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Space, Time and Relativity

Several sections ago I argued that as observers within the universe

everything we can observe must at some level be associated purely with

the network of causal connections between events in the universe. And

in the past few sections I have outlined a series of types of models for

how such a causal network might actually get built up. 

But how do the properties of causal networks relate to our normal

notions of space and time? There turn out to be some slight subtleties—

but these seem to be exactly what end up yielding the theory of relativity.

As we saw in earlier sections, if one has an explicit evolution history

for a system it is straightforward to deduce a causal network from it. But

given only a causal network, what can one say about the evolution history?

The picture below shows an example of how successive steps in a

particular evolution history can be recovered from a particular set of

slices through the causal network derived from it. But what if one were

to choose a different set of slices? In general, the sequence of strings

that one would get would not correspond to anything that could arise

from the same underlying substitution system.

(a) (b)

(c)

An example of how the succession of states in an evolution history can be recovered by taking
appropriate slices through a causal network. Any consistent choice of such slices will correspond to
a possible evolution history—with the same underlying rules, but potentially a different scheme for
determining the order in which to apply replacements. 
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But if one has a system that yields the same causal network

independent of the scheme used to apply its underlying rules, then the

situation is different. And in this case any slice that consistently divides

the causal network into a past and a future must correspond to a possible

state of the underlying system—and any non-overlapping sequence of

such slices must represent a possible evolution history for the system. 

If we could explicitly see the particular underlying evolution

history for the system that corresponds to our universe then this would

in a sense immediately provide absolute information about space and

time in the universe. But if we can observe only the causal network for

the universe then our information about space and time must inevitably

be deduced indirectly from looking at slices of causal networks.

And indeed only some causal networks even yield a reasonable

notion of space at all. For one can think of successive slices through a

causal network as corresponding to states at successive moments in time.

But for there to be something one can reasonably think of as space one has

to be able to identify some background features that stay more or less the

same—which means that the causal network must yield consistent

similarities between states it generates at successive moments in time.

One might have thought that if one just had an underlying

system which did not change on successive steps then this would

immediately yield a fixed structure for space. But in fact, without

updating events, no causal network at all gets built up. And so a system

like the one at the top of the next page is about the simplest that can

yield something even vaguely reminiscent of ordinary space.

In practice I certainly do not expect that even parts of our

universe where nothing much seems to be going on will actually have

causal networks as simple as at the top of the next page. And in fact, as

I mentioned at the end of the previous section, what I expect instead is

that there will always tend to be all sorts of complicated and seemingly

random behavior at small scales—though at larger scales this will

typically get washed out to yield the kind of consistent average

properties that we ordinarily associate with space. 
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One of the defining features of space as we normally experience it

is a certain locality that leads most things that happen at some particular

position to be able at first to affect only things very near them.

Such locality is built into the basic structure of systems like

cellular automata. For in such systems the underlying rules allow the

color of a particular cell to affect only its immediate neighbors at each

step. And this has the consequence that effects in such systems can

spread only at a limited rate, as manifest for example in a maximum

slope for the edges of patterns like those in the pictures below.

In physics there also seems to be a maximum speed at which the

effects of any event can spread: the speed of light, equal to about 300

A very simple substitution system whose causal network has slices that can be thought of as
corresponding to a highly regular idealization of one-dimensional ordinary space. The rule effectively
just sorts elements so that black ones come first, and yields the same causal network regardless of
what updating scheme is used.

Examples of patterns produced by cellular automata, illustrating the fact discussed in Chapter 6 that
the edge of each pattern has a maximum slope equal to one cell per step, corresponding to an
absolute upper limit on the rate of information transmission—similar to the speed of light in physics.
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million meters per second. And it is common in spacetime physics to draw

“light cones” of the kind shown at the right to indicate the region that will

be reached by a light signal emitted from a particular position in space at a

particular time. So what is the analog of this in a causal network?

The answer is straightforward, for the very definition of a causal

network shows that to see how the effects of a particular event spread one

just has to follow the successive connections from it in the causal network.

But in the abstract there is no reason that these connections

should lead to points that can in any way be viewed as nearby in space.

Among the various kinds of underlying systems that I have studied in

this book many have no particular locality in their basic rules. But the

particular kinds of systems I have discussed for both strings and

networks in the past few sections do have a certain locality, in that each

individual replacement they make involves only a few nearby elements.

One might choose to consider systems like these just because it

seems easier to specify their rules. But their locality also seems important

in giving rise to anything that one can reasonably recognize as space.

For without it there will tend to be no particular way to match up

corresponding parts in successive slices through the causal networks

that are produced. And as a result there will not be the consistency

between successive slices necessary to have a stable notion of space.

In the case of substitution systems for strings, locality of

underlying replacement rules immediately implies overall locality of

effects in the system. For the different elements in the system are always

just laid out in a one-dimensional string, with the result that local

replacement rules can only ever propagate effects to nearby elements in

the string—much like in a one-dimensional cellular automaton.

If one is dealing with an underlying system based on networks,

however, then the situation can be somewhat more complicated. For as

we discussed several sections ago—and will discuss again in the final

sections of this chapter—there will typically be only an approximate

correspondence between the structure of the network and the structure

of ordinary space. And so for example—as we will discuss later in

connection with quantum phenomena—there may sometimes be a

kind of thread that connects parts of the network that would not

Schematic illustration of a light
cone in physics. Light emitted
at a point in space will normally
spread out with time into a
cone, whose cross-section is
shown schematically here.
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normally be considered nearby in three-dimensional space. And so

when clusters of nodes that are nearby with respect to connections on

the network get updated, they can potentially propagate effects to what

might be considered distant points in space.

Nevertheless, if a network is going to correspond to space as it

seems to exist in our universe, such phenomena must not be too

important—and in the end there must to a good approximation be the

kind of straightforward locality that exists for example in the simple

causal network of page 518.

In the next section I will discuss how actual physical entities like

particles propagate in systems represented by causal networks. But

ultimately the whole point of causal networks is that their connections

represent all possible ways that effects propagate. Yet these connections

are also what end up defining our notions of space and time in a system.

And particularly in a causal network as regular as the one on page 518

one can then immediately view each connection in the causal network

as corresponding to an effect propagating a certain distance in space

during a certain interval in time.

So what about a more complicated causal network? One might

imagine that its connections could perhaps represent varying distances

in space and varying intervals in time. But there is no independent way

to work out distance in space or interval in time beyond looking at the

connections in the causal network. So the only thing that ultimately

makes sense is to measure space and time taking each connection in

the causal network to correspond to an identical elementary distance in

space and elementary interval in time. 

One may guess that this elementary distance is around

meters, and that the elementary time interval is around 

seconds. But whatever these values are, a crucial point is that their ratio

must be a fixed speed, and we can identify this with the speed of light. So

this means that in a sense every connection in a causal network can be

viewed as representing the propagation of an effect at the speed of light.

And with this realization we are now close to being able to see

how the kinds of systems I have discussed must almost inevitably

succeed in reproducing the fundamental features of relativity theory.

10�35 10�43
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But first we must consider the concept of motion.

To say that one is not moving means that one imagines one is in a

sense sampling the same region of space throughout time. But if one is

moving—say at a fixed speed—then this means that one imagines that

the region of space one is sampling systematically shifts with time, as

illustrated schematically in the simple pictures on the right.

But as we have seen in discussing causal networks, it is in general

quite arbitrary how one chooses to match up space at different times.

And in fact one can just view different states of motion as corresponding

to different such choices: in each case one matches up space so as to

treat the point one is at as being the same throughout time.

Motion at a fixed speed is then the simplest case—and the one

emphasized in the so-called special theory of relativity. And at least in

the context of a highly regular causal network like the one in the picture

on page 518 there is a simple interpretation to this: it just corresponds to

looking at slices at different angles through the causal network. 

Successive parallel slices through the causal network in general

correspond to successive states of the underlying system at successive

moments in time. But there is nothing that determines in any absolute

way the overall angle of these slices in pictures like those on page 518.

And the point is that in fact one can interpret slices at different angles

as corresponding to motion at different fixed speeds.

If the angle is so great that there are connections going up as well

as down between slices, then there will be a problem. But otherwise it

will always be the case that regardless of angle, successive slices must

correspond to possible evolution histories for the underlying system.

One might have thought that states obtained from slices at

different angles would inevitably be consistent only with different sets

of underlying rules. But in fact this is not the case, and instead the exact

same rules can reproduce slices at all angles. And this is a consequence

of the fact that the substitution system on page 518 has the property of

causal invariance—so that it gives the same causal network

independent of the scheme used to apply its underlying rules. 

It is slightly more complicated to represent uniform motion in

causal networks that are not as regular as the one on page 518. But

Graphical representation in
space and time of motion at
fixed speeds.
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whenever there is sufficient uniformity to give a stable structure to

space one can still think of something like parallel slices at different

angles as representing motion at different fixed speeds. 

And the crucial point is that whenever the underlying system is

causal invariant the exact same underlying rules will account for what

one sees in slices at different angles. And what this means is that in

effect the same rules will apply regardless of how fast one is going.

And the remarkable point is then that this is also what seems to

happen in physics. For everyday experience—together with all sorts of

detailed experiments—strongly support the idea that so long as there

are no effects from acceleration or external forces, physical systems

work exactly the same regardless of how fast they are moving.

At the outset it might not have seemed conceivable that any

system which at some level just applies a fixed program to various

underlying elements could successfully capture the phenomenon of

motion. For certainly a system like a typical cellular automaton does

not—since for example its effective rules for evolution at different

angles will usually be quite different. But there are two crucial ideas that

make motion work in the kinds of systems I am discussing here. First,

that causal networks can represent everything that can be observed. And

second, that with causal invariance different slices through a causal

network can be produced by the same underlying rules.

Historically, the idea that physical processes should always be

independent of overall motion goes back at least three hundred years.

And from this idea one expects for example that light should always

travel at its usual speed with respect to whatever emitted it. But what if

one happens to be moving with respect to this emitter? Will the light

then appear to be travelling at a different speed? In the case of sound it

would. But what was discovered around the end of the 1800s is that in

the case of light it does not. And it was essentially to explain this

surprising fact that the special theory of relativity was developed.

In the past, however, there seemed to be no obvious underlying

mechanism that could account for the validity of this basic theory. But

now it turns out that the kinds of discrete causal network models that I

have described almost inevitably end up being able to do this.
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And essentially the reason for this is that—as I discussed above—

each individual connection in any causal network must almost by

definition represent propagation of effects at the speed of light. The

overall structure of space that emerges may be complicated, and there

may be objects that end up moving at all sorts of speeds. But at least

locally the individual connections basically define the speed of light as a

fixed maximum rate of propagation of any effect. And the point is that

they do this regardless of how fast the source of an effect may be moving.

So from this one can use essentially standard arguments to derive

all the various phenomena familiar from ordinary relativity theory. A

typical example is time dilation, in which a fixed time interval for a

system moving at some speed seems to correspond to a longer time

interval for a system at rest. The picture on the next page shows

schematically how this at first unexpected result arises.

The basic idea is to consider what happens when a system that

can act as a simple clock moves at different speeds. At a traditional

physics level one can think of the clock as having a photon of light

bouncing backwards and forwards between mirrors a fixed distance

apart. But more generally one can think of following criss-crossing

connections that exist in some fixed fragment of a causal network. 

In the picture on the next page time goes down the page. The

internal mechanism of the clock is shown as a zig-zag black line—with

each sweep of this line corresponding to the passage of one unit of time.

The black line is always assumed to be moving at the speed of

light—so that it always lies on the surface of a light cone, as indicated

in the top row of pictures. But then in successive pictures the whole

clock is taken to move at increasing fractions of the speed of light.

The dark gray region in each picture represents a fixed amount of

time for the clock—corresponding to a fixed number of sweeps of the

black line. But as the pictures indicate, it is then essentially just a

matter of geometry to see that this dark gray region will correspond to

progressively larger amounts of time for a system at rest—in just the

way predicted by the standard formula of relativistic time dilation. 
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A simple derivation of the classic phenomenon of relativistic time dilation. The pictures show the behavior of a very simple

idealized clock going at different fractions of the speed of light. The clock can be thought of as consisting of a photon of

light bouncing backwards and forwards between mirrors a fixed distance apart. (At a more general level in my approach it

can also be thought of as a fragment of a causal network.) Time is shown going down the page, so that the photon in the

clock traces out a zig-zag path. The fundamental assumption—that in my approach is just a consequence of basic

properties of causal networks—is that the photon always goes at the speed of light, so that its path always lies on the

surface of light cones like the ones in the top row of pictures. A fixed interval of time for the clock—as indicated by the

length of the darker gray regions—corresponds to a progressively longer interval of time at rest. The amount of this time

dilation is given by the classic relativistic formula , where  is the ratio of the speed of the clock to the

speed of light. Such time dilation is routinely observed in particle accelerators—and has to be corrected for in GPS

satellites. It leads to the so-called twin paradox in which less time will pass for a member of a twin going at high speed in a

spacecraft than one staying at rest. The fact that time dilation is a general phenomenon not restricted to something like the

simple clock shown relies in my approach on general properties of causal networks. Once the basic assumptions are

established, the derivation of time dilation given here is no different in principle from the original one given in 1905, though

I believe it is in many ways considerably clearer. Note that it is necessary to consider motion in two dimensions—so that

the clock as a whole can be moving perpendicular to the path of the photon inside it. If these were parallel, one would

inevitably get not just pure time dilation, but a mixture of it and length contraction. 
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