associated with
the dynamics of the process by which the protein folds when
it is assembled. (Compare page 988.) One might expect that
biological evolution would have had obvious effects on
proteins. But as mentioned on page 1184 the actual sequences
of amino acids in proteins typically appear quite random.
And at some level this is presumably why there seems to be
so much randomness in their shapes. (Biological evolution
may conceivably have selected for proteins that fold reliably
or are more robust with respect to changes in single amino
acids, but there is currently no clear evidence for this.) 

Growth of Plants and Animals

â History. The first steps towards a theory of biological form
were already taken in Greek times with attempts—notably
by Aristotle—to classify biological organisms and to
understand their growth. By the 1600s extensive
classification had been done, and many structural features
had been identified as in common between different
organisms. But despite hopes on the part of René Descartes,
Galileo and others that biological processes might follow the
same kind of rigid clockwork rules that were beginning to
emerge in physics, no general principles were forthcoming.
Rough analogies between the forms and functions of
biological and non-biological systems were fairly common
among both artists and scientists, but were rarely thought to
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have much scientific significance. In the 1800s more detailed
analogies began to emerge, sometimes as offshoots of the
field of morphology named by Johann Goethe, and
sometimes with mathematical interpretations, and in 1917
D’Arcy Thompson published the first edition of his book On
Growth and Form which used mathematical methods—
mostly from analytical geometry—to discuss a variety of
biological processes, usually in analogy with ones in
physics. But emphasis on evolutionary rather than
mechanistic explanations for a long time caused little further
work to be done along these lines. Much additional data
was obtained, particularly in embryology, and by the 1930s
it seemed fairly clear that at least some aspects of growth in
the embryo were controlled by chemical messengers. In 1951
Alan Turing worked out a general mathematical model of
this based on reaction-diffusion equations, and suggested
that such a model might account for many pigmentation
and structural patterns in biological systems (see page 1012).
For nearly twenty years, however, no significant follow-up
was done on this idea. There were quite a few attempts—
often misguided in my opinion—to use traditional ideas
from physics and engineering to derive forms of biological
organisms from constraints of mechanical or other
optimality. And in the late 1960s, René Thom made an
important attempt to use sophisticated methods from
topology to develop a general theory of biological form. But
the mathematics of his work was inaccessible to most
natural scientists, and its popularized version, known as
catastrophe theory, largely fell into disrepute. 

The idea of comparing systems in biology and engineering
dates back to antiquity, but for a long time it was mainly
thought of just as an inspiration for engineering. In the
mid-1940s, however, mostly under the banner of
cybernetics, tools from the analysis of electrical systems
began to be used for studying biological systems. And
partly from this—with much reinforcement from the
discovery of the genetic code—there emerged the idea of
thinking about biological systems in purely abstract logical
or computational terms. This led to an early introduction of
2D cellular automata (see page 876), but the emphasis was
on ambitious general questions rather than specific models.
Little progress was made, and by the 1960s most work
along these lines had petered out. In the late 1970s,
however, fractals and L systems (see below) began to
provide examples where simple rules could be seen to
yield biological-like branching behavior. And in the 1980s,
interest in non-equilibrium physical processes, and in
phenomena such as diffusion-limited aggregation, led to
renewed interest in reaction-diffusion equations, and to

somewhat more explicit models for various biological
processes. My own work on cellular automata in the early
1980s started a number of new lines of computational
modelling, some of which became involved in the rise and
fall of the artificial life movement in the late 1980s and
early 1990s.

â Page 400 · Growth in plants. At the lowest level, the growth
of any organism proceeds by either division or expansion of
cells, together with occasional formation of cavities between
cells. In plants, cells typically expand—normally through
intake of water—only for a limited period, after which the
cellulose in their walls crystallizes to make them quite rigid.
In most plants—at least after the embryonic stage—cells
typically divide only in localized regions known as
meristems, and each division yields one cell that can divide
again, and one that cannot. Often the very tip of a stem
consists of a single cell in the shape of an inverted
tetrahedron, and in lower plants such as mosses this is
essentially the only cell that divides. In flowering plants,
cell division normally occurs around the edge of a region of
size 0.2–1 mm containing many tens of cells. (Hearts of
palm in palm trees can however be much larger.) The
details of how cell division works in plants remain largely
unknown. There is some evidence that orientation of new
cells is in part controlled by microscopic fibers. Various
small molecules that can diffuse between cells (such as so-
called auxins) are known to affect growth and production of
new stems (see below).

â Page 401 · Branching in plants. Almost all kinds of plants
exhibit some form of branching, and particularly in smaller
plants the branching is often extremely regular. In a plant as
large as a typical tree—particularly one that grows slowly—
different conditions associated with the growth of different
branches may however destroy some of the regularity of
branching. Among algae and more primitive plants such as
whisk ferns, repeated splitting of a single branch into two is
particularly common. Ferns and conifers both typically
exhibit three-way branching. Among flowering plants so-
called dicotyledons exhibit branching throughout the plant.
Monocotyledons—of which palms and grasses are two
examples—typically have only one primary site of growth,
and thus do not exhibit repeated branching. (In grasses the
growth site is at the bottom of the stem, and in bamboos there
are multiple growth sites up the stem.)

The forms of branching in plants have been used as means of
classification since antiquity. Alexander von Humboldt in
1808 identified 19 overall types of branching which have
been used, with some modifications, by plant geographers
and botanists ever since. Note that in the vast majority of
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cases, branches do not lie in a plane; often they are instead
arranged in a spiral, as discussed on page 408. But when
projected into two dimensions, the patterns obtained still
look similar to those in the main text. 

â Page 402 · Implementation. It is convenient to represent the
positions of all tips by complex numbers. One can take the
original stem to extend from the point -1 to 0; the rule is then
specified by the list  of complex numbers corresponding to
the positions of the new tip obtained after one step. And after

 steps the positions of all tips generated are given simply by 

â Mathematical properties. If an element  of the list  is real,
so that there is a stem that goes straight up, then the limiting
height of the center of the pattern is obtained by summing a
geometric series, and is given by . The overall
limiting pattern will be finite so long as  for all
elements of . After  steps the total length of all stems is
given by . (See page 1006 for other
properties.)

â Page 402 · Simple geometries. Page 357 shows how some of
the nested patterns commonly seen in this book can be
produced by the growth processes shown here. 

â History of branching models. The concept of systematic
rules for the way that stems—particularly those carrying
flowers—are connected in a plant seems to have been
clearly understood among botanists by the 1800s. Only with
the advent of computer graphics in the 1970s, however, does
the idea appear to have arisen of varying angles to get
different forms. An early example was the work of Hisao
Honda in 1970 on the structure of trees. Pictures analogous
to the bottom row on page 402 were also generated by
Benoit Mandelbrot in connection with his development of
fractals. Starting in 1967 Aristid Lindenmayer emphasized
the use of substitution or L systems (see page 893) as a way
of modelling patterns of connections in plants. And
beginning in the early 1980s—particularly through work by
Alvy Ray Smith and later Przemyslaw Prusinkiewicz—
models based on L systems and fractals became routinely
used for producing images of plants in practical computer
graphics. Around the same time Michael Barnsley also used
so-called iterated function systems to make pictures of
ferns—but he appears to have viewed these more as a
curiosity than a contribution to botany. Over the past decade
or so, a few mentions have been made of using complicated
models based on L systems to reproduce shapes of specific
types of leaves, but so far as I can tell, nothing like the
simple model that I describe in the main text has ever been
considered before.

â Page 404 · Leaf shapes. Leaves are usually put into
categories like the ones below, with names mostly derived
from Latin words for similar-looking objects.

Some classification of leaf shapes was done by Theophrastus
as early as 300 BC, and classifications similar to those above
were in use by the early Renaissance period. (They appear for
example in the first edition of the Encyclopedia Britannica from
1768.) Leaf shapes have been widely used since antiquity as a
way of identifying plants—initially particularly for medicinal
purposes. But there has been very little general scientific
investigation of leaf shapes, and most of what has been done
has concentrated on the expansion of leaves once they are out
of their buds. Already in 1724 Stephen Hales looked at the
motion of grids of marks on fig leaves, and noted that growth
seemed to occur more or less uniformly throughout the leaf.
Similar but increasingly quantitative studies have been made
ever since, and have reported a variety of non-uniformities in
growth. For a long time it was believed that after leaves came
out of their buds growth was due mainly to cell expansion,
but in the 1980s it became clear that many cell divisions in
fact occur, both on the boundary and the interior. At the
earliest stages, buds that will turn into leaves start as bumps
on a plant stem, with a structure that is essentially impossible
to discern. Surgically modifying such buds when they are as
small as 0.1 mm can have dramatic effects on final leaf shape,
suggesting that at least some aspects of the shape are already
determined at that point. On a single plant different leaves
can have somewhat different shapes—sometimes for
example those lower on a tree are smoother, while those
higher are pointier. It may nevertheless be that leaves on a
single plant initially have a discrete set of possible shapes,
with variations in final shape arising from differences in
environmental conditions during expansion. My model for
leaf shapes is presumably most relevant for initial shapes.

Traditional evolutionary explanations have not had much to
say about detailed questions of leaf shape; one minor claim is
that the pointed tips at the ends of many tropical leaves exist
to allow moisture to drip off the leaves. The fossil record
suggests that leaves first arose roughly 400 million years ago,
probably when collections of branches which lay in a plane
became joined by webbing. Early plants such as ferns have
compound leaves in which explicit branching structure is still
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seen. Extremely few models for shapes of individual leaves
appear to have ever been proposed. In 1917 D’Arcy
Thompson mentioned that leaves might have growth rates
that are simple functions of angle, and drew the first of the
pictures shown below.

With new tip positions as on page 400 given by
, rough  for at least some

versions of some common plants include: wild carrot (Queen
Anne’s lace) , cypress , coralbells

, ivy , grape , sycamore
, mallow , goosefoot ,

willow , morning glory , cucumber
, ginger . 

â Page 404 · Self-limiting growth. It is often said that in
plants, unlike animals, there is no global control of growth.
And one feature of the simple branching processes I
describe is that for purely mathematical reasons, their rules
always produce structures that are of limited size. Note that
in fact it is known that there is some global control of
growth even in plants: for example hormones produced by
leaves can affect growth of roots.

â Page 407 · Parameter space sets. Points in the space of
parameters can conveniently be labelled by a complex number

, where the imaginary direction is taken to increase to the right.
The pattern corresponding to each point is the limit of

 when .
Such a limiting pattern exists only within the unit circle

. It then turns out that the limiting pattern is either
completely connected or completely disconnected; which it is
depends on whether it contains any points on the vertical axis

. Every point in the pattern must correspond to some
list of left and right branchings, represented by 0’s and 1’s
respectively; in terms of this list the position of the point is given
by .
Patterns are disconnected if there is a gap between the parts
obtained from lists starting with 0 and with 1. The magnitude of
this gap turns out to be given by 

The picture below shows the region for which the gap is
positive, corresponding to trees which are not connected.
(This region was found by Michael Barnsley and others in

the late 1980s.) The overall maximum gap occurs at
. The bottom boundary of the region

lies along ; the extremal point on the edge of
the gap in this case corresponds to 
where the last two elements repeat forever. The rest of the
boundary consists of a sequence of algebraic curves, with
almost imperceptible changes in slope in between; the first
corresponds to , while subsequent
ones correspond to ,

, etc.

In the pictures in the main text, the black region is connected
wherever it does not protrude into the shaded region, which
corresponds to disconnected patterns, in the pictures above.
And in general it turns out that near any particular value of 
the sets shown in black in the main text always look at
sufficient magnification like the pattern that would be
obtained for that value of . The reason for this is that if 
changes only slightly, then the pattern to a first
approximation deforms only slightly, so that the part seen
through the peephole just shifts, and in a small region of 
values the peephole in effect simply scans over different parts
of the pattern. 

A simple way to approximate the pictures in the main text
would be to generate patterns by iterating the substitution
system a fixed number of times. In practice, however, it is
essential to prune the tree of points at each stage. And at least
for  not too close to 1, this can be done by discarding
points that are so far away from the peephole that their
descendents could not possibly return to it.

The parameter space sets discussed here are somewhat
analogous to the Mandelbrot set discussed on page 934,
though in many ways easier to understand. 

(See also the discussion of universal objects on page 1127.)

â Page 409 · Mathematics of phyllotaxis. A rotation by
 turns is equivalent to a rotation by

 turns, or .
Successive approximations to this number are given by

, so that elements numbered
 (i.e. 1, 2, 3, 5, 8, 13, …) will be the ones that come

closest to being a whole number of turns apart, and thus to
being lined up on the stem. As mentioned on page 891,
having  turns between elements makes them in a
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sense as evenly distributed as possible, given that they are
added sequentially.

â History of phyllotaxis. The regularities of phyllotaxis were
presumably noticed in antiquity, and were certainly
recognized in the 1400s, notably by Leonardo da Vinci. By the
1800s various mathematical features of phyllotaxis were
known, and in 1837 Louis and Auguste Bravais identified the
presence of a golden ratio angle. In 1868 Wilhelm Hofmeister
proposed that new elements form in the largest gap left by
previous elements. And in 1913 Johannes Schoute argued
that diffusion of a chemical creates fields of inhibition around
new elements—a model in outline equivalent to mine. In the
past century features of phyllotaxis have been rediscovered
surprisingly many times, with work being done quite
independently both in abstract mathematical settings, and in
the context of specific models (most of which are ultimately
very similar). One development in the 1990s is the generation
of phyllotaxis-like patterns in superconductors, ferrofluids
and other physical systems.

â Observed phyllotaxis. Many spiral patterns in actual plants
converge to within a degree or less of , though just as
in the model in the main text, there are usually deviations
for the first few elements produced. The angles are
particularly accurate in, for example, flower heads—where
it is likely the positions of elements are adjusted by
mechanical forces after they are originally generated. Other
examples of phyllotaxis-like patterns in biology include the
scales of pangolins and surfaces of tooth-like structures in
certain kinds of rays and sharks.

â Projections of patterns. The literature of phyllotaxis is full of
baroque descriptions of the features of projections of patterns
with golden ratio angles. In the pictures below, the th point
has position , and
in such pictures regular spirals or parastichies emanating
from the center are seen whenever points whose numbers
differ by  are joined. Note that the tips of many
growing stems seem to be approximately paraboloidal,
making the th point a distance  from the center.

â Page 410 · Implementation. It is convenient to consider a
line of discrete cells, much as in a continuous cellular
automaton. With a concentrations list , the position  of a
new element is given by ,
while the new list of concentrations is 
where  is a list of depletions associated with addition of a
new element at position 1. In the main text a Gaussian form
is used for . Other smooth functions typically nevertheless
yield identical results. Note that in order to get an accurate
approximation to a golden ratio angle there must be a fairly
large number of cells.

â Shapes of cells. Many types of cells are arranged like typical
3D packings of deformable objects (see page 988)—with
considerable apparent randomness in individual shapes and
positions, but definite overall statistical properties. Cells
arranged on a surface—as in the retina or in skin—or that are
intrinsically elongated—as in muscle—tend again to be
arranged like typical packings, but now in 2D, where a
regular hexagonal grid is formed. 

â Page 412 · Symmetries. Biological systems often show
definite discrete symmetry. (In monocotyledon plants there is
usually 3-fold symmetry; in dicotyledons 4- or 5-fold.
Animals like starfish often have 5-fold symmetry; higher
animals usually only 2-fold symmetry. There are fossils with
7- and 9-fold symmetry. At microscopic levels there are
sometimes other symmetries: cilia of eukaryotic cells can for
example show 9- and 13-fold symmetry. In the phyllotaxis
process discussed in the main text one new element is
produced at a time. But if several elements are produced
together the same basic mechanism will tend to make these
elements be equally spaced in angle—leading to overall
discrete symmetry. (Individual proteins sometimes also
arrange themselves into overall structures that have discrete
symmetries—which can then be reflected in shapes of cells or
larger objects.) (See also page 1011.)

â Page 412 · Locally isotropic growth. A convenient way to
see what happens if elements of a surface grow isotropically
is to divide the surface into a collection of very small
circles, and then to expand the circle at each point by a
factor . If the local curvature of the surface is
originally , then after such growth, the curvature
turns out to be 
where . In order for the surface to
stay flat its growth rate  must therefore solve
Laplace’s equation, and hence must be a harmonic function

. This is equivalent to saying that the growth
must correspond to a conformal mapping which locally
preserves angles. The pictures below show results for
several growth rate functions; in the last case, the function
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is not harmonic, and the surface cannot be drawn in the
plane without tearing. Note that if the elements of a surface
are allowed to change shape, then the surface can always
remain flat, as in the top row of pictures on page 412.
Harmonic growth rate functions can potentially be obtained
from the large-time effects of a chemical subject to diffusion.
And this may perhaps be related to the flatness observed in
the growth of leaves. (See also page 1010.) 

â Page 413 · Branching in animals. Capillaries, bronchioles
and kidney ducts in higher animals typically seem to form
trees in which each tip as it extends repeatedly splits into two
branches. (In human lungs, for example, there are about 20
levels of branching.) The same kind of structure is seen in the
digestive systems of lower animals—as visible externally, for
example, in the arms of a basket star. 

â Page 413 · Antlers. Like stems of plants antlers grow at
their tips, and can thus exhibit branching. This is made
possible by the fact that antlers, unlike horns, have a layer of
soft tissue on the outside—which delivers the nutrients
needed for growth to occur on the outer surface of the bone
at their tips.

â Page 414 · Shells. Shells grow through the secretion of rigid
material from the soft lip or mantle of the animal inside, and
over periods of months to years they form coiled structures
that normally follow rather accurate equiangular spirals,
typically right-handed. The number of turns or whorls varies
widely, from less than one in a typical bivalve, to more than
thirty in a highly pointed univalve such as a screw shell.
Usually the coiled structure is obvious from looking at the
apex on the outside of the shell, but in cowries, for example, it
is made less obvious by the fact that later whorls completely
cover earlier ones, and at the opening of the shell some
dissolving and resculpting of material occurs. In addition to
smooth coiled overall structures, some shells exhibit spines.
These are associated with tentacles of tissue which secrete shell
material at their tips as they grow. Inside shells such as
nautiluses, there are a sequence of sealed chambers, with septa
between them laid down perhaps once a month. These septa in
present-day species are smooth, but in fossil ammonites they
can be highly corrugated. Typically the corrugations are
accurately symmetrical, and I suspect that they in effect
represent slices through a lettuce-leaf-like structure formed
from a surface with tree-like internal growth.

â Shell model. The center of the opening of a shell is taken to
trace out a helix whose  coordinates are given as a
function of the total angle of revolution  by

. On row (a) of page 415 the parameter 
varies from 1.05 to 1.65, while on row (b)  varies from 0 to 6.
The complete surface of the shell is obtained by varying both
 and  in

where  varies from 0.4 to 1.6 on row (c),  from 1 to 4 on row
(d) and  from 0 to 1.2 on row (e). For many values of
parameters the surface defined by this formula intersects
itself. However, in an actual shell material can only be added
on the outside of what already exists, and this can be
represented by restricting  to run over only part of the range
-  to . The effect of this on internal structure can be seen in
the slice of the cone shell on row (b) of page 414. Most real
shells follow the model described here with remarkable
accuracy. There are, however, deviations in some species,
most often as a result of gradual changes in parameters
during the life of the organism. As the pictures in the main
text show, shells of actual molluscs (both current and fossil)
exist throughout a large region of parameter space. And in
fact it appears that the only parameter values that are not
covered are ones where the shell could not easily have been
secreted by an animal because its shape is degenerate and
leaves little useful room for the animal. Some regions of
parameter space are more common than others, and this may
be a consequence either of natural selection or of the detailed
molecular biology of mollusc growth. Shells where
successive whorls do not touch (as in the first picture on row
(c) of page 415) appear to be significantly less common than
others, perhaps because they have lower mechanical rigidity.
They do however occur, though sometimes as internal rather
than external shells. 

â History. Following Aristotle’s notion of gnomon figures that
keep the same shape when they grow, equiangular spirals
were discussed by René Descartes in 1638, and soon
thereafter Christopher Wren noted their relation to shells. A
clear mathematical model of shell growth based on
equiangular spirals was given by Henry Moseley in 1838,
and the model used here is a direct extension of his. Careful
studies from the mid-1800s to mid-1900s validated Moseley’s
basic model for a wide variety of shells, though an increasing
emphasis was placed on shells that showed deviations from
the model. In the mid-1960s David Raup used early
computer graphics to generate pictures for various ranges of
parameters, but perhaps because he considered only specific
classes of molluscs there emerged from his work the belief
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that parameters of shells are greatly constrained—with
explanations being proposed based on optimization of such
features as strength, relative volume, and stability when
falling through water. But as discussed in the main text I
strongly suspect that in fact there are no such global
constraints, and instead almost all reasonable values of
parameters from the simple model used do actually occur in
real molluscs. In the past few decades, increasingly complex
models for shells have been constructed, typically focusing
on fairly specific or unusual cases. Most of these models have
far more parameters than the simple one used here, and by
varying these parameters it is almost always possible to get
forms that probably do not correspond to real shells. And
presumably the reason for this is just that such models
represent processes that do not occur in the growth of actual
molluscs. One widespread issue concerns the orientation of
the opening to a shell. The model used here assumes that this
opening always stays vertical—which appears to be what
happens most often in practice. But following the notion of
Frenet frames in differential geometry, it has often come to be
supposed that the opening to a shell instead typically lies in a
plane perpendicular to the helix traced out by the growth of
the shell. This idea, however, leads to twisted shapes like
those shown below that occur rarely, if ever, in actual shells.
And in fact, despite elaborate efforts of computer graphics it
has proved rather difficult with parametrizations based on
Frenet frames to produce shells that have a reasonable range
of realistic shapes.

â Page 417 · Discrete folding. See page 892.

â Page 418 · Intrinsically defined curves. With curvature
given by a function  of the arc length , explicit
coordinates  of points are obtained from
(compare page 1048)

For various choices of , formulas for  can be
found using : 

: 
: 

: 
:  

: 

: result involves  
: result involves ,

expressible in terms of generalized Kampé de Fériet
hypergeometric functions of two variables.

When ,  yields 2D shapes that are
basically nested, with pieces overlapping for .

The general idea of so-called natural equations for obtaining
curves from local curvature appears to have been first
considered by Leonhard Euler in 1736. Many examples with
fairly simple behavior were studied in the 1800s. The case of

 was studied by Eduard Lehr in 1932. Cases
related to  were studied by Alfred Gray around
1992 using Mathematica. 

â Multidimensional generalizations. Curvatures for surfaces
and higher-dimensional objects can be defined in terms of the
principal axes of approximating ellipsoids at each point.
There are combinations of these curvatures—in 2D Gaussian
curvature and mean curvature—which are independent of
the coordinate system used. (Compare page 1049.) Given
such curvatures, a surface can in principle be obtained by
solving certain partial differential equations. But even in the
case of zero mean curvature, which corresponds to minimal
surfaces of the kind followed by an idealized soap film, this is
already a mathematical problem of significant difficulty. 

If one looks at projections of surfaces, it is common to see
lines of discontinuity at which a surface goes, say, from
having three sheets to one. Catastrophe theory provides a
classification of such discontinuities—the simplest being a
cusp. And as emphasized by René Thom in the 1960s, it is
possible that some structures seen in animals may be related
to such discontinuities.

â Page 419 · Embryo development. Starting from a single egg
cell, embryos first exhibit a series of geometrically quite
precise cell divisions corresponding, I suspect, to a simple
neighbor-independent substitution system. When the
embryo consists of a definite number of cells—from tens to
tens of thousands depending on species—the phenomenon
of gastrulation occurs, and the hollow sphere of cells that has
been produced folds in on itself so as to begin to form more
tubular structures. In organisms with a total of just a few
thousand cells, the final position and type of every cell seems
to be determined directly by the genetic program of the
organism; most likely what happens is that each cell division
leads to some modification in genetic material, perhaps
through rules like those in a multiway system. Beyond a few
thousand cells, however, individual cells seem to be less
relevant, and instead what appears to happen is that
chemicals such as retinoic acid (a derivative of vitamin A)
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produced by particular cells diffuse to affect all cells in a
region a tenth of a millimeter or so across. Probably as a
result of chemical concentration gradients, different so-called
homeobox genes are then activated in different parts of the
region. Each of these genes—out of a total of 38 in humans—
yields proteins which then in turn switch on or off large
banks of genes, allowing different forms of behavior for cells
in different places. 

â History of embryology. General issues of embryology were
already discussed in Greek times, notably by Hippocrates
and Aristotle. But even in the 1700s it was still thought that
perhaps every embryo started from a very small version of a
complete organism. In the 1800s, however, detailed studies
revealed the progressive development of complexity in the
growth of an embryo. At the end of the 1800s experiments
based on removing or modifying parts of early embryos
began, and by the 1920s it had been discovered that there
were definite pieces of embryos that were responsible for
inducing various aspects of development to occur. That
concentrations of diffusing chemicals might define where in
an embryo different elements would form was first
suggested in the early 1900s, but it was not until the 1970s
and 1980s—after it was emphasized by Lewis Wolpert in
1969 under the name “positional information”—that there
was clear experimental investigation of this idea. From the
1930s and before, it was known that different genes are
involved in different aspects of embryo development. And
with the advent of gene manipulation methods in the 1970s
and 1980s, it became possible to investigate the genetic
control of development in organisms such as fruit flies in
tremendous detail. Among the important discoveries made
were the homeobox genes (see note above).

â Page 420 · Bones. Precursors of bones can be identified quite
early in the growth of most vertebrate embryos. Typically the
cells involved are cartilage, with bone subsequently forming
around them. In hardened bones growth normally occurs by
replication of cartilage cells in plates perhaps a millimeter
thick, with bone forming by a somewhat complicated process
involving continual dissolving and redeposition of already
hardened material. The rate at which bone grows depends on
the pressure exerted on it, and presumably this allows
feedback that for example prevents coiling. Quite how the
complicated collection of tens of bones that make up a typical
skull manage to grow so as to stay connected—often with
highly corrugated suture lines—remains fairly mysterious.

â General constraints on growth. Given a system made from
material with certain overall properties, one can ask what
distributions of growth are consistent with those properties,
and what kinds of shapes can be produced. With material

that is completely rigid growth can occur only at boundaries.
With material where every part can deform arbitrarily any
kind of growth can occur. With material where parts can
locally expand, but cannot change their shape, page 1007
showed that a 2D surface will remain flat if the growth rate is
a harmonic function. The Riemann mapping theorem of
complex analysis then implies that even in this case, any
smooth initial shape can grow into any other such shape with
a suitable growth rate function. In a 3D system with locally
isotropic growth the condition to avoid tearing is that the
Ricci scalar curvature must vanish, and this is achieved if the
local growth rate satisfies a certain partial differential
equation. (See also page 1049.)

â Parametrizations of growth. The idea that different
objects—say different human bodies or faces—can be related
by changing a small number of geometrical parameters was
used by artists such as Albrecht Dürer in the 1500s, and may
have been known to architects and others in antiquity. (In
modern times this idea is associated for example with the
notion that just a few measurements are sufficient to specify
the fitting of clothes.) D’Arcy Thompson in 1917 suggested
that shapes in many different species could also be related
in this way. In the case of shells and horns he gave a fairly
precise analysis, as discussed above. But he also drew
various pictures of fishes and skulls, and argued that they
were related by deformations of coordinates. Largely from
this grew the field of morphometrics, in which the relative
positions of features such as eyes or tips of fins are
compared in different species. And although statistical
significance is reduced by considering only discrete features,
some evidence has emerged that different species do indeed
have shapes related by changes in fairly small numbers of
geometrical parameters. Such changes could be accounted
for by changes in growth rates, but it is noteworthy that my
results above on branching and folding make it clear that in
general changes in growth rates can have much more
dramatic effects.

As emphasized by D’Arcy Thompson, even a single
organism will change shape if its parts grow at different
rates. And in the 1930s and 1940s it became popular to study
differential growth, typically under the name of allometry.
Exponential growth was usually assumed, and there was
much discussion about the details and correctness of this.
Practical applications were made to farm animals, and later
to changes in facial bone structure during childhood. But
despite some work in the past twenty years using models
based on fluids, solid mechanics and networks of rigid
elements, much about differential growth remains unclear. (A
better approach may be one similar to general relativity.)



I M P L I C A T I O N S  F O R  E V E R Y D A Y  S Y S T E M S N O T E S  F O R  C H A P T E R  8

1011

â Schemes for growth. After the initial embryonic stage, many
general features of the growth of different types of organisms
can be viewed as consequences of the nature of the elements
that make the organisms rigid. In plants, as we have
discussed, essentially all cells have rigid cellulose walls. In
vertebrate animals, rigidity comes mainly from bones that are
internal to the organism. In arthropods and some other
invertebrates, an exoskeleton is typically the main source of
rigidity. Growth in such organisms usually then proceeds by
adding soft tissue on the inside, then periodically moulting
the exoskeleton. In a first approximation, the mechanical
pressure of internal tissue will typically make the shape of
the exoskeleton form an approximate minimal surface. 

â Tumors. In both plants and animals tumors seem to grow
mainly by fairly random addition of cells to their surface—
much as in the aggregation models shown on page 332. 

â Pollen. The grains of pollen produced by different species of
plants have a remarkable range of different forms. Produced
in groups of four, each grain is effectively a single cell (with
two nuclei) between a few and few hundred microns across.
At an overall level most grains seem to have regular
polyhedral shapes, though often with bulges or dents.
Perhaps such forms arise through grains effectively being
made with small numbers of roughly spherical elements
being either as tightly or loosely packed as possible. The
outer walls of pollen grains are often covered with a certain
density of tiny columns that can form spikes, or can have
plates on top that can form cross-linkages and can join
together to appear as patches. 

â Radiolarians. The silicate skeletons of single-cell plankton
organisms such as radiolarians and diatoms have been used
for well over a century as examples of complex microscopic
forms in biology. (See page 385.) Most likely their overall
shapes are determined before they harden through
minimization of area by surface tension. Their pores and
cross-linkages presumably reflect packings of many roughly
spherical elements on the surface during formation (as seen
in the mid-1990s in aluminophosphates). 

â Self-assembly. Some growth—particularly at a microscopic
level—seems to be based on objects with particular shapes or
affinities sticking together only in specific ways—much as in
the systems based on constraints discussed on page 210 (and
especially the network constraint systems of page 483). (See
also page 1193.)

â Animal behavior. Simple repetitive behavior is common, as
in circadian and brain rhythms, as well as peristalsis and
walking. (In a millipede there are, for example, typically just
two modes of locomotion, both simple, involving opposite

legs moving either together or oppositely.) Many structures
built by animals have repetitive forms, as in beehives and
spider webs; the more complex structures made for example
by termites can perhaps be understood in terms of
generalized aggregation systems (see page 978). (Typical
models involve the notion of stigmergy: that elements are
added at a particular point based only on features
immediately around them; see also page 1184.) Nested
patterns may occur in flocks of birds such as geese. Fairly
regular nested space-filling curves are sometimes seen in the
eating paths of caterpillars. Apparent randomness is
common in physiological processes such as twitchings of
muscles and microscopic eye motions, as well as in random
walks executed during foraging. My suspicion is that just as
there appear to be small collections of cells—so-called central
pattern generators—that generate repetitive behavior, so also
there will turn out to be small collections of cells that
generate intrinsically random behavior. 

Biological Pigmentation Patterns

â Collecting shells. The shells I show in this section are mostly
from my fairly small personal collection, obtained at shops
and markets around the world. (A few of the ones on page
416 are from the Field Museum.) The vast majority of shells
on typical beaches do not have especially elaborate patterns.
The Philippines are the largest current source of collectible
shells: when molluscs intended as food are caught in nets
interesting-looking shells are sometimes picked out before
being discarded. Shell collecting as a hobby probably had its
greatest popularity in the late 1700s and 1800s. In recent
times one reason for studying animals that live in cone shells
is that they produce potent neurotoxins that show promise as
pain-control drugs. 

â Shell patterns. The so-called mantle of soft tissue which
covers the animal inside the shell is what secretes the shell
and produces the pattern on it. Some species deposit material
in a highly regular way every day; others seem to do it
intermittently over periods of months or years. In many
species the outer surface of the shell is covered by a kind of
skin known as the periostracum, and in most cases this skin
is opaque, thereby obscuring the patterns underneath until
long after the animal has died. Note that if one makes a hole
in a shell, the pattern is usually quite unaffected, suggesting
that the pattern is primarily a consequence of features of the
underlying mantle. In addition, patterns are often divided
into three or four large bands, presumably in correspondence
with features of the anatomy of the mantle. Sometimes
physical ridges exist on shells in correspondence with their
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pigmentation patterns. It is not clear whether multiple kinds
of shell patterns can occur within one species, or whether
they are always associated with genetically different species. 

â Cowries. In cowries the outside of the shell is covered by the
mantle of the animal. The patterns on the shell typically
involve spots, and are typical of those obtained from 2D
cellular automata of the kind shown on page 428. The mantle
is normally in two parts; the boundary between them shows
up as a discontinuity in the shell pattern.

â History. Elaborate patterns on shells have been noticed
since antiquity, and have featured in a number of well-known
works of art and literature. Since the late 1600s they have also
been extensively used in classifying molluscs. But almost no
efforts to understand the origins of such patterns seem to
ever have been made. One study was done in 1969 by Conrad
Waddington and Russell Cowe in which patterns on one
particular kind of shell were reproduced by a specific
computer simulation based on the idea of diverging waves of
pigment. In 1982 I noticed that the patterns I had generated
with 1D cellular automata looked remarkably similar to
patterns on shells. I used this quite widely as an illustration
of how cellular automata might be relevant to modelling
natural systems. And I also made some efforts to do actual
biological experiments, but I gave up when it seemed that the
species of molluscs I wanted to study were difficult, if not
impossible, to keep in captivity. Following my work, various
other studies of shell patterns were done. Bard Ermentrout,
John Campbell and George Oster constructed a model based
on the idea that pigment-producing cells might act like nerve
cells with a certain degree of memory. And Hans Meinhardt
has constructed progressively more elaborate models based
on reaction-diffusion equations.

â Page 426 · Animals shown. Flatworm, cuttlefish, honeycomb
moray, spotted moray, foureye butterfly fish; emperor
angelfish, suckermouth catfish, ornate cowfish, clown
triggerfish, poison-dart frog; ornate horned frog, marbled
salamander, spiny softshell, gila monster, ball python; gray-
banded kingsnake, guinea fowl, peacock, ring-tailed lemur,
panda; cheetah, ocelot, leopard, tiger, spotted hyena; western
spotted skunk, civet, zebra, brazilian tapir, giraffe.

â Animal coloration. Coloration can arise either directly
through the presence of visible colored cells such as those in
freckles, or indirectly by virtue of cells such as hair follicles
imparting pigments to the non-living elements such as fur,
feathers and scales that grow from them. In many cases such
elements are arranged in a highly regular way, often in a
repetitive hexagonal pattern. Evolutionary optimization is
often used to explain observed pigmentation patterns—with

varying degrees of success. The notion that for example the
stripes of a zebra are for camouflage may at first seem
implausible, but there is some evidence that dramatic stripes
do make it harder for a predator to recognize the overall
shape of the zebra. Many of the pigments used by animals
are by-products of metabolism, suggesting that at least at
first pigmentation patterns were probably often incidental to
the operation of the animal. 

â Page 427 · Implementation. Given a 2D array of values  and
a list of weights , each step in the evolution of the system
corresponds to

â Features of the model. The model is a totalistic 2D cellular
automaton, as discussed on page 927. It shows class 2
behavior in which information propagates only over limited
distances, so that except when the total size of the system is
comparable to the range of the rule, boundary conditions are
not crucial.

Similar models have been considered before. In the early
1950s (see below) Alan Turing used a model which effectively
differed mainly in having continuous color levels. In 1979
Nicholas Swindale constructed a model with discrete levels
to investigate ocular dominance stripes in the brain (see
below). And following my work on cellular automata in the
early 1980s, David Young in 1984 considered a model even
more similar to the one I use here.

There are simple cellular automata—such as 8-neighbor
outer totalistic code 196623—which eventually yield maze-
like patterns even when started from simple initial
conditions. The rule on page 336 gives dappled patterns with
progressively larger spots.

â Reaction-diffusion processes. The cellular automaton in the
main text can be viewed as a discrete idealization of a
reaction-diffusion process. The notion that diffusion might be
important in embryo development had been suggested in the
early 1900s (see page 1004), but it was only in 1952 that Alan
Turing showed how it could lead to the formation of definite
patterns. Diffusion of a single chemical always tends to
smooth out distributions of concentration. But Turing
pointed out that with two chemicals in which each can be
produced from the other it is possible for separated regions
to develop. If  is a vector of chemical
concentrations, then for suitable values of parameters even
the standard linear diffusion equation 
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can exhibit an instability which causes disturbances with
certain spatial wavelengths to grow (compare page 988). In
his 1952 paper Turing used a finite difference approximation
to a pair of diffusion equations to show that starting from a
random distribution of concentration values dappled regions
could develop in which one or the other chemical was
dominant. With purely linear equations, any instability will
always eventually lead to infinite concentrations, but Turing
noted that this could be avoided by using realistic nonlinear
chemical rate equations. In the couple of years before his
death in 1954, Turing appears to have tried to simulate such
nonlinear equations on an early digital computer, but my
cursory efforts to understand his programs—written as they
are in a 32-character machine code—were not successful.

Following Turing’s work, the fact that simple reaction-
diffusion equations can yield spatially inhomogeneous
patterns has been rediscovered—with varying degrees of
independence—many times. In the early 1970s Ilya Prigogine
termed the patterns dissipative structures. And in the mid-
1970s, Hermann Haken considered the phenomenon a
cornerstone of what he called synergetics.

Many detailed mathematical analyses of linear reaction-
diffusion equations have been done since the 1970s;
numerical solutions to linear and occasionally nonlinear such
equations have also often been found, and in recent years
explicit pictures of patterns—rather than just curves of
related functions—have commonly been generated. In the
context of biological pigmentation patterns detailed studies
have been done particularly by Hans Meinhardt and James
Murray. 

â Scales of patterns. The visual appearance of a pattern on an
actual animal depends greatly on the scale of the pattern
relative to the whole animal. Pandas and anteaters, for
example, typically have just a few regions of different color,
while other animals can have hundreds of regions. Studies
based on linear reaction-diffusion equations sometimes
assume that patterns correspond to stationary modes of the
equations, which inevitably depend greatly on boundary
conditions. But in more realistic models patterns emerge
from long time behavior with generic initial conditions,
making boundary conditions—and effects such as changes in
them associated with growth of an embryo—much less
important.

â Excitable media. In many physical situations effects become
decreasingly important as they propagate further away. But
in active or excitable media such as heart, muscle and nerve
tissue an effect can maintain its magnitude as it propagates,
leading to the formation of a variety of spatial structures. An

early model of such media was constructed in 1946 by
Norbert Wiener and Arturo Rosenblueth, based on a discrete
array of continuous elements. Models with discrete elements
were already considered in the 1960s, and in 1977 James
Greenberg and Stuart Hastings introduced a simple 2D
cellular automaton with three colors. The pictures below
show what is probably the most complex feature of this
cellular automaton and related systems: the formation of
spiral waves. Such spiral waves were studied in 2D and 3D in
the 1970s and 1980s, particularly by Arthur Winfree and
others; they are fairly easy to observe in both inorganic
chemical reactions (see below) and slime mold colonies. 

â Examples in chemistry. Overall concentrations in chemical
reactions can be described by nonlinear ordinary differential
equations. Reactions with oscillatory behavior were
predicted by Alfred Lotka in 1910 and observed
experimentally by William Bray in 1917, but for some reason
they were not further investigated at that time. An example
was found experimentally by Boris Belousov in 1951 and
extensive investigations of it were begun by Anatol
Zhabotinsky around 1960. In the early 1970s spiral waves
were seen in the spatial distribution of concentrations in this
reaction, and by the end of the 1970s images of such waves
were commonly used as icons of the somewhat ill-defined
notion of self-organization. 

â Maze-like patterns. Maze-like patterns occur in several
quite different kinds of systems. Cases in which the
underlying mechanism is probably similar to that discussed
in the main text include brain coral, large-scale vegetation
bands seen in tropical areas, patterns of sand dunes, patterns
in pre-turbulent fluid convection, and ocular dominance
stripes consisting of regions of brain tissue that get marked
when different dye is introduced into nerves from left and
right eyes. Cases in which the underlying mechanism is
probably more associated with folding of fixed amounts of
material include human fingerprint patterns and patterns in
ferrofluids consisting of suspensions of magnetic particles.

â Origins of randomness. The model in the main text assumes
that randomness enters through initial conditions. If the two
parts of a single animal—say opposite wings on a butterfly—
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form together, then these initial conditions can be expected to
be the same. But usually even the two sides of a single animal
are never physically together, and they normally end up
having quite uncorrelated random features. In cases such as
fingerprints and zebra stripes there is some correlation
between different sides, suggesting an intrinsic component to
the randomness that occurs. (The fingerprints of identical
twins are typically similar but not identical; iris patterns are
quite different.) Note that at least sometimes random initial
patterns are formed by cells that have the same type, but
different lineages—as in cells expressing genes from the two
different X chromosomes in a female animal such as a typical
tortoiseshell cat. (In general, quite a few traits—particularly
related to aging—can show significant variation in strains of
organisms that are genetically identical.)

Financial Systems

â Laws of human behavior. Over the past century there have
been a fair number of quantitative laws proposed for features
of human behavior. Some are presumably a direct reflection
of human biological construction. Thus for example, Weber’s
law that the perceived strength of a stimulus tends to vary
logarithmically with its actual strength seems likely to be
related to the electrochemistry of nerve cells. Of laws for
more complicated cognitive or social phenomena the vast
majority are statistical in nature. And of those that withstand
scrutiny, most in my experience turn out to be transformed
versions of statements that some quantity or another can be
approximated by perfect randomness. Gaussian distributions
typically arise when measurements involve sums of random
quantities; other common distributions are obtained from
products or other simple combinations of random quantities,
or from the results of simple processes based on random
quantities. Exponential distributions (as seen, for example, in
learning curves) and power-law distributions (as in Zipf’s
law below) are both, for example, very easy to obtain. (Note
that particularly in economics there are also various laws
derived from calculus and game theory that are viewed as
being quite successful, and are not fundamentally statistical.)

â Zipf’s law. To a fairly good approximation the th most
common word in a large sample of English text occurs with
frequency , as illustrated in the first picture below. This
fact was first noticed around the end of the 1800s, and was
attributed in 1949 by George Zipf to a general, though vague,
Principle of Least Effort for human behavior. I suspect that in
fact the law has a rather simple probabilistic origin. Consider
generating a long piece of text by picking at random from 
letters and a space. Now collect and rank all the “words”

delimited by spaces that are formed. When , the th most
common word will have frequency . But when , it
turns out that the th most common word will have a
frequency that approximates . If all  letters have equal
probabilities, there will be many words with equal frequency,
so the distribution will contain steps, as in the second picture
below. If the  letters have non-commensurate probabilities,
then a smooth distribution is obtained, as in the third picture.
If all letter probabilities are equal, then words will simply be
ranked by length, with all  words of length  occurring
with frequency . The normalization of probabilities then
implies , and since the word at rank roughly 
then has probability , Zipf’s law follows.

â Motion of people and cars. To a first approximation crowds
of people seem to show aggregate fluid-like behavior similar
to what is seen in gases. Fronts of people—as occur in riots
or infantry battles—seem to show instabilities perhaps
analogous to those in fluids. Road traffic that is constrained
to travel along a line exhibits stop-start instabilities when its
overall rate is reduced, say by an obstruction. This appears
to be a consequence of the delay before one driver responds
to changes in speed of cars in front of them. Fairly accurate
cellular automaton models of this phenomenon were
developed in the early 1990s. 

â Growth of cities. In the absence of geographical constraints,
such as terrain or oceans, cities typically have patchy,
irregular, shapes. At first an aggregation system (see page
331) might seem to be an obvious model for their growth:
each new development gets added to the exterior of the city
at a random position. But actual cities look much more
irregular. Most likely the reason is that embedded within the
cities is a network of transportation routes, and these tend to
have a tree- or vein-like structure (though not necessarily
with a single center)—with major freeways etc. as trunks. The
result of following this structure is to produce a much more
irregular boundary.

â Randomness in markets. After the somewhat tricky process
of correcting for overall trends, empirical price data from a
wide range of markets seem to a first approximation to
follow random walks and thus to exhibit Gaussian
fluctuations, as noted by Louis Bachelier in 1900. However,
particularly on timescales less than a day, it has in the past
decade become clear that, as suggested by Benoit Mandelbrot
in the early 1960s, large price fluctuations are significantly
more common than a Gaussian distribution would imply.
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Such an effect is easy to model with the approach used in the
main text if different entities interact in clumps or herds—
which can be forced if they are connected in a hierarchical
network rather than just a line. 

The observed standard deviation of a price—or essentially
so-called volatility or beta—can be considered as a measure
of the risk of fluctuations in that price. The Capital Asset
Pricing Model proposed in the early 1960s suggested that
average rates of price increases should be proportional to
such variances. And the Black-Scholes model from 1973
implies that prices of suitably constructed options should
depend in a sense only on such variances. Over the past
decade various corrections to this model have been
developed based on non-Gaussian distributions of prices.

â Speculative markets. Cases of markets that seem to operate
almost completely independent of objective value have
occurred many times in economic history, particularly in
connection with innovations in technology or finance.
Examples range from tulip bulbs in the mid-1630s to
railroads in the mid-1800s to internet businesses in the late
1990s. (Note however that in any particular case it can be
claimed that certain speculation was rational, even if it did
not work out—but usually it is difficult to get convincing
evidence for this, and often effects are obscured by
generalized money supply or bankruptcy issues.)

â Properties of markets. Issues of how averaging is done and
how irrelevant trends are removed turn out to make
unequivocal tests of almost any quantitative hypothesis
about prices essentially impossible. The rational expectations
theory that prices reflect discounted future earnings has for
example been subjected to many empirical tests, but has
never been convincingly proved or disproved. 

â Efficient markets. In its strong form the so-called Efficient
Market Hypothesis states that prices immediately adjust to
reflect all possible information, so that knowing a particular
piece of information can never be used to make a profit. It is
now widely recognized—even in academia—that this
hypothesis is a fairly poor representation of reality. 

â Details of trading. Cynics might suggest that much of the
randomness in practical markets is associated with details of
trading. For much of the money actually made from markets
on an ongoing basis comes from commissions on trades. And
if prices quickly settled down to their final values, fewer

trades would tend to be made. (Different entities would
nevertheless still often need liquidity at different times.) 

â Models of markets. When serious economic theory began
in the 1700s arguments tended to be based purely on
common sense. But with the work of Léon Walras in the
1870s mathematical models began to become popular. In the
early 1900s, common sense again for a while became
dominant. But particularly with the development of game
theory in the 1940s the notion became established, at least
in theoretical economics, that prices represent equilibrium
points whose properties can be derived mathematically
from requirements of optimality. In practical trading, partly
as an outgrowth of theories of business cycles, there had
emerged all sorts of elaborate so-called technical analysis in
which patterns of price movements were supposed—often
on the basis of almost mystical theories—to be indicators of
future behavior. In the late 1970s, particularly after the work
of Fischer Black and Myron Scholes on options pricing, new
models of markets based on methods from statistical
physics began to be used, but in these models randomness
was taken purely as an assumption. In another direction, it
was noticed that dynamic versions of game theory could
yield iterated maps and ordinary differential equations
which would lead to chaotic behavior in prices, but
connections with randomness in actual markets were not
established. By the mid-1980s, however, it began to be clear
that the whole game-theoretical idea of thinking of markets
as collections of rational entities that optimize their
positions on the basis of complete information was quite
inadequate. Some attempts were made to extend traditional
mathematical models, and various highly theoretical
analyses were done based on treating entities in the market
as universal computers. But by the end of the 1980s, the
idea had emerged of doing explicit computer simulations
with entities in the market represented by practical
programs. (See also page 1105.) Often these programs used
fairly sophisticated algorithms intended to mimic human
traders, but in competitions between programs simpler
algorithms have never seemed to be at much of a
disadvantage. The model in the main text is in a sense an
ultimate idealization along these lines. It follows a sequence
of efforts that I have made since the mid-1980s—though
have never considered very satisfactory—to find minimal
but accurate models of financial processes.




