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Conserved Quantities and Continuum Phenomena

Reversibility is one general feature that appears to exist in the basic laws

of physics. Another is conservation of various quantities—so that for

example in the evolution of any closed physical system, total values of

quantities like energy and electric charge appear always to stay the same. 

With most rules, systems like cellular automata do not usually

exhibit such conservation laws. But just as with reversibility, it turns

out to be possible to find rules that for example conserve the total

number of black cells appearing on each step. 

Among elementary cellular automata with just two colors and

nearest-neighbor rules, the only types of examples are the fairly trivial

ones shown in the pictures below.

rule 204 (25% black) rule 204 (50% black) rule 204 (75% black)

rule 184 (25% black) rule 184 (50% black) rule 184 (75% black)

rule 170 (25% black) rule 170 (50% black) rule 170 (75% black)

Elementary cellular automata whose evolution conserves the total number of black cells. The
behavior of the rules shown here is simple enough that in each case it is fairly obvious how the
number of black cells manages to stay the same on every step.
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But with next-nearest-neighbor rules, more complicated examples

become possible, as the pictures below demonstrate.

One straightforward way to generate collections of systems that

will inevitably exhibit conserved quantities is to work not with ordinary

cellular automata but instead with block cellular automata. The basic

idea of a block cellular automaton is illustrated at the top of the next page.

At each step what happens is that blocks of adjacent cells are replaced by

other blocks of the same size according to some definite rule. And then on

successive steps the alignment of these blocks shifts by one cell.

rule 3822644248 (25% black) rule 3822644248 (50% black) rule 3822644248 (75% black)

rule 3484741764 (25% black) rule 3484741764 (50% black) rule 3484741764 (75% black)

rule 3450663328 (25% black) rule 3450663328 (50% black) rule 3450663328 (75% black)

Examples of cellular automata with next-nearest-neighbor rules whose evolution conserves the total number of black cells. Even
though it is not immediately obvious by eye, the total number of black cells stays exactly the same on each successive step in each
picture. Among the 4,294,967,296 possible next-neighbor rules, only 428 exhibit the kind of conservation property shown here.
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And with this setup, if the underlying rules replace each block by

one that contains the same number of black cells, it is inevitable that

the system as a whole will conserve the total number of black cells.

With two possible colors and blocks of size two the only kinds of

block cellular automata that conserve the total number of black cells are

the ones shown below—and all of these exhibit rather trivial behavior. 

An example of a block cellular automaton. The system works by partitioning the sequence of cells that exists at each step into
pairs, then replacing these pairs by other pairs according to the rule shown. The choice of whether to pair a cell with its left or
right neighbor alternates on successive steps. Like many block cellular automata, the system shown is reversible, since in the
rule each pair has a unique predecessor. It does not, however, conserve the total number of black cells.

Block cellular automata with two possible colors and blocks of size two that conserve the total number of black cells (the last
example has this property only on alternate steps). It so happens that all but the second of the rules shown here not only
conserve the total number of black cells but also turn out to be reversible.
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But if one allows three possible colors, and requires, say, that the

total number of black and gray cells together be conserved, then more

complicated behavior can occur, as in the pictures below.

Indeed, as the pictures on the next page demonstrate, such

systems can produce considerable randomness even when starting from

very simple initial conditions. 

(25% black+gray) (50% black+gray) (75% black+gray)

rule (a)

(25% black+gray) (50% black+gray) (75% black+gray)

rule (b)

(25% black+gray) (50% black+gray) (75% black+gray)

rule (c)

(25% black+gray) (50% black+gray) (75% black+gray)

rule (d)

Block cellular automata with three possible colors which conserve the combined number of black and
gray cells. In rule (a), black and gray cells remain in localized regions. In rule (b), they move in fairly simple
ways, and in rules (c) and (d), they move in a seemingly somewhat random way. The rules shown here
are reversible, although their behavior is similar to that of non-reversible rules, at least after a few steps.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

462

The behavior of rules (c) and (d) from the previous page, starting with very simple initial conditions. Each panel shows 500 steps of
evolution, and rapid randomization is evident. The black and gray cells behave much like physical particles: their total number is
conserved, and with the particular rules used here, their interactions are reversible. Note that the presence of boundaries is crucial;
for without them there would in a sense be no collisions between particles, and the behavior of both systems would be rather trivial. 
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But there is still an important constraint on the behavior: even

though black and gray cells may in effect move around randomly, their

total number must always be conserved. And this means that if one looks

at the total average density of colored cells throughout the system, it must

always remain the same. But local densities in different parts of the system

need not—and in general they will change as colored cells flow in and out. 

The pictures below show what happens with four different rules,

starting with higher density in the middle and lower density on the

sides. With rules (a) and (b), each different region effectively remains

separated forever. But with rules (c) and (d) the regions gradually mix. 

As in many kinds of systems, the details of the initial

arrangement of cells will normally have an effect on the details of the

behavior that occurs. But what the pictures below suggest is that if one

looks only at the overall distribution of density, then these details will

become largely irrelevant—so that a given initial distribution of density

will always tend to evolve in the same overall way, regardless of what

particular arrangement of cells happened to make up that distribution.

rule (a) rule (b) rule (c) rule (d)

The block cellular automata from previous pages started from initial conditions containing regions of different density. In rules (a)
and (b) the regions remain separated forever, but in rules (c) and (d) they gradually diffuse into each other.
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The pictures above then show how the average density evolves in

systems (c) and (d). And what is striking is that even though at the lowest

level both of these systems consist of discrete cells, the overall distribution

of density that emerges in both cases shows smooth continuous behavior.

And much as in physical systems like fluids, what ultimately leads

to this is the presence of small-scale apparent randomness that washes

out details of individual cells or molecules—as well as of conserved

quantities that force certain overall features not to change too quickly.

And in fact, given just these properties it turns out that essentially the

same overall continuum behavior always tends to be obtained. 

One might have thought that continuum behavior would

somehow rely on special features of actual systems in physics. But in

fact what we have seen here is that once again the fundamental

mechanisms responsible already occur in a much more minimal way in

programs that have some remarkably simple underlying rules.

1 run 2 runs 5 runs 10 runs 50 runs 1000 runs

1 run 2 runs 5 runs 10 runs 50 runs 1000 runs

The evolution of overall density for block cellular automata (c) and (d) from the previous page. Even though at an underlying level
these systems consist of discrete cells, their overall behavior seems smooth and continuous. The results shown here are obtained
by averaging over progressively larger numbers of runs with initial conditions that differ in detail, but have the same overall density
distribution. In the limit of an infinite number of runs (or infinite number of cells), the behavior in the second case approaches the
form implied by the continuum diffusion equation. (In the first case correlations in effect last too long to yield exactly such behavior.)




