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NOTES FOR CHAPTER 1

The Foundations for a New Kind of Science

An Outline of Basic Ideas

â Mathematics in science. The main event usually viewed as
marking the beginning of the modern mathematical
approach to science was the publication of Isaac Newton’s
1687 book Mathematical Principles of Natural Philosophy (the
Principia). The idea that mathematics might be relevant to
science nevertheless had long precursors in both practical
and philosophical traditions. Before 500 BC the Babylonians
were using arithmetic to describe and predict astronomical
data. And by 500 BC the Pythagoreans had come to believe
that all natural phenomena should somehow be reducible to
relationships between numbers. Many Greek philosophers
then discussed the general concept that nature should be
amenable to abstract reasoning of the kind used in
mathematics. And at a more practical level, the results and
methodology of Euclid’s work on geometry from around 300
BC became the basis for studies in astronomy, optics and
mechanics, notably by Archimedes and Ptolemy. In medieval
times there were some doubts about the utility of
mathematics in science, and in the late 1200s, for example,
Albertus Magnus made the statement that “many of the
geometer’s figures are not found in natural bodies, and many
natural figures, particularly those of animals and plants, are
not determinable by the art of geometry”. Roger Bacon
nevertheless wrote in 1267 that “mathematics is the door and
key to the sciences”, and by the 1500s it was often believed
that for science to be meaningful it must somehow follow the
systematic character of mathematics. (Typical of the time was
the statement of Leonardo da Vinci that “no human inquiry
can be called science unless it pursues its path through
mathematical exposition and demonstration”.) Around the
end of the 1500s Galileo began to develop more explicit
connections between concepts in mathematics and in
physics, and concluded that the universe could be
understood only in the “language of mathematics”, whose
“characters are triangles, circles and other geometric figures”.

What Isaac Newton then did was in effect to suggest that
natural systems are at some fundamental level actually
governed by purely abstract laws that can be specified in
terms of mathematical equations. This idea has met with its
greatest success in physics, where for the past three centuries
essentially every major theory has been formulated in terms
of mathematical equations. Starting in the mid-1800s, it has
also had increasing success in chemistry. And in the past
century, it has had a few scattered successes in dealing with
simpler phenomena in fields like biology and economics. But
despite the vast range of phenomena in nature that have
never successfully been described in mathematical terms, it
has become quite universally assumed that, as David Hilbert
put it in 1900, “mathematics is the foundation of all exact
knowledge of natural phenomena”. There continue to be
theories in science that are not explicitly mathematical—
examples being continental drift and evolution by natural
selection—but, as for example Alfred Whitehead stated in
1911, it is generally believed that “all science as it grows
toward perfection becomes mathematical in its ideas”.

â Definition of mathematics. When I use the term
“mathematics” in this book what I mean is that field of
human endeavor that has in practice traditionally been called
mathematics. One could in principle imagine defining
mathematics to encompass all studies of abstract systems,
and indeed this was in essence the definition that I had in
mind when I chose the name Mathematica. But in practice
mathematics has defined itself to be vastly narrower, and to
include, for example, nothing like the majority of the
programs that I discuss in this book. Indeed, in many
respects, what is called mathematics today can be seen as a
direct extension of the particular notions of arithmetic and
geometry that apparently arose in Babylonian times. Typical
dictionary definitions reflect this by describing mathematics
as the study of number and space, together with their
abstractions and generalizations. And even logic—an
abstract system that dates from antiquity—is not normally
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considered part of mainstream mathematics. Particularly
over the past century the defining characteristic of research in
mathematics has increasingly been the use of theorem and
proof methodology. And while some generalization has
occurred in the types of systems being studied, it has usually
been much limited by the desire to maintain the validity of
some set of theorems (see page 793). This emphasis on
theorems has also led to a focus on equations that statically
state facts rather than on rules that define actions, as in most
of the systems in this book. But despite all these issues, many
mathematicians implicitly tend to assume that somehow
mathematics as it is practiced is universal, and that any
possible abstract system will be covered by some area of
mathematics or another. The results of this book, however,
make it quite clear that this is not the case, and that in fact
traditional mathematics has reached only a tiny fraction of all
the kinds of abstract systems that can in principle be studied.

â Reasons for mathematics in science. It is not surprising that
there should be issues in science to which mathematics is
relevant, since until about a century ago the whole purpose
of mathematics was at some level thought of as being to
provide abstract idealizations of aspects of physical reality
(with the consequence that concepts like dimensions above 3
and transfinite numbers were not readily accepted as
meaningful even in mathematics). But there is absolutely no
reason to think that the specific concepts that have arisen so
far in the history of mathematics should cover all of science,
and indeed in this book I give extensive evidence that they
do not. At times the role of mathematics in science has been
used in philosophy as an indicator of the ultimate power of
human thinking. In the mid-1900s, especially among
physicists, there was occasionally some surprise expressed
about the effectiveness of mathematics in the natural
sciences. One explanation advanced by Albert Einstein was
that the only physical laws we can recognize are ones that are
easy to express in our system of mathematics. 

â History of programs and nature. Given the idea of using
programs as a basis for describing nature, one can go back in
history and find at least a few rough precursors of this idea.
Around 100 AD, for example, following earlier Greek
thinking, Lucretius made the somewhat vague suggestion
that the universe might consist of atoms assembled according
to grammatical rules like letters and words in human
language. From the Pythagoreans around 500 BC through
Ptolemy around 150 AD to the early work of Johannes Kepler
around 1595 there was the notion that the planets might
follow definite geometrical rules like the elements of a
mechanical clock. But following the work of Isaac Newton in
the late 1600s it increasingly came to be believed that systems

could only meaningfully be described by the mathematical
equations they satisfy, and not by any explicit mechanism or
rules. The failure of the concept of ether and the rise of
quantum mechanics in the early 1900s strengthened this view
to the point where at least in physics mechanistic
explanations of any kind became largely disreputable.
(Starting in the 1800s systems based on very simple rules
were nevertheless used in studies of genetics and heredity.)
With the advent of electronics and computers in the 1940s
and 1950s, models like neural networks and cellular
automata began to be introduced, primarily in biology (see
pages 876 and 1099). But in essentially all cases they were
viewed just as approximations to models based on traditional
mathematical equations. In the 1960s and 1970s there arose in
the early computer hacker community the general idea that
the universe might somehow operate like a program. But
attempts to engineer explicit features of our universe using
constructs from practical programming were unsuccessful,
and the idea largely fell into disrepute (see page 1026).
Nevertheless, starting in the 1970s many programs were
written to simulate all sorts of scientific and technological
systems, and often these programs in effect defined the
models used. But in almost all cases the elements of the
models were firmly based on traditional mathematical
equations, and the programs themselves were highly
complex, and not much like the simple programs I discuss in
this book. (See also pages 363 and 992.)

â Extensions of mathematics. See page 793. 

â The role of logic. In addition to standard mathematics, the
formal system most widely discussed since antiquity is logic
(see page 1099). And starting with Aristotle there was in fact
a long tradition of trying to use logic as a framework for
drawing conclusions about nature. In the early 1600s the
experimental method was suggested as a better alternative.
And after mathematics began to show extensive success in
describing nature in the late 1600s no further large-scale
efforts to do this on the basis of logic appear to have been
made. It is conceivable that Gottfried Leibniz might have
tried in the late 1600s, but when his work was followed up in
the late 1800s by Gottlob Frege and others the emphasis was
on building up mathematics, not natural science, from logic
(see page 1149). And indeed by this point logic was viewed
mostly as a possible representation of human thought—and
not as a formal system relevant to nature. So when computers
arose it was their numerical and mathematical rather than
logical capabilities that were normally assumed relevant for
natural science. But in the early 1980s the cellular automata
that I studied I often characterized as being based on logical
rules, rather than traditional mathematical ones. However, as



T H E  F O U N D A T I O N S  F O R  A  N E W  K I N D  O F  S C I E N C E N O T E S  F O R  C H A P T E R  1

861

we will see on page 806, traditional logic is in fact in many
ways very narrow compared to the whole range of rules
based on simple programs that I actually consider in this
book. 

â Complexity and theology. Both complexity and order in the
natural world have been cited as evidence for an intelligent
creator (compare page 1195). Early mythologies most often
assume that the universe started in chaos, with a
supernatural being adding order, then creating a series of
specific complex natural systems. In Greek philosophy it was
commonly thought that the regularities seen in astronomy
and elsewhere (such as the obvious circular shapes of the Sun
and Moon) were reflections of perfect mathematical forms
associated with divine beings. About complexity Aristotle
did note that what nature makes is “finer than art”, though
this was not central to his arguments about causes of natural
phenomena. By the beginning of the Christian era, however,
there is evidence of a general belief that the complexity of
nature must be the work of a supernatural being—and for
example there are statements in the Bible that can be read in
this way. Around 1270 Thomas Aquinas gave as an argument
for the existence of God the fact that things in nature seem to
“act for an end” (as revealed for example by always acting in
the same way), and thus must have been specifically
designed with that end in mind. In astronomy, as specific
natural laws began to be discovered, the role of God began to
recede somewhat, with Isaac Newton claiming, for example,
that God must have first set the planets on their courses, but
then mathematical laws took over to govern their subsequent
behavior. Particularly in biology, however, the so-called
“argument by design” became ever more popular. Typical
was John Ray’s 1691 book The Wisdom of God Manifested in the
Works of the Creation, which gave a long series of examples
from biology that it claimed were so complex that they must
be the work of a supernatural being. By the early 1800s, such
ideas had led to the field of natural theology, and William
Paley gave the much quoted argument that if it took a
sophisticated human watchmaker to construct a watch, then
the only plausible explanation for the vastly greater
complexity of biological systems was that they must have
been created by a supernatural being. Following the
publication of Charles Darwin’s Origin of Species in 1859
many scientists began to argue that natural selection could
explain all the basic phenomena of biology, and although
some religious groups maintained strong resistance, it was
widely assumed by the mid-1900s that no other explanation
was needed. In fact, however, just how complexity arises was
never really resolved, and in the end I believe that it is only
with the ideas of this book that this can successfully be done. 

â Artifacts and natural systems. See page 828.

â Complexity and science. Ever since antiquity science has
tended to see its main purpose as being the study of
regularities—and this has meant that insofar as complexity is
viewed as an absence of regularities, it has tended to be
ignored or avoided. There have however been occasional
discussions of various general aspects of complexity and
what can account for them. Thus, for example, by 200 BC the
Epicureans were discussing the idea that varied and complex
forms in nature could be made up from arrangements of
small numbers of types of elementary atoms in much the
same way as varied and complex written texts are made up
from small numbers of types of letters. And although its
consequences were remarkably confused, the notion of a
single underlying substance that could be transmuted into
anything—living or not—was also a centerpiece of alchemy.
Starting in the 1600s successes in physics and discoveries like
the circulation of blood led to the idea that it should be
possible to explain the operation of almost any natural
system in essentially mechanical terms—leading for example
René Descartes to claim in 1637 that we should one day be
able to explain the operation of a tree just like we do a clock.
But as mathematical methods developed, they seemed to
apply mainly to physical systems, and not for example to
biological ones. And indeed Immanuel Kant wrote in 1790
that “it is absurd to hope that another Newton will arise in
the future who will make comprehensible to us the
production of a blade of grass according to natural laws”. In
the late 1700s and early 1800s mathematical methods began
to be used in economics and later in studying populations.
And partly influenced by results from this, Charles Darwin
in 1859 suggested natural selection as the basis for many
phenomena in biology, including complexity. By the late
1800s advances in chemistry had established that biological
systems were made of the same basic components as physical
ones. But biology still continued to concentrate on very
specific observations—with no serious theoretical discussion
of anything as general as the phenomenon of complexity. In
the 1800s statistics was increasingly viewed as providing a
scientific approach to complex processes in practical social
systems. And in the late 1800s statistical mechanics was then
used as a basis for analyzing complex microscopic processes
in physics. Most of the advances in physics in the late 1800s
and early 1900s in effect avoided complexity by
concentrating on properties and systems simple enough to be
described by explicit mathematical formulas. And when
other fields tried in the early and mid-1900s to imitate
successes in physics, they too generally tended to concentrate
on issues that seemed amenable to explicit mathematical
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formulas. Within mathematics itself—especially in number
theory and the three-body problem—there were calculations
that yielded results that seemed complex. But normally this
complexity was viewed just as something to be overcome—
either by looking at things in a different way, or by proving
more powerful theorems—and not as something to be
studied or even much commented on in its own right.

In the 1940s, however, successes in the analysis of logistical
and electronic systems led to discussion of the idea that it
might be possible to set up some sort of general approach to
complex systems—especially biological and social ones. And
by the late 1940s the cybernetics movement was becoming
increasingly popular—with Norbert Wiener emphasizing
feedback control and stochastic differential equations, and
John von Neumann and others emphasizing systems based
on networks of elements often modelled after neurons. There
were spinoffs such as control theory and game theory, but
little progress was made on core issues of complexity, and
already by the mid-1950s what began to dominate were
vague discussions involving fashionable issues in areas such
as psychiatry and anthropology. There also emerged a
tradition of robotics and artificial intelligence, and a few of
the systems that were built or simulated did show some
complexity of behavior (see page 879). But in most cases this
was viewed just as something to be overcome in order to
achieve the engineering objectives sought. Particularly in
the 1960s there was discussion of complexity in large
human organizations—especially in connection with the
development of management science and the features of
various forms of hierarchy—and there emerged what was
called systems theory, which in practice typically involved
simulating networks of differential equations, often
representing relationships in flowcharts. Attempts were for
example made at worldwide models, but by the 1970s their
results—especially in economics—were being discredited.
(Similar methods are nevertheless used today, especially in
environmental modelling.)

With its strong emphasis on simple laws and measurements
of numbers, physics has normally tended to define itself to
avoid complexity. But from at least the 1940s, issues of
complexity were nevertheless occasionally mentioned by
physicists as important, most often in connection with fluid
turbulence or features of nonlinear differential equations.
Questions about pattern formation, particularly in biology
and in relation to thermodynamics, led to a sequence of
studies of reaction-diffusion equations, which by the 1970s
were being presented as relevant to general issues of
complexity, under names like self-organization, synergetics
and dissipative structures. By the late 1970s the work of

Benoit Mandelbrot on fractals provided an important
example of a general approach to addressing a certain kind of
complexity. And chaos theory—with its basis in the
mathematics of dynamical systems theory—also began to
become popular in the late 1970s, being discussed
particularly in connection with fluid turbulence. In
essentially all cases, however, the emphasis remained on
trying to find some aspect of complex behavior that could be
summarized by a single number or a traditional
mathematical equation.

As discussed on pages 44–50, there were by the beginning of
the 1980s various kinds of abstract systems whose rules were
simple but which had nevertheless shown complex behavior,
particularly in computer simulations. But usually this was
considered largely a curiosity, and there was no particular
sense that there might be a general phenomenon of
complexity that could be of central interest, say in natural
science. And indeed there remained an almost universal
belief that to capture any complexity of real scientific
relevance one must have a complex underlying model. My
work on cellular automata in the early 1980s provided strong
evidence, however, that complex behavior very much like
what was seen in nature could in fact arise in a very general
way from remarkably simple underlying rules. And starting
around the mid-1980s it began to be not uncommon to hear
the statement that complex behavior can arise from simple
rules—though often there was great confusion about just
what this was actually saying, and what, for example, should
be considered complex behavior, or a simple rule.

That complexity could be identified as a coherent
phenomenon that could be studied scientifically in its own
right was something I began to emphasize around 1984. And
having created the beginnings of what I considered to be the
necessary intellectual structure, I started to try to develop an
organizational structure to allow what I called complex
systems research to spread. Some of what I did had fairly
immediate effects, but much did not, and by late 1986 I had
started building Mathematica and decided to pursue my own
scientific interests in a more independent way (see page 20).
By the late 1980s, however, there was widespread discussion
of what was by then being called complexity theory. (I had
avoided this name to prevent confusion with the largely
unrelated field of computational complexity theory). And
indeed many of the points I had made about the promise of
the field were being enthusiastically repeated in popular
accounts—and there were starting to be quite a number of
new institutions devoted to the field. (A notable example was
the Santa Fe Institute, whose orientation towards complexity
seems to have been a quite direct consequence of my efforts.)
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But despite all this, no major new scientific developments
were forthcoming—not least because there was a tremendous
tendency to ignore the idea of simple underlying rules and of
what I had discovered in cellular automata, and instead to set
up computer simulations with rules far too complicated to
allow them to be used in studying fundamental questions.
And combined with a predilection for considering issues in
the social and biological sciences that seem hard to pin down,
this led to considerable skepticism among many scientists—
with the result that by the mid-1990s the field was to some
extent in retreat—though the statement that complexity is
somehow an important and fundamental issue has continued
to be emphasized especially in studies of ecological and
business systems. 

Watching the history of the field of complexity theory has
made it particularly clear to me that without a major new
intellectual structure complexity cannot realistically be
studied in a meaningful scientific way. But it is now just such
a structure that I believe I have finally been able to set up in
this book. 

Relations to Other Areas

â Page 7 · Mathematics. I discuss the implications of this book
for the foundations of mathematics mainly on pages 772–821
and in the rather extensive corresponding notes. With a
sufficiently general definition of mathematics, however, the
whole core of the book can in fact be viewed as a work of
experimental mathematics. And even with a more traditional
definition, this is at least true of much of my discussion of
systems based on numbers in Chapter 4. The notes to almost
all chapters of the book contain a great many new
mathematical results, mostly emerging from my analysis of
some of the simpler behavior considered in the book. Pages
606–620 and 737–750 discuss in general the capabilities of
mathematical analysis, while pages 588–597 address the
foundations of statistics. Note that some ideas and results
highly relevant to current frontiers in mathematics appear in
some rather unexpected places in the book. Specific examples
include the parameter space sets that I discuss in connection
with shapes of plant leaves on page 407, and the minimal
axioms for logic that I discuss on page 810. A more general
example is the issue of smooth objects arising from
combinatorial data that I discuss in Chapter 9 in connection
with the nature of space in fundamental physics.

â Page 8 · Physics. I discuss general mechanisms and models
relevant for physical systems in Chapter 7, specific types of
everyday physical systems in Chapter 8, and applications to
basic foundational problems in physics in Chapter 9. I

mention some further fundamental issues in physics around
page 730 and in chemistry on page 1193. 

â Page 8 · Biology. The main place I discuss applications to
biology is on pages 383–429 of Chapter 8, where I consider
first general questions about biology and evolution, and then
more specific issues about growth and pattern in biological
organisms. I consider visual and auditory perception on
pages 577–588, and the operation of brains on pages 620–631.
I also discuss the definition of life on pages 823 and 1178, as
well as mentioning protein folding and structure on pages
1003 and 1184. 

â Page 9 · Social and related sciences. I discuss the particular
example of financial systems on pages 429–432, and make
some general comments on page 1014. The end of Chapter 10,
as well as some parts of Chapter 12, also discuss various
issues that can be viewed as foundational questions.

â Page 10 · Computer science. Chapter 11 as well as parts of
Chapter 12 (especially pages 753–771) address foundational
issues in computer science. Chapter 3 uses standard
computer science models such as Turing machines and
register machines as examples of simple programs. In many
places in the book—especially these notes—I discuss all sorts
of specific problems and issues of direct relevance to current
computer science. Examples include cryptography (pages
598–606), Boolean functions (pages 616–619 and 806–814),
user interfaces (page 1102) and quantum computing
(page 1147). 

â Page 10 · Philosophy. Chapter 12 is the main place I address
traditional philosophical issues. On pages 363–369 of Chapter
8, however, I discuss some general issues of modelling, and
in Chapter 10 I consider at length not only practical but also
foundational questions about perception and to some extent
general thinking and consciousness. (See page 1196.)

â Page 11 · Technology. The notes to this book mention many
specific technological connections, and I expect that many of
the models and methods of analysis that I use in the book can
be applied quite directly for technological purposes. I discuss
foundational questions about technology mainly on
pages 840–843. 

â Scope of existing sciences. One might imagine that physics
would for example concern itself with all aspects of physical
systems, biology with all aspects of biological systems, and
so on. But in fact as they are actually practiced most of the
traditional sciences are much narrower in scope. Historically
what has typically happened is that in each science a certain
way of thinking has emerged as the most successful. And
then over the course of time, the scope of the science itself has
come to be defined to encompass just those issues that this
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way of thinking is able to address. So when a new
phenomenon is observed, a particular science will typically
tend to focus on just those aspects of the phenomenon that
can be studied by whatever way of thinking has been
adopted in that science. And when the phenomenon involves
substantial complexity, what has in the past usually
happened is that simpler and simpler aspects are
investigated until one is found that is simple enough to
analyze using the chosen way of thinking.

The Personal Story of the Science in This Book

â Page 17 · Statistical physics cover. The pictures show disks
representing idealized molecules bouncing around in a box,
and the book claims that as time goes on there is almost
inevitably increasing randomization. The pictures were made
in about 1964 by Berni Alder and Frederick Reif from
oscilloscope output from the LARC computer at what was
then Lawrence Radiation Laboratory. A total of 40 disks were
started with positions and velocities determined by a middle-
square random number generator (see page 975), and their
motion was followed for about 10 collision times—after
which roundoff errors in the 64-bit numbers used had grown
too big. From the point of view of this book the
randomization seen in these pictures is in large part just a
reflection of the fact that a random sequence of digits were
used in the initial conditions. But what the discoveries in this
book show is that such randomness can also be generated

without any such random input—finally clarifying some
very basic issues in statistical physics. (See page 441.)

â Page 17 · My 1973 computer experiments. I used a British
Elliott 903 computer with 8 kilowords of 18-bit ferrite core
memory. The assembly language program that I wrote filled
up a fair fraction of the memory. The system that I looked at
was a 2D cellular automaton with discrete particles colliding
on a square grid. Had I not been concerned with physics-like
conservation laws, or had I used something other than a
square grid, the teleprinter output that I generated would
have shown randomization. (See page 999.)

â Page 19 · Computer printouts. The printouts show a series of
elementary cellular automata started from random initial
conditions (see page 232). I generated them in 1981 using a C
program running on a VAX 11/780 computer with an early
version of the Unix operating system. (See also page 880.) 

â Timeline. Major periods in my work have been:

ä 1974–1980: particle physics and cosmology

ä 1979–1981: developing SMP computer algebra system

ä 1981–1986: cellular automata etc.

ä 1986–1991: intensive Mathematica development 

ä 1991–2001: writing this book
(Wolfram Research, Inc. was founded in 1987; Mathematica 1.0
was released June 23, 1988; the company and successive
versions of Mathematica continue to be major parts of my life.)

â Detailed history. See pages 880–882. 




