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General Notes

n Website. A large amount of additional material related to
this book and these notes will progressively be made
available through the website www.wolframscience.com.
(See also the copyright page at the beginning of the book.)

n The role of these notes. The material in these notes is
intended to be complementary to the main text, and is not
always self-contained on its own. It is thus important to read
these notes in parallel with the sections of the main text to
which they refer, since some necessary points may be made
only in the main text. Captions to pictures in the main text
also often contain details that are not repeated in these notes.

» Writing style. This book was not easy to write, not least
because it contains many complex intellectual arguments
presented in plain language. And in order to make these
arguments as easy to understand as possible, I have had to
adopt some rhetorical devices. Perhaps most annoying to
those with a copyediting orientation will be my predilection
for starting sentences with conjunctions. The main reason I
have done this is to break up what would otherwise be
extremely long sentences. For the points that I make are often
sufficiently complex to require quite long explanations. And
to make what I have written more readable than, say, a
typical classic work of philosophy, I have broken these
explanations into several sentences, necessarily with
conjunctions at the beginning of each. Also annoying to some
will be my widespread use of short paragraphs. In the main
text I normally follow the principle that any paragraph
should communicate just one basic idea. And my hope is
then that after reading each paragraph readers will pause a
moment to absorb each idea before going on to the next one.
(This book introduces the third major distinct style of writing
that I have used in publications. The first I developed for
scientific papers; the second for documents like The
Mathematica Book.)

n Billions. Following standard American usage, billion in this
book means 107, trillion 10'2, and so on.

u Clarity and modesty. There is a
understated scientific writing to which I was once a devoted

common style of
subscriber. But at some point I discovered that more
significant results are usually incomprehensible if presented
in this style. For unless one has a realistic understanding of
how important something is, it is very difficult to place or
absorb it. And so in writing this book I have chosen to
explain straightforwardly the importance I believe my
various results have. Perhaps I might avoid some criticism by
a greater display of modesty, but the cost would be a drastic
reduction in clarity.

n Explaining ideas. In presenting major new ideas in a book
such as this, there is a trade-off between trying to explain
these ideas directly on their own, and using previous ideas to
provide a context. For some readers there is a clear short-
term benefit in referring to previous ideas, and in discussing
to what extent they are right and wrong. But for other readers
this approach is likely just to introduce confusion. And over
the course of time the ideas that typical readers know will
tend to shift. So to make this book as broadly accessible as
possible what I mostly do is in the main text to discuss ideas
as directly as I can—but then in these notes to outline their
historical context. Occasionally in the main text I do mention
existing ideas—though I try hard to avoid fads that I expect
will not be widely remembered within a few years.
Throughout the book my main goal is to explain new ideas,
not to criticize ones from the past. Sometimes clarity
demands that I say explicitly that something from the past is
wrong, but generally I try to avoid this, preferring instead
just to state whatever I now believe is true. No doubt this
book will draw the ire of some of those with whose ideas its
results do not agree, but much as I might like to do so, I
cannot realistically avoid this just by the way I present what I
have discovered.

n Technology references. In an effort to make the main text
of this book as timeless as possible, I have generally avoided
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referring to everyday systems whose character or name I
expect will change as technology advances. Inevitably,
however, I do discuss computers, even though I fully expect
that some of the terms and concepts I use in connection with
them will end up seeming dated in a matter of a few
decades.

u Whimsy. Cellular automata and most of the other systems
in this book readily admit various kinds of whimsical
descriptions. The rule 30 cellular automaton, for example,
can be described as follows. Imagine a stadium full of people,
with each person having two cards: one black and one white.
Make the person in the middle of the top row of seats hold up
a black card, and make everyone else in that row hold up a
white card. Now each successive person in each successive
row determines the color of the card they hold up by looking
at the person directly above them, and above them
immediately to their left and right, and then applying the
simple rule on page 27. A photograph of the stadium will
then show the pattern produced by rule 30. Descriptions like
this may make abstract systems seem more connected to at
least artificial everyday situations, but if the goal is to focus
on fundamental ideas, as in this book, then such whimsy is,
in my experience, normally just a major distraction.

n Timeline of writing. I worked on the writing of this book
with few breaks for a little over ten years, beginning in June
1991, and ending in January 2002. The chapters were written
roughly as follows: Chapter 1: 1991, 1999, 2001; Chapter 2:
1991-2; Chapter 3: 1992; Chapter 4: 1992-3; Chapter 5: 1993;
Chapter 6: 1992-3; Chapter 7: 1994-6; Chapter 8: 1994-5,
1997; Chapter 9: 1995-8, 2001; Chapter 10: 1998-9; Chapter 11:
1995; Chapter 12: 1999-2001. Some sections of chapters
(usually later ones) were added well after the rest. These
notes were also sometimes written well after the main text of
a given chapter.

u Identifying new material. The vast majority of results in this
book have never appeared in published form before. A few
were however included—implicitly or explicitly—in
publications of mine from the early 1980s (see page 881).
Whenever I am aware of antecedents to major material in the
main text I have indicated this in the notes. Within the notes
that

discussion and without statements such as “it is known that”

themselves, results are given without historical
are generally new to this book. Researchers seeking further

information should consult the website for the book.

n Citations and references. In developing the ideas described
in this book I have looked at many thousands of books,
papers and websites—and have interacted with hundreds of
people (see page xiii). But rather than trying to give a huge
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list of specific references, I have instead included in these
notes historical information tracing key contributions. From
the names of concepts and people that I mention, it is
straightforward to do web or database searches that give a
vastly more complete picture of available references than
could possibly fit in a book of manageable size—or than
could be created correctly without immense scholarship.
Note that while most current works of science tend to refer
mainly just to very recent material, this book often refers to
material that is centuries or even millennia old—in some
ways more in the tradition of fields like philosophy.

n Historical notes. I have included extensive historical notes
in this book in part out of respect for what has gone before, in
part to provide context for ideas (and to see how current
beliefs came to be as they are) and in part because the steps
one goes through in understanding things may track steps
that were gone through historically. Often in the book my
conclusions in a particular field differ in a fundamental way
from what has been traditional, and it has been important to
me in confirming my understanding to study history and see
how the conclusions I have reached were missed before. My
discussion of science in this book is generally quite precise,
being based among other things on computer experiments
that can readily be reproduced. But my discussion of history
is inevitably less precise. And while I have gone to
considerable effort to ensure that its main elements are
correct, ultimate objective confirmation is usually impossible.
Thave always tried to read original writings—for I have often
found that later characterizations drop elements crucial for
my purposes, or recast history to simplify pedagogy. But
even for pieces of history where the people involved are still
alive there are often no primary written records, leaving me
to rely on secondary sources and recollections extracted in
personal interviews—which are inevitably colored by later
ideas and understanding. And while with sufficient effort it
is usually possible to give fairly simple explanations for
fundamental ideas in science, the same may not be true of
their history. Looking at the historical notes in this book one
striking feature is how often individuals of significant fame
are mentioned—but not for the reason they are usually
famous. And perhaps the explanation for this is in part that
most of those who one can now see made contributions to the
kinds of foundational issues I address were capable enough
to have been successful at something—but without the whole
context of this book they tended to view the types of results I
discuss largely as curiosities, and so never tried to do much
with them. Note that in mentioning people in connection
with ideas and results, I have tried to concentrate on those
who seemed to make the most essential contributions for my



purposes—even when this does not entirely agree with
traditions or criteria in particular academic fields.

n Dates. Rather than following the usual academic practice of
giving years when the discoveries were first published in
books or journals, I have when possible given years when
discoveries were first made. Note that I use a form like 1880s
to refer to a decade, and 1800s to refer to a whole century.

n Autobiographical elements. Every discovery in this book
has some kind of specific personal story associated with it.
Sometimes the story is quite straightforward; sometimes it is
convoluted and colorful. But much as I enjoy recounting such
stories, I have chosen not to make them part of this book.

n Cover image. The image on the cover of this book is derived
from the first 440 or so steps (with perhaps 10 at each end cut
off by trimming) of the pattern generated by evolution
according to the rule 110 cellular automaton discussed on
page 32, with an initial condition consisting of repeats of
o followed by repeats of mmmmT—. The picture on the
right shows 3000 steps in this evolution. The central region
grows by 1 cell every 2 steps on the left and 22 cells every 340
steps on the right. Many persistent structures emanate from
the right-hand edge of the region. After just 29 steps, this
edge takes on a form that repeats every 1700 steps. During
each such cycle, a total of 65 persistent structures are
produced, of 11 of the 15 kinds from page 292, and their
interactions make the full repetition period 6800 steps.

n Endpapers. The goldenrod pages inside the front cover
show the center 900 or so cells of the first 500 or so steps in
the evolution of the rule 30 cellular automaton of page 29
from a single black cell. The pages inside the back cover show
the next 500 or so steps.

n Using color. Aside from practicalities of printing, what
made me decide not to use color in this book were issues of
visual perception. For much as it is easier to read text in black
and white, so also it is easier to assimilate detailed pictures if
they are just in black and white. And in fact many types of
images in this book show quite misleading features in color.
In human visual perception the color of something tends to
seem different depending on what is around it—so that for
example a red element tends to look purple or pink if the
elements around it are respectively blue or white. And
particularly if there are few colors arranged in ways that are
not visually familiar it is typical for this effect to make all
sorts of spurious patterns appear.

u Pictures in the book. All the diagrammatic pictures in this
book were created using Mathematica. (The photographs were
also laid out and image-processed using Mathematica.) The
ability of Mathematica to manipulate graphics in a symbolic
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way was crucial—and was what ultimately made it possible
for the book to have so many elaborate pictures.

To those familiar with book layout it may seem surprising
that I was able to include so many pictures of so many
different shapes and sizes without having to resort to a
device like figure numbers. And indeed it required solving
innumerable small geometrical puzzles to do so. But what
ultimately made it possible was that the Mathematica
programs for generating the pictures were almost always
general enough that it was straightforward for me to get, say,
a picture with a different number of cells or steps.

= Hyphenation. An unusual feature of the text in this book is
that it almost never uses hyphenation; from seeing so much
word-wrapped text on computers I at least have come to
view hyphenation as an ugly and misleading device.

n Book production system. Beyond its actual content, the
production of this book was a highly complex process that
relied on the methodology for software releases developed at
my company over the past fifteen years. Had I been starting
the book now I would likely have authored all of it directly in
Mathematica and Publicon. But a decade ago I made the
decision to compose all the original source for the book in
FrameMaker. This source was then processed by an elaborate
automated procedure much like a standard software build.
The first step involved converting a MIF version of the
complete source into a Mathematica symbolic expression.
Then within Mathematica various transformations and tests
were done on this expression—with for example every
program in these notes being formatted and broken into lines
using rules similar to Mathematica StandardForm. The
resulting symbolic expressions were then converted back to
MIE, formatted in FrameMaker, and automatically output as
PDE. (Note that special characters in programs are rendered
using the new Mathematica-Sans font specifically created for
the book.) (See also the colophon at the very end of the book.)

u Printing. Many of the pictures in this book have a rather
different character from things that are normally printed. For
unlike traditional diagrams consisting of separate visible
elements—or photographs involving smooth gradations of
color—they often for example contain hundreds of cells per
inch, each in effect independently black or white. And to
capture this properly required careful sheet-fed printing on
paper smooth enough to avoid significant spreading of ink.
(See also the colophon at the very end of the book.)

n Index. In the index to this book I have tried to cater both to
those who have already read the book in detail, and to those
who have not. My approach has generally been to include
any term that might realistically come to mind when thinking
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of a given topic—or remembering what the book says about
that topic. And this means that even if the book mentions a
term only in passing, I have tended to include it if for one
reason or another I think it is likely to be memorable to
people with certain experience or interests. Note that looking
up Mathematica functions used in connection with some issue
is often a good way to identify related issues. In the actual
building of the index in this book, sorting, processing and
checking were done using a variety of automated
Mathematica  procedures, operating symbolic
representation of the full text and index of the book. Often it

on a

is possible by reading an index to identify the important
issues in a book. And to some extent that is possible here,
though often the presence of more subentries just reflects
material being more spread out, not more important.

n People in the index. Conventions for personal names vary
considerably with culture and historical period. I have tried
in the index to give all names in the form they might be used
on standardized documents in the modern U.S. I have done
standard transliterations from non-Latin character sets. I give
in full those forenames that I believe are or were most
commonly used by a particular individual; for other
forenames (including for example Russian patronymics) I
give only initials. I normally give formal versions of
forenames—though for individuals I have personally known
I give in the text the form of forenames I would normally use
in addressing them. I have dropped all honorifics or titles,
except when they significantly alter a name. When there are
several versions of a name, I normally use the one that was
current closest to the time of work I mention. For each person
in the index I list the country or countries where that person
predominantly worked. Note that this may not reflect where
the person was born, educated, did military service, or died.
Rather, it tries to indicate where the person did the majority
of their work, particularly as it relates to this book. I
generally refer to countries or regions by the names of their
closest present-day approximations, as these might appear in
postal addresses. When borders have changed, I tend to favor
the country whose language is what the person normally
speaks or spoke. I usually list countries in the order that a
person has worked in them, ignoring repeats. Note that while
many of the people listed are well known, extensive research
(often through personal contacts, as well as institutional and
government records) was required to track down quite a few
of them. (Ending dates are obviously not included for people
who died after the writing of this book was finished in
January 2002.)

n Notation. In the main text, I have almost entirely avoided
any kind of formal symbolic notation—usually relying



instead on diagrammatic pictures. In these notes, however, it
will often be convenient to use such notation to give precise
and compact representations of objects and operations. In
the past, essentially the only large-scale notation available
for theoretical science has been traditional mathematical
notation. But on its own this would do me little good—for I
need to represent not only traditional mathematics, but also
more general rules and programs, as well as procedures and
algorithms. But one of the reasons I created the Mathematica
language was precisely to provide a much more general
notation. So in these notes I use this language throughout as
my notation. And this has many important advantages—
and indeed it is hard to imagine that I would ever have been
able to write these notes without it. One point is that it is
completely uniform and standardized: there can never be
any hidden assumptions or ambiguity about what a
particular piece of notation means, since ultimately it is
defined by the actual Mathematica software system and its
documentation (see below). In cases where there is
traditional mathematical notation for something, the
corresponding Mathematica notation is normally almost
identical—though occasionally a few details are changed to
avoid ambiguity. The concept that everything is a symbolic
Mathematica notation,
represent essentially any kind of abstract object. And when

expression allows however, to
it comes to procedures and algorithms, the primitives in the
Mathematica language are chosen to make typical steps easy
to represent—with the result that a single line of
Mathematica can often capture what would otherwise require
many paragraphs of English text (and large amounts of
pseudocode, or lower-level computer language code).
Another very important practical feature of Mathematica
notation is that by now a large number of people are
familiar with it—certainly more than are for example
familiar with sophisticated traditional notation in, say,
And the final

advantage of Mathematica notation is that one can not only

mathematical logic. and very critical
read it, but also actually execute it on a computer, and
interact with it. And this makes it both vastly easier to apply
and build on, and also easier to analyze and understand.

» Mathematica. 1 created Mathematica to be an integrated
language and environment for computing in general, and
technical computing in particular. Following its release in 1988,
Mathematica has become very widely used in science, technology,
education and elsewhere. (It is now also increasingly used as a
component inside other software systems.)

Mathematica is available from Wolfram Research for all
standard computer systems; much more information about it
can be found on the web, especially from www.wolfram.com.

GENERAL NOTES

There are many books about Mathematica—the original one
being my The Mathematica Book.

The core of Mathematica is its language—which is based on
the concept of symbolic programming. This language
supports most traditional programming paradigms, but
considerably generalizes them with the ideas of symbolic
programming that I developed for it. In recent years there has
started to be increasing use of the language component of
Mathematica for all sorts of applications outside the area of
technical computing where Mathematica as a whole has
traditionally been most widely used.

The programs in these notes were created for Mathematica 4.1
(released 2000). They should run without any change in all
subsequent versions of Mathematica, and the majority will
also run in prior versions, all the way back to Mathematica 1
(released 1988) or Mathematica 2 (released 1990). Most of the
programs require only the language
Mathematica—and not its mathematical knowledge base—

component of

and so should run in all software systems powered by
Mathematica, in which language capabilities are enabled.

Here are examples of how some of the basic Mathematica
constructs used in the notes in this book work:

= [teration

Nest[f, x, 3]—f[f[f[x]]]

NestList[f, x, 3]—{x, f[x], f[f[x]], flf[f[x]]]}

Fold[f, x, {1, 2}]—f[f[x, 1], 2]

FoldList[f, x, {1, 21]—{x, f[x, 1], f[f[x, 1], 2]}
» Functional operations

Function[x, x + k][a]—a + k

(#+k &)[a]—a+k

(r(#1]+s[#2] &)[a, b]—r[a] +s[b]

Maplf, {a, b, c}]—{f[a], f[b], f[c]}

Applyl[f, {a, b, c}]—f[a, b, c]

Select[{1, 2, 3, 4, 5}, EvenQ]—{2, 4}

Maplndexed([f, {a, b, c}]—{f[a, {1}, f[b, {2}], f[c, {3}]}
» List manipulation

{a, b, c, d}[3]—c

{a, b, c, d}{2 4, 3 2}]—{b, d, c b}

Take[{a, b, ¢, d, e}, 2]—{a, b}

Drop[{a, b, c, d, e}, -2]—{a, b, c}

Rest[{a, b, ¢, d}]—{b, c, d}

ReplacePart[{a, b, c, d}, x, 3]—{a, b, x, d}

Length[{a, b, c}]—3

Range[5]—{1, 2, 3, 4, 5}

Table[f[i], {i, 4}]—{f[1], f[2], f[3], f[4]}
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Table[f[i, j], {i, 2}, {j, 3}]]—

{{f[1, 11, f[1, 2], f[1, 31}, {f[2, 1], f[2, 2], f[2, 3]}}
Array[f, {2, 2}]—{{f[1, 1], f[1, 2]}, {f[2, 1], {[2, 2]}}
Flatten[{{a, b}, {c}, {d, e}}]—{a, b, c, d, e}
Flatten[{{a, {b, c}}, {{d}, e}], 1]—{a, {b, c}, {d}, e}
FPartition[{a, b, ¢, d}, 2, 1]—{{a, b}, {b, c}, {c, d}}
Split[{a, a, a, b, b, a, a}]—{{a, a, a}, {b, b}, {a, a}}

ListConvolve[{a, b}, {1, 2, 3, 4, 5}]—
{2a+b,3a+2b, 4a+3b, 5a+4b}

Position[{a, b, ¢, a, a}, al—={{1}, {4}, {56}}
RotatelLeft[{a, b, c, d, e}, 2]—{c, d, e, a, b}
Join[{a, b, c}, {d, b}J—{a, b, c, d, b}
Unionl[{a, a, ¢, b, b}]—{a, b, c}
= Transformation rules
{a, b, c,d}/ b->p—fa p c d}
{fla], f[b], flcl}/ fla]-> p—{p, f[b], flc]}
{fla], f[b], flc]}/ flx_]- pl[x]—{plal p[b], plc]}
{f[1], f[b], f[2]}/. f[x_Integer] > p[x]—{p[1], f[b], p[2]}
{f[1, 2], f[3], f[4, 6]}/ f[x_, y_]->x+y—{(3, f[3], 9}
{f[1], 912], f[2], g[31} /. f[1]]gl_] > p—{p, p, f[2], p}
= Numerical functions
Quotient[207, 10]— 20
Mod[207, 10]— 7
Floor[1.45]— 1
Ceiling[1.45]—2

IntegerDigits[13, 2]—{1, 1,0, 1}
IntegerDigits[13, 2, 6]—{0, 0, 1, 1, 0, 1}
DigitCount[13, 2, 1]—3

FromDigits[{1, 1, 0, 1}, 2]— 13

The Mathematica programs in these notes are formatted in
Mathematica StandardForm . The following table specifies how
to enter these programs in Mathematica InputForm, using only
ordinary keyboard characters:

‘ F‘Pl H M‘Infm/'!y H e‘E H 1}‘[ ‘
‘ X°‘XDsgree H x| xay H Vx ‘Sqn[x] H X*)V‘X'>y ‘
o liry ooliey [ oanlown [ wle |
‘ XAV‘X&&V H xvy‘x//y H xyy‘Xor[x, 2 H xiy‘/\/and[x, y]‘

n About the programs. Like other aspects of the exposition in
this book, I have gone to considerable effort to make the
programs in these notes as clear and concise as possible. And
I believe the final programs will be useful both to execute,
and to read and study—if necessary without a computer.
Most of the programs involve only built-in Mathematica
functions, and so can be run in Mathematica without setting
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up any further definitions. (Many programs nevertheless
contain variables that need to be assigned their values before
the programs are run—as can be done for example with
Block[{k = 2}, program]. When subsidiary functions are used,
these functions also typically need to be defined before the
programs are run—even though in these notes I often show
the necessary definitions after the programs. Note that most
of the programs do not explicitly do input checking or error
generation. Only occasionally do the programs significantly
sacrifice efficiency for elegance.) A good first step in
understanding any program is to run it on a few inputs. The
symbolic character of the Mathematica language also allows
programs to be taken apart, so that their pieces can be run
and analyzed separately. Careful study of the various
programs in these notes should provide good background
not only for implementing what I discuss in the book, but
also for doing high-level programming of any kind. Many of
the programs use several of the programming paradigms
available in Mathematica—making it essentially impossible to
capture their essence in any lower-level language. Note that a
given program can essentially always be written in
Mathematica in many different ways—though often other
ways end up being vastly longer than the ones presented
here. Material about the programs should be available at the
book website—including for example some of the automated
tests run to check the programs, as well as annotations about
how the programs work.

all  the
experiments for this book were done using Mathematica

» Computer experiments. Essentially computer
running on a standard workstation-class computer, and later
PC (initially on a 33 MHz NeXTstation, then on a 100 MHz
HP 700 running NeXTSTEP, then on a 200 MHz P6 PC
running Windows 95, and finally on 450 MHz, 700 MHz and
faster PCs running Windows 95, and later Windows NT—
with a Linux fileserver). For some larger searches earlier in
the project, I wrote special-purpose C programs connected to
Mathematica via MathLink. (Increasing computer speed and
greater efficiency in successive versions of Mathematica have
gradually almost eliminated my use of C.) In some cases I
have run programs for many days or weeks, sometimes
distributed via MathLink across a few hundred computers in
my company’s network. So far in my life the primary
computer hardware systems I have used have been: Elliott
903 (1973-6); IBM 370 (1976-8); CDC 7600 (1978-9); VAX 11/
780 (1980-2); Sun-1, 2, Ridge 32 (1982—4); CM-1 (1985); Sun-3
(1985-8); SPARC (1988-91); NeXT (1991-4); HP 700 (1995-6);
PC (1996~ ). The primary languages have been: assembler
(1973-6); FORTRAN (1976-9); C (1979-~1994); SMP (1980-6);
Mathematica (1987- ). (See also page 899.)



n Educational issues. The new kind of science in this book
represents a unique educational opportunity. For it touches
an immense range of important and compelling everyday
phenomena and issues in science, yet to understand its key
ideas requires no prior scientific or technical education. So
this means that it is potentially realistic to use as the basis
for an overall introduction to the ideas of science. And
indeed having understood its basic elements, it becomes
vastly easier to understand many aspects of traditional
science, and to see how they fit into the whole framework of
knowledge.

No doubt there will at first be a tendency to follow the
progression of scientific history and to present the ideas of
this book only at an advanced stage in the educational
process, after teaching many aspects of traditional science.
But it is fairly clear that it is vastly easier to explain much of
what is in this book than to explain many ideas in traditional
science. For among other things the new kind of science in
this book does not rely on elaborate abstract concepts from
traditional mathematics; instead it is based mostly just on
pictures, and on ideas that have become increasingly familiar
from practical use of computers. And in fact, in my
experience, with good presentation, surprisingly young
children are able to grasp many key ideas in this book—even
if their knowledge of mathematics does not go beyond the
simplest operations on numbers.

Over the past fifty or so years traditional mathematics has
become a core part of education. And while its more
elementary aspects are certainly crucial for everyday modern
life, beyond basic algebra its central place in education must
presumably be justified more on the basis of promoting
overall patterns of thinking than in supplying specific factual
knowledge of everyday relevance. But in fact I believe that
the basic aspects of the new kind of science in this book in
many ways provide more suitable material for general
education than traditional mathematics. They involve some
of the same kinds of precise thinking, but do not rely on
abstract concepts that are potentially very difficult to
communicate. And insofar as they involve the development
of technical expertise, it is in the direction of computing—
which is vastly more relevant to modern life than advanced
mathematics.

The new kind of science in this book connects in all sorts of
ways with mathematics and the existing sciences—and it can
be used at an educational level to place some of the
fundamental ideas in these areas in a clearer context. In
computer science it can also be used as a rich source of basic
examples—much as physics is used as a source of basic
examples in traditional mathematics education.

GENERAL NOTES

A remarkable feature of the new kind of science in this book
is that it makes genuine research accessible to people with
almost no specific technical knowledge. For it is almost
certain that experiments on, say, some specific cellular
automaton whose rule has been picked at random from a
large set will never have been done before. To conclude
anything interesting from such experiments nevertheless
requires certain scientific methodology and judgement—but
from an educational point of view this represents a uniquely
accessible environment in which to develop such skills.

In many fields, advanced education seems useful only if one
intends to pursue those specific fields. But a few fields such
as physics are notable for being sources of individuals with
broadly applicable skills. I believe that the new kind of
science in this book will in time serve a similar role.

= Reading this book. This is a long book densely packed with
ideas and results, and to read all of it carefully is a major
undertaking. The first section of Chapter 1 provides a basic—
though compressed—overview of some of key ideas. Chapter
2 describes some of the basic results that led me to develop
the new kind of science in the book. Every subsequent
chapter in one way or another builds on earlier ones. Some
people will probably find the sweeping conclusions of the
final chapter of the book the most interesting; others will
probably be more interested in specific results and
applications in earlier chapters.

These notes are never necessary for the basic flow of any of
the arguments I make in the book—though they often
provide context and important supporting information, as
well as considerable amounts of new primary material.
Specialists in particular fields should be sure to read the
notes that relate to their fields before they draw any final
conclusions about what I have to say.

I have written this book with considerable care, and I believe
that to those seriously interested in its contents, it will repay
careful and repeated reading. Note that in the main text I
have tried to emphasize important points by various kinds of
stylistic devices. But in packing as much as possible into
these notes I have often been unable to do this. And in
general these notes have a high enough information density
that it will be rare that everything they say can readily be
assimilated in just one reading, even if it is quite careful.

n Learning the new kind of science. There will, I hope, be
many who want to learn about what is in this book, whether
out of general intellectual interest, to apply it in some way or
another, or to participate in its further development. But
regardless of the purpose, the best first step will certainly be
to read as much of this book as possible with care. In time
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there will doubtless also be all sorts of additional material
and educational options available. But ultimately the key to a
real understanding is to experience ideas for oneself. And for
the new kind of science in this book this is in a sense
unprecedentedly easy, for all it requires is a standard
computer on which to do computer experiments.

At first the best thing is probably just to repeat some of the
experiments I describe in this book—using the software and
resources described at the website, or perhaps just by typing
in some of the programs in these notes. And even if one can
already see the result of an experiment in a picture in this
book, it has been my consistent observation that one
internalizes results of experiments much better if one gets
them by running a program oneself than if one just sees them
printed in a book. To get a deeper understanding, however,
one invariably needs to try formulating experiments for
oneself. One might wonder, for example, what would
happen if some particular system were run for more steps
than I show in this book. Would the system go on doing what
one sees in the book, or might it start doing something quite
different? With the appropriate setup, one can immediately
run a program to find out. Often one will have some kind of
guess about what the answer should be. At first—if my own
experience is a guide—this guess will quite often be wrong.
But gradually, after seeing what happens in enough cases,
one will begin to develop a correct and robust new intuition.
Realistically this seems to take several months even for the
most talented and open-minded people. But as the new
intuition matures, ideas in this book like the Principle of
Computational Equivalence, that may at first seem hard to
believe, will slowly come to seem almost obvious.

For someone to assimilate all of the new kind of science I
describe in this book will take a very significant time.
Indeed, in a traditional educational setting I expect that it
will require an investment of years comparable to learning
an area like physics. How long it will take a given
individual to get to the point of being able to do something
specific with the new kind of science in this book will
depend greatly on their background and particular goals.
But in almost any case a crucial practical step—if it has not
already been taken—will be to learn well Mathematica and
the language it embodies. For although most simple
programs can be implemented in almost any computational
environment, not using the capabilities of Mathematica will
be an immediate handicap—which, for example, would
certainly have prevented me from discovering the vast
majority of what is now in this book.

n Developing the new kind of science. Up to this point in its
history the science in this book has essentially been just my
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personal project. But now that the book is out, all sorts of
other people can begin to participate—adding their own
personal achievements to the development of the intellectual
structure that I have built in this book.

The first obvious but crucial thing to do is to explain and
interpret what is already in the book. For although this is a
long book that I have tried to write as clearly as possible,
there is immensely more that can and should be said—in
many different ways—about almost all the ideas and results
it contains. Sometimes a more technical presentation may be
useful; sometimes a less technical one. Sometimes it will be
helpful to make more connections to some existing area of
thought or scholarship. And sometimes particular ideas and
results in this book will just benefit from the emphasis of
having a whole paper or book or website devoted to them.

One of my goals in this book has been to answer the most
obvious questions about each of the subjects I address. And
at this I believe I have been moderately successful. But the
science I have developed in this book opens up an area so
vast that the twenty years I have spent investigating it have
allowed me to explore only tiny parts. And indeed from
almost every page of this book there are all sorts of new
questions that emerge. In fact, even about systems that I have
studied as extensively as cellular automata I am always
amazed at just how easy it is to identify worthwhile
questions that have not yet been addressed. And in general
the ideas and methods of this book seem to yield an
unending stream of important questions of a remarkable
range of different kinds.

On the website associated with this book I plan to maintain a
list of questions that I believe are of particular interest. The
questions will be of many kinds and at many levels. Some it
will be possible to address just by fairly straightforward but
organized computer experimentation, while others will
benefit from varying levels of technical skill and knowledge
from existing areas of science, mathematics or elsewhere.

Like any serious intellectual pursuit, doing well the new kind
of science in this book is not easy. In writing the book I have
put great effort into explaining things in straightforward
ways. But the fact that in some particular case I may have
succeeded does not mean that the underlying science was
easy. And in fact my uniform experience has been that to
make progress in the kind of science I describe in this book
requires at a raw intellectual level at least as much as any
traditional area of science. The kind of extensive detailed
technical knowledge that characterizes most traditional areas
of science is usually not needed—though it can be helpful.
But if anything, greater clarity and organization of thought is



needed than in areas where there is existing technical
formalism to fall back on. At a practical level the most
important basic skill is probably Mathematica programming.
For it is crucial to be able to try out new ideas and
experiments quickly—and in my experience it is also
important to have the discipline of formulating things in the
precise language of Mathematica.

One feature of this book is that it covers a broad area and
comes to very broad conclusions. But to get to the point of
being able to do this has taken me twenty years of gradually
building up from specific detailed results and ideas. And I
have no doubt that in the future essentially all significant
contributions will also be made by building on foundations
of specific detailed facts. And indeed, what I expect to be the
mainstay of the science that develops from this book is the
gradual accumulation of more and more knowledge of a
variety of detailed concrete kinds.

I have tried in this book to lead by example in defining the
way I believe things should be done. Probably the single
most important principle that I have followed is just to try to
keep everything as simple as possible. Study the simplest
systems. Ask the most obvious questions. Search for the most
straightforward explanations. For among other things, this is
ultimately how the most useful and powerful results are
obtained. Not that it is easy to do this. For while in the end it
may be possible to get to something simple and elegant, it
often takes huge intellectual effort to see just how this can be
done. And without great tenacity there is a tremendous
tendency to stop before one has gone far enough.

In most existing fields of science there are so many
technicalities to learn and keep current on that it is rare for
anyone but a professional scientist to be able to make any
significant contribution. But in the new kind of science that I
describe in this book I believe that at least at first there will be
opportunities for a much broader range of people to make
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contributions. In existing fields of science their largely closed
communities tend to maintain standards of quality mostly
through direct institutional and personal contact. Yet
particularly when there are technical aspects to a field it is
also comparatively easy for practitioners to assess a piece of
work just from the overall way it handles and presents its
technicalities. And in fact there are obvious analogs of this in
the new kind of science that I describe in this book. First,
there is the issue of whether tools like computers are used in
effective ways. But in many ways more central is whether
there is a certain basic level of clarity and simplicity to a piece
of work. Often it is difficult to achieve this. But the point is
that the skills necessary to do so correspond rather directly to
the ones necessary to carry out the actual science itself well.

n Applications. At the core of this book is a body of ideas and
results that define a new kind of basic science. And I have no
doubt that in time this will yield a remarkably broad range of
applications. And sometimes—particularly in technology—
these applications may be quite straightforward and direct.
But if the objective is to develop a model for some specific
system in nature or elsewhere it is almost inevitable that this
will not be easy. For while I believe that the basic science that
I develop in this book provides a remarkably powerful new
framework, coming up with an actual model requires all
sorts of detailed work and analysis. Certainly it would be
wonderful if one could just take the ideas and results in this
book and somehow immediately use them to create models
for all sorts of systems. And indeed—particularly from the
examples I give in Chapter 8—there will probably be at least
a few cases where this can be done. But most of the time
nothing like it will be possible. And instead—just as in any
other framework—there will be no choice but first to learn all
sorts of details of a system, and then to use judgement and
creativity to see which of them are really essential to a model
and which are not. (See also page 364.)
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NOTES FOR CHAPTER 1

The Foundations for a New Kind of Science

An Outline of Basic Ideas

» Mathematics in science. The main event usually viewed as
marking the beginning of the modern mathematical
approach to science was the publication of Isaac Newton’s
1687 book Mathematical Principles of Natural Philosophy (the
Principia). The idea that mathematics might be relevant to
science nevertheless had long precursors in both practical
and philosophical traditions. Before 500 BC the Babylonians
were using arithmetic to describe and predict astronomical
data. And by 500 BC the Pythagoreans had come to believe
that all natural phenomena should somehow be reducible to
relationships between numbers. Many Greek philosophers
then discussed the general concept that nature should be
amenable to abstract reasoning of the kind used in
mathematics. And at a more practical level, the results and
methodology of Euclid’s work on geometry from around 300
BC became the basis for studies in astronomy, optics and
mechanics, notably by Archimedes and Ptolemy. In medieval
times there were some doubts about the utility of
mathematics in science, and in the late 1200s, for example,
Albertus Magnus made the statement that “many of the
geometer’s figures are not found in natural bodies, and many
natural figures, particularly those of animals and plants, are
not determinable by the art of geometry”. Roger Bacon
nevertheless wrote in 1267 that “mathematics is the door and
key to the sciences”, and by the 1500s it was often believed
that for science to be meaningful it must somehow follow the
systematic character of mathematics. (Typical of the time was
the statement of Leonardo da Vinci that “no human inquiry
can be called science unless it pursues its path through
mathematical exposition and demonstration”.) Around the
end of the 1500s Galileo began to develop more explicit
connections between concepts in mathematics and in
physics, and concluded that the universe could be
understood only in the “language of mathematics”, whose
“characters are triangles, circles and other geometric figures”.

What Isaac Newton then did was in effect to suggest that
natural systems are at some fundamental level actually
governed by purely abstract laws that can be specified in
terms of mathematical equations. This idea has met with its
greatest success in physics, where for the past three centuries
essentially every major theory has been formulated in terms
of mathematical equations. Starting in the mid-1800s, it has
also had increasing success in chemistry. And in the past
century, it has had a few scattered successes in dealing with
simpler phenomena in fields like biology and economics. But
despite the vast range of phenomena in nature that have
never successfully been described in mathematical terms, it
has become quite universally assumed that, as David Hilbert
put it in 1900, “mathematics is the foundation of all exact
knowledge of natural phenomena”. There continue to be
theories in science that are not explicitly mathematical—
examples being continental drift and evolution by natural
selection—but, as for example Alfred Whitehead stated in
1911, it is generally believed that “all science as it grows
toward perfection becomes mathematical in its ideas”.

n Definition of mathematics. When 1 use the
“mathematics” in this book what I mean is that field of
human endeavor that has in practice traditionally been called

term

mathematics. One could in principle imagine defining
mathematics to encompass all studies of abstract systems,
and indeed this was in essence the definition that I had in
mind when I chose the name Mathematica. But in practice
mathematics has defined itself to be vastly narrower, and to
include, for example, nothing like the majority of the
programs that I discuss in this book. Indeed, in many
respects, what is called mathematics today can be seen as a
direct extension of the particular notions of arithmetic and
geometry that apparently arose in Babylonian times. Typical
dictionary definitions reflect this by describing mathematics
as the study of number and space, together with their
And even

abstractions and generalizations. logic—an

abstract system that dates from antiquity—is not normally
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considered part of mainstream mathematics. Particularly
over the past century the defining characteristic of research in
mathematics has increasingly been the use of theorem and
proof methodology. And while some generalization has
occurred in the types of systems being studied, it has usually
been much limited by the desire to maintain the validity of
some set of theorems (see page 793). This emphasis on
theorems has also led to a focus on equations that statically
state facts rather than on rules that define actions, as in most
of the systems in this book. But despite all these issues, many
mathematicians implicitly tend to assume that somehow
mathematics as it is practiced is universal, and that any
possible abstract system will be covered by some area of
mathematics or another. The results of this book, however,
make it quite clear that this is not the case, and that in fact
traditional mathematics has reached only a tiny fraction of all
the kinds of abstract systems that can in principle be studied.

u Reasons for mathematics in science. It is not surprising that
there should be issues in science to which mathematics is
relevant, since until about a century ago the whole purpose
of mathematics was at some level thought of as being to
provide abstract idealizations of aspects of physical reality
(with the consequence that concepts like dimensions above 3
and transfinite numbers were not readily accepted as
meaningful even in mathematics). But there is absolutely no
reason to think that the specific concepts that have arisen so
far in the history of mathematics should cover all of science,
and indeed in this book I give extensive evidence that they
do not. At times the role of mathematics in science has been
used in philosophy as an indicator of the ultimate power of
human thinking. In the mid-1900s, especially among
physicists, there was occasionally some surprise expressed
about the effectiveness of mathematics in the natural
sciences. One explanation advanced by Albert Einstein was
that the only physical laws we can recognize are ones that are
easy to express in our system of mathematics.

n History of programs and nature. Given the idea of using
programs as a basis for describing nature, one can go back in
history and find at least a few rough precursors of this idea.
Around 100 AD, for example, following earlier Greek
thinking, Lucretius made the somewhat vague suggestion
that the universe might consist of atoms assembled according
to grammatical rules like letters and words in human
language. From the Pythagoreans around 500 BC through
Ptolemy around 150 AD to the early work of Johannes Kepler
around 1595 there was the notion that the planets might
follow definite geometrical rules like the elements of a
mechanical clock. But following the work of Isaac Newton in
the late 1600s it increasingly came to be believed that systems
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could only meaningfully be described by the mathematical
equations they satisfy, and not by any explicit mechanism or
rules. The failure of the concept of ether and the rise of
quantum mechanics in the early 1900s strengthened this view
to the point where at least in physics mechanistic
explanations of any kind became largely disreputable.
(Starting in the 1800s systems based on very simple rules
were nevertheless used in studies of genetics and heredity.)
With the advent of electronics and computers in the 1940s
and 1950s,
automata began to be introduced, primarily in biology (see
pages 876 and 1099). But in essentially all cases they were
viewed just as approximations to models based on traditional
mathematical equations. In the 1960s and 1970s there arose in

models like neural networks and cellular

the early computer hacker community the general idea that
the universe might somehow operate like a program. But
attempts to engineer explicit features of our universe using
constructs from practical programming were unsuccessful,
and the idea largely fell into disrepute (see page 1026).
Nevertheless, starting in the 1970s many programs were
written to simulate all sorts of scientific and technological
systems, and often these programs in effect defined the
models used. But in almost all cases the elements of the
models were firmly based on traditional mathematical
equations, and the programs themselves were highly
complex, and not much like the simple programs I discuss in
this book. (See also pages 363 and 992.)

n Extensions of mathematics. See page 793.

n The role of logic. In addition to standard mathematics, the
formal system most widely discussed since antiquity is logic
(see page 1099). And starting with Aristotle there was in fact
a long tradition of trying to use logic as a framework for
drawing conclusions about nature. In the early 1600s the
experimental method was suggested as a better alternative.
And after mathematics began to show extensive success in
describing nature in the late 1600s no further large-scale
efforts to do this on the basis of logic appear to have been
made. It is conceivable that Gottfried Leibniz might have
tried in the late 1600s, but when his work was followed up in
the late 1800s by Gottlob Frege and others the emphasis was
on building up mathematics, not natural science, from logic
(see page 1149). And indeed by this point logic was viewed
mostly as a possible representation of human thought—and
not as a formal system relevant to nature. So when computers
arose it was their numerical and mathematical rather than
logical capabilities that were normally assumed relevant for
natural science. But in the early 1980s the cellular automata
that I studied I often characterized as being based on logical
rules, rather than traditional mathematical ones. However, as
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we will see on page 806, traditional logic is in fact in many
ways very narrow compared to the whole range of rules
based on simple programs that I actually consider in this
book.

» Complexity and theology. Both complexity and order in the
natural world have been cited as evidence for an intelligent
creator (compare page 1195). Early mythologies most often
assume that the wuniverse started in chaos, with a
supernatural being adding order, then creating a series of
specific complex natural systems. In Greek philosophy it was
commonly thought that the regularities seen in astronomy
and elsewhere (such as the obvious circular shapes of the Sun
and Moon) were reflections of perfect mathematical forms
associated with divine beings. About complexity Aristotle
did note that what nature makes is “finer than art”, though
this was not central to his arguments about causes of natural
phenomena. By the beginning of the Christian era, however,
there is evidence of a general belief that the complexity of
nature must be the work of a supernatural being—and for
example there are statements in the Bible that can be read in
this way. Around 1270 Thomas Aquinas gave as an argument
for the existence of God the fact that things in nature seem to
“act for an end” (as revealed for example by always acting in
the same way), and thus must have been specifically
designed with that end in mind. In astronomy, as specific
natural laws began to be discovered, the role of God began to
recede somewhat, with Isaac Newton claiming, for example,
that God must have first set the planets on their courses, but
then mathematical laws took over to govern their subsequent
behavior. Particularly in biology, however, the so-called
“argument by design” became ever more popular. Typical
was John Ray’s 1691 book The Wisdom of God Manifested in the
Works of the Creation, which gave a long series of examples
from biology that it claimed were so complex that they must
be the work of a supernatural being. By the early 1800s, such
ideas had led to the field of natural theology, and William
Paley gave the much quoted argument that if it took a
sophisticated human watchmaker to construct a watch, then
the only plausible explanation for the vastly greater
complexity of biological systems was that they must have
been created by a supernatural being. Following the
publication of Charles Darwin’s Origin of Species in 1859
many scientists began to argue that natural selection could
explain all the basic phenomena of biology, and although
some religious groups maintained strong resistance, it was
widely assumed by the mid-1900s that no other explanation
was needed. In fact, however, just how complexity arises was
never really resolved, and in the end I believe that it is only
with the ideas of this book that this can successfully be done.

KIND OF
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n Artifacts and natural systems. See page 828.

» Complexity and science. Ever since antiquity science has
tended to see its main purpose as being the study of
regularities—and this has meant that insofar as complexity is
viewed as an absence of regularities, it has tended to be
ignored or avoided. There have however been occasional
discussions of various general aspects of complexity and
what can account for them. Thus, for example, by 200 BC the
Epicureans were discussing the idea that varied and complex
forms in nature could be made up from arrangements of
small numbers of types of elementary atoms in much the
same way as varied and complex written texts are made up
from small numbers of types of letters. And although its
consequences were remarkably confused, the notion of a
single underlying substance that could be transmuted into
anything—living or not—was also a centerpiece of alchemy.
Starting in the 1600s successes in physics and discoveries like
the circulation of blood led to the idea that it should be
possible to explain the operation of almost any natural
system in essentially mechanical terms—leading for example
René Descartes to claim in 1637 that we should one day be
able to explain the operation of a tree just like we do a clock.
But as mathematical methods developed, they seemed to
apply mainly to physical systems, and not for example to
biological ones. And indeed Immanuel Kant wrote in 1790
that “it is absurd to hope that another Newton will arise in
the future who will make comprehensible to us the
production of a blade of grass according to natural laws”. In
the late 1700s and early 1800s mathematical methods began
to be used in economics and later in studying populations.
And partly influenced by results from this, Charles Darwin
in 1859 suggested natural selection as the basis for many
phenomena in biology, including complexity. By the late
1800s advances in chemistry had established that biological
systems were made of the same basic components as physical
ones. But biology still continued to concentrate on very
specific observations—with no serious theoretical discussion
of anything as general as the phenomenon of complexity. In
the 1800s statistics was increasingly viewed as providing a
scientific approach to complex processes in practical social
systems. And in the late 1800s statistical mechanics was then
used as a basis for analyzing complex microscopic processes
in physics. Most of the advances in physics in the late 1800s
and early 1900s complexity by
concentrating on properties and systems simple enough to be

in effect avoided
described by explicit mathematical formulas. And when
other fields tried in the early and mid-1900s to imitate
successes in physics, they too generally tended to concentrate
on issues that seemed amenable to explicit mathematical
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formulas. Within mathematics itself—especially in number
theory and the three-body problem—there were calculations
that yielded results that seemed complex. But normally this
complexity was viewed just as something to be overcome—
either by looking at things in a different way, or by proving
more powerful theorems—and not as something to be
studied or even much commented on in its own right.

In the 1940s, however, successes in the analysis of logistical
and electronic systems led to discussion of the idea that it
might be possible to set up some sort of general approach to
complex systems—especially biological and social ones. And
by the late 1940s the cybernetics movement was becoming
increasingly popular—with Norbert Wiener emphasizing
feedback control and stochastic differential equations, and
John von Neumann and others emphasizing systems based
on networks of elements often modelled after neurons. There
were spinoffs such as control theory and game theory, but
little progress was made on core issues of complexity, and
already by the mid-1950s what began to dominate were
vague discussions involving fashionable issues in areas such
as psychiatry and anthropology. There also emerged a
tradition of robotics and artificial intelligence, and a few of
the systems that were built or simulated did show some
complexity of behavior (see page 879). But in most cases this
was viewed just as something to be overcome in order to
achieve the engineering objectives sought. Particularly in
the 1960s there was discussion of complexity in large
human organizations—especially in connection with the
development of management science and the features of
various forms of hierarchy—and there emerged what was
called systems theory, which in practice typically involved
equations,
representing relationships in flowcharts. Attempts were for

simulating networks of differential often
example made at worldwide models, but by the 1970s their
results—especially in economics—were being discredited.
(Similar methods are nevertheless used today, especially in

environmental modelling.)

With its strong emphasis on simple laws and measurements
of numbers, physics has normally tended to define itself to
avoid complexity. But from at least the 1940s, issues of
complexity were nevertheless occasionally mentioned by
physicists as important, most often in connection with fluid
turbulence or features of nonlinear differential equations.
Questions about pattern formation, particularly in biology
and in relation to thermodynamics, led to a sequence of
studies of reaction-diffusion equations, which by the 1970s
were being presented as relevant to general issues of
complexity, under names like self-organization, synergetics
and dissipative structures. By the late 1970s the work of
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Benoit Mandelbrot on fractals provided an important
example of a general approach to addressing a certain kind of
complexity. And chaos theory—with its basis in the
mathematics of dynamical systems theory—also began to
the late 1970s,
in connection with fluid

become popular in being discussed

particularly turbulence. In
essentially all cases, however, the emphasis remained on
trying to find some aspect of complex behavior that could be
summarized by a number traditional

single or a

mathematical equation.

As discussed on pages 44-50, there were by the beginning of
the 1980s various kinds of abstract systems whose rules were
simple but which had nevertheless shown complex behavior,
particularly in computer simulations. But usually this was
considered largely a curiosity, and there was no particular
sense that there might be a general phenomenon of
complexity that could be of central interest, say in natural
science. And indeed there remained an almost universal
belief that to capture any complexity of real scientific
relevance one must have a complex underlying model. My
work on cellular automata in the early 1980s provided strong
evidence, however, that complex behavior very much like
what was seen in nature could in fact arise in a very general
way from remarkably simple underlying rules. And starting
around the mid-1980s it began to be not uncommon to hear
the statement that complex behavior can arise from simple
rules—though often there was great confusion about just
what this was actually saying, and what, for example, should
be considered complex behavior, or a simple rule.

That
phenomenon that could be studied scientifically in its own

complexity could be identified as a coherent
right was something I began to emphasize around 1984. And
having created the beginnings of what I considered to be the
necessary intellectual structure, I started to try to develop an
organizational structure to allow what I called complex
systems research to spread. Some of what I did had fairly
immediate effects, but much did not, and by late 1986 I had
started building Mathematica and decided to pursue my own
scientific interests in a more independent way (see page 20).
By the late 1980s, however, there was widespread discussion
of what was by then being called complexity theory. (I had
avoided this name to prevent confusion with the largely
unrelated field of computational complexity theory). And
indeed many of the points I had made about the promise of
the field were being enthusiastically repeated in popular
accounts—and there were starting to be quite a number of
new institutions devoted to the field. (A notable example was
the Santa Fe Institute, whose orientation towards complexity
seems to have been a quite direct consequence of my efforts.)
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But despite all this, no major new scientific developments
were forthcoming—not least because there was a tremendous
tendency to ignore the idea of simple underlying rules and of
what I had discovered in cellular automata, and instead to set
up computer simulations with rules far too complicated to
allow them to be used in studying fundamental questions.
And combined with a predilection for considering issues in
the social and biological sciences that seem hard to pin down,
this led to considerable skepticism among many scientists—
with the result that by the mid-1990s the field was to some
extent in retreat—though the statement that complexity is
somehow an important and fundamental issue has continued
to be emphasized especially in studies of ecological and
business systems.

Watching the history of the field of complexity theory has
made it particularly clear to me that without a major new
intellectual structure complexity cannot realistically be
studied in a meaningful scientific way. But it is now just such
a structure that I believe I have finally been able to set up in
this book.

Relations to Other Areas

u Page 7 - Mathematics. I discuss the implications of this book
for the foundations of mathematics mainly on pages 772-821
and in the rather extensive corresponding notes. With a
sufficiently general definition of mathematics, however, the
whole core of the book can in fact be viewed as a work of
experimental mathematics. And even with a more traditional
definition, this is at least true of much of my discussion of
systems based on numbers in Chapter 4. The notes to almost
all chapters of the book contain a great many new
mathematical results, mostly emerging from my analysis of
some of the simpler behavior considered in the book. Pages
606-620 and 737-750 discuss in general the capabilities of
mathematical analysis, while pages 588-597 address the
foundations of statistics. Note that some ideas and results
highly relevant to current frontiers in mathematics appear in
some rather unexpected places in the book. Specific examples
include the parameter space sets that I discuss in connection
with shapes of plant leaves on page 407, and the minimal
axioms for logic that I discuss on page 810. A more general
example is the issue of smooth objects arising from
combinatorial data that I discuss in Chapter 9 in connection
with the nature of space in fundamental physics.

u Page 8 - Physics. I discuss general mechanisms and models
relevant for physical systems in Chapter 7, specific types of
everyday physical systems in Chapter 8, and applications to
basic foundational problems in physics in Chapter 9. I
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mention some further fundamental issues in physics around
page 730 and in chemistry on page 1193.

n Page 8 - Biology. The main place I discuss applications to
biology is on pages 383-429 of Chapter 8, where I consider
first general questions about biology and evolution, and then
more specific issues about growth and pattern in biological
organisms. I consider visual and auditory perception on
pages 577-588, and the operation of brains on pages 620-631.
I also discuss the definition of life on pages 823 and 1178, as
well as mentioning protein folding and structure on pages
1003 and 1184.

n Page 9 - Social and related sciences. I discuss the particular
example of financial systems on pages 429-432, and make
some general comments on page 1014. The end of Chapter 10,
as well as some parts of Chapter 12, also discuss various
issues that can be viewed as foundational questions.

n Page 10 - Computer science. Chapter 11 as well as parts of
Chapter 12 (especially pages 753-771) address foundational
issues in computer science. Chapter 3 uses standard
computer science models such as Turing machines and
register machines as examples of simple programs. In many
places in the book—especially these notes—I discuss all sorts
of specific problems and issues of direct relevance to current
computer science. Examples include cryptography (pages
598-606), Boolean functions (pages 616-619 and 806-814),
user interfaces (page 1102)
(page 1147).

and quantum computing

u Page 10 - Philosophy. Chapter 12 is the main place I address
traditional philosophical issues. On pages 363-369 of Chapter
8, however, I discuss some general issues of modelling, and
in Chapter 10 I consider at length not only practical but also
foundational questions about perception and to some extent
general thinking and consciousness. (See page 1196.)

n Page 11 - Technology. The notes to this book mention many
specific technological connections, and I expect that many of
the models and methods of analysis that I use in the book can
be applied quite directly for technological purposes. I discuss
foundational about

pages 840-843.

questions technology mainly on

u Scope of existing sciences. One might imagine that physics
would for example concern itself with all aspects of physical
systems, biology with all aspects of biological systems, and
so on. But in fact as they are actually practiced most of the
traditional sciences are much narrower in scope. Historically
what has typically happened is that in each science a certain
way of thinking has emerged as the most successful. And
then over the course of time, the scope of the science itself has
come to be defined to encompass just those issues that this
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way of thinking is able to address. So when a new
phenomenon is observed, a particular science will typically
tend to focus on just those aspects of the phenomenon that
can be studied by whatever way of thinking has been
adopted in that science. And when the phenomenon involves
substantial complexity, what has in the past usually
happened is that aspects
investigated until one is found that is simple enough to

simpler and simpler are

analyze using the chosen way of thinking.

The Personal Story of the Science in This Book

n Page 17 - Statistical physics cover. The pictures show disks
representing idealized molecules bouncing around in a box,
and the book claims that as time goes on there is almost
inevitably increasing randomization. The pictures were made
in about 1964 by Berni Alder and Frederick Reif from
oscilloscope output from the LARC computer at what was
then Lawrence Radiation Laboratory. A total of 40 disks were
started with positions and velocities determined by a middle-
square random number generator (see page 975), and their
motion was followed for about 10 collision times—after
which roundoff errors in the 64-bit numbers used had grown
too big. From the point of view of this book the
randomization seen in these pictures is in large part just a
reflection of the fact that a random sequence of digits were
used in the initial conditions. But what the discoveries in this
book show is that such randomness can also be generated
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without any such random input—finally clarifying some
very basic issues in statistical physics. (See page 441.)

n Page 17 - My 1973 computer experiments. I used a British
Elliott 903 computer with 8 kilowords of 18-bit ferrite core
memory. The assembly language program that I wrote filled
up a fair fraction of the memory. The system that I looked at
was a 2D cellular automaton with discrete particles colliding
on a square grid. Had I not been concerned with physics-like
conservation laws, or had I used something other than a
square grid, the teleprinter output that I generated would
have shown randomization. (See page 999.)

n Page 19 - Computer printouts. The printouts show a series of
elementary cellular automata started from random initial
conditions (see page 232). I generated them in 1981 using a C
program running on a VAX 11/780 computer with an early
version of the Unix operating system. (See also page 880.)
n Timeline. Major periods in my work have been:
»1974-1980: particle physics and cosmology
*1979-1981: developing SMP computer algebra system
»1981-1986: cellular automata etc.
*1986-1991: intensive Mathematica development
*1991-2001: writing this book
(Wolfram Research, Inc. was founded in 1987; Mathematica 1.0

was released June 23, 1988; the company and successive
versions of Mathematica continue to be major parts of my life.)

n Detailed history. See pages 880-882.
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The Crucial Experiment

How Do Simple Programs Behave?

» Implementing cellular automata. It is convenient to
represent the state of a cellular automaton at each step by a
list such as {0, 0, 1, 0, 0}, where 0 corresponds to a white cell
and 7 to a black cell. An initial condition consisting of n
white cells with one black cell in the middle can then be
obtained with the function (see below for comments on this
and other Mathematica functions)

CenterList[n_Integer] :=
ReplacePart[Table[O, {n}], 1, Ceiling[n/2]]

For cellular automata of the kind discussed in this chapter,
the rule can also be represented by a list. Thus, for example,
rule 30 on page 27 corresponds to the list (0, 0, 0, 7, 1, 1, 1, 0}.
(The numbering of rules is discussed on page 53.) In general,
the list for a particular rule can be obtained with the function
ElementaryRule[num_Integer] := IntegerDigits[num, 2, 8]
Given a rule together with a list representing the state a of a
cellular automaton at a particular step, the following simple
function gives the state at the next step:

CAStep[rule_List, a_List] :=
rule[[8 - (RotateLeft[a] + 2 (a + 2 RotateRight[a]))]l

A list of states corresponding to evolution for t steps can then
be obtained with

CAEvolvelList[rule_, init_List, t_Integer] :=
NestList[ CAStep[rule, #] &, init, t]
Graphics of this evolution can be generated using
CAGraphics[history_List] := Graphics[
Raster[1- Reverse[history ]] AspectRatio - Automatic]
And having set up the definitions above, the Mathematica input

Show[CAGraphics[ CAEvolvelList[
ElementaryRule[30], CenterList[103], 50]]]

will generate the image:

The description just given should be adequate for most
cellular automaton simulations. In some earlier versions of
Mathematica a considerably faster version of the program can
be created by using the definition

CAStep = Compile[{{rule, _Integer, 1}, {a, _Integer, 1}},
rule[[8 - (RotateLeft[a] + 2 (a + 2 RotateRight[a]))]l]

In addition, in Mathematica 4 and above, one can use
CAStep[rule_, a_] .= rulel[8 - ListConvolve[{1, 2, 4}, a, 2]]]
or directly in terms of the rule number num
Sign[BitAnd[2 ~ ListConvolve[{1, 2, 4}, a, 2], num]]
(In versions of Mathematica subsequent to the release of this
book the built-in CellularAutomaton function can be used, as
discussed on page 867.) It is also possible to have CAStep call
the following external C language program via MathLink—
though typically with successive versions of Mathematica the
speed advantage obtained will be progressively less
significant:
#include 'mathlink.h"

main(argc, argv)
int argc; char *argvll;

MLMain(argc, argv);

}

void casteps(revrule, rlen, a, n, steps)
int *revrule, rlen, *a, n, steps;

inti, *ap, t, tp;

for (i = O; i <steps; i++)

a[0] = aln-2]; /* right boundary */
aln-1] = a[1]; /* left boundary */

t = al0];
for (ap = a+1; ap <= a+n-2; ap++)

tp = apl0];
apl0] = revrulelap[1]+2*(tp + 2*t)];
t=1p,
}
}
j\ﬂLPutlntegerList(std/ink, a, n);
The linkage of this external program to the Mathematica

function CAStep is achieved with the following MathLink
template (note the optional third argument which allows
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CAStep to perform several steps of cellular automaton
evolution at a time):

:Begin:

:Function: casteps

:Pattern: CASteplrule_List, a_List, steps_Integer:1]

:Arguments: {Reverse[rule], a, steps}

:ArgumentTypes: {IntegerlList, IntegerlList, Integer}

:ReturnType: Manual

:End:
There are a couple of tricky issues in the C program above.
First, cellular automaton rules are always defined to use the
old values of neighbors in determining the new value of any
particular cell. But since the C program explicitly updates
values sequentially from left to right, the left-hand neighbor
of a particular cell will already have been given its new value
when one tries to updates the cell itself. As a result, it is
necessary to store the old value of the left-hand neighbor in a
temporary variable in order to make it available for updating
the cell itself. (Another approach to this problem is to
maintain two copies of the array of cells, and to interchange
pointers to them after every step in the cellular automaton
evolution.)

Another tricky point in cellular automaton programs
concerns boundary conditions. Since in a practical computer
one can use only a finite array of cells, one must decide how
the cellular automaton rule is to be applied to the cells at each
end of the array. In both the Mathematica and the C programs
above, we effectively use a cyclic array, in which the left
neighbor of the leftmost cell is taken to be rightmost cell, and
vice versa. In the C program, this is implemented by
explicitly copying the value of the leftmost cell to the
rightmost position in the array, and vice versa, before
updating the values in the array. (In a sense there is a bug in
the program in that the update only puts new values into
n-2 of the n array elements.)

= Comments on Mathematica functions. CenterList works by
first creating a list of n 0’s, then replacing the middle 0 by a
1. (In Mathematica 4 and above PadLeft[{1}, n, O, Floor[n/2]] can
be used instead.) ElementaryRule works by converting num
into a base 2 digit sequence, padding with zeros on the left
so as to make a list of length 8. The scheme for numbering
rules works so that if the value of a particular cell is g, the
value of its left neighbor is p, and the value of its right
neighbor is r, then the element at position 8-(r+2(q+2p))
in the list obtained from ElementaryRule will give the new
value of the cell.

CAStep uses the fact that Mathematica can manipulate all
Rotateleft[a]
RotateRight[a] make shifted versions of the original list of

the elements in a list at once. and

cell values a. Then when these lists are added together,

their corresponding elements are combined, as in
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{p, g r}+{s, t, up—{p+s, g+t r+u}. The result is that a list
is produced which specifies for each cell which element of
the rule applies to that cell. The actual list of new cell
values is then generated by using the that
{i, j, k}M[{2,1, 1,3, 2H]—{j, i, i, k j}. Note that by using
RotateLeft and RotateRight one automatically gets cyclic

fact

boundary conditions.

CAEvolvelList applies CAStep t times. Many other evolution
functions in these notes use the same mechanism. In general
NestList[s[r, #] &, i, 2]—{i, s[r, i], s[r, s[r, i]]}, etc.

n Bitwise optimizations. The C program above stores each cell
value in a separate element of an integer array. But since
every value must be either 0 or 1, it can in fact be encoded by
just a single bit. And since integer variables in practical
computers typically involve 32 or 64 bits, the values of many
cells can be packed into a single integer variable. The main
point of this is that typical machine instructions operate in
parallel on all the bits in such a variable. And thus for
example the values of all cells represented by an integer
variable a can be updated in parallel according to rule 30 by
the single C statement
a=a>>1"(afa<<1);

This statement, however, will only update the specific block
of cells encoded in a. Gluing together updates to a
sequence of such blocks requires slightly intricate code. (It
is much easier to implement in Mathematica—as discussed
above—since there functions like BitXor can operate on
integers of any length.) In general, bitwise optimizations
require representing cellular automaton rules not by simple
look-up tables but rather by Boolean expressions, which
must be derived for each rule and can be quite complicated
(see page 869). Applying the rules can however be made
faster by using bitslicing to avoid shift operations. The idea
is to store the cellular automaton configuration in, say, m
variables w/[i] whose bits correspond respectively to the
cell values {a;, a,,,;, @, pmp1s -}, (85, @pu00 @oppyns -1, (85, ..,
etc. This then makes the left and right neighbors of the j
bit in w[i] be the j" bits in w[i-1] and w[i+ 1]—so that
for example a step of rule 30 evolution can be achieved just
by wli]=wl[i-1]*(w[i]|w[i+1]) with no shift operations
needed (except in boundary conditions on w[0] and
w[m-1]). If many steps of evolution are required, it is
sufficient just to pack all cell values at the beginning, and
unpack them at the end.

n More general rules. The programs given so far are for
cellular automata with rules of the specific kind described in
this chapter. In general, however, a 1D cellular automaton
rule can be given as a set of explicit replacements for all
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possible blocks of cells in each neighborhood (see page 60).
Thus, for example, rule 30 can be given as
{{1,1,1}-0,{1,1,0}-0,{1,0,1}-0,{1,0,0}-> 1,
{0,1,1}-1,{0,1,0}-1,{0,0, 1}>1,{0, 0, 0} 0}
To use rules in this form, CAStep can be rewritten as

CAStep[rule_, a_List] :=
Transpose[{RotateRight[a], a, RotatelLeft[a]}] /. rule

or
CAStep[rule_, a_List] := Partition[a, 3, 1, 2] /. rule

The rules that are given can now contain patterns, so that rule

90, for example, can be written as
{{1,_,1}-0,{1,_,0}-1,{0,_, 1} 1,{0,_, 0} 0}

But how can one set up a program that can handle rules in

several different forms? A convenient approach is to put a

“wrapper” around each rule that specifies what form the rule

is in. Then, for example, one can define

CAStep[ElementaryCARule[rule_List], a_List] :=
rule[[8 - (RotateLeft[a] + 2 (a + 2 RotateRight[a]))]l

CAStep[GeneralCARule[rule_, r_Integer : 1], a_List] :=
Partition[a, 2r+1, 1, r+ 1]/ rule

CAStep[FunctionCARule[f_, r_Integer : 1], a_List] :=
Map[f, Partition[a, 2r+1, 1, r+ 1]]
Note that the second two definitions have been generalized to
allow rules that involve r neighbors on each side. In each case, the
use of Partition could be replaced by Transpose(Table[RotateLefft/a,
il, {i, -r, }l. For efficiency in early versions of Mathematica, explicit
rule lists in the second definition can be preprocessed using
Dispatch[rules], and functions in the third definition
preprocessed using Compile[{{x, _Integer, 1}}, body].

I discuss the implementation of totalistic cellular automata
on page 886, and of higher-dimensional cellular automata on
page 927.

u Built-in cellular automaton function. Versions of Mathematica
subsequent to the release of this book will include a very general
function for cellular automaton evolution. The description is as
follows (see also page 886):

CellularAutomaton[rnum, init, t] generates a list representing
the evolution of cellular automaton rule mum from initial
condition init for t steps.

CellularAutomaton[rnum, init, t, {off;, off, ... }] keeps only the
parts of the evolution list with the specified offsets.

Possible settings for rnum are:
n k=2,r=1, elementary rule
{n, k} general nearest-neighbor rule with k colors
fn, k,r} general rule with k colors and range r
{n,k, {r, rp..., d-dimensional rule with (27, +1)x(2r,+1)
144} x...x (2ry+ 1)neighborhood

{n, k, {{off, ), {off,},.. .., {off }}}

rule with neighbors at specified offsets
k-color nearest-neighbor totalistic rule

(n, {k, 1}}
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{n, {k, 1}, r} k-color range r totalistic rule
tn, {k, fwt,, wt,, ... }}, rspec}
rule in which neighbor i is assigned weight wt;
{fun, {}, rspec} applies the function fun to each list of
neighbors, with a second argument of the step
number
» CellularAutomaton([fn, k}, ... ] is equivalent to CellularAutomaton[{n, {k,
k% k, 1}}},...]. « Common forms for 2D cellular automata include:
fn, k, 1}, {1, 1}}  9-neighbor totalistic rule
fn, {k, {{0, 1,0}, {1, 1,1}, {0, 1, 0}}, {1, 1}}]
5-neighbor totalistic rule
fn, {k, {{0,k, 0}, {k, 1,k}, {0, k, O}}, {1, 1}}]
5-neighbor outer totalistic rule
fn+k (k= 1), , {{0, 1,0} {1,4k+ 1,1} {0, 1,0}}, {1, 1}}}
5-neighbor growth rule
» Normally, all elements in init and the evolution list are integers
between 0 and k-1. » But when a general function is used, the elements
of init and the evolution list do not have to be integers. « The second
argument passed to fun is the step number, starting at 0. s Initial
conditions are constructed from init as follows:

fa;, ay ...} explicit list of values a;, assumed cyclic
flay, ay ...}, b} values a; superimposed on a b background
{la, a,...} b, b,... }}
values a; superimposed on a background of
repetitions of by, by, ...
{ttlay, aqy, ... 1 offi} {ayy, ...} offy),... } bspec}

values a;; at offsets off, on a background
Hayy, b )

explicit list of values in two dimensions
faspec, bspec} values in d dimensions with d-dimensional padding

{fas, a5y, .

= The first element of aspec is superimposed on the background at the first
position in the positive direction in each coordinate relative to the origin.
This means that bspec[[1,1,...]] is aligned with aspec[[1, 1,...]]. » Time
offsets off, are specified as follows:
Al all steps 0 through ¢ (default)
u  steps 0 through u
-1 last step (step f)
{u} stepu
{u,, u,) steps u, through u,
{uy, u,, du}  stepsuy, u; +du, ...

» CellularAutomaton[rnum, init, t] generates an evolution list of length
t+1. « The initial condition is taken to have offset (. » Space offsets off,
are specified as follows:

Al all cells that can be affected by the specified
initial condition
Automatic all cells in the region that differs from the

background
0 cell aligned with beginning of aspec
x  cells at offsets up to x on the right
-x  cells at offsets up to x on the left
{x} cell at offset x to the right
{-x} cell at offset x to the left
{x;, x,} cells at offsets x, through x,
{x,, x,, dx} cellsx;, x; +dx, ...
» In one dimension, the first element of aspec is taken by default to have
space offset 0. » In any number of dimensions, aspec[[1, 1, 1,...]]is
taken by default to have space offset {0, 0, O,...}. » Each element of
the evolution list produced by CellularAutomaton is always the same
size. » With an initial condition specified by an aspec of width w, the
region that can be affected after t steps by a cellular automaton with a
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rule of range r has width w + 2 r t. « If no bspec background is specified,
space offsets of All and Automatic will include every cell in aspec. » A
space offset of All includes all cells that can be affected by the initial
condition. » A space offset of Automatic can be used to trim off
background from the sides of a cellular automaton pattern. » In
working out how wide a region to keep, Automatic only looks at results
on steps specified by off,.

Some examples include:

This gives the array of values obtained by running rule 30 for 3 steps,
starting from an initial condition consisting of a single 1 surrounded by 0’s.
In[1]: = CellularAutomaton[30, {1}, 0}, 3]

out(1]={{0, 0,0, 1,0, 0,0}, {0,0, 1, 1,1,0,0},{0,1,1,0,0, 1,0}, {1,1,0,1, 1,1, 1}}

This runs rule 30 for 50 steps and makes a picture of the result.
In[2]: = Show[RasterGraphics[CellularAutomaton[30, {{1}, 0}, 50]]]

If all values in the initial condition are given explicitly, they are in effect
assumed to continue cyclically. The runs rule 30 with 5 cells for 3 steps.

In[3]: = CellularAutomaton[30, {1, 0, 0, 1, 0}, 3]
out(sj={{1,0,0,1,0},{1,1,1,1,0},{1,0,0,0,0},{1,1,0,0, 1}}

This starts from {7,7} on an infinite background of repeating (7,0, 7, 7} blocks.
By default, only the region of the pattern affected by the {7,7}is given.

In[4]: = Show[RasterGraphics[CellularAutomaton[30, ({1, 1}, {1, 0, 1, 1}}, 50]]]

This gives all cells that could possibly be affected, whether or not they are.

In[5]: = Show[RasterGraphics[CellularAutomaton[30,
{1, 13,{1, 0, 1, 1}}, 50, {All, Al}]]]

This places blocks in the initial conditions at offsets -10 and 20.
In[6]: = Show[RasterGraphics[CellularAutomaton[30,
{1} 108, {1, 1}, {201}, 0}, 50]]]

This gives only the last row after running for 10 steps.
In[7]: = CellularAutomaton[30, {1}, 0}, 10, -1]
ow(71={{1,1,0,0,1,0,0,0,0,1,0,1,1,1,1,0,1,1,0,0, 1,0}}

This runs for 5 steps, giving the cells on the 3 center columns at each step.
In[8]: = CellularAutomaton[30, {1}, 0}, 5, {All, {-1, 1}]
out[8]={{0, 1, 0}, {1, 1, 1}, {1,0,0},{0, 1, 1}, {0, 1, 0}, {1, 1, 1}}

This picks out every other cell in space and time, starting 200 cells to the left.
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In[9]: = Show[RasterGraphics[CellularAutomaton[30, {{1}, 0}, 100,
{1, 100, 2}, {-200, 200, 2}}]]]

This runs the general k=3, r=1 rule with rule number 921408.
In[10] := Show[RasterGraphics[CellularAutomaton[{921408, 3, 1}, {{1}, 0}, 100]]]

This runs the totalistic k=3, r= 1 rule with code 867.
In[11] := Show[RasterGraphics[CellularAutomaton[{867, {3, 1}, 1}, {{1}, 0}, 50]]]

This uses a rule based on applying a function to each neighborhood of cells.

In[12] : = Show[RasterGraphics[CellularAutomaton[
{Mod[Apply[Plus, #], 4] &, {}, 1}, {{1}, 0}, 50]1]

s

i

b
5, 2iE

This runs 2D 9-neighbor totalistic code 3702 for 25 steps, giving the results
for the last 5 steps.

In[13] := Show[GraphicsArray[ Map[RasterGraphics,
CellularAutomaton[{3702, {2, 1}, {1, 1}}, {{{1}}, 0}, 25, -5]]]]

n Special-purpose hardware. The simple structure of cellular
automata makes it natural to think of implementing them with
special-purpose hardware. And indeed from the 1950s on, a
sequence of special-purpose machines have been built to
implement 1D, 2D and sometimes 3D cellular automata. Two
basic ideas have been used: parallelism and pipelines. Both
ideas rely on the local nature of cellular automaton rules.

In the parallel approach, the machine has many separate
processors, each dedicated to handling a single cell or a small
group of cells. In the pipelined approach, there is just a single
processor (or perhaps a few processors) through which the
data on different cells is successively piped. The key point,
however, is that at every stage it is easy to know what data
will be needed, so this data can be prefetched, potentially
through a specially built memory system.
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In general, the speed increases that can be achieved depend

on many details of memory and communications
architecture. The increases have tended to become less
significant over the years, as the on-chip memories of
microprocessors have become larger, and the time necessary
to send data from one chip to another has become

proportionately more important.

In the future, however, new technologies may change the

trade-offs, and indeed cellular automata are obvious
candidates for early implementation in both nanotechnology

and optical computing. (See also page 841.)

n Audio representation. A step in the evolution of a cellular
automaton can be represented as a sound by treating each
cell like a key on a piano, with the key taken to be pressed if
the cell is black. This yields a chord such as

Play [Evaluate[Apply[Plus, Flatten[Map[Sin[1000# t] &,
N[2"72 ]~ Position(list, 1]1]]], {t, 0, 0.2}]

A sequence of such chords can sometimes provide a useful
representation of cellular automaton evolution. (See also
page 1080.)

u Cellular automaton rules as formulas. The value aft, /] for a
cell on step t at position / in any of the cellular automata in
this chapter can be obtained from the definition

alt., i_]:=fla[t-1,i-1], a[t-1,i] alt-1,i+1]]
Different rules correspond to different choices of the function
f. For example, rule 90 on page 25 corresponds to

fl1,_, 11=0,f[0,_, 1]=1,f[1,_0]=1,f[0,_, 0]=0
One can specify initial conditions for example by

al0,0]=1;a[0, _]1=0
(the cell on step 0 at position 0 has value 1, but all other cells
on that step have value 0). Then just asking for a4, 0] one
will immediately get the value after 4 steps of the cell at
position 0. (For efficiency, the main definition should in
practice be given as

alt, i_]:=alt i]=fla[t-1,i-1] a[t-1,i], a[t-1,i+1]]
so that all intermediate values which are computed are
automatically stored.)

The definition of the function f for rule 90 that we gave
above is essentially just a look-up table. But it is also possible
to define this function in an algebraic way
flp-, q-, r-]:=Mod[p +r, 2]

Algebraic definitions can also be given for other rules:

=Rule 254 (page 24): 1-(1-p)(1-q)(1-r)

*Rule 250 (page 25): p+r-pr

*Rule 30 (page 27): Mod[p +q+r+qr, 2]

= Rule 110 (page 32): Mod[(1+p)qr+q+r, 2]

EXPERIMENT NOTES FOR CHAPTER 2

In these definitions, we represent the values of cells by the
numbers 1 or 0. If values +1 and -1 are used instead, different
formulas are obtained; rule 90, for example, corresponds to
pr. It is also possible to represent values of cells as True and
False. And in this case cellular automaton rules become logic
expressions:

=Rule 254: Or[p, q, r]

*Rule 250: Or[p, r]

=Rule 90: Xor[p, r]

*Rule 30: Xor[p, Orlq, r]]

s Rule 110: Xor[Or[p, ql, And[p, q, r]]

(Note that Not[p] corresponds to 7-p, And[p, q] to pq,
Xor[p, q] Mod[p +q, 2] Or[p, q]
Mod[pqg+p+q, 2].)

to and to

Given either the algebraic or logical form of a cellular
automaton rule, it is possible at least in principle to generate
symbolic formulas for the results of cellular automaton
evolution. Thus, for example, one can use initial conditions
al0, -1]=p;al0, 0] =q;al0, 1]=r;al0, _]=0

to generate a formula for the value of a cell that holds for any
choice of values for the three initial center cells. In practice,
rapidly become very
complicated, as discussed on page 618.

however, most such formulas

» Mathematical interpretation of cellular automata. In the
context of pure mathematics, the state space of a 1D cellular
automaton with an infinite number of cells can be viewed as
a Cantor set. The cellular automaton rule then corresponds to
a continuous mapping of this Cantor set to itself (continuity
follows from the locality of the rule). (Compare page 959.)

[ e N
L P I P

rule 170 rule 250

O
i

rule 90

rule 30 rule 110

The pictures above show representations of the mappings
corresponding to various rules, obtained by plotting
Sumlalt+1,i]27, {i, -n, n}] against Sum[a[t, i]27, {i, -n, n}]
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for all possible choices of the a[t, i]. (Periodic boundary
conditions are used, so that the aft, /] can be viewed as
corresponding precisely to digits of rational numbers.) Rule
170 is the classic shift map which shifts all cell values one
position to the left without changing them. In the pictures
below, this map has the form Mod[2x, 1] (compare page 153).

n Page 26 - Pascal’s triangle and rule 90. As shown on page
611 the pattern produced by rule 90 is exactly Pascal’s
triangle of binomial coefficients reduced modulo 2: black
cells correspond to odd binomial coefficients.

The number of black cells on row t is given by
2~DigitCount[t, 2, 1], where DigitCount[t, 2, 1] is plotted on
page 902. The positions of the black cells are given by (and
this establishes the connection with the picture on page 117)
Fold[Flatten[{#1-#2, #1+#2}] &, 0, 2~ DigitPositions[t]]
DigitPositions[n_] :=
Flatten[Position[ Reverse[IntegerDigits[n, 2]], 1]]-1
The actual pattern generated by rule 90 corresponds to the
in  PolynomialMod[Expand[(1/x +x)'], 2] (see
page 1091); the color of a particular cell is thus given by
Mod[Binomiallt, (n+t)/2], 2] /; EvenQ[n +t].

coefficients

Mod[Binomial[t, n], 2] yields a distorted pattern that is the
one produced by rule 60 (see page 58). In this pattern, the
color of a particular cell can be obtained directly from the
digit sequences for t and n by 7-Sign[BitAnd[-t, n]] or (see
page 583)
With[{d = Ceiling[Log[2, Max[t, n]+ 1]]}, If[FreeQ[
IntegerDigits[t, 2, d] - IntegerDigits[n, 2, d], -1], 1, 0]]
n Self-similarity. The pattern generated by rule 90 after a
given number of steps has the property that it is identical to
what one would get by going twice as many steps, and then
keeping only every other row and column. After 2™ steps the
triangular region outlined by the pattern contains altogether
4™ cells, but only 3" of these are black. In the limit of an
infinite number of steps one gets a fractal known as a
Sierpiniski pattern (see page 934), with fractal dimension
Log[2, 3]~ 1.59 (see page 933). Nesting occurs in all cellular
automata with additive rules (see page 955).

= Another initial condition.
background of mo blocks in rule 90 yields the pattern below

Inserting a single m in a

in which both the white and striped regions have fractal

I
.‘ % }l

dimension 2.

W]
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u More colors. The pictures below show generalizations of
rule 90 to k possible colors using the rule

CAStep[k_Integer, a_List] :=
Mod[Rotateleft[a] + RotateRight[a], k]

Mod([ListCorrelate[{1, 0, 1}, a, 2], k]. The
number of cells that are not white on row t in this case is
given by Apply[Times, 1+ IntegerDigits(t, k]]. (For non-prime
k, the patterns are obtained by superimposing the patterns

or equivalently

corresponding to the factors of k.) A related result is that
IntegerExponent[Binomial[t, n], k] is given by the number of
borrows in the base k
Mod[Binomial[t, n], k] is given for prime k by

With[{d = Ceiling[Log[k, Max[t, n]+ 1]]]},
Mod[Apply[Times, Apply[Binomial, Transpose[
{IntegerDigits[t, k, d], IntegerDigits[n, k, d]}], {1}]], k]]

The patterns obtained for any k are nested. For prime k the

subtraction of n from t.

total number of non-white cells down to step k" is
(1/2k(k+1))" and the patterns have fractal dimension
1+Loglk, (k+1)/2] (see page 955). These are examples of
additive rules, discussed further on page 952. (See also page
922 for the continuous case.)

-,fﬁ.

n History. Pascal’s triangle probably dates from antiquity; it
was known in China in the 1200s, and was discussed in some
detail by Blaise Pascal in 1654, particularly in connection
with probability theory. The digit-based approach to finding
k  has
independently many times since the mid-1800s, notably by
Edouard Lucas in 1877 and James Glaisher in 1899. The fact
that the odd binomial coefficients form a nested geometrical

binomial coefficients modulo been invented

pattern had apparently not been widely noticed before I
emphasized it in 1982.

Binomial[m,n] Multinomial [m,n] StirlingS1[m,n] StirlingS2[m,n]

n Other integer functions. The pictures above show patterns
produced by reducing several integer functions modulo 2.
With d arguments Multinomial yields a nested pattern in d
dimensions. Note that GCD[m, n] yields a more complicated
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pattern (see page 613), as do JacobiSymbol[m, 2n-1] (see
page 1081) and various combinations of functions (see
page 747).

n Bitwise functions. Bitwise functions typically yield nested
patterns. (As discussed above, any cellular automaton rule
can be represented as an appropriate combination of bitwise
functions.) Note that BitOr[x, y]+ BitAnd[x, y]==x+y and
BitOr[x, y]-BitAnd[x, y] == BitXor[x, y].

BitAnd[x, y] BitOr[x, y] BitXor[x, y]

m
B

show where BitXor[x, y]==t

/

The patterns below

BitAnd[x, y]

for
successive t and correspond to steps in the “munching
squares” program studied on the PDP-1 computer in 1962.
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extremely slowly: period 2 is first achieved at depth 3, period
4 at depth 8, 8 at 29, 16 at 400, 32 at 87,867, 64 at 2,107,985,255
or more, and so on. (Each period doubling turns out to occur
exactly when a diagonal in the pattern eventually becomes a
white stripe, and the diagonal to its left has an odd number of
black cells in each repeating block.) The boundary that
separates repetition on the left from randomness on the right
moves an average of about 0.252 cells to the left at every step
(compare page 949). the
fluctuations around this average.

The picture below shows

200 |
100

[
-100 -

L L L L
20,000 40,000 60,000 80,000

100,000

Complete pattern. All possible blocks appear to occur
eventually (see page 725). The probability for a block of n
adjacent white cells (corresponding to a row in a white
triangle) seems quite accurately to approach 27, with the
first length 10 such block occurring at step 67 and the first
length 20 one occurring at step 515.

Center column. The pictures below show the excess of black
over white cells in the center column. Out of the first 100,000
cells, a total of 50,098 are black, and out of the first million
500,768 are. The longest run of identical colors in the first
100,000 cells consists of 21 black cells, and in the first million
elements 22 black cells. The first n elements can be found
efficiently using
Module[{a = 1}, Table[First[IntegerDigits[
a, a = BitXor[a, BitOr[2a, 4a]]; 2, i]], {i, n}]]

Nesting is also seen in curves obtained by applying bitwise
functions to n and 2n for successive n. Note that 2n has the

same digits as n, but shifted one position to the left. 0 20000 40000 60000 80000 100,000
2000 -
1500 -
1000 -
500 -
BitAnd[n, 2 n] BitOr[n, 2 n] BitXor[n, 2 n] 0
0 200,000 400,000 600,000 800,000 1,000,000

u Page 28 - Tests of randomness. The statistical tests that I
have performed include the eight listed on page 1084.

u Page 29 - Rule 30. The left-hand side of the pattern shown
has an obvious repetitive character. In general, if one looks
along a diagonal n cells in from either edge of the pattern,
then the period of repetition can be at most 2”. On the right-
hand edge, the first few periods that are seen are
{1,2,2,4,8, 8, 16, 32, 32, 64, 64, 64, 64, 64, 128, 256}
general the period seems to increase exponentially with
depth. On the left-hand edge, the period increases only

and in

The sequence does not repeat in at least its first million steps,
and I would amazed if it ever repeats, but as of now I know
of no rigorous proof of this. (Erica Jen showed in 1986 that no
pair of columns can ever repeat, and the arguments on page
1087 suggest that neither can the center column together with
occasional neighboring cells.)

n Page 32 - Rule 110. Many more details of rule 110 are
discussed on pages 229 and 675. Localized structures that
can occur are shown on page 292. Note that of the 8 cases in
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the basic rule for rule 110, only one differs from rule 102—
which is a simple additive rule obtained by reflecting
rule 60.

The Need for a New Intuition

= Reactions of scientists. Many scientists find the complexity
of the pictures in this chapter so surprising that at first they
assume it cannot be real. Typically they imagine that while
the pictures may look complicated, they would actually seem
simple if only they were subjected to the appropriate kind of
analysis. In Chapter 10 I will give extensive evidence that this
is not the case. But suffice it to say here that when it comes to
finding regularities even the most advanced methods from
mathematics and statistics tend to be no more powerful than
our eyes. And whatever formal definition one may use for
complexity (see page 557), the fact that our eyes perceive it in
the systems discussed in this chapter is already very
significant.

u Intuition from practical computing. Everyday experience
with computers and programming leads to observations like
the following:

» General-purpose computers and general-purpose
programming languages can be built.

= Different programs for doing all sorts of different things
can be set up.

* Any given program can be implemented in many ways.

» Programs can behave in complicated and seemingly
random ways—particularly when they are not working
properly.

» Debugging a program can be difficult.

= It is often difficult to foresee what a program can do by
reading its code.

» The lower the level of representation of the code for a
program the more difficult it tends to be to understand.

*Some computational problems are easy to state but hard to
solve.

» Programs that simulate natural systems are among the
most computationally expensive.

= It is possible for people to create large programs—at least
in pieces.

» It is almost always possible to optimize a program more,
but the optimized version may be more difficult to
understand.
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= Shorter programs are sometimes more efficient, but
optimizations often require many cases to be treated
separately, making programs longer.

» If programs are patched too much, they typically stop
working at all.

n Applications to design. Many of the pictures in this book
look strikingly similar to artistic designs of various styles.
Probably this reflects not so much a similarity in underlying
rules, but rather similarity in features that are most
noticeable to the human visual system. Note that square
grids of colored cells as in the cellular automata in this
chapter can be used quite directly as weaving patterns. (See
also page 929.)

Why These Discoveries Were Not Made Before

u Page 43 - Ornamental art. Almost all major cultural periods
are associated with certain characteristic forms of ornament.
Often the forms of ornament used on particular kinds of
objects probably arose as idealized imitations of earlier or
more natural forms for such objects—so that, for example,
imitations of weaving, bricks and various plant forms are
common. Large-scale purely abstract patterns were also
central to art in such cultural traditions as Islam where
natural forms were considered works of God that must not
be shown directly. Once established, styles of ornament tend
to be repeated extensively as a way of providing certain
comfort and familiarity—especially in architecture. The vast
majority of elaborate ornament seems to have been created
by artisans with little or no formal theoretical discussion,
although particularly since the 1800s there have been various
attempts to find systematic ways to catalog forms of
ornament, sometimes based on analogies with grammar.
(Issues of proportion have however long been the subject of
considerable theoretical discussion.) It is notable that
whereas repetitive patterns have been used extensively in
ornament, even nesting is rather rare. And even though for
example elaborate symmetry rules have been devised,
nothing like cellular automaton rules appear to have ever
arisen. The results in this book now show that such rules can
capture the essence of many complex processes that occur in
nature—so that even though they lack historical context such
rules can potentially provide a basis for forms of ornament
that are familiar as idealizations of nature. (Compare
page 929.)

The pictures in the main text show a sequence of early
examples of various characteristic forms of ornament.
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22,000 BC (Paleolithic). Mammoth ivory bracelet from
Mezin, Ukraine. Similar zig-zag designs are seen in other
objects from the same period. In the example shown, it is
notable that the angle of the zig-zags is comparable to the
angle of the Schreger lines that occur naturally in
mammoth dentin.

3000 BC (Sumerian). Columns with three colors of clay pegs
set in mud from a wall of the Eanna temple in Uruk,
Mesopotamia (Warka, Iraq)—perhaps mentioned in the Epic
of Gilgamesh. (Now in the Staatliche Museum, Berlin.) This
is the earliest known explicit example of mosaic.

1200 BC (Greek). The back of a clay accounting tablet from
Pylos, Greece. The pattern was presumably made by the
procedure shown below. Legend has it that it was the plan
for the labyrinth housing the minotaur in the palace at
Knossos, Crete, and that it was designed by Daedalus. It is
also said that it was a logo for the city of Troy—or perhaps
the plan of some of its walls. The pattern—in either its
square or rounded form—has appeared with remarkably
little variation in a huge variety of places all over the
world—from Cretan coins, to graffiti at Pompeii, to the
floor of the cathedral at Chartres, to carvings in Peru, to
logos for aboriginal tribes. For probably three thousand
years, it has been the single most common design used for
mazes.

7 | @ [

900 BC (Phoenician). Ivory carving presumably from the

Mediterranean area. (Now in the British Museum.) This was
a common decorative pattern, formed by drawing circles
centered at holes arranged in a triangular array. It is also
found in Egyptian and other art. Such patterns were
discussed by Euclid and later Leonardo da Vinci in
connection with the theory of lunes.

1% century BC (Celtic). The back of the so-called Desborough
Mirror—a bronze mirror from Desborough, England made
in the Iron Age sometime between 50 BC and 50 AD. (Now
in the British Museum.) The engraved pattern is made of
parts of circles that just touch each other, as in the picture
below.

@) G W&
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2nd century AD (Roman). A mosaic from a complex in Rome,
Italy. (Now in the National Museum, Rome.) The geometrical
pattern was presumably made by first constructing 48
regularly spaced spokes by repeated angle bisection, as in the
first picture below, then drawing semicircles centered at the
end of each spoke, and finally adding concentric circles
through the intersection points. Similar rosette patterns may
have been used in Greece around 350 BC; they became
popular in churches in the 1500s.

8™ century (Islamic). A detail on the outside wall of the Great
Mosque of Cérdoba, Spain, built around 785 AD.

8™ century (Celtic). An area less than 2 inches square from
inside the letter p on the extremely elaborate chi-rho page of
the Book of Kells, an illuminated gospel manuscript created
over a period of years at various monasteries, probably
starting around 800 AD at the Irish monastery on the island
of Iona, Scotland. Even on this one page there are perhaps a
dozen other very similar nested structures.

12" century (Italian). A window in the Palatine Chapel in
Palermo, Sicily, presumably built around 1140 AD. The
chapel is characteristic of so-called Arab-Norman style.

13" century (English). The Dean’s Eye rose window of the
Lincoln cathedral in England, built around 1225 AD. Similar
tree-like patterns are seen in many Gothic windows from the
same general period.

13" century (Italian) (4 pictures). Marble mosaics on the floor
of the cathedral at Anagni, Italy, made around 1226 AD by
Cosmas of the Cosmati group. (The fourth picture is a close-
up of the third.) The third picture—particularly the part
magnified in the fourth picture—shows an approximate
nested structure, presumably created as in the pictures below.
The triangles are all equilateral, with the result that at a given
step several different sizes of triangles occur—though the
basic structure of the pattern is still the same as from the rule
90 cellular automaton. (Compare the Apollonian packing of
page 986.) The Cosmati group—mostly four generations of
one family—made elaborate geometrical and other mosaics
with a mixture of Byzantine, Islamic and other influences
from about 1190 to 1300, mostly in and around Rome, but
also for example in Westminster Abbey in England.
Triangular shapes with one level of nesting are quite
common in their work; three levels of nesting as shown here
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are rare. It is notable that in later imitations of Cosmati
mosaics, these kinds of patterns were almost never used.

PALLA

14" century (Islamic). Wall decoration in the Pir-i-Bakran

mausoleum in Linjan, Iran, built around 1299-1312. The
pattern is square Kufi calligraphy for a widely quoted verse
of the Koran. Starting from traditional Naskhi Arabic script,
as in the picture below, the Kufi style began to develop
around 900 AD, with square Kufi being used in architectural
ornamental by about 1100 AD.
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14" century (Islamic). Tiled wall in the Alcdzar of Seville, Spain,

::

built in 1364. (The same pattern was used at about the same
time in the Alhambra in Granada, Spain.) The pattern can be
made by starting with a grid of triangles, then consistently
pushing in or out the sides of each one. (Notable uses of such
patterns were made by Maurits Escher starting in the 1930s.)

Other cases. The cases that are known inevitably tend to be
ones created out of stone or ceramic materials that survive;
no doubt there were others created for example with wood or
textiles. One case with wood is Chinese lattice. What has
survived mostly shows repetitive patterns, but the ice-ray
style, probably going back to 100 AD, has approximate
nesting, though with many random elements. The patterns
shown are all basically two-dimensional. An example of 1D
ornamental patterns are molding profiles. Ever since
antiquity these have often been quite elaborate, and it is
conceivable that they can sometimes be interpreted as
showing nesting.

= Recognition of art. One bizarre possibility is that forms like
those from rule 30 could have been created as art long ago
but not be recognized now. For while it is easy to tell that a
cave painting of an animal is a piece of purposeful art, dots
carved into a rock in an approximate rule 30 pattern might
not even be noticed as something of human origin. But
although there are many seemingly random painted patterns
in caves from perhaps 30,000 BC, I would be amazed if any of
them were actually produced by definite simple rules. (See
page 839.)
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n The concept of rules. Processes based on rules occur in a
great many areas of human endeavor. Sometimes the rules
serve mainly as a constraint. But it is not uncommon for them
to be used—like in a cellular automaton—as a way of
specifying how structures should be built up. Almost
without exception, however, the rules have in the past been
chosen to yield only rather specific and simple results.
Beyond ornamental art, examples with long histories include:

Architecture. Structures such as ziggurats and pyramids were
presumably constructed by assembling collections of stones
according to simple rules. The Great Pyramid in Egypt was
built around 2500 BC and contains about two million large
stones. (By comparison, the pictures of rule 30 on pages 29
and 30 contain a total of about a million cells.) Starting
perhaps as long ago as 1000 BC Hindu temples were
constructed with similar elements on different scales,
yielding a form of approximate nesting. In Roman and later
architecture, rooms in buildings have quite often been
arranged in roughly nested patterns (an extreme example
being the Castel del Monte from the 1200s). From the
Middle Ages many Persian gardens (such as those of the Taj
Mahal from around 1650) have had fairly regular nested
obtained by a few successive fourfold
And starting in the early 1200s, Gothic
windows were often constructed with levels of roughly tree-

structures
subdivisions.

like nested forms (see above). Nesting does not appear to
have been used in physical city plans (except to a small
extent in Vauban star fortifications), though it is common in
organizational structures. (As indicated above, architectural
ornament has also often in effect been constructed using
definite rules.)

Textile making. Since early in human history there appear to
have been definite rules used for weaving. But insofar as the
purpose is to produce fabric the basic arrangement of threads
is normally always repetitive.

Rope. Since at least 3000 BC rope has been made by twisting
together strands themselves made by twisting, yielding
cross-sections with some nesting, as in the second picture
below. (Since the development of wire rope in the 1870s
precise designs have been used, including at least recently
the 7x7x7 one shown last below.)




THE CRUCIAL

Knots and string figures. For many thousands of years definite
rules have been used for tying knots and presumably also for
making string figures. But when the rules have more than a
few steps they tend to be repetitive.

Paperfolding. Although paperfolding has presumably been
practiced for at least 2000 years, even the nested form on
page 892 seems to have been noticed only very recently.

Mathematics. Ever since Babylonian times arithmetic has been
done by repeatedly applying simple rules to digits in numbers.
And ever since ancient Greek times iterative methods have been
used to construct geometrical figures. In the late 1600s the idea
also emerged that mathematical proofs could be thought of as
consisting of repeated applications of definite rules. But the idea
of studying possible simple rules independent of their purpose in
generating results seems never to have arisen. And as
mathematics began to focus on continuous systems the notion of
enumerating possible rules became progressively more difficult.

Logic. Rules of logic have been used since around 400 BC. But
beyond forms like syllogisms little seems to have been
studied in the way of generating identifiable patterns from
them. (See page 1099.)

Grammar. The idea that human language is constructed from
words according to definite grammatical rules has existed
since at least around perhaps 500 BC when Panini gave a
grammar for Sanskrit. (Less formal versions of the idea were
also common in ancient Greek times.) But for the most part it
was not until about the 1950s that rules of grammar began to
be viewed as specifications for generating structures, rather
than just constraints. (See page 1103.)

Poetry. Definite rules for rhythm in poetry were already well
developed in antiquity—and by perhaps 200 BC Indian work
on enumerating their possible forms appears to have led to
both Pascal’s triangle and Fibonacci numbers. Patterns of
rhyme involving iterated length-6 permutations (sestina) and
interleaved repetitive sequences (terza rima) were in use by
the 1300s, notably by Dante.

Music. Simple progressions and various forms of repetition
have presumably been used in music since at least the time of
Pythagoras. Beginning in the 1200s more complex forms of
interleaving such as those of canons have occasionally been
used. And in the past century a few composers have
implicitly or explicitly used structures based on simple
Fibonacci and other substitution systems. Note that rules
such as those of counterpoint are used mainly as constraints,
not as ways of generating structure.

Military drill. The notion of using definite rules to organize
and maneuver formations of soldiers appears to have existed
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in Babylonian and Assyrian times, and to be well codified by
Roman times. Fairly elaborate cases were described for
example by Niccolo Machiavelli in 1521, but all were set up
to yield only rather simple behavior, such as a column of
soldiers being rearranged into lines. (See the firing squad
problem on page 1035.)

Games. Games are normally based on definite rules, but are
set up so that at each step they involve choosing one of many
possibilities, either by skill or randomness. The game of Go,
which originated before 500 BC and perhaps as early as 2300
BC, is a case where particularly simple rules manage to allow
remarkably complex patterns of play to occur. (Go involves
putting black and white stones on a grid, making it visually
similar to a cellular automaton.)

Puzzles. Geometric and arithmetic puzzles surprisingly close
to those common today seem to have existed since as long
ago as 2000 BC. Usually they are based on constraints, and
occasionally they can be thought of as providing evidence
that simple constraints can have complicated solutions.

Cryptography. Rules for encrypting messages have been used
since perhaps 2000 BC, with non-trivial repetitive schemes
becoming common in the 1500s, but more complex schemes
not appearing until well into the 1900s. (See page 1085.)

Maze designs. From antiquity until about the 1500s the
majority of mazes followed a small number of designs—most
often based directly on the one shown on page 873, or with
subunits like it. (It is now known that there are many other
designs that are also possible.)

Rule-based pictures. It is rather common for geometric doodles
to be based on definite rules, but it is rare for the rules to be
carried far, or for the doodles to be preserved. Some of
Leonardo da Vinci’s planned book on “Geometrical Play”
from the early 1500s has, however, survived, and shows
elaborate patterns satisfying particular constraints. Various
attempts to enumerate all possible patterns of particular
simple kinds have been made—a notable example being
Sébastien Truchet in 1704 drawing 2D patterns formed by
combining K, ¥, N, [4 in various possible ways.

u Page 44 - Understanding nature. In Greek times it was noted
that simple geometrical rules could explain many features of
astronomy—the most obvious being the apparent revolution
of the stars and the circular shapes of the Sun and Moon. But
it was noted that with few exceptions—like beehives—
natural objects that occur terrestrially did not appear to
follow any simple geometrical rules. (The most complicated
curves in Greek geometry were things like cissoids and
conchoids.) So from this it was concluded that only certain
supposedly perfect objects like the heavenly bodies could be
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expected to be fully amenable to human understanding.
What rules for natural objects might in effect have been tried
in the Judeo-Christian tradition is less clear—though for
example the Book of Job does comment on the difficulty of
“numbering the clouds by wisdom”. And with the notable
exception of the alchemists it continued to be believed
throughout the Middle Ages that the wonders of nature were
beyond human understanding.

n Atomism. The idea that everything might be made up from
large numbers of discrete elements was discussed around
perhaps 450 BC by Leucippus and Democritus. Sometime later
the Epicureans then suggested that a few types of elements
might suffice, and an analogy was made (notably by Lucretius
around 100 AD) to the fact that different configurations of
letters can make up all the words in a language. But only some
schools of Greek philosophy ever supported atomism, and it
soon fell out of favor. It was revived in the late 1600s, when
corpuscular theories of both light and matter began to be
widely discussed. In the early 1800s arguments based on
atoms led to success in chemistry, and in the late 1800s
statistical mechanics of large assemblies of atoms were used to
explain properties of matter (see page 1019). With the rise of
quantum theory in the early 1900s it became firmly established
that physical systems contain discrete particles. But it was
normally assumed that one should think only about explicit
particles with realistic mechanical properties—so that abstract
idealizations like cellular automata did not arise. (See also
pages 1027 and 1043.)

n History of cellular automata. Despite their very simple
construction, nothing like general cellular automata appear
to have been considered before about the 1950s. Yet in the
1950s—inspired in various ways by the advent of electronic
computers—several different kinds of systems equivalent to
cellular automata were independently introduced. A variety
of precursors can be identified. Operations on sequences of
digits had been used since antiquity in doing arithmetic.
Finite difference approximations to differential equations
began to emerge in the early 1900s and were fairly well
known by the 1930s. And Turing machines invented in 1936
were based on thinking about arbitrary operations on
sequences of discrete elements. (Notions in physics like the
Ising model do not appear to have had a direct influence.)

The best-known way in which cellular automata were
introduced (and which eventually led to their name) was
through work by John von Neumann in trying to develop an
abstract model of self-reproduction in biology—a topic which
had emerged from investigations in cybernetics. Around
based
Neumann began by thinking about models based on 3D

1947—perhaps on chemical engineering—von
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factories described by partial differential equations. Soon he
changed to thinking about robotics and imagined perhaps
implementing an example using a toy construction set. By
analogy to electronic circuit layouts he realized however that
2D should be enough. And following a 1951 suggestion from
Stanislaw Ulam (who may have already independently
considered the problem) he simplified his model and ended
up with a 2D cellular automaton (he apparently hoped later
to convert the results back to differential equations). The
particular cellular automaton he constructed in 1952-3 had
29 possible colors for each cell, and complicated rules
specifically set up to emulate the operations of components
of an electronic computer and various mechanical devices. To
give a mathematical proof of the possibility of self-
reproduction, von Neumann then outlined the construction
of a 200,000 cell configuration which would reproduce itself
(details were filled in by Arthur Burks in the early 1960s).
Von Neumann appears to have believed—presumably in part
from seeing the complexity of actual biological organisms
and electronic computers—that something like this level of
complexity would inevitably be necessary for a system to
exhibit sophisticated capabilities such as self-reproduction. In
this book I show that this is absolutely not the case, but with
the intuition he had from existing mathematics and
engineering von Neumann presumably never imagined this.

Two immediate threads emerged from von Neumann’s work.
The first, mostly in the 1960s, was increasingly whimsical
discussion of building actual self-reproducing automata—
often in the form of spacecraft. The second was an attempt to
capture more of the essence of self-reproduction by
mathematical studies of detailed properties of cellular
automata. Over the course of the 1960s constructions were
found for progressively simpler cellular automata capable of
self-reproduction (see page 1179) and universal computation
(see page 1115). Starting in the early 1960s a few rather simple
general features of cellular automata thought to be relevant
to self-reproduction were noticed—and were studied with
increasingly elaborate technical formalism. (An example was
the so-called Garden of Eden result that there can be
configurations in cellular automata that arise only as initial
conditions; see page 961.) There were also various explicit
constructions done of cellular automata whose behavior
showed particular simple features perhaps relevant to self-
reproduction (such as so-called firing squad synchronization,
as on page 1035).

By the end of the 1950s it had been noted that cellular
automata could be viewed as parallel computers, and
particularly in the 1960s a sequence of increasingly detailed
and technical theorems—often analogous to ones about
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Turing machines—were proved about their formal
computational capabilities. At the end of the 1960s there then
began to be attempts to connect cellular automata to
mathematical discussions of dynamical systems—although
as discussed below this had in fact already been done a
decade earlier, with different terminology. And by the mid-
1970s work on cellular automata had mostly become quite
esoteric, and interest in it largely waned. (Some work
nevertheless continued, particularly in Russia and Japan.)
Note that even in computer science various names for
cellular automata were used, including tessellation automata,
cellular spaces, iterative automata, homogeneous structures

and universal spaces.

As mentioned in the main text, there were by the late 1950s
already all sorts of general-purpose computers on which
simulations of cellular automata would have been easy to
perform. But for the most part these computers were used to
study traditional much more complicated systems such as
partial differential equations. Around 1960, however, there
were a couple of simulations related to 2D cellular automata
done. Stanislaw Ulam and others used computers at Los
Alamos to produce a handful of examples of what they called
recursively defined geometrical objects—essentially the
results of evolving generalized 2D cellular automata from
single black cells (see page 928). Especially after obtaining
larger pictures in 1967, Ulam noted that in at least one case
fairly simple growth rules generated a complicated pattern,
and mentioned that this might be relevant to biology. But
perhaps because almost no progress was made on this with
traditional mathematical methods, the result was not widely
known, and was never pursued. (Ulam tried to construct a
1D analog, but ended up not with a cellular automaton, but
instead with the sequences based on numbers discussed on
page 908.) Around 1961 Edward Fredkin simulated the 2D
analog of rule 90 on a PDP-1 computer, and noted its self-
reproduction properties (see page 1179), but was generally
more interested in finding simple physics-like features.

Despite the lack of investigation in science, one example of a
cellular automaton did enter recreational computing in a
major way in the early 1970s. Apparently motivated in part
by questions in mathematical logic, and in part by work on
“simulation games” by Ulam and others, John Conway in
1968 began doing experiments (mostly by hand, but later on
a PDP-7 computer) with a variety of different 2D cellular
automaton rules, and by 1970 had come up with a simple set
of rules he called “The Game of Life”, that exhibit a range of
(see page 249). Largely
popularization in Scientific American by Martin Gardner, Life

complex behavior through

became widely known. An immense amount of effort was
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spent finding special initial conditions that give particular
forms of repetitive or other behavior, but virtually no
systematic scientific work was done (perhaps in part because
even Conway treated the system largely as a recreation), and
almost without exception only the very specific rules of Life
were ever investigated. (In 1978 as a possible 1D analog of
Life easier to implement on early personal computers
Jonathan Millen did however briefly consider what turns out
to be the code 20 k = 2, r = 2 totalistic rule from page 283.)

Quite disconnected from all this, even in the 1950s, specific
types of 2D and 1D cellular automata were already being
used in various electronic devices and special-purpose
computers. In fact, when digital image processing began to
be done in the mid-1950s (for such applications as optical
character recognition and microscopic particle counting) 2D
cellular automaton rules were usually what was used to
remove noise. And for several decades starting in 1960 a long
line of so-called cellular logic systems were built to
2D  cellular
processing. Most of the rules used were specifically set up to

implement automata, mainly for image
have simple behavior, but occasionally it was noted as a
largely recreational matter that for example patterns of

alternating stripes (“custering”) could be generated.

In the late 1950s and early 1960s schemes for electronic
miniaturization and early integrated circuits were often
based on having identical logical elements laid out on lines or
grids to form so-called cellular arrays. In the early 1960s there
was for a time interest in iterative arrays in which data would
be run repeatedly through such systems. But few design
principles emerged, and the technology for making chips
with more elaborate and less uniform circuits developed
rapidly. Ever since the 1960s the idea of making array or
parallel computers has nevertheless resurfaced repeatedly,
notably in systems like the ILLIAC IV from the 1960s and
1970s, and systolic arrays and various massively parallel
computers from the 1980s. Typically the rules imagined for
each element of such systems are however immensely more
complicated than for any of the simple cellular automata I
consider.

From at least the early 1940s, electronic or other digital delay
lines or shift registers were a common way to store data such
as digits of numbers, and by the late 1940s it had been noted
that so-called linear feedback shift registers (see page 974)
could generate complicated output sequences. These systems
turn out to be essentially 1D additive cellular automata (like
rule 90) with a limited number of cells (compare page 259).
Extensive algebraic analysis of their behavior was done
starting in the mid-1950s, but most of it concentrated on
issues like repetition periods, and did not even explicitly
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uncover nested patterns. (Related analysis of linear
recurrences over finite fields had been done in a few cases in
the 1800s, and in some detail in the 1930s.) General 1D
cellular automata are related to nonlinear feedback shift
registers, and some explorations of these—including ones
surprisingly close to rule 30 (see page 1088)—were made
using special-purpose hardware by Solomon Golomb in
19569 for applications in jamming-resistant radio control—
though again concentrating on issues like repetition periods.
Linear feedback shift registers quickly became widely used in
communications applications. Nonlinear feedback shift
registers seem to have been used extensively for military
cryptography, but despite persistent rumors the details of

what was done continue to be secret.

In pure mathematics, infinite sequences of 0’s and 1’s have
been considered in various forms since at least the late 1800s.
Starting in the 1930s the development of symbolic dynamics
(see page 960) led to the investigation of mappings of such
sequences to themselves. And by the mid-1950s studies were
being made (notably by Gustav Hedlund) of so-called shift-
commuting block maps—which turn out to be exactly 1D
cellular automata (see page 961). In the 1950s and early 1960s
there was work in this area (at least in the U.S.) by a number
of distinguished pure mathematicians, but since it was in
large part for application to cryptography, much of it was
kept secret. And what was published was mostly abstract
theorems about features too global to reveal any of the kind
of complexity I discuss.

Specific types of cellular automata have also arisen—usually
under different names—in a vast range of situations. In the
late 1950s and early 1960s what were essentially 1D cellular
automata were studied as a way to optimize circuits for
arithmetic and other operations. From the 1960s onward
simulations of idealized neural networks sometimes had
neurons connected to neighbors on a grid, yielding a 2D
cellular automaton. Similarly, various models of active
media—particularly heart and other muscles—and reaction-
diffusion processes used a discrete grid and discrete
excitation states, corresponding to a 2D cellular automaton.
(In physics, discrete idealizations of statistical mechanics and
dynamic versions of systems like the Ising model were
sometimes close to cellular automata, except for the crucial
difference of having randomness built into their underlying
rules.) Additive cellular automata such as rule 90 had
implicitly arisen in studies of binomial coefficient modulo
primes in the 1800s (see page 870), but also appeared in
various settings such as the “forests of stunted trees” studied
around 1970.
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Yet by the late 1970s, despite all these different directions,
research on systems equivalent to cellular automata had
largely petered out. That this should have happened just
around the time when computers were first becoming widely
available for exploratory work is ironic. But in a sense it was
fortunate, because it allowed me when I started working on
cellular automata in 1981 to define the field in a new way
(though somewhat to my later regret I chose—in an attempt
to recognize history—to use the name “cellular automata” for
the systems I was studying). The publication of my first
paper on cellular automata in 1983 (see page 881) led to a
rapid increase of interest in the field, and over the years since
then a steadily increasing number of papers (as indicated by
the number of source documents in the Science Citation
Index shown below) have been published on cellular
automata—almost all following the directions I defined.

— n L ! L L L L L

1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998

n Close approaches. The basic phenomena in this chapter
have come at least somewhat close to being discovered many
times in the past. The historical progression of primary
examples of this seem to be as follows:

»500s-200s BC: Simply-stated problems such as finding
primes or perfect numbers are presumably seen to have
complicated solutions, but no general significance is
attached to this (see pages 132 and 910).

»1200s: Fibonacci sequences, Pascal’s triangle and other
rule-based numerical constructions are studied, but are
found to show only simple behavior.

»1500s: Leonardo da Vinci experiments with rules
corresponding to simple geometrical constraints (see page
875), but finds only simple forms satisfying these
constraints.

*1700s: Leonhard Euler and others compute continued
fraction representations for numbers with simple formulas
(see pages 143 and 915), noting regularity in some cases,
but making no comment in other cases.

»1700s and 1800s: The digits of 7 and other transcendental
numbers are seen to exhibit apparent randomness (see
page 136), but the idea of thinking about this randomness
as coming from the process of calculation does not arise.

»1800s: The distribution of primes is studied extensively—
but mostly its regularities, rather than its irregularities, are
considered. (See page 132.)
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»1800s: Complicated behavior is found in the three-body
problem, but it is assumed that with better mathematical
techniques it will eventually be resolved. (See page 972.)

»1880s: John Venn and others note the apparent
randomness of the digits of 7, but somehow take it for
granted.

*1906: Axel Thue studies simple substitution systems (see
page 893) and finds behavior that seems complicated—
though it turns out to be nested.

*1910s: Gaston Julia and others study iterated maps, but
concentrate on properties amenable to simple description.

=1920: Moses Schonfinkel introduces combinators (see
page 1121) but considers mostly cases specifically
constructed to correspond to ordinary logical functions.

*1921: Emil Post looks at a simple tag system (see page 894)
whose behavior is difficult to predict, but failing to prove
anything about it, goes on to other problems.

*1920: The Ising model is introduced, but only statistics of
configurations, and not any dynamics, are studied.

=1931: Kurt Godel establishes Godel’s Theorem (see
page 782), but the constructions he uses are so complicated
that he and others assume that simple systems can never
exhibit similar phenomena.

*Mid-1930s: Alan Turing, Alonzo Church, Emil Post, etc.
introduce various models of computation, but use them in
constructing proofs, and do not investigate the actual
behavior of simple examples.

*1930s: The 31+ 1 problem (see page 904) is posed, and
unpredictable behavior is found, but the main focus is on
proving a simple result about it.

= Late 1940s and 1950s: Pseudorandom number generators
are developed (see page 974), but are viewed as tricks
whose behavior has no particular scientific significance.

= Late 1940s and early 1950s: Complex behavior is
occasionally observed in fairly simple electronic devices
built to illustrate ideas of cybernetics, but is usually
viewed as something to avoid.

»1952: Alan Turing applies computers to studying
biological systems, but uses traditional mathematical
models rather than, say, Turing machines.

#1952-1953: John von Neumann makes theoretical studies
of complicated cellular automata, but does not try looking
at simpler cases, or simulating the systems on a computer.

* Mid-1950s: Enrico Fermi and collaborators simulate
simple systems of nonlinear springs on a computer, but do
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not notice that simple initial conditions can lead to
complicated behavior.

* Mid-1950s to mid-1960s: Specific 2D cellular automata are
used for image processing; a few rules showing slightly
complex behavior are noticed, but are considered of purely
recreational interest.

= Late 1950s: Computer simulations of iterated maps are
done, but concentrate mostly on repetitive behavior. (See
page 918.)

= Late 1950s: Ideas from dynamical systems theory begin to
be applied to systems equivalent to 1D cellular automata,
but details of specific behavior are not studied except in
trivial cases.

= Late 1950s: Idealized neural networks are simulated on
digital computers, but the somewhat complicated
behavior seen is considered mainly a distraction from the
phenomena of interest, and is not investigated. (See
page 1099.)

» Late 1950s: Berni Alder and Thomas Wainwright do
computer simulations of dynamics of hard sphere
idealized molecules, but concentrate on large-scale
features that do not show complexity. (See page 999.)

*1956-1959: Solomon Golomb simulates nonlinear feedback
shift registers—some with rules close to rule 30—but
studies mainly their repetition periods not their detailed
complex behavior. (See page 1088.)

* 1960, 1967: Stanislaw Ulam and collaborators simulate
systems close to 2D cellular automata, and note the
appearance of complicated patterns (see above).

»1961: Edward Fredkin simulates the 2D analog of rule 90
and notes features that amount to nesting (see above).

= Early 1960s: Students at MIT try running many small
computer programs, and in some cases visualizing their
output. They discover various examples (such as
“munching foos”) that produce nested behavior (see
page 871), but do not go further.

*1962: Marvin Minsky and others study many simple
Turing machines, but do not go far enough to discover the
complex behavior shown on page 81.

»1963: Edward Lorenz simulates a differential equation that
shows complex behavior (see page 971), but concentrates
on its lack of periodicity and sensitive dependence on
initial conditions.

* Mid-1960s: Simulations of random Boolean networks are
done (see page 936), but concentrate on simple average
properties.
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*1970: John Conway introduces the Game of Life 2D
cellular automaton (see above).

*1971: Michael Paterson considers a class of simple 2D
Turing machines that he calls worms and that exhibit
complicated behavior (see page 930).

= 1973:11ook at some 2D cellular automata, but force the
rules to have properties that prevent complex behavior
(see page 864).

* Mid-1970s: Benoit Mandelbrot develops the idea of fractals
(see page 934), and emphasizes the importance of
computer graphics in studying complex forms.

*Mid-1970s: Tommaso Toffoli simulates all 4096 2D cellular
automata of the simplest type, but studies mainly just their
stabilization from random initial conditions.

» Late 1970s: Douglas Hofstadter studies a recursive
sequence with complicated behavior (see page 907), but
does not take it far enough to conclude much.

= 1979: Benoit Mandelbrot discovers the Mandelbrot set (see
page 934) but concentrates on its nested structure, not its
overall complexity.

»1981: I begin to study 1D cellular automata, and generate a
small picture analogous to the one of rule 30 on page 27,
but fail to study it.

»1984: I make a detailed study of rule 30, and begin to
understand the significance of it and systems like it.

n The importance of explicitness. Looking through this book,
one striking difference with most previous scientific accounts
is the presence of so many explicit pictures that show how
every element in a system behaves. In the past, people have
tended to consider it more scientific to give only numerical
summaries of such data. But most of the phenomena I discuss
in this book could not have been found without such explicit
pictures. (See also page 108.)

» My work on cellular automata. I began serious work on
cellular automata in the middle of 1981. I had been thinking
for some time about how complicated patterns could arise in
natural systems—in apparent violation of the Second Law of
Thermodynamics. I had been particularly interested in self-
gravitating gases where the basic physics seemed clear, but
where complex phenomena like galaxy formation seemed to
occur. I had also been interested in neural networks, where
there had been fairly simple models developed by Warren
McCulloch and Walter Pitts in the 1940s. I came up with
cellular automata as an attempt to capture the essential
features of a range of systems, from self-gravitating gases to
neural networks. I wanted to find models that had a simple
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structure like the Ising model in statistical mechanics
(studied since the 1920s), but which had definite rules for
time evolution and could easily be simulated on a computer.
Ironically enough, while cellular automata are good for many
things, they turn out to be rather unsuitable for modelling
either self-gravitating gases or neural networks. (See page
1021). But by the time I realized this, it was clear that cellular
automata were of great interest for many other purposes.

I did my first major computer experiments on cellular
automata late in 1981 (see page 19). Two features initially
struck me most. First, that starting from random initial
conditions, cellular automata could organize themselves to
produce complex patterns. And second, that in cases like rule
90 simple initial conditions led to nested or fractal patterns.
During the first half of 1982, I worked hard to analyze the
behavior of cellular automata using ideas from statistical
mechanics, and discrete

dynamical systems

mathematics. And in June 1982, I finished my first paper on

theory

cellular automata, entitled “Statistical Mechanics of Cellular
Automata”. Published in the journal Reviews of Modern
Physics in July 1983, this paper already presents in raw form
many of the key ideas that led to the development of the
science described in this book. It discusses the fact that by not
using traditional mathematical equations, simple models can
potentially be made to reproduce complex phenomena, and
it mentions some of the consequences of viewing models like
cellular automata as computational systems. The paper also
contained a small picture of rule 30 started from a single
black cell. But at the time, I did not study this picture in
detail, and I tacitly assumed that whenever I saw
randomness it must come from the random initial conditions
that I used. (See page 112.)

It was some time in the fall of 1981 that I first found out (at a
dinner with some then-young MIT computer scientists) that a
version of the systems I had invented had been studied
before under the name of “cellular automata”. (I had been
aware of the Game of Life, but its recreational emphasis had
put me off studying it.) Knowing the name cellular automata,
I was able to track down quite a number of relevant papers
from the 1950s and 1960s. But I found that active research on
what had been called cellular automata had more or less
petered out (with the slight exception of a group at MIT at
that time mainly concerned with building special-purpose
hardware for 2D cellular automata). By late 1982 preprints of
my paper on cellular automata had created quite a stir, and I
got involved in organizing a conference held in March 1983 at
Los Alamos to bring together many people newly interested
in cellular automata with earlier workers in the field.
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As part of preparing for that conference, I decided to use the
graphics capabilities of the new workstation computer I had
just obtained (a very early unit from Sun Microsystems) to
investigate in a systematic way the behavior of a large
collection of different cellular automata. And after spending
several weeks looking at screen after screen of patterns—and
trying to analyze their properties—I came to the conclusion
that one could identify in the behavior of cellular automata
with random initial conditions just four basic classes, each
with its own characteristic features (see page 231).

In 1982 and early 1983, my efforts to analyze cellular
automata were mainly based on ideas from discrete
mathematics and dynamical systems theory. In the course of
1983, 1 also began to make serious use of formal language
theory and the theory of computation. But for the most part
I concentrated on characterizing behavior obtained from all
possible initial conditions. And in fact I still vaguely
assumed that if simple initial conditions were used, only
fairly simple behavior would be obtained. Several of my
papers had actually shown quite detailed pictures where
this was not the case. I had noticed them, but they had
never been among the examples I had studied in depth,
partly for the superficial reason that the rules they involved
were not symmetrical, or inevitably led to patterns that were
otherwise not convenient for display. I do not know exactly
what made me start looking more carefully at simple initial
conditions, though I believe that I first systematically
generated high-resolution pictures of all the k=2, r=1
cellular automata as an exercise for an early laserprinter—
probably at the beginning of 1984. And I do know that for
example on June 1, 1984 I printed out pictures of rule 30,
rule 110 and k =2, r = 2 totalistic code 10 (see note below),
took them with me on a flight from New York to London,
and a few days later was in Sweden talking about
randomness in rule 30 and its potential significance.

A month or so later, writing an article for Scientific
American—nominally on the subject of software in science
and mathematics—led me to think more carefully about
basic issues of computation and modelling, and to describe
for the first time the idea of computational irreducibility
(see page 737). In the fall of 1984 I began to investigate
some of the implications of what I had discovered about
cellular automata for foundational questions in science.
And by early 1985 I had written what I consider to be my
two most fundamental (if excessively short) papers from
the period: one on undecidability and intractability in
theoretical physics, and the other on intrinsic randomness
generation and the origins of randomness in physical
systems.
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In the early summer of 1985 I was doing consulting at a
startup company called Thinking Machines Corporation,
which had developed a massively parallel computer called
the Connection Machine that was fairly well suited to cellular
automaton simulation. Partly as an application for this
computer I then ended up making a detailed study of rule 30
and its randomness—among other things proposing it as a
practical random sequence generator and cryptosystem.

I had always thought that cellular automata could be a way
to get at foundational questions in thermodynamics and
hydrodynamics. And in mid-1985, partly in an attempt to
find uses for the Connection Machine, I devised a practical
scheme for doing fluid mechanics with cellular automata (see
page 378). Then over the course of that winter and the
following spring I analyzed the scheme and worked out its
correspondence to the traditional continuum approach.

By 1986, however, I felt that I had answered at least the first
round of obvious questions about cellular automata, and it
increasingly seemed that it would not be easier to go further
with the computational tools available. In June 1986 I
organized one last conference on cellular automata—then in
August 1986 essentially left the field to begin the
development of Mathematica.

Over the years, I have come back to look at cellular automata
again and again, and every time I have been amazed and
delighted by the richness of the phenomena they exhibit. As I
argue in this book, a vast range of systems must in the end
show the same basic phenomena. But cellular automata—
and especially 1D ones—make the phenomena particularly
clear, which is why even after investigating all sorts of other
systems 1D cellular automata are still the most common
examples that I use in this book.

» My papers. The primary papers that I published about
cellular automata and other issues related to this book were
(the dates indicate when I finished my work on each paper;
the papers were actually published 6-12 months later):

= “Statistical mechanics of cellular automata” (June 1982)
(introducing 1D cellular automata and studying many of
their properties)

= “Algebraic properties of cellular automata” (with Olivier
Martin and Andrew Odlyzko) (February 1983) (analyzing
additive cellular automata such as rule 90)

» “Universality and complexity in cellular automata” (April
1983) (classifying cellular automaton behavior)

= “Computation theory of cellular automata” (November
1983) (characterizing behavior using formal language
theory)
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» “Two-dimensional cellular automata” (with Norman
Packard) (October 1984) (extending results to two
dimensions)

» “Undecidability and intractability in theoretical physics”
(October 1984) (introducing computational irreducibility)

* “Origins of randomness in physical systems” (February
1985) (introducing intrinsic randomness generation)

*» “Random sequence generation by cellular automata” (July
1985) (a detailed study of rule 30)

» “Thermodynamics and hydrodynamics of cellular
automata” (with James Salem) (November 1985)
(continuum behavior from cellular automata)

= “Approaches to complexity engineering” (December 1985)
(finding systems that achieve specified goals)

» “Cellular automaton fluids: Basic theory” (March 1986)
(deriving the Navier-Stokes equations from cellular
automata)

The ideas in the first five and the very last of these papers
have been reasonably well absorbed over the past fifteen or
so years. But those in the other five have not, and indeed
seem to require the whole development of this book to be
able to present in an appropriate way.

Other significant publications of mine providing relevant
summaries were (the dates here are for actual publication—
sometimes close to writing, but sometimes long delayed):

= “Computers in science and mathematics” (September
1984) (Scientific American article about foundations of the
computational approach to science and mathematics)

» “Cellular automata as models of complexity” (October
1984) (Nature article introducing cellular automata)

* “Geometry of binomial coefficients” (November 1984)
(additive cellular automata and nested patterns)
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= “Twenty problems in the theory of cellular automata”
(1985) (a list of unsolved problems to attack—most now
finally resolved in this book)

* “Tables of cellular automaton properties” (June 1986)
(features of elementary cellular automata)

» “Cryptography with cellular automata” (1986) (using rule
30 as a cryptosystem)

» “Complex systems theory” (1988) (1984 speech suggesting
the research direction for the new Santa Fe Institute)

n Code 10. Rule 30 is by many measures the simplest cellular
automaton that generates randomness from a single black initial
cell. But there are other simple examples—that historically I
noticed slightly earlier than rule 30, though did not study—that
occur in k =2, r = 2 totalistic rules. And indeed among the 64
such rules, 13 show randomness. An example shown below is
code 10, which specifies that if 1 or 3 cells out of 5 are black then
the next cell is black; otherwise it is white.




NOTES FOR CHAPTER 3

The World of Simple Programs

More Cellular Automata

n Page 53 - Numbering scheme. I introduced the numbering
scheme used here in the 1983 paper where I first discussed
one-dimensional cellular automata (see page 881). I termed
two-color nearest-neighbor cellular automata “elementary”
to reflect the idea that their rules are as simple as possible.

u Page 55 - Rule equivalences. The table below gives basic
equivalences between elementary cellular automaton rules. In each
block the second entry is the rule obtained by interchanging black
and white, the third entry is the rule obtained by interchanging left

and right, and the fourth entry the rule obtained by applying both
operations. (The smallest rule number is given in boldface.) For a
rule with number n the two operations correspond respectively to
computing 7 - Reverse[list] and listl[{1, 5, 3, 7, 2, 6, 4, 811 with
list = IntegerDigits[n, 2, 8].

u Special rules. Rule 51: complement; rule 170: left shift; rule
204: identity; rule 240: right shift. These rules only ever
depend on one cell in each neighborhood.

n Rule expressions. The table on the next page gives Boolean
expressions for each of the elementary rules. The expressions

0 255 0 255| 32 251 32 251 64 253 8 239 | 96 249 40 235 | 128 254 128 254 | 160 250 160 250 | 192 252 136 238 | 224 248 168 234
1 127 1 127 | 33 123 33 123| 65 125 9 11| 97 121 41 107 | 129 126 129 126 | 161 122 161 122 | 193 124 137 110 | 225 120 169 106
2 191 16 247 | 34 187 48 243 | 66 189 24 231 98 185 56 227 | 130 190 144 246 | 162 186 176 242 | 194 188 152 230 | 226 184 184 226
3 63 17 119 | 35 59 49 115 | 67 61 25 103| 99 57 57 99 131 62 145 118 | 163 58 177 114 | 195 60 153 102 | 227 56 185 98
4 223 4 223| 36 219 36 219| 68 221 12 207 | 100 217 44 203 | 132 222 132 222 | 164 218 164 218 | 196 220 140 206 | 228 216 172 202
5 95 5 95 37 91 37 91 69 93 13 79 101 89 45 75 133 94 133 94 165 90 165 90 197 92 141 78 | 229 88 173 74
6 159 20 215 | 38 165 652 211 70 157 28 199 | 102 153 60 195 | 134 158 148 214 | 166 154 180 210 | 198 156 156 198 | 230 152 188 194
7 31 21 87 39 27 53 83 71 29 29 71 103 25 61 67 135 30 149 86 167 26 181 82 199 28 157 70 | 231 24 189 66
8 239 64 253 | 40 235 96 249 | 72 237 72 237 | 104 233 104 233 | 136 238 192 252 | 168 234 224 248 | 200 236 200 236 | 232 232 232 232
9 111 65 126| 41 107 97 121 | 73 109 73 109 | 105 105 105 105 | 137 110 193 124 | 169 106 225 120 | 201 108 201 108 | 233 104 233 104
10 175 80 245 | 42 171 112 241 | 74 173 88 229 | 106 169 120 225 | 138 174 208 244 | 170 170 240 240 | 202 172 216 228 | 234 168 248 224
11 47 81 17 | 43 43 113 113 75 45 89 101 | 107 41 121 97 139 46 209 116 | 171 42 241 112 | 203 44 217 100 | 235 40 249 96
12 207 68 221 | 44 203 100 217 | 76 205 76 205 | 108 201 108 201 | 140 206 196 220 | 172 202 228 216 | 204 204 204 204 | 236 200 236 200
13 79 69 93 45 75 101 89 77 77 77 77 09 73 109 73 141 78 197 92 173 74 229 88 | 205 76 205 76 | 237 72 237 72
14 143 84 213 | 46 139 116 209 | 78 141 92 197 | 110 137 124 193 | 142 142 212 212 | 174 138 244 208 | 206 140 220 196 | 238 136 252 192
15 15 85 85 47 1 117 81 79 13 93 69 111 9 126 65 143 14 213 84 1775 10 245 80 | 207 12 221 68 | 239 8 253 64
16 247 2 191 | 48 243 34 187 | 80 245 10 175 | 112 241 42 171 | 144 246 130 190 | 176 242 162 186 | 208 244 138 174 | 240 240 170 170
17 119 3 63 49 115 35 59 81 17 11 47 13 113 43 43 145 118 131 62 177 114 163 58 | 209 116 139 46 | 241 112 171 42
18 183 18 183 | 50 179 80 179 | 82 181 26 167 | 114 177 58 163 | 146 182 146 182 | 178 178 178 178 | 210 180 154 166 | 242 176 186 162
19 55 19 55 51 51 51 51 83 53 27 39 115 49 59 35 147 54 147 54 179 50 179 50 211 52 155 38 | 243 48 187 34
20 215 6 159 | 52 211 38 155 | 84 213 14 143 | 116 209 46 139 | 148 214 134 158 | 180 210 166 154 | 212 212 142 142 | 244 208 174 138
21 87 7 31 53 83 39 27 85 85 15 15 117 81 47 11 149 8 135 30 181 82 167 26 | 213 84 143 14 | 245 80 175 10
22 151 22 151 | 54 147 54 147 | 86 149 30 135 | 118 145 62 131 | 150 150 150 150 | 182 146 182 146 | 214 148 158 134 | 246 144 190 130
23 23 23 23 55 19 55 19 87 21 31 7 19 17 63 3 151 22 151 22 183 18 183 18 | 215 20 159 6 247 16 191 2
24 231 66 189 | 56 227 98 185 | 88 229 74 173 | 120 225 106 169 | 152 230 194 188 | 184 226 226 184 | 216 228 202 172 | 248 224 234 168
25 103 67 61 57 99 99 57 89 101 75 45 12197 107 41 163 102 195 60 185 98 227 56 | 217 100 203 44 | 249 96 235 40
26 167 82 181 58 163 114 177 | 90 165 90 165 | 122 161 122 161 | 154 166 210 180 | 186 162 242 176 | 218 164 218 164 | 250 160 250 160
27 39 83 b3 59 35 1156 49 91 37 91 37 123 33 123 33 1556 38 211 52 187 34 243 48 | 219 36 219 36 | 251 32 251 32
28 199 70 157 | 60 195 102 153 | 92 197 78 141 | 124 193 110 137 | 156 198 198 156 | 188 194 230 152 | 220 196 206 140 | 252 192 238 136
29 71 71 29 61 67 103 25 93 69 79 13 1256 65 111 9 157 70 199 28 189 66 231 24 221 68 207 12 | 253 64 239 8
30 135 8 149 | 62 131 118 145 | 94 133 94 133 | 126 129 126 129 | 158 134 214 148 | 190 130 246 144 | 222 132 222 132 | 254 128 254 128
31 7 87 21 63 3 19 17 95 5 95 5 127 1 127 1 159 6 215 20 191 2 247 16 | 223 4 223 4 255 0 255 0
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rule 0: 0 rule 64: pAgA(=r) rule 128: pAgAr rule 192: pAq
rule 1: =(pvqVvr) rule 65: =((pvq)Vvr) rule 129: =((pvq)Vvipyvr)) rule 193: pv(pvqVv(-r))vq
rule 2: (=p)A(=q)Ar rule 66: (pvr)A(qur) rule 130: (pvqur)Ar rule 194: pu(pvgVvr)vg
rule 3: =(pvq) rule 67: py(pagar)v(-q) rule 131: py(pAqa(=r))y(=q) rule 195: pv(-q)
rule 4: (=(pvr))Arq rule 68: qA(-r) rule 132: (pvqur)Arq rule 196: (pV(=r))Aq
rule 5: = (pvr) rule 69: ((=p)vqVvr)yr rule 133: py(pA(=q)Ar)y(=r) rule 197 : (=(pVv(qur)))vq
rule 6: (=p)Aa(qur) rule 70: ((pAr)vaqlyr rule 134: (pAa(qVvr))rvqyur rule 198: (pAr)vqur
rule 7: =(pv(gar)) rule 71: ((py(=r))vq)ur rule 135: (=p)y(qAr) rule 199: pv(pVv(-q)vr)rqg
rule 8: (=p)AgaAr rule 72: (pAq)y(qAr) rule 136: g Ar rule 200: (pvr)Arq
rule 9: =(pv(qur)) rule 73: = ((pAr)vipvquyr)) rule 137 : ((=p)vqVvr)vqur rule 201: (=(pVvr))yq
rule 10: (=p)Ar rule 74: (pAa(gVvr))vr rule 138: (pA(=q)Ar)ur rule 202: (pA(qur))yvr
rule 11: py(pVv(-q)vr) rule 75: py((-q)Vvr) rule 139: = ((pvag)yv(gar)) rule 203: (py(=q))v(qgar)
rule 12: (pArqg)vq rule 76 : (pAqgAr)uqg rule 140: ((=p)vr)Aq rule 204 : q
rule 13: pu(pvqVv(-r)) rule 77 : py((prq)Vvipy(=r))) rule 141: py((pvq)Vv(=r)) rule 205: (=(pvr))vq
rule 14: pv(pvaqvr) rule 78: pv((prq)Vvr) rule 142: pv((pvq)Vvipyr)) rule 206 : ((-p)Ar)vqg
rule 15: =p rule 79: (=p)vI(qgA(=r)) rule 143: (=p)v(qAr) rule 207 : = (pA(-q))
rule 16: pA(=q)A(=r) rule 80: pA(-r) rule 144: pa(prquyr) rule 208 : pA(qV(=r))
rule 17 =(qVr) rule 81: (pVv(-q)Vr)yr rule 145: ((=p)Agar)vqy(-r) rule 209: - ((pAqg)y(qVvr))
rule 18: (pyqur)A(-q) rule 82: (pvi(qgAr))vr rule 146: pv((pvr)aq)yr rule 210: pv(gar)vr
rule 19: =((pAr)vq) rule 83: (pv(qy(=r)))yvr rule 147 : (pAr)y(=q) rule 211: py((=p)vgvr)vq
rule 20: (pvq)A(-r) rule 84: (pvqVvr)yvr rule 148: pyv((pvag)ar)vqg rule 212 ((pvq)vipyr))yvr
rule 21: =((pAq)Vvr) rule 85: =r rule 149: (pAq)v(-r) rule 213: (pAqg) vV(=r)
rule 22: py(pAqgAr)vqur rule 86: (pvag)ur rule 150: pvqur rule 214: (pArq)viprquyr)
rule 23: pu((py(-q))vigur)) rule 87: = ((pvaq)ar) rule 157: py(=(pvqvr))vqur rule 215: = ((pyq)Ar)
rule 24: (prqg)Alpyr) rule 88: pv((pvq)ar) rule 152: (pvagvr)vqur rule 216: pv((pvq)Ar)
rule 25: (pagar)rqy(=r) rule 89: (pv(=~q))vr rule 153 : qu(=r) rule 217 : (pAq)viqu(=r))
rule 26: py((pag)vr) rule 90: pyur rule 154: py(pAq)vr rule 218: py(pAqgAr)yr
rule 27 py((pv(=q))vr) rule 91: pyv(=(pvqvVvr))yr rule 155 (pvqVv(=r))vqur rule 219: (pur)vipy(-q))
rule 28: py((pAr)vaq) rule 92: (pvi(qur))yvr rule 156: pyv(pAr)vq rule 220: (pA(=r))vq
rule 29: py((py(=r))vq) rule 93: = ((pV(=q))Ar) rule 167 : (pVv(-q)vr)vqur rule 221: q Vv (-r)
rule 30: py(qVvr) rule 94: (pAr)u(pvaqvr) rule 158 : (pvquyr)vigar) rule 222: (pvqur)vqg
rule 31: =(pA(qVr)) rule 95: = (pAr) rule 159: = (pA(qyr)) rule 223: = (pA(-q)Ar)
rule 32: pA(-q)Ar rule 96 : pA(qur) rule 160: pAr rule 224: pA(qVvr)
rule 33: = ((pvqur)vq) rule 97 : = ((pvqur)v(qar)) rule 161: py(pVv(=q)vr)uvr rule 225: pu(=(qVvr))
rule 34: (=q)Ar rule 98: ((pvr)aq)ur rule 162: (pVv(=q))Ar rule 226: (pAaq)y(gAar)yr
rule 35: ((=p)vqvr)vg rule 99: ((=p)vr)vqg rule 163: ((=p)v(qur))vq rule 227 : (pAr)vipy(-q))
rule 36: (pvqg)Ar(qur) rule 100: ((pvq)Ar)vq rule 164: py(pvqVvr)ur rule 228 : ((pvqg)Ar)vqg
rule 37: py(pAqgAar)y(-r) rule 101: py(pAq)y(-r) rule 165: pyv(=r) rule 229: (pAq)Vipy(=r))
rule 38: ((pAag)vr)vq rule 102: qur rule 166: (pAq)yvqur rule 230: (pAgAr)vqur
rule 39: ((py(-q))vr)vqg rule 103: (=(pvaqVvr))vqur rule 167 : pu(pvqVv(=r))vr rule 231: (pu(-ql))viqur)
rule 40: (puqg)Ar rule 104: pu(pvqvr)uqur rule 168: (pvaq)Ar rule 232: (pAq)v((pvag)ar)
rule 41: =((pArqg)Viprqyr)) rule 106: pyqu(-r) rule 169: (= (pvql))vr rule 233: py(pAqAr)vqu(=r)
rule 42: (pAaqAr)vr rule 106: (pAq)yr rule 170: r rule 234: (pAaq)vr
rule 43: pu((pvr)Vv(pv(-q))) rule 107 : pu(pvagV(-r))yqur rule 171: (=(pvag))vr rule 235: (py(-q))vr
rule 44: (pAa(gvr))yqg rule 108: (pAr)vq rule 172: (pA(qur))vq rule 236: (pAr)vq
rule 45: pv(qVv(-r)) rule 109: pv(pVv(=q)vr)vqur rule 173: (py(=r))v(gar) rule 237 : (pv(=r))vq
rule 46: (pAqg)y(qVvr) rule 110: ((=p)AgAr)uqur rule 174: ((pAqg)vq)Vvr rule 238: qvr
rule 47 : (=p) vV((=q)Ar) rule 111: (=p)viqur) rule 175: (=p)vr rule 239: (-p)vaqVvr
rule 48: pA(-q) rule 112: py(pAqAar) rule 176: pA((=q)Vvr) rule 240: p
rule 49: (pvqVv(-r))vq rule 113: py(=((pvq)Vv(pyr))) rule 177 : pu(=((pxq)vr)) rule 241: pv(=(qVvr))
rule 50: (pvqvr)vqg rule 114: ((prqg)vr)vqg rule 178: ((pvq)vipyr))vq rule 242: pv((-q)Ar)
rule 51: = q rule 115: (pA(=r))v(=q) rule 179: (pAr)v(=q) rule 243 : p v (-q)
rule 52: (pv(gar))vq rule 116: (pvaq)y(gar) rule 180: pvqu(qAr) rule 244: pv(qgA(=r))
rule 53: (pvi(qu(-r)))rq rule 117 : (pA(=~q)) V(~r) rule 181: pv((=p)vqVvr)yr rule 245: p Vv (-r)
rule 54: (pvr)vq rule 118: (pvaqvr)u(qar) rule 182: (pAr)vipvqur) rule 246: pv(qur)
rule 55: =((pvr)Aq) rule 119: =(qAr) rule 183: (pyqyr)v(-q) rule 247 : pv(=q)V(=r)
rule 56 : pv((pvr)Aq) rule 120: py(qAr) rule 184: pv(pAq)v(qar) rule 248: pv(qAr)
rule 57 : (pVv(-r))vq rule 121: py((=p)vagvr)vqur rule 185: (pAr)v(qu(=r)) rule 249: pv(qu(=r))
rule 58: (pVv(qur))vq rule 122: py(pA(=q)Ar)yvr rule 186: (pA(=q))Vvr rule 250: pvr
rule 59: ((=p)Ar) v(-q) rule 123: = ((pyqyr)Aq) rule 187 : (=q)vr rule 251: pv(-q)vr
rule 60: pvq rule 124: pu(pAga(=r))vq rule 188: py(pAqAr)vq rule 252: pvgq
rule 61: py(pvqVvr)v(-q) rule 125: (pvq)Vv(-r) rule 189: (puvq)Vvipy(=r)) rule 253 : pvqVv(-r)
rule 62: (pAag)u(pvqVvr) rule 126: (pvq)vipyr) rule 190: (pvqg)Vvr rule 254: pvqVvr
rule 63: = (pAq) rule 127 : =(pAqAr) rule 191: (=p)v(=q)Vvr rule 255: 1
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use the minimum possible number of operators; when there
are several equivalent forms, I give the most uniform and
symmetrical one. Note that v stands for Xor.

u Rule orderings. The fact that successive rules often show
very different behavior does not appear to be affected by
using alternative orderings such as Gray code (see
page 901.)

u Page 58 - Algebraic forms. The rules here can be expressed
in algebraic terms (see page 869) as follows:

sRule 22: Mod[p +q+r+pqr, 2]
=Rule 60: Mod[p +q, 2]
*Rule 105: Mod[1+p+q+r, 2]
sRule 129: Mod[1+p+q+r+pq+qr+pr, 2]
s Rule 150: Mod[p +q +r, 2]
sRule 225: Mod[1+p+q+r+qr, 2]
Note that rules 60, 105 and 150 are additive, like rule 90.

n Rule 150. This rule can be viewed as an analog of rule 90 in
which the values of three cells, rather than two, are added
modulo 2. Corresponding to the result on page 870 for rule
90, the number of black cells at row t in the pattern from rule
150 is given by
Apply[Times, Map[(2"*? - (-1)"?)/3 &,
Cases[Split[IntegerDigits[t, 2]], k:{(1)..}» Length[k]]]]
There are a total of 2" Fibonacci[m + 2] black cells in the
pattern obtained up to step 2, implying fractal dimension
Logl[2, 1+'5 ]. (See also page 956.)

The value at step t in the column immediately adjacent to
the center is the nested sequence discussed on page 892
and given by Mod[IntegerExponent(t, 2], 2]. The cell at
position n on row t turms out to be given by
Mod[GegenbauerC[n, -t, -1/2], 2], as discussed on page 612.

n Rule 225. The width of the pattern after t steps varies
between Sgrt[3/2]\Vt (achieved when t=3x2?"*") and
Sqrt[9/2]Vt (achieved when t = 22™7). The pattern scales
differently in the horizontal and vertical direction,
corresponding to fractal dimensions Log[2, 5] and Log[4, 5]
respectively. Note that with more complicated initial
conditions rule 225 often no longer yields a regular nested
pattern, as shown on page 951. The resulting patterns

typically grow at a roughly constant average rate.

u Rule 22. With more complicated initial conditions the
pattern is often no longer nested, as shown on page 263.

n Page 59 - Algebraic forms. The rules here can be expressed in
algebraic terms (see page 869) as follows:

SIMPLE
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s Rule 30: Mod[p +q+r+qr, 2]
=*Rule 45: Mod[1+p+r+qr, 2]
sRule 73: Mod[1+p+q+r+pr+pqr, 2]

uRule 45. The center column of the pattern appears for
practical purposes random, just as in rule 30. The left edge of
the pattern moves 1 cell every 2 steps; the boundary between
repetition and randomness moves on average 0.17 cells
per step.

u Rule 73. The pattern has a few definite regularities. The
center column of cells is repetitive, alternating between black
and white on successive steps. And in all cases black cells
appear only in blocks that are an odd number of cells wide.
(Any block in rule 73 consisting of an even number of black
cells will evolve to a structure that remains fixed forever, as
mentioned on page 954.) The more complicated central
region of the pattern grows 4 cells every 7 steps; the outer
region consists of blocks that are 12 cells wide and repeat
every 3 steps.

n Alternating colors. The pictures below show rules 45 and 73
with the colors of cells on alternate steps reversed.

n Two-cell neighborhoods. By having cells on successive steps
be arranged like hexagons or staggered bricks, as in the
pictures below, one can set up cellular automata in which the
new color of each cell depends on the previous colors of two
rather than three neighboring cells.

] PO R REI[D]

With k possible colors for each cell, there are a total of K<
possible rules of this type, each specified by a k?-digit
number in base k (7743 for the rule shown above). For
k =2, there are 16 possible rules, and the most complicated
pattern obtained is nested like the rule 90 elementary
cellular automaton. With k =3, there are 19,683 possible
rules, 1734 of which are fundamentally inequivalent, and
many more complicated patterns are seen, as in the
pictures at the top of the next page.
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rule 3826 rule 5451 rule 6385

rule 7743 rule 8364 rule 8701

rule 12294

rule 16963

rule 17989

With rule given by IntegerDigitsnum, k, k?] a single step of
evolution can be implemented as
CAStep[{k_, rule_}, a_List] := rule[[k? - RotateLeft[a] -k a]]

u Page 60 - Numbers of rules. Allowing k possible colors for
each cell and considering r neighbors on each side, there are
KK possible cellular automaton rules in all, of which
k2K gre symmetric, and k%" 2™7) are totalistic. (For
k =2,r =1 there are therefore 256 possible rules altogether, of
which 16 are totalistic. For k =2, r = 2 there are 4,294,967,296
rules in all, of which 64 are totalistic. And for k=3, r=1
there are 7,625,597,484,987 rules in all, with 2187 totalistic
ones.) Note that for k > 2, a particular rule will in general be
totalistic only for a specific assignment of values to colors. I
first introduced totalistic rules in 1983.

» Implementation of general cellular automata. With k colors
and r neighbors on each side, a single step in the evolution of
a general cellular automaton is given by

CAStep[CARule[rule_List, k_, r_], a_List] :=
rulel[-1 - ListConvolve[k ~Range[0, 2r], a, r + 1]

where rule is obtained from a rule number num by
IntegerDigits[num, k, k?*']. (See also page 927.)

» Implementation of totalistic cellular automata. To handle
totalistic rules that involve k colors and nearest neighbors,
one can add the definition

CAStep[ TotalisticCARule[rule_List, 1], a_List] :=
rulef[-1- (RotatelLeft[a] + a + RotateRight[a])]l

to what was given on page 867. The following definition also

handles the more general case of r neighbors:
CAStep[TotalisticCARule[rule_List, r_Integer], a_List] :=

rulel[-1- Sum[Rotateleft[a, i], {i, -r, r}]]

One can generate the representation of totalistic rules used by

these functions from code numbers using
ToTotalisticCARule[num_Integer, k_Integer, r_Integer] :=
TotalisticCARule[IntegerDigits[num, k, 1T+ (k-1)(2r+1)], r]

u Common framework. The Mathematica built-in function

CellularAutomaton discussed on page 867 handles general and
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the
ListConvolve[w, a, r + 1] and taking the weights w to be
respectively k ~Table[i- 1, {i, 2r + 1}] and Table[1, {2r + 1}].

totalistic rules in same framework by using

n Page 63 - Mod 3 rule. Code 420 is an example of an additive
rule, and yields a pattern corresponding to Pascal’s triangle
modulo 3, as discussed on page 870.

» Compositions of cellular automata. One way to construct
more complicated rules is from compositions of simpler
rules. One can, for example, consider each step applying first
one elementary cellular automaton rule, then another. The
result is in effect a k = 2, r = 2 rule. Usually the order in which
the two elementary rules are applied will matter, and the
overall behavior obtained will have no simple relationship to
that of either of the individual rules. (See also page 956.)

n Rules based on algebraic systems. If the values of cells are
taken to be elements of some finite algebraic system, then one
can set up a cellular automaton with rule
alt, i]:=fla[t-1,i-1] alt-1,i]]
where f is the analog of multiplication for the system (see also
page 1094). The pattern obtained after ¢ steps is then given by
NestList[f[RotateRight[#], #] &, init, t]

The pictures below show results with f being Times, and
cells having values (a) {7, -7}, (b) the unit complex numbers
{1,4, -1, -i}, (c) the unit quaternions.

In general, with n elements f can be specified by an nxn
“multiplication table”. For n = 2, the patterns obtained are at
most nested. Pictures (a) and (b) below however correspond
to the n =23 multiplication tables {{7, 1, 3}, {3, 3, 2}, {2, 2, 1}}
and ({3, 1,3} {1, 3,1} {3, 1, 2}}. Note that for (b) the table is
symmetric, corresponding to a commutative multiplication
operation.

(a) (b) (c)

If f is associative (flat), so that f[f[i, j], k] == f[i, f[j, k]], then
the algebraic system is known as a semigroup. (See also
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page 805.) With a single cell seed, no pattern more
complicated than nested can be obtained in such a system.
And with any seed, it appears to require a semigroup with at
least six elements to obtain a more complicated pattern.

If f has an identity element, so that f[7, /] == for all /, and has
inverses, so that f[i, j] == 1 for some j, then the system is a
group. (See page 945.) If the group is Abelian, so that
fli, jI==

(see page 955). But it turns out that the very simplest possible

f[j, i], then only nested patterns are ever produced

non-Abelian group yields the pattern in (c) above. The group
used is S3, which has six elements and multiplication table
{{1,2,3,4,5,6}1(2,1,5,6, 3,4}, {3,4,1,2,6, 5},
{4,3,6,5,1,2},(5,6,2,1,4,3},(6,5,4,3 2, 1}}

The initial condition contains {5, 6} surrounded by 7’s.

Mobile Automata

n Implementation. The state of a mobile automaton at a
particular step can conveniently be represented by a pair
{list, n}, where list gives the values of the cells, and n
specifies the position of the active cell (the value of the active
cell is thus list[[n]]). Then, for example, the rule for the mobile
automaton shown on page 71 can be given as
{{1, 1, 1}>1{0, 1}, {1, 1,0} {0, 1},
{1,0, 1} {1,-1}{1,0,0}- {0, -1}, {0, 1, 1}> {0, -1},
{0, 1,0}-1{0, 1}, {0,0, 1}- {1, 1}, {0, 0, 0} > {1, -1}}

where the left-hand side in each case gives the value of the
active cell and its left and right neighbors, while the right-
hand side consists of a pair containing the new value of the
active cell and the displacement of its position. (In analogy
with cellular automata, this rule can be labelled {35, 57}
where the first number refers to colors, and the second
displacements.) With a rule given in this form, each step in
the evolution of the mobile automaton corresponds to the
function

MAStep[rule_, {list_List, n_Integer}]/; 1 <n < Length[list] :=

Apply[{ReplacePart[list, #1, n], n + #2} &,
Replace[Take[list, {n-1, n+ 1}], rule]]

The complete evolution for many steps can then be obtained
with

MAEvolvelList[rule_, init_List, t_Integer] :=

NestList[MAStep[rule, #] &, init, t]

(The program will run more efficiently if Dispatch is applied
to the rule before giving it as input.)

For the mobile automaton on page 73, the rule can be given
as
{{1, 1, 1} {{0, 0,0}, -1}, {1, 1,0} > {{1,0, 1}, -1},
{1,0, 1}>{{1,1, 1}, 1}, {1,0, 0} {{1,0, 0}, 1},
{0, 1, 1}-{{0, 0, 0}, 1}, {0, 1, 0} > {{0, 1, 1}, -1},
{0,0, 1}={{1,0, 1}, 1}, {0, 0, 0} = {{1, 1, 1}, 1}}

SIMPLE
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and MAStep must be rewritten as
MAStep[rule_, {list_List, n_Integer}] /; 1 < n < Length[list] .=
Apply[{Join[Take[list, {1, n-2}], #1, Take[list, {n+2, -1}]],
n+#2} &, Replace[Takellist, {n-1, n+ 1}], rule]]
u Compressed evolution. An alternative compression scheme
for mobile automata is discussed on page 488.

u Page 72 - Distribution of behavior. The pictures below show
the distributions of transient and of period lengths for the
65,318 mobile automata of the type described here that yield
ultimately repetitive behavior. Rule (f) has a period equal to
the maximum of 16.

7

1

0.01 0.01

0.0001 0.0001
0.000001 L L L ﬂ L 0.000001 L 1 1 L

5 10 15 20 5 10 15 20

u Page 75 - Active cell motion. The pictures below show the
positions of the active cell for 20,000 steps of evolution in
(b) and (o)
respectively to the rules on pages 73, 74 and 75. (c) has an
outer envelope whose edges grow at rates {-1.5, 0.3} V't . (d)
yields logarithmic growth as shown on page 496 (like Turing
machine (f) on page 79). In most cases where the behavior is
ultimately repetitive, transients and periods seem to follow
the same approximate exponential distribution as in the note
above. (g) however suddenly yields repetitive behavior with
period 4032 after 405,941 steps. (h) does not appear to evolve
to strict repetition or nesting, but does show progressively
longer patches with fairly orderly behavior. (c) shows no
obvious deviation from randomness in at least the first
billion steps (after which the pattern it produces is 57,014

cells wide).
O e e e e

(o) P e
« R PR

(o) | o e P e
o) [ e e e e e R )

(e R i PR e
o el e e e e e
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various mobile automata. (a), correspond

» Implementation of generalized mobile automata. The state
of a generalized mobile automaton at a particular step can be
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specified by {list, nlist}, where list gives the values of the
cells, and nlist is a list of the positions of active cells. The rule
can be given by specifying a list of cases such as
{0, 0,0} {1, {1, -1}}, where in each case the second sublist
specifies the new relative positions of active cells. With this
setup successive steps in the evolution of the system can be
obtained from

GMAStep[rules_, {list_, nlist_}] := Module[{a, na}, {a, na} =
Transpose[Map[Replace[ Take[list, {# -1, # + 1}], rules] &,
nlist]]; {Fold[ReplacePart[#1, Last[#2], First[#2]] &,
list, Transpose[{nlist, a}]], Union[Flatten[nlist + na]]}]

Turing Machines

n Implementation. The state of a Turing machine at a
particular step can be represented by the triple {s, list, n},
where s gives the state of the head, list gives the values of the
cells, and n specifies the position of the head (the cell under
the head thus has value /ist[n]]). Then, for example, the rule
for the Turing machine shown on page 78 can be given as
{{1,0}>1{3,1,-1},{1,1}>{2,0, 1}, {2, 0}> {1, 1, 1},
{2, 1}-1{3, 1,1}, ({3, 0}-{2,1, 1} {3, 1}={1,0,-1}}

where the left-hand side in each case gives the state of the
head and the value of the cell under the head, and the right-
hand side consists of a triple giving the new state of the head,
the new value of the cell under the head and the
displacement of the head.

With a rule given in this form, a single step in the evolution of
the Turing machine can be implemented with the function

TMStep[rule_List, {s_, a_List, n_}]/; 1 < n = Length[a] :=
Apply[{#1, ReplacePart[a, #2, n], n+#3} &,
Replace[{s, al[n]l}, rule]]

The evolution for many steps can then be obtained using

TMEvolvelList[rule_, init_List, t_Integer] :=

NestList[ TMStep[rule, #] &, init, t]

An alternative approach is to represent the complete state of
the Turing machine by MapAt/[{s, #} &, list, n], and then to use

TMStep(rule_, c_] := Replace[c,

{a___, x_, h_List, y_, b___}= Apply[{{a, x, #2, {#1, v}, b},
{a, (#1,x},#2,y, bIN#3] & h/. rule]]

The result of t steps of evolution from a blank tape can also
be obtained from (see also page 1143)

s=1;al.]=0;,n=0;

Dolfs, a[n], d}={s, a[n]}/ rule; n +=d, {t}]
» Number of rules. With k possible colors for each cell and s
possible states, there are a total of (2sk)** possible Turing
machine rules. Often many of these rules are immediately
equivalent, or can show only very simple behavior (see
page 1120).

SCIENCE

» Numbering scheme. One can number Turing machines and
get their rules using
Flatten[MapIndexed[{1, -1}#2 +{0, k}— {1, 1, 2}
Mod[Quotient[#1, {2k, 2, 1}], {s, k, 2}]+{1,0, -1} &,
Partition[IntegerDigits[n, 2sk, sk], k], {2}]]
The examples on page 79 have numbers 3024, 982, 925, 1971,
2506 and 1953.

n Page 79 - Counter machine. Turing machine (f) operates like
a base 2 counter: at steps where its head is at the leftmost
position, the colors of the cells correspond to the reverse of
the base 2 digit sequences of successive numbers. All possible
arrangements of colors are thus eventually produced. The
overall pattern attains width j after 2/ - steps.

u Page 80 - Distribution of behavior. With 2 possible states
and 2 possible colors for each cell, starting from a blank
tape, the maximum repetition period obtained is 9 steps,
and 12 out of the 4096 possible rules (or about 0.29%) yield
non-repetitive behavior. With 3 states and 2 colors, the
maximum period is 24, and about 0.37% of rules yield non-
repetitive behavior, always nested. (Usually I have not
found more complicated behavior in such rules even with
initial conditions in which there are both black and white
cells, though see page 761.) With 2 states and 3 colors, the
maximum repetition period is again 24, about 0.65% of rules
yield non-repetitive behavior, and the 14 rules discussed on
page 709 yield more complex behavior. With more colors or
more states, the percentage of rules that yield non-repetitive
behavior steadily increases, as shown below, roughly like
0.28(s-1)(k-1). (Compare page 1120.)

colors

u Page 81 - Head motion. The picture below shows the motion
of the head for the first million steps. After about 20,000
steps, the width of the pattern produced grows at a rate close

to V1.
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n Localized structures. Even when the overall behavior of a
Turing machine is complicated, it is possible for simple
localized structures to exist, much as in cellular automata
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such as rule 110. What can happen is that with certain specific
repetitive backgrounds, the head can move in a simple
repetitive way, as shown in the pictures below for the Turing

100l

n History. Turing machines were invented by Alan Turing in
1936 to serve as idealized models for the basic processes of
mathematical calculation (see page 1128). As discussed on

machine from page 81.

page 1110, Turing's main interest was in showing what his
machines could in principle be made to do, not in finding out
what simple examples of them actually did. Indeed, so far as
I know, even though he had access to the necessary
technology, Turing never explicitly simulated any Turing
machine on a computer.

Since Turing’s time, Turing machines have been extensively
used as abstract models in theoretical computer science. But
in almost no cases has the explicit behavior of simple Turing
machines been considered. In the early 1960s, however,
Marvin Minsky and others did work on finding the simplest
Turing machines that could exhibit certain properties. Most
of their effort was devoted to finding ingenious constructions
for creating appropriate machines (see page 1119). But
around 1961 they did systematically study all 4096 2-state 2-
color machines, and simulated the behavior of some simple
Turing machines on a computer. They found repetitive and
nested behavior, but did not investigate enough examples to
discover the more complex behavior shown in the main text.

As an offshoot of abstract studies of Turing machines, Tibor
Radé in 1962 formulated what he called the Busy Beaver
Problem: to find a Turing machine with a specified number of
states that “keeps busy” for as many steps as possible before
finally reaching a particular “halt state” (numbered 0 below).
(A variant of the problem asks for the maximum number of
black cells that are left when the machine halts.) By 1966 the
results for 2, 3 and 4 states had been found: the maximum
numbers of steps are 6, 21 and 107, respectively, with 4, 5 and
13 final black cells. Rules achieving these bounds are:

B
The result for 5 states is still unknown, but a machine taking
47,176,870 steps and leaving 4098 black cells was found by
Heiner Marxen and Jiirgen Buntrock in 1990. Its rule is:

B

The pictures below show (a) the first 500 steps of evolution,
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(b) the first million steps in compressed form and (c) the
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number of black cells obtained at each step. Perhaps not
surprisingly for a system optimized to run as long as
possible, the machine operates in a rather systematic and
regular way. With 6 states, a machine is known that takes
about 3.002 x 101730 steps to halt, and leaves about
1.29 x 103 black cells. (See also page 1144.)
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Substitution Systems

n Implementation. The rule for a neighbor-independent
substitution system such as the first one on page 82 can
conveniently be given as {71 {7, 0}, 0 {0, 1}}. And with
this representation, the evolution for ¢ steps is given by

SSEvolvelist[rule_, init_List, t_Integer] :=
NestList[Flatten[# /. rule] &, init, t]

where in the first example on page 82, the initial condition is { 7 }.

An alternative approach is to use strings, representing the
rule by {'B"— "BA’, "A"> "AB"} and the initial condition by
‘B". In this case, the evolution can be obtained using
SSEvolvelist[rule_, init_String, t_Integer] :=
NestList[StringReplace[#, rule] &, init, t]
For a neighbor-dependent substitution system such as the
first one on page 85 the rule can be given as
{{1, 1}-1{0, 1}, {1, 0} > {1, 0}, {0, 1} > {0}, {0, 0} > {0, 1}}
And with this representation, the evolution for t steps is
given by
SS2Evolvelist[rule_, init_List, t_Integer] :=
NestList[Flatten[Partition[#, 2, 1]/. rule] &, init, t]
where the initial condition for the first example on page 85 is
{0, 1,1, 0}.

n Page 83 - Properties. The examples shown here all appear in
quite a number of different contexts in this book. Note that
each of them in effect yields a single sequence that gets
progressively longer at each step; other rules make the colors
of elements alternate on successive steps.

(a) (Successive digits sequence) The sequence produced is
repetitive, with the element at position n being black for n
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odd and white for n even. There are a total of 2" elements
after t steps. The complete pattern formed by looking at all
the steps together has the same structure as the arrangement
of base 2 digits in successive numbers shown on page 117.

(b) (Thue-Morse sequence) The color s[n] of the element at
position nis given by 7-Mod[DigitCount[n-1, 2, 1], 2]. These
satisfy s[n_]:=If[EvenQ[n], 1-s[n/2], s[(n+1)/2]]
with s[7] = 1. There are a total of 2 elements in the sequence

colors

after t steps. The sequence on step t can be obtained from
Nest[Join[#, 1-#]&, {1}, t-1]. The number of black and
white elements at each step is always the same. All four
possible pairs of successive elements occur, though not with
equal frequency. Runs of three identical elements never
occur, and in general no block of elements can ever occur
more than twice. The first 27 elements in the sequence can be
obtained from (see page 1081)
(CoefficientList[Product[1-2%", s, 0, m-1}], z] + 1)/2

The first n elements can also be obtained from (see page 1092)

Mod[ CoefficientList[Series[(1 + Sqrt[(1-3x)/(1+x)])/
(2(1+x)), {x, 0, n-1}], x], 2]

The sequence occurs many times in this book; it can for
example be derived from a column of values in the rule 150
cellular automaton pattern discussed on page 885.

(c) (Fibonacci-related sequence) The sequence at step t can be obtained
from a[t_]:=Join[a[t- 1], a[t-2]];al[1] ={0};a[2] = {0, 1}. This
sequence has length Fibonacci[t + 1] (or approximately 7.678'*")
(see note below). The color of the element at position n is given by
2-(Floor[(n + 1) GoldenRatio] - Floor[n GoldenRatio]) (see page
904), while the position of the k™ white element is given by the so-
called Beatty sequence Floor[k GoldenRatio]. The ratio of the
number of white elements to black at step t is
Fibonacci[t - 1]/Fibonacci[t-2], which approaches GoldenRatio
for large t. For all m = Fibonacci[t- 1], the number of distinct
blocks of m successive elements that actually appear out of the 2
possibilities is m + 7 (making it a so-called Sturmian sequence as
discussed on page 1084).

(d) (Cantor set) The color of the element at position n is given
by If[FreeQ[IntegerDigits[n-1, 3], 1], 1, 0], which turns out
to be equivalent to
If[OddQ[n], Sign[Mod[Binomial[n-1, (n-1)/2], 3]], 0, 1]

There are 3! elements after t steps, of which 2! are black. The
picture below shows the number of black cells that occur
before position n. The resulting curve has a nested form, with
envelope n*Log[3, 2].
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n Growth rates. The total number of elements of each color that
occur at each step in a neighbor-independent substitution
system can be found by forming the matrix m where m[[i, ;]I
gives the number of elements of color j + 7 that appear in the
block that replaces an element of color i + 7. For case (c) above,
m={{1, 1}, {1, 0}}. A list that gives the number of elements of
step t then be found from
init. MatrixPower[m, t], where init gives the initial number of
elements of each color—{7, 0} for case (c) above. For large t,

each color at can

the total number of elements typically grows like A*, where
is the largest eigenvalue of m; the relative numbers of
elements of each color are given by the corresponding
eigenvector. For case (c), A is GoldenRatio, or (1 +V5)/2.
There are exceptional cases where A == 7, so that the growth is
the {010, 1}, 1->{1}},
m={{1,1}, {0, 1}}, and the number of elements at step t
starting with {0} is just t. For {0— {0, 1}, 1> {1, 2}, 2> {2}},
m={{1,1,0} {0, 1, 1}, {0, 0, 1}}, and the number of elements
starting with {0} is (t°-t+2)/2. For neighbor-independent

not exponential.  For rule

rules, the growth for large t must follow an exponential or an
integer power less than the number of possible colors. For
neighbor-dependent rules, any form of growth can in principle
be obtained.

n Fibonacci numbers. The Fibonacci numbers Fibonacci[n]
(f[n] for short) can be generated by the recurrence relation
fln_]:=f[n]=f[n-1]+f[n-2]
fl1]=f[2]=1
The first few Fibonacci numbers are: 1,1, 2, 3, 5, 8, 13, 21, 34,
55, 89, 144, 233, 377. For large n the ratio f[nj/f[n-1]
approaches GoldenRatio or (1+\'5 )/2 ~1.618.
Fibonacci[n] can be obtained in many ways:
* (GoldenRatio” - (-GoldenRatio) " )/\N'5
* Round[ GoldenRatio"/\'5 ]
= 211 Coefficient[(1+V'5 )", V5 ]
= MatrixPower[{{1, 1}, {1, 0}}, n-1][[1, 1]
= Numerator[NestList[1/(1+#) & 1, n]]
= Coefficient(Series[1/(1-t-12), {t, 0, n}], t"™"]
= Sum[Binomial[n-i-1,i], {i, 0, (n-1)/2}]
» 22 _ Count[IntegerDigits[Range[0, 2" 2], 2], {___, 1,1, ___}]
A fast method for evaluating Fibonacci[n] is
First[Fold[f, {1, 0, -1}, Rest[IntegerDigits[n, 2]]]]
fl{a_, b_, s_}, 0] ={a(a+2b), s+a(2a-b), 1}
fl{a_, b_, s_} 1]={-s+(a+b)(a+2b) al(a+2b) -1}
Fibonacci numbers appear to have first arisen in perhaps 200
BC in work by Pingala on enumerating possible patterns of
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poetry formed from syllables of two lengths. They were
independently discussed by Leonardo Fibonacci in 1202 as
solutions to a mathematical puzzle concerning rabbit
breeding, and by Johannes Kepler in 1611 in connection with
approximations to the pentagon. Their recurrence relation
appears to have been understood from the early 1600s, but it
has only been in the past very few decades that they have in
general become widely discussed.

For m>1, the value of n for which m == Fibonacci[n] is
Round[Log[GoldenRatio, V5 mj].

The sequence Mod|[Fibonacci[n], k] is purely
repetitive; the maximum period is 6k, achieved when

k=105" (compare page 975).

always

Mod([Fibonacci[n], n] has the fairly complicated form shown
below. It appears to be zero only when n is of the form 57 or
12 q, where q is not prime (g > 5).

200
150

0 100 150 200

The number GoldenRatio appears to have been used in art
and architecture since antiquity. 7/GoldenRatio is the default
AspectRatio for Mathematica graphics. In addition:

» GoldenRatio is the solution to x == 1+ 1/x or x? = x + 1

» The right-hand rectangle in I'T1 is similar to the whole
rectangle when the aspect ratio is GoldenRatio

= Cos[7/5] == Cos[36 °] == GoldenRatio/2

» The ratio of the length of the diagonal to the length of a
side in a regular pentagon is GoldenRatio

= The corners of an icosahedron are at coordinates
Flatten[Array [NestList[RotateRight,

{0, (-1)"" GoldenRatio, (~1)*}, 31 &, {2, 2}], 2]
» 1+ FixedPoint[N[1/(1 +#), k] & 1] approximates
GoldenRatio to k digits, as does
FixedPoint[N[Sqrt[1+#], k] & 1]
* A successive angle difference of GoldenRatio radians yields
points maximally separated around a circle (see page 1006).
u Lucas numbers. Lucas numbers Lucas[n] satisfy the same
recurrence relation f[n_]:=f[n-1]+f[n-2] as Fibonacci
numbers, but with the initial conditions f[1]=1; f[2]=3.
Among the relations satisfied by Lucas numbers are:
= Lucas[n_] := Fibonacci[n - 1] + Fibonacci[n + 1]
* GoldenRatio” == (Lucas[n] + Fibonacci[n]\'5 )/2

n Generalized Fibonacci sequences. Any linear recurrence
relation yields sequences with many properties in common
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with the Fibonacci numbers—though with GoldenRatio
replaced by other algebraic numbers. The Perrin sequence
fln_]:=f[n-2]+f[n-3]; f[0]=3;f[1]=0; f[2] =2 has the
peculiar property that Mod[f[n], n]==0 mostly but not
always only for n prime. (For more on recurrence relations
see page 128.)

n Connections with digit sequences. In a sequence generated
by a neighbor-independent substitution system the color of
the element at position n turns out always to be related to the
digit sequence of the number n in an appropriate base. The
basic reason for this is that as shown on page 84 the evolution
of the substitution system always yields a tree, and the
successive digits in n determine which branch is taken at
each level in order to reach the element at position n. In cases
(a) and (b) on pages 83 and 84, the tree has two branches at
every node, and so the base 2 digits of n determine the
successive left and right branches that must be taken. Given
that a branch with a certain color has been reached, the color
of the branch to be taken next is then determined purely by
the next digit in the digit sequence of n. For case (b) on pages
83 and 84, the rule that gives the color of the next branch in
terms of the color of the current branch and the next digit is
{{0,0}-0,{0, 1}>1,{1,0}->1,{1, 1}> 0}. In terms of this
rule, the color of the element at position n is given by
Fold[Replace[{#1, #2}, rule] &, 1, IntegerDigits[n-1, 2]]

The rule used here can be thought of as a finite automaton
with two states. In general, the behavior of any neighbor-
independent substitution system where each element is
subdivided into exactly k elements can be reproduced by a
finite automaton with k states operating on digit sequences
in base k. The nested structure of the patterns produced is
thus a direct consequence of the nesting seen in the patterns
of these digit sequences, as shown on page 117.

Note that if the rule for the finite automaton is represented

for example as {{1, 2}, {2, 1}} where each sublist corresponds

to a particular state, and the elements of the sublist give the

successor states with inputs Range[0, k- 1], then the nth

element in the output sequence can be obtained from
Fold[rule[[#1, #2]] &, 1, IntegerDigits(n-1, k] + 1]-1

while the first k7 elements can be obtained from
Nest[Flatten[rule[[#]]] & 1, m]-1

To treat examples such as case (c) where elements can
subdivide into blocks of several different lengths one must
generalize the notion of digit sequences. In base k a number
is constructed from a digit sequence a[r], ..., a[1], a[0]
(with O=ali] <k) according to Sumla[i]k', {i, O, r}]. But
given a sequence of digits that are each 0 or 1, it is also
possible for example to construct numbers according to
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Sum(ali] Fibonacci[i+ 2], {i, 0, r}]. (As discussed on page
1070, this representation is unique so long as one does not
allow any pairs of adjacent 1’s in the digit sequence.) It then
turns out that if one expresses the position n as a
generalized digit sequence of this kind, then the color of the
corresponding element in substitution system (c) is just the
last digit in this sequence.

n Connections with square roots. Substitution systems such
as (c) above are related to projections of lines with quadratic
irrational slopes, as discussed on page 904.

n Spectra of substitution systems. See page 1080.

= Representation by paths. An alternative to representing
substitution systems by 1D sequences of black and white
squares is to use 2D paths consisting of sequences of left and
right turns. The paths obtained at successive steps for rule (b)
above are shown below.

The pictures below show paths obtained with the rule
{1-{1},0- {0, 0, 1}}, starting from {0}. Note the similarity
to the 2D system shown on page 190.

L e g €7
When the paths do not cross themselves, nested structure is

evident. But in a case like the rule {7 {0, 0, 1}, 0> {1, 0}}
starting with {7}, the presence of many crossings tends to

hide such regularity, as in the pictures below.

] P
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n Paperfolding sequences. The sequence of up and down
creases in a strip of paper that is successively folded in half
is given by a substitution system; after ¢ steps the sequence
turns out to be NestList[Join[#, {0}, Reverse[1-#]] &, {0}, t].
The corresponding path (effectively obtained by making
each crease a right angle) is shown below. (See page 189.)

-] [z |2 2%

u 2D representations. Individual sequences from 1D
substitution systems can be displayed in 2D by breaking

e

2 H\;

them into a succession of rows. The pictures below show
results for the substitution systems on page 83. In case (b),
with rows chosen to be 2/ elements in length, the leftmost
column will always be identical to the beginning of the
sequence, and in addition every interior element will be
black exactly when the cell at the top of its column has the
same color as the one at the beginning of its row. In case (c),
stripes appear at angles related to GoldenRatio.

|

(a) (b) (c)

u Page 84 - Other examples.

(a) (Period-doubling sequence) After t steps, there are a total of
2"  elements, and the sequence is given by
Nest[MapAt[1-# &, Join[#, #], -1] &, {0}, t]. It contains a total
of Round[2'/3] black elements, and if the last element is
dropped, it forms a palindrome. The n'! element is given by
Mod([IntegerExponent[n, 2], 2]. As discussed on page 885, the
sequence appears in a vertical column of cellular automaton
rule 150. The Thue-Morse sequence discussed on page 890
can be obtained from it by applying
1-Mod[Flatten[Partition[ FoldList[Plus, 0, list], 1, 2], 2]

(b) The n' element is simply Mod[n, 2].

(c) Same as (a), after the replacement 7- {7, 7} in each
sequence. Note that the spectra of (a) and (c) are nevertheless
different, as discussed on page 1080.

(d) The length of the sequence at step t satisfies
alt]==2alt-1]+alt-2], so that a[t] = Round[(1+\ 2 )""/2]
for t> 1. The number of white elements at step t is then
Round[a[t]/\'2 ]. Much like example (c) on page 83 there are
m+1  distinct blocks of length m, and with
f=Floor[(1-1/V2)(#+1/V2)]& the n"™ element of the
sequence is given by f[n+ 1]-f[n] (see page 903).
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(e) For large t the number of elements increases like A’ with
A=(V13 +1)/2; there are always A times as many white
elements as black ones.

(f) The number of elements at step t is Round[(1++2 )/2], and
the n element is given by Floor[\V'2 (n+ 1)] - Floor[\/2Z n] (see
page 903).

(g) The number of elements is the same as in (f).

(h) The number of black elements is 2”7 ; the total number of
elements is 22 (t+1).

(i) and (j) The total number of elements is 3.

n History. In their various representations, 1D substitution
systems have been invented independently many times for
many different purposes. (For the history of fractals and 2D
substitution systems see page 934.) Viewed as generators of
sequences with certain combinatorial properties, substitution
systems such as example (b) on page 83 appeared in the work
of Axel Thue in 1906. (Thue’s stated purpose in this work
was to develop the science of logic by finding difficult
problems with possible connections to number theory.) The
sequence of example (b) was rediscovered by Marston Morse
in 1917 in connection with his development of symbolic
dynamics—and in finding what could happen in discrete
approximations to continuous systems. Studies of general
neighbor-independent substitution systems (sometimes
under such names as sequence homomorphisms, iterated
morphisms and uniform tag systems) have continued in this
context to this day. In addition, particularly since the 1980s,
they have been studied in the context of formal language
theory and the so-called combinatorics of words. (Period-
doubling phenomena also led to contact with physics starting

in the late 1970s.)

Independent of work in symbolic dynamics, substitution
systems viewed as generators of sequences were reinvented
in 1968 by Aristid Lindenmayer under the name of L systems
for the purpose of constructing models of branching plants
(see page 1005). So-called OL systems correspond to my
neighbor-independent substitution systems; 1L systems
correspond to the neighbor-dependent substitution systems
on page 85. Work on L systems has proceeded along two
quite different lines: modelling specific plant systems, and
investigating general computational capabilities. In the mid-
1980s, particularly through the work of Alvy Ray Smith, L
systems became widely used for realistic renderings of plants
in computer graphics.

The idea of constructing abstract trees such as family trees
according to definite rules presumably goes back to antiquity.
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The tree representation of rule (c) from page 83 was for
example probably drawn by Leonardo Fibonacci in 1202.

The first six levels of the specific pattern in example (a) on
page 83 correspond exactly to the segregation diagram for
the I Ching that arose in China as early as 2000 BC. Black
regions represent yin and white ones yang. The elements on
level six correspond to the 64 hexagrams of the I Ching. At
what time the segregation diagram was first drawn is not
clear, but it was almost certainly before 1000 AD, and in the
1600s it appears to have influenced Gottfried Leibniz in his
development of base 2 numbers.

Viewed in terms of digit sequences, example (d) from page 83
was discussed by Georg Cantor in 1883 in connection with his
investigations of the idea of continuity. General relations
between digit sequences and sequences produced by neighbor-
independent substitution systems were found in the 1960s.
Connections of sequences such as (c) to algebraic numbers (see
page 903) arose in precursors to studies of wavelets.

Paths representing sequences from 1D substitution systems can
be generated by 2D geometrical substitution systems, as on
page 189. The “C” curve shown on the facing page and on page
190 was for example described by Paul Lévy in 1937, and was
rediscovered as the output of a simple computer program by
William Gosper in the 1960s. Paperfolding or so-called dragon
curves (as shown above) were discussed by John Heighway in
the mid-1960s, and were analyzed by Chandler Davis, Donald
Knuth and others. These curves have the property that they
eventually fill space. Space-filling curves based on slightly more
complicated substitution systems were already discussed by
Giuseppe Peano in 1890 and by David Hilbert in 1891 in
connection with questions about the foundations of calculus.

Sequences from substitution systems have no doubt
appeared over the years as incidental features of great many
pieces of mathematical work. As early as 1851, for example,
Eugene Prouhet showed that if sequences of integers were
partitioned according to sequence (b) on page 83, then sums
of powers of these thus
Apply[Plus, Flatten[Position[s, i]]¥] is equal fori=0and i =1
if s is a sequence of the form (b) on page 83 with length 2",

integers would be equal:

m > k. The optimal solution to the Towers of Hanoi puzzle
invented in 1883 also turns out to be an example of a
substitution system sequence.

Sequential Substitution Systems

» Implementation. Sequential substitution systems can be
implemented quite directly by using Mathematica’s standard
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mechanism for applying transformation rules to symbolic
expressions. Having made the definition
Attributes[s] = Flat
the state of a sequential substitution system at a particular
step can be represented by a symbolic expression such as
s[1, 0, 1, 0]. The rule on page 82 can then be given simply as
s[1,0]-sl[0, 1,0]
while the rule on page 85 becomes
{s[0, 1,0]-s[0, 0, 1], s[0] - s[0, 1, 0]}

The Flat attribute of s makes these rules apply not only for
example to the whole sequence s[7, 0, 7, 0] but also to any
subsequence such as s[7,0]. (With s being Flat,
s[s[1,0], 1, s[0]] is equivalent to s[7, 0, 1, 0] and so on. A
Flat function has the mathematical property of being
associative.) And with this setup, t steps of evolution can be
found with
SSSEvolvelist[rule_, init_s, t_Integer] :=
NestList[# /. rule &, init, t]

Note that as an alternative to having s be Flat, one can
up
s[x___, 1,0, y___]-slx, 0, 1,0, y]. And by using rules such as
slx—, 1,0, y__]={s[x,0,1,0,y], Length[s[x]]}
keep track of the positions at which substitutions are made.

explicitly set rules based on patterns such as

one can
(StringReplace replaces all occurrences of a given substring,
not just the first one, so cannot be used directly as an
alternative to having a flat function.)

n Capabilities. Even with the single rule {s[7, 0] » s[0, 1]}, a
sequential substitution system can sort its initial conditions
so that all 0’s occur before all 1's. (See also page 1113.)

u Order of replacements. For many sequential substitution
systems the evolution effectively stops because a string is
produced to which none of the replacements given apply. In
most sequential substitution systems there is more than one
possible replacement that can in principle apply at a
particular step, so the order in which the replacements are
tried matters. (Multiway systems discussed on page 497 are
what result if all possible replacements are performed at each
step.) There are however special sequential substitution
systems (those with the so-called confluence property
discussed on page 1036) in which in a certain sense the order
of replacements does not matter.

n History. Sequential substitution systems are closely related
to the multiway systems discussed on page 938, and are often
considered examples of production systems or string
rewriting systems. In the form I discuss here, they seem to
have arisen first under the name “normal algorithms” in the
work of Andrei Markov in the late 1940s on computability
and the idealization of mathematical processes. Starting in
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the 1960s text editors like TECO and ed used sequential

substitution system rules, as have string-processing
languages such as SNOBOL and perl. Mathematica uses an
analog of sequential substitution system rules to transform
general symbolic expressions. The fact that new rules can be
added to a sequential substitution system incrementally
without changing its basic structure has made such systems

popular in studies of adaptive programming.

Tag Systems

» Implementation. With the rules for case (a) on page 94 given
for example by
{2, {{0, 0} {1, 1}, {1, 0} {}, {0, 1}~ {1, 0}, {1, 1} {0, 0, 0}}}
the evolution of a tag system can be obtained from
TSEvolveList[{n_, rule_}, init_, t_] := NestList[If[Length[#] <
n, {}, Join[Drop[#, n], Take[#, n] /. rule]] &, init, t]
An alternative implementation is based on applying to the
list at each step rules such as
{{0,0,s___}—>{s, 1,1}, {1,0, s___}—>{s},
{0,1,5___}—>(s, 1,0} {1,1,5___}—>{s, 0,0 0}}
There are a total of (k™" -1)/(k-1))¥" possible rules if blocks
up to length r can be added at each step and k colors are
allowed. For r =3, k =2 and n = 2 this is 50,625.

n Page 94 - Randomness. To get some idea of the randomness
of the behavior, one can look at the sequence of first elements
produced on successive steps. In case (a), the fraction of black
elements fluctuates around 1/2; in (b) it approaches 3/4; in
(d) it fluctuates around near 0.3548, while in (e) and (f) it does
not appear to stabilize.

n History. The tag systems that I consider are generalizations
of those first discussed by Emil Post in 1920 as simple
idealizations of certain syntactic reduction rules in Alfred
Whitehead and Bertrand Russell’s Principia Mathematica (see
page 1149). Post’s tag systems differ from mine in that his
allow the choice of block that is added at each step to
depend only on the very first element in the sequence at
that step (see however page 670). (The lag systems studied
in 1963 by Hao Wang allow dependence on more than just
the first element, but remove only the first element.) It turns
out that in order to get complex behavior in such systems,
one needs either to allow more than two possible colors for
each element, or to remove more than two elements from
the beginning of the sequence at each step. Around 1921,
Post apparently studied all tag systems of his type that
involve removal and addition of no more than two elements
at each step, and he concluded that none of them produced
complicated behavior. But then he looked at rules that
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remove three elements at each step, and he discovered the
rule {3, {{0,_, _}—>{0,0} {1,_, _}=>{1,1,0, 1}}}. As he noted,
the behavior of this rule varies considerably with the initial
conditions used. But at least for all the initial conditions up
to length 28, the rule eventually just leads to behavior that
repeats with a period of 1, 2, 6, 10, 28 or 40. With more than
two colors, one finds that rules of Post’s type which remove
just two elements at each step can yield complex behavior,
even starting from an initial condition such as {0, 0}. An
example is {2, {{0,_}-> {2, 1} {1, _}>{0} {2, _}>{0, 2, 1, 2}}}.
(See also pages 1113 and 1141.)

Cyclic Tag Systems

» Implementation. With the rules for the cyclic tag system on
page 95 given as {{1, 1}, {1, 0}}, the evolution can be obtained
from

CTEvolvelList[rules_, init_, t_] :=
Map[Last, NestList[CTStep, {rules, init}, t]]

CTStepl{{r_, s___}, {0, a___}}] .= {{s, r} {a}}
CTStep[{f{r_, s___}, {1, a___}}] :={{s, r}, Join[{a}, r]}
CTStep[{u_, {}}]:={u, {}}

The leading elements on many more than t successive steps
can be obtained directly from
CTlList[rules_, init_, t_] :=
Flatten[Map[Last, NestList[CTListStep, {rules, init}, t]]]

CTListStep[{rules_, list_}] :=
{RotateLeft[rules, Length[list]], Flatten[rules([
Mod|[Flatten[Position[list, 1]], Length[rules], 1]]]}

u Page 95 - Generalizations. The implementation above
immediately allows cyclic tag systems which cycle through a
list of more than two blocks. (With just one block the
behavior is always repetitive.) Cyclic tag systems which
allow any value for each element can be obtained by adding
the rule

CTStep[{{r_, s___} {n_,a___}}] :=
{{s, r}, Flatten[{a, Table[r, {n}]}]}

The leading elements in this case can be obtained using
CTListStep[{rules_, list_}] :=
{RotateLeft[rules, Length[list]], With[{n = Length[rules]},
Flatten[Apply[Table[#1, {#2}] & Map|[Transpose[
{rules, #}] &, Partition[list, n, n, 1, 0]], {2}]11]}

n Mechanical implementation. Cyclic tag systems admit a
particularly straightforward mechanical implementation.
Black and white balls are kept in a trough as in the picture
below. At each step the leftmost ball in the trough is released,
and if this ball is black (as determined, for example, by size) a
mechanism causes a new block of balls to be added at the
right-hand end of the trough. This mechanism can work in
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several ways; typically it will involve a rotary element that
determines which case of the rule to use at each step. Rule (e)
from the main text allows a particularly simple supply of
new balls. Note that the system will inevitably fail if the
trough overflows with balls.

0000000 00000 0000

n Page 96 - Properties. Assuming that black and white
elements occur in an uncorrelated way, then the sequences in
a cyclic tag system with n blocks should grow by an average
of Count[Flatten[rules], 1]/n-1 elements at each step. With
n =2 blocks, this means that growth can occur only if the
total number of black elements in both blocks is more than 3.
Rules such as {{7, 0}, {0, 1}} and {{1, 1}, {0}} therefore yield
repetitive behavior with sequences of limited length.

Note that if all blocks in a cyclic tag system with n blocks
have lengths divisible by n, then one can tell in advance on
which steps blocks will be added, and the overall behavior
obtained must correspond to a neighbor-independent
substitution system. The rules for the relevant substitution
system may however depend on the initial conditions for the
cyclic tag system.
Flatten[{1, O, CTList[{{1, 0, 0, 1}, {0, 1, 1, 0}}, {0, 1}, t]}]

gives for example the Thue-Morse substitution system
{1-1{1,0} 0->{0, 1}}.

In example (a), the elements are correlated, so that slower
growth occurs than in the estimate above. In example (c), the
elements are again correlated: the growth is by an average of
(V5 -1)/2~0.618 elements at each step, and the first
elements on alternate steps form the same nested sequence as
obtained from the substitution system {7 — {7, 0}, 0— {1}}.In
example (d), the frequency of 1’s among the first elements of
sequence is approximately 3/4; {0, 0} never occurs, and the
frequency of {7, 7} is approximately 1/2. In example (e), the
frequency of 1’s is again about 3/4, but now {0, 0} occurs
with frequency 0.05, {7, 7} occurs with frequency 0.55, while
{0, 0, 0} and (0, 1, 0} cannot occur.

n History. Cyclic tag systems were studied by Matthew Cook
in 1994 in connection with working on the rule 110 cellular
automaton for this book. The sequence (7,2, 2,1, 1,2, ...}
defined by the property list = Map[Length, Split[list]] was
suggested as a mathematical puzzle by William Kolakoski in
1965 and is equivalent to

Join[{1, 2}, Map[First, CTEvolveList[{{1}, {2}}, {2}, t]]]
It is known that this sequence does not repeat, contains no
more than two identical consecutive blocks, and has at least
very close to equal numbers of 1’s and 2’s. Replacing 2 by 3
yields a sequence which has a fairly simple nested form.
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Register Machines

n Implementation. The state of a register machine at a
particular step can be represented by the pair {n, list}, where
n gives the position in the program of current instruction
being executed (the “program counter”) and /ist gives the
values of the registers. The program for the register machine
on page 99 can then be given as
{i[1],d[2, 1], i[2], d[1, 3], d[2, 1]}

where /[_] represents an increment instruction, and d/[_, _] a
decrement jump.

With this setup, the evolution of any register machine can be
implemented using the functions (a typical initial condition is
{1,{0, 01)
RMStep[prog_, {n_Integer, list_List}] := If[n > Length[prog],
{n, list}, RMExecute[prog[[n]l, {n, list}]]
RMExecutel[i[r_], {n_, list_}] :={n+ 1, MapAt[# + 1 &, list, r]}
RMExecute[d[r_, m_], {n_, list_}] :=
If[listlr] > 0, {m, MapAt[#-1&, list, r]}, {n+1, list}]
RMEvolveList[prog_, init: {_Integer, _List}, t_Integer] :=
NestList[RMStep[prog, #] &, init, t]
The total number of possible programs of length n using k
registers is (k (1+n))". Note that by prepending suitable i[r]
instructions one can effectively set up initial conditions with
arbitrary values in registers.

= Halting. It is sometimes convenient to think of register
machines as going into a special halt state if they try to
execute instructions beyond the end of their program. (See
page 1137.) The fraction of possible register machines that do
this starting from initial condition {7, {0, 0}} decreases
steadily with program length n, reaching about 0.76 for n = 8.
The most common number of steps before halting is always
n, while the maximum numbers of steps for n up to 8 is
{1,3,5,10, 16, 37, 215, 1280} where in the last case this is
achieved by
{i[1],d[2, 7], d[2,1],i[2],i[2], d[1, 4], i[1], d[2, 3]}

u Page 101 - Extended instruction sets. One can consider also
including instructions such as

RMExecute[eq[r1_, r2_, m_], {n_, list_}] :=
If[list[r1] == list[r2]], {m, list}, {n+ 1, list}]

RMExecute[add[r1_, r2_], {n_, list_}] :=
{n+ 1, ReplacePart[list, listl[r1] + listl[r2], r1]}

RMExecute[jmp[r1_], {n_, list_}] :={list[[r1]], list}

Note that by being able to add and subtract only 1 at each step,
the register machines shown in the main text necessarily operate
quite slowly: they always take at least n steps to build up a
number of size n. But while extending the instruction set can
increase the speed of operations, it does not appear to yield a
much larger density of machines with complex behavior.
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= History. Register machines (also known as counter
machines and program machines) are a fairly obvious
idealization of practical computers, and have been invented
in slightly different forms several times. Early uses of them
were made by John Shepherdson and Howard Sturgis
around 1959 and Marvin Minsky around 1960. Somewhat
similar constructs were part of Kurt Godel’s 1931 work on

representing logic within arithmetic (see page 1158).

n Page 102 - Random programs. See page 1182.

Symbolic Systems

n Implementation. The evolution for t steps of the first
symbolic system shown can be implemented simply by
NestList[# /. e[x_][y_] - x[x[y]1] &, init, t]

= Symbolic expressions. Expressions like Log[x] and f[x] that
give values of functions are familiar from mathematics and
from typical computer languages. Expressions like f[g[x]]
giving compositions of functions are also familiar. But in
general, as in Mathematica, it is possible to have expressions in
which the head h in h[x] can itself be any expression—not just
a single symbol. Thus for example f[gl[x], f[g[h]][x] and
flgllh][x] are all possible expressions. And these kinds of
expressions often arise in Mathematica when one manipulates
functions as a whole before applying them to arguments.
(8, f[x] for example gives " [x] which is Derivative[2][f][x].)
(In principle one can imagine representing all objects with
forms such as f[x, y] by so-called currying as f[xJ[y], and
indeed I tried this in the early 1980s in SMP. But although this
can be convenient when f is a discrete function such as a
matrix, it is inconsistent with general mathematical and other
usage in which for example Gamma[x] and Gammala, x] are
both treated as values of functions.)

n Representations. Among the representations that can be
used for expressions are:

functional alblc[d]]] albllcld]] alblc]ld]] alb]lc]ld]

Polish {o,a8,0,b0,cd}|{o,08bo,cdl|{o,a00bcd|{eo0abcdl

operator ao (bo(cod)) (aob)o(cod) ao ((boc)od) ((aob)oc)od

{a, {{b, c}. d}}

A

he

{{fa, b}, c} d}

I

ah

tree {a, (b, {c, d}}}

rr

cd

{{a, b}, {c,d}}

SESIR

Typical transformation rules are non-local in all these
representations. Polish representation (whose reverse form
has been used in HP calculators) for an expression can be
obtained using (see also page 1173)

Flatten[expr //. x_[y_] = {o, X, y}]
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The original expression can be recovered using
First[Reverse[list] //. {w___, x_, y_, 0, z___} > {w, y[x], z}]
(Pictures of symbolic system evolution made with Polish
notation differ in detail but look qualitatively similar to those

made as in the main text with functional notation.)

The tree representation of an expression can be obtained
using expr /. x_[y_] = {x, y}, and when each object has just
one argument, the tree is binary, as in LISP.

If only a single symbol ever appears, then all that matters is
the overall structure of an expression, which can be captured
as in the main text by the sequence of opening and closing
brackets, given by
Flatten[Characters[ToString[expr]] /.
{"["=>1,"1"=>0,"€" - {}}]

n Possible expressions. [eafCount[expr] gives the number of
symbols that appear anywhere in an expression, while
Depth[expr] gives the number of closing brackets at the end
of its functional representation—equal to the number of
levels in the rightmost branch of the tree representation. (The
maximum number of levels in the tree can be computed from
expr/._Symbol — 1//. x_[y_]— 1+ Max[x, y].)

With a list s of possible symbols, c[s, n] gives all possible
expressions with LeafCount[expr] == n:

cls_, 1] =s;cls_, n_] := Flatten[
Table[Outer[#1[#2] &, c[s, n-m], c[s, m]], {m, n-1}]]

There are a total of Binomial[2n-2, n-1]Length[s]"/n such
expressions. When Length[s] == 1 the expressions correspond
to possible balanced sequences of opening and closing
brackets (see page 989).

u Page 103 - Properties. All initial conditions eventually evolve to
expressions of the form Nest[e, e, m], which then remain fixed.
The quantity expr //. fe » 0, x_[y_] » 2* + y } turns out to remain
constant through the evolution, so this gives the final value of m
for any initial condition. The maximum is Nest[2" & 0, n]
(compare page 906), achieved for initial conditions of the form
Nest[#[e] &, e, n]. (By analogy with page 1122 any e expression
can  be Church numeral
u=expr/.fe—2 x[y-]1-»y*}=2%", so that exprlajlb]
evolves to Nest[a, b, u].) During the evolution the rule can apply
only to the inner part FixedPoint[Replace[#, e[x_] - x] &, expr]

interpreted as a

of an expression. The depth of this inner part for initial condition
ele]lelle]le]le] is shown below. For all initial conditions this
depth seems at first to increase linearly, then to decrease in a
nested way according to

FoldList[Plus, O, Flatten[ Table[
{1, 1, Table[-1, {IntegerExponent[i, 2] + 1}1}, {i, m}]]]

This quantity alternates between value 7 at position 2/ and
value j at position 2/ -j + 1. It reaches a fixed point as soon as
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the depth reaches 0. For initial conditions of size n, this
occurs after at most Sum[Nest[2* & 0, i]-1, {i, n}] + 1 steps.
(See also page 1145.)
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u Other rules. If only a single variable appears in the rule,
then typically only nested behavior can be generated—
though in an example like e[x_][_] —» e[x[e[e][e]][e]] it can be
quite complex. The left-hand side of each rule can consist of
any expression; efe[x_]][y_] and e[e][x_[y_]] are two
possibilities. However, at least with small initial conditions it
seems easier to achieve complex behavior with rules based
on e[x_][y_]. Note that rules with no explicit e’s on the left-
hand side always give trees with regular nested structures;
x_[y_1-x[yl[x[y]l] (or x_-x[x] in Mathematica), for
example, yields balanced binary trees.

n Long halting times. Symbolic systems with rules of the form
e[x_][y_]— Nest[x, y, r] always evolve to fixed points—
though with initial conditions of size n this can take of order
Nest[r* & 0, n] steps (see above). In general there will be
symbolic systems where the number of steps to evolve to a
fixed point grows arbitrarily rapidly with n (see page 1145),
and indeed I suspect that there are even systems with quite
simple rules where proving that a fixed point is always
reached in a finite number of steps is beyond, for example,
the axiom system for arithmetic (see page 1163).

n Trees. The rules given on pages 103 and 104 correspond to
the transformations on trees shown below.

o~ G ‘mﬁm 7~ o
o ISRy S| e e
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The first few steps in evolution from two initial conditions
of the system on page 103 correspond to the sequences of
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trees below.

o
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n Order dependence. The expr/.lhs—rhs in

Mathematica has the effect of scanning the functional

operation

representation of expr from left to right, and applying rules
whenever possible while avoiding overlaps. (Standard
evaluation in Mathematica is equivalent to expr /. rules and
uses the same ordering, while Map uses a different order.)
One can have a rule be applied only once using
Module[{i =1}, expr /. Ihs > rhs /;i++==1]

Many symbolic systems (including the one on page 103) have
the so-called Church-Rosser property (see page 1036) which
implies that if a fixed point is reached in the evolution of the
system, this fixed point will be the same regardless of the
order in which rules are applied.

n History. Symbolic systems of the general type I discuss here
seem to have first arisen in 1920 in the work of Moses
Schonfinkel on what became known as combinators. As
discussed on page 1121 Schonfinkel introduced certain specific
rules that he suggested could be used to build up functions
defined in logic. Beginning in the 1930s there were a variety of
theoretical studies of how logic and mathematics could be set
up with combinators, notably by Haskell Curry. For the most
part, however, only Schonfinkel’s specific rules were ever
used, and only rather specific forms of behavior were
investigated. In the 1970s and 1980s there was interest in using
combinators as a basis for compilation of functional
programming languages, but only fairly specific situations of
immediate practical relevance were considered. (Combinators
have also been used as logic recreations, notably by Raymond
Smullyan.)

Constructs like combinators appear to have almost never been
studied in mainstream pure mathematics. Most likely the reason
is that building up functions on the basis of the structure of
symbolic expressions has never seemed to have much obvious
correspondence to the traditional mathematical view of
functions as mappings. And in fact even in mathematical logic,
combinators have usually not been considered mainstream.
Most likely the reason is that ever since the work of Bertrand
Russell in the early 1900s it has generally been assumed that it is
desirable to distinguish a hierarchy of different types of
functions and objects—analogous to the different types of data
supported in most programming languages. But combinators
are set up not to have any restrictions associated with types.
And it turns out that among programming languages
Mathematica is almost unique in also having this same feature.
And from experience with Mathematica it is now clear that
having a symbolic system which—like combinators—has no
built-in notion of types allows great generality and flexibility.
(One can always set up the analog of types by having rules only
for expressions whose heads have particular structures.)
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n Operator systems. One can generalize symbolic systems by
having rules that define transformations for any Mathematica
pattern. Often these can be thought of as one-way versions of
axioms for operator systems (see page 1172), but applied only
once per step (as /. does), rather than in all possible ways (as
in a multiway system)—so that the evolution is just given by
NestList[# /. rule &, init, t]. The rule x_ - xox then for example
generates a balanced binary tree. The pictures below show
the patterns of opening and closing parentheses obtained
from operator system evolution rules in a few cases.

n Network analogs. The state of a symbolic system can always

X_ = Xox X_oy_ = (yex)ey X_ey_= (yey)e(xex) X_ey_ = ye(xex)

be viewed as corresponding to a tree. If a more general
network is allowed then rules based on analogs of network
substitution systems from page 508 can be used. (One can
also construct an infinite tree from a general network by
following all its possible paths, as on page 277, but in most
cases there will be no simple way to apply symbolic system
rules to such a tree.)

How the Discoveries in This Chapter Were Made

u Page 109 - Repeatability and numerical analysis. The discrete
nature of the systems that I consider in most of this book
makes it almost inevitable that computer experiments on them
will be perfectly repeatable. But if, as in the past, one tries to do
computer experiments on continuous mathematical systems,
then the situation can be different. For in such cases one must
inevitably make discrete approximations for the underlying
representation of numbers and for the operations that one
performs on them. And in many practical situations, one relies
for these approximations on “machine arithmetic”—which can
differ from one computer system to another.

n Page 109 - Studying simple systems. Over the years, I have
watched with disappointment the continuing failure of most
scientists and mathematicians to grasp the idea of doing
computer experiments on the simplest possible systems.
Those with physical science backgrounds tend to add
features to their systems in an attempt to produce some kind
of presumed realism. And those with mathematical
backgrounds tend to add features to make their systems fit in
with complicated and abstract ideas—often related to
continuity—that exist in modern mathematics. The result of
all this has been that remarkably few truly meaningful
computer experiments have ended up ever being done.



THE WORLD OF SIMPLE PROGRAMS ‘ NOTES FOR CHAPTER 3

u Page 111 - The relevance of theorems. Following traditional
mathematical thinking, one might imagine that the best way
to be certain about what could possibly happen in some
particular system would be to prove a theorem about it. But
in my experience, proofs tend to be subject to many of the
same kinds of problems as computer experiments: it is easy
to end up making implicit assumptions that can be violated
by circumstances one cannot foresee. And indeed, by now I
have come to trust the correctness of conclusions based on
simple systematic computer experiments much more than I
trust all but the simplest proofs.

u Attitudes of mathematicians. Mathematicians often seem to
feel that computer experimentation is somehow less precise
than their standard mathematical methods. It is true that in
studying questions related to continuous mathematics,
imprecise numerical approximations have often been made
when computers are used (see above). But discrete or
symbolic computations can be absolutely precise. And in a
sense presenting a particular object found by experiment
(such as a cellular automaton whose evolution shows some
particular property) can be viewed as a constructive
existence proof for such an object. In doing mathematics
there is often the idea that proofs should explain the result
they prove—and one might not think this could be achieved
if one just presents an object with certain properties. But
being able to look in detail at how such an object works will
in many cases provide a much better understanding than a
standard abstract mathematical proof. And inevitably it is
much easier to find new results by the experimental
approach than by the traditional approach based on proofs.

n History of experimental mathematics. The general idea of
finding mathematical results by doing computational
experiments has a distinguished, if not widely discussed,
history. The method was extensively used, for example, by
Carl Friedrich Gauss in the 1800s in his studies of number
theory, and presumably by Srinivasa Ramanujan in the early
1900s in coming up with many algebraic identities. The
Gibbs phenomenon in Fourier analysis was noticed in 1898
on a mechanical computer constructed by Albert Michelson.
Solitons were rediscovered in experiments done around
1954 on an early electronic computer by Enrico Fermi and
collaborators. (They had been seen in physical systems by
John Scott Russell in 1834, but had not been widely

investigated.) The chaos phenomenon was noted in a
computer experiment by Edward Lorenz in 1962 (see page
971). Universal behavior in iterated maps (see page 921) was
discovered by Mitchell Feigenbaum in 1975 by looking at
examples from an electronic calculator. Many aspects of
fractals were found by Benoit Mandelbrot in the 1970s using
computer graphics. In the 1960s and 1970s a variety of
algebraic identities were found using computer algebra,
notably by William Gosper. (Starting in the mid-1970s I
routinely did computer algebra experiments to find
formulas in theoretical physics—though I did not mention
this when presenting the formulas.) The idea that as a
matter of principle there should be truths in mathematics
that can only be reached by some form of inductive
reasoning—like in natural science—was discussed by Kurt
Godel in the 1940s and by Gregory Chaitin in the 1970s. But
it received little attention. With the release of Mathematica in
1988, mathematical experiments began to emerge as a
standard element of practical mathematical pedagogy, and
gradually also as an approach to be tried in at least some
types of mathematical research, especially ones close to
number theory. But even now, unlike essentially all other
branches of science, mainstream mathematics continues to
be entirely dominated by than
experimental methods. And even when experiments are

theoretical = rather
done, their purpose is essentially always just to provide
another way to look at traditional questions in traditional
mathematical systems. What I do in this book—and started
in the early 1980s—is, however, rather different: I use
computer experiments to look at questions and systems that
can be viewed as having a mathematical character, yet have
never in the past been considered in any way by traditional
mathematics.

u Page 113 - Practicalities. The investigations described in this
chapter were done using Mathematica, mostly in 1992. For
larger searches, I sometimes created optimized C programs
that were controlled via MathLink from within Mathematica—
though with the versions of Mathematica that exist today this
would now be unnecessary. For my very largest searches, I
used Mathematica to dispatch programs to a large number of
different computers on a network, then had the computers
send me email whenever they found interesting results. (See
also page 854.)
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Systems Based on Numbers

The Notion of Numbers

u Implementation of digit sequences. A whole number n can
be converted to a sequence of digits in base k using
IntegerDigits[n, k] or (see also page 1094)
Reverse[Mod[NestWhileList[Floor[#/k] &, n, # = k &], k]]
and from a sequence of digits using FromDigits[list, k] or
Fold[k#1 +#2 &, O, list]
For a number x between 0 and 1, the first m digits in its digit
sequence in base k are given by RealDigits[x, k, m] or
Floor[k NestList[Mod[k#, 1] & x, m-1]]
and from these digits one can reconstruct an approximation
to the number using FromDigits[{list, 0}, k] or
Fold[#1/k + #2 &, O, Reverse[list]]/k

n Gray code.In looking at digit sequences, it is sometimes useful
to consider ordering numbers by a criterion other than their
size. An example is Gray code ordering, in which successive
numbers are arranged to differ in only one digit. One possible
such ordering for numbers with a total of m digits is
GrayCode[m_] :=

Nest[Join[#, Length[#] + Reverse[#]] &, {0}, m]
The succession of sizes and digit sequences of numbers
ordered in this way are shown below. (Note that the digit
sequence picture is turned on its side relative to those in the
main text). The number which appears at position i is given
by BitXor[i, Floor[i/2]].
BitXor[i, 2i]  yields

related function
digit

(Iterating the

numbers whose sequences

correspond to the rule 60 cellular automaton).

u A note for mathematicians. Some mathematicians will at
first find what I say in this chapter quite bizarre. It may help

however to point out that the traditional view of numbers
already shows signs of breaking down in many studies of
dynamical systems done over the past few decades. Thus for
example, instead of getting results in terms of continuous
functions, Cantor sets very often appear. Indeed, the
symbolic dynamics approach that is often used in dynamical
systems theory is quite close to the digit sequence approach I
use here—Markov partitions in dynamical systems theory
are essentially just generalizations of digit expansions.

However, in the cases that are analyzed in dynamical systems
theory, only shifts and other very simple operations are
typically performed on digit sequences. And as a result, most
of the phenomena that I discuss in this chapter have not been
seen in work done in dynamical systems theory.

n History of numbers. Numbers were probably first used
many thousands of years ago in commerce, and initially only
whole numbers and perhaps rational numbers were needed.
But already in Babylonian times, practical problems of
geometry began to require square roots. Nevertheless, for a
very long time, and despite some development of algebra,
only numbers that could somehow in principle be
constructed mechanically were ever considered. The
invention of fluxions by Isaac Newton in the late 1600s,
however, introduced the idea of continuous variables—
numbers with a continuous range of possible sizes. But while
this was a convenient and powerful notion, it also involved a
new level of abstraction, and it brought with it considerable
confusion about fundamental issues. In fact, it was really
only through the development of rigorous mathematical
analysis in the late 1800s that this confusion finally began to
clear up. And already by the 1880s Georg Cantor and others
had constructed completely discontinuous functions, in
which the idea of treating numbers as continuous variables
where only the size matters was called into question. But
until almost the 1970s, and the emergence of fractal geometry
and chaos theory, these functions were largely considered as
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mathematical curiosities, of no practical relevance. (See also
page 1168.)

Independent of pure mathematics, however, practical
applications of numbers have always had to go beyond the
abstract idealization of continuous variables. For whether
one does calculations by hand, by mechanical calculator or
by electronic computer, one always needs an explicit
representation for numbers, typically in terms of a sequence
of digits of a certain length. (From the 1930s to 1960s, some
work was done on so-called analog computers which used
electrical voltages to represent continuous variables, but such
machines turned out not to be reliable enough for most
practical purposes.) From the earliest days of electronic
computing, however, great efforts were made to try to
approximate a continuum of numbers as closely as possible.
And indeed for studying systems with fairly simple behavior,
such approximations can typically be made to work. But as
we shall see later in this chapter, with more complex
behavior, it is almost inevitable that the approximation
breaks down, and there is no choice but to look at the explicit
representations of numbers. (See also page 1128.)

= History of digit sequences. On an abacus or similar device
numbers are in effect represented by digit sequences. In
antiquity however most systems for writing numbers were
like the Roman one and not based on digit sequences. An
exception was the Babylonian base 60 system (from which
hours:minutes:seconds notation derives). The Hindu-Arabic
base 10 system in its modern form probably originated
around 600 AD, and particularly following the work of
Leonardo Fibonacci in the early 1200s, became common by
the 1400s. Base 2 appears to have first been considered
explicitly in the early 1600s (notably by John Napier in 1617),
and was studied in detail by Gottfried Leibniz starting in
1679. The possibility of arbitrary bases was stated by Blaise
Pascal in 1658. Various bases were used in puzzles, but rarely
in pure mathematics (work by Georg Cantor in the 1860s
being an exception). The first widespread use of base 2 was in
electronic computers, starting in the late 1940s. Even in the
1980s digit sequences were viewed by most mathematicians
as largely irrelevant for pure mathematical purposes. The
study of fractals and nesting, the appearance of many
algorithms involving digit sequences and the routine use of
long numbers in Mathematica have however gradually made
digit sequences be seen as more central to mathematics.

Elementary Arithmetic

n Page 117 - Substitution systems. There are many connections
between digit sequences and substitution systems, as
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discussed on page 891. The pattern shown here is essentially
a rotated version of the pattern generated by the first
substitution system on page 83.

u Page 117 - Digit counts. The number of black squares on row
n in the pattern shown here is given by DigitCount[n, 2, 1]
and is plotted below. This function appeared on page 870 in
the discussion of binomial coefficients modulo 2, and will
appear again in several other places in this book. Note the
inequality 7= DigitCount([n, 2, 1]=Log[2, n]. Formulas for
DigitCount[n, 2, 1] include n - IntegerExponent[n!, 2] and
2n-Logl[2, Denominator([Derivative[n][(1-#)""? &][0]/n!]]
Straightforward generalizations of DigitCount can be defined
for integer and non-integer bases and by looking not only at
the total number of digits but also at correlations between
digits. In all cases the analogs of the picture below have a

nested structure.

n Negative bases. Given a suitable list of digits from 0 to k-7

SuNWANDN

= f f f
48 16 32 64 128

one can obtain any positive or negative number using
FromDigits[list, -k]. The picture below shows the digit
sequences of successive numbers in base -2; the row j from
the bottom turns out to consist of alternating black and white
blocks of length 2/. (In ordinary base 2 a number -n can be
computer by
complementing each digit, including leading 0’s.) (See also
page 1093.)

represented as on a typical electronic

-42

5

» Non-power bases. One can consider representing numbers
by Sum[a[n]f[n], {n, 0, }] where the f[n] need not be k".
So long as f[n] grows less rapidly than 2" (as when
f = Fibonacci or f=Prime), digits 0 and 1 will suffice,
though the representation is not generally unique. (See
page 1070.)

One
generalizations of digit sequences in which numbers are
broken into parts combined not by addition but by
multiplication. Since numbers can be factored uniquely into

= Multiplicative digit sequences. can consider

products of powers of primes, a number can be specified by a
list in which 1’s appear at the positions of the appropriate
Prime[m]" (which can be sorted by size) and 0’s appear
elsewhere, as shown below. Note that unlike the case of
ordinary additive digits, far more than Log/m] digits are
required to specify a number m.
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u Page 120 - Powers of three inbase 2. The n™ row in the
pattern shown can be obtained simply as IntegerDigits[3", 2].
Even such individual rows seem in many respects random.
The picture below shows the fraction of 1’s that appear on
successive rows. The fraction seems to tend to 1/2.

L L
1 10 100 1,000 10,000 100,000

1,000,000

If one looks only at the rightmost s columns of the pattern,
one sees repetition—but the period of the repetition grows
like 2°. Typical vertical columns have one obvious deviation
from randomness: it is twice as probable for the same colors
to occur on successive steps than for opposite colors. (For
multiplier m in base k, the relative frequencies of pairs {i, j}
are given by Quotient[ai-j-1+m, k]-Quotient[mi-j-1, k].)

The sequence Mod[3", 2°] obtained from the rightmost s
digits linear
pseudorandom number generator. Such generators are
widely used in practical computer systems, as discussed

further on page 974. (Note that in the particular case used

corresponds to a simple congruential

here, pairs of numbers Mod[{3", 3™}, 2°] always lie on
lines; with multipliers other than 3, such regularities may
occur for longer blocks of numbers.)

Note that if one uses base 6 rather than base 2, then as shown
on page 614 powers of 3 still yield a complicated pattern, but
all operations are strictly local, and the system corresponds to
a cellular automaton with 6 possible colors for each cell and
rule {a_, b_, c_} > 3Mod[b, 2] + Floor[c/2] (see page 1093).

n Leading digits. In base b the leading digits of powers are
not equally probable, but follow the logarithmic law from
page 914.

u Page 122 - Powers of 3/2. The n™ value shown in the plot
here is Mod[(3/2)", 1]. Measurements suggest that these
values are uniformly distributed in the range 0 to 1, but
despite a fair amount of mathematical work since the 1940s,
there has been no substantial progress towards proving this.

In base 6, (3/2)" is a cellular automaton with rule

{a_, b_, c_}-» 3Mod[a + Quotient[b, 2], 2] +
Quotient[3 Mod[b, 2] + Quotient[c, 2], 2]

(Note that this rule is invertible.) Looking at u(3/2)" then
corresponds to studying the cellular automaton with an initial
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condition given by the base 6 digits of u. It is then possible to
find special values of u (an example is 0.166669170371...)
which make the first digit in the fractional part of u(3/2)"
always nonzero, so that Mod[u(3/2)", 1] > 1/6. In general, it
seems that Mod[u (3/2)", 1] can be kept as large as about 0.3
(e.g. with u = 0.38906669065 ...) but no larger.

n General powers. It has been known in principle since the
1930s that Mod[h", 1] is uniformly distributed in the range 0
to 1 for almost all values of h. However, no specific value of h
for which this is true has ever been explicitly found. (Some
attempts to construct such values were made in the 1970s.)
Exceptions are known to include so-called Pisot numbers
such as GoldenRatio, 2 +1 and Root[#°-#-1& 1] (the
numerically smallest of all Pisot numbers) for which
Mod[h", 1] becomes 0 or 1 for large n. Note that Mod[x h", 1]
effectively extracts successive digits of x in base h (see pages
149 and 919).

» Multiples of irrational numbers. Instead of powers one can
consider successive multiples Mod[hn, 1] of a number h. The
pictures below show results obtained as a function of n for
various choices of h. (These correspond to positions of a
particle bouncing around in an idealized box, as discussed on
pages 971 and 1022.)
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When h is a rational number, the sequence always repeats.
But in all other cases, the sequence does not repeat, and in
fact it is known that a uniform distribution of values is
obtained. (The average difference of successive values is
maximized for h = GoldenRatio, as mentioned on page 891.)

n Relation to substitution systems. Despite the uniform
distribution result in the note above,
Floor[(n+1)h]-Floor[nh] is completely

random, and can in fact be generated by a sequence of

the sequence
definitely not

substitution rules. The first m rules (which yield far more
than m elements of the original sequence) are obtained for
any h that is not a rational number from the continued
fraction form (see page 914) of h by

Map[({0— Join[#, {1}], 1 - Join[#, {1, 0}]} &)[Table[O,

{#-1}]]1 &, Reverse[Rest[ContinuedFraction[h, m]]]]

Given these rules, the original sequence is given by

Floor[h] + Fold[Flatten[#1 /. #2] &, {0}, rules]

If h is the solution to a quadratic equation, then the continued
fraction form is repetitive, and so there are a limited number
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of different substitution rules. In this case, therefore, the
original sequence can be found by a neighbor-independent
substitution system of the kind discussed on page 82. For
h = GoldenRatio the substitution system is {0 {7}, 1 {1, 0}}
(see page 890), for h=\2 itis {0-{0, 1}, 1-{0, 1, 0}} (see
page 892) and for h=V3 itis (0-{1, 1,04 1-{1,1,0, 1}
(The presence of nested structure is particularly evident in
FoldList[Plus, 0, Table[Mod[hn, 1]-1/2, {n, max}]].) (See also
pages 892, 916, 932 and 1084.)

n Other uniformly distributed sequences. Cases in which
Mod[a[n], 1] is uniformly distributed include Vn, nLogin],
Log[Fibonacci[n]], Log[n!], hn? and hPrime[n] (h irrational)
and probably nSin[n]. (See also page 914.)

n Page 122 - Implementation. The evolution for ¢ steps of the
system at the top of the page can be computed simply by
NestList[If[EvenQ[#], 3#/2, 3(#+1)/2] &, 1, t]

n Page 122 - The 3n+1 problem. The system described here is
similar to the so-called 37 +1 problem, in which one looks at
the rule n- If[EvenQ[n], n/2, (3n+1)/2] and asks whether
for any initial value of n the system eventually evolves to 1
(and thereafter simply repeats the sequence 1, 2, 1, 2, ...). It
has been observed that this happens for all initial values of n
up to at least 10'®, but despite a fair amount of mathematical
effort since the problem was first posed in the 1930s, no
general proof for all values of n has ever been found. (For
negative initial n, the evolution appears always to reach -1, -5
or -17, and then repeat with periods 1, 3 or 11 respectively.)
An alternative formulation is to ask whether for all n
FixedPoint[(3#/2 ~ IntegerExponent[#, 2] + 1)/2 & n] == 2

With the rule n—- If[EvenQ[n], 5n/2, (n+ 1)/2] used in the
main text, the sequence produced repeats if n ever reaches 2,
4 or 40 (and possibly higher numbers). But with initial
values of n up to 10,000, this happens in only 642 cases, and
with values up to 100,000 it happens in only 2683 cases. In
all other cases, the values of n in the sequence appear to
grow forever.

To get some idea about the origin of this behavior, one can
assume that successive values of n are randomly even and odd
with equal probability. And with this assumption, n should
increase by a factor of 5/2 half the time, and decrease by a factor
close to 1/2 the rest of the time—so that after t steps it should be
multiplied by an overall factor of about (V5 /2)" . Starting with
n=6, the effective exponents for t=70"Range[6] are
{39.6, 245.1, 1202.8, 9250.7, 98269.8, 1002020.4}. One
that all sequences do not grow forever is that even with perfect

reason
randomness, there will be fluctuations, and occasionally n will

reach a low value that makes it get stuck in a repetitive
sequence.
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If one applies the same kind of argument to the standard
3n+1 problem, then one concludes that n should on average
decrease by a factor of V3/2 at each step, making it
unsurprising that at least in most cases n eventually reaches
the value 1. Indeed, averaging over many initial values of n,
there is good quantitative agreement between the predictions
of the randomness approximation and the actual 3n+1
problem. But since there is no fundamental basis for the
randomness approximation, it is still conceivable that a
particular value of n exists that does not follow its
predictions.

The pictures below show how many steps are needed to
reach value 1 starting from different values of n. Case (a) is
the standard 37+ 1 problem. Cases (b) and (c) use somewhat
different rules that yield considerably simpler behavior. In
case (b), the number of steps is equal to the number of base 2
digits in n, while in case (c) it is determined by the number of
1’s in the base 2 digit sequence of n.

100

200
(a) n- If[EvenQ[n], n/2, (3n+1)/2]

10
5 /rl—’_/_/—l—-

[ 100

200
(b) n-If[EvenQ[n], n/2, (n+1)/2]

15
10
5
0

0 100

300 400

200
(c) n-If[EvenQ[n], n/2, n+ 1]

300 400

u 3n+1 problem as cellular automaton. If one writes the digits
of n in base 6, then the rule for updating the digit sequence is
a cellular automaton with 7 possible colors (color 6 works as
an end marker that appears to the left and right of the actual
digit sequence):
fa_, b_, c_}— If[b =6, If[EvenQ]a], 6, 4],
3Mod[a, 2] + Quotient[b, 2]/.0:» 6 /; a == 6]

The 3n+1 problem can then be viewed as a question about
the existence of persistent structure in this cellular
automaton.

n Reconstructing initial conditions. Given a particular starting
value of n, it is difficult to predict what precise sequence of even
and odd values will be obtained in the system on page 122. But
given t steps in this sequence as a list of 0's and 1’s, the
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following function will reconstruct the rightmost t digits in the
starting value of n:

IntegerDigits[First[Fold[{Mod[If[OddQ[#2], 2 First[#1]-1,
2 First[#1] PowerMod[5, -1, Last[#1]]], Last[#1]],
2Last[#1]} &, {0, 2}, Reversellist]]], 2, Length[list]]

n A reversible system. In both the ordinary 37n+1 problem
and in the systems discussed in the main text different
numbers often evolve to the same value so that there is no
unique way to reverse the evolution. However, with the rule
n— If[EvenQ[n], 3n/2, Round[3n/4]]
it is always possible to go backwards by the rule
n— If[Mod[n, 3] == 0, 2n/3, Round[4n/3]]

The picture shows the number of base 10 digits in numbers
obtained by backward and forward evolution from n = 8. For
n < 8, the system always enters a short cycle. Starting at n = 44,
there is also a length 12 cycle. But apart from these cycles, the
numbers produced always seem to grow without bound at an
average rate of 3/(2 V2 ) in the forward direction, and 24"/3
in the backward direction (at least all numbers up to 10,000
grow to above 10'%%). Approximately one number in 20 has the
property that evolution either backward or forward from it
never leads to a smaller number.

10
5

0 200 400 600 800

n Page 125 - Reversal-addition systems. The operation that is
performed here is
n - n+ FromDigits[Reverse[IntegerDigits[n, 2]], 2]

After a few steps, the digit sequence obtained is typically
reversal symmetric (a generalized palindrome) except for the
interchange of 0 and 1, and for the presence of localized
structures. The sequence expands by at least one digit every two
steps; more rapid expansion is typically correlated with
increased randomness. For most initial n, the overall pattern
obtained quickly becomes repetitive, with an effective period of
4 steps. But with the initial condition n =572, no repetition
occurs for at least a million steps, at which point n has 568418
base 2 digits. The plot below shows the lengths of the successive
regions of regularity visible on the right-hand edge of the
picture on page 126 over the course of the first million steps.

150 -
100 -
50 1

0

0 20,000 40,000 60,000 80,000 100,000 120,000

If one works directly with a digit sequence of fixed length,
dropping any carries on the left, then a repetitive pattern is
typically obtained fairly quickly. If one always includes one
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new digit on the left at every step, even when it is 0, then a
rather random pattern is produced.

n History. Systems similar to the one described here (though
often in base 10) were mentioned in the recreational
mathematics literature at least as long ago as 1939. A few small
computer experiments were done around 1970, but no large-
scale investigations seem to have previously been made.

= Digit reversal. Sequences of the form

Table[ FromDigits[
Reverse[IntegerDigits[n, k, m]], k], {n, 0, k™ - 1}]

shown below appear in algorithms such as the fast Fourier
transform and, with different values of k for different
coordinates, in certain quasi-Monte Carlo schemes. (See
pages 1073 and 1085.) Such sequences were considered by
Johannes van der Corput in 1935.

k=2,m=7 k=2,m=10

u Iterated run-length encoding. Starting say with {7} consider
repeatedly replacing /ist by (see page 1070)
Flatten[Map[{Length[#], First[#]} &, Split[list]]]
The resulting sequences contain only the numbers 1, 2 and 3,
but otherwise at first appear fairly random. However, as
noticed by John Conway around 1986, the sequences can
actually be obtained by a neighbor-independent substitution
system, acting on 92 subsequences, with rules such as
{3,1,1,38322,1,1,3}-1{{1,3,2},{1,2,3 2,2,2,1,1,3}}.
The system thus in the end produces patterns that are purely
nested, though formed from rather complicated elements.
The length of the sequence at the n step grows like 1",
where A=~7.3 is the root of a degree 71 polynomial,
corresponding to the largest eigenvalue of the transition
matrix for the substitution system.

n Digit count sequences. Starting say with {7} repeatedly
replace list by
Join[list, IntegerDigits[Apply[Plus, list], 2]]

The resulting sequences grow in length roughly like nLog[n].
The picture below shows the fluctuations around m/2 of the
cumulative number of 1’s up to position m in the sequence
obtained at step 1000. A definite nested structure similar to
picture (c) on page 130 is evident.

200

100

0 2000 4000 6000 8000 10000
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u Iterated bitwise operations. The pictures below show digit
sequences generated by repeatedly applying combinations of
bitwise and arithmetic operations. The first example
corresponds to elementary cellular automaton rule 60. Note

that any cellular automaton rule can be reproduced by some

appropriate combination of bitwise and arithmetic
operations.
BitXor[2 n, n] BitXor[3+2n, n] BitXor[3n, n]  BitXor[6n, n] ~ BitOr(2n, n]  BitOr[6n, n]

Recursive Sequences

u Page 128 - Recurrence relations. The rules for the sequences
given here all have the form of linear recurrence relations. An
explicit formula for the n™ term in each sequence can be
found by solving the algebraic equation obtained by
applying the replacement f[m_]—t" to the recurrence
relation. (In case (e), for example, the equation is
t"==-t"" +1"2.) Note that (d) is the Fibonacci sequence,
discussed on page 890.

Standard examples of recursive sequences that do not come

from linear recurrence relations include factorial
f[1]=1;f[n_]:=nf[n-1]

and Ackermann functions (see below). These two sequences

both grow rapidly, but smoothly.

A recurrence relation like
flO0]=x;f[n_]:=af[n-1](1-f[n-1])

corresponds to an iterated map of the kind discussed on page

920, and has complicated behavior for many rational x.

» Ackermann functions. A convenient example is
f[1,n_]:=n;flm_, 1]:=f[m-1,2]
flm_, n_]:=f[m-1,f[m, n-1]+1]
The original function constructed by Wilhelm Ackermann
around 1926 is essentially

fl1, x_, y_l:=x+y,
flm_, x_, y_1:=Nest[f[m-1,x, #] & x, y-1]

or

flm_, x_, y_]:=
Nest[Function[z, Nest[#1, x, z-1]] & x+# & m-1][y]

For successive m (following the so-called Grzegorczyk
hierarchy) this is x +y, xy, x¥, Nest[x" & 1, y], ... f[4, x, y]
can also be written Array[x &, y, 1, Power] and is sometimes
called tetration and denoted x7 7y.

n Page 129 - Computation of sequences. It is straightforward
to compute the various sequences given here, but to avoid a
rapid increase in computer time, it is essential to store all the
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values of f[n] that one has already computed, rather than
recomputing them every time they are needed. This is
achieved for example by the definitions
fln_]:=f[n]=f[n-f[n-1]]+f[n-f[n-2]]
fl1]=f[2]=1
The yield
meaningful sequences can depend on the details of how the

question of which recursive definitions
rules are applied. For example, f[-7] may occur, but if the
complete expression is f[-1]-f[-1], then the actual value of
f[-1] is irrelevant. The default form of evaluation for
recursive functions implemented by all standard computer
languages (including Mathematica) is the so-called leftmost
innermost scheme, which attempts to find explicit values for
each f[k] that occurs first, and will therefore never notice if
f[k] in fact occurs only in the combination f[k]-f[k]. (The
SMP system that I built around 1980 allowed different
schemes—but they rarely seemed useful and were difficult
to understand.)

n Page 131 - Properties of sequences. Sequence (d) is given by
f[n_] := (n + g[IntegerDigits[n, 2]1)/2
gl{(1)..31=1;9g[{1,(0)..}]=0
gl{1, s__}] := 1 +glIntegerDigits[ FromDigits[{s}, 2] + 1, 2]]

The list of elements in the sequence up to value m is given by
Flatten[ Table[ Table[n, {IntegerExponent[n, 2]+ 1}], {n, m}]]

The differences between the first 2 (2% - 1) of these elements is
Nest[Replace[#, {x___}— {x, 1, x, 0}] & {}, k]

The for which f[nj==m is given by

2m + 1-DigitCount[m, 2, 1] or IntegerExponent[(2m)!, 2]+ 1

(this satisfies h[1] =2, h[m_] := h[Floor[m/2]] + m).

largest n

The form of sequence (c) is similar to that obtained from
concatenation numbers on page 913. Hump m in the picture
of sequence (c) shown is given by

FoldList[Plus, O, Flatten[Nest[Delete[ NestList[Rest, #,
Length[#]-1], 2] & Append[Table[1, {m}], 0], m]]-1/2]

The first 27 elements in the sequence can also be generated
in terms of reordered base 2 digit sequences by
FoldList[Plus, 1, Map[Last[Last[#]] &,
Sort[Table[({Length[#], Apply[Plus, #], 1-#}&)[
IntegerDigits[i, 2]], {i, 2™ }]]]]

Note that the positive and negative fluctuations in sequence
(f) are not completely random: although the probability for
individual fluctuations in each direction seems to be the
same, the probability for two positive fluctuations in a row is
smaller than for two negative fluctuations in a row.

In the sequences discussed here, f[n_] always has the form
flp[n]]+f[q[n]]. The plots at the top of the next page show
p[n]and g[n] as a function of n.
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The process of evaluating f[n] for a particular n can be
thought of as yielding a tree where each node is a particular
f[k] which has two successors, f[p[k]] and f[q[k]]. The
distinct nodes reached starting from f[72] for sequence (f)
are then for example ({12}, {3, 7}, (1, 2, 4}, {1, 2}, {1}}. The total
lengths of these chains (corresponding to the depth of the
evaluation tree) seem to increase roughly like Log[n] for all
the rules on this page. For the Fibonacci sequence, it is
instead n - 7. The maximum number of distinct nodes at any
level in the tree has large fluctuations but its peaks seem to
increase roughly linearly for all the rules on this page (in the
Fibonacci case it is Ceiling[n/2]).

n History. The idea of sequences in which later terms are
deduced from earlier ones existed in antiquity, notably in the
method of induction and in various approximation schemes
(compare page 918). The Fibonacci sequence also appears to
have arisen in antiquity (see page 890). A fairly clear idea of
integer recurrence relations has existed since about the 1600s,
but until very recently mainstream mathematics has almost
never investigated them. In the late 1800s and early 1900s
issues about the foundations of mathematics (see note below)
led to the formal definition of so-called recursive functions.
But almost without exception the emphasis was on studying
what such functions could in principle do, not on looking at
the actual behavior of particular ones. And indeed, despite
their simple forms, recursive sequences of the kind I discuss
here do not for the most part ever appear to have been
studied before—although sequence (c) was mentioned in
lectures by John Conway around 1988, and the first 17 terms
of sequence (e) were given by Douglas Hofstadter in 1979.

n Primitive recursive functions. As part of trying to formalize
foundations of arithmetic Richard Dedekind began around
1888 to discuss possible functions that could be defined using
recursion (induction). By the 1920s there had then emerged a
definite notion of primitive recursive functions. The proof of
Godel’s Theorem in 1931 made use of both primitive and
general recursive functions—and by the mid-1930s emphasis
had shifted to discussion of general recursive functions.

Primitive recursive functions are defined to deal with non-
negative integers and to be set up by combining the basic

functions z=0& (zero), s=#+1& (successor) and

pli_]:=Slot[i] & (projection)
composition and primitive recursion

10, y___Integer] := gly]

flx_Integer, y___Integer] := h[f[x-1,y], x-1,y]

using the operations of

Plus and Times can then for example be defined as
plus[0, y_] =y, plus[x_, y_] := s[plus[x -1, y]]
times[0, y_] = 0, times[x_, y_] := plus[times[x -1, y], y]

Most familiar integer mathematical functions also turn out to
be primitive recursive—examples being Power, Mod,
Binomial, GCD and Prime. And indeed in the early 1900s it
was thought that perhaps any function that could reasonably
be computed would be primitive recursive (see page 1125).
But the construction in the late 1920s of the Ackermann
function f[/m, x, y] discussed above showed that this was not
correct. For any primitive recursive function can grow for
large x at most like f[m, x, x] with fixed m. Yet f[x, x, x] will
always eventually grow faster than this—demonstrating that
the whole
recursive. (See page 1162.)

Ackermann function cannot be primitive

A crucial feature of primitive recursive functions is that the
number of steps they take to evaluate is always limited, and
can always in effect be determined in advance, since the basic
operation of primitive recursion can be unwound simply as
flx_, y___]:=Fold[h[#1, #2, y] &, gly], Range[O, x-1]]
And what this means is that any computation that for
example fundamentally involves a search that might not
terminate cannot be implemented by a primitive recursive
function. General recursive functions, however, also allow
ulf_] = NestWhile[# + 1 &, O, Function[n, f[n, ##1]+ 0]] &
which
primitive recursive functions are always total functions, that

can perform unbounded searches. (Ordinary
give definite values for every possible input. But general
recursive functions can be partial functions, that do not
terminate for some inputs.) As discussed on page 1121 it
turns out that general recursive functions are universal, so
that they can be used to represent any possible computable
function. (Note that any general recursive function can be
expressed in the form c¢[f, u[g]] where f and g are primitive
recursive.)

In enumerating recursive functions it is convenient to use
symbolic definitions for composition and primitive recursion
clg-, h-__] = Applylg, Throughl{h}[##]]] &
rlg, h-]=
If[#1==0, g[##2], h[RO[#1 -1, #H2], #1-1, ##2]] &
where the more efficient unwound form is

rlg_, h_] = Fold[Function[{u, v}, hlu, v, #82]],
g[##2], Rangel0, #-1]] &

And in terms of these, for example, plus =r[p[1], s].
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The total number of recursive functions grows roughly
exponentially in the size (LeafCount) of such expressions, and
roughly linearly in the number of arguments.
Most randomly selected primitive recursive functions show
very simple behavior—either constant or linearly increasing
when fed successive integers as arguments. The smallest
examples that show other behavior are:
wr(z, r[s, s]], whichis 1/24# (# + 1) &, with quadratic
growth
2r[z, r[s, c[s, s]]], which is 2**" - # - 2 &, with exponential
growth
w1z, r[s, p[2]]], which is 2~ Ceiling[Log[2, # +2]]-#-2 &,
which shows very simple nesting
wrlz, rlcls, z], z]], which is Mod[#, 2] &, with repetitive
behavior
wrlz, r[s, r[s, s]]] which is
Fold[1/2#1 (#1+ 1) +#2 &, 0, Range[#]] &, growing like
2%,
rlz, rls, r(s, rl[s, p[2]]]]] is the first function
significantly more complex behavior, and indeed as the picture

to show

below indicates, it already shows remarkable randomness.
From its definition, the function can be written as

Fold[Fold[2 ~ Ceiling[Log[2, Ceiling[(#1 +2)/(#2 +2)]]]
(#2+2)-2-#1&, #2, Range[#1]] & O, Range[#]] &

Its first zeros are at {4, 126, 813, 966, 1166, 1177, 1666, 1897 .

1000
800F
600F
400F
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200 400 600 800

1000
Each zero is immediately followed by a maximum equal to x,
and as picture below shows, values tend to accumulate for
example on lines of the form +x/2% +(2m+1)2".

P S YR T gl i R e 1
[ 2000 6000 8000

000

Note that functions of the form Nest[r[c[s, z], #] &, c[s, s], n]
are given in terms of the original Ackermann function in the
note above by f[n+1,2 #+1]-1&.

Before the example above one might have thought that
primitive recursive functions would always have to show
But already
counterexample is Prime. And it turns out that if they never

rather simple behavior. an immediate
sample values below /0] the functions in the main text are

also all primitive recursive. (Their definitions have a
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primitive recursive structure, but to operate correctly they
must be given integers that are non-negative.)

Among functions with simple explicit definitions, essentially
the only examples known fundamentally to be not primitive
recursive are ones closely related to the Ackermann
function. But given an enumeration of primitive recursive
functions (say ordered first by LeafCount, then with Sort) in
which the m™ function is w/m] diagonalization (see page
1128) yields the function w/[x][x] shown below which
cannot be primitive recursive. It is inevitable that the
function shown must eventually grow faster than any
primitive recursive function (at x =356 its value is 63190,
while at x = 7464 it is 1073844). But by reducing the results
modulo 2 one gets a function that does not grow—and has
seemingly quite random behavior—yet is presumably again
not primitive recursive.

5000
4000
3000
2000
1000

0

0 500 1000 1500

(Note that multiple arguments to a recursive function can be
encoded as a single argument using functions like the 8 of
page 1120—though the irregularity of such functions tends to
make it difficult then to tell what is going on in the
underlying recursive function.)

n Ulam sequences. Slightly more complicated definitions in
terms of numbers yield all sorts of sequences with very
complicated forms. An example suggested by Stanislaw
Ulam around 1960 (in a peculiar attempt to get a 1D analog
of a 2D cellular automaton; see pages 877 and 928) starts
with {7, 2}, then successively appends the smallest number
that is the sum of two previous numbers in just one way,
yielding

{1,2,3,4,6,8 11,13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, ... }
With this initial condition, the sequence is known to go on
forever. At least up to n=710° terms, it increases roughly

like 73.5n, but as shown below the fluctuations seem

random.
o
-5000F
B , ! | !
0 200,000 400,000 600,000 500,000 7,000,000

The Sequence of Primes

n History of primes. Whether the Babylonians had the notion
of primes is not clear, but before 400 BC the Pythagoreans
had introduced primes as numbers of objects that can be
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arranged only in a single line, and not in any other
rectangular array. Around 300 BC Euclid discussed various
properties of primes in his Elements, giving for example a
proof that there are an infinity of primes. The sieve of
Eratosthenes was described in 200 BC, apparently following
ideas of Plato. Then starting in the early 1600s various
methods for factoring were developed, and conjectures
about formulas for primes were made. Pierre Fermat
suggested 22 +7 as a source for primes and Marin
Mersenne 2~Prime[n]-1 (see page 911). In 1752 Christian
Goldbach showed that no ordinary polynomial could
generate only primes, though as pointed out by Leonhard
does so for n<40. (With If or Floor
included there are at least complicated cases known where

Euler n?-n+41

polynomial-like formulas can be set up whose evaluation
corresponds to explicit prime-generating procedures—see
page 1162.) Starting around 1800 extensive work was done
on analytical approximations to the distribution of primes
(see below). There continued to be slow progress in finding
specific large primes; 2°" - 7 was found prime around 1750
and 2'% -1 in 1876. (27 + 1 was found composite in 1732,
as have now all 22" +1 for n=32.) Then starting in the
1950s with the use of electronic computers many new large
primes were found. The number of digits in the largest
roughly
exponentially with time over the past two decades, with a

known prime has historically increased
prime of over 4 million digits (273466917 _ 1) now being

known (see page 911).

u Page 132 - Finding primes. The sieve of Eratosthenes
shown in the picture is an appropriate procedure if one
wants to find every prime, but testing whether an
individual number is prime can be done much more
efficiently, as in PrimeQ[n] in Mathematica, for example by
using Fermat’s so-called little theorem that Mod[a”", p] = 1
whenever p is prime. The n™ prime Prime[n] can also be
computed fairly efficiently using ideas from analytic

number theory (see below).

u Decimation systems. A somewhat similar system starts with
a line of cells, then at each step removes every k™ cell that
remains, as in the pictures below. The number of steps for
which a cell at position n will survive can be computed as
Module[{g=n+k-1,s=1},
While[Mod[q, k] # 0, q = Ceilingl(k-1)q/k]; s++];s]

If a cell is going to survive for s steps, then it turns out that
this can be determined by looking at the last s digits in the
base k representation of its position. For k=2, a cell
survives for s steps if these digits are all 0 (so that
s==IntegerExponent[n, k]). But for k>2, no such simple
characterization appears to exist.

BASED ON NUMBERS
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k=2 I I I I

If the cells are arranged on a circle of size n, the question of

which cell is removed last is the so-called Josephus problem.
The solution is Fold[Mod[#1 +k, #2, 1] &, 0, Range[n]], or
FromDigits[ RotateLeft[IntegerDigits[n, 2]], 2] for k = 2.

n Page 132 - Divisors. The picture below shows as black
squares the divisors of each successive number (which
correspond to the gray dots in the picture in the main text).
Primes have divisors 1 and n only. (See also pages 902
and 747.)

Prime[n] s
approximately by nLog[n]+nLog[Log[n]]. (Prime[10°] is
22,801,763,489 while the approximation gives 2.38 x10'°.) A
first approximation to PrimePi[n] is n/Log[n]. A somewhat

u Page 133 - Results about primes. given

better Logintegral[n], equal to
Integrate[1/Log[t], {t, 2, n}]. This was found empirically by
Carl Friedrich Gauss in 1792, based on looking at a table of
primes. (PrimePi[10°] is 50,847,534 while Loglntegral[10°] is
about 50,849,235.) A still better approximation is obtained by
subtracting Sum[LogIntegral[n"'], {i, -e, co}] where the r, are

approximation  is

the complex zeros of the Riemann zeta function Zeta/s],
discussed on page 918. According to the Riemann
Hypothesis, the PrimePi[n]  and
Logintegral[n] is of order V'n Log[n]. More refined analytical
estimates of PrimePi[n] are good enough that they are used

difference between

by Mathematica to compute Prime[n] for large n.

It is known that the ratio of the number of primes of the form
4k +1 and 4k +3 asymptotically approaches 1, but almost
nothing has been proved about the fluctuations.

The gap between successive primes Prime[n] - Prime[n-1] is
thought to grow on average at most like Log[Prime[n]]?. It is
known that for sufficiently large n a gap of any size must
exist. It is believed but not proved that there are an infinite
number of “twin primes” with a gap of exactly 2.

n History of number theory. Most areas of mathematics go
from inception to maturity within at most a century. But in
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number theory there are questions that were formulated
more than 2000 years ago (such as whether any odd perfect
numbers exist) that have still not been answered. Of the
principles that have been established in number theory, a
great many were first revealed by explicit experiments.
From its inception in classical times, through its
development in the 1600s to 1800s, number theory was
largely separate from other fields of mathematics. But
starting at the end of the 1800s, increasing connections were
found to other areas of both continuous and discrete
mathematics. And through these connections, sophisticated
proofs of such results as Fermat’s Last Theorem—open for
350 years—have been constructed. Long considered a rather
esoteric branch of mathematics, number theory has in recent
years grown in practical importance through its use in areas
such as coding theory, cryptography and statistical
mechanics. Properties of numbers and certain elementary
aspects of number theory have also always played a central
role in amateur and recreational mathematics. And as this
chapter indicates, number theory can also be used to
provide many examples of the basic phenomena discussed

in this book.

n Page 134 - Tables of primes. No explicit tables of primes
appear to have survived from antiquity, but it seems likely
that all primes up to somewhere between 5000 and 10000
were known. (In 348 BC, Plato mentioned divisors of 5040,
and by 100 AD there is evidence that the fifth perfect number
was known, requiring the knowledge that 8191 is prime.) In
1202 Leonardo Fibonacci explicitly gave as an example a list
of primes up to 100. And by the mid-1600s there were printed
tables of primes up to 100,000, containing as much data as in
plots (c) and (d). In the 1700s and 1800s many tables of
number factorizations were constructed; by the 1770s there
was a table up to 2 million, and by the 1860s up to 100
million. A table of primes up to a trillion could now be
generated fairly easily with current computer technology—
though for most purposes computation of specific primes is
more useful.

n Page 134 - Numbers of primes. The fact that curve (c) must
cross the axis was proved by John Littlewood in 1914, and it
is known to have at least one crossing below 10*"”. Somewhat
the
MoebiusMul[n], equal to 0 if n has a repeated prime factor and
otherwise (-1)~Length[Factorinteger[n]]. The quantity
FoldList[Plus, 0, Table[MoebiusMul[i], {i, n}]] behaves very
much like a random walk. The so-called Mertens Conjecture
from 1897 stated that the magnitude of this quantity is less
than Vn . But this was disproved in 1983, although the
necessary n is not known explicitly.

related to the curves shown here is function
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n Relative primes. A single number is prime if it has no non-
trivial factors. Two numbers are said to be relatively prime if
they share no non-trivial factors. The pattern formed by
numbers with this property is shown on page 613.

n Page 135 - Properties. (a) The number of divisors of n is
given by DivisorSigma[0, n], equal to Length[Divisors[n]]. For
this number is
Log[n] + 2 EulerGamma - 1.

(b) (Aliquot that
DivisorSigma[ 1, n]-2n, equal to Apply[Plus, Divisors[n]]-2n.
This quantity was considered of great significance in

large n on average of order

sums) The quantity is plotted is

antiquity, particularly by the Pythagoreans. Numbers were
known as abundant, deficient or perfect depending on
whether the quantity was positive, negative or zero. (See
notes numbers For

on perfect

DivisorSigma[1, n] is

below.) large n,
like
Log[Log[n]]nExp[EulerGamma], and on average like w2 n/6
(see page 1093). As discovered by Srinivasa Ramanujan in

known to grow at most

1918 its fluctuations (see below) can be obtained from the
formula
1/6 72 n Sum[Apply[Plus, Cos[2 T n Select[
Range[s], GCD[s, #] == 1 &]/s]1/s?, {s, o}]

(c) Squares are taken to be of positive or negative integers, or
zero. The number of ways of expressing an integer n as the
sum of two such squares is 4 Apply[Plus, Im[i*Divisors[n]]].
This is nonzero when all prime factors of n of the form 4k + 3
appear with even exponents. There is no known simple
formula for the number of ways of expressing an integer as a
sum of three squares, although part of the condition in the
main text for integers to be expressible in this way was
established by René Descartes in 1638 and the rest by Adrien
Legendre in 1798. Note that the total number of integers less
than n which can be expressed as a sum of three squares
increases roughly like 5n/6, with fluctuations related to
IntegerDigits[n, 4]. It is known that the directions of all
vectors {x, y, z} for which x?+y?+2z?==n are uniformly
distributed in the limit of large n.

The total number of ways that integers less than n can be
expressed as a sum of d squares is equal to the number of
integer lattice points that lie inside a sphere of radius V'n in
d-dimensional space. For d = 2, this approaches 7 n for large
n, with an error of order n°, where 1/4 < ¢ 5 0.315.

(d) All numbers n can be expressed as the sum of four squares,
in exactly 8Apply[Plus, Select[Divisors[n], Mod[#, 4] + 0 &]]
ways, as established by Carl Jacobi in 1829. Edward Waring
stated in 1770 that any number can be expressed as a sum of at
most 9 cubes and 19 fourth powers. Seven cubes appear to
suffice for all but 17 numbers, the last of which is 455; four
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cubes may suffice for all but 113936676 numbers, the last of
which is 7373170279850. (See also page 1166.)

(e) Goldbach’s Conjecture has been verified for all even
numbers up to 4x10™. In 1973 it was proved that any
even number can be written as the sum of a prime and a
number that has at most two prime factors, not necessarily
distinct. The number of ways of writing an integer n as a
sum of two primes can be calculated explicitly as
Length[Select[n - Table[Prime[i], {i, PrimePi[n]}], PrimeQ]].
This quantity was conjectured by G. H. Hardy and John
Littlewood in 1922 to be proportional to

2nApply[Times, Map[(#-1)/(#-2) &,
Map[First, Rest[Factorlnteger[n]]]]]/Log[n]?

It was proved in 1937 by Ivan Vinogradov that any large odd
integer can be expressed as a sum of three primes.

n Trapezoidal primes. If one lays out n objects in an axb
rectangular array, then n is prime if either 4 or b must be 7.
Following the Pythagorean idea of figurate numbers one can
instead consider laying out objects in an array of b rows,
containing successively a, a-7, ... objects. It turns out all

numbers except powers of 2 can be represented this way.

u Other integer functions. IntegerExponent[n, k] gives nested
behavior as for decimation systems on page 909, while
MultiplicativeOrder[k, n] ~— and  EulerPhi[n]
complicated behavior, as shown on pages 257 and 1093.

yield more

n Spectra. The pictures below show frequency spectra
obtained from the sequences in the main text. Some
regularity is evident, and in cases (a) and (b) it can be
understood from trigonometric sum formulas of Ramanujan
discussed above (see also pages 586 and 1081).

(a) (b) (c)
L .HHHAJ\’M\J“\ . l wll LJM.J Lol LJLHM

(d) (e) MultiplicativeOrder2, n]
L;J___A__LALI - L. ;.l....i“.l - w

n Perfect numbers. Perfect numbers with the property that
Apply[Plus, Divisors[n]] == 2 n have been studied since at least
the time of Pythagoras around 500 BC. The first few perfect
numbers are {6, 28, 496, 8128, 33550336} (a total of 39 are
currently known). It was shown by Euclid in 300 BC that

2™7(2"-1) is a perfect number whenever 2"-17 is prime.
Leonhard Euler then proved around 1780 that every even
perfect number must have this form. The values of n for the
known Mersenne primes 2" - 7 are shown below. These values
can be found wusing the so-called Lucas-Lehmer test
Nest[Mod[#? -2, 2"-1] & 4, n-2] == 0,and in all cases n itself
must be prime.

BASED ON NUMBERS
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Whether any odd perfect numbers exist is probably the single
oldest unsolved problem in mathematics. It is known that any odd
perfect number must be greater than 103
least 10°, and must be less than 4% if it has only s prime factors.
Looking at curve (b) on page 135, however, it does not seem
inconceivable that an odd perfect number could exist. For odd n up
to 500 million the only values near 0 that appear in the curve are
{-6,-5,-4,-2, -1, 6, 18, 26, 30, 36}, with, for example, the first 6
occurring at n=8925 and last 18 occurring at n = 159030135.
Various generalizations of perfect numbers have been considered,
requiring  for  example  IntegerQ[DivisorSigmal1, n]/n]
(pluperfect) or Abs[DivisorSigmal[ 1, n]-2 n] < r (quasiperfect).

, must have a factor of at

u Iterated aliquot sums. Related to case (b) above is a system
which repeats the replacement n —» Apply[Plus, Divisors(n]]-n
or equivalently n— DivisorSigma[1, n]-n. The fixed points of
this procedure are the perfect numbers (see above). Other
numbers usually evolve to perfect numbers, or to short
repetitive sequences of numbers. But if one starts, for
example, with the number 276, then the picture below shows
the number of base 10 digits in the value obtained at each

step.
60
40
20
0
[ 100 200 300 400 500

After 500 steps, the value is the 53-digit number

39448887705043893375102470161238803295318090278129552
The question of whether such values can increase forever was
considered by Eugene Catalan in 1887, and has remained
unresolved since.

Mathematical Constants

n Page 137 - Digits of pi. The digits of 7 shown here can be
obtained in less than a second from Mathematica on a typical
current using N[, 7000].
number of decimal digits of 7 that have been computed is
roughly as follows: 2000 BC (Babylonians, Egyptians): 2
digits; 200 BC (Archimedes): 5 digits; 1430 AD: 14 digits;
1610: 35 digits; 1706: 100 digits; 1844: 200 digits; 1855: 500
digits; 1949 (ENIAC computer): 2037 digits; 1961: 100,000
digits (IBM 7090); 1973: 1 million; 1983: 16 million; 1989: 1
billion; 1997: 50 billion; 1999: 206 billion. In the first 200

computer Historically, the
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billion digits, the frequencies of 0 through 9 differ from 20
billion by
{30841, -85289, 136978, 69393, -78309,
-82947, -118485, -32406, 291044, -130820}

An early approximation to 7 was

asumf(-1)*/(2k +1), {k, 0, m}]
30 digits were obtained with

2 Apply[Times, 2/Rest[NestList[Sqrt[2 +#] &, 0, m]]]
An efficient way to compute 7 to n digits of precision is

(#2117 /#[[3]] &)[NestWhile[Apply[Function[{a, b, ¢, d},
{(a+b)/2, Sqrt[ab], c-d(a-b)?, 2d}], #] &,
{1, 1/Sqrt[N[2, n]], 1/4, 1/4}, #[[ 1] + #[2] &]]

This requires about Log[2, n] steps, or a total of roughly
nLog[nj? operations (see page 1134).

s Computing n'" digits directly. Most methods for computing

mathematical constants progressively generate each
additional digit. But following work by Simon Plouffe and
others in 1995 it became clear that it is sometimes possible to
generate, at least with overwhelming probability, the n' digit
without explicitly finding previous ones. As an example, the
n™ digit of Log[2] in base 2 is formally given by
Round[FractionalPart [2" Sum[27 /k, {k, }]]]. And in practice
the n'" digit can be found just by computing slightly over n
terms of the sum, according to

Round[FractionalPart [
Sum{FractionalPart[PowerMod[2, n-k, k]/k], {k, n}] +
Sum[2"k/k, {k, n+1,n+d}]]
where several values of d can be tried to check that the result
does not change. (Note that with finite-precision arithmetic,
some exponentially small probability exists that truncation of
numbers will lead to incorrect results.) The same basic
approach as for Log[2] can be used to obtain base 16 digits in
7 from the following formula for 7r:

Sum[16™ (4/(8k +1)-2/(8k +4) -
1/(8k +5)-1/(8k +6)), {k, 0, co}]

A similar approach can also be used for many other constants
that can be viewed as related to values of PolyLog .

173 1417
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n Page 139 - Rational numbers. The pictures above show the
base 2 digit sequences of numbers m/n for successive m.

The digits of 7/n in base b repeat with period
MultiplicativeOrder[b, FixedPoint[#/GCD[#, b] & n]]

which is equal to MultiplicativeOrder[b, n] for prime n, and is

at most n- 7. Each repeating block of digits typically seems

quite random, and has properties such as all possible

subblocks of digits up to a certain length appearing (see

page 1084).

u Page 139 - Digit sequence properties. Empirical evidence for
the randomness of the digit sequences of \V'n, 7, etc. has
been accumulating since early computer experiments in the
1940s. The evidence is based on applying various standard
statistical tests of randomness, and remains somewhat
haphazard. (Already in 1888 John Venn had noted for
example that the first 707 digits of 7 lead to an apparently
typical 2D random walk.) (See page 1089.)

The fact that V2 is not a rational number was discovered by
the Pythagoreans. Numbers that arise as solutions of
polynomial equations are called algebraic; those that do not
are called transcendental. e and 7 were proved to be
transcendental in 1873 and 1882 respectively. It is known that
Exp[n] and Log[n] for whole numbers n (except 0 and 1
respectively) are transcendental. It is also known for example
that Gamma[1/3] and BesselJ[0, n] are transcendental. It is
not known for example whether EulerGamma is even
irrational.

A number is said to be “normal” in a particular base if every
digit and every block of digits of any length occur with equal
frequency. Note that the fact that a number is normal in one
base does not imply anything about its normality in another
base (unless the bases are related for example by both being
powers of 2). Despite empirical evidence, no number
expressed just in terms of standard mathematical functions
has ever been rigorously proved to be normal. It has
nevertheless been known since the work of Emile Borel in
1909 that numbers picked randomly on the basis of their
value are almost always normal. And indeed with explicit
constructions in terms of digits, it is quite straightforward to
get numbers that are normal. An example of this is the
number 0.1234567891011121314... obtained by concatenating
the digits of successive integers in base 10 (see below). This
number was discussed by David Champernowne in 1933,
and is known to be transcendental. A few other results are
also known. One based on gradual extension of work by
Richard Stoneham from 1971 is that numbers of the form
Sum[1/(p" b""), {n, eo}] for prime p > 2 are normal in base b
(for GCD[b, p] == 1), and are transcendental.
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u Page 141 - Square roots. A standard way to compute Vn is
Newton's method (actually used already in 2000 BC by the
Babylonians), in which one takes an estimate of the value x
and then successively applies the rule x - 7/2 (x + n/x). After
t steps, this method yields a result accurate to about t? digits.

Another approach to computing square roots is based on the
fact that the ratio of successive terms in for example the
sequence f[i] =2f[i-1]+f[i-2] with f[1]=f[2] =1 tends to
7+V2 . This method yields about 2.5¢ base 2 digits after ¢
steps.

The method of computing square roots shown in the main
text is less efficient (it computes t digits in t steps), but
illustrates more of the mechanisms involved. The basic idea
is at every step ¢ to maintain the relation s?+4r==4'n,
keeping r as small as possible so as to make s <2 Vn <5 +4.
Note that the method works not only for integers, but for any
rational number n for which 7=n<4.

n Nested digit sequences. The number obtained from the
substitution system {7- {1, 0}, 0 {0, 1}} is approximately
0.587545966 in base 10. It is certainly conceivable that a
quantity such as Feigenbaum’s constant (approximately
4.6692016091) could have a digit sequence with this kind of
nested structure.

From the result on page 890, the number whose digits are
obtained from {71-{1,0},0-{1}} is
Sum[2 ~(-Floor[n GoldenRatio]), {n, eo}].  This
known to be transcendental. The n'' term in its continued
fraction representation turns out to be 2~ Fibonacci[n-2].

given by

number is

The fact that nested digit sequences do not correspond to
algebraic numbers follows from work by Alfred van der
Poorten and others in the early 1980s. The argument is based
on showing that an algebraic function always exists for
which the coefficients in its power series correspond to any
given nested sequence when reduced modulo some p. (See
page 1092.) But then there is a general result that if a
particular sequence of power series coefficients can be
obtained from an algebraic (but not rational) function
modulo a particular p, then it can only be obtained from
transcendental functions modulo any other p—or over the
integers.

u Concatenation sequences. One can consider forming
sequences by concatenating digits of successive integers in
base k, as in Flatten[Table[IntegerDigits[i, k], {i, n}]]. In the
limit, such sequences contain with equal frequency all
possible blocks of any given length, but as shown on page
597, they exhibit other obvious deviations from randomness.
The picture below shows the k =2 sequence chopped into

length 256 blocks.
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Applying FoldList[Plus, 0, 2list-1] to the whole sequence
yields the pattern shown below.

2000 -
1500 |
1000 |
500 |
0 1 1 1 L

0 5,000 10,000 15,000 20,000

The systematic increase is a consequence of the leading 1 in
each concatenated sequence. Dropping this 1 yields the
pattern below.

-800 iy L L 1
0 5,000 10,000 15,000

This is similar to picture (c) on page 131, and is a digit-by-
digit version of

FoldList[Plus, 0O,
Table[Apply[Plus, 2 Rest[IntegerDigits[i, 2]]1- 1], {i, n}]]

Note that although the picture above has a nested structure,
the original concatenation sequences are not nested, and so
cannot be generated by substitution systems. The element at
position n in the first sequence discussed above can however
be obtained in about Log[n] steps using

((IntegerDigits[#3 + Quotient[#1, #2], 2][[
Mod[#1, #2] + 1] &)[n-(#-2) 27" -2, #,
2% ] &)[NestWhile[# + 1 &, 0, (#-1)2% +1<n&]]
where the result of the NestlWhile can be expressed as

Ceiling[ 1 + ProductLog[1/2 (n-1)Log[2]]/Log[2]]

Following work by Maxim Rytin in the late 1990s about k™’
digits of a concatenation sequence can be found fairly
efficiently from
k/(k=1)? -
(k - 7)Sum[k(ktw(7+sfsl<)/(kf1) (1/((k-1) (kS - 7}2)_
K/((k=1) (k%1 =1)2) +1/(k**1 = 1)), {s, n}]

Concatenation sequences can also be generated by joining
together digits from other representations of numbers; the
picture below shows results for the Gray code representation
from page 901.
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u Specially constructed transcendental numbers. Numbers
known to be transcendental include ones whose digit
sequences contain 1’s only at positions n/, 2" or Fibonacci[n].
Concatenation sequences, as well as generalizations formed
by concatenating values of polynomials at successive integer
points, are also known

transcendental.

to yield numbers that are

» Runs of digits. One can consider any base 2 digit sequence as
consisting of successive runs of 0's and 1’s, constructed from
the list of run lengths by
Fold[Join[#1, Table[1- Last[#1], {#2}]] &, {0}, list]

This representation is related to so-called surreal numbers
(though with the first few digits different). The number with
run lengths corresponding to successive integers (so that the
nth digit is Mod[Floor[1/2 + Sqrt[2n]], 2]) turns out to be
(1-2" EllipticTheta[2, 0, 1/2] + EllipticTheta[3, 0, 1/2])/2, and
appears at least not to be algebraic.

n Leading digits. Even though in individual numbers
generated by simple mathematical procedures all possible
digits often appear to occur with equal frequency, leading
digits in sequences of numbers typically do not. Instead it is
common for a leading digit s in base b to occur with
frequency Log[b, (s + 1)/s] (so that in base 10 1’s occur 30% of
the time and 9’s 4.5%). This will happen whenever
FractionalPart[Log[b, a[n]]] is uniformly distributed, which, as
discussed on page 903, is known to be true for sequences such
as r" (with Log[b, r] irrational), n", n!, Fibonacci[n], but not
rn, Prime[n] or Log[n]. A logarithmic law for leading digits is
also found in many practical numerical tables, as noted by

Simon Newcomb in 1881 and Frank Benford in 1938.

n Page 143 - Continued fractions. The first n terms in the
continued fraction representation for a number x can be
found the Mathematica
ContinuedFraction, or from
Floor[NestList[1/Mod[#, 1] &, x, n-1]]
A rational approximation to the number x can be
reconstructed the
FromContinuedFraction or by
Fold[1/#1 +#2 &, Last[list], Rest[Reverse[list]]]

from built-in function

from continued  fraction using

The pictures below show the digit sequences of successive
iterates obtained from NestList[1/Mod[#, 1] &, x, n] for
several numbers x.

'a
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Unlike ordinary digits, the individual terms in a continued
fraction can be of any size. In the continued fraction for a
randomly chosen number, the probability to find a term of
size s is Log[2, (1+1/s)/(1+1/(s+1))], so that the
probability of getting a 1 is about 41.50%, and the probability
of getting a large term falls off like 7/s?.If one looks at many
terms, then their geometric mean is finite, and approaches
Khinchin’s constant Khinchin ~ 2.68545.

In the first 1000 terms of the continued fraction for 7, there
are 412 1’s, and the geometric mean is about 2.6656. The
largest individual term is the 432th one, which is equal to
20,776. In the first million terms, there are 414,526 1’s, the
geometric mean is 2.68447, and the largest term is the
453,294th one, which is 12,996,958.

Note that although the usual continued fraction for 7 looks
quite random, modified forms such as

4/(Fold[#2/#1 +2 &, 2, Reverse[Range[1, n, 21211-1)
can be very regular.

The continued fractions for Exp[2/k] and Tan[k/2] have simple
forms (as discussed by Leonhard Euler in the mid-1700s); other
rational powers of e and tangents do not appear to. The sequence
of odd numbers gives the continued fraction for Coth[7]; the
sequence of even numbers for Bessell[0, 1]/Bessell[1, 1]. In
general, continued fractions whose n' term is a n + b correspond
to numbers given by Bessell[b/a, 2/a]/Bessell[b/a+ 1, 2/a].
Numbers whose continued fraction terms are polynomials in n
can presumably also be represented in terms of suitably
generalized hypergeometric functions. (All so-called Hurwitz
numbers have continued fractions that consist of interleaved
polynomial sequences—a property left
x- (ax+b)/(cx+d))

unchanged by

As discovered by Jeffrey Shallit in 1979, numbers of the form
Sum[1/k?, {i, 0, }] that have nonzero digits in base k only
at positions 2' turn out to have continued fractions with
terms of limited size, and with a nested structure that can be
found using a substitution system according to
{0, k-1,k+2,k k k-2, k k+2, k-2, k}
Nest[Flatten[{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {5, 6}, {3, 4],
{9, 10} {7, 8}, {9, 10}, {3, 4}H[#]1 &, 1, n1]
The continued fractions for square roots are always periodic;
for higher roots they never appear to show any significant
regularities. The first million terms in the continued fraction
for 2" contain 414,983 1’s, have geometric mean 2.68505,
and have largest term 4,156,269 at position 484,709. Terms of
any size presumably in the end always occur in continued
fractions for higher roots, though this is not known for
certain. Fairly large terms are sometimes seen quite early: in
5% term 19 is 3052, while in Root[10+8#-#° & 1] term 34
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is 1,501,790. The presence of a large term indicates a close
approximation to a rational number. In a few known cases
simple formulas yield numbers that are close but not equal to
integers. An example discovered by Srinivasa Ramanujan
around 1913 is Exp[7r V763 ], which is an integer to one part
in 10%, and has second continued fraction term
1,333,462,407,511. (This particular example can be understood
from the fact that as d increases Exp[mVd ] becomes
extremely close to -1728 KleinInvariantJ[(1+\~d )/2], which
turns out to be an integer whenever there is unique
factorization of numbers of the form a + b V-d —and d = 163
is the largest of the 9 cases for which this is so.) Other less
spectacular examples include Exp[7r]- 7 and 163/Log[163].

Numbers with digits given by concatenation sequences in
any base k (see note above) seem to have unusual continued
fractions, in which most terms are fairly small, but some are
extremely large. Thus with k = 2, term 30 is 4,534,532, term 64
is 4,682,854,730,443,938, term 152 is about 2x10* and term
669,468 is about 2 x 107%2 . (For the k = 10 case of the original
Champernowne number, even term 18 is already about
5x10'5) The plots below of the numbers of digits in
successive terms turn out to have patterns of peaks that show
some signs of nesting.

80000F 4 _ _
60000t k=2 1000000¢ k=3
40000 500000
20000 il N 0 | |
0 200000 400000 600000 800000 1000000 0 20000 40000 60000 80000 100000

In analogy to digits in a concatenation sequence the terms in
the sequence

Flatten[ Table[ Rest[ ContinuedFraction[a/b]],
{b, 2, n}, {a, b-1}]]

are known to occur with the same frequencies as they would
in the continued fraction representation for a randomly
chosen number.

The pictures below show as a function of n the quantity

With[{r = FromContinuedFraction[ ContinuedFraction[x, n]]},
-Log[Denominator[r], Abs[x-r]]]

which gives a measure of the closeness of successive rational
approximations to x. For any irrational number this quantity
cannot be less than 2, while for algebraic irrationals Klaus
Roth showed in 1955 that it can only have finitely many
peaks that reach above any specified level.
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n History. Euclid’s algorithm states that starting from
integers {a, b} iterating {a_, b_}~ If[a>b, (a-b, b}, {a, b-a}]
eventually leads to {GCD[a, b], 0}. (See page 1093.) The
pictures below show how this works. The numbers of
successively smaller squares (corresponding to the numbers

of steps in the algorithm) turn out to be exactly
ContinuedFraction[a/b].
10 11 12 13

Hl e

It was discovered in antiquity that Euclid’s algorithm starting

with {x, 7} terminates only when x is rational. In all cases,
however, the relationship with continued fractions remains,
as below.

GoldenRatio V2 V3 e/2

Infinite continued fractions appear to have first been

explicitly written down in the mid-1500s, and to have
become popular in many problems in number theory by the
1700s. Leonhard Euler studied many continued fractions,
while Joseph Lagrange seems to have thought that it might
be possible to recognize any algebraic number from its
continued fraction. The periodicity of continued fractions for
quadratic irrationals was proved by Evariste Galois in 1828.
From the late 1800s interest in continued fractions as such
waned; it finally increased again in the 1980s in connection
with problems in dynamical systems theory.

» Egyptian fractions. Following the ancient Egyptian number
system, rational numbers can be represented by sums of
as in 3/7==1/3+1/11+1/231. With suitable
distinct integers a/n] one can represent any number by
Sum([1/a[n], {n, e}]. The
aln]=2", n(n+1) and (n+1)!/n all yield 7. Simple choices
for a[n] yield many standard transcendental numbers: n/:
e-1; nf?: Bessell[0,2]-1; n2": Log[2]; n?’: m’/6;
(2n-1)(2n-3): W\/?/Q; 3-16n+16n°: m/8; nnl:
ExpintegralEi[ 1] - EulerGamma. (See also page 902.)

reciprocals,

representation is not unique;

n Nested radicals. Given a list of integers acting like digits one
can consider representing numbers in the form
Fold[Sqrt[#1 +#2] &, 0, Reverse[list]]. A sequence of identical
digits d then corresponds to the number (7 + Sqrt[4d + 1])/2.
(Note that Nest[Sqrt[# + 2] & 0, n] == 2 Cos[7/2"*].) Repeats
of a digit block b give numbers that solve
Fold[#1? -#2 &, x, b] == x. It appears that digits 0, 1, 2 are
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sufficient to represent uniquely all numbers between 1 and 2.

For any number x the first n digits are given by
Ceiling[NestList[(2 - Mod[-#, 1])? & x?, n-1]-2]

Even rational numbers such as 3/2 do not yield simple digit

sequences. For random x, digits 0, 1, 2 appear to occur with

limiting frequencies Sqrt[2 +d]-Sqrt[1+d].

n Digital slope representation. One can approximate a line of
any slope h as in the picture below by a sequence of segments
on a square grid (such as a digital display device). The
vertical distance moved at the n™ horizontal position is
Floor[nh]-Floor[(n-1)h], and the sequence obtained from
this (which contains only terms Floor[h] and Floor[h]+ 1)
provides a unique representation for h. As discussed on page
903 this sequence can be generated by applying substitution
rules derived from the continued fraction form of h. If h is
rational, the sequence is repetitive, while if h is a quadratic
irrational, it is nested. Given a sequence of length n, an
approximation to h can be reconstructed using

Max[MapIndexed[#1/First[#2] &,
FoldList[Plus, First[list], Rest[list]]]]
The fractional part of the result obtained is always an
element of the Farey sequence
Union[Flatten[Table[a/b, {b, n}, {a, 0, b}1]]

(See also pages 892, 932 and 1084.)

[
!
vz

GoldenRatio

7 ™

n Representations for integers. See page 560.

n Operator representations. Instead of repeatedly applying an
operation to a sequence of digits one can consider forming
integers (or other numbers) by performing trees of operations on
a single constant. Thus, for example, any integer m can be
obtained by a tree of m-7 additions of 1's such as
(1+(1+1))+1. Another operator that can be used to generate
any integer is acb =2a+b-1.Inthis case 6is (7o(7017))o 7, and
an integer m can be obtained by Tr[7 + IntegerDigits[m, 2]]-2
or at most Log[2, m] applications of o.
ka+b-k+1 can be used for any k. It also turns out that
BitXor[2a, b] + 1 works, though in this case even for 2 the
smallest  representation is  (7o7)e(7o((101)e7)).  (For
BitOr[2a, b]-1 the number of applications needed is
With[{i = IntegerDigits[m, 2]}, Tr[i+ 1]+i[[2] (T +i[3])-1].)

The pictures below show the smallest number of operator

The operator

applications required for successive integers. With the pair of
operators a+b and axb (a case considered in recreational
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mathematics for 7 -ary operators) numbers of the form 3° have
particularly small representations. Note that in all cases the size of
the smallest representation must at some level increase like
Log[m] (compare pages 1067 and 1070), but there may be some

“algorithmically ~ simple” integers that have shorter
representations.
20t 2a+b-1 20+ &’ +ab
1ol 10l A A
R Y
ok L L 0 [l L . L L
100 200 300 400 500 100 200 300 400 500
20F {a+b, ab} 20t BitOr[2a, b]-1
o 7W . ,WWWW
ok L L L L 0E L L L L
100 200 300 400 500 100 200 300 400 500
20+ BitXor[2a, b]-1 20t BitXor[2a, b] +1
10 10 ’W e
0 L L L L 0E L L L L
100 200 300 400 500 100 200 300 400 500

» Number classification. One can imagine classifying real
numbers in terms of what kinds of operations are needed to
obtain them from integers. Rational numbers require only
division (or solving linear equations), while algebraic
numbers require solving polynomial equations. Rather little
is known about numbers that require solving transcendental
equations—and indeed it can even be undecidable (see page
1138) whether two equations can yield the same number.
Starting with integers and then applying arithmetic
operations and fractional powers one can readily reproduce
all algebraic numbers up to degree 4, but not beyond. The
sets of numbers that can be obtained by applying elementary
functions like Exp, Log and Sin seem in various ways to be
disjoint from algebraic numbers. But if one applies
multivariate elliptic or hypergeometric functions it was
established in the late 1800s and early 1900s that one can in
principle reach any algebraic number. One can also ask what
numbers can be generated by integrals (or by solving
equations). flx],
Integrate[f[x], {x, 0, 1}] must always be a linear function of
Log and ArcTan applied
(f[x]=1/(1+x?) for example yields 7/4). Multiple integrals

differential For rational functions

to algebraic numbers
of rational functions can be more complicated, as in

Integrate[1/(1+x? +y?), {x, 0, 1}, {y, 0, 1}] =
HypergeometricPFQ[{1/2, 1, 1}, {3/2, 3/2}, 1/9]/6 +
1/2 7w ArcSinh[ 1] - Catalan
and presumably often cannot be expressed at all in terms of
standard mathematical functions. Integrals of rational
functions over regions defined by polynomial inequalities
have recently been discussed under the name “periods”.
Many numbers associated with Zeta and Gamma can readily
be generated, though apparently for example e and
EulerGamma cannot. One can also consider numbers
obtained from infinite sums (or by solving recurrence
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equations). If f[n] is a rational function, Sum[f[n], {n, c}]
must just be a linear combination of PolyGamma functions,
but again the multivariate case can be much more
complicated.

Mathematical Functions

n Page 145 - Mathematical functions.  (See  page  1091.)
BesselJ[0, x] goes like Sin[x]/\/x for large x while AiryAi[-x]
21/x"™ . Other standard mathematical
functions that oscillate at large x include JacobiSN and
MathieuC. Most hypergeometric-type functions
increase or decrease exponentially for large arguments,

goes like Sin[x
either

though in the directions of Stokes lines in the complex plane
they can oscillate sinusoidally. (For AiryAi[x] the Stokes lines
are in directions (-7)~({1, 2, 3}/3).)

u Lissajous figures. Plotting multiple sine functions each on
different coordinate axes yields so-called Lissajous or
Bowditch figures, as illustrated below. If the coefficients
inside all the sine functions are rational, then going from
t=0 to t=2mApply[LCM, Map[Denominator, list]] yields a
closed curve. Irrational ratios of coefficients lead to curves
that never close and eventually fill space uniformly.
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u Page 146 - Two sine functions. Sin[ax]+Sin[bx] can be
28in[1/2(a+b)x]Cos[1/2(a-b)x] (using
TrigFactor), implying that the function has two families of

equally spaced zeros: 27w n/(a+b)and 27 (n+1/2)/(b-a) .

rewritten as

= Differential equations. The function Sin/x]+Sin[V'2 x] can
be obtained as the solution of the differential equation
y"[x]+2y[x]-Sin[x] =0 with the
y[0]==0,y'[0]=2.

» Musical chords. In a so-called equal temperament scale the

initial  conditions

12 standard musical notes that make up an octave have a
progression of frequencies 2”’?. Most schemes for musical
tuning use rational approximations to these numbers. Until
the past century, and since at least the 1300s, diminished fifth
or tritone chords that consist of two notes (such as C and Gb)
with frequency ratio V2 have generally been avoided as
sounding discordant. (See also page 1079.)

u Page 146 - Three sine functions. All zeros of the function
Sinf[ax]+Sin[bx] lie on the real
Sin[ax]+Sin[bx]+Sin[cx], there are usually zeros off the

axis. But for
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real axis (evensay fora=1,b =3/2, ¢ = 5/3), as shown in the
pictures below.

Sin[z]+Sin[\'2 z]
—_—
h MM/\V—/\/\/_\,\P/
0
Rl W
= ————— ————— ———

0 10 20 30 40 50
Sinlz]+Sin[N'Z z]+Sin[V3 z]
2
1
0
-1
2

0 10 20 30 40 50

If a, b and ¢ are rational, Sinfax]+ Sin[bx]+ Sin[cx] is
periodic with period 2 w/GCD/a, b, c], and there are a limited
number of different spacings between zeros. But in a case like
Sinlx]+Sin[\'2 x] +Sin[V'3 x]

distribution of spacings between zeros, as shown on a

there is a continuous
logarithmic scale below. (For 0 <x < 10° there are a total of
448,494 zeros, with maximum spacing ~4.6 and minimum
spacing =~ 0.013.)

Sinfx]+Sin[\'Z x]+Sin[\E x] SinlxJ+Sin[\Z x]+Sin[NZ x]

0 1 2 3 4 5 0 1 2 3 4 5

n Page 147 - Substitution systems. Cos[ax]-Cos[bx] has two
families of zeros: 27wn/(a+b) and 27mwn/(b-a). Assuming
b >a >0, the number of zeros from the second family which
appear between the n'" and n + 1™ zero from the first family is
(Floor[(n+1)#]- Floor[n#] &)[(b-a)/(a+b)]
and as discussed on page 903 this sequence can be obtained
by applying a sequence of
Sin[ax]+Sin[bx] a
substitution rules yields the analogous sequence in which

substitution rules. For

more complicated sequence of

-1/2 is inserted in each Floor.

» Many sine functions. Adding many sine functions yields a
so-called Fourier series (see page 1074). The pictures below
show Sum[Sin[nx]/n, {n, k}] for various numbers of terms k.
Apart from a glitch that gets narrower with increasing k (the
so-called Gibbs phenomenon), the result has a simple
triangular form. Other so-called Fourier series in which the
coefficient of Sinfmx] is a smooth function of m for all
integer m yield similarly simple results.
JANYA S AN
N ~N
5 terms

2 terms

RN
N

25 terms

The pictures below show Sum[Sin[n? x]/n?, {n, k}], where in
effect all coefficients of Sin[m x] other than those where m is
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a perfect square are set to zero. The result is a much more
complicated curve. Note that for x of the form p7/q, the
k =00 sum is just

(7/(2q))? Sum[Sin[n” p 70/q]/Sin[n /(2)F%, {n, q - 1}]

MM
o\

5 terms

M\
o\

25 terms

2 terms

The pictures below show Sum([Cos[2" x], {n, k}] (as studied
by Karl Weierstrass in 1872). The curves obtained in this case
show a definite nested structure, in which the value at a point
x is essentially determined directly from the base 2 digit
sequence of x. (See also page 1080.)
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The curves below are approximations to
Sum([Cos[2" x]/2°", {n, o}]. They can be thought of as having

dimensions 2 -a and smoothed power spectra w™"*??.
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» FM synthesis. More complicated curves can be obtained for
example using FM synthesis, as discussed on page 1079.

u Page 148 - Zeta function. For real s the Riemann zeta
function Zeta[s] is given by Sum[1/n® {n, co}]
Product[1/(1-Prime[n]®), {n, }]. The zeta
analytically continued for complex s was studied by
Bernhard Riemann in 1859, who showed that PrimePi[n]
could be approximated (see page 909) up to order V'n by
LoglIntegral[n] - Sum[LoglIntegral[n~r[i]], {i, oo, ®}],

or

function as

where
the r[i] are the complex zeros of Zeta[s]. The Riemann
Hypothesis then states that all r[i] satisfy Re[r[i]]==1/2,
which implies a certain randomness in the distribution of
prime numbers, and a bound of order Vn Log[n] on
PrimePi[n] - LogIntegral[n]. The Riemann Hypothesis is also
equivalent to the statement that a bound of order V'n Log[n]?
exists on Abs[Log[Apply[LCM, Range[n]]]-n].

The picture in the main text shows RiemannSiegelZ[t],
defined as Zeta[1/2 +it] Exp[i RiemannSiegelTheta[t]], where
RiemannSiegelTheta[t_] =
Arg[Gamma[1/4 +it/2]]-1/2tLog[T]
The first term in an approximation to RiemannSiegelZ[t] is
2 Cos[RiemannSiegelTheta[t]]; to get results to a given
precision requires summing a number of terms that
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increases like V't , making routine computation possible up
to t~10".

It is known that:

» The average spacing between zeros decreases like
1/Log[t].

» The amplitude of wiggles grows with t, but more slowly
than %76,

= At least the first 10 billion zeros have Re[s] == 1/2.

The statistical distribution of zeros was studied by Andrew
Odlyzko and others starting in the late 1970s (following ideas
of David Hilbert and George Pélya in the early 1900s), and it
was found that to a good approximation, the spacings
between zeros are distributed like the spacings between
eigenvalues of random unitary matrices (see page 977).

In 1972 Sergei Voronin showed that Zeta[z + (3/4 +it)] has a
certain universality in that there always in principle exists
some t (presumably in practice usually astronomically large)
for which it can reproduce to any specified precision over say
the region Abs[z] < 1/4 any analytic function without zeros.

Iterated Maps and the Chaos Phenomenon

= History of iterated maps. Newton’s method from the late
1600s for finding roots of polynomials (already used in
specific cases in antiquity) can be thought of as a smooth
iterated map (see page 920) in which a rational function is
repeatedly applied (see page 1101). Questions of convergence
led in the late 1800s and early 1900s to interest in iteration
theory, particularly for rational functions in the complex
plane (see page 933). There were occasional comments about
complicated behavior (notably by Arthur Cayley in 1879) but
no real investigation seems to have been made. In the 1890s
Henri Poincaré studied so-called return maps giving for
example positions of objects on successive orbits. Starting in
the 1930s iterated maps were sometimes considered as
possible models in fields like population biology and
business cycle theory—usually arising as discrete annualized
versions of continuous equations like the Verhulst logistic
differential equation from the mid-1800s. In most cases the
most that was noted was simple oscillatory behavior,
although for example in 1954 William Ricker iterated
empirical reproduction curves for fish, and saw more
complex behavior—though made little comment on it. In the
1950s Paul Stein and Stanislaw Ulam did an extensive
computer study of various iterated maps of nonlinear
functions. They concentrated on questions of convergence,
but nevertheless noted complicated behavior. (Already in the
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late 1940s John von Neumann had suggested using
X > 4x(1-x) as arandom number generator, commenting on
its extraction of initial condition digits, as mentioned on page
921.) Some detailed analytical studies of logistic maps of the
form x —»ax(7-x) were done in the late 1950s and early
1960s—and in the mid-1970s iterated maps became popular,
with much analysis and computer experimentation on them
being done. But typically studies have concentrated on
repetition, nesting and sensitive dependence on initial
conditions—not on more general issues of complexity.

In connection with his study of continued fractions Carl
Friedrich Gauss noted in 1799 complexity in the behavior of
the iterated map x —» FractionalPart[1/x]. Beginning in the late
1800s there was number theoretical investigation of the
sequence FractionalPart[a" x]
x — FractionalPart[a x] (see page 903), notably by G. H. Hardy
and John Littlewood in 1914. Various features of randomness

associated with the map

such as wuniform distribution were established, and
connections to smooth iterated maps emerged after the

development of symbolic dynamics in the late 1930s.
n History of chaos theory. See page 971.

u Page 150 - Exact iterates. For any integer a the n'" iterate of
X — FractionalPart[a x] can be written as FractionalPart[a" x],
or equivalently 7/2-ArcTan[Cot[a" 7 x]]/m. In the specific
case a=2 the iterates of If[x <1/2,ax,a(7-x)] have the
form ArcCos[Cos[2" 1 x]]/. (See pages 903 and 1098.)

n Page 151 - Problems with computer experiments. The
defining characteristic of a system that exhibits chaos is that on
successive steps the system samples digits which lie further
and further to the right in its initial condition. But in a practical
computer, only a limited number of digits can ever be stored.
In Mathematica, one can choose how many digits to store (and
in the pictures shown in the main text, enough digits were
used to avoid the problems discussed in this note). But a low-
level language such as FORTRAN, C or Java always stores a
fixed number of digits, typically around 53, in its standard
double-precision floating-point representation of numbers.

So what happens when a system one is simulating tries to
sample digits in its initial conditions beyond the ones that are
stored? The answer depends on the way that arithmetic is
handled in the computer system one uses.

When doing high-precision arithmetic, Mathematica follows
the principle that it should only ever give digits that are
known to be correct on the basis of the input that was
provided. This means that in simulating chaotic systems,
the numbers produced will typically have progressively
fewer digits: later digits cannot be known to be correct
without more precise knowledge of this initial condition.
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NestList[Mod[2#, 1]& N[7/4, 40], 200];
Map|Precision, list] gives the number of significant digits of

(An example is

each element in the list.)

But most current languages and hardware systems follow a
rather different approach. (For low-precision machine
arithmetic, Mathematica is also forced to follow this
approach.) What they do is to give a fixed number of digits as
the result of every computation, whether or not all those
digits are known to be correct. It is then the task of numerical
analysis to establish that in a particular computation, the
final results obtained are not unduly affected by digits that
are not known to be correct. And in practice, for many kinds
of computations, this is to a large extent the case. But

whenever chaos is involved, it is inevitably not.

As an example, consider the iterated map x —» Mod[2x, 1]
discussed in the main text. At each step, this map shifts all the
base 2 digits in x one position to the left. But if the computer
gives a fixed number of digits at each step, then additional digits
must be filled in on the right. On most computers, these
additional digits are always 0. And so after some number of
steps, all the digits in x are 0, and thus the value of x is simply 0.

But it turns out that a typical pocket calculator gives a different
result. For pocket calculators effectively represent numbers in
base 10 (actually so-called binary-coded decimal) not base 2,
and fill in unknown digits with 0 in base 10. (Base 10 is used so
that multiplying for example 1/3 by 3 gives exactly 1 rather
than the more confusing result 0.9999... obtained with base 2.)

Pictures (a) and (c) below show simulations of the shift map on a
typical while pictures (b) and (d)
corresponding simulations on a pocket calculator. (Starting with

computer, show

initial condition x the digit sequence at step n is essentially
IntegerDigits[Mod[2" Floor[2% x], 2%°], 2, 53]

on the computer, and

Flatten[IntegerDigits[IntegerDigits[
Mod[2" Floor[10' x], 10™], 10, 12], 2, 4]]

on the calculator. In both cases the limited number of digits
implies behavior that ultimately repeats—but only long after
the other effects we discuss have occurred.)

(a) (b)
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For the first several steps, the results as shown at the top of
each corresponding picture agree. But as soon as the effect of
sampling beyond the digits explicitly stored in the initial
condition becomes important, the results are completely
different. The computer gives simply 0, but the pocket
calculator yields apparently random sequences—which turn
out to be analogous to those discussed on page 319.

Other chaotic systems have a similar sensitivity to the details
of computer arithmetic. But the simple behavior of the shift
map turns out to be rather rare: in most cases—such as the

multiplication by 3/2 shown in the pictures below—apparent
randomness is produced, even on a typical computer.

It is important to realize however that this randomness has
little to do with the details of the initial conditions. Instead,
just as in other examples in this book, the randomness arises
from an intrinsic process that occurs even with the simple
repetitive initial condition shown in pictures (c) and (d)
above.

Computer simulations of chaotic systems have been done
since the 1950s. And it has often been observed that the
sequences generated in these simulations look quite random.
But as we now see, such randomness cannot in fact be a
consequence of the chaos phenomenon and of sensitive
dependence on initial conditions.

Nevertheless, confusingly enough, even though it does not
come from sensitive dependence on initial conditions, such
randomness is what makes the overall properties of
simulations typically follow the idealized mathematical
predictions of chaos theory. The point is that the presence of
randomness makes the system behave on different steps as if
it were evolving from slightly different initial conditions. But
statistical averages over different initial conditions typically
yield essentially the results one would get by evolution from
a single initial condition containing an infinite number of
randomly chosen digits.

n Page 152 - Mathematical perspectives. Mathematicians may
be confused by my discussion of complexity in iterated maps.
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The first point to make is that the issues I am studying are
rather different from the ones that are traditionally studied in
the mathematics of these systems. The next point is that I
have specifically chosen not to make the idealizations about
numbers and operations on numbers that are usually made
in mathematics.

In particular, it is usually assumed that performing some
standard mathematical operation, such as taking a square
root, cannot have a significant effect on the system one is
studying. But in trying to track down the origins of
complex behavior, the effects of such operations can be
significant. Indeed, as we saw on page 141, taking square
roots can for example generate seemingly random digit
sequences.

Many mathematicians may object that digit sequences are
just too fragile an entity to be worth studying. They may
argue that it is only robust and invariant concepts that are
useful.
operations is a different issue from robustness with respect to

But robustness with respect to mathematical
computational operations. Indeed, we will see later in this
book that large classes of digit sequences can be considered
equivalent with respect to computational operations, but
these classes are quite different ones from those that are
considered with to mathematical

equivalent respect

operations.

u Information content of initial conditions. Common sense
suggests that it is a quite different thing to specify a simple
initial condition containing, say, a single black cell on a white
background, than to specify an initial condition containing an
infinite sequence of randomly chosen cells. But in traditional
mathematics no distinction is usually made between these
kinds of specifications. And as a result, mathematicians may
find it difficult to understand my distinction between
randomness generated intrinsically by the evolution of a
system and randomness from initial conditions (see
page 299). The distinction may seem more obvious if one
considers, for example, sequential substitution systems or
cyclic tag systems. For such systems cannot meaningfully be
given infinite random initial conditions, yet they can still
perfectly well generate highly random behavior. (Their initial
conditions correspond in a sense to integers rather than real

numbers.)

» Smooth iterated maps. In the main text, all the functions
used as mappings consist of linear pieces, usually joined
together discontinuously. But the same basic phenomena
seen with such mappings also occur when smooth functions
are used. A particularly well-studied example (see page 918)
is the so-called logistic map x —» ax(7-x). The base 2 digit
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sequences obtained with this map starting from x = 7/8 are
shown below for various values of a. The quadratic nature
of the map typically causes the total number of digits to
double at each step. But at least for small a, progressively
more digits on the left show purely repetitive behavior. As a
increases, the repetition period goes through a series of
doublings. The detailed behavior is different for every value
of a, but whenever the repetition period is 2/, it turns out
that with any initial condition the leftmost digit always
eventually follows a sequence that consists of repetitions of
step j in the evolution of the substitution system
{1—>{1,0}, 0> {1, 1}} starting either from {0} or {7}. As a
approaches 3.569946, the period doublings get closer and
closer together, and eventually a point is reached at which
the sequence of leftmost digits is no longer repetitive but
instead corresponds to the nested pattern formed after an
infinite number of steps in the evolution of the substitution
system. (An important result discovered by Mitchell
Feigenbaum in 1975 is that this basic setup is universal to all
smooth maps whose functions have a single hump.) When a
is increased further, there is usually no longer repetitive or
nested behavior. And although there are typically some
constraints, the behavior obtained tends to depend on the
details of the digit sequence of the initial conditions. In the
special case a = 4, it turns out that replacing x by Sin[m uJ?
makes the mapping become just u- FractionalPart[2u],
revealing simple shift map dependence on the initial digit
sequence. (See pages 1090 and 1098.)

Ak

A
H
H
H
H
H
H
H
H
:.
H
H
H
H
H

a=36 a=4

= Higher-dimensional generalizations. One can consider so-
called Anosov maps such as {x, y} - Mod[m . {x, y}, 1] where
m is a matrix such as {{2, 1}, {1, 1}}. Any initial condition
containing only rational numbers will then yield repetitive
behavior, much as in the shift map. But as soon as m itself
contains rational numbers, complicated behavior can be
obtained even with an initial condition such as {7, 7}.

n Distribution of chaotic behavior. For iterated maps, unlike
for discrete systems such as cellular automata, one can get
continuous ranges of rules by varying parameters. With
maps based on piecewise linear functions the regions of
parameters in which chaotic behavior occurs typically have

simple shapes; with maps based, say, on quadratic

BASED ON NUMBERS

NOTES FOR CHAPTER 4

functions, however, elaborate nested shapes can occur. (See
page 934.)

n Page 155 - Lyapunov exponents. The number of new digits
that are affected at each step by a small change in initial
conditions gives the so-called Lyapunov exponent A for the
evolution. After t steps, the difference in size resulting from
the change in initial conditions will be multiplied by
approximately 2*!—at least until this difference is of order 1.
(See page 950.)

n Chaos in nature. See page 304.

n Bitwise operations. Cellular automata can be thought of as
analogs of iterated maps in which bitwise operations such as
BitXor are used instead of ordinary arithmetic ones. (See
page 906.)

Continuous Cellular Automata

n Implementation. The state of a continuous cellular
automaton at a particular step can be represented by a list of
numbers, each lying between 0 and 1. This list can then be
updated using

CCAEvolveStep[f_, list_List] :=
Map[f, (RotateLeft[list] + list + RotateRight[list])/3]

CCAEvolvelList[f_, init_List, t_Integer] :=
NestList[ CCAEvolveStep[f, #] &, init, t]

where for the rule on page 157 f is FractionalPart[3#/2] &
while for the rule on page 158 it is FractionalPart[# + 1/4] &.

Note that in the definitions above, the elements of /ist can be
either exact rational numbers, or approximate numbers
obtained using N. For rough calculations, standard machine-
precision numbers may sometimes suffice, but for detailed
calculations exact rational numbers are essential. Indeed, the
presence of exponentially increasing errors would make the
bottom of the picture on page 157 qualitatively wrong if just
64-bit double-precision numbers had been used. On page 160
the effect is much larger, and almost all the pictures would be
completely wrong—with the notable exception of the one
that shows localized structures.

n History. Continuous cellular automata have been
introduced independently several times, under several
different names. In all cases the rules have been at least
slightly more complicated than the ones I consider here, and
behavior starting from simple initial conditions does not
appear to have been studied before. Versions of continuous
cellular automata arose in the mid-1970s as idealizations of
coupled ordinary differential equations for arrays of
nonlinear oscillators, and implicitly in finite difference

approximations to partial differential equations. They began
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to be studied with extensive computer simulations in the
early 1980s, probably following my work on ordinary cellular
automata. Most often considered, notably by Kunihiko
Kaneko and co-workers, were so-called “coupled map
lattices” or “lattice dynamical systems” in which an iterated
map (typically a logistic map) was applied at each step to a
combination of neighboring cell value. A transition from
regular class 2 to irregular class 3 behavior, with class 4
behavior involving localized structures in between, was
observed, and was studied in detail by Hugues Chaté and
Paul Manneville, starting in the late 1980s.

n Page 158 - Properties. At step t
FractionalPart[at]. For rational a this always repeats, cycling
through Denominator[a] possible values (compare page 255).

the background is

In most patterns generated from initial conditions
containing say a single black cell most cells whose values
are not forced to be the same end up being at least slightly
different—even in cases like a =0.375. Note that in cases
like a = 0.475 there is some trace of a pattern at every step—
but it only becomes obvious when it makes values wrap
around from 1 to 0. The pictures below show successive
colors of (a) the background (compare page 950) and (b) the
center cell for each a =n/500 from 0 to 1 for the systems on

page 159. (Compare page 243.)

(a)

(b)

0 0.25

05

If a is not a rational number the background never repeats,
but the main features of patterns obtained seem similar.

n Additive rules. In the case a = 0 the systems on page 159 are
purely additive. A simpler example is the rule
Mod[RotateLeft[list] + RotateRight[list], 1]

With a single nonzero initial cell with value 7/k the pattern
produced is just Pascal’s triangle modulo k. If k is a rational
number only a limited set of values appear, and the pattern
has a nested form analogous to those shown on page 870. If k
is irrational then equidistribution of Mod[Binomiallt, x], k]
implies that all possible values eventually appear; the
corresponding patterns seem fairly irregular, as shown
below. (Compare pages 953 and 1092.)
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u Probabilistic cellular automata. As an alternative to having
continuous values at each cell, one can consider ordinary
cellular automata with discrete values, but
probabilities for, say, two different rules to be applied at each
cell. Examples of probabilistic cellular automata are shown
on page 591; their behavior is typically quite similar to

introduce

continuous cellular automata.

Partial Differential Equations

n Ordinary differential equations. It is also possible to set up
systems which have a finite number of continuous variables
(say a[t], b[t], etc.) that change continuously with time. The
rules for such systems correspond to ordinary differential
equations. Over the past century, the field of dynamical
systems theory has produced many results about such
systems. If all equations are of the form
a'[t] = f[a[t], b[t], ...], etc. then it is known for example that
it is necessary to have at least three equations in order to get
behavior that is not ultimately fixed or repetitive. (The
Lorenz equations are an example.) If the function f depends
explicitly on time, then two equations suffice. (The van der
Pol equations are an example.)

Just as in iterated maps, a small change in the initial values a/0]
etc. can often lead to an exponentially increasing difference in
later values of a[t], etc. But as in iterated maps, the main part of
this process that has been analyzed is simply the excavation of
progressively less significant digits in the number a/0].

(Note that numerical simulations of ODEs on computers
must approximate continuous time by discrete steps, making
the system essentially an iterated map, and often yielding
spurious complicated behavior.)

n Klein-Gordon equation. The behavior of the Klein-Gordon

equation J,,ult, x] =38, ult, x]-u[t, x] is visually very

similar to that shown for the sine-Gordon equation. For the

Klein-Gordon equation, however, there is an exact solution:
ult x] =If[x? > t?, 0, BesselJ[0, Sqrt[t? -x?]]]

u Origins of the equations. The diffusion equation arises in
physics from the evolution of temperature or of gas density.
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The wave equation represents the propagation of linear
waves, for example along a compressible spring. The sine-
Gordon equation represents nonlinear waves obtained for
example as the limit of a very large number of pendulums all
connected to a spring. The traditional name of the equation is
a pun on the Klein-Gordon equation that appears in
relativistic quantum mechanics and in describing strings in
elastic media. It is notable that unlike with ODEs, essentially
all PDEs that have been widely studied come quite directly
from physics. My PDE on page 165 is however an exception.

n Nonlinearity. The pictures below show behavior with initial
conditions containing two Gaussians (and periodic boundary
conditions). The diffusion and wave equations are linear, so
that results are linear sums of those with single Gaussians.
The sine-Gordon equation is nonlinear, but its solutions
satisfy a generalized linear superposition principle. The
equation from page 165 shows no such simple superposition
principle. Note that even with a linear equation, fairly
complicated patterns of behavior can sometimes emerge as a
result of boundary conditions.

wave equation sine-Gordon equation my equation

n Higher dimensions. The pictures below show as examples
the solution to the wave equation in 1D, 2D and 3D starting
from a stationary square pulse.

In each case a 1D slice through the solution is shown, and the

solution is multiplied by r®’. For the wave equation, and for
a fair number of other equations, even and odd dimensions
behave differently. In 1D and 3D, the value at the origin
quickly becomes exactly 0; in 2D it is given by
1-t/Sqrt[t? - 1], which tends to zero only like -1/(2¢%)
(which means that a sound pulse cannot propagate in a
normal way in 2D).

u Page 164 - Singular behavior. An example of an equation
that yields inconsistent behavior is the diffusion equation
with a negative diffusion constant:

d,uft, x]==-3 ult, x]
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This equation makes any variation in v as a function of x
eventually become infinitely rapid.

Many equations used in physics can lead to singularities:
the Navier-Stokes equations for fluid flow yield shock
waves, while the Einstein equations yield black holes. At a
physical level, such singularities usually indicate that
processes not captured by the equations have become
important. But at a mathematical level one can simply ask
whether a particular equation always has solutions which
are at least as regular as its initial conditions. Despite much
work, however, only a few results along these lines are
known.

n Existence and uniqueness. Unlike systems such as cellular
automata, PDEs do not have a built-in notion of “evolution”
or “time”. Instead, as discussed on page 940, a PDE is
essentially just a constraint on the values of a function at
different times or different positions. In solving a PDE, one is
usually interested in determining values that satisfy this
constraint inside a particular region, based on information
about values on the edges. It is then a fundamental question
how much can be specified on the edges in order to obtain a
unique solution. If too little is specified, there may be many
possible solutions, while if too much is specified there may
be no consistent solution at all. For some very simple PDEs,
the conditions for unique solutions are known. So-called
hyperbolic equations (such as the wave equation, the sine-
Gordon equation and my equation) work a little like cellular
automata in that in at least one dimension information can
propagate only at a limited speed, say c. The result is that in
such equations, giving values for u[t, x] at t =0 for -s <x <s
ult, x] at
-s+ct<x<s-ct. In other PDEs, such as so-called elliptic

will uniquely determine larger t for
ones, there is no such limit on the rate of information
propagation, and as a result, it is immediately necessary to
know values of u[t, x] at all x, and on the boundaries of the
region, in order to determine u[t, x] for any t > 0.

n Page 165 - Field equations. Any equation of the form
O, ult, x]==38,, ult, x]+flult, x]]
can be thought of as a classical field equation for a scalar
field. Defining
v[u] = -Integrate[f[u], u]
the field then has Lagrangian density
((8,u)? - (8,u)?)/2-v[u]
and conserves the Hamiltonian (energy function)
Integrate[((8,u)? +(8,u)?)/2 +Vv[u], {x, -0, co}]

With the choice for f[u] made here (with a=0), v[u] is
bounded from below, and as a result it follows that no
singularities ever occur in u[t, xJ.
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n Equation for the background. If u[t, x] is independent of x,
as it is sufficiently far away from the main pattern, then the
partial differential equation on page 165 reduces to the
ordinary differential equation

u”[t] = (1-ult]’)(1+auft])

ul0]=u'[0] =0
For a = 0, the solution to this equation can be written in terms
of Jacobi elliptic functions as

V'3 JacobiSN[t/3", 1/2]7 /(1 + JacobiCN[t/3", 1/2]7)
In general the solution is

bdJacobiSN[rt, s]?/(b-d JacobiCN[rt, s]?)
where

r=-Sqrt[1/8ac(b-d)]

s=d(c-b)/(c(d-b))
and b, ¢, d are determined by the equation

(x-b)(x-c)(x-d)=-(12+6ax-4x"-3ax%)/(3a)
In all cases (except when -8/3<a<-1/ V6 ), the solution is
periodic and non-singular. For a=0, the period is
23" Elliptick[1/2] ~ 4.88 .. For a = 1, the period is about 4.01;
for a =2, it is about 3.62; while for a =4, it is about 3.18. For
a=8/3, the solution can be written without Jacobi elliptic
functions, and is given by

3Sin[Sqrt[5/6]t]7/(2 +3 Cos[Sart[5/6]t])

» Numerical analysis. To find numerical solutions to PDEs
on a digital computer one has no choice but to make
approximations. In the typical case of the finite difference
method one sets up a system with discrete cells in space
and time that is much like a continuous cellular automaton,
and then hopes that when the cells in this system are made
small enough its behavior will be close to that of the
continuous PDE.

Several things can go wrong, however. The pictures below
show as one example what happens with the diffusion
equation when the cells have size dt in time and dx in space.
So long as the so-called Courant condition dt/dx < 1/2 is
satisfied, the results are correct. But when dt/dx is made
larger, an instability develops, and the discrete
approximation yields completely different results from the

continuous PDE.

dt/dx =04

dt/dx =05 dt/dx =06

Many methods beyond finite differences have been invented
over the past 30 years for finding numerical solutions to
PDEs. All however ultimately involve discretization, and can
suffer from difficulties that are similar—though often more
insidious—to those for finite differences.
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For equations where one can come at least close to having
explicit algebraic formulas for solutions, it has often been
possible to prove that a certain discretization procedure will
yield correct results. But when the form of the true solution is
more complicated, such proofs are typically impossible.

And indeed in practice it is often difficult to tell whether
complexity that is seen is actually a consequence of the
underlying PDE, or is instead merely a reflection of the
discretization procedure. I strongly suspect that many
equations, particularly in fluid dynamics, that have been
studied over the past few decades exhibit highly complex
behavior. But in most publications such behavior is never
shown, presumably because the authors are not sure whether
the behavior is a genuine consequence of the equations they
are studying.

n Implementation. All the numerical solutions shown were
found using the NDSolve function built into Mathematica. In
general, finite difference methods, the method of lines and
pseudospectral methods can be used. For equations of the form
9, ult, x]==0,, ult, x]+flult, x]]
one can set up a simple finite difference method by taking f
in the form of pure function and creating from it a kernel
with space step dx and time step dt:

PDEKernel[f_, {dx_, dt_}] .= Compile[{a, b, c, d},
Evaluate[(2b-d) +((a+c-2b)/dx? +f[b])dt?]]

Iteration for n steps is then performed by

PDEEvolveList[ker_, {u0_, ul_}, n_] :=
Map[First, NestList[PDEStep[ker, #] &, {u0, u1}, nj]

PDEStep[ker_, {ul_, u2_}]:={u2, Apply[ker, Transpose[
{RotateLeft[uZ2], u2, RotateRight[u2], ul}], {1}]}

With this approach an approximation to the top example on
page 165 can be obtained from

PDEEvolveList[PDEKernel [
(1-#2)(1+#)&, {0.1, 0.05}], Transpose[
Table[{1, 1} N[Exp[-x?]], {x, -20, 20, 0.1}]], 400]

For both this example and the middle one the results
converge rapidly as dx decreases. But for the bottom
example, the pictures below show that convergence is not so
rapid, and indeed, as is typical in working with PDEs,
despite having used large amounts of computer time I do not
know whether the details of the picture in the main text are
really correct. The energy function (see above) is at least
roughly conserved, but it seems quite likely that the “shocks”
visible are merely a consequence of the discretization
procedure used.

dx =0.05
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n Different powers. The equations

B, ult, x] =0, ult, x]+(1-ult, x]")(1+ault, x])
with n=4, 6, 8, etc. appear to show similar behavior to the
n = 2 equation in the main text.

Burger's equation: 3, ult, x]

8, ult, x]-ult, x]8,ult, x]

-
| W N
| - - -
| -
|
[ - -.-
[ -

Kuramoto-Sivashinsky equation: 8, ult, x] = -8, ult, x]-1/28,,, ult, x]+(3, ult, x1)?

n Other PDEs. The pictures above show three PDEs that have

been studied in recent years. All are of the so-called
parabolic type, so that, unlike my equation, they have no

BASED ON NUMBERS

NOTES FOR CHAPTER 4

limit on the rate of information propagation, and thus a
solution in any region immediately depends on values on
the boundary—which in the pictures below is taken to be
periodic. (The deterministic Kardar-Parisi-Zhang equation
d,ult, x]==ad,ult x]+1/2b(d ult, x])* yields
like Burger’s equation, but symmetrical. Note that Abs[u] is
plotted in the second picture, while for the last equation a
common less symmetrical form replaces the last term by
ult, x]d, ult, x].)

behavior

Continuous Versus Discrete Systems

n History. From the late 1600s when calculus was invented it
took about two centuries before mathematicians came to
terms with the concepts of continuity that it required. And to
do so it was necessary to abandon concrete intuition, and
instead to rely on abstract mathematical theorems. (See page
1149.) The kind of discrete systems that I consider in this
book allow a return to a more concrete form of mathematics,
without the necessity for such abstraction.

n “Calculus”. It is an irony of language that the word
“calculus” now associated with continuous systems comes
from the Latin word which means a small pebble of the kind
used for doing discrete calculations (same root as “calcium”).
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Two Dimensions and Beyond

Introduction

u Other lattices. See page 929.

n Page 170 - 1D phenomena. Among the phenomena that
cannot occur in one dimension are those associated with
shape, winding and knotting, as well as traditional phase
transitions with reversible evolution rules (see page 981).

Cellular Automata

n Implementation. An nxn array of white squares with a
single black square in the middle can be generated by
PadLeft[{{1}], {n, n}, 0, Floor[{n, n}/2]]

For the 5-neighbor rules introduced on page 170 each step
can be implemented by

CAStep[rule_, a_] := Map[rule[[10-#]] &,
ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}]

where rule is obtained from the code number by
IntegerDigits[code, 2, 10].

For the 9-neighbor rules introduced on page 177
CAStep[rule_, a_] := Map[rule[[ 18 -#] &,
ListConvolve[{{2, 2, 2}, {2, 1,2}, {2, 2, 2}}, a, 2], {2}]
where rule is given by IntegerDigits[code, 2, 18].

In d dimensions with k colors, 5-neighbor rules generalize to
(2d+1)-neighbor rules, with

CAStep[{rule_, d_} a_] :=
Map[rulel[-1-#]] & a + k AxesTotal[a, d], {d}]

AxesTotal[a_, d_] := Apply[Plus, Map[RotateLeft[a, #] +
RotateRight[a, #] &, IdentityMatrix[d]]]

with rule given by IntegerDigits[code, k, k (2d (k-1)+1)].

9-neighbor rules generalize to 3% -neighbor rules, with

CAStep[{rule_, d_}, a_] :=
Map[rule[[-1-#]] & a+k FullTotal[a, d], {d}]

FullTotal[a_, d_] :=
Array[RotateLeft[a, {##}] & Table[3, {d}], -1, Plus]-a

with rule given by IntegerDigits[code, k, k ((3% -1)(k-1) +1)].

In 3 dimensions, the positions of black cells can conveniently
be displayed using
Graphics3D[Map[Cuboid[-Reverse[#]] &, Position[a, 1]]]

n General rules. One can specify the neighborhood for any
rule in any dimension by giving a list of the offsets for the
cells used to update a given cell. For 1D elementary rules
the list is {{-7}, {0}, {1}}, while for 2D 5-neighbor rules it is
{{-1,0}, (0, -1}, {0, 0}, {0, 1}, {1, 0}}. In this book such offset
lists are always taken to be in the order given by Sort, so
that for range r rules in d dimensions the order is the same
as Flatten[Array[List, Table[2r + 1, {d}], -r], d-1]. One can
specify a neighborhood configuration by giving in the same
order as the offset list the color of each cell in the
neighborhood. With offset list os and k colors the possible
neighborhood configurations are

Reverse[ Table[IntegerDigits[i- 1,
k, Length[os]], {i, k ~Length[os]}]]

(These are shown on page 53 for elementary rules and page
941 for 5-neighbor rules.) If a cellular automaton rule takes
the new color of a cell with neighborhood configuration
IntegerDigits[i, k, Length[os]] to be uf[i+ 1]], then one can
define its rule number to be FromDigits[Reverse[u], k]. A
single step in evolution of a general cellular automaton with
state a and rule number num is then given by
Map[IntegerDigits[num, k, k *Length[os]][[-1-#] &,
Apply[Plus, MapIndexed[k ~(Length[os] - First[#2])
RotatelLeft[a, #1] & os]], {-1}]
or equivalently by
Map[IntegerDigits[num, k, k *Length[os]][[-#- 1] &,
ListCorrelate[ Fold[ReplacePart[k #1, 1, 82 +r + 1] &,
Array[0 &, Table[2r + 1, {d}]], os], a, r+ 1], {d}]
» Numbers of possible rules. The table below gives the total
number of 2D rules of various types with two possible colors
for each cell. Given an initial pattern with a certain symmetry,
a rule will maintain that symmetry if the rule is such that
every neighborhood equivalent under the symmetry yields
the same color of cell. Rules are considered rotationally
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symmetric in the table below if they preserve any possible
with
arrangement of cells. Totalistic rules depend only on the total

rotational symmetry consistent the underlying
number of black cells in a neighborhood; outer totalistic rules
(as in the previous note) also depend on the color of the
center cell. Growth totalistic rules make any cell that becomes

black remain black forever.

In such a rule, given a list of how many neighbors around a

given cell (out of s possible) make the cell turn black the

outer totalistic code for the rule can be obtained from
Apply[Plus, 2*Join[2 list, 2 Range[s + 1]-1]]

5 - neighbor square  9- neighbor square  hexagonal
general 2% 2 4x10° 2512 % 10" 2128~ 3x10%
rotationally symmetric 212 = 4096 2140~ 10% 2% ~3x10°
completely symmetric 212 = 4096 2192 ~ 5x10%° 2%~ 7x107
outer totalistic 219 = 1024 278 ~3x10° 2™ = 16384
totalistic 2° =64 210 = 1024 2% = 256
growth totalistic 2% =32 29 =512 27 =128

» Symmetric 5-neighbor rules. Among the 32 possible 5-cell
neighborhoods shown for example on page 941 there are 12
classes related by symmetries, given by
s={{1},{2,3,9, 17} {4, 10, 19, 25},
{5}, {6, 7,13, 21}, {8, 14, 23, 29}, {11, 18},
{12, 20, 26, 27}, {15, 22}, {16, 24, 30, 31}, {28], {32}}

Completely symmetric 5-neighbor rules can be numbered
from 0 to 4095, with each digit specifying the new color of
the
neighborhoods. Such rule numbers can be converted to

cell for each of these symmetry classes of
general form using

FromDigits[Map[Last, Sort[Flatten[Map[ Thread,

Thread([{s, IntegerDigits[n, 2, 12]}]], 1]1]], 2]
u Growth rules. The pictures below show examples of rules
in which a cell becomes black if it has exactly the specified
numbers of black neighbors (the initial conditions used
have the minimal number of black cells for growth). The
code numbers in these «cases are given by
2/3(4" - 1) + Apply[Plus, 4"'] where n is the number of
neighbors, here 5. (See also the 9-neighbor examples on
page 373.)

SCIENCE
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n History. As indicated on pages 876-878, 2D cellular
automata were historically studied more extensively than 1D
ones—though rarely with simple initial conditions. The 5-cell
neighborhood on page 170 was considered by John von
Neumann in 1952; the 9-cell one on page 177 by Edward
Moore in 1962. (Both are also common in finite difference
approximations in numerical analysis.) (The 7-cell hexagonal
neighborhood of page 369 was considered for image
processing purposes by Marcel Golay in 1959.) Ever since the
invention of the Game of Life around 1970 a remarkable
number of hardware and software simulators have been built
to watch its evolution. But until after my work in the 1980s
simulators for more general 2D cellular automata were rare.
A sequence of hardware simulators were nevertheless built
starting in the mid-1970s by Tommaso Toffoli and later
Norman Margolus. And as mentioned on page 1077, going
back to the 1950s some image processing systems have been
based on particular families of 2D cellular automaton rules.

n Ulam systems. Having formulated the system around 1960,
Stanislaw Ulam and collaborators (see page 877) in 1967
simulated 120 steps of the process shown below, with black
cells after t steps occurring at positions
Map[First,
First[Nest[UStep[p[q[r[#1], #2]] &, {{1, 0}, {0, 1}, {-1, 0},
{0, -1}} #] & ({#, #} &)[{{{0, 0}, {0, 0}}}], t]]]
USteplf_, os_, {a_, b_}] :=({Join[a, #], #} &)[f[Flatten[
Outer[{#1 +#2, #1} & Map[First, b], os, 1], 1], a]]
rlc_] := Map[First, Select[Split[Sort[c],
First[#1] == First[#2] &], Length[#] == 1 &]]
glc_, a_] := Select/[c,
Apply[And, Map[Function[u, qq[#1, u, a]], a]] &]
plc_] := Select[c,
Apply[And, Map[Function[u, pp[#1, ul], c]] &]
pplix_, u_} {y_, v_}] := Max[Abs[x -y]] > 1[[u==v
qqlix_, u_} {y_, v_}, a_] :=x ==y [| Max[Abs[x-y]] > 1/
u ==y || First[Cases[a, {u, z_} > z]] ==y

{1} 1,2} 1,3} (1,4} (1,34}

n Page 171 - Code 942 slices. The following is the result of
taking vertical slices through the pattern with a sequence of
offsets from the center:
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These rules are fairly complicated, and involve more history
than ordinary cellular automata. But from the discoveries in
this book we now know that much simpler rules can also
yield very complicated behavior. And as the pictures below
show, this is true even just for parts of the rules above (s
alone yields outer totalistic code 686 in 2D, and rule 90 in 1D).

AND BEYOND NOTES FOR CHAPTER 5

cells across, and grow by 4 cells every 12 steps. They typically
survive being hit by more complicated growth from the side.
But occasionally runners 3 cells wide will start on the side of
a line. And since these go 2 cells every 3 steps they always
catch up with lines, producing complicated growth, often
terminating the lines.

rl] pl] plall] plalrli]]

Ulam also in 1967 considered the pure 2D cellular automaton
with outer totalistic code 12 (though he stated its rule in a
complicated way). As shown in the pictures below, when
started from blocks of certain sizes this rule yields complex
patterns—although nothing like this was noted in 1967.

9x9 10x10

u Limiting shapes. When growth occurs at the maximum rate
the outer boundaries of a cellular automaton pattern reflect
the neighborhood involved in its underlying rule (in rough
analogy to the Wulff construction for shapes of crystals).
When growth occurs at a slower rate, a wide range of
polygonal and other shapes can be obtained, as illustrated in
the main text.

» Additive rules. See page 1092.

u Page 174 - Cellular automaton art. 2D cellular automata can
be used to make a wide range of designs for rugs, wallpaper,
and similar objects. Repeating squares of pattern can be
produced by using periodic boundary conditions. Rules with
more than two colors will sometimes be appropriate. For
rugs, it is typically desirable to have each cell correspond to
more than one tuft, since otherwise with most rules the rug
looks too busy. (Compare page 872.)

n Page 177 - Code 175850. See also page 980.

n Page 178 - Code 746. The pattern generated is not perfectly
circular, as discussed on page 979. Its interior is mostly fixed,

but there are scattered small regions that cycle with a variety
of periods.

n Page 181 - Code 174826. The pictures below show the upper-
right quadrant for more steps. Most of the lines visible are 8

'

step 2000

step 1000 step 3000

n Page 183 - Projections from 3D. Looking from above, with
closer cells shown darker, the following show patterns
generated after 30 steps, by (a) the rule at the top of page 183,
(b) the rule at the bottom of page 183, (c) the rule where a cell
becomes black if exactly 3 out of 26 neighbors were black and
(d) the same as (c), but with a 3x3x1 rather than a 3x1x1
initial block of black cells:

(a) (b) (c) (d)

n Other geometries. Systems like cellular automata can
readily be set up on any geometrical structure in which a
limited number of types of cells can be identified, with every
cell of a given type having a similar neighborhood.

In the simplest case, the cells are all identical, and are laid out
in the same orientation in a repetitive array. The centers of the
cells form a lattice, with coordinates that are integer
multiples of some set of basis vectors. The possible complete

symmetries of
crystallography. But for the purpose of nearest-neighbor

such lattices are much studied in
cellular automaton rules, what matters is not detailed
geometry, but merely what cells are adjacent to a given cell.
This can be determined by looking at the Voronoi region (see
page 987) for each point in the lattice. In any given
dimension, this region (variously known as a Dirichlet
domain or Wigner-Seitz cell, and dual to the primitive cell,
first Brillouin zone or Wulff shape) has a limited number of
possible overall shapes. The most symmetrical versions of
these shapes in 2D are the square (4 neighbors) and hexagon
(6) and in 3D (as found by Evgraf Fedorov in 1885) the cube

(6), hexagonal prism (8), rhombic dodecahedron (12) (e.g.
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face-centered cubic crystals), rhombo-hexagonal or elongated
dodecahedron  (12)
tetradecahedron (14) (e.g. body-centered cubic crystals), as

and truncated octahedron or
shown below. (In 4D, 8, 16 and 24 nearest neighbors are
possible; in higher dimensions possibilities have been
investigated in connection with sphere packing.) (Compare
pages 1029 and 986.)

o/o/uee/e]e

4

In general, there is no need for individual cells in a cellular
automaton to have the same orientation. A triangular lattice
is one example where they do not. And indeed, any tiling of
congruent figures can readily be used to make a cellular
automaton, as illustrated by the pentagonal example below.
(Outer totalistic codes specify rules; the first rule makes a
particular cell black when any of its five neighbors are black
and has code 4094. Note that even though individual cells are
pentagonal, large-scale cellular automaton patterns usually
have 2-, 4- or 8-fold symmetry.)

code 38 code 564 code 700 code 966 code 2990 code 4094

There is even no need for the tiling to be repetitive; the
picture below shows a cellular automaton on a nested
Penrose tiling (see page 932). This tiling has two different
shapes of tile, but here both are treated the same by the
cellular automaton rule, which is given by an outer totalistic
code number. The first example is code 254, which makes a
particular cell become black when any of its three neighbors
are black. (Large-scale cellular automaton patterns here can
have 5-fold symmetry.) (See also page 1027.)

X
2

0E8, 2
QAN

code 22 code 54 code 174 code 214 code 220 code 254

930

n Networks. Cellular automata can be set up so that each
cell corresponds to a node in a network. (See page 936.)
The only requirement is that around each node the network
must have the same structure (or at least a limited number
of possible structures).
that
connections. For longer-range rules, the network must
satisfy constraints of the kind discussed on page 483.
(Cayley graphs of groups always have the necessary
homogeneity.) If the connections at each node are not
labelled, then only totalistic cellular automaton rules can be

For nearest-neighbor rules, it

suffices each node has the same number of

implemented. Many topological and geometrical properties
of the underlying network can affect the overall behavior of
a cellular automaton on it.

Turing Machines

» Implementation. With rules represented as a list of elements
of the form (s, a}- {sp, ap, {dx, dy}} (s is the state of the
head and a the color of the cell under the head) each step in
the evolution of a 2D Turing machine is given by
TM2DStep[rule_, {s_, tape_, r:{x_, y_}}] :=
Apply[{#1, ReplacePart[tape, #2, {r}], r + #3} &,
{s, tapellx, ylI}/. rule]
= History. At a formal level 2D Turing machines have been
studied since at least the 1950s. And on several occasions
systems equivalent to specific simple 2D Turing machines
have also been constructed. In fact, much as for cellular
automata, more explicit experiments have been done on 2D
Turing machines than 1D ones. A tradition of early robotics
going back to the 1940s—and leading for example to the
Logo computer language—involved studying idealizations
of mobile turtles. And in 1971 Michael Paterson and John
Conway constructed what they described as an idealization
of a prehistoric worm, which was essentially a 2D Turing
machine in which the state of the head records the direction
of the motion taken at each step. Michael Beeler in 1973 used
a computer at MIT to investigate all 1296 possible worms
with rules of the simplest type on a hexagonal grid, and he
found several with fairly complex behavior. But this
discovery does not appear to have been followed up, and
systems equivalent to simple 2D Turing machines were
reinvented again, largely independently, several times in the
mid-1980s: by Christopher Langton in 1985 under the name
“vants”; by Rudy Rucker in 1987 under the name “turmites”;
and by Allen Brady in 1987 under the name “turning
machines”. The specific 4-state rule
{s_, c_}= With[{sp =s(2c-1)i},
{sp, 1-c, {Relsp], Im[sp]}}]
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has been called Langton’s ant, and various studies of it were
done in the 1990s.

u Visualization. The pictures below show the 2D position of
the head at 500 successive steps for the rules on page 185.

(a) i

Some 2D Turing machines exhibit elements of randomness at

some steps, but then fill in every so often to form simple
repetitive patterns. An example is the 3-state rule

‘lau ‘m~ @ ‘l~- ‘EMD ‘l~ D«‘E»q ‘

n Rules based on turning. The rules used in the main text
specify the displacement of the head at each step in terms of
fixed directions in the underlying grid. An alternative is to
specify the turns to make at each step in the motion of the
head. This is how turtles in the Logo computer language are
set up. (Compare the discussion of paths in substitution
systems on page 892.)

u 2D mobile automata. Mobile automata can be generalized
just like Turing machines. Even in the simplest case, however,
with only four neighbors involved there are already (4 k)<
possible rules, or nearly 10 even for k = 2.

Substitution Systems and Fractals

n Implementation. With the rule on page 187 given for
example by {1- {{1, 0}, {1, 1}}, 0 {{0, 0}, {0, 0}}} the result of
t steps in the evolution of a 2D substitution system from a
initial condition such as {{7}} is given by

SS2DEvolvel[rule_, init_, t_] :=
Nest[Flatten2D[# /. rule] &, init, t]

Flatten2D[list_] :=
Apply[Join, Map[MapThread[Join, #] &, list]]

n Connection with digit sequences. Just as in the 1D case
discussed on page 891, the color of a cell at position {/, j} ina
2D substitution system can be determined using a finite
automaton from the digit sequences of the numbers i and ;.
At step n, the complete array of cells is

Table[If [FreeQ[ Transpose[IntegerDigits[{i, j}, k, n]], form],

1,01 {i, 0, k" =1}, {j, 0, k"= 1}]

where for the pattern on page 187, k =2 and form ={0, 1}.
For patterns (a) through (f) on page 188, k =3 and form is
respectively by (a) (7,1}, (b) (0/2,0/2}, (c)

given

AND BEYOND ‘NOTES FOR CHAPTER 5

{012,0/2}1{1, 1}, (d) {i_, j-1/;] >, (e) {0, 2}/ {1, 1}]{2, 0}, (f)
{0, 2}/{1, 1}. Note that the excluded pairs of digits are in
exact correspondence with the positions of which squares are
0 in the underlying rules for the substitution systems. (See
pages 608 and 1091.)

n Page 187 - Sierpinski pattern. Other
step n of the pattern shown here in various orientations

ways to generate

include:
= Mod([Array [Binomial, {2, 2}", 0], 2] (see pages 611 and 870)
= 1-Sign[Array [BitAnd, {2, 2}", 0]] (see pages 608 and 871)
= NestList[Mod[RotateLeft[#] +#, 2] &,
PadLeft[{1}, 2"], 2" - 1]
(see page 870)
= NestList[Mod[ListConvolve[{1, 1}, #, -1], 2] &,
PadLeft[{1},2"], 2" - 1]
(see page 870)
= IntegerDigits[NestList[BitXor[2#, #] & 1,2" - 1], 2, 2"] (see
page 906)
= NestList[Mod[Rest[FoldList[Plus, 0, #]], 2] &,
Table[1, {2"}], 2" - 1]
(see page 1034)

= Table[ PadRight[
Mod[ CoefficientList[(1+x)"", x], 2], 2" - 1], {t, 2"}]
(see pages 870 and 951)
= Reverse[Mod([ CoefficientList[Series[1/(1-(1+x)y),
{x,0,2"-1} {y, 0,2"-1}], {x, vy}l 2]]
(see page 1091)
= Nest[Apply[Join, MapThread[
Join, {{#, #}, {O#, #}}, 2]]1 &, {{1}}, n]
(compare page 1073)

The positions of black squares can be found from:

» Nest[Flatten[2# /. {x_, y_} = {{x, vy}, {x+ 1, vy} {x, y+1}}
1]&, {{0, 0}}, n]

= (Transpose[{Re[#], Im[#]}] &)[
Flatten[Nest[{2#, 2# + 1, 2# +i} &, {0}, n]]]
(compare page 1005)

= Position[ Map[Split, NestList[Sort[Flatten[{#, # + 1}]] &,
{0}, 2" -1]], _?(0ddQ[Length[#]] &), {2}]
(see page 358)
u Flatten[Table[Map[{t, #} &,
Fold[Flatten[{#1, #1 + #2}] &, 0O, Flatten[2 ~(Position[
Reverse[IntegerDigits[t, 2]], 11-1)]11, {t, 2" - 1}], 1]

(see page 870)

= Map[Map[FromDigits(#, 2] & Transpose[Partition[#, 2]]] &,
Position[Nest[{{#, #}, {(#}}& 1,n], 1]-1]

(see page 509)
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A formatting hack giving the same visual pattern is
DisplayForm[Nest[SubsuperscriptBox[#, #, #] &, "1", n]]
n Non-white backgrounds. The pictures

substitution systems in which white squares are replaced by
blocks which contain black squares. There is still a nested

below show

structure but it is usually not visually as obvious as before.
(See page 583.)

ML
H IZIE
BEFFEL:

= Higher-dimensional generalizations. The state of a d-

dimensional substitution system can be represented by a
nested list of depth d. The evolution of the system for t steps
can be obtained from

SSEvolvel[rule_, init, t_, d_Integer] :=
Nest[FlattenArray [# /. rule, d] &, init, t]

FlattenArray[list_, d_] :=
Fold[Function[{a, n}, Map[MapThread[Join, #, n] &,
a, -{d +2}]], list, Reverse[Range[d]-1]]
The analog in 3D of the 2D rule on page 187 is
{1- Array[If[LessEqual [##], 0, 1] &, {2, 2, 2}],
0- Array[0 &, {2, 2, 2}]}
Note that in d dimensions, each black cell must be replaced
by at least d + 7 black cells at each step in order to obtain
an object that is not restricted to a dimension d-7
hyperplane.

n Other shapes. The systems on pages 187 and 188 are based
on subdividing squares into smaller squares. But one can also
set up substitution systems that are based on subdividing
other geometrical figures, as shown below.

B e s B
e

The second example involves two distinct shapes: a square and
a GoldenRatio aspect ratio rectangle. Labelling each shape and
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orientation with a different color, the behavior of this system can
be reproduced with equal-sized squares using the rule
{3 1{{1,0} {3, 2}}, 2> ({1}, {3}}, 1> {{3, 2}}, 0> {{3}}} starting
from initial condition {{3}}.

n Penrose tilings. The nested pattern shown below was
studied by Roger Penrose in 1974 (see page 943).

A

The arrangement of triangles at step t can be obtained from a
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substitution system according to
With[{¢ = GoldenRatio}, Nest[# /. alp_, q_, r_]~
With[{s = (p+ ¢ q)(2-¢)}, {alr, s, q], blr, s, p]}]/.
blp_, q_, r_]> With[{s = (p+¢r)(2-¢)} {alp, q, s], bl
r, s, qlH & al{1/2, Sin[2 /5] ¢}, {1, 0}, {0, 0}], t]]

This pattern can be viewed as generalizations of the pattern
generated by the 1D Fibonacci substitution system (c) on
page 83. As discussed on page 903, this 1D sequence can be
obtained by looking at how a line with GoldenRatio slope cuts
through a 2D lattice of squares. Penrose tilings can be
obtained by looking at how a 2D plane with slopes based on
GoldenRatio cuts through a lattice of hypercubes in 5D. The
tilings turn out to have approximate 5-fold symmetry. (See
also page 943.)

In general, projections onto any regular lattice in any number
of dimensions from hyperplanes with any quadratic
irrational slopes will yield nested patterns that can be
generated by subdividing some shape or another according
to a substitution system. Despite some confusion in the
literature, however, this procedure can reproduce only a tiny
fraction of all possible nested patterns.

n Page 189 - Dragon curve. The pattern shown here can be
obtained in several related ways, including from numbers in
base i-1 (see below) and from a doubled version of the
paths generated by 1D paperfolding substitution systems
(see page 892). Its boundary has fractal dimension

2Log[2, Root[2 +#1°7 -#1°, 1]]~1.52.
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» Implementation. The most convenient approach is to represent
each pattern by a list of complex numbers, with the center of each
square being given in terms of each complex number z by
{Re[z], Im[z]}. The pattern after n steps is then given by
Nest[Flatten[f[#]] &, {0}, n], where for the rule on page 189
flz_]=1/2(1-i){z+1/2,z-1/2} (f[z_] =(1-i){z + 1, z} gives
a transformed version). For the rule on page 190,
flz_]=1/2(1-i){iz+1/2,z-1/2}. For rules (a), (b) and (c)
(Koch curve) on page 191 the forms of f[z_] are respectively:

(0.296-0.571)z-0.067i-{1.04, 0.237}

N[1/40{17 (V'3 i)z, 24+ 14z}]

NI(1/2(1/N3 = 1)(i+{1,-1))-i- (1 +{i, -i}/N'3 )2)/2]

» Connection with digit sequences. Patterns after t steps can
be viewed as containing all t-digit integers in an appropriate
complex base. Thus the patterns on page 189 can be formed
from t-digit integers in base i - 7 containing only digits 0 and
1, as given by

Table[FromDigits[IntegerDigits[s, 2, t], i- 1], {s, 0, 2' - 1}]

In the particular case of base i- g with digits 0 through g, it
turns out that for sufficiently large ¢ any complex integer can
be represented, and will therefore be part of the pattern.
(Compare page 1094.)

n Visualization. The 3D pictures below show successive steps
in the evolution of each of the geometric substitution systems

from the main text.

n Parameter space sets. See pages 407 and 1006 for a
discussion of varying parameters in geometrical substitution
systems.

= Affine transformations.
transformations that take the vector for each point, multiply

Any set of so-called affine
it by a fixed matrix and then add a fixed vector, will yield
nested patterns similar to those shown in the main text.
Linear operations on complex numbers of the kind
discussed above correspond geometrically to rotations,
translations and rescalings. General affine transformations
also allow reflection and skewing. In addition, affine
transformations can readily be generalized to any number of
dimensions, while complex numbers represent only two

dimensions.

AND BEYOND NOTES FOR CHAPTER 5

n Complex maps. Many kinds of nonlinear transformations
on complex numbers yield nested patterns. Sets of so-called
Mobius transformations of the form z- (az+b)/(cz+d)
always yield such patterns (and correspond to so-called
modular groups when ad-bc==1). Transformations of the
form z - {Sqrt[z-c], -Sqrt[z-c]} yield so-called Julia sets
which form nested patterns for many values of ¢ (see note
below). In fact, a fair fraction of all possible transformations
based on algebraic functions will yield nested patterns. For
typically the continuity of such functions implies that only a
limited number of shapes not related by limited variations in
local magnification can occur at any scale.

n Fractal dimensions. Certain features of nested patterns can
be characterized by so-called fractal dimensions. The
pictures below show five patterns with three successively
finer grids superimposed. The dimension of a pattern can be
computed by looking at how the number of grid squares
that have any gray in them varies with the length a of the
edge of each grid square. In the first case shown, this
number varies like (7/a)’ for small a, while in the last case,
it varies like (7/a)?. In general, if the number varies like
(1/a)?, one can take d to be the dimension of the pattern.
And in the intermediate cases shown, it turns out that d has
non-integer values.

el

TN
TN

The grid in the pictures above fits over the pattern in a very
regular way. But even when this does not happen, the
limiting behavior for small a is still (7/a)? for any nested
pattern. This form is inevitable if the underlying pattern
effectively has the same structure on all scales. For some of
the more complex patterns encountered in this book,
however, there continues to be different structure on different
scales, so that the effective value of d fluctuates as the scale
changes, and may not converge to any definite value. (Precise
definitions of dimension based for example on the maximum
ever achieved by d will often in general imply formally non-
computable values, as in the discussion of page 1138.)
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Fractal dimensions characterize some aspects of nested
patterns, but patterns with the same dimension can often
look very different. One approach to getting better
characterizations is to look at each grid square, and to ask not
just whether there is any gray in it, but how much. Quantities
derived from the mean, variance and other moments of the
probability distribution can serve as generalizations of fractal

dimension. (Compare page 959.)

n History of fractals. The idea of using nested 2D shapes in
art probably goes back to antiquity; some examples were
shown on page 43. In mathematics, nested shapes began to
be used at the end of the 1800s, mainly as counterexamples
to ideas about continuity that had grown out of work on
calculus. The first examples were graphs of functions: the
curve on page 918 was discussed by Bernhard Riemann in
1861 and by Karl Weierstrass in 1872. Later came
() on page 191 was
introduced by Helge von Koch in 1906, the example on

geometrical figures: example
page 187 by Wactaw Sierpiniski in 1916, examples (a) and (c)
on page 188 by Karl Menger in 1926 and the example on
page 190 by Paul Lévy in 1937. Similar figures were also
produced independently in the 1960s in the course of early
experiments with computer graphics, primarily at MIT.
From the point of view of mathematics, however, nested
shapes tended to be viewed as rare and pathological
examples, of no general significance. But the crucial idea
that was developed by Benoit Mandelbrot in the late 1960s
and early 1970s was that in fact nested shapes can be
identified in a great many natural systems and in several
branches of mathematics. Using early raster-based
computer display technology, Mandelbrot was able to
produce striking pictures of what he called fractals. And
following the publication of Mandelbrot’s 1975 book,
interest in fractals increased rapidly. Quantitative
comparisons of pure power laws implied by the simplest
fractals with observations of natural systems have had
somewhat mixed success, leading to the introduction of
multifractals with more parameters, but Mandelbrot’s
general idea of the importance of fractals is now well

established in both science and mathematics.

n The Mandelbrot set. The pictures below show Julia sets
produced by the procedure of taking the transformation
z - {Sqrt[z-c], -Sqrt[z-c]} discussed above and iterating it
starting at z =0 for an array of values of ¢ in the complex
plane.
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The Mandelbrot set introduced by Benoit Mandelbrot in 1979
is defined as the set of values of ¢ for which such Julia sets
are connected. This turns out to be equivalent to the set of
values of ¢ for which starting at z =0 the inverse mapping
z - z? + ¢ leads only to bounded values of z. The Mandelbrot
set turns out to have many intricate features which have been
widely reproduced for their aesthetic value, as well as
studied by mathematicians. The first picture below shows the
overall form of the set; subsequent pictures show successive
magnifications of the regions indicated. All parts of the
Mandelbrot set are known to be connected. The whole set is
not self-similar. However, as seen in the third and fourth
pictures, within the set are isolated small copies of the whole
set. In addition, as seen in the last picture, near most values
of ¢ the boundary of the Mandelbrot set looks very much like
the Julia set for that value of c.

L.l

On pages 407 and 1006 I discuss parameter space sets that are
somewhat analogous to the Mandelbrot set, but whose
properties are in many respects much clearer. And from this
discussion there emerges the following interpretation of the
Mandelbrot set that appears not to be well known but which
I find most illuminating. Look at the array of Julia sets and
ask for each ¢ whether the Julia set includes the point z = 0.
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The set of values of ¢ for which it does corresponds exactly to
the boundary of the Mandelbrot set. The pictures below show
a generalization of this idea, in which gray level indicates the
minimum distance Abs[z-2z,] of any point z in the Julia set
from a fixed point z,. The first picture shows the case z, = 0,
corresponding to the usual Mandelbrot set.

2=0 20=1 20 =10

n Page 192 - Neighbor-dependent substitution systems. Given
a list of individual replacement rules such as
{{_, 1}, {0, 1}}>{{1,0}, {1, 1}}, each step in the evolution
shown corresponds to

Flatten2D[ Partition[list, {2, 2}, 1, -1] /. rule]

One can consider rules in which some replacements lead to
subdivision of elements but others do not. However, unlike
for the 1D case, there will in general in 2D be an arbitrarily
large set of different possible neighborhood configurations
around any given cell.

n Page 192 - Space-filling curves. One can conveniently scan a
finite 2D grid just by going along each successive row in turn.
One can scan a quadrant of an infinite grid using the o
function on page 1127, or one can scan a whole grid by for
example going in a square spiral that at step t reaches position
(172(-1)* ({1, -1} (Abs[#? - t]-#) +#? - t - Mod[#, 2]) &)[
Round[V't ]]

Network Systems

n Implementation. The nodes in a network system can
conveniently be labelled by numbers 7, 2, ...n, and the
network obtained at a particular step can be represented by a
list of pairs, where the pair at position / gives the numbers
corresponding to the nodes reached by following the above
and below connections from node i. With this setup, a
network consisting of just one node is {{7, 1}} and a 1D array
of n nodes can be obtained with

CyclicNet[n_] := RotateRight[

Table[Mod([{i-1,i+ 1}, n]+1,{i, n}]]

With above connections represented as 7 and the below
connections as 2, the node reached by following a succession
s of connections from node / is given by

Follow[list_, i_, s_List] := Fold[list[#1][#2]] &, i, s]

AND BEYOND NOTES FOR CHAPTER 5

The total number of distinct nodes reached by following all
possible succession of connections up to length d is given by
NeighborNumbers(list_, i_Integer, d_Integer] :=
Map[Length, NestList[Union[Flatten[list[[#]]]] &,
Union[list[[i]l], d-1]]

For each such list the rules for the network system then specify
how the connections from node / should be rerouted. The rule
{2,3}-1{{2, 1}, {1}} specifies that when NeighborNumbers
gives {2, 3} for a node /, the connections from that node should
become {Follow(list, i, {2, 1}], Follow([list, i, {1}]}. The rule
{2, 31> {{{2, 1}, {1, 1}}, {1}} specifies that a new node should
be inserted in the above connection, and this new node should
have connections {Follow(list, i, {2, 1}], Follow([list, i, {1, TH}.
With rules set up in this way, each step in the evolution of a
network system is given by

NetEvolveStep[{depth_Integer, rule_List}, list_List] := Block[
{new = {}}, Join[Table[Map[NetEvolveStep1[#, list, i] &,
Replace[NeighborNumbers][list, i, depth],
rule]], {i, Length[list]}], new]]

NetEvolveStep1[s :{___Integer}, list_, i_] := Followl[list, i, s]
NetEvolveStep1[{s1:{___Integer}, s2 :{___Integer}},
list_, i_] := Length[list] + Length[
AppendTo[new, {Followl[list, i, s1], Follow[list, i, s2]}]]
The set of nodes that can be reached from node / is given by

ConnectedNodes]list_, i_] :=
FixedPoint[Union[Flatten[{#, list[#]1}]] & {i}]

and disconnected nodes can be removed using
RenumberNodes([list_, seq_] :=
Map[Position[seq, #][[1, 1] & listl[seq]l, {2}]
The sequence of networks obtained on successive steps by
applying the rules and then removing all nodes not
connected to node number 7 is given by
NetEvolvelList[rule_, init_, t_Integer] :=
NestList[(RenumberNodes[#, ConnectedNodes[#, 1]] &)[
NetEvolveStep[rule, #]] &, init, t]
Note that the nodes in each network are not necessarily
numbered in the order that they appear on successive lines in
the pictures in the main text. Additional information on the
origin of each new node must be maintained if this order is to
be found.

n Rule structure. For depth 1, the possible results from
NeighborNumbers are {1} and {2}. For depth 2, they are {7, 7},
(1,2}, {2,1}, (2,2}, (2,3} and {2, 4}. In general, each
successive element in a list from NeighborNumbers cannot be
more than twice the previous element.

u Undirected networks. Networks with connections that do
not have definite directions are discussed at length in
Chapter 9, mainly as potential models for space in the
universe. The rules for updating such networks turn out to be
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somewhat more difficult to apply than those for the network
systems discussed here.

u Page 199 - Computer science. The networks discussed here
can be thought of as very simple analogs of data structures in
practical computer programs. The connections correspond to
pointers between elements of these data structures. The fact
that there are two connections coming from each node is
reminiscent of the LISP language, but in the networks
considered here there are no leaves corresponding to atoms
in LIsP. Note that the process of dropping nodes that become
disconnected is analogous to so-called “garbage collection”
for data structures. The networks considered here are also
related to the combinator systems discussed on page 1121.

u Page 202 - Properties. Random behavior seems to occur in a
few out of every thousand randomly selected rules of the
kind shown here. In case (c), the following gives a list of the
numbers of nodes generated up to step t:

FoldList[Plus, 1, Join[{1, 4, 12, 10, -20, 6, 4},
Map[d, IntegerDigits[Range[4, t-5], 2]]]]

dlif___, 1}=1

d[{1,p:((0)..), 0}] :=
-Apply[Plus, 4 Range[Length[{p}]]-1]+6

di{__, 1,p:((0)..), 0}] :=d[{1, p, 0}]-7

dlf___, p:((1)..),q:((0)...), 1,0}] :=
4 Length[{p}]+3Length[{q}] +2

al{___, p:((1)..), 1,0}] :=4Length[{p}] +2

the
discussed in the main text, every node is updated in

= Sequential network systems. In network systems
parallel at each step. It is however also possible to consider
systems in which there is only a single active node, and
operations are performed only on that node at any
particular step. The active node can move by following its
above or below connections, in a way that is determined by
a rule which depends on the local structure of the network.
The pictures below show examples of sequential network
systems; the path of the active node is indicated by a thick

black line.

Y

INTNY
i~

I
Jt

)

936

SCIENCE

It is rather common for the active node eventually to get
stuck at a particular position in the network; the picture
below shows the effect of this on the total number of nodes in
the last case illustrated above. The rule for this system is

(01, 13> A{{{} {1, 13}, {2}, 2], {1, 2} > {{{2, 2}, {{}, {2, 2}}}, 2},
(2,1} {{{} (2, 2}}, 2}, {2, 2} > {{{1, 2}, {1}, {2}}}, 1},
{2, 3} 1{{{{1, 2}, {1}} ({2}, {2, 1}}}, 2},
{2, 4} {{{2, 2}, {{2, 1}, {}}}, 1}}

2358
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» Dimensionality of networks. As discussed on page 479, if a
sufficiently large network has a d-dimensional form, then by
following r connections in succession from a given node, one
should reach about r distinct nodes. The plots below show
the actual numbers of nodes reached as a function of r for the
systems on pages 202 and 203 at steps 1, 10, 20, ..., 200.
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u Cellular automata on networks. The cellular automata that
we have considered so far all have cells arranged in regular
arrays. But one can also set up generalizations in which the
cells correspond to nodes in arbitrary networks. Given a
network of the kind discussed in the main text of this section,
one can assign a color to each node, and then update this
color at each step according to a rule that depends on the
colors of the nodes to which the connections from that node
go. The behavior obtained depends greatly on the form of the
network, but with networks of finite size the results are
typically like those obtained for other finite size cellular
automata of the kind discussed on page 259.

» Implementation. Given a network represented as a list in
which element / is {a, i, b}, where a is the node reached by
the above connection from node /i, and b is the node reached
by the below connection, each step corresponds to
NetCAStep[{rule_, net_}, list_] :=
Map[Replace[#, rule] &, listl[net]]

u Boolean networks. Several lines of development from the
cybernetics movement (notably in immunology, genetics and
management science) led in the 1960s to a study of random
Boolean networks—notably by Stuart Kauffman and Crayton
Walker. Such systems are like cellular automata on networks,
except for the fact that when they are set up each node has a
rule that is randomly chosen from all 22" possible ones with
s inputs. With s = 2 class 2 behavior (see Chapter 6) tends to
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dominate. But for s>2, the behavior one sees quickly
approaches what is typical for a random mapping in which
the network representing the evolution of the 2™ states of the
m underlying nodes is itself connected essentially randomly
(see page 963). (Attempts were made in the 1980s to study
phase transitions as a function of s in analogy to ones in
percolation and spin glasses.) Note that in almost all work on
random Boolean networks averages are in effect taken over
possible configurations, making it impossible to see anything
like the kind of complex behavior that I discuss in cellular
automata and many other systems in this book.

Multiway Systems

» Implementation. It is convenient to represent the state of a
multiway system at each step by a list of strings, where an
individual string is for example "ABBAAB". The rules for the
multiway system can then be given for example as

{"AAB"—> "BB", "BA"— "ABB"}
The evolution of the system is given by the functions

MWStep[rule_List, slist_List] := Union[ Flatten[
Map[Function[s, Map[MWStep1[#, s] &, rule]], slist]]]

MWStep1[p_String - q_String, s_String] :=
Map[StringReplacePart[s, q, #] &, StringPosition[s, p]]

MWEvolvelist[rule_, init_List, t_Integer] :=
NestList[MWStep[rule, #] &, init, t]
An alternative approach uses lists instead of strings, and in
effect works by tracing the internal steps that Mathematica
goes through in trying out possible matchings. With the rule
from above written as

{{x_., 0,0 1, y___}=>1{x 11y}
{Ix_, 1,0, y___}=1{x,0 1,1, y}}

MWStep can be rewritten as

MWStep[rule_List, slist_List] :=

Union[Flatten[Map[ReplaceList[#, rule] &, slist], 1]]

The case shown on page 206 is

{"AB"— "', "ABA" > "ABBAB", "ABABBB" — "AAAAABA"}
starting with {"ABABAB’}. Note that the rules are set up so that
a string for which there are no applicable replacements at a
given step is simply dropped.
n General properties. The merging of states (as done above by
Union) is crucial to the behavior seen. Note that the pictures
shown indicate only which states yield which states—not for
example in how many ways the rules can be applied to a
given state to yield a given new state.

If there was no merging, then if a typical state yielded more
than one new state, then inevitably the total number of
states would increase exponentially. But when there is

AND BEYOND NOTES FOR CHAPTER 5

merging, this need not occur—making it difficult to give
probabilistic estimates of growth rates. Note that a given
rule can yield very different growth rates with different
initial conditions. Thus, for example, the growth rate for
{"A" > "AA", "AB" > "BA", "BA"— "AB"} is t"*!, where n is the
number of initial B’s. With most rules, states that appear at
one step can disappear at later steps. But if "A" - "A" and its
analogs are part of the rule, then every state will always be
kept, almost inevitably leading to overall nesting in pictures
like those on page 208.

In cases where all strings that appear both in rules and
initial conditions are sorted—so that for example A’s appear
before B’s—any string generated will also be sorted, so it
can be specified just by giving a list of how many A’s and
how many B’s appear in it. The rule for the system can then
be stated in terms of a difference vector—which for
{"BA"— "AAA", 'BAA" - "BBBA"} is {{2, -1} {-1, 2}}. Given a
list of string specifications, a step in the evolution of the
multiway system corresponds to
Select[Union[Flatten[ Outer [Plus, diff, list, 1], 1]],
Abs[#] == # &]

n Page 206 - Properties. The total number of strings grows
approximately quadratically; its differences repeat (offset by
1) with period 1071. The number of new strings generated at
successive steps grows approximately linearly; its differences
repeat with period 21. The third element of the rule is at first
used only on some steps—but after step 50 it appears to be
used somewhere in every step.

The pictures below show in stacked form (as on page 208) all
sequences generated at various steps of evolution. Note that
after just a few steps, the sequences produced always seem to
consist of white elements followed by black, with possibly
one block of black in the white region. Without this
additional block of black, only the first case in the rule can

ever apply.

=\

step 300

o

step 100 step 200 step 400

In analogy with page 796 the picture below shows when
different strings with lengths up to 10 are reached in the
evolution of the system.

937
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Different initial conditions for this multiway system lead to
behavior that either dies out (as for "ABA"), or grows
exponentially forever (as for "ABAABABA").

n Frequency of behavior. Among multiway systems with
randomly chosen rules, one finds about equal numbers that
grow rapidly and die out completely. A few percent exhibit
repetitive behavior, while only one in several million exhibit
more complex behavior. One common form of more complex
behavior is quadratic growth, with essentially periodic
fluctuations superimposed—as on page 206.

n History. Versions of multiway systems have been invented
many times in a variety of contexts. In mathematics specific
examples of them arose in formal group theory (see below)
around the end of the 1800s. Axel Thue considered versions
with two-way rules (analogous to semigroups, as discussed
below) in 1912, leading to the name semi-Thue systems
sometimes being used for general multiway systems. Other
names for multiway systems have included string and term
rewrite systems, production systems and associative calculi.
From the early 1900s various generalizations of multiway
systems were used as idealizations of mathematical proofs
(see page 1150); multiway systems with explicit pattern
variables (such as s_) were studied under the name canonical
systems by Emil Post starting in the 1920s. Since the 1950s,
multiway systems have been widely used as generators of
formal languages (see below). Simple analogs of multiway
systems have also been used in genetic analysis in biology
and in models for particle showers and other branching
processes in physics and elsewhere.

n Semigroups and groups. The multiway systems that I
discuss can be viewed as representations for generalized
versions of familiar mathematical structures. Semigroups are
obtained by requiring that rules come in pairs: with each rule
such as "ABB"— "BA" there must also be the reversed rule
'BA"— "ABB". Such pairs of rules correspond to relations in
"ABB" is
equivalent to "BA". (The operation in the semigroup is

the semigroup, specifying for example that

n

concatenation of strings; " acts as an identity element, so in
fact a monoid is always obtained.) Groups require that not
only rules but also symbols come in pairs. Thus, for example,
in addition to a symbol A, there must be an inverse symbol a,

with the rules "Aa" - ", "aA"— "" and their reversals.

In the usual mathematical approach, the objects of greatest
interest for many purposes are those collections of sequences
that cannot be transformed into each other by any of the rules
given. Such collections correspond to distinct elements of the
group or semigroup, and in general many different choices of
underlying rules may yield the same elements with the same
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properties. In terms of multiway systems, each of the
elements corresponds to a disconnected part of the network
formed from all possible sequences.

Given a particular representation of a group or semigroup in
terms of rules for a multiway system, an object that is often
useful is the so-called Cayley graph—a network where each
node is an element of the group, and the connections show
what elements are reached by appending each possible
symbol to the sequences that represent a given element. The
so-called free semigroup has no relations and thus no rules,
so that all strings of generators correspond to distinct
elements, and the Cayley graph is a tree like the ones shown
on page 196. The simplest non-trivial commutative
semigroup has rules "AB"- "BA" and 'BA"- "AB", so that
strings of generators with A’s and B’s in different orders are
equivalent and the Cayley graph is a 2D grid.

For some sets of underlying rules, the total number of
distinct elements in a group or semigroup is finite. (Compare
page 945.) A major mathematical achievement in the 1980s
was the complete classification of all possible so-called
simple finite groups that in effect have no factors. (For
semigroups no such classification has yet been made.) In each
case, there are many different choices of rules that yield the
same group (and similar Cayley graphs). And it is known
that even fairly simple sets of rules can yield large and
complicated groups. The icosahedral group A; defined by

2 == y% == (xy)® == 1 has 60 elements. But in the

the rules x

most complicated case a dozen rules yield the Monster

Group, where the number of elements is
808017424794512875886459904961710757005754368000000000

(See also pages 945 and 1032.)

Following work in the 1980s and 1990s by Mikhael Gromov
and others, it is also known that for groups with randomly
chosen underlying rules, the Cayley graph is usually either
finite, or has a rapidly branching tree-like structure. But there
are presumably also marginal cases that exhibit complex
behavior analogous to what we saw in the main text. And
indeed for example, despite conjectures to the contrary, it was
found in the 1980s by Rostislav Grigorchuk that complicated
groups could be constructed in which growth intermediate
between polynomial and exponential can occur. (Note that
different choices of generators can yield Cayley graphs with
different local subgraphs; but the overall structure of a
sufficiently large graph for a particular group is always the
same.)

= Formal languages. The multiway systems that I discuss are
similar to so-called generative grammars in the theory of
formal languages. The idea of a generative grammar is that
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all possible expressions in a particular formal language can
be produced by applying in all possible ways the set of
replacement rules given by the grammar. Thus, for example,
the rules {'x"- "xx", "> "(x)", "x"—>"()"} starting with "x"
will generate all expressions that consist of balanced
sequences of parentheses. (Final expressions correspond to
those without the “non-terminal” symbol x.) The hierarchy
described by Noam Chomsky in 1956 distinguishes four
kinds of generative grammars (see page 1104):

Regular grammars. The left-hand side of each rule must
consist of one non-terminal symbol, and the right-hand side
can contain only one non-terminal symbol. An example is
{'x"—= "xA", 'x"> "yB", "y" > "xA"} starting with ‘x" which
generates sequences in which no pair of B’s ever appear
together. Expressions in regular languages can be
recognized by finite automata of the kind discussed on

page 957.

Context-free grammars. The left-hand side of each rule must
consist of one non-terminal symbol, but the right-hand side
can contain several non-terminal

the language
{'x"—> "AxA", 'x" - "B"} starting with "x", and the syntactic

symbols. Examples

include parenthesis mentioned above,
definitions of Mathematica and most other modern computer
languages. Context-free languages can be recognized by a
computer using only memory on a single last-in first-out

stack. (See pages 1091 and 1103.)

Context-sensitive grammars. The left-hand side of each rule is
no longer than the right, but is otherwise unrestricted. An
example is {"Ax"— "AAxx", 'xA" - "BAA’, 'xB" » "Bx"} starting
with "AAxBA’, which generates expressions of the form
Table['A", {n}] <> Table["B", {n}] <> Table["A", {n}].

Unrestricted grammars. Any rules are allowed.
(See also page 944.)

» Multidimensional multiway systems. As a generalization of
multiway systems based on 1D strings one can consider
systems in which rules operate on arbitrary blocks of
elements in an array in any number of dimensions. Still
more general network substitution systems are discussed on
page 508.

n Limited size versions. One can set up multiway systems of
limited size by applying transformations cyclically to strings.

» Multiway tag systems. See page 1141.

» Multiway systems based on numbers. One can consider for
example the rule n— {n + 1, 2n} implemented by
NestList[Union[Flatten[{# + 1, 2#}]1] &, {0}, t]

AND BEYOND NOTES FOR CHAPTER 5

In this case there are Fibonacci[t+2] distinct numbers
obtained at step t. In general, rules based on simple
arithmetic operations yield only simple nested structures. If
the numbers n are allowed to have both real and imaginary
parts then results analogous to those discussed for
substitution systems on page 933 are obtained. (Somewhat
related systems based on recursive sequences are discussed
on page 907. Compare also sorted multiway systems on

page 937.)

» Non-deterministic systems. Multiway systems are examples
of what are often in computer science called non-
deterministic systems. The general idea of a non-
deterministic system is to have rules with several possible
outcomes, and then to allow each of these outcomes to be
followed. Non-deterministic Turing machines are a common
example. For most types of systems (such as Turing
machines) such non-deterministic versions do not ultimately
allow any greater range of computations to be performed

than deterministic ones. (But see page 766.)
» Fundamental physics. See page 504.

» Game systems. One can think of positions or configurations
in a game as corresponding to nodes in a large network, and
the possible moves in the game as corresponding to
connections between nodes. Most games have rules which
imply that if certain states are reached one player can be
forced in the end to lose, regardless of what specific moves
they make. And even though the underlying rules in the
game may be simple, the pattern of such winning positions is
often quite complex. Most games have huge networks whose
structure is difficult to visualize (even the network for tic-tac-
toe, for example, has 5478 nodes). One example that allows
easy visualization is a simplification of several common
games known as nim. This has k piles of objects, and on
alternate steps each of two players takes as many objects as
they want from any one of the piles. The winner is the player
who manages to take the very last object. With just two piles
one player can force the other to lose by arranging that after
each of their moves the two piles have equal heights. With
more than two piles it was discovered in 1901 that one player
can in general force the other to lose by arranging that after
each of their moves Apply[BitXor, h] == 0, where h is the list of
heights. For k > 7 this yields a nested pattern, analogous to
those shown on page 871. If one allows only specific numbers
of objects to be taken at each step a nested pattern is again
obtained. With more general rules it seems almost inevitable
that much more complicated patterns will occur.

939



STEPHEN WOLFRAM A NEW KIND OF

Systems Based on Constraints

n The notion of equations. In the mathematical framework
traditionally used in the exact sciences, laws of nature are
usually represented not by explicit rules for evolution, but
rather by abstract equations. And in general what such
equations do is to specify constraints that systems must
satisfy. Sometimes these constraints just relate the state of a
system at one time to its state at a previous time. And in such
cases, the constraints can usually be converted into explicit
evolution rules. But if the constraints relate different features
of a system at one particular time, then they cannot be
converted into evolution rules. In computer programs and
other kinds of discrete systems, explicit evolution rules and
implicit constraints usually work very differently. But in
traditional continuous mathematics, it turns out that these
differences are somewhat obscured. First of all, at a formal
level, equations corresponding to these two cases can look
very similar. And secondly, the equations are almost always
so difficult to deal with at all that distinctions between the

two cases are not readily noticed.

In the language of differential equations—the most widely
used models in traditional science—the two cases we are
discussing are essentially so-called initial value and
boundary value problems, discussed on page 923. And at a
formal level, the two cases are so similar that in studying
partial differential equations one often starts with an
equation, and only later tries to work out whether initial or
boundary values are needed in order to get either any
solution or a unique solution. For the specific case of second-
order equations, it is known in general what is needed.
Elliptic equations such as the Laplace equation need
boundary values, while hyperbolic and parabolic equations
such as the wave equation and diffusion equation need initial
values. But for higher-order equations it can be extremely
difficult to work out what initial or boundary values are
needed, and indeed this has been the subject of much
research for many decades.

Given a partial differential equation with initial or boundary
values, there is then the question of solving it. To do this on a
computer requires constructing a discrete approximation. But
it turns out that the standard methods used (such as finite
difference and finite element) involve extremely similar
computations for initial and for boundary value problems,
leaving no trace of the significant differences between these
cases that are so obvious in the discrete systems that we
discuss in most of this book.

n Linear and nonlinear systems. A vast number of different
applications of traditional mathematics are ultimately based

940

SCIENCE

on linear equations of the form v ==m.v where v and v are
vectors (lists) and m is a matrix (list of lists), all containing
ordinary continuous numbers. If v is known then such
equations in essence provide explicit rules for computing u.
But if only v is known, then the equations can instead be
thought of as providing implicit constraints for v. However,
it so happens that even in this case v can still be found fairly
straightforwardly using LinearSolve[m, u]. With vectors of
length n it generically takes about n? steps to compute u
given v, and a little less than n” steps to compute v given u
(the best known algorithms—which are based on matrix
multiplication—currently involve about n?? steps). But as
the say
u==m,.v+m,.v?, the situation changes dramatically. It still

soon as original equation is nonlinear,
takes only about n’ steps to compute u given v, but it
becomes vastly more difficult to compute v given u, taking
perhaps 27" steps. (Generically there are 2" solutions for v,
and even for integer coefficients in the range -r to +r already
in 95% of cases there are 4 solutions with n=2 as soon as

r=6.)

= Explanations based on constraints. In some areas of science
it is common to give explanations in terms of constraints
rather than mechanisms. Thus, for example, in physics there
are so-called variational principles which state that physical
systems will behave in ways that minimize or maximize
certain quantities. One such principle implies that atoms in
molecules will tend to arrange themselves so as to minimize
their energy. For simple molecules, this is a useful principle.
But for complicated molecules of the kind that are common
in living systems, this principle becomes much less useful. In
fact, in finding out what configuration such molecules
actually adopt, it is usually much more relevant to know how
the molecule evolves in time as it is created than which of its
configurations formally has minimum energy. (See pages 342
and 1185.)

u Page 211 - 1D constraints. The constraints in the main text
can be thought of as specifying that only some of the k"
possible blocks of cells of length n (with k possible colors for
each cell) are allowed. To see the consequences of such
constraints consider breaking a sequence of colors into blocks
of length n, with each block overlapping by n- 7 cells with its
predecessor, as in Partition[list, n, 1]. If all possible sequences
of colors were allowed, then there would be k possibilities for
what block could follow a given block, given by
Map[Rest, Table[Append[list, i], {i, 0, k- 1}]].
sequences of length n blocks that can occur are conveniently

The possible

represented by possible paths by so-called de Bruijn
networks, of the kind shown for k =2 and n=2 through 5
below.



TWO DIMENSIONS

Given the network for a particular n, it is straightforward to
see what happens when only certain length n blocks are
allowed: one just keeps the arcs in the network that
correspond to allowed blocks, and drops all other ones. Then
if one can still form an infinite path by going along the arcs
that remain, this path will correspond to a pattern that
satisfies the constraints. Sometimes there will be a unique
such path; in other cases there will be choices that can be
made along the path. But the crucial point is that since there
are only k™' nodes in the network, then if any infinite path is
possible, there must be such a path that visits the same node
and thus repeats itself after at most k"' cells. The constraint
on page 210 has k =2 and n = 3; the pattern that satisfies it
repeats with period 4, thus saturating the bound. (See also
page 266.)

1 1D cellular automata. In a cellular automaton with k colors
and r neighbors, configurations that are left invariant after t
steps of evolution according to the cellular automaton rule
are exactly the ones which contain only those length 2r + 17
blocks in which the center cell is the same before and after the
evolution. Such configurations therefore obey constraints of
the kind discussed in the main text. As we will see on page
225
configurations from any initial conditions, but most do not.
(See page 954.)

some cellular automata evolve to invariant

» Dynamical systems theory. Sets of sequences in which a
finite collection of blocks are excluded are sometimes known
as finite complement languages, or subshifts of finite type.
(See page 958.)

u Page 215 - 2D constraints. The constraints shown here are
minimal, in the sense that in each case removing any of the
allowed templates prevents the constraint from ever being
satisfied. Note that constraints which differ only by overall
rotation, reflection or interchange of black and white are not
explicitly shown. The number of allowed templates out of the
total of 32 possible varies from 1 to 15 for the constraints
shown, with 12 being the most common. Smaller sets of
allowed templates typically seem to lead to constraints that
can be satisfied by visually simpler patterns.

AND BEYOND NOTES FOR CHAPTER 5

n Numbering scheme. The constraint numbered n allows the
templates at Position[IntegerDigits[n, 2, 32], 1] in the list
below. (See also page 927.)

o o | e |
5 o o o o

u Identifying the 171 patterns. The number of constraints to
consider can be reduced by symmetries, by discarding sets of
templates that are supersets of ones already known to be
satisfiable, and by requiring that each template in the set be
compatible with itself or with at least one other in each of the
The
constraints can then be analyzed by attempting to build up

eight immediately adjacent positions. remaining

explicit patterns that satisfy them, as discussed below.

n Checking constraints. A set of allowed templates can be
specified by a Mathematica pattern of the form ¢, /t,/t; etc.
where the t; are for example {{_, 1,_}, (0,0, 1}, {_, 0, _}}. To
check whether an array /ist contains only arrangements of
colors corresponding to allowed templates one can then use

SatisfiedQl[list_, allowed_] :=

Apply[And, Map[MatchQ[#, allowed] &,
Partition[list, {3, 3}, {1, 111, {2}], {0, 1}]

n Representing repetitive patterns. Repetitive patterns are
often most conveniently represented as tessellations of
rectangles whose corners overlap. Pattern (a) on page 213 can
be specified as

{{2,-1,2,3} {{0,0,0,0} {1, 1,0, 0} {1,0,0, 0}}}
Given this, a complete nx by ny array filled with this pattern
can be constructed from

cl{dl, d2_, d3_, da_}, {x_, y_}] =
With[{d = d1d2 + d1d4 + d3 d4),
Mod[{{d2x +d4x +d3y, ddx-d1y}}/d, 1]]

Fill[{dlist_, data_}, {nx_, ny_}]:=
Array[c[dlist, {##}] &, {nx, ny}]/. Flatten[ MapIndexed[
cldlist, Reverse[#2]] - #1 &, Reverse[data], {2}], 1]

u Searching for patterns. The basic approach to finding a
pattern which satisfies a particular constraint on an infinite
array of cells is to start with a pattern which satisfies the
constraint in a small region, and then to try to extend the
pattern. Often the constraint will immediately force a unique
extension of the pattern, at least for some distance. But
eventually there will normally be places where the pattern is
not yet uniquely determined, and so a series of choices have
to be made. The procedure used to find the results in this
book attempts to extend patterns along a square spiral,
making whatever choices are needed, and backtracking if
these turn out to be inconsistent with the constraint. At every
step in the procedure, regularities are tested for that would
imply the possibility of an infinite repetitive pattern. In
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addition, whenever there is a choice, the first cases to be tried
are set up to be ones that tend to extend whatever regularity
has developed so far. And when backtracking is needed, the
procedure always goes back to the most recent choice that
actually affected whatever inconsistency was discovered.
And in addition it remembers what has already been worked
out, so as to avoid, for example, unnecessarily working out
the pattern on the opposite side of the spiral again.

n Undecidability. The general problem of whether an infi