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situations—save those associated with the overall expansion of the

universe—the basic rules for the network at least on average just

rearrange nodes and never change their number.

In traditional physics energy and momentum are always assumed

to have continuous values. But just as in the case of position there is no

contradiction with sufficiently small underlying discrete elements. 

As I will discuss in the last section of this chapter, quantum

mechanics tends to make one think of particles with higher momenta

as being somehow progressively less spread out in space. So how can

this be consistent with the idea that higher momentum is associated

with having more nodes? Part of the answer probably has to do with the

fact that outside the piece of the network that corresponds to the

particle, the network presumably matches up to yield uniform space in

much the same way as without the particle. And within the piece of the

network corresponding to the particle, the effective structure of space

may be very different—with for example more long-range connections

added to reduce the effective overall distance.

The Phenomenon of Gravity

At an opposite extreme from elementary particles one can ask how the

universe behaves on the largest possible scales. And the most obvious

effect on such scales is the phenomenon of gravity. So how then might

this emerge from the kinds of models I have discussed here?

The standard theory of gravity for nearly a century has been

general relativity—which is based on the idea of associating gravity

with curvature in space, then specifying how this curvature relates to

the energy and momentum of whatever matter is present. 

Something like a magnetic field in general has different effects on

objects made of different materials. But a key observation verified

experimentally to considerable accuracy is that gravity has exactly the

same effect on the motion of different objects, regardless of what those

objects are made of. And it is this that allows one to think of gravity as

a general feature of space—rather than for example as some type of force

that acts specifically on different objects.
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In the absence of any gravity or forces, our normal definition of

space implies that when an object moves from one point to another, it

always goes along a straight line, which corresponds to the shortest

path. But when gravity is present, objects in general move on curved

paths. Yet these paths can still be the shortest—or so-called geodesics—

if one takes space to be curved. And indeed if space has appropriate

curvature one can get all sorts of paths, as in the pictures below.

But in our actual universe what determines the curvature of

space? The answer from general relativity is that the Einstein equations

give conditions for the value of a particular kind of curvature in terms

of the energy and momentum of matter that is present. And the point

then is that the shortest paths in space with this curvature seem to be

(a) (b) (c)

(d) (e) ( f )

Examples of the effect of curvature in space on paths taken by objects. In each case all the paths shown start parallel,
but do not remain so when there is curvature. The paths are geodesics which go the minimum distance on the surface
to get to all the points they reach. (In general, the minimum may only be local.) Case (b) shows the top of a sphere,
which is a surface of positive curvature. Case (c) shows the negatively curved surface , (d) a paraboloid

, and (e,f) —a rough analog of curvature in space produced by a sphere of mass.
z = x2 - y2

z = x2 + y2 z = 1/ (r + d)
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consistent with those followed by objects moving under the influence

of gravity associated with the given distribution of matter. 

For a continuous surface—or in general a continuous space—the

idea of curvature is a familiar one in traditional geometry. But if the

universe is at an underlying level just a discrete network of nodes then

how does curvature work? At some level the answer is that on large

scales the discrete network must approximate continuous space. 

But it turns out that one can actually also recognize curvature in

the basic structure of a network. If one has a simple array of hexagons—

as in the picture on the left—then this can readily be laid out flat on a

two-dimensional plane. But what if one replaces some of these

hexagons by pentagons? One still has a fundamentally two-dimensional

surface. But if one tries to keep all edges the same length the surface

will inevitably become curved—like a soccer ball or a geodesic dome.

So what this suggests is that in a network just changing the

pattern of connections can in effect change the overall curvature. And

indeed the pictures below show a succession of networks that in effect

have curvatures with a range of negative and positive values.

A hexagonal array corresponding
to flat two-dimensional space. 

Networks with various limiting curvatures. If every region in the network is in effect a hexagon—as in the picture at the top of the
page—then the network will behave as if it is flat. But if pentagons are introduced, as in the cases on the left, the network will
increasingly behave as if it has positive curvature—like part of a sphere. And if heptagons are introduced, as in the cases on the right,
the network will behave as if it has negative curvature. In the bottom row of pictures, the networks are laid out as on page 479, so that
successive heights give the number of nodes at successive distances  from a particular node. In the limit of large , this number is
approximately  where  turns out to be exactly proportional to the curvature.

r r

r 2 (1 - k r 2 +?) k
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But how can we determine the curvature from the structure of

each network? Earlier in this chapter we saw that if a network is going

to correspond to ordinary space in some number of dimensions , then

this means that by going  connections from any given node one must

reach about  nodes. But it turns out that when curvature is present

it leads to a systematic correction to this.

In each of the pictures on the facing page the network shown can

be thought of as corresponding to two-dimensional space. And this

means that to a first approximation the number of nodes reached must

increase linearly with . But the bottom row of pictures show that there

are corrections to this. And what happens is that when there is positive

curvature—as in the pictures on the left—progressively fewer than 

nodes end up being reached. But when there is negative curvature—as

on the right—progressively more nodes end up being reached. And in

general the leading correction to the number of nodes reached turns out

to be proportional to the curvature multiplied by .

So what happens in more than two dimensions? In general the

result could be very complicated, and could for example involve all

sorts of different forms of curvature and other characteristics of space.

But in fact the leading correction to the number of nodes reached is

always quite simple: it is just proportional to what is called the Ricci

scalar curvature, multiplied by . And already here this is some

suggestion of general relativity—for the Ricci scalar curvature also

turns out to be a central quantity in the Einstein equations.

But in trying to see a more detailed correspondence there are

immediately a variety of complications. Perhaps the most obvious is

that the traditional mathematical formulation of general relativity

seems to rely on many detailed properties of continuous space. And

while one expects that sufficiently large networks should in some sense

act on average like continuous space, it is far from clear at first how the

kinds of properties of relevance to general relativity will emerge.

If one starts, say, from an ordinary continuous surface, then it is

straightforward to approximate it as in the picture on the right by a

collection of flat faces. And one might think that the edges of these

faces would define a network of the kind I have been discussing.

d

r
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rd�1

A surface approximated by
flat faces whose edges form
a trivalent network. 
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But in fact, such a network has vastly less information. For given

just a set of connections between nodes, there is no obvious way even to

know which of these connections should be associated with the same

face—let alone to work out anything like angles between faces.

Yet despite this, it turns out that all the geometrical features that

are ultimately of relevance to general relativity can actually be

determined in large networks just from the connectivity of nodes. 

One of these is the value of the so-called Ricci tensor, which in

effect specifies how the Ricci scalar curvature is made up from different

curvature components associated with different directions. 

As indicated above, the scalar curvature associated with a

network is directly related to how many nodes lie within successive

distances  of a given node on the network—or in effect how many

nodes lie within successive generalized spheres around that node. And

it turns out that the projection of the Ricci tensor along a particular

direction is then just related to the number of nodes that lie within a

cylinder oriented in that direction. But even just defining a consistent

direction in a network is not entirely straightforward. But one way to do

it is simply to pick two points in the network, then to say that paths in

the network are going in the same direction if they are segments of the

same shortest path between those points. And with this definition, a

region that approximates a cylinder can be formed just by setting up

spheres with centers at every point on the path.

But there is now another issue to address: at least in its standard

formulation general relativity is set up in terms of properties not of

three-dimensional space but rather of four-dimensional spacetime. And

this means that what is relevant are properties not so much of specific

networks representing space, but rather of complete causal networks.

And one immediate feature of causal networks that differs from

space networks is that their connections go only one way. But it turns

out that this is exactly what one needs in order to set up the analog of a

spacetime Ricci tensor. The idea is to start at a particular event in the

causal network, then to form what is in effect a cone of events that can

be reached from there. To define the spacetime Ricci tensor, one

considers—as on page 516—a sequence of spacelike slices through this

r



F U N D A M E N T A L  P H Y S I C S C H A P T E R  9

535

cone and asks how the number of events that lie within the cone

increases as one goes to successive slices. After  steps, the number of

events reached will be proportional to . But there is then a correction

proportional to , that has a coefficient that is a combination of the

spacetime Ricci scalar and a projection of the spacetime Ricci tensor

along what is in effect the time direction defined by the sequence of

spacelike slices chosen. 

So how does this relate to general relativity? It turns out that

when there is no matter present the Einstein equations simply state

that the spacetime Ricci tensor—and thus all of its projections—are

exactly zero. There can still for example be higher-order curvature, but

there can be no curvature at the level described by the Ricci tensor.

So what this means is that any causal network whose behavior

obeys the Einstein equations must at the level of counting nodes in a cone

have the same uniform structure as it would if it were going to correspond

to ordinary flat space. As we saw a few sections ago, many underlying

replacement rules end up producing networks that are for example too

extensively connected to correspond to ordinary space in any finite

number of dimensions. But I suspect that if one has replacement rules

that are causal invariant and that in effect successfully maintain a fixed

number of dimensions they will almost inevitably lead to behavior that

follows something close to the Einstein equations.

Probably the situation is somewhat analogous to what we saw with

fluid behavior in cellular automata in Chapter 8—that at least if there are

underlying rules whose behavior is complicated enough to generate

significant effective randomness, then almost whenever the rules lead to

conservation of total particle number and momentum something close to

the ordinary Navier-Stokes equation behavior emerges.

So what about matter?

As a first step, one can ask what effect the structure of space has

on something like a particle—assuming that one can ignore the effect of

the particle back on space. In traditional general relativity it is always

assumed that a particle which is not interacting with anything else will

move along a shortest path—or so-called geodesic—in space.

t

td

td�2
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But what about an explicit particle of the kind we discussed in the

previous section that exists as a structure in a network? Given two nodes

in a network, one can always identify a shortest path from one to the

other that goes along a sequence of individual connections in the

network. But in a sense a structure that corresponds to a particle will

normally not fit through this path. For usually the structure will involve

many nodes, and thus typically require many connections going in more

or less the same direction in order to be able to move across the network.

But if one assumes a certain uniformity in networks—and in

particular in the causal network—then it still follows that particles of

the kind that we discussed in the previous section will tend to move

along geodesics. And whereas in traditional general relativity the idea of

motion along geodesics is essentially an assumption, this can now in

principle be derived explicitly from an underlying network model.

One might have thought that in the absence of matter there would

be little to say about gravity—since after all the Einstein equations then

say that there can be no curvature in space, at least of the kind described

by the Ricci tensor. But it turns out that there can still be other kinds of

curvature—described for example by the so-called Riemann tensor—and

these can in fact lead to all sorts of phenomena. Examples include familiar

ones like inverse-square gravitational fields around massive objects, as

well as unfamiliar ones like gravitational waves.

But while the mathematical structure of general relativity is

complicated enough that it is often difficult to see just where in

spacetime effects come from, it is usually assumed that matter is

somehow ultimately required to provide a source for gravity. And in the

full Einstein equations the Ricci tensor need not be zero; instead it is

specified at every point in space as being equal to a certain combination

of energy and momentum density for matter at that point. So this means

that to know what will happen even in phenomena primarily associated

with gravity one typically has to know all sorts of properties of matter.

But why exactly does matter have to be introduced explicitly at

all? It has been the assumption of traditional physics that even though

gravity can be represented in terms of properties of space, other

elements of our universe cannot. But in my approach everything just
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emerges from the same underlying network—or in effect from the

structure of space. And indeed even in traditional general relativity one

can try avoiding introducing matter explicitly—for example by

imagining that everything we call matter is actually made up of pure

gravitational energy, or of something like gravitational waves. 

But so far as one can tell, the details of this do not work out—so

that at the level of general relativity there is no choice but to introduce

matter explicitly. Yet I suspect that this is in effect just a sign of

limitations in the Einstein equations and general relativity.

For while at a large scale these may provide a reasonable

description of average behavior in a network, it is almost inevitable that

closer to the scale of individual connections they will have to be

modified. Yet presumably one can still use the Einstein equations on

large scales if one introduces matter with appropriate properties as a

way to represent small-scale effects in the network.

In the previous section I suggested that energy and momentum

might in effect be associated with the presence of excess nodes in a

network. And this now potentially seems to fit quite well with what we

have seen in this section. For if the underlying rule for a network is

going to maintain to a certain approximation the same average number

of nodes as flat space, then it follows that wherever there are more

nodes corresponding to energy and momentum, this must be balanced

by something reducing the number of nodes. But such a reduction is

exactly what is needed to correspond to positive curvature of the kind

implied by the Einstein equations in the presence of ordinary matter.

Quantum Phenomena

From our everyday experience with objects that we can see and touch

we develop a certain intuition about how things work. But nearly a

century ago it became clear that when it comes to things like electrons

some of this intuition is no longer correct. Yet there has developed an

elaborate mathematical formalism in quantum theory that successfully

reproduces much of what is observed. And while some aspects of this




