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The Sequencing of Events in the Universe

In the last section I discussed one type of model in which familiar notions

of time can emerge without any kind of built-in global clock. The particular

models I used were based on mobile automata—in which the presence of a

single active cell forces only one event ever to occur in the universe at once.

But as we will see in this section, there is actually no need for the setup to

be so rigid, or indeed for there to be any kind of construct like an active cell.

One can think of mobile automata as being special cases of

substitution systems of the type I introduced in Chapter 3. Such systems

in general take a string of elements and at each step replace blocks of

these elements with other elements according to some definite rule.

The picture below shows an example of one such system, and

illustrates how—just like in a mobile automaton—relations between

updating events can be represented by a causal network.
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Steps in the construction
of a causal network from
a general substitution

system. The substitution system works by replacing
blocks of elements at each step according to the rule
shown. Each such updating event becomes a node
in the causal network. In the case shown here, all
the replacements found to fit in a left-to-right scan
are carried out at each step. 
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Examples of sequential substitution systems of the type discussed on page 88, and the causal networks that emerge
from them. In a sequential substitution system only the first replacement that is found to apply in a left-to-right scan is
ever performed at any step. Rule (a) above yields a causal network that is purely repetitive and thus yields no
meaningful notion of space. Rules (b), (c) and (d) yield causal networks that in effect grow roughly linearly with time. In
rule (f) the causal network grows exponentially, while in rule (e) the causal network also grows quite rapidly, though its
overall growth properties are not clear. Note that to obtain the 10 levels shown here in the causal network for rule (e), it
was necessary to follow the evolution of the underlying substitution system for a total of 258 steps. 
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Substitution systems that correspond to mobile automata can be

thought of as having rules and initial conditions that are specially set up

so that only one updating event can ever occur on any particular step. But

with most rules—including the one shown on the previous page—there

are usually several possible replacements that can be made at each step. 

One scheme for deciding which replacement to make is just to

scan the string from left to right and then pick the first replacement

that applies. This scheme corresponds exactly to the sequential

substitution systems we discussed in Chapter 3.

The pictures on the facing page show a few examples of what can

happen. The behavior one gets is often fairly simple, but in some cases

it can end up being highly complex. And just as in mobile automata, the

causal networks that emerge typically in effect grow linearly with time.

But, again as in mobile automata, there are rules such as (a) in which

there is no growth—and effectively no notion of space. And there are

also rules such as (f)—which turn out to be much more common in

general substitution systems than in mobile automata—in which the

causal network in effect grows exponentially with time.

But why do only one replacement at each step? The pictures on the

next page show what happens if one again scans from left to right, but

now one performs all replacements that fit, rather than just the first one.

In the case of rules (a) and (b) the result is to update every single

element at every step. But since the replacements in these particular

rules involve only one element at a time, one in effect has a

neighbor-independent substitution system of the kind we discussed on

page 82. And as we discovered there, such systems can only ever produce

rather simple behavior: each element repeatedly branches into several

others, yielding a causal network that has the form of a regular tree.

So what happens with replacements that involve more than just

one element? In many cases, the behavior is still quite simple. But as

several of the pictures on the next page demonstrate, fairly simple rules

are sufficient—as in so many other systems that we have discussed in

this book—to obtain highly complex behavior.
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Examples of general substitution systems and the causal networks that emerge from them. In the pictures shown
here, every replacement that is found to fit in a left-to-right scan is performed at each step. Rules (a) and (b) act like
neighbor-independent substitution systems of the type discussed on page 84, and yield exponentially growing tree-like causal
networks. The plots at the bottom show the growth rates of the patterns produced by rules (f) and (g). In the case of rule (f)
the pattern turns out to be repetitive, with a period of 796 steps.
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One may wonder, however, to what extent the behavior one sees

depends on the exact scheme that one uses to pick which replacements

to apply at each step. The answer is that for the vast majority of rules—

including rules (c) through (g) in the picture on the facing page—using

different schemes yields quite different behavior—and a quite different

causal network.

But remarkably enough there do exist rules for which exactly the

same causal network is obtained regardless of what scheme is used. And

as it turns out, rules (a) and (b) from the picture on the facing page provide

simple examples of this phenomenon, as illustrated in the pictures below.

For each rule, the three different pictures shown above

correspond to three different ways that replacements can be made. And

while the positions of particular updating events are different in every

picture, the point is that the network of causal connections between

these events is always exactly the same.

This is certainly not true for every substitution system. Indeed,

the pictures on the right show how it can fail, for example, for rule (e)

from the facing page. What one sees in these pictures is that after

event 4, different choices of replacements are made in the two cases, and

the causal relationships implied by these replacements are different.

So what could ensure that no such situation would ever arise in a

particular substitution system? Essentially what needs to be true is that

the sequence of elements alone must always uniquely determine what

replacements can be made in every part of the system. One still has a

(a) (b)

The behavior of rules (a) and (b) from the facing page when replacements are performed at random.
Even though the detailed patterns obtained are different, the causal networks in these particular rules
that represent relationships between replacement events are always exactly the same. 
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Examples of two different ways
of performing replacements in
rule (e) from the facing page,
yielding two different causal
networks. 
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choice of whether actually to perform a given replacement at a particular

step, or whether to delay that replacement until a subsequent step. But

what must be true is that there can never be any ambiguity about what

replacement will eventually be made in any given part of the system.

In rules like the ones at the top of page 500 where each replacement

involves just a single element this is inevitably how things must work.

But what about rules that have replacements involving blocks of more

than one element? Can such rules still have the necessary properties?

The pictures below show two examples of rules that do. In the first

picture for each rule, replacements are made at randomly chosen steps,

while in the second picture, they are in a sense always made at the earliest

possible step. But the point is that in no case is there any ambiguity about

what replacement will eventually be made at any particular place in

the system. And as a result, the causal network that represents the

relationships between different updating events is always exactly the same.

So what underlying property must the rules for a substitution

system have in order to make the system as a whole operate in this

way? The basic answer is that somehow different replacements must

never be able to interfere with each other. And one way to guarantee

this is if the blocks involved in replacements can never overlap.

(a) (b)

(a) (b)

Examples of substitution systems in which the same causal networks are
obtained regardless of the way in which replacements are performed. In the
first picture for each rule, the replacements are performed essentially at

random. In the second picture they are performed on the earliest possible step. Note that rule (a)
effectively sorts the elements in its initial conditions, always placing black before white.
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In both the rules shown on the facing page, the only replacement

specified is for the block . And it is inevitably the case that in any

sequence of ’s and ’s different blocks of the form  do not overlap. If

one had replacements for blocks such as ,  or  then these could

overlap. But there is an infinite sequence of blocks such as ,  or 

for which no overlap is possible, and thus for which different

replacements can never interfere.

If a rule involves replacements for several distinct blocks, then to

avoid the possibility of interference one must require that these blocks

can never overlap either themselves or each other. The simplest

non-trivial pair of blocks that has this property is , , while the

simplest triple is , , . And any substitution system

whose rules specify replacements only for blocks such as these is

guaranteed to yield the same causal network regardless of the order in

which replacements are performed. 

In general the condition is in fact somewhat weaker. For it is not

necessary that no overlaps exist at all in the replacements—only that no

overlaps occur in whatever sequences of elements can actually be

generated by the evolution of the substitution systems. 

And in the end there are then all sorts of substitution systems

which have the property that the causal networks they generate are

always independent of the order in which their rules are applied. 

So what does this mean for models of the universe? 

In a system like a cellular automaton, the same underlying rule is

in a sense always applied in exact synchrony to every cell at every step.

But what we have seen in this section is that there also exist systems in

which rules can in effect be applied whenever and wherever one

wants—but the same definite causal network always emerges.

So what this means is that there is no need for any built-in global

clock, or even for any mechanism like an active cell. Simply by choosing

the appropriate underlying rules it is possible to ensure that any sequence

of events consistent with these rules will yield the same causal network

and thus in effect the same perceived history for the universe.




