
EXCERPTED FROM

Processes of
Perception and

Analysis

NOTES FOR CHAPTER 10:

4 NOTES
Sytems Based on Numbers
N O T E S

X
TitleName
P A R T N A M E

1067

NOTES FOR CHAPTER 10

Processes of Perception and Analysis

Defining the Notion of Randomness

â Page 554 · Algorithmic information theory. A description of
a piece of data can always be thought of as some kind of
program for reproducing the data. So if one could find the
shortest program that works then this must correspond to the
shortest possible description of the data—and in algorithmic
information theory if this is no shorter than the data itself
then the data is considered to be algorithmically random.

How long the shortest program is for a given piece of data
will in general depend on what system is supposed to run the
program. But in a sense the program will on the whole be as
short as possible if the system is universal (see page 642).
And between any two universal systems programs can differ
in length by at most a constant: for one can always just add a
fixed interpreter program to the programs for one system in
order to make them run on the other system.

As mentioned in the main text, any data generated by a
simple program can by definition never be algorithmically
random. And so even though algorithmic randomness is
often considered in theoretical discussions (see note below) it
cannot be directly relevant to the kind of randomness we see
in so many systems in this book—or, I believe, in nature.

If one considers all possible sequences (say of 0’s and 1’s)
of length then it is straightforward to see that most of them
must be more or less algorithmically random. For in order to
have enough programs to generate all sequences most of
the programs one uses must themselves be close to length .
(In practice there are subtleties associated with the encoding
of programs that make this hold only for sufficiently large .)
But even though one knows that almost all long sequences
must be algorithmically random, it turns out to be
undecidable in general whether any particular sequence is
algorithmically random. For in general one can give no upper
limit to how much computational effort one might have to
expend in order to find out whether any given short

program—after any number of steps—will generate the
sequence one wants.

But even though one can never expect to construct them
explicitly, one can still give formal descriptions of sequences
that are algorithmically random. An example due to Gregory
Chaitin is the digits of the fraction of initial conditions for
which a universal system halts (essentially a compressed
version—with various subtleties about limits—of the
sequence from page 1127 giving the outcome for each initial
condition). As emphasized by Chaitin, it is possible to ask
questions purely in arithmetic (say about sequences of values
of a parameter that yield infinite numbers of solutions to an
integer equation) whose answers would correspond to
algorithmically random sequences. (See page 786.)

As a reduced analog of algorithmic information theory one
can for example ask what the simplest cellular automaton
rule is that will generate a given sequence if started from a
single black cell. Page 1186 gives some results, and suggests
that sequences which require more complicated cellular
automaton rules do tend to look to us more complicated and
more random.

â History. Randomness and unpredictability were discussed
as general notions in antiquity in connection both with
questions of free will (see page 1135) and games of chance.
When probability theory emerged in the mid-1600s it
implicitly assumed sequences random in the sense of having
limiting frequencies following its predictions. By the 1800s
there was extensive debate about this, but in the early 1900s
with the advent of statistical mechanics and measure theory
the use of ensembles (see page 1020) turned discussions of
probability away from issues of randomness in individual
sequences. With the development of statistical hypothesis
testing in the early 1900s various tests for randomness were
proposed (see page 1084). Sometimes these were claimed to
have some kind of general significance, but mostly they were
just viewed as simple practical methods. In many fields

2n

n

2n

n

n

W

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1068

outside of statistics, however, the idea persisted even to the
1990s that block frequencies (or flat frequency spectra) were
somehow the only ultimate tests for randomness. In 1909
Emile Borel had formulated the notion of normal numbers
(see page 912) whose infinite digit sequences contain all
blocks with equal frequency. And in the 1920s Richard von
Mises—attempting to capture the observed lack of
systematically successful gambling schemes—suggested that
randomness for individual infinite sequences could be
defined in general by requiring that “collectives” consisting
of elements appearing at positions specified by any
procedure should show equal frequencies. To disallow
procedures say specially set up to pick out all the infinite
number of 1’s in a sequence Alonzo Church in 1940
suggested that only procedures corresponding to finite
computations be considered. (Compare page 1021 on coarse-
graining in thermodynamics.) Starting in the late 1940s the
development of information theory began to suggest
connections between randomness and inability to compress
data, but emphasis on measures of information
content (see page 1071) reinforced the idea that block
frequencies are the only real criterion for randomness. In the
early 1960s, however, the notion of algorithmic randomness
(see note above) was introduced by Gregory Chaitin, Andrei
Kolmogorov and Ray Solomonoff. And unlike earlier
proposals the consequences of this definition seemed to show
remarkable consistency (in 1966 for example Per Martin-Löf
proved that in effect it covered all possible statistical tests)—
so that by the early 1990s it had become generally accepted as
the appropriate ultimate definition of randomness. In the
1980s, however, work on cryptography had led to the study
of some slightly weaker definitions of randomness based on
inability to do cryptanalysis or make predictions with
polynomial-time computations (see page 1089). But quite
what the relationship of any of these definitions might be to
natural science or everyday experience was never much
discussed. Note that definitions of randomness given in
dictionaries tend to emphasize lack of aim or purpose, in
effect following the common legal approach of looking at
underlying intentions (or say at physical construction of dice)
rather than trying to tell if things are random from their
observed behavior.

â Inevitable regularities and Ramsey theory. One might have
thought that there could be no meaningful type of regularity
that would be present in all possible data of a given kind. But
through the development since the late 1920s of Ramsey
theory it has become clear that this is not the case. As one
example, consider looking for runs of equally spaced
squares of the same color embedded in sequences of black

and white squares of length . The pictures below show
results with for various . For there are always
some sequences in which no runs of length 3 exist. But it
turns out that for every single possible sequence
contains at least one run of length 3. For any the same is
true for sufficiently large ; it is known that requires

 and requires . (In problems like this the
analog of often grows extremely rapidly with .) If one has
a sufficiently long sequence, therefore, just knowing that a
run of equally spaced identical elements exists in it does not
narrow down at all what the sequence actually is, and can so
cannot ultimately be considered a useful regularity.

(Compare pattern-avoiding sequences on page 944.)

Defining Complexity

â Page 557 · History. There have been terms for complexity in
everyday language since antiquity. But the idea of treating
complexity as a coherent scientific concept potentially
amenable to explicit definition is quite new: indeed this
became popular only in the late 1980s—in part as a result of
my own efforts. That what one would usually call complexity
can be present in mathematical systems was for example
already noted in the 1890s by Henri Poincaré in connection
with the three-body problem (see page 972). And in the 1920s
the issue of quantifying the complexity of simple
mathematical formulas had come up in work on assessing
statistical models (compare page 1083). By the 1940s general
comments about biological, social and occasionally other
systems being characterized by high complexity were
common, particularly in connection with the cybernetics
movement. Most often complexity seems to have been
thought of as associated with the presence of large numbers
of components with different types or behavior, and typically
also with the presence of extensive interconnections or
interdependencies. But occasionally—especially in some
areas of social science—complexity was instead thought of as
being characterized by somehow going beyond what human
minds can handle. In the 1950s there was some discussion in
pure mathematics of notions of complexity associated
variously with sizes of axioms for logical theories, and with
numbers of ways to satisfy such axioms. The development of
information theory in the late 1940s—followed by the

p Log[p]

m

n
m = 3 n n < 9

n > 9
m

n m = 4
n > 35 m = 5 n > 178

n m

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1069

discovery of the structure of DNA in 1953—led to the idea
that perhaps complexity might be related to information
content. And when the notion of algorithmic information
content as the length of a shortest program (see page 1067)
emerged in the 1960s it was suggested that this might be an
appropriate definition for complexity. Several other
definitions used in specific fields in the 1960s and 1970s were
also based on sizes of descriptions: examples were optimal
orders of models in systems theory, lengths of logic
expressions for circuit and program design, and numbers of
factors in Krohn-Rhodes decompositions of semigroups.
Beginning in the 1970s computational complexity theory took
a somewhat different direction, defining what it called
complexity in terms of resources needed to perform
computational tasks. Starting in the 1980s with the rise of
complex systems research (see page 862) it was considered
important by many physicists to find a definition that would
provide some kind of numerical measure of complexity. It
was noted that both very ordered and very disordered
systems normally seem to be of low complexity, and much
was made of the observation that systems on the border
between these extremes—particularly class 4 cellular
automata—seem to have higher complexity. In addition, the
presence of some kind of hierarchy was often taken to
indicate higher complexity, as was evidence of computational
capabilities. It was also usually assumed that living systems
should have the highest complexity—perhaps as a result of
their long evolutionary history. And this made informal
definitions of complexity often include all sorts of detailed
features of life (see page 1178). One attempt at an abstract
definition was what Charles Bennett called logical depth: the
number of computational steps needed to reproduce
something from its shortest description. Many simpler
definitions of complexity were proposed in the 1980s. Quite a
few were based just on changing in the definition
of entropy to a quantity vanishing for both ordered and
disordered . Many others were based on looking at
correlations and mutual information measures—and using
the fact that in a system with many interdependent and
potentially hierarchical parts this should go on changing as
one looks at more and more. Some were based purely on
fractal dimensions or dimensions associated with strange
attractors. Following my 1984 study of minimal sizes of finite
automata capable of reproducing states in cellular automaton
evolution (see page 276) a whole series of definitions were
developed based on minimal sizes of descriptions in terms of
deterministic and probabilistic finite automata (see page
1084). In general it is possible to imagine setting up all sorts
of definitions for quantities that one chooses to call
complexity. But what is most relevant for my purposes in this

book is instead to find ways to capture everyday notions of
complexity—and then to see how systems can produce these.
(Note that since the 1980s there has been interest in finding
measures of complexity that instead for example allow
maintainability and robustness of software and management
systems to be assessed. Sometimes these have been based on
observations of humans trying to understand or verify
systems, but more often they have just been based for
example on simple properties of networks that define the
flow of control or data—or in some cases on the length of
documentation needed.) (The kind of complexity discussed
here has nothing directly to do with complex numbers such
as introduced into mathematics since the 1600s.)

Data Compression

â Practicalities. Data compression is important in making
maximal use of limited information storage and transmission
capabilities. One might think that as such capabilities
increase, data compression would become less relevant. But
so far this has not been the case, since the volume of data
always seems to increase more rapidly than capabilities for
storing and transmitting it. In the future, compression is
always likely to remain relevant when there are physical
constraints—such as transmission by electromagnetic
radiation that is not spatially localized.

â History. Morse code, invented in 1838 for use in
telegraphy, is an early example of data compression based
on using shorter codewords for letters such as “e” and “t”
that are more common in English. Modern work on data
compression began in the late 1940s with the development
of information theory. In 1949 Claude Shannon and Robert
Fano devised a systematic way to assign codewords based
on probabilities of blocks. An optimal method for doing this
was then found by David Huffman in 1951. Early
implementations were typically done in hardware, with
specific choices of codewords being made as compromises
between compression and error correction. In the mid-1970s,
the idea emerged of dynamically updating codewords for
Huffman encoding, based on the actual data encountered.
And in the late 1970s, with online storage of text files
becoming common, software compression programs began
to be developed, almost all based on adaptive Huffman
coding. In 1977 Abraham Lempel and Jacob Ziv suggested
the basic idea of pointer-based encoding. In the mid-1980s,
following work by Terry Welch, the so-called LZW
algorithm rapidly became the method of choice for most
general-purpose compression systems. It was used in
programs such as PKZIP, as well as in hardware devices

pi Log[pi]

pi

�!!!!!!
-1

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1070

such as modems. In the late 1980s, digital images became
more common, and standards for compressing them
emerged. In the early 1990s, lossy compression methods (to
be discussed in the next section) also began to be widely
used. Current image compression standards include: FAX
CCITT 3 (run-length encoding, with codewords determined
by Huffman coding from a definite distribution of run
lengths); GIF (LZW); JPEG (lossy discrete cosine transform,
then Huffman or arithmetic coding); BMP (run-length
encoding, etc.); TIFF (FAX, JPEG, GIF, etc.). Typical
compression ratios currently achieved for text are around
3:1, for line diagrams and text images around 3:1, and for
photographic images around 2:1 lossless, and 20:1 lossy. (For
sound compression see page 1080.)

â Page 560 · Number representations. The sequence of 1’s and
0’s representing a number are obtained as follows:

(a) Unary. . (Not self-delimited.)

(b) Ordinary base 2. . (Not self-delimited.)

(c) Length prefixed. Starting with an ordinary base 2 digit
sequence, one prepends a unary specification of its length,
then a specification of that length specification, and so on:

(d) Binary-coded base 3. One takes base 3 representation, then
converts each digit to a pair of base 2 digits, handling the
beginning and end of the sequence in a special way.

(e) Fibonacci encoding. Instead of decomposing a number into
a sum of powers of an integer base, one decomposes it into a
sum of Fibonacci numbers (see page 902). This
decomposition becomes unique when one requires that no
pair of 1’s appear together.

The representations of all the first numbers
can be obtained from (the version in the main text has

 applied)

â Lengths of representations. (a) , (b) , (c)
,

(d) , (e)
. Large approximations:

(a) , (b) , (c) , (d)
, (e) .

Shown on a logarithmic scale, representations (b) through (e)
(given here for numbers 1 through 500) all grow roughly
linearly:

â Completeness. If one successively reads 0’s and 1’s from an
infinite sequence then the representations (c), (d) and (e) have
the property that eventually one will always accumulate a
valid representation for some number or another. The
pictures below show which sequences of 0’s and 1’s
correspond to complete numbers in these representations.
Every vertical column is a possible sequence of 0’s and 1’s,
and the column is shown to terminate when a complete
number is obtained.

With an infinite random sequence of 0’s and 1’s, different
number representations yield different distributions of sizes
of numbers. Representation (b), for example, is more
weighted towards large numbers, while (c) is more weighted
towards small numbers. Maximal compression for a
sequence of numbers with a particular distribution of sizes is
obtained by choosing a representation that yields a matching
such distribution. (See also page 949.)

â Practical computing. Numbers used for arithmetic in
practical computing are usually assumed to have a fixed
length of, say, 32 bits, and thus do not need to be self-
delimiting. In Mathematica, where integers can be of essentially
any size, a representation closer to (b) above is used.

â Page 561 · Run-length encoding. Data can be converted to
run lengths by . Each number is then
replaced by its representation.

With completely random input, the output will on average be
longer by a factor where is the
length of the representation for . For the Fibonacci encoding
used in the main text, this factor is approximately 1.41028. (In
base 2 this number has 1’s essentially at positions

; as discussed on page 914, the number is
transcendental.)

n

Table[0, {n}]

IntegerDigits[n, 2]

(Flatten[{Sign[-Range[1 - Length[#], 0]], #}] &)[
Map[Rest, IntegerDigits[Rest[Reverse[NestWhileList[

Floor[Log[2, #]] &, n+ 1, # > 1 &]]], 2]]]

Flatten[IntegerDigits[
Append[2 -With[{w = Floor[Log[3, 2 n]]},

IntegerDigits[n - (3w+1 - 1)/2, 3, w]], 3], 2, 2]]

Apply[Take, RealDigits[(N[#, N[Log[10, #] + 3]] &)[
n�!!!!5 /GoldenRatio2 + 1/2], GoldenRatio]]

Fibonacci[n] - 1

Rest[RotateLeft[Join[#, {0, 1}]]] &

Apply[Join, Map[Last,
NestList[{#021, Join[Map[Join[{1, 0}, Rest[#]] &, #021],

Map[Join[{1, 0}, #] &, #011]]} &, {{}, {{1}}}, n - 3]]]

n Floor[Log[2, n] + 1]
Tr[FixedPointList[Max[0, Ceiling[Log[2, #]]] &, n+ 2]] - n - 3

2 Ceiling[Log[3, 2 n+ 1]]
Floor[Log[GoldenRatio, �!!!!5 (n+ 1/2)]] n

n Log[2, n] Log[2, n] + Log[2, Log[2, n]] +?

2 Log[3, n] Log[GoldenRatio, n]

(b) (c) (d) (e)

(a) (b) (c)

Map[Length, Split[data]]

Sum[2-(n+1) r[n], {n, 1, ¥}] r[n]
n

Fibonacci[n]

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1071

â Page 563 · Huffman coding. From a list of probabilities for
blocks, the list of codewords can be generated using

Given the list of codewords , the sequence of blocks that
occur in encoded data can be uniquely reconstructed using

Note that the encoded data can consist of any sequence of 0’s
and 1’s. If all possible blocks of length occur with equal
probability, then the Huffman codewords will consist of
blocks equivalent to the original ones. In an opposite
extreme, blocks with probabilities , , , … will
yield codewords of lengths 1, 2, 3, …

In practical applications, Huffman coding is sometimes
extended to allow the choice of codewords to be updated
dynamically as more data is read.

â Maximal block compression. If one has data that consists of a
long sequence of blocks, each of length , and each
independently chosen with probability to be of type , then
as argued by Claude Shannon in the late 1940s, it turns out that
the minimum number of base 2 bits needed on average to
represent each block in such a sequence is

. If all blocks occur with an
equal probability of , then takes on its maximum possible
value of . If only one block occurs with nonzero probability
then . Following Shannon, the quantity (whose form is
analogous to entropy in physics, as discussed on page 1020) is
often referred to as “information content”. This name, however,
is very misleading. For certainly does not in general give the
length of the shortest possible description of the data; all it does
is to give the shortest length of description that is obtained by
treating successive blocks as if they occur with independent
probabilities. With this assumption one then finds that maximal
compression occurs if a block of probability is represented
by a codeword of length . Huffman coding with a
large number of codewords will approach this if all the are
powers of 1/2. (The self-delimiting of codewords leads to
deviations for small numbers of codewords.) For that are
not powers of 1/2, non-integer length codewords would be
required. The method of arithmetic coding provides an
alternative in which the output does not consist of separate
codewords concatenated together. (Compare algorithmic
information content discussed on pages 554 and 1067.)

â Arithmetic coding. Consider dividing the interval from 0 to
1 into a succession of bins, with each bin having a width
equal to the probability for some sequence of blocks to occur.

The idea of arithmetic coding is to represent each such bin by
the digit sequence of the shortest number within the bin—
after trailing zeros have been dropped. For any sequence
this can be done using

Huffman coding of a sequence containing a single 0 block
together with 1 blocks will yield output of length about ;
arithmetic coding will yield length about . Compression
in arithmetic coding still relies, however, on unequal block
probabilities, just like in Huffman coding. Originally
suggested in the early 1960s, arithmetic coding reemerged in
the late 1980s when high-speed floating-point computation
became common, and is occasionally used in practice.

â Page 565 · Pointer-based encoding. One can encode a list of
data by generating pointers to the longest and most recent
copies of each subsequence of length at least using

The process of encoding can be made considerably faster
by keeping a dictionary of previously encountered
subsequences. One can reproduce the original data using

To get a representation purely in terms of 0 and 1, one can use
a self-delimiting representation for each integer that appears.
(Knowing the explicit representation one could then
determine whether each block would be shorter if encoded
literally or using a pointer.) The encoded version of a purely
repetitive sequence of length has a length that grows like

. The encoded version of a purely nested sequence
grows like . The encoded version of a sufficiently
random sequence grows like (with the specific encoding
used in the text, the length is about). Note that any
sequence of 0’s and 1’s corresponds to the beginning of the
encoding for some sequence or another.

It is possible to construct sequences whose encoded versions
grow roughly like fractional powers of . An example is the
sequence whose encoded
version grows like . Cyclic tag systems often seem to
produce sequences whose encoded versions grow like fractional

p

Map[Drop[Last[#], -1] &, Sort[
Flatten[MapIndexed[Rule, FixedPoint[Replace[Sort[#],

{{p0_, i0_}, {p1_, i1_}, pi___} ! {{p0 + p1, {i0, i1}},
pi}] &, MapIndexed[List, p]]01, 21, {-1}]]]] - 1

c
d

First[{{}, d} //. MapIndexed[
{{r___}, Flatten[{#1, s___}]} ! {{r, #2011}, {s}} &, c]]

2b b

1/2 1/4 1/8

b
p[i] i

h = -Sum[p[i] Log[2, p[i]], {i, 2b}]

2-b h
b

h 2 0 h

h

p[i]
-Log[2, p[i]]

p[i]

p[i]

s

Module[{c, m = 0},
Map[c[#] = {m, m += Count[s, #] /Length[s]} &, Union[s]];
Function[x, (First[RealDigits[2# Ceiling[2-# Min[x]],

2, -#, -1]] &)[Floor[Log[2, Max[x] -Min[x]]]]][
Fold[(Max[#1] -Min[#1]) c[#2] +Min[#1] &, {0, 1}, s]]]

n n
Log[n]

d
b

PEncode[d_, b_ : 4] := Module[{i, a, u, v},
i = 2; a = {First[d]}; While[i < Length[d], {u, v} =

Last[Sort[Table[{MatchLength[d, i, j], j}, { j , i - 1}]]];
If[u > b, AppendTo[a, p[i - v, u]]; i += u,

AppendTo[a, d0i1]; i ++]]; a]
MatchLength[d_, i_, j_] := With[{m = Length[d] - i}, Catch[

Do[If[d0i + k1 =!= d0j + k1, Throw[k]], {k, 0, m}]; m+ 1]]

PDecode[a_] := Module[{d = Flatten[
a /. p[j_, r_] " Table[p[j], {r}]]}, Flatten[MapIndexed[
If[Head[#1] === p, d0#21 = d0#2 - First[#1]1, #1] &, d]]]

n
Log[n]

Log[n]2

n
2 n

n
Table[Append[Table[0, {r}], 1], {r, s}]

�!!!!n Log[n]

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1072

powers of . Sequences produced by concatenation sequences are
not typically compressed by pointer encoding.

With completely random input, the probability that the
length subsequence which begins at element is a repeat
of a previous subsequence is roughly . The
overall fraction of a length input that consists of repeats of
length at least is greater than and is essentially

â LZW algorithms. Practical implementations of pointer-
based encoding can maintain only a limited dictionary of
possible repeats. Various schemes exist for optimizing the
construction, storage and rewriting of such dictionaries.

â Page 568 · Recursive subdivision. In one dimension,
encoding can be done using

In dimensions, it can be done using

â 2D run-length encoding. A simple way to generalize run-
length encoding to two dimensions is to scan data one row
after another, always finding the largest rectangle of uniform
color that starts at each particular point. The pictures below
show regions with an area of more than 10 cells found in this
way. The presence of so many thin and overlapping regions
prevents good compression.

2D run-length encoding can also be done by scanning the
data according to a more complicated space-filling curve, of
the kind discussed on page 893.

Irreversible Data Compression

â History. The idea of creating sounds by adding together
pure tones goes back to antiquity. At a mathematical level,

following work by Joseph Fourier around 1810 it became
clear by the mid-1800s how any sufficiently smooth function
could be decomposed into sums of sine waves with
frequencies corresponding to successive integers. Early
telephony and sound recording in the late 1800s already used
the idea of compressing sounds by dropping high- and low-
frequency components. From the early days of television in
the 1950s, some attempts were made to do similar kinds of
compression for images. Serious efforts in this direction were
not made, however, until digital storage and processing of
images became common in the late 1980s.

â Orthogonal bases. The defining feature of a set of basic forms
is that it is complete, in the sense that any piece of data can be
built up by adding the basic forms with appropriate weights.
Most sets of basic forms used in practice also have the feature
of being orthogonal, which turns out to make it particularly
easy to work out the weights for a given piece of data. In 1D, a
basic form is just a list. Orthogonality is then the property
that for all . And when this property holds,
the weights are given essentially just by .

The concept of orthogonal bases was historically worked out
first in the considerably more difficult case of continuous
functions. Here a typical orthogonality property is

. As
discovered by Joseph Fourier around 1810, this is satisfied for
basis functions such as .

â Page 573 · Walsh transforms. The basic forms shown in the
main text are 2D Walsh functions—represented as
matrices. Each collection of such functions can be obtained
from lists of vectors representing 1D Walsh functions by
using , or equivalently

.

The pictures below show how 1D arrays of data values can be
built up by adding together 1D Walsh functions. At each step
the Walsh function used is given underneath the array of
values obtained so far.

The components of the vectors for 1D Walsh functions can be
ordered in many ways. The pictures below show the

n

b n
1 - (1 - 2-b)n-1

n
b 1 - 2b /n

1 - Sum[(1 - 2-b)i Product[1+ (1 - 2-b) j - (1 - 2-b-1) j ,
{ j , i - b + 1, i - 1}], {i, b, n - b}] / (n - 2 b + 1)

6 8 10 12 14 16

Subdivide[a_] := Flatten[
If[Length[a] 2 2, a, If[Apply[SameQ, a], {1, First[a]},

{0, Map[Subdivide, Partition[a, Length[a] /2]]}]]]

n
Subdivide[a_, n_] := With[{s = Table[1, {n}]}, Flatten[

If[Dimensions[a] 2 2 s, a, If[Apply[SameQ, Flatten[a]],
{1, First[Flatten[a]]}, {0, Map[Subdivide[#, n] &,

Partition[a, 1/2 Length[a] s], {n}]}]]]]

a0i1
a0i1�.�a0j1 2 0 i 9 j

data�.�a

Integrate[f [r, x] f [s, x], {x, 0, 1}] 2 KroneckerDelta[r, s]

Sin[2 np x] /�!!!!2

¡1

Outer[Outer[Times, ##] &, b, b, 1, 1]
Map[Transpose, Map[# b &, b, {2}]]

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1073

complete matrices of basis vectors obtained with three
common orderings.

The matrices for size can be obtained from

with (a) , , (b) ,
, and (c) . (a) is used in the main

text. Known as sequency order, it has the property that each
row involves one more change of color than the previous
row. (b) is known as natural or Hadamard order. It exhibits a
nested structure, and can be obtained as in the pictures below
from the evolution of a 2D substitution system, or
equivalently from a Kronecker product as in

with

(c) is known as dyadic or Paley order. It is related to (a) by
Gray code reordering of the rows, and to (b) by reordering
according to (see page 905)

It is also given by

where (b) is obtained simply by dropping the .

Walsh functions can correspond to nested sequences. The
function at position in
basis (a), for example, is exactly the Thue-Morse sequence
(with 0 replaced by -1) from page 83.

Given the matrix of basis vectors, the Walsh transform is
simply . Direct evaluation of this for length takes
steps. However, the nested structure of in natural order
allows evaluation in only about steps using

This procedure is similar to the fast Fourier transform
discussed below. Transforms of 2D data are equivalent to 1D
transforms of flattened data.

Walsh functions were used by electrical engineers such as
Frank Fowle in the 1890s to find transpositions of wires
that minimized crosstalk; they were introduced into
mathematics by Joseph Walsh in 1923. Raymond Paley
introduced the dyadic basis in 1932. Mathematical
connections with harmonic analysis of discrete groups were
investigated from the late 1940s. In the 1960s, Walsh
transforms became fairly widespread in discrete signal and
image processing.

â Page 575 · Walsh spectra. The arrays of absolute values of
weights of basic forms for successive images are as follows:

â Hadamard matrices. Hadamard matrices are matrices
with elements -1 and +1, whose rows are orthogonal, so that

. The matrices used in
Walsh transforms are special cases with . There are
thought to be Hadamard matrices with every size
(and for no other sizes are possible); the number of
distinct such matrices for each up to 7 is 1, 1, 1, 5, 3, 60, 487.
The so-called Paley family of Hadamard matrices for

 with prime are given by

Originally introduced by Jacques Hadamard in 1893 as the
matrices with elements which attain the maximal
possible determinant , Hadamard matrices appear in
various combinatorial problems, particularly design of
exhaustive combinations of experiments and Reed-Muller
error-correcting codes.

â Image averaging. Walsh functions yield significantly better
compression than simple successive averaging of blocks
of cells, as shown below.

(a) (b) (c)

n = 2s

Nest[Apply[Join, f [{Map[Flatten[Map[{#, #} &, #]] &, #],
Map[Flatten[Map[{#, -#} &, #]] &, g[#]]}]] &, {{1}}, s]

f = Identity g = Reverse f = Transpose
g = Identity f = g = Identity

Nest[Flatten2D[Map[# {{1, 1}, {1, -1}} &, #, {2}]] &, {{1}}, s]

Flatten2D[a_] :=
Apply[Join, Apply[Join, Map[Transpose, a], {2}]]

BitReverseOrder[a_] :=
With[{n = Length[a]}, a0Map[FromDigits[Reverse[#], 2] &,

IntegerDigits[Range[0, n - 1], 2, Log[2, n]]] + 11]

Array[Apply[Times, (-1)^ (IntegerDigits[#1, 2, s]
Reverse[IntegerDigits[#2, 2, s]])] &, 2^{s, s}, 0]

Reverse

2/3 (1+ 4^ (-(Floor[s/2] + 1/2))) 2s

m
data�.�m n n2

m
n Log[n]

Nest[Flatten[Transpose[Partition[#, 2]�.�{{1, 1}, {1, -1}}]] &,
data, Log[2, Length[data]]]

n7n

m�.�Transpose[m] 2 n IdentityMatrix[n]
n = 2s

n = 4 k
n > 2

k

n = 4 k = p + 1 p
PadLeft[Array[JacobiSymbol[#2 - #1, n - 1] &, {n, n} - 1] -

IdentityMatrix[n - 1], {n, n}, 1]

Abs[a] < 1
¡nn/2

2�2

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1074

â Practical image compression. Two basic phenomena
contribute to our ability to compress images in practice. First,
that typical images of relevance tend to be far from random—
indeed they often involve quite limited numbers of distinct
objects. And second, that many fine details of images go
unnoticed by the human visual system (see the next section).

â Fourier transforms. In a typical Fourier transform, one uses
basic forms such as with running from 1 to .
The weights associated with these forms can be found using

, and given these weights the original data can also be
reconstructed using . The pictures below show
what happens in such a so-called discrete cosine transform
when different fractions of the weights are kept, and others
are effectively set to zero. High-frequency wiggles associated
with the so-called Gibbs phenomenon are typical near edges.

 can be thought of as multiplication by the
 matrix . Applying

 to this matrix yields a matrix which has an
essentially nested form, and for size can be obtained
from

Using this structure, one obtains the so-called fast Fourier
transform which operates in steps and is given by

(See also page 1080.)

â JPEG compression. In common use since the early 1990s
JPEG compression works by first assigning color values to
definite bins, then applying a discrete Fourier cosine
transform, then applying Huffman encoding to the resulting
weights. The “quality” of the image is determined by how
many weights are kept; a typical default quality factor, used
say by in Mathematica, is 75.

â Wavelets. Each basic form in an ordinary Walsh or Fourier
transform has nonzero elements spread throughout. With
wavelets the elements are more localized. As noted in the late

1980s basic forms can be set up by scaling and translating just
a single appropriately chosen underlying shape. The (a) Haar
and (b) Daubechies wavelets shown below both have
the property that the basic forms (whose 2D
analogs are shown as on page 573) are orthogonal for every
different and .

The pictures below show images built up by keeping
successively more of these basic forms. Sharp edges have
fewer wiggles than with Fourier transforms.

â Sound compression. See page 1080.

Visual Perception

â Color vision. The three types of color-sensitive cone cells on
the human retina each have definite response curves as a
function of wavelength. The perceived color of light with a
given wavelength distribution is basically determined by the
three numbers obtained by integrating these responses. For
any wavelength distribution it turns out that if one scales
these numbers to add up to one, then the chromaticity values
obtained must lie within a certain region. Mixing specific
colors in different proportions allows one to reach any point
in an -cornered polytope. For this polytope comes
close to filling the region of all possible colors, but for no
can it completely fill it—which is why practical displays and
printing processes can produce only limited ranges of colors.

An important observation, related to the fact that limitations
in color ranges are usually not too troublesome, is that the
perceived colors of objects stay more or less constant even
when viewed in very different lighting, corresponding to
very different wavelength distributions. In recent years it has
become clear that the origin of this phenomenon is that

Exp[5 p r x /n] r n

Fourier
InverseFourier

Fourier[data]
n7n Array[Exp[2p 5 #1 #2/n] &, {n, n}, 0]
BitReverseOrder

n = 2s

Nest[With[{c = BitReverseOrder[Range[0, Length[#] - 1] /
Length[#]]}, Flatten2D[MapIndexed[#1 {{1, 1},
{1, -1} (-1)^c0Last[#2]1} &, #, {2}]]] &, {{1}}, s]

n Log[n]

With[{n = Length[data]}, Fold[Flatten[Map[With[
{k = Length[#] /2}, {{1, 1}, {1, -1}}�.�{Take[#, k], Drop[

#, k] (-1)^ (Range[0, k - 1] / k)}] &, Partition[##]]] &,
BitReverseOrder[data], 2^Range[Log[2, n]]] /�!!!!n]

Export

y[x]
2m/2 y[2m x - n]

m n

(a)

(b)

(a) (b)

n

n n = 3
n

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1075

beyond the original cone cells, most color-sensitive cells in
our visual system respond not to absolute color levels, but
instead to differences in color levels at slightly different
positions. (Responses to nearby relative values rather than
absolute values seem to be common in many forms of human
perception.)

The fact that white light is a mixture of colors was noticed by
Isaac Newton in 1704, and it became clear in the course of the
1700s that three primaries could reproduce most colors.
Thomas Young suggested in 1802 that there might be three
types of color receptors in the eye, but it was not until 1959
that these were actually identified—though on the basis of
perceptual experiments, parametrizations of color space were
already well established by the 1930s. While humans and
primates normally have three types of cone cells, it has been
found that other mammals normally have two, while birds,
reptiles and fishes typically have between 3 and 5.

â Nerve cells. In the retina and the brain, nerve cells typically
have an irregular tree-like structure, with between a few and
a few thousand dendrites carrying input signals, and one or
more axons carrying output signals. Nerve cells can respond
on timescales of order milliseconds to changes in their inputs
by changing their rate of generating output electrical spikes.
As has been believed since the 1940s, most often nerve cells
seem to operate at least roughly by effectively adding up
their inputs with various positive or negative weights, then
going into an excited state if the result exceeds some
threshold. The weights seem to be determined by detailed
properties of the synapses between nerve cells. Their values
can presumably change to reflect certain aspects of the
activity of the cell, thus forming a basis for memory (see page
1102). In organisms with a total of only a few thousand nerve
cells, each individual cell typically has definite connections
and a definite function. But in humans with perhaps 100
billion nerve cells, the physical connections seem quite
haphazard, and most nerve cells probably develop their
function as a result of building up weights associated with
their actual pattern of behavior, either spontaneous or in
response to external stimuli.

â The visual system. Connected to the 100 million or so light-
sensitive photoreceptor cells on the retina are roughly two
layers of nerve cells, with various kinds of cross-connections,
out of which come the million fibers that form the optic
nerve. After essentially one stop, most of these go to the
primary visual cortex at the back of the brain, which itself
contains more than 100 million nerve cells. Physical
connections between nerve cells have usually been difficult
to map. But starting in the 1950s it became possible to record
electrical activity in single cells, and from this the discovery

was made that many cells respond to rather specific visual
stimuli. In the retina, most common are center-surround
cells, which respond when there is a higher level of light in
the center of a roughly circular region and a lower level
outside, or vice versa. In the first few layers of the visual
cortex about half the cells respond to elongated versions of
similar stimuli, while others seem sensitive to various forms
of change or motion. In the fovea at the center of the retina, a
single center-surround cell seems to get input from just a few
nearby photoreceptors. In successive layers of the visual
cortex cells seem to get input from progressively larger
regions. There is a very direct mapping of positions on the
retina to regions in the visual cortex. But within each region
there are different cells responding to stimuli at different
angles, as well as to stimuli from different eyes. Cells with
particular kinds of responses are usually found to be
arranged in labyrinthine patterns very much like those
shown on page 427. And no doubt the processes which
produce these patterns during the development of the
organism can be idealized by simple 2D cellular automata.
Quite what determines the pattern of illumination to which a
given cell will respond is not yet clear, although there is some
evidence that it is the result of adaptation associated with
various kinds of test inputs. Since the late 1970s, it has been
common to assume that the response of a cell can be
modelled by derivatives of Gaussians such as those shown
below, or perhaps by Gabor functions given by products of
trigonometric functions and Gaussians. Experiments have
determined responses to these and other specific stimuli, but
inevitably no experiment can find all the stimuli to which a
cell is sensitive.

The visual systems of a number of specific higher and lower
organisms have now been studied, and despite a few
differences (such as cross-connections being behind the
photoreceptors on the retinas of octopuses and squids, but in
front in most higher animals), the same general features are
usually seen. In lower organisms, there tend to be fewer
layers of cells, with individual cells more specialized to
particular visual stimuli of relevance to the organism.

â Feedback. Most of the lowest levels of visual processing
seem to involve only signals going successively from one
layer in the eye or brain to the next. But presumably there is
at least some feedback to previous layers, yielding in effect
iteration of rules like the ones used in the main text. The

f $x f $xx f $xx f + $yy f $xxx f

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1076

resulting evolution process is likely to have attractors,
potentially explaining the fact that in images such as “Magic
Eye” random dot stereograms features can pop out after
several seconds or minutes of scrutiny, even without any
conscious effort.

â Scale invariance. In a first approximation our recognition of
objects does not seem to be much affected by overall size or
overall light level. For light level—as with color constancy—
this is presumably achieved by responding only to
differences between levels at different positions. Probably the
same effect contributes to scale invariance by emphasizing
only edges and corners. And if one is looking at objects like
letters, it helps that one has learned them at many different
sizes. But also similar cells most likely receive inputs from
regions with a range of different sizes on the retina—making
even unfamiliar textures seem the same over at least a certain
range of scales. When viewed at a normal reading distance of
12 inches each square in the picture on page 578 covers a
region about 5 cells across on the retina. With good lighting
and good eyesight the textures in the picture can still be
distinguished at a distance of 5 feet, where each square
covers only one cell. But if the picture is enlarged by a factor
of 3 or more then at normal reading distance it can become
difficult to distinguish the textures—perhaps because the
squares cover regions larger than the templates used at the
lowest levels in our visual system.

â History. Ever since antiquity the visual arts have yielded
practical schemes and sometimes also fairly abstract
frameworks for determining what features of images will
have what impact. In fact, even in prehistoric times it seems
to have been known, for example, that edges are often
sufficient to communicate visual forms, as in the pictures
below.

Visual perception has been used for centuries as an example
in philosophical discussions about the nature of experience.
Traditional mathematical methods began to be applied to it
in the second half of the 1800s, particularly through the
development of psychophysics. Studies of visual illusions
around the end of the 1800s raised many questions that were
not readily amenable to numerical measurement or
traditional mathematical analysis, and this led in part to the
Gestalt approach to psychology which attempted to
formulate various global principles of visual perception.

In the 1940s and 1950s, the idea emerged that visual images
might be processed using arrays of simple elements. At a
largely theoretical level, this led to the perceptron model of
the visual system as a network of idealized neurons. And at a
practical level it also led to many systems for image
processing (see below), based essentially on simple cellular
automata (see page 928). Such systems were widely used by
the end of the 1960s, especially in aerial reconnaissance and
biomedical applications.

Attempts to characterize human abilities to perceive texture
appear to have started in earnest with the work of Bela Julesz
around 1962. At first it was thought that the visual system
might be sensitive only to the overall autocorrelation of an
image, given by the probability that randomly selected points
have the same color. But within a few years it became clear
that images could be constructed—notably with systems
equivalent to additive cellular automata (see below)—that
had the same autocorrelations but looked completely
different. Julesz then suggested that discrimination between
textures might be based on the presence of “textons”, loosely
defined as localized regions like those shown below with
some set of distinct geometrical or topological properties.

In the 1970s, two approaches to vision developed. One was
largely an outgrowth of work in artificial intelligence, and
concentrated mostly on trying to use traditional mathematics
to characterize fairly high-level perception of objects and
their geometrical properties. The other, emphasized
particularly by David Marr, concentrated on lower-level
processes, mostly based on simple models of the responses of
single nerve cells, and very often effectively applying

 with simple kernels, as in the pictures below.

In the 1980s, approaches based on neural networks capable of
learning became popular, and attempts were made in the
context of computational neuroscience to create models
combining higher- and lower-level aspects of visual
perception.

The basic idea that early stages of visual perception involve
extraction of local features has been fairly clear since the
1950s, and researchers from a variety of fields have invented
and reinvented implementations of this idea many times. But
mainly through a desire to use traditional mathematics, these

ListConvolve

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1077

implementations have tended to be implicitly restricted to
using elements with various linearity properties—typically
leading to rather unconvincing results. My model is closer to
what is often done in practical image processing, and
apparently to how actual nerve cells work, and in effect
assumes highly nonlinear elements.

â Page 581 · Implementation. The exact matches for a template
 in data containing elements 0 and 1 can be obtained from

â Testing the model. Although it is difficult to get good
systematic data, the many examples I have tried indicate that
the levels of discrimination between textures that we achieve
with our visual system agree remarkably well with those
suggested by my simple model. A practical issue that arises
is that if one repeatedly tries experiments with the same set
of textures, then after a while one learns to discriminate these
particular textures better. Shifting successive rows or even
just making an overall rotation seems, however, to avoid this
effect.

â Related models. Rather than requiring particular templates
to be matched, one can consider applying arbitrary cellular
automaton rules. The pictures below show results from a
single step of the 16 even-numbered totalistic 5-neighbor
rules. The results are surprisingly easy to interpret in terms of
feature extraction.

â Image processing. The release of programs like Photoshop
in the late 1980s made image processing operations such as
smoothing, sharpening and edge detection widely available
on general-purpose computers. Most of these operations are
just done by applying with simple kernels.
(Even before computers, such convolutions could be done
using the fact that diffraction of light effectively performs
Fourier transforms.) Ever since the 1960s all sorts of schemes
for nonlinear processing of images have been discussed and
used in particular communities. An example originally
popular in the earth and environmental sciences is so-called
mathematical morphology, based on “dilation” of data
consisting of 0’s and 1’s with a “structuring element”
according to (as well as the
dual operation of “erosion”). Most schemes like this can
ultimately be thought of as picking out templates or applying
simple cellular automaton rules.

â Real textures. The textures I consider in the main text are all
based on arrays of discrete black and white squares. One can
also consider textures associated, say, with surface roughness
of physical objects. Models of these are often needed for
realistic computer graphics. Common approaches are to
assume that the surfaces are random with some frequency
spectrum, or can be generated as fractals using substitution
systems with random parameters. In recent times, models
based on wavelets have also been used.

â Statistical methods. Even though they do not appear to
correspond to how the human visual system works,
statistical methods are often used in trying to discriminate
textures automatically. Correlations, conditional entropies
and fractal dimensions are commonly computed. Often it is
assumed that different parts of a texture are statistically
independent, so that the texture can be characterized by
probabilities for local patterns, as in a so-called Markov
random field or generalized autoregressive moving average
(ARMA) process.

â Camouflage. On both animals and military vehicles it is
often important to have patterns that cannot be distinguished
from a background by the visual systems of predators. And
in most cases this is presumably best achieved by avoiding
differences in densities of certain local features. Note that in a
related situation almost any fairly random overlaid pattern
containing many local features can successfully be used to
mask the contents of a paper envelope.

â Halftoning. In printed books like this one, gray levels are
usually obtained by printing small dots of black with varying
sizes. On displays consisting of fixed arrays of pixels, gray
levels must be obtained by having only a certain density of
pixels be black. One way to achieve this is to break the array
into blocks, then successively to fill in pixels in each
block until the appropriate gray level is reached, as in the
pictures below, in an order given for example by

An alternative to this so-called ordered dither approach is
the Floyd-Steinberg or error-diffusion method invented in
1976. This scans sequentially, accumulating and spreading
total gray level in the data, then generating a black pixel
whenever a threshold is exceeded. The method can be
implemented using

s

Sign[ListCorrelate[2 s - 1, data] -Count[s, 1, 2]] + 1

ListConvolve

s

Sign[ListConvolve[s, data, 1, 0]]

2n72n

Nest[
Flatten2D[{{4 # + 0, 4 # + 2}, {4 # + 3, 4 # + 1}}] &, {{0}}, n]

Module[{a = Flatten[data], r, s},
{r, s} = Dimensions[data]; Partition[Do[

a0i + {1, s - 1, s, s + 1}1 += m (a0i1 - If[a0i1 < 1/2, 0, 1]),
{i, r s - s - 1}]; Map[If[# < 1/2, 0, 1] &, a], s]]

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1078

In its original version , as in the first row of
pictures below. But even with the method
generates fairly random patterns, as in the second row below.
(Note that significantly different results can be obtained if
different boundary conditions are used for each row.)

To give the best impression of uniform gray, one must in
general minimize features detected by the human visual
system. One simple way to do this appears to be to use
nested patterns like the ones below.

â Generating textures. As discussed on page 217, it is in
general difficult to find 2D patterns which at all points match
some definite set of templates. With templates, there
turn out to be just 7 minimal such patterns, shown below.
Constructing patterns in which templates occur with definite
densities is also difficult, although randomized iterative
schemes allow some approximation to be obtained.

One-dimensional cellular automata are especially convenient
generators of distinctive textures. Indeed, as was noticed
around 1980, generalizations of additive rules involving cells
in different relative locations can produce textures with
similar statistics, but different visual appearance, as shown
below. (All the examples shown turn out to correspond to
ordinary, sequential and reversible cellular automata seen
elsewhere in this book.) (See also page 1018.)

â Moire patterns. The pictures below show moire patterns
formed by superimposing grids of points at different angles.
Our visual system does not immediately perceive the grids,

but instead mainly picks up features formed from local
arrangements of dots. The second picture below is similar to
patterns of halftone screens visible in 4-color printing under a
magnifying glass.

In the first two pictures below, bands with spacing
 are visible wherever lines cross. In the second

two pictures there is also an apparent repetitive pattern with
approximately the same repetition period.

The patterns are exactly repetitive only when ,
where and are elements of a primitive Pythagorean triple
(so that , and are all integers, and

). This occurs when , (see
page 945), and in this case the minimum displacement that
leaves the whole pattern unchanged is .

The second row of pictures illustrates what happens if
points closer than distance are joined. The results
appear to capture at least some of the features picked out by
our visual system.

â Perception and presentation. In writing this book it has been
a great challenge to find graphical representations that make
the behavior of systems as clear as possible for the purposes
of human visual perception. Even small changes in
representation can greatly affect what properties are noticed.
As a simple example, the pictures below are identical, except
for the fact that the colors of cells on alternate rows have been
reversed.

m = {7, 3, 5, 1} /16
m = {1, 0, 1, 0} /2

1/ 8 1/ 7 1/ 4 1/ 3 3/ 8 2/ 5 9/ 16

1/ 8 1/ 7 1/ 4 1/ 3 3/ 8 2/ 5 9/ 16

1/ 5 1/ 4 1/ 3 2/ 5 1/ 2

2�2

1/2 Csc[q /2]

q = 10 8 q = 20 8 q = 10 8 q = 20 8

Tan[q] 2 u/v
u v

u v Sqrt[u2 + v 2]

GCD[u, v] 2 1 u = r 2 - s2 v = 2 r s

{s, r}

3/ 4 5/ 12 20/ 21 28/ 45

1/�!!!!2

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1079

Auditory Perception

â Sounds. The human auditory system is sensitive to sound
at frequencies between about 20 Hz and 20 kHz. Middle A
on a piano typically corresponds to a frequency of 440 Hz.
Each octave represents a change in frequency by a factor of
two. In western music there are normally 12 notes identified
within an octave. These differ in frequency by successive
factors of roughly —with different temperament
schemes using different rational approximations to powers
of this quantity.

The perceived character of a sound seems to depend most on
the frequencies it contains, but also to be somewhat affected
by the way its intensity ramps up with time, as well as the
way frequencies change during this ramp up. Many musical
instruments produce sound by vibrating strings or air in
cylindrical or conical tubes, and in these cases, there is one
main frequency, together with roughly equally spaced
overtones. In percussion instruments, the spectrum of
frequencies is usually much more complicated. In speech,
vowels and voiced consonants tend to be characterized by
the lowest two or three frequencies of the mouth. In nature,
processes such as fluid turbulence and fracture yield a broad
spectrum of frequencies. In speech, letters like “s” also yield
broad spectra, presumably because they involve fluid
turbulence.

Any sound can be specified by giving its amplitude or
waveform as a function of time. corresponds to a
pure tone. Other simple mathematical functions can also
yield distinctive sounds. FM synthesis functions such as

 can be made to sound somewhat like
various musical instruments, and indeed were widely used
in early synthesizers.

â Auditory system. Sound is detected by the motion it causes
in hair cells in the cochlea of the inner ear. When vibrations of
a particular frequency enter the cochlea an active process
involving hair cells causes the vibrations to be concentrated
at a certain distance down the cochlea. To a good
approximation this distance is proportional to the logarithm
of the frequency, and going up one octave in frequency
corresponds to moving roughly 3.5 mm. Of the 12,000 or so

hair cells in the cochlea most seem to be involved mainly
with mechanical issues; about 3500 seem to produce
outgoing signals. These are collected by about 30,000 nerve
fibers which go down the auditory nerve and after several
stops reach the auditory cortex. Different nerve cells seem to
have rates of firing which are set up to reflect both sound
intensity, and below perhaps 300 Hz, actual amplitude peaks
in the sound waveform. Much as in both the visual and
tactile systems, there seems to be a fairly direct mapping
from position on the cochlea to position in the auditory
cortex. In animals such as bats it is known that specific nerve
cells respond to particular kinds of frequency changes. But in
primates, for example, little is known about exactly what
features are extracted in the auditory cortex.

The fact that there are a million nerve fibers going from the
eye to the brain, but only about 30,000 going from the ear to
the brain means that while it takes several million bits per
second to transmit video of acceptable quality, a few tens of
thousands of bits are adequate for audio (NTSC television is
5 MHz; audio CDs 22 kHz; telephone 8 kHz). Presumably
related is also the fact that it is typically much easier to make
realistic sound effects than realistic visual ones.

â Chords. Two pure tones played together exhibit beats at the
difference of their frequencies—a consequence of the fact that

With , one can explicitly hear the time variation of
the beats if their frequency is below about 15 Hz, and the
result is quite pleasant. But between 15 Hz and about 60 Hz,
the sound tends to be rather grating—possibly because this
frequency range conflicts with that used for signals in the
auditory nerve.

In music it is usually thought that chords consisting of tones
with frequencies whose ratios have small denominators
(such as 3/2, corresponding to a perfect fifth) yield the most
pleasing sounds. The mechanics of the ear imply that if two
tones of reasonable amplitude are played together,
progressively smaller additional signals will effectively be
generated at frequencies . The picture
below shows the extent to which such frequencies tend to be
in the range that yield grating effects. The minima at values
of corresponding to rationals with small
denominators may explain why such chords seem more
pleasing. (See also page 917.)

21/12

Sin[w t]

Sin[w (t + a Sin[b t])]

Sin[w1 t] +Sin[w2 t] 2
2 Sin[1/2 (w1 +w2) t]Cos[1/2 (w1 -w2) t]

w ; 500 Hz

Abs[n1 w1 ¡ n2 w2]

w2 /w1

1 1.5 2 2.5 3 3.5 4
w1 �w2

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1080

â History. The notion of musical notes and of concepts such as
octaves goes back at least five thousand years. Around 550
BC the Pythagoreans identified various potential connections
between numbers and the perception of sounds. And over
the course of time a wide range of mathematical and
aesthetic principles were suggested. But it was not until the
1800s, particularly with the work of Hermann Helmholtz,
that the physical basis for the perception of sound began to
be seriously investigated. Work on speech sounds by
Alexander Graham Bell and others was related to the
development of the telephone in the late 1800s. In the past
few decades, with better experiments, particularly on the
emission of sound by the ear, and with ideas and analysis
from electrical engineers and physicists the basic behavior of
at least the cochlea is becoming largely understood.

â Sonification. Sound has occasionally been used as a means
of understanding scientific data. In the 1950s and 1960s
analog computers (and sometimes digital computers)
routinely had sound output. And in the 1970s some
discoveries about chaos in differential equations were made
using such output. In experimental neuroscience sounds are
also routinely used to monitor impulses in nerve cells.

â Implementation. in Mathematica generates
sound output by treating the elements of as successive
samples in the waveform of the sound, typically with a
default sample rate of 8000 Hz.

â Time variation. Many systems discussed in this book produce
sounds with distinctive and sometimes pleasing time variation.
Particularly dramatic are the concatenation systems discussed
on page 913, as well as successive rows in nested patterns such
as
and sequences based on numbers such as

 (see page
613). The recursive sequences on page 130 yield sounds
reminiscent of many natural systems.

â Musical scores. Instead of taking a sequence to correspond
directly to the waveform of a sound, one can consider it to
give a musical score in which each element represents a note
of a certain frequency, played for some specific short time.
(One can avoid clicks by arranging the waveform to cross
zero at both the beginning and end of each note.) With this
setup my experience is that both repetitive and random
sequences tend to seem quite monotonous and dull. But
nested sequences I have found can quite often generate
rather pleasing tunes. (One can either determine frequencies
of notes directly from the values of elements, or, say, from
cumulative sums of such values, or from heights in paths like
those on page 892.) (See also page 869.)

â Recognizing repetition. The curve of the function
 shown on page 146 looks complicated to

the eye. But a sound with a corresponding waveform is
recognized by the ear as consisting simply of two pure tones.
However, if one uses the function to generate a score—say
playing a note at the position of each peak—then no such
simplicity can be recognized. And this fact is presumably
why musical scores normally have notes only at integer
multiples of some fixed time interval.

â Sound compression. Sound compression has in practice
mostly been applied to human speech. In typical voice coders
(vocoders) 64k bits per second of digital data are obtained by
sampling the original sound waveform 8000 times per
second, and assigning one of 256 possible levels to each
sample. (Since the 1960s, so-called mu-law companding has
often been used, in which these levels are distributed
exponentially in amplitude.) Encoding only differences
between successive samples leads to perhaps a factor of 2
compression. Much more dramatic compression can be
achieved by making an explicit model for speech sounds.
Most common is to assume that within each phoneme-length
chunk of a few tens of milliseconds the vocal tract acts like a
linear filter excited either by pure tones or randomness. In so-
called linear predictive coding (LPC) optimal parameters are
found to make each sound sample be a linear combination of,
say, 8 preceding samples. The residue from this procedure is
then often fitted to a code book of possible forms, and the
result is that intelligible speech can be obtained with as little
as 3 kbps of data. Hardware implementations of LPC and
related methods have been widespread since before the
1980s; software implementations are now becoming
common. Music has in the past rarely been compressed,
except insofar as it can be specified by a score. But recently
the MP3 format associated with MPEG and largely based on
LPC methods has begun to be used for compression of
arbitrary sounds, and is increasingly applied to music.

â Page 586 · Spectra. The spectra shown are given by
, where the symmetrical second half of this

list is dropped in the pictures. Also of relevance are intensity
or power spectra, obtained as the square of these spectra.
These are related to the autocorrelation function according to

(See also page 1074.)

â Spectra of substitution systems. Questions that turn out to
be related to spectra of substitution systems have arisen in
various areas of pure mathematics since the late 1800s. In the
1980s, particularly following discoveries in iterated maps
and quasicrystals, studies of such spectra were made in the

ListPlay[data]
data

Flatten[IntegerDigits[NestList[BitXor[#, 2 #] &, 1, 500], 2]]

Flatten[Table[If[GCD[i, j] 2 0, 1, 0], {i, 1000}, { j , i}]]

Sin[x] +Sin[�!!!!2 x]

Abs[Fourier[data]]

Fourier[list]2 2
Fourier[ListConvolve[list, list, {1, 1}]] /Sqrt[Length[list]]

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1081

context of number theory and dynamical systems theory.
Some general principles were proposed, but a great many
exceptions were always eventually found.

As suggested by the pictures in the main text, spectra such as
(b) and (d) in the limit consist purely of discrete Dirac delta
function peaks, while spectra such as (a) and (c) also contain
essentially continuous parts. There seems to be no simple
criterion for deciding from the rule what type of spectrum
will be obtained. (In some cases it works to look at whether
the limiting ratio of lengths on successive steps is a Pisot
number.) One general result, however, is that all so-called
Sturmian sequences with

 an irrational number must yield discrete spectra. And as
discussed on page 903, if is a quadratic irrational, then such
sequences can be generated by substitution systems.

For any substitution system the spectrum at step
from initial condition is given by a linear recurrence relation
in terms of the . With colors each giving a
string of the same length the recurrence relation is

Some specific properties of the examples shown include:

(a) (Thue-Morse sequence) The spectrum is essentially
. The

main peak is at position 1/3, and in the power spectrum this
peak contains half of the total. The generating function for the
sequence (with 0 replaced by -1) satisfies , so
that . (Z transform or
generating function methods can be applied directly only for
substitution systems with rules such as .)
After steps a continuous approximation to the spectrum is

, which is an example of a type
of product studied by Frigyes Riesz in 1918 in connection with
questions about the convergence of trigonometric series. It is
related to the product of sawtooth functions given by

. Peaks occur for values
of such as 1/3 that are not well approximated by numbers of
the form with small and .

(b) (Fibonacci-related sequence) This sequence is a Sturmian
one. The maximum of the spectrum is at . The
spectrum is roughly like the markings on a ruler that is
recursively divided into pieces.

(c) (Cantor set) In the limit, no single peak contains a
nonzero fraction of the power spectrum. After steps a
continuous approximation to the spectrum is

.

(d) (Period-doubling sequence) The spectrum is
, almost like the

markings on a base 2 ruler.

(See also page 917.)

â Flat spectra. Any impulse sequence
will yield a flat spectrum. With odd the same turns out to
be true for sequences —a fact
used in the design of acoustic diffusers (see page 1183). For
sequences involving only two distinct integers flat spectra are
rare; with those equivalent to seem to be the
only examples. (works for any and , as do
all lists obtained working modulo from
where is any invertible polynomial.) If one ignores the
first component of the spectrum the remainder is flat for a
constant sequence, or for a random sequence in the limit of
infinite length. It is also flat for maximal length LFSR
sequences (see page 1084) and for sequences

 with prime (see page 870).
By adding a suitable constant to each element one can then
arrange in such cases for the whole spectrum to be flat. If

 sequences also satisfy
. Sequences of 0’s and 1’s that have the same

property are , or in general
. If -1 is allowed,

additional sequences such as are also
possible. (See also pages 911.)

â Nested vibrations. With an assembly of springs arranged in
a nested pattern simple initial excitations can yield motion
that shows nested behavior in time. If the standard
methodology of mechanics is followed, and the system is
analyzed in terms of normal modes, then the spectrum of
possible frequencies can look complicated, just as in the
examples on page 586. (Similar considerations apply to the
motion of quantum mechanical electrons in nested
potentials.)

â Page 587 · Random block sequences. Analytical forms for all
but the last spectrum are: , , , ,

, ,
, where , and

runs from to in each plot. Given a list of blocks such as
 each element of can be thought of as a

state in a finite automaton or a Markov process (see page
1084). The transitions between these states have probabilities
given by where

Round[(n+ 1) a + b] -Round[n a + b]
a

a

f[i][t, w] t
i

f[j][t - 1, w] k
s

Thread[Map[f[#][t + 1, w] &, Range[k] - 1] 2
Apply[Plus, MapIndexed[Exp[5w (Last[#2] - 1) st]

f[#1][t, w] &, Range[k] - 1 /. rules, {-1}], {1}] /�!!!!s]

Nest[Range[2 Length[#]] Join[#, Reverse[#]] &, {1}, t]

f [z] 2 (1 - z) f [z 2]

f [z] 2 Product[1 - z 2n

, {n, 0, ¥}]

{1 ! list, 0 ! 1 - list}
t

Product[1 - Exp[2s 5w], {s, t}]

Product[Abs[Mod[2s w, 2, -1]], {s, t}]
w

a/2b a b

Fibonacci[t]

{GoldenRatio, 1}

t

Product[1+Exp[3s 2 5w], {s, t}]

(2# - (-1)# &)[1+ IntegerExponent[n, 2]]

Join[{1}, Table[0, {n}]]
n

Exp[2p 5Mod[Range[n]2, n] /n]

¡1 {1, 1, 1, -1}

{r 2, r s, s2, -r s} r s
xn - 1 p[x] /p[1/x]

p[x]

JacobiSymbol[Range[0, p - 1], p] p

Mod[p, 4] 2 1 JacobiSymbol
Fourier[list] 2 list

{1, 0, 1, 0} {1, 0, 0, 1, 0, 0, 1, 0, 0}

Flatten[Table[{1, Table[0, {n - 1}]}, {n}]]
{0, 1, 0, -1, 0, -1, 0, 1}

1 u2 / (1+ 8 u2) 1/ (1+ 8 u2) u2

(1 - 4 u2)2 / (1 - 5 u2 + 8 u4) u2 / (1 - 5 u2 + 8 u4)
u2 + 1/36 DiracDelta[w - 1/3] u = Cos[p w] w

0 1/2
{{1, 1}, {0}} Flatten[list]

m[Map[Length, list]]

m[s_] := With[{q = FoldList[Plus, 0, s]}, ReplacePart[
RotateRight[IdentityMatrix[Last[q]], {0, 1}], 1/Length[s],
Flatten[Outer[List, Rest[q], Drop[q, -1] + 1], 1]]]

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1082

The average spectrum of sequences generated according to
these probabilities can be obtained by computing the
correlation function for elements a distance apart

then forming and
taking the limit . If then the spectrum is

. For a random walk (see
page 977) in which occur with equal probability the
spectrum is , or roughly .

The same basic setup also applies to spectra associated with
linear filters and ARMA time series processes (see page
1083), in which elements in a sequence are generated from
external random noise by forming linear combinations of the
noise with definite configurations of elements in the
sequence.

â Spectra of cellular automata. When cellular automata have
non-trivial attractors as discussed in Chapter 6 the spectra of
sequences obtained at particular steps can exhibit a variety of
features, as shown below.

â 2D spectra. The pictures below give the 2D Fourier
transforms of the nested patterns shown on page 583.

â Diffraction patterns. X-ray diffraction patterns give Fourier
transforms of the spatial arrangement of atoms in a material.
For an ordinary crystal with atoms on a repetitive lattice, the

patterns consist of a few isolated peaks. For quasicrystals
with generalized Penrose tiling structures the patterns also
contain a few large peaks, though as in example (b) on page
586 there are also a hierarchy of smaller peaks present. In
general, materials with nested structures do not necessarily
yield discrete diffraction patterns. In the early 1990s,
experiments were done in which layers a few atoms thick of
two different materials were deposited in a Thue-Morse
sequence. The resulting object was found to yield X-ray
diffraction patterns just like example (a) on page 586.

Statistical Analysis

â History. Some computations of odds for games of chance
were already made in antiquity. Beginning around the 1200s
increasingly elaborate results based on the combinatorial
enumeration of possibilities were obtained by mystics and
mathematicians, with systematically correct methods being
developed in the mid-1600s and early 1700s. The idea of
making inferences from sampled data arose in the mid-
1600s in connection with estimating populations and
developing precursors of life insurance. The method of
averaging to correct for what were assumed to be random
errors of observation began to be used, primarily in
astronomy, in the mid-1700s, while least squares fitting and
the notion of probability distributions became established
around 1800. Probabilistic models based on random
variations between individuals began to be used in biology
in the mid-1800s, and many of the classical methods now
used for statistical analysis were developed in the late 1800s
and early 1900s in the context of agricultural research. In
physics fundamentally probabilistic models were central to
the introduction of statistical mechanics in the late 1800s
and quantum mechanics in the early 1900s. Beginning as
early as the 1700s, the foundations of statistical analysis
have been vigorously debated, with a succession of fairly
specific approaches being claimed as the only ones capable
of drawing unbiased conclusions from data. The practical
use of statistical analysis began to increase rapidly in the
1960s and 1970s, particularly among biological and social
scientists, as computers became more widespread. All too
often, however, inadequate amounts of data have ended up
being subjected to elaborate statistical analyses whose
results are then blindly assumed to represent definitive
scientific conclusions. In the 1980s, at least in some fields,
traditional statistical analysis began to become less popular,
being replaced by more direct examination of data
presented graphically by computer. In addition, in the
1990s, particularly in the context of consumer electronics

r

x[list_, r_] := With[{w = (# -Apply[Plus, #] /Length[#] &)[
Flatten[list]]}, w �.�MatrixPower[
m[Map[Length, list]], r]�.�w /Length[w]]

Sum[x[Abs[r]]Cos[2p r w], {r, -n/2, n/2}]
n !¥ x[r] = lr

(1 - l2)/ (l2 - 2 lCos[2pw] + 1) - 1
¡1

Csc[p w]2 /2 1/w2

rule 110 rule 126 rule 232

rule 30 rule 41 rule 54

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1083

devices, there has been an increasing emphasis on using
statistical analysis to make decisions from data, and
methods such as fuzzy logic and neural networks have
become popular.

â Practical statistics. The vast majority of statistical analysis is
in practice done on continuous numerical data. And with
surprising regularity it is assumed that random variations in
such data follow a Gaussian distribution (see page 976). But
while this may sometimes be true—perhaps as a consequence
of the Central Limit Theorem—it is rarely checked, making it
likely that many detailed inferences are wrong. So-called
robust statistics uses for example medians rather than means
as an attempt to downplay outlying data that does not follow
a Gaussian distribution.

Classical statistical analysis mostly involves trying to use
data to estimate parameters in specific probabilistic models.
Non-parametric statistics and related methods often claim to
derive conclusions without assuming particular models for
data. But insofar as a conclusion relies on extrapolation
beyond actual measured data it must inevitably in some way
use a model for data that has not been measured.

â Time series. Sequences of continuous numerical data are
often known as time series, and starting in the 1960s
standard models for them have consisted of linear
recurrence relations or linear differential equations with
random noise continually being added. The linearity of such
models has allowed efficient methods for estimating their
parameters to be developed, and these are widely used,
under slightly different names, in control engineering and in
business analysis. In recent years nonlinear models have
also sometimes been considered, but typically their
parameters are very difficult to estimate reliably. As
discussed on page 919 it was already realized in the 1970s
that even without external random noise nonlinear models
could produce time series with seemingly random features.
But confusion about the importance of sensitivity to initial
conditions caused the kind of discoveries made in this book
to be missed.

â Page 588 · Origin of probabilities. Probabilities are normally
assumed to enter for at least two reasons: (a) because of
random variation between individuals, and (b) because of
random errors in measurement. (a) is particularly common in
the biological and social sciences; (b) in the physical sciences.
In physics effects of statistical mechanics and quantum
mechanics are also assumed to introduce probabilities.
Probabilistic models for abstract mathematical systems have
in the past been rare, though the results about randomness in
this book may make them more common in the future.

â Probabilistic models. A probabilistic model must associate
with every sequence a probability that is a number between
0 and 1. This can be done either by giving an explicit
procedure for taking sequences and finding probabilities, or
by defining a process in which sequences are generated with
appropriate probabilities. A typical example of the first
approach is the Ising model for spin systems in which
relative probabilities of sequences are found by multiplying
together the results of applying a simple function to blocks
of nearby elements in the sequence. Monte Carlo methods
and probabilistic cellular automata provide examples of the
second approach.

â Page 588 · Binomial distribution. If black squares appear
independently with probability then the probability that
squares out of are black is .

â Page 589 · Estimation of parameters. One way to estimate
parameters in simple probabilistic models is to compute the
mean and other moments of the data and then to work out
what values of the parameters will reproduce these. More
general is the maximum likelihood method in which one
finds the values of the parameters which maximize the
probability of generating the observed data from the model.
(Least squares fits do this for models in which the data
exhibits independent Gaussian variations.) Various
modifications can be made involving for example weighting
with a risk function before maximizing. If one starts with a
priori probability distributions for all parameters, then
Bayes’s Theorem on conditional probabilities allows one to
avoid the arbitrariness of methods such as maximum
likelihood and explicitly to work out from the observed data
what the probability is for each possible choice of
parameters in the model. It is rare in practice, however, to be
able to get convincing a priori probability distributions,
although when there are physical or other reasons to expect
entropy to be maximized the so-called maximum entropy
method may be useful.

â Complexity of models. The pictures at the top of the next
page show least squares fits (found using in Mathematica)
to polynomials with progressively higher degrees and
therefore progressively more parameters. Which fit should be
considered best in any particular case must ultimately
depend on external considerations. But since the 1980s there
have been attempts to find general criteria, typically based on
maximizing quantities such as (the Akaike
information criterion), where is the probability that the
observed data would be generated from a given model
(is proportional to variance in a least squares fit),
and is the number of parameters in the model.

p m
n Binomial[n, m] pm (1 - p)n-m

Fit

-Log[p] - d
p

-Log[p]
d

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1084

â Page 590 · Markov processes. The networks in the main text
can be viewed as representing finite automata (see page 957)
with probabilities associated with transitions between nodes
or states. Given a vector of probabilities to be in each state,
the evolution of the system corresponds to multiplication by
the matrix of probabilities for each transition. (Compare the
calculation of properties of substitution systems on page
890.) Markov processes first arose in the early 1900s and have
been widely studied since the 1950s. In their first uses as
models it was typically assumed that each state transition
could explicitly be observed. But by the 1980s hidden
Markov models were being studied, in which only some of
the states or transitions could be distinguished by outside
observations. Practical applications were made in speech
understanding and text compression. And in the late 1980s,
building on work of mine from 1984 (described on page 276),
James Crutchfield made a study of such models in which he
defined the complexity of a model to be equal to
summed over all connections in the network. He argued that
the best scientific model is one that minimizes this
complexity—which with probabilities 0 and 1 is equivalent to
minimizing the number of nodes in the network.

â Non-local processes. It follows from the fact that any path
in a finite network must always eventually return to a node
where it has been before that any Markov process must be
fundamentally local, in the sense that the probabilities it
implies for what happens at a given point in a sequence must
be independent of those for points sufficiently far away. But
probabilistic models based on other underlying systems can
yield sequences with long-range correlations. As an example,
probabilistic neighbor-independent substitution systems can
yield sequences with hierarchical structures that have
approximate nesting. And since the mid-1990s such systems
(usually characterized as random trees or random context-
free languages) have sometimes been used in analyzing data
that is expected to have grammatical structure of some kind.

â Page 594 · Block frequencies. In any repetitive sequence the
number of distinct blocks of length must become constant
with for sufficiently large . In a nested sequence the
number must always continue increasing roughly linearly,
and must be greater than for every . (The differences of
successive numbers themselves form a nested sequence.) If
exactly distinct blocks occur for every , then the
sequence must be of the so-called Sturmian type discussed

on page 916, and the th element must be given by
, where is an irrational

number. Up to limited nested sequences can contain all
possible blocks, and can do so with asymptotically equal
frequencies. Pictures (b), (c) and (d) show the simplest cases
where this occurs (for length 3
also works). Linear feedback shift registers of the type used
in picture (e) are discussed below. Concatenation sequences
of the type used in picture (f) are discussed on page 913. In
both cases equal frequencies of blocks are obtained only for
sequences of length exactly .

â LFSR sequences. Often referred to as pseudonoise or PN
sequences, maximal length linear feedback shift register
sequences have repetition period and are generated by
shift registers that go through all their possible states except
the one consisting of all 0’s, as discussed on page 974. Blocks
in such sequences obtained from must all
be distinct since they correspond to successive complete
states of the shift register. This means that every block with
length up to (except all 0’s) must occur with equal
frequency. (Note that only a small fraction of all possible
sequences with this property can be generated by LFSRs.)
The regularity of PN sequences is revealed by looking at the
autocorrelation . This quantity is
-1 for all nonzero for PN sequences (so that all but the first
component in are equal), but has mean
0 for truly random sequences. (Related sequences can be
generated from as discussed on page 912.)

â Entropy estimates. Fitting the number of distinct blocks of
length to the form for large the quantity gives the
so-called topological entropy of the system. The so-called
measure entropy is given as discussed on page 959 by the
limit of where the are the
probabilities for the blocks. Actually getting accurate
estimates of such entropies is however often rather difficult,
and typically upper bounds are ultimately all that can
realistically be given. Note also that as discussed in the main
text having maximal entropy does not by any means imply
perfect randomness.

â Tests of randomness. Statistical analysis has in practice
been much more concerned with finding regularities in data
than in testing for randomness. But over the course of the
past century a variety of tests of randomness have been
proposed, especially in the context of games of chance and
their government regulation. Most often the tests are applied
not directly to sequences of 0’s and 1’s, but instead say to
numbers obtained from blocks of 8 elements. A typical
collection of tests described by Donald Knuth in 1968
includes: (1) frequency or equidistribution test (possible

-p Log[p]

m
m m

m m

m+ 1 m

n
Round[(n+ 1) a + b] -Round[n a + b] a

m km

{1 ! {1, 1, 1, 0, 0, 0}, 0 ! {1, 0}}

2j

2n - 1

Partition[list, n, 1]

n

RotateLeft[(-1)list, m]�.�(-1)list

m
Abs[Fourier[(-1)list]]2

RealDigits[1/p, 2]

b kh b b h

-Sum[pi Log[k, pi], {i, kb}] /b pi

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1085

elements should occur with equal frequency); (2) serial test
(pairs of elements should be equally likely to be in
descending and ascending order); (3) gap test (runs of
elements all greater or less than some fixed value should
have lengths that follow a binomial distribution); (4) poker
test (blocks corresponding to possible poker hands should
occur with appropriate frequencies); (5) coupon collector’s
test (runs before complete sets of values are found should
have lengths that follow a definite distribution); (6)
permutation test (in blocks of elements possible orderings of
values should occur equally often); (7) runs up test (runs of
monotonically increasing elements should have lengths that
follow a definite distribution); (8) maximum-of-t test
(maximum values in blocks of elements should follow a
power-law distribution). With appropriate values of
parameters, these tests in practice tend to be at least
somewhat independent, although in principle, if sufficient
data were available, they could all be subsumed into basic
block frequency and run-length tests. Of the sequences on
page 594, (a) through (d) as well as (f) fail every single one of
the tests, (e) fails only the serial test, while (g) and (h) pass all
the tests. (Failure is defined as a value that is as large or small
as that obtained from the data occurring below a specified
probability in the set of all possible sequences.) Widespread
use of tests like these on pseudorandom generators (see page
974) began in the late 1970s, with discoveries of defects in
common generators being announced every few years.

In the 1980s simulations in physics had begun to use
pseudorandom generators to produce sequences with
billions of elements, and by the late 1980s evidence had
developed that a few common generators gave incorrect
results in such cases as phase transition properties of the 3D
Ising model and shapes of diffusion-limited aggregates.
(These difficulties provided yet more support for my
contention that models with intrinsic randomness are more
reliable than those with external randomness.) In the 1990s
various idealizations of physics simulations—based on
random walks, correlation functions, localization of
eigenstates, and so on—were used as tests of pseudorandom
generators. These tests mostly seem simpler than those
shown on page 597 obtained by running a cellular automaton
rule on the data.

Over the years, essentially every proposed statistical test of
randomness has been applied to the center column of rule 30.
And occasionally people have told me that their tests have
found deviations from randomness. But in every single case
further investigation showed that the results were somehow
incorrect. So as of now, the center column of rule 30 appears
to pass every single proposed statistical test of randomness.

â Difference tables. See page 1091.

â Randomized algorithms. Whether a randomized algorithm
gives correct answers can be viewed as a test of randomness
for whatever supposedly random sequence is provided to it.
But in most practical cases such tests are not particularly
stringent; linear congruential generators, for example, almost
always pass. (There are perhaps exceptions in VLSI testing.)
And this is basically why it has so often proved possible to
replace randomized algorithms by deterministic ones that are
at least as efficient (see page 1192). An example is Monte
Carlo integration, where what ultimately matters is uniform
sampling of the integrand—which can usually be achieved
better by quasi-random irrational number multiple (see page
903) or digit reversal (see page 905) sequences than by
sequences one might consider more random.

Cryptography and Cryptanalysis

â History. Cryptography has been in use since antiquity, and
has been a decisive factor in a remarkably large number of
military and other campaigns. Typical of early systems was
the substitution cipher of Julius Caesar, in which every letter
was cyclically shifted in the alphabet by three positions, with
A being replaced by D, B by E, and so on. Systems based on
more arbitrary substitutions were in use by the 1300s. And
while methods for their cryptanalysis were developed in the
1400s, such systems continued to see occasional serious use
until the early 1900s. Ciphers of the type shown on page 599
were introduced in the 1500s, notably by Blaise de Vigenère;
systematic methods for their cryptanalysis were developed in
the mid-1800s and early 1900s. By the mid-1800s, however,
codes based on books of translations for whole phrases were
much more common than ciphers, probably because more
sophisticated algorithms for ciphers were difficult to
implement by hand. But in the 1920s electromechanical
technology led to the development of rotor machines, in
which an encrypting sequence with an extremely long period
was generated by rotating a sequence of noncommensurate
rotors. A notable achievement of cryptanalysis was the 1940
breaking of the German Enigma rotor machine using a
mixture of statistical analysis and automatic enumeration of
keys. Starting in the 1950s, electronic devices were the
primary ones used for cryptography. Linear feedback shift
registers and perhaps nonlinear ones seem to have been
common, though little is publicly known about military
cryptographic systems after World War II. In 1977 the U.S.
government introduced the DES data encryption standard,
and in the 1980s this became the dominant force in the
growing field of commercial cryptography. DES takes 64-bit

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1086

blocks of data and a 56-bit key, and applies 16 rounds of
substitutions and permutations. The S-box that implements
each substitution works much like a single step of a cellular
automaton. No fast method of cryptanalysis for DES is
publicly known, although by now for a single DES system an
exhaustive search of keys has become feasible. Two major
changes occurred in cryptography in the 1980s. First,
cryptographic systems routinely began to be implemented in
software rather than in special-purpose hardware, and thus
became much more widely available. And second, following
the introduction of public-key cryptography in 1975, the idea
emerged of basing cryptography not on systems with
complicated and seemingly arbitrary construction, but
instead on systems derived from well-known mathematical
problems. Initially several different problems were
considered, but after a while the only ones to survive were
those such as the RSA system discussed below based
essentially on the problem of factoring integers. Present-day
publicly available cryptographic systems are almost all based
on variants of either DES (such as the IDEA system of PGP),
linear feedback shift registers or RSA. My cellular automaton
cryptographic system is one of the very few fundamentally
different systems to have been introduced in recent years.

â Basic theory. As was recognized in the 1920s the only way
to make a completely secure cryptographic system is to use a
so-called one-time pad and to have a key that is as long as the
message, and is chosen completely at random separately for
each message. As soon as there are a limited number of
possible keys then in principle one can always try each of
them in turn, looking in each case to see whether they imply
an original message that is meaningful in the language in
which the message is written. And as Claude Shannon
argued in the 1940s, the length of message needed to be
reasonably certain that only one key will satisfy this criterion
is equal to the length of the key divided by the redundancy of
the language in which the message is written—equal to about
0.5 for English (see below).

In a cryptographic system with keys of length there will
typically be a total of possible keys. If one guesses a key it
will normally take a time polynomial in to check whether
the key is correct, and thus the problem of cryptanalysis is in
the class known in theoretical computer science as NP or
non-deterministic polynomial time (see page 1142). It is
suspected but not established that there exist at least some
problems in NP that cannot be solved in polynomial time,
potentially indicating that for an appropriate system it might
be impossible to do cryptanalysis in any time polynomial in

. (See page 1089.)

â Text. As the picture below illustrates, English text typically
remains intelligible until about half its characters have been
deleted, indicating that it has a redundancy of around 0.5.
Most other languages have slightly higher redundancies,
making documents in those languages slightly longer than
their counterparts in English.

Redundancy can in principle be estimated by breaking text
into blocks of length , then looking for the limit of the
entropy as (see page 1084). Statistically uniform
samples of text do not in practice, however, tend to be large
enough to allow more than about to be reached, and the
presence of correlations (even though exponentially damped)
between far-separated letters means that computed entropies
usually decrease continually with , making it difficult to
estimate their limit (see page 1084). Note that particularly in
computer languages higher redundancy is found if one takes
account of grammatical structure.

â Page 599 · Cryptanalysis. The so-called Vigenère cipher was
thought for several centuries to be unbreakable. The idea of
looking for repeats was introduced by Friedrich Kasiski in
1863. A statistical approach based on the fact that frequencies
tend to be closer to uniform for longer keys was introduced
by William Friedman in the 1920s. The methods described in
the main text are fairly characteristic of the mixture between
generality and detail that is typical in practical cryptanalysis.

â Page 600 · Linear feedback shift registers. See notes on pages
974 and 1084. LFSR sequences are widely used in radio
technology, particularly in the context of spread spectrum
applications. Their purpose is usually to provide a way to
distinguish or synchronize signals, and sometimes to provide
a level of cryptographic security. In CDMA technology for
cellular telephones, for example, data is overlaid on LFSR
sequences, and sequences other than the one intended for a
particular receiver seem like noise which can be ignored. As
another example, the Global Positioning System (GPS) works
by having 24 satellites each transmit maximal length
sequences from different length 10 LFSRs. Position is
deduced from the arrival times of signals, as determined by
the relative phases of the LFSR sequences received. (GPS P-
code apparently uses much longer LFSR sequences and
repeats only every 267 days. Before May 2000 it was used to
add unpredictable timing errors to ordinary GPS signals.)

n
kn

n

n

About half the letters in typical English text are redundant.
About half the letter- in typical Eng--sh text are redun-ant.
Abou- half the -etter- in ty-ical Eng--sh text are redun--nt.
Abou- half the -e-t--- i- ty-ical Eng--sh text are redun--nt.
Abou- half t-e -e-t--- -- ty-ical Eng--sh text ar- red-n--nt.
Abou- h-l- t-e -e----- -- ty-ical Eng--sh text ar- r-d-n--nt.
Abou- h-l- t-- -e----- -- ty-ical -ng--sh tex- ar- --d-n--nt.
Abou- h--- --- -e----- -- ty-ica- -ng---h tex- ar- --d-n--nt.
Abou- h--- --- -e----- -- ty---a- -ng---h te-- -r- --d-n--nt.
A-ou- h--- --- -e----- -- ty---a- -ng---- te-- -r- --d----n-.
--ou- ---- --- -e----- -- ty---a- -n----- te-- -r- -------n-.
--o-- ---- --- -e----- -- ty---a- ------- -e-- -r- ---------.
----- ---- --- -e----- -- t------ ------- -e-- --- ---------.

b
b !¥

b = 6

b

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1087

â LFSR cryptanalysis. Given a sequence obtained from a
length LFSR (see page 975)

the vector of taps can be deduced from

(An iterative algorithm in taking about rather than
steps was given by Elwyn Berlekamp and James Massey in
1968.) The same basic approach can be used to deduce the
rule for an additive cellular automaton from vertical
sequences.

â Page 603 · Rule 30 cryptography. Rule 30 is known to have
many of the properties desirable for practical cryptography.
It does not repeat with any short period or show any obvious
structure for almost all keys. Small changes in keys typically
leads to large changes in the encrypting sequence. The
Boolean expressions which determine the encrypting
sequence from the key rapidly become highly complex (see
page 618). And furthermore the system can be implemented
very efficiently, particularly in parallel hardware.

I originally studied rule 30 in the context of basic science,
but I soon realized that it could serve as the basis for
practical random sequence generation and cryptography,
and I analyzed this extensively in 1985. (Most but not all of
the results from my original paper are included in this
book, together with various new results.) In 1985 and soon
thereafter a number of people (notably Richard and Carl
Feynman) tried to cryptanalyze rule 30, but without
success. From the beginning, computations of spacetime
entropies for rule 30 (see page 960) gave indications that
for strong cryptography one should not sample all cells in
a column, and in 1991 Willi Meier and Othmar Staffelbach
described essentially the explicit cryptanalysis approach
shown on page 601. Rule 30 has been widely used for
random sequence generation, but for a variety of reasons I
have not in the past much emphasized its applications in
cryptography.

â Properties of rule 30. Rule 30 can be written in the form
 (see page 869) and thus exhibits a kind of one-sided

additivity on the left. This leads to some features that are
desirable for cryptography (such as long repetition periods)
and to some that are not (such as the sideways evolution of
page 601). It implies that every block of length that occurs
at a particular step has exactly 4 immediate predecessor
blocks of length (see page 960). It also implies that all

 possible single columns of cells can be generated from
some initial condition. Not all pairs of adjacent columns
can occur, however. There seems to be no simple

characterization, say in terms of paths through networks, of
which can, but for successive the total numbers are

or roughly .

Given two complete adjacent columns page 601 shows how
all columns any distance to the left can be found. It turns out
that this can be done even if the right-hand one of the two
adjacent columns is not complete. So for example whenever
there is a black cell in the left column it is irrelevant what
appears in the right column. Note that the configuration of
relevant cells can be repetitive only if the initial conditions
were repetitive (see page 871).

In a cellular automaton of limited size , any column must
eventually repeat. There could be distinct possible
columns; in practice, for successive there are

—within 2%
of already for . This means that for the initial
conditions to be determined uniquely, the number of cells
that must be given in a column is almost exactly , as
illustrated in the pictures below. Many distinct columns
correspond to starting at different points on a single cycle of
states. The length of the longest cycle grows roughly like

 (see page 260). The complete cycle structure is
illustrated on page 962. Most of the possible states have
unique predecessors; for large , about or

 instead have 0 or 2 predecessors. The
predecessors of a given state can be found from

â Directional sampling. One can consider sampling cells not
in a vertical column but on lines at any angle. In a rule 30
system of infinite size, it turns out that at clockwise from
vertical all possible sequences can occur on any two adjacent
lines, probably making cryptanalysis more difficult in this
case. (Note that directional sampling is always equivalent to
looking at a vertical column in the evolution of a cellular
automaton whose basic rule has been composed with an
appropriate shift rule.)

â Alternative rules. Among elementary rules, rule 45 is the
only plausible alternative to rule 30. It usually yields longer

n

Nest[Mod[Append[#, Take[#, -n]�.�vec], 2] &, list, t]

vec
LinearSolve[Table[Take[seq, {i, i + n - 1}], {i, n}],

Take[seq, {n+ 1, 2 n}], Modulus ! 2]

n n2 n3

p Ò (q ª r)

m

m+ 2
2t t

4t

t
{4, 12, 32, 80, 200, 496, 1208, 2916, 6964, 16476, 38616,

89844, 207544, 476596, 1089000, 2477236, 5615036}

2.25t

n
2n

n
{2, 3, 7, 14, 30, 60, 101, 245, 497, 972, 1997, 3997}

2n n = 12

n

20.63 n

2n

n 20.76 n

Root[#3 - #2 - 2 &, 1]n

Cases[Map[Fold[Prepend[#1, If[#2 2 1 Ò
Take[#1, 2] 2 {0, 0}, 0, 1]] &, #, Reverse[list]] &, {{0,

0}, {0, 1}, {1, 0}, {1, 1}}], {a_, b_, c___, a_, b_} ! {b, c, a}]

45 °

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1088

repetition periods (see page 260), but shows slightly slower
responses to changes in the key. (Changes expand about 1.24
cells per step in rule 30, and about 1.17 in rule 45.) Rule 45
shares with rule 30 the property of one-sided additivity. With
the occasional exception of the additive rule 60, elementary
rules not equivalent to 30 or 45 tend to exhibit vastly shorter
repetition periods. (The completely non-additive rule with
largest typical repetition period is rule 110.) (See page 951.)

If one considers rules that depend on 4 rather than 3 cells,
then the results turn out to be surprisingly similar: out of all
65536 possible such rules the ones with longest periods
essentially always seem to be variants of rules 45, 30 or 60. In
a region of size 15, for example, the longest period is 20460,
and this is achieved by rule 13251, which is just rule 45
applied to the first three cells in the neighborhood. (Rule 45
itself has period 6820 in this case.) After a few rules with long
periods, the periods obtained drop off rapidly. (In general the
number of rules with a given period seems to decrease
roughly exponentially with period.) For size 15, the 33 rules
with the longest periods are all additive with respect to one
position. The pictures below show the first rules that are not
additive with respect to any position.

Among the 4,294,967,296 rules which depend on 5 cells,
there are again just a few that give long periods, but now
only a small fraction of these seem directly related to rules 45
and 30, and perhaps half are not additive with respect to any
position. The pictures below show the rules with longest
periods for size 15; these same rules also yield the longest
periods for many other sizes. The first two are additive with
respect to one position, but do not appear to be directly
related to rules 45 or 30; the last two are not additive with
respect to any position. Formulas for the rules are
respectively:

Note that for size 15 the maximum possible period is 32730
(see page 950).

â Nonlinear feedback shift registers. Linear feedback shift
registers of the kind discussed on page 974 can be
generalized to allow any function (note the slight analogy
with cyclic tag systems):

With the choice
and this is essentially a rule elementary
cellular automaton. With a list of length ,

 gives one step in the
evolution of the cellular automaton in a register of width ,
with a certain kind of spiral boundary condition. The case
analogous to rule 30 yields some of the longest repetition
periods—usually remarkably close to the absolute maximum
of (for the result is 1999864, 95% of the
maximum).

Nonlinear feedback shift registers were apparently studied in
the context of military cryptography in the 1950s, but very
little about them has made its way into the open literature
(see page 878). An empirical investigation of repetition
periods in such systems was made by Solomon Golomb in
1959. The main conclusion drawn from extensive data was
that nothing like the linear theory applies. One set of
computations concerned functions

(apparently chosen to have balance between 0’s and 1’s that
would minimize correlations). Tap positions were
among those studied, but nothing like the pictures below
were apparently ever explicitly generated—and nearly three
decades passed before I noticed the remarkable behavior of
the rule 30 cellular automaton.

31420
(1635)

45443
(1620)

14030
(1560)

44227
(1545)

12686
(1380)

2924
(1320)

r = 2

p Ò (¨ q ª r ª s © ¨ t)

r Ò (¨ p ª q ª s © ¨ t)

u = ¨ p © ¨ q ª q © t; ¨ r © u ª q © ¨ s © (p ª ¨ r) ª r © s © ¨ u

s © (q © ¨ r ª p © ¨ q © t) ª ¨ (s ª (p ª q) © (r Ò (q ª t)))

1017723955

2076199695

184612095
(31455)

263458575
(29865)

2076199695
(25395)

1017723955
(23370)

f

NLFSRStep[f_, taps_, list_] :=
Append[Rest[list], f [list0taps1]]

f = IntegerDigits[s, 2, 8]08 - #�.�{4, 2, 1}1 &
taps = {1, 2, 3} s

n
Nest[NLFSRStep[f , taps, #] &, list, n]

n

2n - 1 n = 21

f [{w_, x_, y_, z_}] := Mod[w + y + z + x y + x z + y z, 2]

{1, 2, 3, 4}

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1089

Sequences of states in any shift register must correspond to
paths through a network of the kind shown on page 941. And
as noted by Nicolaas de Bruijn in 1946 there are such
paths with length , and thus this number of functions out
of the possible must yield sequences of maximal length.
(For colors, the number of paths is .)

â Backtracking. If one wants to find out which of the
possible initial conditions of width evolve to yield a specific
column of colors in a system like an elementary cellular
automaton one can usually do somewhat better than just
testing all possibilities. The picture below illustrates a typical
approach, applied to 3 steps of rule 30. The idea is
successively to look at each numbered cell, and to make a tree
of possibilities representing what happens if one tries to fill in
each possible color for each cell. A branch in the resulting
tree continues only if it corresponds to a configuration of cell
colors whose evolution is consistent with the specified
column of colors.

The picture below shows trees obtained for the column
in various elementary cellular automata. In cases like rules
250 and 254 no initial condition gives the specified column,
so all branches eventually die out. In class 2 examples like
rule 10 many intermediate configurations are possible. Rules
like 90 and to some extent 30 that allow sideways evolution
yield comparatively simple trees.

If one wants to find just a single initial condition that
works then one can set up a recursive algorithm that in
effect does a depth-first traversal of the tree. No doubt in
many cases the number of nodes that have to be visited
eventually increases like , but many branches usually die
off quickly, greatly reducing the typical effort required in
practice.

â Deducing cellular automaton rules. Given a complete
cellular automaton pattern it is easy to deduce the rule which
produced it just by identifying examples of places where
each element in the rule was used, as in the picture at the top
of the next column. Given an incomplete pattern, deducing
the rule in effect requires solving Boolean equations.

â Linear congruential generators. Cryptanalysis of linear
congruential generators is fairly straightforward. Given only
an output list parameters
that generate the list can be found for sufficiently large
from

With slightly more effort both and can be found just
from .

â Digit sequence encryption. One can consider using as
encrypting sequences the digit sequences of numbers
obtained from standard mathematical functions. As
discussed on page 139 such digit sequences often seem
locally very random. But in many cases one can immediately
tell how a sequence was made just by globally applying
appropriate mathematical functions. Thus, for example,
given the digit sequence of one can retrieve the key just
by squaring the number obtained from early digits in the
sequence. Whenever a number is known to satisfy

 with fixed one can take the
early digits of and use to find integer
solutions for the . With this method allows
algebraic numbers to be recognized. If no linear equation is
satisfied by any combination of known functions of ,
however, the method fails, and it seems quite likely that in
such cases secure encrypting sequences can be generated,
albeit less efficiently than with systems like cellular
automata.

â Problem-based cryptography. Particularly following the
work of Whitfield Diffie and Martin Hellman in 1976 it
became popular to consider cryptography systems based on
mathematical problems that are easy to state but have been
found difficult to solve. It was at first hoped that the
problems could be NP-complete ones, which are universal in
the sense that their solution can be used to provide a solution
to any problem in the class NP (see page 1086). To date,
however, no system has been devised whose cryptanalysis is
known to be NP-complete. Indeed, essentially the only
problem on which cryptography systems have so far
successfully been based is factoring of integers (see below).
And while this problem has resisted a fair number of

22n-1-n

2n f
22n

k k !kn-1

/ kn

2n

n

1 2

3 45 6
1

2
3
4
5

6

1 2

3 45 6 12
3

4
5
6

rule 126 rule 170 rule 129 rule 250 rule 255

rule 10 rule 22 rule 30 rule 54 rule 90

2t

NestList[Mod[a #, m] &, x, n] {a, m}

n

With[{a = Apply[#2�.�Rest[list] /#1 &, Apply[
ExtendedGCD, Drop[list, -1]]]}, ({Mod[a, #], #} &)[

Fold[GCD[#1, If[#1 2 0, #2, Mod[#2, #1]]] &, 0,
ListCorrelate[{a, -1}, list]]]]

x {a, m}

First[IntegerDigits[list, 2, p]]

�!!!!s s

x
Sum[a[i] f [i][x], {i, n}] 2 0 f [i]

x LatticeReduce
a[i] f [i_] = # i &

x

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1090

attempts at solution, it is not known to be NP-complete (and
indeed its ability to be solved in polynomial time on a formal
quantum computer may suggest that it is not).

My cellular automaton cryptography system follows the
principle of being based on a problem that is easy to state.
And indeed the general problem of finding initial conditions
for a cellular automaton is NP-complete (see page 767). But
the problem is not known to be NP-complete for the specific
case of, say, rule 30. Significantly less work has been done on
the problem of finding initial conditions for rule 30 than on
the problem of factoring integers. But the greater simplicity
of rule 30 might make one already have almost as much
confidence in the difficulty of solving this problem as of
factoring integers.

â Factoring integers. The difficulty of factoring is presumably
related to the irregularity of the pattern of divisors shown on
page 909. One approach to factoring a number is just to try
dividing it by each of the numbers up to . A sequence of
much faster methods have however been developed over the
past few decades, one simple example that works for most
being the so-called rho method of John Pollard (compare the
quadratic residue sequences discussed below):

Most existing methods depend on facts in number theory
that are fairly easy to state, though implementing them for
maximum efficiency tends to lead to complex programs.
Typical running times for in Mathematica 4
are shown below for the first 1000 numbers with each of 15
through 30 digits. Different current methods asymptotically
require slightly different numbers of steps—but all typically
at least . Nevertheless, to test whether a
number is prime () it is known that only a few more
than steps suffice.

â RSA cryptography. Widely used in practice, the idea is to
encode messages using a public key specified by a number ,
but to make it so that to decode the messages requires a private
key based on the factors of . An element in a message is
encoded as . It can then be decoded as

, where .
But to find (see page 1093) is equivalent in
difficulty to finding the factors of .

â Quadratic residue sequences. As an outgrowth of ideas
related to RSA cryptography it was shown in 1982 by
Lenore Blum, Manuel Blum and Michael Shub that the
sequence

discussed on page 975 has the property that if with
and primes (congruent to 3 modulo 4) then any systematic
regularities detected in the sequence can eventually be used to
discover factors of . What is behind this is that each of the
numbers in the basic sequence here must be a so-called
quadratic residue of the form , and given any such
quadratic residue the expression
turns out always to be a factor of —and at least sometimes a
non-trivial one. So if one could reconstruct sufficiently many
complete numbers from the sequence of values
then this would provide a way to factor (compare the
Pollard rho method above). But in practice it is difficult to do
this, because without knowing the factors of one cannot
even readily tell whether a given is a quadratic residue
modulo . The pictures below show as black squares all the
quadratic residues for each successive going down the page
(the ordinary squares 1, 4, 9, 16, … show up as vertical black
stripes). If is a prime , then the simple tests

 (see page 1081) or
determine whether is a quadratic residue. But with ,
one has to factor and find and in order to carry out
similar tests. The condition
ensures that only one of the solutions and to

 is ever a quadratic residue, with the result
that the iterated mapping always has a
unique inverse. But unlike in a cellular automaton even given
a complete (the analog of a complete cellular automaton
state) it is difficult to invert the mapping and solve for the on
the previous step.

Traditional Mathematics and Mathematical Formulas

â Practical empirical mathematics. In looking for formulas to
describe behavior seen in this book I have in practice
typically taken associated sequences of numbers and then

n
�!!!!n

n

Module[{f = Mod[#2 + 1, n] &, a = 2, b = 5, c},
While[(c = GCD[n, a - b]) 2 1, {a, b} = {f [a], f [f [b]]}]; c]

FactorInteger[n]

Exp[Sqrt[Log[n]]]
PrimeQ

Log[n]

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

n

n m
c = PowerMod[m, d, n]

PowerMod[c, e, n] e = PowerMod[d, -1, EulerPhi[n]]
EulerPhi[n]

n

Mod[NestList[Mod[#2, m] &, x0, n], 2]

m = p q p
q

m

Mod[v 2, m]

x GCD[x +Mod[x2, m], m]

m

x Mod[x, 2]
m

m
x

m
m

m p
JacobiSymbol[x, p] 2 1 Mod[x (p-1)/2 , p] 2 1

x m = p q
m p q

Mod[p, 4] 2 Mod[q, 4] 2 3
+v -v

x 2 Mod[v 2, m]

x ! Mod[x2, m]

x
x

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1091

tested whether obvious regularities are revealed by
combinations of such operations as: computing successive
differences (see note below), computing running totals,
looking for repeated blocks, picking out running maxima,
picking out numbers with particular modular residues, and
looking at positions of particular values, and at the forms of
the digit sequences of these positions.

â Difference tables and polynomials. A common mathematical
approach to analyzing sequences is to form a difference table
by repeatedly evaluating .
If the elements of correspond to values of a polynomial of
degree at successive integers, then will
contain only zeros. If the differences are computed modulo
then the difference table corresponds essentially to the
evolution of an additive cellular automaton (see page 597). The
pictures below show the results with (rule 60) for (a)

, (b) Thue-Morse sequence, (c) Fibonacci
substitution system, (d) , (e) digits of . (See
also page 956.)

â Page 607 · Implementation. The color of a cell at position
 in the pattern shown is given by

.

â Page 608 · Nested patterns and numbers. See page 931.

â Page 609 · Implementation. Given the rules for a
substitution system in the form used on page 931 a finite
automaton (as on page 957) which yields the color of each cell
from the digit sequences of its position is

This works in any number of dimensions so long as each
replacement yields a block of the same cuboidal form.

â Arbitrary digit operations. If the operation on digit
sequences that determines whether a square will be black can
be performed by a finite automaton (see page 957) then the
pattern generated must always be either repetitive or nested.
The pictures below show examples with more general
operations. Picture (a) in effect shows which words in a
simple context-free language of parenthesis matching (see
page 939) are syntactically correct. Scanning the digit
sequences from the left, one starts with 0 open parentheses,
then adds 1 whenever corresponding digits in the and
coordinates differ, and subtracts 1 whenever they are the

same. A square is black if no negative number ever appears.
Picture (b) has a black square wherever digits at more than
half the possible positions differ between the and
coordinates. Picture (c) has a black square wherever the
maximum run of either identical or different digits has a
length which is an odd number. All the patterns shown have
the kind of intricate substructure typical of nesting. But none
of the patterns are purely nested.

â Page 610 · Generating functions. A convenient algebraic
way to describe a sequence of numbers is to give a
generating function . thus
corresponds to the constant sequence and to the
Fibonacci sequence (see page 890). A 2D array can be
described by . The
array for rule 60 is then , for rule 90

, for rule 150 and for
second-order reversible rule 150 (see page 439)

. Any rational function is the
generating function for some additive cellular automaton.

â Page 611 · Pascal’s triangle. See notes on page 870.

â Nesting in bitwise functions. See page 871.

â Trinomial coefficients. The coefficient of in the expansion
of is

which can be evaluated as

or finally . This result follows
directly from the generating function formula

â Gegenbauer functions. Introduced by Leopold Gegenbauer
in 1893 is a polynomial in with
integer coefficients for all integer and . It is a special case
of and and satisfies a second-
order ordinary differential equation in . The

 form a set of orthogonal functions
on a -dimensional sphere. The
obtained for are .

â Standard mathematical functions. There are an infinite
number of possible functions with integer or continuous

d[list_] := Drop[list, 1] -Drop[list, -1]
list

n Nest[d, list, n+ 1]
k

k = 2
Fibonacci[n]

(Prime[n] - 1)/2 p

(a) (b) (c) (d) (e)

{x, y}
Extract [{{1, 0, 1}, {0, 1, 0}}, Mod[{y, x}, {2, 3}] + 1]

Map[Flatten[MapIndexed[#2 - 1 ! Position[rules, #1 ! _]0
1, 11 &, Last[#], {-1}]] &, rules]

x y

x y

(a) (b) (c)

a[n]
Sum[a[n] xn, {n, 0, ¥}] 1/ (1 - x)

1/ (1 - x - x2)

Sum[a[t, n] xn y t , {n, -¥, ¥}, {t, -¥, ¥}]
1/ (1 - (1+ x) y)

1/ (1 - (1/x + x) y) 1/ (1 - (1/x + 1+ x) y)

1/ (1 - (1/x + 1+ x) y - y 2)

xn

(1+ x + x2)t

Sum[Binomial[n+ t - 1 - 3 k, n - 3 k]
Binomial[t, k] (-1)k, {k, 0, t}]

Binomial[2 t, n]Hypergeometric2F1[-n, n - 2 t, 1/2 - t, 1/4]

GegenbauerC[n, -t, -1/2]

(1 - 2 x z + x2)-m 2 Sum[GegenbauerC[n, m, z] xn, {n, 0, ¥}]

GegenbauerC[n, m, z] z
n m

Hypergeometric2F1 JacobiP
z

GegenbauerC[n, d /2 - 1, z]
d GegenbauerC[n, 1/2, z]

d = 3 LegendreP[n, z]

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1092

arguments. But in practice there is a definite set of standard
named mathematical functions that are considered
reasonable to include as primitives in formulas, and that are
implemented as built-in functions in Mathematica. The so-
called elementary functions (logarithms, exponentials,
trigonometric and hyperbolic functions, and their inverses)
were mostly introduced before about 1700. In the 1700s and
1800s another several hundred so-called special functions
were introduced. Most arose first as solutions to specific
differential equations, typically in physics and astronomy;
some arose as products, sums of series or inverses of other
functions. In the mid-1800s it became clear that despite their
different origins most of these functions could be viewed as
special cases of , and that the
functions covered the solutions to all linear differential
equations of a certain type. (and are
parametric derivatives of ; elliptic
modular functions are inverses.) Rather few new special
functions have been introduced over the past century. The
main reason has been that the obvious generalizations seem
to yield classes of functions whose properties cannot be
worked out with much completeness. So, for example, if
there are more parameters it becomes difficult to find
continuous definitions that work for all complex values of
these parameters. (Typically one needs to generalize
formulas that are initially set up with integer numbers of
terms; examples include taking to be

 and to be .) And if one
modifies the usual hypergeometric equation

 by making nonlinear then solutions
typically become hard to find, and vary greatly in character
with the form of . (For rational Paul Painlevé in the 1890s
identified just 6 additional types of functions that are
needed, but even now series expansions are not known for
all of them.) Generalizations of special functions can in
principle be used to represent the results of many kinds of
computations. Thus, for example, generalized elliptic theta
functions represent solutions to arbitrary polynomial
equations, while multivariate hypergeometric functions
represent arbitrary conformal mappings. In Mathematica,
however, functions like provide more convenient ways
to access such results.

A variety of standard mathematical functions with integer
arguments were introduced in the late 1800s and early 1900s
in connection with number theory. A few functions that
involve manipulation of digits have also become standard
since the use of computers became widespread.

â 1D sequences. Generating functions that are rational always
lead to sequences which after reduction modulo 2 are purely

repetitive. Algebraic generating functions can also lead to
nested sequences. (Note that to get only integer sequences
such generating functions have to be specially chosen.)

 yields a sequence with 1’s at positions , as
essentially obtained from the substitution system

. yields
sequence (a) on page 84.
(see page 890) yields the Thue-Morse sequence. (This
particular generating function satisfies the equation

.) yields almost the
Cantor set sequence from page 83.
gives a sequence with 1’s at positions .

For any sequence with an algebraic generating function and
thus for any nested sequence the th element can always be
expressed in terms of hypergeometric functions. For the
Thue-Morse sequence the result is

â Multidimensional additive rules. The 2D analog of rule 90
yields the patterns shown below. The colors of cells are given
essentially by . In dimensions

 cells are black at step . The fractal
dimension of the (d+1)-dimensional structure formed from all
black cells is .

The 2D analog of rule 150 yields the patterns below; the
fractal dimension of the structure in this case is

.

â Continuous generalizations. Functions such as
and can immediately be evaluated
for continuous and . The pictures on the right below show

 for these functions (equivalent to
 for integer). The discrete results on the

left can be obtained by sampling only where integer grid
lines cross. Note that without further conditions the
continuous forms cannot be considered unique extensions of
the discrete ones. The presence of poles in quantities such as

Hypergeometric2F1[a, b, c, z]

Zeta PolyLog
Hypergeometric2F1

Power[x, y]
Exp[Log[x] y] x ! Gamma[x + 1]

y �[x] 2 f [y[x], y ç[x]] f

f f

Root

Sqrt[1 - 4 x] /2 2m

{2 ! {2, 1}, 1 ! {1, 0}, 0 ! {0, 0}} Sqrt[(1 - 3 x)/ (1+ x)] /2
(1+Sqrt[(1 - 3 x)/ (1+ x)]) / (2 (1+ x))

(1+ x)3 f 2 - (1+ x)2 f + x 2 0 (1 - 9 x)1/3

EllipticTheta[3, p, x] /2
m2

n

1/2 (-1)n + (-3)n �!!!!!p Hypergeometric2F1[3/2,
-n, 3/2 - n, -1/3] / (4 n! Gamma[3/2 - n])

Mod[Multinomial[t, x, y], 2] d
(2 d)^DigitCount[t, 2, 1] t

Log[2, 1+ 2 d]

Log[2, (1+Sqrt[1+ 4/d]) d]

Binomial[t, n]
GegenbauerC[n, -t, -1/2]

t n
Sin[1/2p a[t, n]]2

Mod[a[t, n], 2] a[t, n]

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1093

 leads to essential singularities in
the rightmost picture below. (Compare page 922.)

â Nested continuous functions. Most standard continuous
mathematical functions never show any kind of nested
behavior. Elliptic theta and elliptic modular functions are
exceptions. Each of these functions has definite finite values
only in a limited region of the complex plane, and on the
boundary of this region they exhibit singularities at every
single rational point. The picture below shows

. Like other elliptic modular
functions, satisfies
with , , , integers such that . The function
can be obtained as the solution to a second-order nonlinear
ordinary differential equation. Nested behavior is also found
for example in , which is given essentially
by .

â Page 613 · GCD array. (See also page 950.) There are various
deviations from perfect randomness. The density of white
squares is asymptotically . (The probability for
randomly chosen integers to be relatively prime is .)
No or larger block of white squares can ever occur. An
arrangement of black squares with any list of relative offsets
will always eventually occur. (This follows from the Chinese
Remainder Theorem.) The first block of black squares
occurs at , the first block at and the
first block at . The densities of such
blocks are respectively about 0.002, and . In
general the density for an arrangement of white squares with
offsets is given in dimensions by (no simple closed
formula seems to exist except for the case)

White squares correspond to lattice points that are directly
visible from the origin at the top left of the picture, so that

lines to them do not pass through any other integer points.
On row the number of white squares encountered before
reaching the leading diagonal is . This function is
shown below. Its computation is known in general to be
equivalent in difficulty to factoring (see page 1090).
can be computed using Euclid’s algorithm as discussed on
page 915.

â Power cellular automata. Multiplication by in base
corresponds to a local cellular automaton operation on digit
sequences when every prime that divides also divides . The
first non-trivial cases for which this is so are , and

, . When itself divides , the cellular automaton
rule is ; in other
cases the rule can be obtained by composition. A similar result
holds for rational , obtained for example by allowing and
above to be negative. In all cases the cellular automaton rule, like
the original operation on numbers, is invertible. The inverse rule,
corresponding to multiplication by , can be obtained by
applying the rule for multiplication by the integer , then
shifting right by positions. (See page 903.)

The condition for locality in negative bases (see page 902) is
more stringent. The first non-trivial example is , ,
corresponding to a rule that depends on four neighboring cells.

Non-trivial examples of multiplication by in base all
appear to be class 3 systems (see page 250), with small
changes in initial conditions growing at a roughly fixed rate.

â Page 615 · Computing powers. The method of repeated
squaring (also known as the binary power method, Russian
peasant method and Pingala’s method) computes the
quantity by performing about multiplications and
building up the sequence

(related to the Horner form for the base 2 representation of).
Given two numbers and their product can be computed
in base by (does the carries)

For numbers with digits direct evaluation of the
convolution would take about steps. But FFT-related
methods reduce this to about steps (see also page
1142). And this implies that to find a particular digit of in
base will take altogether about steps.

GegenbauerC[1/2, -t, -1/2]

Im[ModularLambda[x + 5 y]]
ModularLambda f [z] 2 f [(a + b z)/ (c + d z)]

a b c d a c - b d 2 1

EllipticTheta[3, 0, z]

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.6 1.65 1.7 1.75

0.02

0.04

0.06

0.08

0.1

Sum[z n2

, {n, ¥}]

6 /p2 ; 0.61 s
1/Zeta[s]

2�2

2�2
{14, 20} 3�3 {1274, 1308}

4�4 {7247643, 10199370}
2 × 10-6 10-14

v s
1�1

Product[With[{p = Prime[n]},
1 - Length[Union[Mod[v, p]]] /ps], {n, ¥}]

n
EulerPhi[n]

n GCD

0

200

400

0 100 200 300 400 500

m k

m k
k = 6 m = 2i 3 j

k = 10 m = 2i 5 j m k
{_, b_, c_} ! m Mod[b, k /m] +Quotient[c, k /m]

m i j

1/m
kq /m

q

k = -6 m = 8

m k

mt Log[t]

FoldList[#12 m#2 &, 1, IntegerDigits[t, 2]]

t
x y

k FromDigits
FromDigits[ListConvolve[IntegerDigits[x, k],

IntegerDigits[y, k], {1, -1}, 0], k]

n
n2

n Log[n]
mt

k t Log[t]2

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1094

One might think that a more efficient approach would be to
start with the trivial length digit sequence for in base ,
then to find a particular base digit just by converting to
base . However, the straightforward method for converting
a -digit number to base takes about divisions, though
this can be reduced to around by using a recursive
method such as

The pictures below show stages in the computation of
(a) by a power tree in base 2 and (b) by conversion from
base 3. Both approaches seem to require about the same
number of underlying steps. Note that even though one
may only want to find a single digit in , I know of no
way to do this without essentially computing all the other
digits in as well.

â Complex powers. The pictures below show successive
powers of complex numbers with digits extracted
according to

Non-trivial cases of complex number multiplication never
correspond to local cellular automaton operations. (Compare
page 933.)

â Additive cellular automata. As discussed on page 951 a step
in the evolution of an additive cellular automaton can be
thought of as multiplication by a polynomial modulo . After
 steps, therefore, the configuration of such a system is given

by . This quantity can be computed
using power tree methods (see below), though as discussed
on page 609, even more efficient methods are also available.
(A similar formalism can be set up for any of the cellular
automata with generalized additivity discussed on page 952;
see also page 886.)

â The more general case. One can think of a single step in the
evolution of any system as taking a rule and state , and
producing a new state . Usually the representations
that are used for and will be quite different, and the

function will have no special properties. But for both
multiplication rules and additive cellular automata it turns
out that rules and states can be represented in the same way,
and the evolution functions have the property of being
associative, so that . This means
that in effect one can always choose to evolve the rule rather
than a state. A consequence is that for example 4 steps of
evolution can be computed not only as
but also as or —
which requires only 3 applications of . And in general if is
associative the result of steps of
evolution can be rewritten for example using the repeated
squaring method as

which requires only about rather than applications
of .

As a very simple example, consider a system which starts with
the integer 1, then at each step just adds 1. One can compute the
result of 9 steps of evolution as ,
but a better scheme is to use partial results and compute
successively —which is what the
repeated squaring method above does when , .
This same basic scheme can be used with any associative
function — , , , , or whatever—so long as
suitable forms for and are used.

For the multiplication rules discussed in the main text both
states and rules can immediately be represented by
integers, with , and giving the multiplier.
For additive cellular automata, states and rules can be
represented as polynomials (see page 951), with

 and for example
for elementary rule 60. The correspondence between
multiplication rules and additive cellular automata can be
seen even more directly if one represents all states by
integers and computes in terms of base digits. In both
cases it then turns out that can be obtained from (see
note above)

where for multiplication rules and for additive
cellular automata . For multiplication rules,
there are normally carries (handled by), but for
power cellular automata, these have only limited range, so
that can be used.

For any associative function the repeated squaring method
allows the result of steps of evolution to be computed with
only about applications of . But to be able to do this
some of the arguments given to inevitably need to be larger.

t ct c
k

k
t x k t

Log[t]

FixedPoint[Flatten[Map[If[# < k, #, With[
{e = Ceiling[Log[k, #] /2]}, {Quotient[#, ke], With[
{s = Mod[#, ke]}, If[s 2 0, Table[0, {e}], {Table[0,

{e - Floor[Log[k, s]] - 1}], s}]]}]] &, #]] &, {x}]

320

mt

mt

(a) (b)

z

(2 d[Re[#], w] + d[Im[#], w] &)[z t]

d[x_, w_] := If[x < 0, 1 - d[-x, w], IntegerDigits[x, 2, w]]

z � 1+ 5 z � 2 + 5 z � 3 + 5 z � 1+ 2 5

k
t

PolynomialMod[polyt , k]

r s
h[r, s]

r s

h

h
h[a, h[b, c]] 2 h[h[a, b], c]

h[r, h[r, h[r, h[r, s]]]]
h[h[h[r, r], h[r, r]], s] u = h[r, r]; h[h[u, u], s]

h h
Nest[h[r, #] &, s, t] t

h[Fold[If[#2 2 0, h[#1, #1], h[r, h[#1, #1]]] &,
r, Rest[IntegerDigits[t, 2]]], s]

Log[t] t
h

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1

1+ 1; 2 + 2; 1+ 4; 5 + 5

h = Plus r = s = 1

h Max GCD And Dot Join
r s

h = Times r = m

h[a_, b_] := PolynomialMod[a b, k] r = 1+ x

h k
h

h[a_, b_] := FromDigits[g[ListConvolve[
IntegerDigits[a, k], IntegerDigits[b, k], {1, -1}, 0]], k]

g = Identity
g = Mod[#, k] &

FromDigits

g = Mod[#, ks] &

h
t

Log[t] h
h

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1095

So whether a speedup is in the end achieved will depend on
how fast can be evaluated for arguments of various sizes.
Typically the issue is whether for large and can be
found with much less effort than it would take to evaluate

 about times. If , then as discussed in the
note above, the most obvious procedure for evaluating

 would involve about operations, where and
are the numbers of digits in and . But when FFT-
related methods allow this to be reduced to about
operations. And in fact whenever is commutative
() it turns out that such methods can be used, and
substantial speedups obtained. But whether anything like
this will work in other cases is not clear.

(See also page 886.)

â Evaluation chains. The idea of building up computations
like from partial results has existed since
Egyptian times. Since the late 1800s there have been efforts
to find schemes that require the absolute minimum number
of steps. The method based on in the previous
two notes can be improved (notably by power tree
methods), but apparently about steps are always
needed. (Finding the optimal addition chain for given may
be NP-complete.)

One can also consider building up lists of non-identical
elements, say by successively using . In general a
length list can require about steps. But if the list
contains a nested sequence, say generated using a
substitution system, then about steps should be
sufficient. (Compare page 566.)

â Boolean formulas. A Boolean function of variables can
always be specified by an explicit table giving values for all
possible inputs. (Any cellular automaton rule with an -cell
neighborhood corresponds to such a function; digit sequences
in rule numbers correspond to explicit tables of values.) Like
ordinary algebraic functions, Boolean functions can also be
represented by a variety of kinds of formulas. Those on pages
616 and 618 use so-called disjunctive normal form (DNF)

, which is common in practice in
programmable logic arrays (PLAs). (The addition and
multiplication operators in the main text should be interpreted
as and respectively.) In general any given function will
allow many DNF representations; minimal ones can be found
as described below. Writing a Boolean function in DNF is the
rough analog of applying to a polynomial.
Conjunctive normal form (CNF) is the
rough analog of applying . DNF and CNF both involve
Boolean formulas of depth 2. As in the note on multilevel
formulas below, one can also in effect introduce intermediate

variables to get recursive formulas of larger depth, somewhat
analogous to results from . (Unbalanced depths in
different parts of a formula lead to latencies in a circuit,
reducing practical utility.)

â DNF minimization. From a table of values for a Boolean
function one can immediately get a DNF representation just
by listing cases where the value is 1. For one step in rule 30,
for example, this yields , as
shown on page 616. One can think of this as specifying
corners that should be colored on an -dimensional Boolean
hypercube. To reduce the representation, one must introduce
“don’t care” elements ; in this example the final minimal
form consists of the list of 3 so-called implicants

. In general, an implicant with ’s
can be thought of as corresponding to an -dimensional
hyperplane on the Boolean hypercube. The problem of
minimization is then to find the minimal set of hyperplanes
that will cover the corners for a particular Boolean function.
The first step is to work out so-called prime implicants
corresponding to hyperplanes that cannot be contained in
higher-dimensional ones. Given an original DNF list , this
can be done using :

The minimal DNF then consists of a collection of these
prime implicants. Sometimes it is all of them, but
increasingly often when it is only some. (For example,
in the first prime implicant is
covered by the others, and can therefore be dropped.)
Given the original list and the complete prime implicant
list the so-called Quine-McCluskey procedure can be
used to find a minimal list of prime implicants, and thus a
minimal DNF:

The number of steps required in this procedure can increase
exponentially with the length of . Other procedures work
slightly more efficiently, but in general the problem of
finding the minimal DNF for a Boolean function of

h
h[a, b] a b

h[r, b] a h = Times

h[a, b] m n m n
a b m ; n

n Log[n]
h

Orderless

1+ 1+ 1+?

IntegerDigits

Log[t]
t

Join
n n

Log[n]

n
2n

n

And[?] ª And[?] ª?

Or And

Expand
Or[?] ©Or[?] ©?

Factor

Collect

{{1, 0, 0}, {0, 1, 1}, {0, 1, 0}, {0, 0, 1}}

n

_

{{1, 0, 0}, {0, 1, _}, {0, _, 1}} m _

m

s
PI [s, n]

PI [s_, n_] := Union[Flatten[
FixedPointList[f [Last[#], n] &, {{}, s}]0All, 11, 1]]

g[a_, b_] := With[{i = Position[Transpose[{a, b}], {0, 1}]},
If[Length[i] 2 1 && Delete[a, i] === Delete[b, i],
{ReplacePart[a, _, i]}, {}]]

f [s_, n_] := With[
{w = Flatten[Apply[Outer[g, #1, #2, 1] &, Partition[Table[

Select[s, Count[#, 1] 2 i &], {i, 0, n}], 2, 1], {1}],
3]}, {Complement[s, w, SameTest ! MatchQ], w}]

n > 3
{{0, 0, _}, {0, _, 1}, {_, 0, 0}}

s
p

QM[s_, p_] := First[Sort[Map[p0#1 &,
h[{}, Range[Length[s]], Outer[MatchQ, s, p, 1]]]]]

h[i_, r_, t_] := Flatten[Map[h[Join[i, r0#1], Drop[r, #],
Delete[Drop[t, {}, #], Position[t0All, #1, {True}]]] &,

First[Sort[Map[Position[#, True] &, t]]]], 1]
h[i_, _, {}] := {i}

p

n

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1096

variables is NP-complete (see page 768) and is thus expected
to grow in difficulty faster than any polynomial in . In
practice, however, cases up to about are nevertheless
currently handled quite routinely.

â Formula sizes. There are a total of possible Boolean
functions of variables. The maximum number of terms
needed to represent any of these functions in DNF is .
The actual numbers of functions which require 0, 1, 2, …
terms is for : ; for : , and
for : . The
maximal length turns out always to be realized for the simple
parity function , as well as its negation. The reason for
this is essentially that these functions are the ones that make
the coloring of the Boolean hypercube maximally
fragmented. (Other functions with maximal length are never
additive, at least for .)

â Cellular automaton formulas. See page 869. The maximum
length DNF for elementary rules after 1 step is 4, and this is
achieved by rules 105, 107, 109, 121, 150, 151, 158, 182, 214
and 233. These rules have behavior of quite varying
complexity. Rules 150 and 105 are additive, and correspond
to and its negation. After steps the maximum
conceivable DNF would be of length . In practice, after 2
steps, the maximum length is 9, achieved by rules 107, 121
and 182; after 3 steps, it is 33 achieved by rule 182; after 4
steps, 78 achieved by rule 129; after 5 steps 256 achieved by
rules 105 and 150. The distributions of lengths for all
elementary rules are shown below.

Note that the length of a minimal DNF representation cannot
be considered a reliable measure of the complexity of a
function, since among other things, just exchanging the role
of black and white can substantially change this length (as in
the case of rule 126 versus rule 129).

â Primitive functions. There are several possible choices of
primitive functions that can be combined to represent any
Boolean function. In DNF , and are used.

 alone is also sufficient, as shown on
page 619 and further discussed on page 807. (It is indicated
by in the main text.) The functions , and are
equivalent to , and for variables modulo 2,
and in this case algebraic functions like can
be used for minimization. (See also page 1102.)

â Multilevel formulas. DNF formulas always have depth 2. By
allowing larger depths one can potentially find smaller formulas

for functions. A major result from the 1980s is that it requires a
formula with depth at least to make it
possible to represent an of variables using a polynomial
number of , and operations. If one chooses an -
variable Boolean function at random out of the possibilities,
it is typical that regardless of depth a formula involving at least

 operations will be needed to represent it. A formula of
polynomial size and logarithmic depth exists only when a
function is the computational complexity class NC discussed on
page 1149.

Little is known about systematic minimization of Boolean
formulas with depths above 2. Nevertheless, some programs
for circuit design such as SIS do include a few heuristics. And
this for example allows SIS to generate higher depth
formulas somewhat smaller than the minimal DNF for the
first three steps of rule 30 evolution.

â Page 619 · NAND expressions. If one allows a depth of at
most any -input Boolean function can be obtained just
by combining 2-input functions. (See page 807.) (Note
that unless one introduces an explicit copy operation—or
adds variables as in the previous note—there is no way to use
the same intermediate result multiple times without
recomputing it.)

The pictures below show the distributions of numbers of
 operations needed for all -input Boolean

functions. For , the largest number of such operations is
6, achieved by ; for , it is 14, achieved by (rule
150); for , it is 27, achieved by rule 5737, which is

 except when all inputs are . The average
number of operations needed when , , is about

.

The maximum depths for the expressions of minimal size
are respectively 4, 6 and 7, always achieved among others
for the function taking the most operations. The total
numbers of functions involving successive depths are:

: , : , :
, corresponding to averages

.

n
n = 12

22n

n
2n-1

n = 2 {1, 9, 6} n = 3 {1, 27, 130, 88, 10}

n = 4 {1, 81, 1804, 13472, 28904, 17032, 3704, 512, 26}

Xor

n < 4

Xor t
22 t

step 1 step 2 step 3 step 4

And Or Not
Nand = Not[And[##]] &

Ñ And Xor Not
Times Plus 1 - # &

PolynomialReduce

Log[n] / (c + Log[Log[n]])
Xor n

And Or Not n
22n

2n /n

b1 = a2 + a3 ; a1 �b1 + a1 �b

1

b1 = a2 �a3 + a2 �a

3 ; b2 = a4 + a5 ; a1 �b1 + a1 �b

2 + a1 �b

1 �b2

b1 = a6 + a7 ; b2 = a4 + a5 ; b3 = a5 �b1 + a4 �b

1; b4 = b

1 + b2; a1 �a

3 �b3 + a1 �a2 �b

2 +

a1 �a

2 �a

3 �b

3 + a1 �a2 �a4 �b

3 + a1 �a2 �a

4 �b2 + a1 �a

2 �a3 �b4 + a1 �a

2 �a3 �b

4 + a1 �a2 �a3 �b3 �b4

2 n n
Nand

Nand 22n

n
n = 2
Nor n = 3 Xor

n = 4
Not[Xor[##]] & True

n = 2 3 4
{2.875, 6.09, 12.23}

n=2 n=3 n=4

Nand

n = 2 {2, 3, 5, 6} n = 3 {3, 6, 22, 99, 72, 54} n = 4
{4, 10, 64, 923, 9663, 54622, 250}

{2.9, 4.5, 5.8}

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1097

The following generates explicit lists of -input Boolean
functions requiring successively larger numbers of
operations:

The results for 2-step cellular automaton evolution in the
main text were found by a recursive procedure. First,
expressions containing progressively more operations
were enumerated, and those for functions that had not been
seen before were kept. It then turned out that this made it
possible to get to expressions at least half as large as any
needed, so that it could be assumed that remaining
expressions could be decomposed as , where
had already been found. The pictures below show some more
results obtained in this way.

â Cellular automaton formulas. For 1 step, the elementary
cellular automaton rules are exactly the 256 Boolean
functions. For 2 steps, they represent a small subset of the

 functions. They require an average of about 11.6
operations, and a maximum of 27 (achieved by rules 107 and 121).

For rule 254 the result after steps (which is always
asymmetric, even though the rule is symmetric) is

If explicit copy operations were allowed, then the number of
 operations after steps could not increase faster than

for any rule. But without copy (fanout) operations no
corresponding result is immediately clear.

â Binary decision diagrams. One can specify a Boolean
function of variables by giving a finite automaton (and thus
a network) in which paths exist only for those lists of values
for which the function yields . The resulting so-called
binary decision diagram (BDD) can be minimized using the
methods of page 957. Out of all possible Boolean functions the
number that require BDDs of sizes 1, 2, … is for :

 and for : ; the absolute
maximum grows roughly like . For cellular automata with
simple behavior, the minimal BDD typically grows linearly on
successive steps. For rule 254, for example, it is , while
for rule 90 it is . For cellular automata with more
complex behavior, it typically grows roughly exponentially.

Thus for rule 30 it is and for rule 110
. The size of the minimal BDD can depend on

the order in which variables are specified; thus for example,
just reflecting rule 30 to give rule 86 yields .

In practical system design BDDs have become fairly popular
in the past ten years, and by maintaining minimality when
logical combinations of functions are formed, cases with
millions of nodes have been studied. (Some practical systems
are found to yield fairly small BDDs, while others are not.)

â History. Logic has been used as an abstraction of arguments
in ordinary language since antiquity. Its serious mathematical
formulation began with the work of George Boole in the mid-
1800s. (See page 1151.) Concepts of Boolean algebra were
applied to electronic switching circuits by Claude Shannon in
1937, and became a standard part of electronic design
methodology by the 1950s. DNF had been introduced as part
of the development of mathematical logic in the early 1900s,
but became particularly popular in the 1970s with the advent
of programmable logic arrays (PLAs) used in application-
specific integrated circuits (ASICs). Diagrammatic and
mechanical methods for minimizing simple logic expressions
have existed since at least medieval times. More systematic
methods for minimizing complex expressions began to be
developed in the early 1950s, but until well into the 1980s a
diagrammatic method known as a Karnaugh map was the
most commonly used in practice. In the late 1970s there
began to be computer programs for large-scale Boolean
minimization—the best known being Espresso. Only in the
1990s, however, did exact minimization of complex DNF
expressions become common. Minimization of Boolean
expressions with depth larger than 2 has been considered off
and on since the late 1950s, and became popular in the 1990s
in connection with the BDDs discussed above. Various forms
of Boolean minimization have routinely been used in chip
and circuit design since the late 1980s, though often physical
and geometrical constraints are now more important than
pure logical ones. In addition, theoretical studies of minimal
Boolean circuits became increasingly popular starting in the
1980s, as discussed on page 1148.

â Reversible logic. In an ordinary Boolean function with
inputs there is no unique way to tell from its output which of
the possible sets of inputs was given. But as noted in the
1970s, it is possible to set up systems that evaluate Boolean
functions, yet operate reversibly. The basic idea is to have
outputs as well as inputs—with every one of the
possible sets of inputs mapping to a unique set of outputs.
Normally one specifies the first inputs, taking the others to
be fixed, and then looks say at the first output, ignoring all
others. One can represent the inside of such a system much

n
Nand

Map[FromDigits[#, 2] &, NestWhile[Append[#,
Complement[Flatten[Table[Outer[1 - Times[##] &,

#0i1, #0-i1, 1], {i, Length[#]}], 2], Flatten[#, 1]]] &,
{1 - Transpose[IntegerDigits[Range[2n] - 1, 2, n]]},
Length[Flatten[#, 1]] < 22n

&], {2}]

Nand

f [##] Ñ g[##] & f

rule 150 rule 110 rule 126 rule 45 rule 54

n = 3
232

n = 5 Nand

t

Nest[{{#, #021+ 1}, #021+ 1} &, {{1, 1}, {2, 2}}, t - 2]

Nand t t2

n

True

n = 2
{1, 0, 6, 9} n = 3 {1, 0, 0, 27, 36, 132, 60}

2n

8 t + 2
4 t + 2

{7, 14, 29, 60, 129}

{7, 15, 27, 52, 88}

{6, 11, 20, 36, 63}

n

2n

m
m 2m

n

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1098

like a sorting network from page 1142—but with -input -
output gates instead of pair comparisons. If each such gate is
itself reversible, then overall reversibility is guaranteed. With
gates that in effect implement and
(with other inputs constant, and other outputs ignored) one
can set up a direct translation of Boolean functions given in
the form shown on page 619. Of the 24 possible reversible

 gates, none can yield anything other than additive
Boolean functions (as formed from and). But of the
40,320 () reversible gates (in 52 distinct classes) it
turns out that 38,976 (in 23 classes) can be used to reproduce
any possible Boolean function. A simple example of such a
universal gate is —and not allowing
permutations of gate inputs (or in effect wire crossings) a
simple example is . (Compare
pages 1147 and 1173.)

â Continuous systems. The systems I discuss in the main text
of this section are mostly discrete. But from experience with
traditional mathematics one might have the impression that
it would at some basic level be easier to get formulas for
continuous systems. I believe, however, that this is not the
case, and that the reason for the impression is just that it is
usually so much more difficult even to represent the states of
continuous systems that one normally tends to work only
with ones that have comparatively simple overall behavior—
and are therefore more readily described by formulas. (See
also pages 167 and 729.)

As an example of what can happen in continuous systems
consider iterated mappings from page 920. Each
successive step in such a mapping can in principle be
represented by an algebraic formula. But the table below
gives for example the actual algebraic formulas obtained in
the case after applying —and shows that
these increase quite rapidly in complexity.

In the specific case , however, it turns out that by
allowing more sophisticated mathematical functions one can
get a complete formula: the result after any number of steps
can be written in any of the forms

where these follow from functional relations such as

For it also turns out that there is a complete formula:

And the same is true for :

In all these examples enters essentially only in . And if
one assumes that this is a general feature then one can
formally derive for any the result

where is a function that satisfies the functional equation

When , is . When it is
and when it is . But in general for
arbitrary there is no standard mathematical function that
seems to satisfy the functional equation. (It has long been
known that only elliptic functions such as satisfy
polynomial addition formulas—but there is no immediate
analog of this for replication formulas.) Given the functional
equation one can find a power series for for any . The
series has an accumulation of poles on the circle ;
the coefficient of turns out to have denominator

For other iterated maps general formulas also seem rare. But
for example and both give results
just involving powers, while sometimes
yields trigonometric functions, as on page 915. In addition,
from a known replication formula for an elliptic or other
function one can often construct an iterated map whose
behavior can be expressed in terms of that function. (See also
page 919.)

Human Thinking

â The brain. There are a total of about 100 billion neurons in a
human brain (see page 1075), each with an average of a few
thousand synapses connecting it to other cells. On a small
scale the arrangement of neurons seems quite haphazard. But
on a larger scale the brain seems to be organized into areas
with very definite functions. This organization is sometimes
revealed by explicitly following nerve fibers. More often it
has been deduced by looking at what happens if parts of the
brain are disabled or stimulated. In recent times it has also
begun to be possible to image local electrical and metabolic
activity while the brain is in normal operation. From all these
methods it is known that each kind of sensory input is first

s s

{p, q} ! {p Ñ q} {p} ! {p, p}

s = 2
Xor Not

8 ! s = 3

{p_, q_, 1} ! {q, p, 1}

{p_, q_, q_} ! {q, 1 - p, 1 - p}

x ! a x (1 - x)

a = 4 FullSimplify

x
4 (1 - x) x

16 (1 - 2 x)2 (1 - x) x

64 (1 - 2 x)2 (1 - x) x (8 (x - 1) x + 1)2

256 (1 - 2 x)2 (1 - x) x (8 (x - 1) x + 1)2 (32 (x - 1) x (1 - 2 x)2 + 1)2

1024 (1 - 2 x)2 (1 - x) x (8 (x - 1) x + 1)2 (32 (x - 1) x (1 - 2 x)2 + 1)2

(128 (1 - 2 x)2 (x - 1) x (8 (x - 1) x + 1)2 + 1)2

a = 4

t

Sin[2t ArcSin[�!!!!x]]2

(1 -Cos[2t ArcCos[1 - 2 x]]) /2

(1 -ChebyshevT [2t , 1 - 2 x]) /2

Sin[2 x]2 2 4 Sin[x]2 (1 - Sin[x]2)

ChebyshevT [m n, x] 2 ChebyshevT [m, ChebyshevT [n, x]]

a = 2

(1 - (1 - 2 x)2t

) /2

a = -2

1/2 -Cos[1/3 (p - (-2)t (p - 3 ArcCos[1/2 - x]))]

t at

a

1/2 (1 - g[at InverseFunction[g][1 - 2 x]])

g

g[a x] 2 1+ 1/2 a (g[x]2 - 1)

a = 4 g[x] Cosh[Sqrt[2 x]] a = 2 Exp[x]
a = -2 2 Cos[1/3 (p -

�!!!!3 x)]
a

JacobiSN

g[x] a
Abs[a]2 2 1

xm

2^ (m -DigitCount[m, 2, 1]) Apply[Times,
Table[Cyclotomic[s, a]^Floor[(m - 1)/s], {s, m - 1}]]

x ! a x + b x ! 1/ (a + b x)
x ! Sqrt[a x + b]

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1099

processed in its own specific area of the brain. Inputs from
different senses are integrated in an area that effectively
maintains a map of the body; a similar area initiates output to
muscles. Certain higher mental functions are known to be
localized in definite areas of the brain, though within these
areas there is often variability between individuals. Areas are
currently known for specific aspects of language, memory
(see below) and various cognitive tasks. There is some
evidence that thinking about seemingly rather similar things
can lead to significantly different patterns of activity.

Most of the action of the brain seems to be associated with local
electrical connections between neurons. Some collective electrical
activity is however revealed by EEG. In addition, levels of
chemicals such as hormones, drugs and neurotransmitters can
have significant global effects on the brain.

â History. Ever since antiquity immense amounts have been
written about human thinking. Until recent centuries most of
it was in the tradition of philosophy, and indeed one of the
major themes of philosophy throughout its history has been
the elucidation of principles of human thinking. However,
almost all the relevant ideas generated have remained
forever controversial, and almost none have become concrete
enough to be applied in science or technology. An exception
is logic, which was introduced in earnest by Aristotle in the
4th century BC as a way to model certain patterns of human
reasoning. Logic developed somewhat in medieval times,
and in the late 1600s Gottfried Leibniz tried to use it as the
foundation for a universal language to capture all systematic
thinking. Beginning with the work of George Boole in the
mid-1800s most of logic began to become more closely
integrated with mathematics and even less convincingly
relevant as a model for general human thinking.

The notion of applying scientific methods to the study of
human thinking developed largely with the rise of the field
of psychology in the mid-1800s. Two somewhat different
approaches were taken. The first concentrated on doing fairly
controlled experiments on humans or animals and looking at
responses to specific stimuli. The second concentrated on
trying to formulate fairly general theories based on
observations of overall human behavior, initially in adults
and later especially in children. Both approaches achieved
some success, but by the 1930s many of their positions had
become quite extreme, and the identification of phenomena
to contradict every simple conclusion reached led
increasingly to the view that human thinking would allow no
simple explanations.

The idea that it might be possible to construct machines or
other inanimate objects that could emulate human thinking

existed already in antiquity, and became increasingly popular
starting in the 1600s. It began to appear widely in fiction in
the 1800s, and has remained a standard fixture in portrayals
of the future ever since.

In the early 1900s it became clear that the brain consists of
neurons which operate electrically, and by the 1940s
analogies between brains and electrical machines were
widely discussed, particularly in the context of the
cybernetics movement. In 1943 Warren McCulloch and
Walter Pitts formulated a simple idealized model of networks
of neurons and tried to analyze it using methods of
mathematical logic. In 1949 Donald Hebb then argued that
simple underlying neural mechanisms could explain
observed psychological phenomena such as learning.
Computer simulations of neural networks were done starting
in the mid-1950s, but the networks were too small to have
any chance to exhibit behavior that could reasonably be
identified with thinking. (Ironically enough, as mentioned on
page 879, the phenomenon central to this book of complex
behavior with simple underlying rules was in effect seen in
some of these experiments, but it was considered a
distraction and ignored.) And in the 1960s, particularly after
Frank Rosenblatt’s introduction of perceptrons, neural
networks were increasingly used only as systems for specific
visual and other tasks (see page 1076).

The idea that computers could be made to exhibit human-like
thinking was discussed by Alan Turing in 1950 using many of
the same arguments that one would give today. Turing made
the prediction that by 2000 a computer would exist that could
pass the so-called Turing test and be able to imitate a human
in a conversation. (René Descartes had discussed a similar
test for machines in 1637, but concluded that it would never
be passed.) When electronic computers were first becoming
widespread in the 1950s they were often popularly referred
to as “electronic brains”. And when early efforts to make
computers perform tasks such as playing games were fairly
successful, the expectation developed that general human-
like thinking was not far away. In the 1960s, with extensive
support from the U.S. government, great effort was put into
the field of artificial intelligence. Many programs were
written to perform specific tasks. Sometimes the programs
were set up to follow general models of the high-level
processes of thinking. But by the 1970s it was becoming clear
that in almost all cases where programs were successful
(notable examples being chess, algebra and autonomous
control), they typically worked by following definite
algorithms not closely related to general human thinking.

Occasional work on neural networks had continued through
the 1960s and 1970s, with a few definite results being obtained

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1100

using methods from physics. Then in the early 1980s,
particularly following work by John Hopfield, computer
simulations of neural networks became widespread. Early
applications, particularly by Terrence Sejnowski and Geoffrey
Hinton, demonstrated that simple neural networks could be
made to learn tasks of at least some sophistication. But by the
mid-1990s it was becoming clear that—probably in large part
as a consequence of reliance on methods from traditional
mathematics—typical neural network models were mostly
being successful only in situations where what was needed
was a fairly straightforward extension of standard continuous
probabilistic models of data.

â The future. To achieve human-like thinking with computers
will no doubt require advances in both basic science and
technology. I strongly suspect that a key element is to be able
to store a collection of experiences comparable to those of a
human. Indeed, to succeed even with specific tasks such as
speech recognition or language translation seems to require
human-like amounts of background knowledge. Present-day
computers are beginning to have storage capacities that are
probably comparable to those of the brain. From looking at
the brain one might guess that parallel or other non-standard
hardware might be required to achieve efficient human-like
thinking. But I rather suspect that—much as in the analogy
between birds and airplanes—it will in the end be possible to
set up algorithms that achieve the same basic functions but
work satisfactorily even on standard sequential-processing
computers.

â Sleep. A common feature of higher organisms is the
existence of distinct behavioral states of sleep and
wakefulness. There are various theories that sleep is
somehow fundamental to the process of thinking. But my
guess is that its most important function is quite mundane:
just as muscles build up lactic acid waste products, so also I
suspect synapses in the brain build up waste products, and
these can only safely be cleared out when the brain is not in
normal use.

â Page 621 · Pointer encoding. The pointer encoding
compression method discussed on page 571 implements a
very simple form of memory based on literal repetitions, and
already leads to fairly good compression of many kinds of
data.

â Page 622 · Hashing. Given data in the form of sequences of
numbers between and , a very simple hashing scheme
is just to compute . But for data
corresponding, say, to English words this scheme yields a
very nonuniform distribution of hash codes, since, for
example, there are many words beginning with “ba”, but

none beginning with “bb”. The slightly modified but still
very simple scheme , where is
usually chosen to be a prime, is what is most often used in
practice. For a fair fraction of values of , the hash codes
obtained from this scheme change whenever any element of

 is changed. If then it turns out that
interchanging a pair of adjacent length blocks in never
affects the result. Out of the many hundreds of times that I
have used hashing in practice, I recall only a couple of cases
where schemes like the one just described were not adequate,
and in these cases the data always turned out to have quite
dramatic regularities.

In typical applications hash codes give locations in computer
memory, from which actual data is found either by following
a chain of pointers, or by probing successive locations until
an empty one is reached. In the internals of Mathematica the
most common way that hashing is used is for recognizing
data and finding unique stored versions of it. There are
several subtleties associated with setting up hash codes that
appropriately handle approximate real numbers and
Mathematica patterns.

Hashing is a sufficiently simple idea that it has been invented
independently many times since at least the 1950s. The main
alternative to hashing is to store data with successive
elements corresponding to successive levels in a tree. In the
past decade, hashing has become widely used not only for
searching but also for authentication. The basic idea in this
case is to take a document and to compute from it a small
hash code that changes when almost any change is made in
the document, and for which it is a difficult problem of
cryptanalysis to work out what changes in the document will
lead to no change in the hash code. Schemes for such hash
codes can fairly easily be constructed using rule 30 and other
cellular automata.

â Page 623 · Similar words. The soundex system for hashing
names according to sound was first used on 1880 U.S. census
data, and is still today widely used by telephone information
services. The system works essentially by dropping vowels
and assigning consonants to six possible groups. More
sophisticated systems along the same lines can be set up
using finite automata.

Natural language query systems usually work by stripping
words to their linguistic roots (e.g. “stripping” “strip”)
before looking them up. Spell-checking systems typically
find suggested corrections by doing a succession of lookups
after applying transformations based on common errors.

Even given two specific words it can be difficult to find out
whether they should be considered similar. Fairly efficient

0 k - 1
FromDigits[Take[list, n], k]

Mod[FromDigits[list, k], m] m

m

list m = ks - 1
s list

!

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1101

algorithms are known for cases such as genetic sequences
where small numbers of insertions, deletions and
substitutions are expected. But if more complicated
transformations are allowed—say corresponding to rules in a
multiway system—the problem rapidly becomes intractable
(see page 765).

â Numerical data. In situations where pieces of data can be
thought of as points in space similarity can often be defined
in terms of spatial distance. And this means that around
every point corresponding to a piece of data in memory
there is a region of points that can be considered more
similar to that point than to any other. Picture (a) shows a
so-called Voronoi diagram (see page 1038) obtained in this
way in two dimensions. Particularly in higher dimensions,
it becomes rather difficult in practice to determine for
certain which existing point is closest to some new point.
But to do it approximately is considerably easier. One
approach, illustrated in picture (b), is to use a -
dimensional tree. Another approach, illustrated in picture
(c), is to set up a continuous function with minima at the
existing points, and then to search for the closest minimum.
In most cases, this search will be done using some iterative
scheme such as Newton’s method; the result is that the
boundaries between regions typically take on an intricate
nested form. (The case shown corresponds to iteration of
the map corresponding to Newton’s
method for finding the complex roots of .)

The pictures below show how one can build up a kind of
memory landscape by successively adding points. In a first
approximation, the regions considered similar to a particular
minimum are delimited by sharp watersheds corresponding
to local maxima in the landscape. But if an iterative scheme
for minimization is used, these watersheds are typically no
longer sharp, but take on a local nested structure, much as in
picture (c) above.

In numbers earlier digits are traditionally considered more
important than later ones, and this allows numbers to be

arranged in a simple one-dimensional sequence. But in
strings where each element is considered equally important,
no such layout is possible. A vague approximation, perhaps
useful for some applications, is nevertheless to use a space-
filling curve (see page 893).

â Error-correcting codes. In many information transmission
and storage applications one needs to be able to recover data
even if some errors are introduced into it. The standard way
to do this is to set up an error-correcting code in which blocks
of original data elements are represented by a codeword of
length that in effect includes some redundant elements.
Then—somewhat in analogy to retrieving closest
memories—one can take a sequence of length that one
receives and find the codeword that differs from it in the
fewest elements. If the codewords are chosen so that every
pair differs by at least elements (or equivalently, have so-
called Hamming distance at least), then this means that
errors in up to elements can be corrected, and
finding suitable codewords is like finding packings of
spheres in -dimensional space. It is common in practice to
use so-called linear codes which can be analyzed using
algebraic methods, and for which the spheres are arranged in
a repetitive array. The Hamming codes with ,

, are an example, invented by Marcel Golay in
1949 and Richard Hamming in 1950. Defining

blocks of data of length can be encoded with

while blocks of length (and at most one error) can be
decoded with

A number of families of linear codes are known, together
with a few nonlinear ones. But in all cases they tend to be
based on rather special mathematical structures which do not
seem likely to occur in any system like the brain.

â Matrix memories. Many times since the 1950s it has been
noted that methods from linear algebra suggest ways to
construct associative memories in which data can potentially
be retrieved on the basis of some form of similarity. Typically
one starts from some list of vectors to be stored, then forms a
matrix such as . Given a new piece of
data corresponding to a vector , its decomposition in terms
of stored vectors can be found by computing . And by
applying various forms of thresholding one can often pick
out at least approximately the stored vector closest to the
piece of data given. But such schemes tend to be inefficient in
practice, as well as presumably being unrealistic as actual
models of the brain.

d

z ! z - (z 3 - 1)/ (3 z 2)
z 3 2 1

(a) (b) (c)

m
n

n

r
r

Floor[(r - 1)/2]

n

n = 2s - 1
m = n - s r = 3

PM[s_] := IntegerDigits[Range[2s - 1], 2, s]

m

Join[data, Mod[data�.�Select[PM[s], Count[#, 1] > 1 &], 2]]

n

Drop[(If[# 2 0, data, MapAt[1 - # &, data, #]] &)[
FromDigits[Mod[data�.�PM[s], 2], 2]], -s]

m = PseudoInverse[list]
v

v �.�m

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1102

â Neural network models. The basic rule used in essentially
all neural network models is extremely simple. Each neuron
is assumed to have a value between -1 and 1 corresponding
roughly to a firing rate. Then given a list of the values of
one set of neurons, one finds the values of another set using

, where in early models was
usually chosen, and now is more common, and is
a rectangular matrix which gives weights—normally
assumed to be continuous numbers, often between -1 and
+1—for the synaptic connections between the neurons in
each set. In the simplest case, studied especially in the
context of perceptrons in the 1960s, one has only two sets of
neurons: an input layer and an output layer. But with suitable
weights one can reproduce many functions. For example,
with three inputs and one output, yields
essentially the rule for the rule 178 elementary cellular
automaton. But out of the possible Boolean functions of
inputs, only 14 (out of 16) can be obtained for , 104 (out
of 256) for , 1882 for , and 94304 for . (The VC
dimension is for such systems.) The key idea that
became popular in the early 1980s was to consider neural
networks with an additional layer of “hidden units”. By
introducing enough hidden units it is then possible—just as
in the formulas discussed on page 616—to reproduce
essentially any function. Suitable weights (which are
typically far from unique) are in practice usually found by
gradient descent methods based either on minimization of
deviations from desired outputs given particular inputs
(supervised learning) or on maximization of some
discrimination or other criterion (unsupervised learning).

Particularly in early investigations of neural networks, it was
common to consider systems more like very simple cellular
automata, in which the corresponded not to states of
successive layers of neurons, but rather to states of the same
set of neurons at successive times. For most choices of
weights, such a system exhibits typical class 3 behavior and
never settles down to give an obvious definite output. But in
special circumstances probably not of great biological
relevance it can yield class 2 behavior. An example studied
by John Hopfield in 1981 is a symmetric matrix with
neuron values being updated sequentially in a random order
rather than in parallel.

â Memory. Since the early 1900s it has been suspected that
long-term memory is somehow encoded in the strengths of
synaptic connections between nerve cells. It is known that at
least in specific cases such strengths can remain unchanged
for at least hours or more, but can immediately change if
connected nerve cells have various patterns of simultaneous
excitation. The changes that occur appear to be associated

changes in ionic channels in cell membranes and sometimes
with the addition of new synapses between cells.

Observations suggest that in humans there are several
different types of memory, with somewhat different
characteristics. (Examples include memory for facts and for
motor skills.) Usually there is a short-term or so-called
working component, lasting perhaps 30 seconds, and
typically holding perhaps seven items, and a long-term
component that can apparently last a lifetime. Specific parts
of the brain (such as the hippocampus) appear necessary for
the long-term component to form. In at least some cases there
is evidence for specialized areas that handle particular types
of memories. When new data is first presented, many parts of
the brain are often active in processing it. But once the data
has somehow been learned, only parts directly associated
with handling it usually appear to be active.

Memories often seem at some level to be built up
incrementally, as reflected in smooth learning curves for
motor skills. It is not clear whether this is due to actual
incremental changes in nerve cells or just to the filling in of
progressively more cases that differ in detail.

Experiments on human learning suggest that a particular
memory typically involves an association between
components from several sensory systems, as well as
emotional state.

When several incomplete examples of data are presented,
there appears to be some commonality in the character of
generalizations that we make. One mathematically
convenient but probably unrealistic model studied in recent
years in the context of computational learning theory
involves building up minimal Boolean formulas consistent
with the examples seen.

â Child development. As children get older their thinking
becomes progressively more sophisticated, advancing
through a series of fairly definite stages that appear to be
associated with an increasing ability to handle generalization
and abstraction. It is not clear whether this development is
primarily associated with physiological changes or with the
accumulation of more experiences (or, in effect, with the
addition of more layers of software). Nor is it clear how it
relates to the fact that the number of items that can be stored
in short-term memory seems steadily to increase.

â Computer interfaces. The earliest computer interfaces were
essentially just numerical. By the 1960s text-based interfaces
were common, and in the decade following the introduction of
the Macintosh in 1984 graphical interfaces based on menus and
dialogs came to largely dominate consumer software. Such
interfaces work well if what one wants is basically to take a

s[i]

s[i + 1] = u[w �.�s[i]] u = Sign
u = Tanh w

w = {{-1, +1, -1}}

22n

n
n = 2

n = 3 n = 4 n = 5
n+ 1

s[i]

w

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1103

single object and apply operations to it. And they can be
extended somewhat by using visual block diagrams or
flowcharts. But whenever there is neither just a single active
data element nor an obvious sequence of independent execution
steps—as for many of the programs in this book—my
experience has always been that the only viable choice of
interface is a computer language like Mathematica, based
essentially on one-dimensional sequences of word-like
constructs. The rule diagrams in this book represent a possible
new method for specifying some simpler programs, but it
remains to be seen whether such diagrams can readily both be
created incrementally by humans and interpreted by computer.

â Page 627 · Structure of Mathematica. Beneath all the
sophisticated capabilities of Mathematica lies a remarkably
simple basic structure. The key idea is to represent data of
any kind by a symbolic expression of the general form

. (is thus ,
 is and is .) The

basic action of Mathematica is then to transform such
expressions according to whatever rules it knows. Most often
these rules are specified in terms of Mathematica patterns—
expressions in which can stand for any expression.

â Context-free languages. The set of valid expressions in a
context-free language can be defined recursively by rules
such as and that specify how one
expression can be built up from sequences of literal objects or
“tokens” and other expressions. (As discussed on page 939,
the fact that the left-hand side contains nothing more than
is what makes the language context free.) To interpret or
parse an expression in a context-free language one has to go
backwards and find out which rules could be used to
generate that expression. (For the built-in syntax of
Mathematica this is achieved using .)

It is convenient to think of expressions in a language as having
forms such as with . Then
the rules for the language consisting of balanced runs of
parentheses (see page 939) can be written as

Different expressions in the language can be obtained by
applying different sequences of these rules, say using (this
gives so-called leftmost derivations)

Given an expression, one can then use the following to find a
list of rules that will generate it—if this exists:

In general, there will in principle be more than one such list,
and to pick the appropriate list in a practical situation one
normally takes the rules of the language to apply with a
certain precedence—which is how, for example, comes
to be interpreted in Mathematica as rather
than . (Note that in practice the output
from a parser for a context-free language is usually
represented as a tree—as in Mathematica —with each
node corresponding to one rule application.)

Given only the rules for a context-free language, it is often
very difficult to find out the properties of the language
(compare page 944). Indeed, determining even whether two
sets of rules ultimately yield the same set of expressions is in
general undecidable (see page 1138).

â Languages. There are about 140 human languages and 15
full-fledged computer languages currently in use by a million
people or more. Human languages typically have perhaps
50,000 reasonably common words; computer languages
usually have a few hundred at most (Mathematica, however,
has at least nominally somewhat over 1000). In expressing
general human issues, different human languages tend to be
largely equivalent—though they often differ when it comes
to matters of special cultural or environmental interest to
their users. Computer languages are also mostly equivalent
in their handling of general programming issues—and
indeed among widespread languages the only substantial
exception is Mathematica, which supports symbolic,
functional and pattern-based as well as procedural
programming. Human languages have mostly evolved quite
haphazardly over the course of many centuries, becoming
sometimes simpler, sometimes more complicated. Computer
languages are almost always specifically designed once and
for all, usually by a single person. New human languages
have sometimes been developed—a notable example being
Esperanto in the 1890s—but for reasons largely of political
history none have in practice become widely used.

Human languages always seem to have fairly definite rules
for what is grammatically correct. And in a first
approximation these rules can usually be thought of as
specifying that every sentence must be constructed from
various independent nested phrases, much as in a context-
free grammar (see above). But in any given language there
are always many exceptions, and in the end it has proved
essentially impossible to identify specific detailed features—
beyond for example the existence of nouns and verbs—that
are convincingly universal across more than just languages
with clear historical connections (such as the Indo-European
ones). (One obvious general deviation from the context-free

head[arg1, arg2, ?] a + b2 Plus[a, Power[b, 2]]
{a, b, c} List[a, b, c] a = b + 1 Set[a, Plus[b, 1]]

_

"e" ! "e + e" "e" ! "(e)"

"e"

ToExpression

s["(", "(", ")", ")"] Attributes[s] = Flat

{s[e] ! s[e, e], s[e] ! s["(", e, ")"], s[e] ! s["(", ")"]}

Fold[#1 /. rules0#21 &, s[e], list]

Parse[rules_, expr_] := Catch[Block[{t = {}}, NestWhile[
ReplaceList[#, MapIndexed[ReverseRule, rules]] &,
{{expr, {}}}, # /. {s[e], u_} " Throw[u]; # =!= {} &];]]

ReverseRule[a_ ! b_, {i_}] := {___, {s[x___, b, y___], {u___}},
___} " {s[x, a, y], {i, u}} /; FreeQ[s[x], s[a]]

x + y z
Plus[x, Times[y, z]]

Times[Plus[x, y], z]

FullForm

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1104

model is that in practice subordinate clauses can never be
nested too deep if a sentence is expected to be understood.)

All the computer languages that are in widespread use today
are based quite explicitly on context-free grammars. And even
though the original motivation for this was typically ease of
specification or implementation, I strongly suspect that it has
also been critical in making it readily possible for people to
learn such languages. For in my observation, exceptions to the
context-free model are often what confuse users of computer
languages the most—even when those users have never been
exposed to computer languages before. And indeed the same
seems to be true for traditional mathematical notation, where
occasional deviations from the context-free model in fields like
logic seem to make material particularly hard to read. (A
notable feature that I was surprised to discover in designing
Mathematica 3 is that users of mathematical notation seem to
have a remarkably universal view of the precedence of
different mathematical operators.)

The idea of describing languages by grammars dates back to
antiquity (see page 875). And starting in the 1800s extensive
studies were made of the comparative grammars of different
languages. But the notion that grammars could be thought of
like programs for generating languages did not emerge with
clarity until the work of Noam Chomsky beginning in 1956.
And following this, there were for a while many efforts to
formulate precise models for human languages, and to relate
these to properties of the brain. But by the 1980s it became
clear—notably through the failure of attempts to automate
natural language understanding and translation—that
language cannot in most cases (with the possible exception of
grammar-checking software) meaningfully be isolated from
other aspects of human thinking.

Computer languages emerged in the early 1950s as higher-
level alternatives to programming directly in machine code.
FORTRAN was developed in 1954 with a syntax intended as a
simple idealization of mathematical notation. And in 1958, as
part of the ALGOL project, John Backus used the idea of
production systems from mathematical logic (see page 1150)
to set up a recursive specification equivalent to a context-free
grammar. A few deviations from this approach were tried—
notably in LISP and APL—but by the 1970s, following the
development of automated compiler generators such as yacc,
so-called Backus-Naur context-free specifications for
computer languages had become quite standard. (A practical
enhancement to this was the introduction of two-
dimensional grammar in Mathematica 3 in 1996.)

â Page 631 · Computer language fluency. It is common that
when one knows a human language sufficiently well, one

feels that one can readily “think in that language”. In my
experience the same is eventually true with computer
languages. In particular, after many years of using
Mathematica, I have now got to the point where I can
effectively think directly in Mathematica, so that I can start
entering a Mathematica program even though I may be a long
way from being able to explain in English what I want to do.

â Brainteasers. In many puzzles and IQ tests the setup is to
give a few elements in some sequence of numbers, strings or
pictures, then to ask what the next element would be. The
correct answer is normally assumed to be the one that in a
sense allows the simplest description of all the data. But
despite attempts to remove cultural and other biases such
questions in practice seem almost always to rely on being
able to retrieve from memory various specific forms and
transformations. And I strongly suspect that if one were, for
example, to construct similar questions using outputs from
many of the simple programs I discuss in this book then
unless one had studied almost exactly the cases of such
programs used one would never manage to work out the
answers.

â Human generation of randomness. If asked to type a
random sequence of 0’s and 1’s, most people will at first
produce a sequence with too many alternations between 0
and 1. But with modest learning time my experience is that
one can generate sequences with quite good randomness.

â Game theory. Remarkably simple models are often
believed to capture features of what might seem like
sophisticated decision making by humans, animals and
human organizations. A particular case on which many
studies have been done is the so-called iterated Prisoner’s
Dilemma, in which two players make a sequence of choices

 and to “cooperate” () or “defect” (), each trying to
maximize their score with . At a
single step, standard static game theory from the 1940s
implies that a player should always defect, but in the 1960s
a folk theorem emerged that if a whole sequence of steps is
considered then a possible strategy for perfectly rational
players is always to cooperate—in apparent agreement
with some observations on human and animal behavior. In
1979 Robert Axelrod tried setting up computer programs as
players and found that in tournaments between them the
winner was often a simple “tit-for-tat” program that
cooperates on the first step, then on subsequent steps just
does whatever its opponent did on the previous step. The
same winner was also often obtained by natural selection—
a fact widely taken to explain cooperation phenomena in
evolutionary biology and the social sciences. In the late
1980s similar studies were done on processes such as

a b 1 2
m0a, b1 m = {{1, -1}, {2, 0}}

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1105

auctions (cf page 1015), and in the late 1990s on games
such as Rock, Paper, Scissors (RoShamBo) (with

). (A simpler game—
certainly played since antiquity—is Penny Matching or
Evens and Odds, with .) But even
though they seemed to capture or better actual human
behavior, the programs considered in all these cases
typically just used standard statistical or Markov model
methods, or matching of specific sequences—making them
far too weak to make predictions about the kinds of
complex behavior shown in this book. (Note that a
program can always win the games above if it can in effect
successfully predict each move its opponent will make. In a
game between two arbitrary programs it can be
undecidable which will win more often over the course of
an infinite number of moves.)

â Games between programs. One can set up a game between
two programs generating single bits of output by for example
taking the input at each step to be the concatenation of the
historical sequences of outputs from the two programs. The
pictures below show what happens if the programs operate
by applying elementary cellular automaton rules times to

 inputs. The plots on the left show cumulative scores in
the Evens and Odds game; the array on the right indicates for
each of the 256 possible rules the average number of wins it
gets against each of the 256 rules. At some level considerable
complexity is evident. But the rules that win most often
typically seem to do so in rather simple ways.

Higher Forms of Perception and Analysis

â Biological perception.Animals can process data not only
from visual or auditory sources (as discussed on pages 577
and 585), but also from mechanical, thermal, chemical and
other sources. Usually special receptors for each type of data
convert it into electrical impulses in nerve cells. Mechanical
and thermal data are often mapped onto an array of nerve
cells in the brain, from which features are extracted similar
to those in visual perception. Taste involves data from solids

and liquids; smell data from gases. The human tongue has
millions of taste buds scattered on its surface, each with
many tens of nerve cells. Rather little is currently known
about how taste data is processed, and it is not even clear
whether the traditional notion that there are just four or so
primary tastes is correct. The human nose has several tens of
millions of receptors, apparently broken into a few hundred
distinct types. Each of these types probably has proteins that
form pockets with definite shapes, making it respond to
molecules whose shapes fit into these pockets. People
typically distinguish a few thousand odors, presumably by
comparing responses of different receptor types. (Foods
usually contain tens of distinct odors; manufactured scents
hundreds.) There is evidence that at the first level of
processing in the brain all receptors of a given type excite
nerve cells that lie in the same spatial region. But just how
different regions are laid out is not clear, and may well differ
between individuals. Polymers whose lengths differ by
more than one or two repeating units often seem to smell
different, and it is conceivable that elaborate general
features of shapes of molecules can be perceived. But more
likely there is no way to build up sophisticated taste or
smell data—and no analog of any properties such as
repetition or nesting.

â Page 634 · Evolving to predict. If one thinks that biological
evolution is infinitely powerful one might imagine that by
emulating it one would always be able to find ways to
predict any sequence of data. But in practice methods
based, for example, on genetic programming seem to do at
best only about as well as all sorts of other methods
discussed in this chapter. And typically what limits them
seems to be much the same as I argue in Chapter 8 limits
actual biological evolution: that incremental changes are
difficult to make except when the behavior is fairly simple.
(See also page 985.)

It is common for animals to move in apparently random
ways when they are trying to avoid predators. Yet I suspect
that the randomness they use is often generated by quite
simple rules (see page 1011)—so that in principle it could be
predictable. So it is then notable that biological evolution has
apparently never made predators able to catch their prey by
predicting anything that looks to us particularly random;
instead strategies tend to be based on tricks that do not
require predicting more than at most repetition.

â Page 635 · Familiar features. What makes features familiar
to us is that they are common in our typical environment and
are readily recognized by our built-in human powers of
perception. In the distant past humans were presumably
exposed only to features generated by ordinary natural

m = {{0, -1, 1}, {1, 0, -1}, {-1, 1, 0}}

m = {{1, -1}, {-1, 1}}

t
2 t + 1

36 vs. 90

35 vs. 90

34 vs. 90

33 vs. 90

32 vs. 90

31 vs. 90

30 vs. 90

36 vs. 91

35 vs. 91

34 vs. 91

33 vs. 91

32 vs. 91

31 vs. 91

30 vs. 91

36 vs. 92

35 vs. 92

34 vs. 92

33 vs. 92

32 vs. 92

31 vs. 92

30 vs. 92

36 vs. 93

35 vs. 93

34 vs. 93

33 vs. 93

32 vs. 93

31 vs. 93

30 vs. 93

255

0
0 255rules

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1106

processes. But ever since the dawn of civilization humans
have increasingly been exposed to things that were explicitly
constructed through engineering, architecture, art,
mathematics and other human activities. And indeed as
human knowledge and culture have progressed, humans
have ended up being exposed to new kinds of features. For
example, while repetition has been much emphasized for
several millennia, it is only in the past couple of decades that
precise nesting has had much emphasis. So this may make
one wonder what features will be emphasized in the future.
The vast majority of forms created by humans in the past—
say in art or architecture—have had basic features that are

either directly copied from systems in nature, or are in effect
built up by using extremely simple kinds of rules. On the
basis of the discoveries in this book I thus tend to suspect that
almost any feature that might end up becoming emphasized
in the future will already be present—and probably even be
fairly common—in the behavior of the kinds of simple
programs that I have discussed in this book. (When future
technology is routinely able to interact with individual atoms
there will presumably quickly be a new class of quantum and
other features that become familiar.)

â Relativism and postmodernism. See pages 1131 and 1196.

