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In some cases, the behavior is fairly simple, and the patterns

obtained have simple repetitive or nested structures. But in many cases,

even with simple initial conditions, the patterns produced are highly

complex, and seem in many respects random.

The reversibility of the underlying rules has some obvious

consequences, such as the presence of triangles pointing sideways but

not down. But despite their reversibility, the rules still manage to

produce the kinds of complex behavior that we have seen in cellular

automata and many other systems throughout this book.

So what about localized structures?

The picture on the facing page demonstrates that these can also

occur in reversible systems. There are some constraints on the details of

the kinds of collisions that are possible, but reversible rules typically

tend to work very much like ordinary ones.

So in the end it seems that even though only a very small fraction

of possible systems have the property of being reversible, such systems

can still exhibit behavior just as complex as one sees anywhere else.

Irreversibility and the Second Law of Thermodynamics

All the evidence we have from particle physics and elsewhere suggests

that at a fundamental level the laws of physics are precisely reversible.

Yet our everyday experience is full of examples of seemingly irreversible

phenomena. Most often, what happens is that a system which starts in a

fairly regular or organized state becomes progressively more and more

random and disorganized. And it turns out that this phenomenon can

already be seen in many simple programs. 

The picture at the top of the next page shows an example based on a

reversible cellular automaton of the type discussed in the previous section.

The black cells in this system act a little like particles which bounce

around inside a box and interact with each other when they collide.

At the beginning the particles are placed in a simple arrangement

at the center of the box. But over the course of time the picture shows

that the arrangement of particles becomes progressively more random.
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Typical intuition from traditional science makes it difficult to

understand how such randomness could possibly arise. But the

discovery in this book that a wide range of systems can generate

randomness even with very simple initial conditions makes it seem

considerably less surprising.

But what about reversibility? The underlying rules for the

cellular automaton used in the picture above are precisely reversible.

Yet the picture itself does not at first appear to be at all reversible. For

there appears to be an irreversible increase in randomness as one goes

down successive panels on the page. 

The resolution of this apparent conflict is however fairly

straightforward. For as the picture on the facing page demonstrates, if the

A reversible cellular automaton that exhibits seemingly irreversible behavior. Starting from an initial
condition in which all black cells or particles lie at the center of a box, the distribution becomes
progressively more random. Such behavior appears to be the central phenomenon responsible for
the Second Law of Thermodynamics. The specific cellular automaton used here is rule 122R. The
system is restricted to a region of size 100 cells.



F U N D A M E N T A L  P H Y S I C S C H A P T E R  9

443

simple arrangement of particles occurs in the middle of the evolution,

then one can readily see that randomness increases in exactly the same

way—whether one goes forwards or backwards from that point.

Yet there is still something of a mystery. For our everyday

experience is full of examples in which randomness increases much as

in the second half of the picture above. But we essentially never see the

kind of systematic decrease in randomness that occurs in the first half.

By setting up the precise initial conditions that exist at the

beginning of the whole picture it would certainly in principle be

possible to get such behavior. But somehow it seems that initial

conditions like these essentially never actually occur in practice.

An extended version of the picture on the facing page, in which the reversibility of the underlying cellular automaton is more clearly
manifest. An initial condition is carefully constructed so that halfway through the evolution shown a simple arrangement of particles
will be produced. If one starts with this arrangement, then the randomness of the system will effectively increase whether one goes
forwards or backwards in time from that point.
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There has in the past been considerable confusion about why this

might be the case. But the key to understanding what is going on is

simply to realize that one has to think not only about the systems one

is studying, but also about the types of experiments and observations

that one uses in the process of studying them.

The crucial point then turns out to be that practical experiments

almost inevitably end up involving only initial conditions that are fairly

simple for us to describe and construct. And with these types of initial

conditions, systems like the one on the previous page always tend to

exhibit increasing randomness.

But what exactly is it that determines the types of initial

conditions that one can use in an experiment? It seems reasonable to

suppose that in any meaningful experiment the process of setting up the

experiment should somehow be simpler than the process that the

experiment is intended to observe.

But how can one compare such processes? The answer that I will

develop in considerable detail later in this book is to view all such processes

as computations. The conclusion is then that the computation involved in

setting up an experiment should be simpler than the computation involved

in the evolution of the system that is to be studied by the experiment.

It is clear that by starting with a simple state and then tracing

backwards through the actual evolution of a reversible system one can

find initial conditions that will lead to decreasing randomness. But if

one looks for example at the pictures on the last couple of pages the

complexity of the behavior seems to preclude any less arduous way of

finding such initial conditions. And indeed I will argue in Chapter 12

that the Principle of Computational Equivalence suggests that in

general no such reduced procedure should exist.

The consequence of this is that no reasonable experiment can

ever involve setting up the kind of initial conditions that will lead to

decreases in randomness, and that therefore all practical experiments

will tend to show only increases in randomness.

It is this basic argument that I believe explains the observed

validity of what in physics is known as the Second Law of

Thermodynamics. The law was first formulated more than a century



F U N D A M E N T A L  P H Y S I C S C H A P T E R  9

445

ago, but despite many related technical results, the basic reasons for its

validity have until now remained rather mysterious.

The field of thermodynamics is generally concerned with issues of

heat and energy in physical systems. A fundamental fact known since the

mid-1800s is that heat is a form of energy associated with the random

microscopic motions of large numbers of atoms or other particles. 

One formulation of the Second Law then states that any energy

associated with organized motions of such particles tends to degrade

irreversibly into heat. And the pictures at the beginning of this section

show essentially just such a phenomenon. Initially there are particles

which move in a fairly regular and organized way. But as time goes on,

the motion that occurs becomes progressively more random.

There are several details of the cellular automaton used above that

differ from actual physical systems of the kind usually studied in

thermodynamics. But at the cost of some additional technical

complication, it is fairly straightforward to set up a more realistic system.

The pictures on the next two pages show a particular

two-dimensional cellular automaton in which black squares representing

particles move around and collide with each other, essentially like

particles in an ideal gas. This cellular automaton shares with the cellular

automaton at the beginning of the section the property of being reversible.

But it also has the additional feature that in every collision the total

number of particles in it remains unchanged. And since each particle can

be thought of as having a certain energy, it follows that the total energy of

the system is therefore conserved.

In the first case shown, the particles are taken to bounce around

in an empty square box. And it turns out that in this particular case

only very simple repetitive behavior is ever obtained. But almost any

change destroys this simplicity. 

And in the second case, for example, the presence of a small fixed

obstacle leads to rapid randomization in the arrangement of particles—

very much like the randomization we saw in the one-dimensional

cellular automaton that we discussed earlier in this section. 
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So even though the total of the energy of all particles remains the

same, the distribution of this energy becomes progressively more

random, just as the usual Second Law implies.

An important practical consequence of this is that it becomes

increasingly difficult to extract energy from the system in the form of

systematic mechanical work. At an idealized level one might imagine

trying to do this by inserting into the system some kind of paddle

which would experience force as a result of impacts from particles.

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 21 step 22 step 23 step 24 step 25 step 26 step 27 step 28 step 29 step 30

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 21 step 22 step 23 step 24 step 25 step 26 step 27 step 28 step 29 step 30

The behavior of a simple two-dimensional cellular automaton that emulates an ideal gas of particles. In the top group of pictures, the
particles bounce around in an empty square box. In the bottom group of pictures, the box contains a small fixed obstacle. In the top
group of pictures, the arrangement of particles shows simple repetitive behavior. In the bottom group, however, it becomes
progressively more random with time. The underlying rules for the cellular automaton used here are reversible, and conserve the total
number of particles. The specific rules are based on 2 ä 2 blocks—a two-dimensional generalization of the block cellular automata to be
discussed in the next section. For each 2 ä 2 block the configuration of particles is taken to remain the same at a particular step unless
there are exactly two particles arranged diagonally within the block, in which case the particles move to the opposite diagonal. 
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The pictures below show how such force might vary with time in

cases (a) and (b) above. In case (a), where no randomization occurs, the

force can readily be predicted, and it is easy to imagine harnessing it to

produce systematic mechanical work. But in case (b), the force quickly

randomizes, and there is no obvious way to obtain systematic

mechanical work from it.

(a) (b)

Time histories of the cellular automata from the facing page. In each case a slice is taken through the midline of the
box. Black cells that are further from the midline are shown in progressively lighter shades of gray. Case (a)
corresponds to an empty square box, and shows simple repetitive behavior. Case (b) corresponds to a box
containing a fixed obstacle, and in this case rapid randomization is seen. Each panel corresponds to 100 steps in the
evolution of the system; the box is 24 cells across.

0 100 200 300 400 500

(a)

0 100 200 300 400 500

(b)

The force on an idealized paddle placed on the midline of the systems shown above. The force
reflects an imbalance in the number of particles at each step arriving at the midline from above and
below. In case (a) this imbalance is readily predictable. In case (b), however, it rapidly becomes for
most practical purposes random. This randomness is essentially what makes it impossible to build a
physical perpetual motion machine which continually turns heat into mechanical work.
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One might nevertheless imagine that it would be possible to

devise a complicated machine, perhaps with an elaborate arrangement

of paddles, that would still be able to extract systematic mechanical

work even from an apparently random distribution of particles. But it

turns out that in order to do this the machine would effectively have to

be able to predict where every particle would be at every step in time.

And as we shall discuss in Chapter 12, this would mean that the

machine would have to perform computations that are as sophisticated as

those that correspond to the actual evolution of the system itself. The

result is that in practice it is never possible to build perpetual motion

machines that continually take energy in the form of heat—or randomized

particle motions—and convert it into useful mechanical work.

The impossibility of such perpetual motion machines is one

common statement of the Second Law of Thermodynamics. Another is

that a quantity known as entropy tends to increase with time.

Entropy is defined as the amount of information about a system

that is still unknown after one has made a certain set of measurements

on the system. The specific value of the entropy will depend on what

measurements one makes, but the content of the Second Law is that if

one repeats the same measurements at different times, then the entropy

deduced from them will tend to increase with time.

If one managed to find the positions and properties of all the

particles in the system, then no information about the system would

remain unknown, and the entropy of the system would just be zero. But

in a practical experiment, one cannot expect to be able to make

anything like such complete measurements. 

And more realistically, the measurements one makes might for

example give the total numbers of particles in certain regions inside the

box. There are then a large number of possible detailed arrangements of

particles that are all consistent with the results of such measurements. The

entropy is defined as the amount of additional information that would be

needed in order to pick out the specific arrangement that actually occurs.

We will discuss in more detail in Chapter 10 the notion of amount of

information. But here we can imagine numbering all the possible

arrangements of particles that are consistent with the results of our
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measurements, so that the amount of information needed to pick out a

single arrangement is essentially the length in digits of one such number.

The pictures below show the behavior of the entropy calculated in

this way for systems like the one discussed above. And what we see is that

the entropy does indeed tend to increase, just as the Second Law implies.

In effect what is going on is that the measurements we make

represent an attempt to determine the state of the system. But as the

arrangement of particles in the system becomes more random, this

attempt becomes less and less successful.

One might imagine that there could be a more elaborate set of

measurements that would somehow avoid these problems, and would

not lead to increasing entropy. But as we shall discuss in Chapter 12, it

again turns out that setting up such measurements would have to

involve the same level of computational effort as the actual evolution of

the system itself. And as a result, one concludes that the entropy

associated with measurements done in practical experiments will

always tend to increase, as the Second Law suggests. 

0 200 400 600 800 1000

0 200 400 600 800 1000

The entropy as a function of time for systems of the type shown in case (b) from page 447. The top
plot is exactly for case (b); the bottom one is for a system three times larger in size. The entropy is
found in each case by working out how many possible configurations of particles are consistent with
measurements of the total numbers of particles in a 6 ä 6 grid of regions within the system. Just as the
Second Law of Thermodynamics suggests, the entropy tends to increase with time. Note that the
plots above would be exactly symmetrical if they were continued to the left: the entropy would
increase in the same way going both forwards and backwards from the simple initial conditions used. 
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In Chapter 12 we will discuss in more detail some of the key

ideas involved in coming to this conclusion. But the basic point is that

the phenomenon of entropy increase implied by the Second Law is a

more or less direct consequence of the phenomenon discovered in this

book that even with simple initial conditions many systems can

produce complex and seemingly random behavior.

One aspect of the generation of randomness that we have noted

several times in earlier chapters is that once significant randomness has

been produced in a system, the overall properties of that system tend to

become largely independent of the details of its initial conditions.

In any system that is reversible it must always be the case that

different initial conditions lead to at least slightly different states—

otherwise there would be no unique way of going backwards. But the

point is that even though the outcomes from different initial conditions

differ in detail, their overall properties can still be very much the same. 

The pictures on the facing page show an example of what can

happen. Every individual picture has different initial conditions. But

whenever randomness is produced the overall patterns that are obtained

look in the end almost indistinguishable.

The reversibility of the underlying rules implies that at some

level it must be possible to recognize outcomes from different kinds of

initial conditions. But the point is that to do so would require a

computation far more sophisticated than any that could meaningfully

be done as part of a practical measurement process.

So this means that if a system generates sufficient randomness, one

can think of it as evolving towards a unique equilibrium whose properties

are for practical purposes independent of its initial conditions.

This fact turns out in a sense to be implicit in many everyday

applications of physics. For it is what allows us to characterize all sorts

of physical systems by just specifying a few parameters such as

temperature and chemical composition—and avoids us always having

to know the details of the initial conditions and history of each system. 

The existence of a unique equilibrium to which any particular

system tends to evolve is also a common statement of the Second Law of
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Thermodynamics. And once again, therefore, we find that the Second Law

is associated with basic phenomena that we already saw early in this book.

But just how general is the Second Law? And does it really apply

to all of the various kinds of systems that we see in nature? 

Starting nearly a century ago it came to be widely believed that

the Second Law is an almost universal principle. But in reality there is

surprisingly little evidence for this.

Indeed, almost all of the detailed applications ever made of the

full Second Law have been concerned with just one specific area: the

behavior of gases. By now there is therefore good evidence that gases

obey the Second Law—just as the idealized model earlier in this section

suggests. But what about other kinds of systems?

The approach to equilibrium in a reversible cellular automaton with a variety of different initial conditions. Apart from exceptional
cases where no randomization occurs, the behavior obtained with different initial conditions is eventually quite indistinguishable in
its overall properties. Because the underlying rule is reversible, however, the details with different initial conditions are always at
least slightly different—otherwise it would not be possible to go backwards in a unique way. The rule used here is 122R.
Successive pairs of pictures have initial conditions that differ only in the color of a single cell at the center.
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rule 0R rule 26R rule 37R rule 73R rule 90R rule 122R rule 173R rule 214R rule 222R

Examples of reversible cellular automata with various rules. Some quickly randomize, as the Second Law of Thermodynamics
would suggest. But others do not—and thus in effect do not obey the Second Law of Thermodynamics.
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The pictures on the facing page show examples of various

reversible cellular automata. And what we see immediately from these

pictures is that while some systems exhibit exactly the kind of

randomization implied by the Second Law, others do not.

The most obvious exceptions are cases like rule 0R and rule 90R,

where the behavior that is produced has only a very simple fixed or

repetitive form. And existing mathematical studies have indeed identified

these simple exceptions to the Second Law. But they have somehow

implicitly assumed that no other kinds of exceptions can exist.

The picture on the next page, however, shows the behavior of

rule 37R over the course of many steps. And in looking at this picture,

we see a remarkable phenomenon: there is neither a systematic trend

towards increasing randomness, nor any form of simple predictable

behavior. Indeed, it seems that the system just never settles down, but

rather continues to fluctuate forever, sometimes becoming less orderly,

and sometimes more so.

So how can such behavior be understood in the context of the

Second Law? There is, I believe, no choice but to conclude that for

practical purposes rule 37R simply does not obey the Second Law.

And as it turns out, what happens in rule 37R is not so different

from what seems to happen in many systems in nature. If the Second

Law was always obeyed, then one might expect that by now every part

of our universe would have evolved to completely random equilibrium.

Yet it is quite obvious that this has not happened. And indeed

there are many kinds of systems, notably biological ones, that seem to

show, at least temporarily, a trend towards increasing order rather than

increasing randomness.

How do such systems work? A common feature appears to be the

presence of some kind of partitioning: the systems effectively break up into

parts that evolve at least somewhat independently for long periods of time.

The picture on page 456 shows what happens if one starts rule

37R with a single small region of randomness. And for a while what one

sees is that the randomness that has been inserted persists. But

eventually the system instead seems to organize itself to yield just a

small number of simple repetitive structures. 
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steps 0-3000 steps 5000-8000 steps 10000-13000 steps 20000-23000 steps 100000-103000 steps 200000-203000

More steps in the evolution of the reversible cellular automaton with rule 37R. This system is an example of one that does not in any
meaningful way obey the Second Law of Thermodynamics. Instead of exhibiting progressively more random behavior, it appears to
fluctuate between quite ordered and quite disordered states.
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This kind of self-organization is quite opposite to what one

would expect from the Second Law. And at first it also seems

inconsistent with the reversibility of the system. For if all that is left at

the end are a few simple structures, how can there be enough

information to go backwards and reconstruct the initial conditions?

The answer is that one has to consider not only the stationary

structures that stay in the middle of the system, but also all various

small structures that were emitted in the course of the evolution. To go

backwards one would need to set things up so that one absorbs exactly

the sequence of structures that were emitted going forwards.

If, however, one just lets the emitted structures escape, and never

absorbs any other structures, then one is effectively losing information.

The result is that the evolution one sees can be intrinsically not

reversible, so that all of the various forms of self-organization that we

saw earlier in this book in cellular automata that do not have reversible

rules can potentially occur.

If we look at the universe on a large scale, then it turns out that

in a certain sense there is more radiation emitted than absorbed. Indeed,

this is related to the fact that the night sky appears dark, rather than

having bright starlight coming from every direction. But ultimately the

asymmetry between emission and absorption is a consequence of the

fact that the universe is expanding, rather than contracting, with time.

The result is that it is possible for regions of the universe to

become progressively more organized, despite the Second Law, and

despite the reversibility of their underlying rules. And this is a large part

of the reason that organized galaxies, stars and planets can form.

Allowing information to escape is a rather straightforward way to

evade the Second Law. But what the pictures on the facing page

demonstrate is that even in a completely closed system, where no

information at all is allowed to escape, a system like rule 37R still does

not follow the uniform trend towards increasing randomness that is

suggested by the Second Law.

What instead happens is that kinds of membranes form between

different regions of the system, and within each region orderly behavior

can then occur, at least while the membrane survives.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

456

An example of evolution according to rule 37R from an initial condition containing a fairly random region. Even
though the system is reversible, this region tends to organize itself so as to take on a much simpler form.
Information on the initial conditions ends up being carried by localized structures which radiate outwards.



F U N D A M E N T A L  P H Y S I C S C H A P T E R  9

457

This basic mechanism may well be the main one at work in

many biological systems: each cell or each organism becomes separated

from others, and while it survives, it can exhibit organized behavior.

But looking at the pictures of rule 37R on page 454 one may ask

whether perhaps the effects we see are just transients, and that if we

waited long enough something different would happen.

It is an inevitable feature of having a closed system of limited size

that in the end the behavior one gets must repeat itself. And in rules like

0R and 90R shown on page 452 the period of repetition is always very

short. But for rule 37R it usually turns out to be rather long. Indeed, for

the specific example shown on page 454, the period is 293,216,266.

In general, however, the maximum possible period for a system

containing a certain number of cells can be achieved only if the

evolution of the system from any initial condition eventually visits all

the possible states of the system, as discussed on page 258. And if this

in fact happens, then at least eventually the system will inevitably

spend most of its time in states that seem quite random.

But in rule 37R there is no such ergodicity. And instead, starting

from any particular initial condition, the system will only ever visit a

tiny fraction of all possible states. Yet since the total number of states is

astronomically large—about 1060 for size 100—the number of states

visited by rule 37R, and therefore the repetition period, can still be

extremely long.

There are various subtleties involved in making a formal study of

the limiting behavior of rule 37R after a very long time. But irrespective

of these subtleties, the basic fact remains that so far as I can tell, rule

37R simply does not follow the predictions of the Second Law.

And indeed I strongly suspect that there are many systems in

nature which behave in more or less the same way. The Second Law is

an important and quite general principle—but it is not universally

valid. And by thinking in terms of simple programs we have thus been

able in this section not only to understand why the Second Law is often

true, but also to see some of its limitations.




