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NOTES FOR CHAPTER 12

The Principle of Computational Equivalence

Basic Framework

â All is computation. The early history of science includes
many examples of attempts to treat all aspects of the universe
in a uniform way. Some were more successful than others.
“All is fire” was never definite enough to lead to much, but
“all is number” can be viewed as an antecedent to the whole
application of mathematics to science, and “all is atoms” to
the atomic theory of matter and quantum mechanics. My “all
is computation” will, I believe, form the basis for a fruitful
new direction in science. It should be pointed out, however,
that it is wrong to think that once one has described
everything as, say, computation, then there is nothing more
to do. Indeed, the phenomenon of computational
irreducibility discussed in this chapter specifically implies
that in many cases irreducible work has to be done in order to
find out how any particular system will behave.

Outline of the Principle

â Note for mathematicians. The way I discuss the Principle of
Computational Equivalence is in a sense opposite to what
would be typical in modern mathematics. For rather than
starting with very specific definitions and then expanding
from these, I start from general intuition and then use this to
come up with more specific results. In the years to come there
will no doubt be many attempts to formulate parts of the
Principle of Computational Equivalence in ways that are
closer to the traditions of modern mathematics. But at least at
first, I suspect that huge simplifications will be made, with
the result that all sorts of misleading conclusions will
probably be reached, perhaps in some cases even seemingly
contradicting the principle. 

â History. As I discuss elsewhere, aspects of the Principle of
Computational Equivalence have many antecedents. But the
complete principle is presented for the first time in this book, and
is the result of thinking I did in the late 1980s and early 1990s.

â Page 717 · Church’s Thesis. The idea that any computation
that can be done at all can be done by a universal system such
as a universal Turing machine is often referred to as Church’s
Thesis. Following the introduction of so-called primitive
recursive functions (see page 907) in the 1880s, there had by
the 1920s emerged the idea that perhaps any reasonable
function could be computed using the small set of operations
on which primitive recursive functions are based. This notion
was supported by the fact that certain modifications to these
operations were found to allow only the exact same set of
functions. But the discovery of the Ackermann function in
the late 1920s (see page 906) showed that there are reasonable
functions that are not primitive recursive. The proof of
Gödel’s Theorem in 1931 made use of so-called general
recursive functions (see page 1121) as a way to represent
possible functions in arithmetic. And in the early 1930s the
two basic idealizations used in foundational studies of
mathematical processes were then general recursive
functions and lambda calculus (see page 1121). By 1934 these
were known to be equivalent, and in 1935 Alonzo Church
suggested that either of them could be used to do any
mathematical calculation which could effectively be done. (It
had been noted that many specific kinds of calculations could
be done within such systems—and that processes like
diagonalization led to operations of a seemingly rather
different character.) In 1936 Alan Turing then introduced the
idea of Turing machines, and argued that any mathematical
process that could be carried out in practice, say by a person,
could be carried out by a Turing machine. Turing proved that
his machines were exactly equivalent in their computational
capabilities to lambda calculus. By the 1940s Emil Post had
shown that the string rewriting systems he had studied were
also equivalent, and as electronic computers began to be
developed it became quite firmly established that Turing
machines provided an appropriate idealization for what
computations could be done. From the 1940s to 1960s many
different types of systems—almost all mentioned at some
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point or another in this book—were shown to be equivalent
in their computational capabilities. (Starting in the 1970s, as
discussed on page 1143, emphasis shifted to studies not of
overall equivalence but instead equivalence with respect to
classes of transformations such as polynomial time.) 

When textbooks of computer science began to be written some
confusion developed about the character of Church’s Thesis:
was it something that could somehow be deduced, or was it
instead essentially just a definition of computability? Turing
and Post seem to have thought of Church’s Thesis as
characterizing the “mathematicizing power” of humans, and
Turing at least seems to have thought that it might not apply to
continuous processes in physics. Kurt Gödel privately
discussed the question of whether the universe could be
viewed as following Church’s Thesis and being “mechanical”.
And starting in the 1950s a few physicists, notably Richard
Feynman, asked about fundamental comparisons between
computational and physical processes. But it was not until the
1980s—perhaps particularly following some of my work—that
it began to be more widely realized that Church’s Thesis
should best be considered a statement about nature and about
the kinds of computations that can be done in our universe.
The validity of Church’s Thesis has long been taken more or
less for granted by computer scientists, but among physicists
there are still nagging doubts, mostly revolving around the
perfect continua assumed in space and quantum mechanics in
the traditional formalism of theoretical physics (see page 730).
Such doubts will in the end only be put to rest by the explicit
construction of a discrete fundamental theory along the lines I
discuss in Chapter 9. 

The Content of the Principle

â Page 719 · Character of principles. Examples of principles
that can be viewed in several ways include the Principle of
Entropy Increase (Second Law of Thermodynamics), the
Principle of Relativity, Newton’s Laws, the Uncertainty
Principle and the Principle of Natural Selection. The Principle
of Entropy Increase, for example, is partly a law of nature
relating to properties of heat, partly an abstract fact about
ensembles of dynamical systems, and partly a foundation for
the definition of entropy. In this case and in others, however,
the most important role of a principle is as a guide to
intuition and understanding.

â Page 720 · Oracles. Following his introduction of Turing
machines Alan Turing tried in 1937 to develop models that
would somehow allow the ultimate result of absolutely every
conceivable computation to be determined. And as a step
towards this, he introduced the idea of oracles which would

give results of computations that could not be found by any
Turing machine in any limited number of steps. He then
noted, for example, that if an oracle were set up that could
answer the question for a particular universal system of
whether that system would ever halt when given any specific
input, then with an appropriate transformation of input this
same oracle could also answer the question for any other
system that can be emulated by the universal system. But it
turns out that this is no longer true if one allows systems
which themselves can access the oracle in the course of their
evolution. Yet one can then imagine a higher-level oracle for
these systems, and indeed a whole hierarchy of levels of
oracles—as studied in the theory of degrees of unsolvability.
(Note that for example to answer the question of whether or
not a given Turing machine always halts can require a
second-order oracle, since it is a  question in the sense of
page 1139.)

â Initial conditions. Oracles are usually imagined as being
included in the internal rules for a system. But if there are an
infinite number of elements that can be specified in the initial
condition—as in a cellular automaton—then a table for an
oracle could also be given in the initial conditions. 

â Page 722 · Criteria for universality. To be universal a system
must in effect be able to emulate any feature of any system.
So at some level any feature can be thought of as a criterion
for universality. Some features—like the possibility of
information transmission—may be more obvious than
others, but despite occasional assertions to the contrary in the
scientific literature none is ever the whole story. Since any
given universal system must be able to emulate any other
universal system it follows that within any such system it
must in a sense be possible to find any known universal
system. But inevitably the encoding will sometimes be very
complicated. And in practice if there are many simple rules
that are universal they cannot all be related by simple
encodings. (See also the end of Chapter 11.)

â Page 722 · Encodings. One can prevent an encoding from
itself introducing universality by insisting, for example, that
it be primitive recursive (see page 907) or always involve
only a bounded number of steps. One can also do this—as in
the rule 110 proof in the previous chapter—by having
programs and data be encoded separately, and appear, say, as
distinct parts of the initial conditions for the system one is
studying. (See also page 1118.)

â Density of universal systems. One might imagine that it
would be possible to make estimates of the overall density of
universal systems, perhaps using arguments like those for
the density of primes, or for the density of algorithmically

#2
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random sequences. But as it turns out I know of no way to
make any such estimates. If one has shown that various
simple rules are universal, then it follows that rules which
generalize these must also be universal. But even from this I
do not know, for example, how to prove that the density of
universal rules cannot decrease when rules become more
complicated. 

â Page 723 · Proving universality. The question of whether a
system is universal is in general undecidable. Using a
specific mathematical axiom system such as Peano
arithmetic or set theory it may also be that there is no proof
that can be given. (It is straightforward to construct
complicated examples where this is the case.) In practice it
seems to get more difficult to prove universality when the
structure of a system gets simpler. Current proofs of
universality all work by showing how to emulate a known
universal system. Some level of checking can be done by
tracing the emulation of random initial conditions for the
universal system. In the future it seems likely that
automated theorem-proving methods should help in finding
proofs of universality. 

â Page 724 · History. There are various precedents in
philosophy and mysticism for the idea of encoding all
possible knowledge of some kind in a single object. An
example in computation theory is the concept emphasized by
Gregory Chaitin of a number whose th digit specifies
whether a computation with initial condition  in a particular
system will ever halt. This particular number is far from
being computable (see page 1128), as a result of the
undecidability of the halting problem (see page 754). But a
finite version in which one looks at results after a limited
number of steps is similar to my concept of a universal object.
(See also page 1067.) 

â Page 725 · Universal objects. A more direct way to create a
universal object is to set up, say, a 4D array in which two
of the dimensions range respectively over possible 1D
cellular automaton rules and over possible initial
conditions, while the other two dimensions correspond to
space and time in the evolution of each cellular automaton
from each initial condition. (Compare the parameter space
sets of page 1006.)

â Page 725 · Block occurrences. The pictures below show at
which step each successive block of length up to 8 first
appears in evolution according to various cellular automaton
rules starting from a single black cell. For rule 30, the
numbers of steps needed for each block of lengths 1 through
10 to appear at least once is .
(See also page 871.)

 

 

The Validity of the Principle

â Page 729 · Continuum and cardinality. Some notion of a
distinction between continuous and discrete systems has
existed since antiquity. But in the 1870s the distinction
became more precise with Georg Cantor’s characterization of
the total numbers of possible objects of various types in terms
of different orders of infinity (see page 1162). The total
number of possible integers corresponds to the smallest level
of infinity, usually denoted . The total number of possible
lists of integers of given finite length—and thus the number
of possible rational numbers—turns out also to be . The
reason is that it is always possible to encode any finite list of
integers as a single integer, as discussed on page 1120. (A
way to do this for pairs of non-negative integers is to use

.) But for real numbers
the story is different. Any real number  can be represented
as a set of integers using for example

but except when  is rational this list is not finite. Since the
number of possible subsets of a set with  elements is , the
number of possible real numbers is . And using Cantor’s
diagonal argument (see note below) one can then show that
this must be larger than . (The claim that there are no sets
intermediate in size between  and  is the so-called
continuum hypothesis, which is known to be independent of
the standard axioms of set theory, as discussed on page 1155.)
Much as for integers, finite lists of real numbers can be
encoded as single real numbers—using for example roughly

—so that the
number of such lists is . (Space-filling curves yield a more
continuous version of such an encoding.) But unlike for
integers the same turns out to be true even for infinite lists of
real numbers. (The function  above can for example be used
to specify the order in which to sample elements in

). The total number of possible functions of real
numbers is ; the number of continuous such functions
(which can always be represented by a list of coefficients for a
series) is however only .

In systems like cellular automata, finite arrangements of
black cells on a background of white cells can readily be
specified by single integers, so the number of them is . But
infinite configurations of cells are like digit sequences of real
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numbers (as discussed on page 869 they correspond more
precisely to elements in a Cantor set), so the number of them
is . Continuous cellular automata (see page 155) also have

 possible states.

â Computable reals. The stated purpose of Alan Turing’s
original 1936 paper on computation was to introduce the
notion of computable real numbers, whose th digit for any 
could be found by a Turing machine in a finite number of
steps. Real numbers used in any explicit way in traditional
mathematics are always computable in this sense. But as
Turing pointed out, the overwhelming majority of all
possible real numbers are not computable. For certainly there
can be no more computable real numbers than there are
possible Turing machines. But with his discovery of
universality, Turing established that any Turing machine can
be emulated by a single universal Turing machine with
suitable initial conditions. And the point is that any such
initial conditions can always be encoded as an integer.

As examples of non-computable reals that can readily be
defined, Turing considered numbers whose successive digits
are determined by the eventual behavior after an infinitely
long time of a universal system with successive possible
initial conditions (compare page 964). With two possible
forms of behavior  or  for initial condition , an
example of such a number is . Closely
related is the total probability for each form of behavior,
given for example by .
I suspect that many limiting properties of systems like
cellular automata in general correspond to non-computable
reals. An example is the average density of black cells after an
arbitrarily long time. For many rules, this converges rapidly
to a definite value; but for some rules it will wiggle forever as
more and more initial conditions are included in the average.

â Diagonal arguments. Similar arguments were used by Georg
Cantor in 1891 to show that there must be more real numbers
than integers and by Alan Turing in 1936 to show that the
problem of enumerating computable real numbers is
unsolvable. One might imagine that it should be possible to set
up a function  which if given successive integers  would
give the th base 2 digit in every possible real number. But
what about the number whose th digit is ? This is
still a real number, yet it cannot be generated by  for any
—thus showing that there are more real numbers than

integers. Analogously, one might imagine that it should be
possible to have a function  which enumerates all
possible programs that always halt, and specifies a digit in
their output when given input . But what about the program
with output ? This program always halts, yet it does
not correspond to any possible value of —even though

universality implies that any program should be encodable by
a single integer . And the only possible conclusion from this is
that  cannot in fact be implemented as a program that
always halts—thus demonstrating that the computable real
numbers cannot explicitly be enumerated. (Closely related is
the undecidability of the problem discussed on page 1137 of
whether a system halts given any particular input.) (See also
pages 907 and 1162.)

â Continuous computation. Various models of computation
that involve continuous elements have been proposed since
the 1930s, and unlike those with discrete elements they have
often not proved ultimately equivalent. One general class of
models based on the work of Alan Turing in 1936 follow the
operation of standard digital computers, and involve looking
at real numbers in terms of digits, and using discrete
processes to generate these digits. Such models inevitably
handle only computable reals (in the sense defined above),
and can never do computations beyond those possible in
ordinary discrete systems. Functions are usually considered
computable in such models if one can take the procedure for
finding the digits of  and get a procedure for finding the
digits of . And with this definition all standard
mathematical functions are computable—even those from
chaos theory that excavate digits rapidly. (It seems possible
however to construct functions computable in this sense
whose derivatives are not computable.) The same basic
approach can be used whenever numbers are represented by
constructs with discrete elements (see page 143), including
for example symbolic formulas.

Several times since the 1940s it has been suggested that
models of computation should be closer to traditional
continuous mathematics, and should look at real numbers as
a whole, not in terms of their digit or other representations.
In a typical case, what is done is to generalize the register
machines of page 97 to have registers that hold arbitrary real
numbers. It is then usually assumed, however, that the
primitive operations performed on these registers are just
those of ordinary arithmetic, with the result that only a very
limited set of functions (not including for example the
exponential function) can be computed in a finite number of
steps. Introducing other standard mathematical functions as
primitives does not usually help much, unless one somehow
gives the system the capability to solve any equation
immediately (see below). (Other appropriate primitives may
conceivably be related to the solubility of Hilbert’s Thirteenth
Problem and the fact that any continuous function with any
number of arguments can be written as a one-argument
function of a sum of a handful of fixed one-argument
functions applied to the arguments of the original function.) 
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Most of the types of programs that I have discussed in this
book can be generalized to allow continuous data, often just by
having a continuous range of values for their elements (see e.g.
page 155). But the programs themselves normally remain
discrete, typically involving discrete choices made at discrete
steps. If one has a table of choices, one can imagine
generalizing this to a function of a real number. But to specify
this function one normally has no choice but to use some type
of finite formula. And to set up any kind of continuous
evolution, the most obvious approach is to use traditional
mathematical ideas of calculus and differential equations (see
page 161). This leads to models in which possible
computations are assumed, say, to correspond to combinations
of differential equations—as in Claude Shannon’s 1941
general-purpose analog computer. And if one assumes—as is
usually implicitly done in traditional mathematics—that any
solutions that exist to these equations can somehow always be
found then at least in principle this allows computations
impossible for discrete systems to be done.

â Initial conditions. Traditional mathematics tends to assume
that real numbers with absolutely any digit sequence can be
set up. And if this were the case, then the digits of an initial
condition could for example be the table for an oracle of the
kind discussed on page 1126—and even a simple shift
mapping could then yield output that is computationally
more sophisticated than any standard discrete system. But
just as in my discussion of chaos theory in Chapter 7, any
reasonably complete theory must address how such an initial
condition could have been constructed. And presumably the
only way is to have another system that already violates the
Principle of Computational Equivalence.

â Constructible reals. Instead of finding successive digits
using systems like Turing machines, one can imagine
constructing complete real numbers using idealizations of
mechanical processes. An example studied since antiquity
involves finding lengths or angles using a ruler and compass
(i.e. as intersections between lines and circles). However, as
was shown in the 1800s, this method can yield only numbers
formed by operating on rationals with combinations of ,

 and . (Thus it is impossible with ruler and
compass to construct  and “square the circle” but it is
possible to construct 17-gons or other -gons for which

 contains only ,  and
.) Linkages consisting of rods of integer lengths always

trace out algebraic curves (or algebraic surfaces in 3D) and in
general allow any algebraic number (as represented by )
to be constructed. (Linkages were used by the late 1800s not
only in machines such as steam engines, but also in devices
for analog computation. More recently they have appeared in

robotics.) Note that above degree 4, algebraic numbers
cannot in general be expressed in radicals involving only

,  and  (see page 945). 

â Page 732 · Equations. For any purely algebraic equation
involving real numbers it is possible to find a bound on the
size of any isolated solutions it has, and then to home in on
their actual values. But as discussed on page 786, nothing
similar is true for equations involving only integers, and in
this case finding solutions can in effect require following the
evolution of a system like a cellular automaton for infinitely
many steps. If one allows trigonometric functions, any
equation for integers can be converted to one for real
numbers; for example  for integers is equivalent
to  for
real numbers.

â Page 732 · ODEs. The method of compressing time using
algebraic transformations works not only in partial but also
in ordinary differential equations. 

â Emulating discrete systems. Despite it often being assumed
that continuous systems are computationally more
sophisticated than discrete ones, it has in practice proved
surprisingly difficult to make continuous systems emulate
discrete ones. Some integer functions can readily be obtained
by supplying integer arguments to continuous functions, so
that for example  corresponds to  or

,

(As another example,  corresponds to
.) And in this way the discrete system

 from page 122 can be
emulated by the continuous iterated map

. This approach can then be
applied to the universal arithmetic system on page 673,
establishing that continuous iterated maps can in principle
emulate discrete universal systems. A similar result
presumably holds for ordinary and therefore also partial
differential equations (PDEs). One might expect, however,
that it should be possible to construct a PDE that quite
directly emulates a system like a cellular automaton. And to
do this approximately is not difficult. For as suggested by the
bottom row of pictures on page 732 one can imagine having
localized structures whose interactions emulate the rules of
the cellular automaton. And one can set things up so that
these structures exhibit the analog of attractors, and evolve
towards one of a few discrete states. But the problem is that
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in finite time one cannot expect that they will precisely reach
such states. (This is somewhat analogous to the issue of
asymptotic particle states in the foundations of quantum
field theory.) And this means that the overall state of the
system will not be properly prepared for the next step of
cellular automaton evolution.

Generating repetitive patterns with continuous systems is
straightforward, but generating even nested ones is not. Page
147 showed how  has nested features, and
these are reflected in the distribution of eigenvalues for ODEs
containing such functions. Strange attractors for many
continuous systems also show various forms of Cantor sets
and nesting.

â Page 732 · Time and gravity. General relativity implies that
time can be affected by gravitational fields—and that for
example a process in a lower gravitational field will seem
to be going faster if it is looked at by an observer in a
higher gravitational field. (Related phenomena associated
with motion in special relativity are more difficult to
interpret in a static way.) But presumably there are effects
that prevent infinite speedups. For if, say, energy were
coming from a process at a constant rate, then an infinite
speedup would lead to infinite energy density, and thus
presumably to infinite gravitational fields that would
change the system.

At least formally, general relativity does nevertheless suggest
infinite transformations of time in various cases. For
example, to a distant observer, an object falling into a black
hole will seem to take an infinite time to cross the event
horizon—even though to the object itself only a finite time
will seem to have passed. One might have thought that this
would imply in reverse that to an observer moving with the
object the whole infinite future of the outside universe would
in effect seem to go by in a finite time. But in the simplest case
of a non-rotating black hole (Schwarzschild metric), it turns
out that an object will always hit the singularity at the center
before this can happen. In a rotating but perfectly spherical
black hole (Kerr metric), the situation is nevertheless
different, and in this case the whole infinite future of the
outside universe can indeed in principle be seen in the finite
time between crossing the outer and inner event horizons.
But for the reasons mentioned above, this very fact
presumably implies instability, and the whole effect
disappears if there is any deviation from perfect spherical
symmetry.

Even without general relativity there are already issues with
time and gravity. For example, it was shown in 1990 that
close encounters in a system of 5 idealized point masses can

lead to infinite accelerations which cause one mass to be able
to go infinitely far in a finite time.

â Page 733 · Human thinking. The discovery in this book that
even extremely simple programs can give rise to behavior
vastly more complex than expected casts suspicion on any
claim that programs are fundamentally unable to reproduce
features of human thinking. But complete evidence that
human thinking follows the Principle of Computational
Equivalence will presumably come only gradually as
practical computer systems manage to emulate more and
more aspects of human thinking. (See page 628.)

â Page 734 · Intermediate degrees. As discussed on page 753,
an important indication of computational sophistication in a
system is for its ultimate behavior to be undecidable, in the
sense that a limited number of steps in a standard universal
system cannot determine in general what the system will do
after an infinite number of steps, and whether, for example, it
will ever in some sense halt. Such undecidability is inevitable
in any system that is universal. But what about other
systems? So long as one only ever looks at the original input
and final output it turns out that one can construct a system
that exhibits undecidability but is not universal. One trivial
way to do so is to take a universal system but modify it so
that if it ever halts its output is discarded and, say, replaced
by its original input. The lack of meaningful output prevents
such a system from being universal, but the question of
whether the system halts is still undecidable. Nevertheless,
the pattern of this undecidability is just the same as for the
underlying universal system. So one can then ask whether it
is possible to have a system which exhibits undecidability,
but with a pattern that does not correspond to that of any
universal system. 

As I discuss on page 1137, almost all known proofs of
undecidability in practice work by reduction to the halting
problem for some universal system—this is, by showing that
if one could resolve whatever is supposed to be undecidable
then one could also solve the halting problem for a universal
system. But in 1956 Richard Friedberg and Albert Muchnik
both gave an intricate and abstract construction of a system
that has a halting problem which is undecidable but is not
reducible to the halting problem of any universal system.

The pictures at the top of the facing page show successive
steps in the evolution of an analog of their system. The input
is an integer that gives a position in either of the two rows of
cells at the bottom of each picture. All these cells are initially
white, but some eventually become black—and the system is
considered to halt for a particular input if the corresponding
cell ever becomes black.

Sin[x] +Sin[�!!!!2 x]
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The rules for the system are quite complicated, and in essence
work by progressively implementing a generalization of a
diagonal argument of the kind discussed on page 1128. Note
first that the configuration of cells in the rows at the bottom
of each picture can be thought of as successive finite
approximations to tables for an oracle (see page 1126) which
gives the solution to the halting problem for each possible
input to the system. To set up the generalized diagonal
argument one needs a way to list all possible programs. Any
type of program that supports universality can be used for
this purpose; the pictures shown use essentially the register
machines from page 97. Each row above the bottom one
corresponds in effect to a successive register machine—and
shows, if relevant, its output when given as input the integer
corresponding to that position in the row, together with the
complete bottom row of cells found so far. (A dot indicates
that the register machine does not halt.) The way the system
works is to put down new black cells in the bottom row in
just such a way as to arrange that for any register machine at
least the output shown will ultimately not agree with the
cells in the bottom row. As indicated by vertical gray lines,
there is sometimes temporary agreement, but this is always
removed within a finite number of steps.

The fact that no register machine can ever ultimately give
output that agrees everywhere with the bottom row of cells
then demonstrates that the halting problem for the system—
whose results appear in the bottom row—must be
undecidable. Yet if this halting problem were reducible to a
halting problem for a universal system, then by using its
results one should ultimately be able to solve the halting
problem for any system. However, even using the complete
bottom row of cells on the left it turns out that the
construction is such that no register machine can ever yield
results after any finite number of steps that agree everywhere
with the row of cells on the right—thus demonstrating that
the halting problem for the system is not reducible to the
halting problem for a universal system.

Note however that this result is extremely specific to looking
only at what is considered output from the system, and that
inside the system there are all sorts of components that are
definitely universal.

Explaining the Phenomenon of Complexity

â Definition of complexity. See page 557.

â Ingredients for complexity. With its emphasis on breaking
systems down to find their underlying elements traditional
science tends to make one think that any important overall
property of a system must be a consequence of some
specific feature of its underlying construction. But the
results of this section imply that for complexity this is not
the case. For as discussed on page 1126 there is no direct
structural criterion for sophisticated computation and
universality. And indeed most ways of ensuring that these
do not occur are in essence equivalent just to saying that
the overall behavior exhibits some specific regularity and is
therefore not complex.

â Relativism and equivalence. Although the notion has been
discussed since antiquity, it has become particularly common
in the academic humanities in the past few decades to believe
that there can be no valid absolute conclusions about the
world—only statements made relative to particular cultural
contexts. My emphasis of the importance of perception and
analysis might seem to support this view, and to some extent
it does. But the Principle of Computational Equivalence
implies that in the end essentially any method of perception
and analysis that can actually be implemented in our
universe must have a certain computational equivalence, and
must therefore at least in some respects come to the same
absolute conclusions. 

step 1 step 2 step 3
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step 10 step 11 step 12
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step 200
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Computational Irreducibility

â History. The notion that there could be fundamental limits
to knowledge or predictability has been discussed repeatedly
since antiquity. But most often it has been assumed that the
origin of this must be inadequacy in models, not difficulty in
working out their consequences. And indeed already in the
1500s with the introduction of symbolic algebra and the
discovery of formulas for solving cubic and quartic equations
the expectation began to develop that with sufficient
cleverness it should be possible to derive a formula for the
solution to any purely mathematical problem. Infinitesimals
were sometimes thought to get in the way of finite
understanding—but this was believed to be overcome by
calculus. And when mathematical models for natural
systems became widespread in the late 1600s it was generally
assumed that their basic consequences could always be
found in terms of formulas or geometrical theorems, perhaps
with fairly straightforward numerical calculations required
for connection to practical situations. In discussing
gravitational interactions between many planets Isaac
Newton did however comment in 1684 that “to define these
motions by exact laws admitting of easy calculation exceeds,
if I am not mistaken, the force of any human mind”. But in
the course of the 1700s and 1800s formulas were successfully
found for solutions to a great many problems in
mathematical physics (see note below)—at least when
suitable special functions (see page 1091) were introduced.
The three-body problem (see page 972) nevertheless
continued to resist efforts at general solution. In the 1820s it
was shown that quintic equations cannot in general be solved
in terms of radicals (see page 1137), and by the 1890s it was
known that degree 7 equations cannot in general be solved
even if elliptic functions are allowed. Around 1890 it was
then shown that the three-body problem could not be solved
in general in terms of ordinary algebraic functions and
integrals (see page 972). However, perhaps in part because of
a shift towards probabilistic theories such as quantum and
statistical mechanics there remained the conviction that for
relevant aspects of behavior formulas should still exist. The
difficulty for example of finding more than a few exact
solutions to the equations of general relativity was noted—
but a steady stream of results (see note below) maintained
the belief that with sufficient cleverness a formula could be
found for behavior according to any model. 

In the 1950s computers began to be used to work out
numerical solutions to equations—but this was seen mostly
as a convenience for applications, not as a reflection of any
basic necessity. A few computer experiments were done on
systems with simple underlying rules, but partly because

Monte Carlo methods were sometimes used, it was typically
assumed that their results were just approximations to what
could in principle be represented by exact formulas. And this
view was strengthened in the 1960s when solitons given by
simple formulas were found in some of these systems.

The difficulty of solving equations for numerical weather
prediction was noted even in the 1920s. And by the 1950s and
1960s the question of whether computer calculations would
be able to outrun actual weather was often discussed. But it
was normally assumed that the issue was just getting a better
approximation to the underlying equations—or better initial
measurements—not something more fundamental.

Particularly in the context of game theory and cybernetics the
idea had developed in the 1940s that it should be possible to
make mathematical predictions even about complex human
situations. And for example starting in the early 1950s
government control of economies based on predictions from
linear models became common. By the early 1970s, however,
such approaches were generally seen as unsuccessful, but it
was usually assumed that the reason was not fundamental,
but was just that there were too many disparate elements to
handle in practice. 

The notions of universality and undecidability that underlie
computational irreducibility emerged in the 1930s, but they
were not seen as relevant to questions arising in natural
science. Starting in the 1940s they were presumably the basis
for a few arguments made about free will and fundamental
unpredictability of human behavior (see page 1135),
particularly in the context of economics. And in the late 1950s
there was brief interest among philosophers in connecting
results like Gödel’s Theorem to questions of determinism—
though mostly there was just confusion centered around the
difficulty of finding countable proofs for statements about
the continuous processes assumed to occur in physics.

The development of algorithmic information theory in the
1960s led to discussion of objects whose information content
cannot be compressed or derived from anything shorter. But
as indicated on page 1067 this is rather different from what I
call computational irreducibility. In the 1970s computational
complexity theory began to address questions about overall
resources needed to perform computations, but concentrated
on computations that perform fairly specific known practical
tasks. At the beginning of the 1980s, however, it was noted
that certain problems about models of spin glasses were NP-
complete. But there was no immediate realization that this
was connected to any underlying general phenomenon.

Starting in the late 1970s there was increasing interest in
issues of predictability in models of physical systems. And it
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was emphasized that when the equations in such models are
nonlinear it often becomes difficult to find their solutions.
But usually this was at some level assumed to be associated
with sensitive dependence on initial conditions and the chaos
phenomenon—even though as we saw on page 1098 this
alone does not even prevent there from being formulas. 

By the early 1980s it had become popular to use computers to
study various models of natural systems. Sometimes the idea
was to simulate a large collection of disparate elements, say
as involved in a nuclear explosion. Sometimes instead the
idea was to get a numerical approximation to some fairly
simple partial differential equation, say for fluid flow.
Sometimes the idea was to use randomized methods to get a
statistical approximation to properties say of spin systems or
lattice gauge theories. And sometimes the idea was to work
out terms in a symbolic perturbation series approximation,
say in quantum field theory or celestial mechanics. With any
of these approaches huge amounts of computer time were
often used. But it was almost always implicitly assumed that
this was necessary in order to overcome the approximations
being used, and not for some more fundamental reason.

Particularly in physics, there has been some awareness of
examples such as quark confinement in QCD where it seems
especially difficult to deduce the consequences of a theory—
but no general significance has been attached to this.

When I started studying cellular automata in the early 1980s I
was quickly struck by the difficulty of finding formulas for
their behavior. In traditional models based for example on
continuous numbers or approximations to them there was
usually no obvious correspondence between a model and
computations that might be done about it. But the evolution
of a cellular automaton was immediately reminiscent of other
computational processes—leading me by 1984 to formulate
explicitly the concept of computational irreducibility.

No doubt an important reason computational irreducibility
was not identified before is that for more than two centuries
students had been led to think that basic theoretical science
could somehow always be done with convenient formulas.
For almost all textbooks tend to discuss only those cases that
happen to come out this way. Starting in earnest in the 1990s,
however, the influence of Mathematica has gradually led to
broader ranges of examples. But there still remains a very
widespread belief that if a theoretical result about the
behavior of a system is truly fundamental then it must be
possible to state it in terms of a simple mathematical formula.

â Exact solutions. Some notable cases where closed-form
analytical results have been found in terms of standard
mathematical functions include: quadratic equations (~2000

BC) ( ); cubic, quartic equations (1530s) ( ); 2-body
problem (1687) ( ); catenary (1690) ( ); brachistochrone
(1696) ( ); spinning top (1849; 1888; 1888) ( ;

; hyperelliptic functions); quintic equations
(1858) ( ); half-plane diffraction (1896) ( );
Mie scattering (1908) ( , , ); Einstein
equations (Schwarzschild (1916), Reissner-Nordström (1916),
Kerr (1963) solutions) (rational and trigonometric functions);
quantum hydrogen atom and harmonic oscillator (1927)
( , ); 2D Ising model (1944) ( , );
various Feynman diagrams (1960s–1980s) ( ); KdV
equation (1967) (  etc.); Toda lattice (1967) ( ); six-
vertex spin model (1967) (  integrals); Calogero-Moser
model (1971) ( ); Yang-Mills instantons
(1975) (rational functions); hard-hexagon spin model (1979)
( ); additive cellular automata (1984)
( ); Seiberg-Witten supersymmetric theory
(1994) ( ). When problems are originally
stated as differential equations, results in terms of integrals
(“quadrature”) are sometimes considered exact solutions—as
occasionally are convergent series. When one exact solution is
found, there often end up being a whole family—with much
investigation going into the symmetries that relate them. It is
notable that when many of the examples above were
discovered they were at first expected to have broad
significance in their fields. But the fact that few actually did
can be seen as further evidence of how narrow the scope of
computational reducibility usually is. Notable examples of
systems that have been much investigated, but where no exact
solutions have been found include the 3D Ising model,
quantum anharmonic oscillator and quantum helium atom. 

â Amount of computation. Computational irreducibility
suggests that it might be possible to define “amount of
computation” as an independently meaningful quantity—
perhaps vaguely like entropy or amount of information. And
such a quantity might satisfy laws vaguely analogous to the
laws of thermodynamics that would for example determine
what processes are possible and what are not. If one knew the
fundamental rules for the universe then one way in principle
to define the amount of computation associated with a given
process would be to find the minimum number of
applications of the rules for the universe that are needed to
reproduce the process at some level of description.

â Page 743 · More complicated rules. The standard rule for a
cellular automaton specifies how every possible block of cells
of a certain size should be updated at every step. One can
imagine finding the outcome of evolution more efficiently by
adding rules that specify what happens to larger blocks of
cells after more steps. And as a practical matter, one can look
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up different blocks using a method like hashing. But much as
one would expect from data compression this will only in the
end work more efficiently if there are some large blocks that
are sufficiently common. Note that dealing with blocks of
different sizes requires going beyond an ordinary cellular
automaton rule. But in a sequential substitution system—and
especially in a multiway system (see page 776)—this can be
done just as part of an ordinary rule. 

â Page 744 · Reducible systems. The color of a cell at step 
and position  can be found by starting with initial condition

then for rule 188 running the cellular automaton with rule

and for rule 60 running the cellular automaton with rule

â Speed-up theorems. That there exist computations that are
arbitrarily computationally reducible was noted in work on
the theory of computation in the mid-1960s. 

â Page 745 · Mathematical functions. The number of bit
operations needed to add two -digit numbers is of order .
The number of operations  needed to multiply them
increases just slightly more rapidly than  (see page 1093).
(Even if one can do operations on all digits in parallel it still
takes of order  steps in a system like a cellular automaton
for the effects of different digits to mix together—though see
also page 1149.) The number of operations to evaluate

 is of order  if  has  digits and  is small. Many
standard continuous mathematical functions just increase or
decrease smoothly at large  (see page 917). The main issue in
evaluating those that exhibit regular oscillations at large  is
to find their oscillation period with sufficient precision. Thus
for example if  is an integer with  digits then evaluating

 or  requires respectively finding  or
 to -digit precision. It is known how to evaluate  (see

page 912) and all standard elementary functions to -digit
precision using about  operations. (This can be
done by repeatedly making use of functional relations such
as  which express  as a polynomial
in ; such an approach is known to work for elementary,
elliptic, modular and other functions associated with

 and for example .)
Known methods for high-precision evaluation of special
functions—usually based in the end on series

representations—typically require of order 
operations, where  is often 2 or 3. (Examples of more
difficult cases include  and

, where logarithmic series can require an
exponential number of terms. Evaluation of  is
also difficult.) Any iterative procedure (such as ) that
yields a constant multiple more digits at each step will take
about  steps to get  digits. Roots of polynomials can
thus almost always be found with  in about

 operations. If one evaluates  or
 by effectively fitting functions to order 

polynomials the difficulty of getting results with -digit
precision typically increases like . An adaptive algorithm
such as Romberg integration reduces this to about .
The best-known algorithms for evaluating  (see
page 918) to fixed precision take roughly  operations—or

 operations if  is an -digit integer. (The evaluation is
based on the Riemann-Siegel formula, which involves sums
of about  cosines.) Unlike for continuous mathematical
functions, known algorithms for number theoretical
functions such as  or  typically
seem to require a number of operations that grows faster
with the number of digits  in  than any power of  (see
page 1090). 

â Formulas. It is always in principle possible to build up some
kind of formula for the outcome of any process of evolution,
say of a cellular automaton (see page 618). But for there to be
computational reducibility this formula needs to be simple
and easy to evaluate—as it is if it consists just of a few
standard mathematical functions (see note above; page 1098). 

â Page 747 · Short computations. Some properties include:

(a) The regions are bounded by the hyperbolas
 for successive integers . 

(d) There is approximate repetition associated with rational
approximations to  (for example with period 22), but never
precise repetition.

(e) The pattern essentially shows which  are divisors of ,
just as on pages 132 and 909.

(h)  extracts the digit associated with
 in the base 2 digit sequence of . 

(i) Like (e), except that colors at neighboring positions
alternate.

(l) See page 613. 

(m) The pattern can be generated by a 2D substitution system
with rule {1 -> {{0, 0}, {0, 1}}, 0 -> {{1, 1}, {1, 0}}} (see page 583). 

(See also page 870.)

t
x

Flatten[With[{w = Max[Ceiling[Log[2, {t, x}]]]},
{2 Reverse[IntegerDigits[t, 2, w]] + 1,

5, 2 IntegerDigits[x, 2, w] + 2}]]

{{a : (1 Ï 3), 1 Ï 3, _} ! a, {_, 2 Ï 4, a : (2 Ï 4)} ! a,
{3, 5 Ï 10, 2} ! 6, {1, 5 Ï 7, 4} ! 0, {3, 5, 4} ! 7,
{1, 6, 2} ! 10, {1, 6 Ï 11, 4} ! 8, {3, 6 Ï 8 Ï 10 Ï 11, 4} ! 9,
{3, 7 Ï 9, 2} ! 11, {1, 8 Ï 11, 2} ! 9, {3, 11, 2} ! 8,
{1, 9 Ï 10, 4} ! 11, {_, a_ /; a > 4, _} ! a, {_, _, _} ! 0}

{{a : (1 Ï 3), 1 Ï 3, _} ! a, {_, 2 Ï 4, a : (2 Ï 4)} ! a,
{1, 5, 4} ! 0, {_, 5, _} ! 5, {_, _, _} ! 0}
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Even though standard mathematical functions are used, few
of the pictures can readily be generalized to continuous
values of  and . 

â Intrinsic limits in science. Before computational irreducibility
other sources of limits to science that have been discussed
include: measurement in quantum mechanics, prediction in
chaos theory and singularities in gravitation theory. As it
happens, in each of these cases I suspect that the supposed
limits are actually just associated with a lack of correct analysis
of all elements of the relevant systems. In mathematics,
however, more valid intrinsic limits—much closer to
computational irreducibility—follow for example from
Gödel’s Theorem.

The Phenomenon of Free Will

â History. Early in history it seems to have generally been
assumed that everything about humans must ultimately be
determined by unchangeable fate—which it was sometimes
thought could be foretold by astrology or other forms of
divination. Most Greek philosophers seem to have believed
that their various mechanical or moral theories implied rigid
determination of human actions. But especially with the
advent of the Christian religion the notion that humans can at
some level make free choices—particularly about whether to
do good or not—emerged as a foundational idea. (The idea
had also arisen in Persian and Hebrew religions and legal
systems, and was supported by Roman lawyers such as
Cicero.) How this could be consistent with God having
infinite power was not clear, although around 420 AD
Augustine suggested that while God might have infinite
knowledge of the future we as humans could not—yielding
what can be viewed as a very rough analog of my
explanation for free will. In the 1500s some early Protestants
made theological arguments against free will—and indeed
issues of free will remain a feature of controversy between
Christian denominations even today.

In the mid-1600s philosophers such as Thomas Hobbes
asserted that minds operate according to definite
mechanisms and therefore cannot exhibit free will. In the late
1700s philosophers such as Immanuel Kant—agreeing with
earlier work by Gottfried Leibniz—claimed instead that at
least some parts of our minds are free and not determined by
definite laws. But soon thereafter scientists like Pierre-Simon
Laplace began to argue for determinism throughout the
universe based on mathematical laws. And with the
increasing success of science in the 1800s it came to be widely
believed that there must be definite laws for all human

actions—providing a foundation for the development of
psychology and the social sciences.

In the early 1900s historians and economists emphasized that
there were at least not simple laws for various aspects of
human behavior. But it was nevertheless typically assumed
that methods based on physics would eventually yield
deterministic laws for human behavior—and this was for
example part of the inspiration for the behaviorist movement
in psychology in the mid-1900s. The advent of quantum
mechanics in the 1920s, however, showed that even physics
might not be entirely deterministic—and by the 1940s the
possibility that this might lead to human free will was being
discussed by physicists, philosophers and historians. Around
this time Karl Popper used both quantum mechanics and
sensitive dependence on initial conditions (see also page 971)
to argue for fundamental indeterminism. And also around
this time Friedrich Hayek (following ideas of Ludwig Mises
in the early 1900s) suggested—presumably influenced by
work in mathematical logic—that human behavior might be
fundamentally unpredictable because in effect brains can
explain only systems simpler than themselves, and can thus
never explain their own operation. But while this has some
similarity to the ideas of computational irreducibility in this
book it appears never to have been widely studied. 

Questions of free will and responsibility have been widely
discussed in criminal and other law since at least the 1800s
(see note below). In the 1960s and 1970s ideas from popular
psychology tended to diminish the importance of free will
relative to physiology or environment and experiences. In the
1980s, however, free will was increasingly attributed to
animals other than humans. Free will for computers and
robots was discussed in the 1950s in science fiction and to
some extent in the field of cybernetics. But following lack of
success in artificial intelligence it has for the most part not
been seriously studied. Sometimes it is claimed that Gödel’s
Theorem shows that humans cannot follow definite rules—
but I argue on page 1158 that this is not correct.

â Determinism in brains. Early investigations of internal
functioning in the brain tended to suggest considerable
randomness—say in the sequence of electrical pulses from a
nerve cell. But in recent years, with more extensive
measurement methods, there has been increasing evidence
for precise deterministic underlying rules. (See pages 976 and
1011.)

â Amounts of free will. In my theory the amount of free will
associated with a particular decision is in effect related to the
amount of computation required to arrive at it. In conscious
thinking we can to some extent scrutinize the processes we

x y
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use, and assess how much computation they involve. But in
unconscious thinking we cannot. And probably often these
just involve memory lookups with rather little computation.
But other unconscious abilities like intuition presumably
involve more sophisticated computation.

â Responsibility. It is often assumed that if there are definite
underlying rules for our brains then it cannot be meaningful
to say that we have any ultimate moral or legal
responsibility for our actions. For traditional ideas lead to
the notion that in this case all our actions must somehow be
thought of as the direct result of whatever external causes
(over which we have no control) are responsible for the
underlying rules in our brains and the environment in
which we find ourselves. But if the processes in our brains
are computationally irreducible then as discussed in the
main text their outcome can seem in many respects free of
underlying rules, making it reasonable to view the processes
themselves as what is really responsible for our actions. And
since these processes are intrinsic to us, it makes sense to
treat us as responsible for their effects. 

Several different theories are used in practical legal systems.
The theory popular from the behavioral sciences tends to
assume that human actions can be understood from
underlying rules for the brain, and that people should be
dealt with according to the rules they have—which can
perhaps be modified by some form of treatment. But
computational irreducibility can make it essentially
impossible to find what general behavior will arise from
particular rules—making it difficult to apply this theory. The
alternative pragmatic theory popular in rational philosophy
and economics suggests that behavior in legal matters is
determined through calculations based on laws and the
deterrents they provide. But here there is the issue that
computational irreducibility can make it impossible to
foresee what consequences a given law will have. Western
systems of law tend to be dominated by the moral theory that
people should somehow get what they deserve for choices
they made with free will—and my explanation now makes
this consistent with the existence of definite underlying rules
for the brain. 

Young children, animals and the insane are typically held less
responsible for their actions. And in a moral theory of law
this can be understood in my approach as a consequence of
the computations they do being less sophisticated—so that
their outcome is less free of the environment and of their
underlying rules. (In a pragmatic theory the explanation
would presumably be that less sophisticated computations
would not be up to the task of handling the elaborate system
of incentives that laws had defined.)

â Will and purpose. Things that are too predictable do not
normally seem free. But things that are too random also do
not normally seem to be associated with the exercise of a will.
Thus for example continual random twitching in our muscles
is not normally thought to be a matter of human will, even
though some of it is the result of signals from our brains. For
typically one imagines that if something is to be a genuine
reflection of human will then there must be some purpose to
it. In general it is very difficult to assess whether something
has a purpose (see page 829). But in capturing the most
obvious aspects of human will what seems to be most
important is at least short-term coherence and consistency of
action—as often exists in class 4, but not class 3, systems.

â Source of will. Damage to a human brain can lead to
apparent disappearance of the will to act, and there is some
evidence that one small part of the brain is what is crucial. 

Undecidability and Intractability

â History. In the early 1900s, particularly in the context of the
ideas of David Hilbert, it was commonly believed that there
should be a finite procedure to decide the truth of any
mathematical statement. That this is not the case in the
standard theory of arithmetic was in effect established by
Kurt Gödel in 1931 (see page 1158). Alonzo Church gave the
first explicit example of an undecidable problem in 1935
when he showed that no finite procedure in lambda calculus
could guarantee to determine the equivalence of two lambda
expressions. (A corollary to Gödel’s proof had in fact already
supplied another explicit undecidable problem by implying
that no finite procedure based on recursive functions could
decide whether a given primitive recursive function is
identically 0.) In 1936 Alan Turing then showed that the
halting problem for Turing machines could not be solved in
general in a finite number of steps by any Turing machine.
Some similar issues had already been considered by Emil
Post in the context of tag and multiway systems starting in
the 1920s, and in 1947 Post and Andrei Markov were able to
establish that an existing mathematical question—the word
problem for semigroups (see page 1141)—was undecidable.
By the 1960s undecidability was being found in all sorts of
systems, but most of the examples were too complicated to
seem of much relevance in practical mathematics or
computing. And apart from a few vague mentions in fields
like psychology, undecidability was viewed mainly as a
highly abstract curiosity of no importance to ordinary
science. But in the early 1980s my experiments on cellular
automata convinced me that undecidability is vastly more
common than had been assumed, and in my 1984 paper
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“Undecidability and intractability in theoretical physics” I
argued that it should be important in many issues in physics
and elsewhere. 

â Mathematical impossibilities. It is sometimes said that in the
1800s problems such as trisecting angles, squaring the circle,
solving quintics, and integrating functions like  were
proved mathematically impossible. But what was actually
done was just to show that these problems could not be
solved in terms of particular levels of mathematical
constructs—say square roots (as in ruler and compass
constructions discussed on page 1129), arbitrary roots, or
elementary transcendental functions. And in each case higher
mathematical constructs that seem in some sense no less
implementable immediately allow the problems to be solved.
Yet with undecidability one believes that there is absolutely
no construct that can explicitly exist in our universe that
allows the problem to be solved in any finite way. And unlike
traditional mathematical impossibilities, undecidability is
normally formulated purely in terms of ordinary integers—
making it in a sense necessary to collapse basic distinctions
between finite and infinite quantities if any higher-level
constructs are to be included.

â Page 755 · Code 1004600. In cases (c) and (d) steady growth
at about 0.035 and 0.039 cells per step (of which 28% on
average are non-white) is seen up to at least 20 million steps,
though there continue to be fluctuations as shown below.

â Halting problems. A classic example of a problem that is
known in general to be undecidable is whether a given
Turing machine will ever halt when started from a given
initial condition. Halting is usually defined by the head of the
Turing machine reaching a special halt state. But other
criteria can equally well be used—say the head reaching a
particular position (see page 759), or a certain pattern of
colors being formed on the tape. And in a system like a
cellular automaton a halting problem can be set up by asking
whether a cell at a particular position ever turns a particular
color, or whether, more globally, the complete state of the
system ever reaches a fixed point and no longer changes.

In practical computing, one usually thinks of computational
programs as being set up much like the register machines of
page 896 and halting when they have finished executing their
instructions. User interface and operating system programs
are not normally intended to halt in an explicit sense,
although without external input they often reach states that

do not change. Mathematica works by taking its input and
repeatedly applying transformation rules—a process which
normally reaches a fixed point that is returned as the answer,
but with definitions like  (  having no value)
formally does not.

â Proofs of undecidability. Essentially the same argument due
to Alan Turing used on page 1128 to show that most numbers
cannot be computable can also be used to show that most
problems cannot be decidable. For a problem can be thought
of as an infinite list of solutions for successive possible
inputs. But this is analogous to a digit sequence of a real
number. And since any program for a universal system can
be specified by an integer it follows that there must be many
problems for which no such program can be given.

To show that a particular problem like the halting problem is
undecidable one typically argues by contradiction, setting up
analogs of self-referential logic paradoxes such as “this
statement is false”. Suppose that one had a Turing machine

 that could solve the halting problem, in the sense that it
itself would always halt after a finite number of steps, but it
would determine whether any Turing machine whose
description it was given as input would ever halt. One way to
see that this is not possible is to imagine modifying  to
make a machine  that halts if its input corresponds to a
machine that does not halt, but otherwise goes into an
infinite loop and does not itself halt. For if one considers
feeding  as input to itself there is immediately no
consistent answer to the question of whether  halts—
leading to the conclusion that in fact no machine  could
ever exist in the first place. (To make the proof rigorous one
must add another level of self-reference, say setting up  to
ask  whether a Turing machine will halt when fed its own
description as input.) In the main text I argued that
undecidability is a consequence of universality. In the proof
above universality is what guarantees that any Turing
machine can successfully be described in a way that can be
fed as input to another Turing machine.

â Page 756 · Examples of undecidability. Once universality
exists in a system it is known from Gordon Rice’s 1953
theorem and its generalizations that most questions about
ultimate behavior will be undecidable unless their answers
are always trivially the same. Undecidability has been
demonstrated in various seemingly rather different types of
systems, most often by reduction to halting (termination)
problems for multiway systems.

In formal language theory, questions about regular languages
are always decidable, but ones about context-free languages
(see page 1103) are already often not. It is decidable whether
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such a language is finite, but not whether it contains every
possible string, is regular, is unambiguous, or is equivalent to
a language with a different grammar. 

In mathematical logic, it can be undecidable whether
statements are provable from a given axiom system—say
predicate logic or Peano arithmetic (see page 782). It is also
undecidable whether one axiom system is equivalent to
another—even for basic logic (see page 1170).

In algebra and related areas of mathematics problems of
equivalence between objects built up from elements that
satisfy relations are often in general undecidable. Examples
are word problems for groups and semigroups (see page
1141), and equivalence of finitely specified 4D manifolds (see
page 1051). (Equivalence for 3D manifolds is thought to be
decidable.) A related undecidable problem is whether two
integer matrices can be multiplied together in some sequence
to yield the zero matrix. It is also undecidable whether two
sets of relations specify the same group or semigroup. 

In combinatorics it is known in general to be undecidable
whether a given set of tiles can cover the plane (see page
1139). And from this follows the undecidability of various
problems about 2D cellular automata (see note below) and
spin systems. Also undecidable are many questions about
whether strings exist that satisfy particular constraints (see
below).

In number theory it is known to be undecidable whether
Diophantine equations have solutions (i.e. whether algebraic
equations have integer solutions) (see page 786). And this
means for example that it is in general undecidable whether
expressions that involve both algebraic and trigonometric
functions can be zero for real values of variables, or what the
values of integrals are in which such expressions appear as
denominators (compare page 916).

In computer science, general problems about verifying the
possible behavior of programs tend to be undecidable,
usually being directly related to halting problems. It is also
for example undecidable whether a given program is the
shortest one that produces particular output (see page 1067). 

It is in general undecidable whether a given system exhibits
universality—or undecidability.

â Undecidability in cellular automata. For 1D cellular
automata, almost all questions about ultimate limiting
behavior are undecidable, even ones that ask about average
properties such as density and entropy. (This results in
undecidability in classification schemes, as mentioned on
page 948.) Questions about behavior after a finite number of
steps, even with infinite initial conditions, tend to be

decidable for 1D cellular automata, and related to regular
languages (see page 957). In 2D cellular automata, however,
even questions about a single step are often undecidable.
Examples include whether any configurations are invariant
under the cellular automaton evolution (see page 942), and,
as established by Jarkko Kari in the late 1980s, whether the
evolution is reversible, or can generate every possible
configuration (see page 959). 

â Natural systems. Undecidable questions arise even in some
traditional classes of models for natural systems. For
example, in a generalized Ising model (see page 944) for a
spin system the undecidability of the tiling problem implies
that it is undecidable whether a given energy function leads
to a phase transition in the infinite size limit. Somewhat
similarly, the undecidability of equivalence of 4-manifolds
implies undecidability of questions about quantum gravity
models. In models based both on equations and other kinds
of rules the existence of formulas for conserved quantities is
in general undecidable. In models that involve continuous
quantities it can be more difficult to formulate undecidability.
But I strongly suspect that with appropriate definitions there
is often undecidability in for example the three-body
problem, so that the questions such as whether one of the
bodies in a particular scattering process will ever escape to
infinity are in general undecidable. In biology formal models
for neural processes often involve undecidability, so that in
principle it can be undecidable whether, say, there is any
particular stimulus that will lead to a given response. Formal
models for morphogenesis can also involve undecidability, so
that for example it can in principle be undecidable whether a
particular organism will ever stop growing, or whether a
given structure can ever be formed in some class of
organisms. (Compare page 407.)

â Undecidability in Mathematica. In choosing functions to
build into Mathematica I tried to avoid ones that would often
encounter undecidability. And this is why for example there
is no built-in function in Mathematica that tries to predict
whether a given program will terminate. But inevitably
functions like ,  and 
can run into undecidability—so that ultimately they have to
be limited by constructs such as  and

.

â Undecidability and sets. Functions that can be computed in
finite time by systems like Turing machines are often called
recursive (or effectively computable). Sets are called
recursive if there is a recursive function that can test
whether or not any given element is in them. Sets are
called recursively enumerable if there is a recursive
function that can eventually generate any element in them.

FixedPoint ReplaceRepeated FullSimplify

$IterationLimit
TimeConstraint
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The set of initial conditions for which a given Turing
machine halts is thus not recursive. But it turns out that
this set is recursively enumerable. And the reason is that
one can generate the elements in it by effectively
maintaining a copy of the Turing machine for each possible
initial condition, then following a procedure where for
example at step  one updates the one for initial condition

, and watches to see if it halts. Note
that while the complement of a recursive set is always
recursive, the complement of a recursively enumerable set
may not be recursively enumerable. (An example is the set
of initial conditions for which a Turing machines does not
halt.) Recursively enumerable sets are characteristically
associated with so-called  statements of the form 
(where  is recursive). (Asking whether a system ever
halts is equivalent to asking whether there exists a number
of steps  at which the system can be determined to be in
its halting state.) Complements of recursively enumerable
sets are characteristically associated with  statements of
the form —an example being whether a given
system never halts. (  and  statements are such that if
they can be shown to be undecidable, then respectively
they must be true or false, as discussed on page 1167.) If a
statement in minimal form involves  alternations of 
and  it is  if it starts with  and  if it starts
with . The  and  form the so-called arithmetic
hierarchy in which statements with larger  can be
constructed by allowing  to access an oracle for
statements with smaller  (see page 1126). (Showing that a
statement with  is undecidable does not establish that
it is always true or always false.) 

â Undecidability in tiling problems. The question of whether a
particular set of constraints like those on page 220 can be
satisfied over the whole 2D plane is in general undecidable.
For much as on page 943, one can imagine setting up a 1D
cellular automaton with the property that, say, the absence of
a particular color of cell throughout the 2D pattern formed by
its evolution signifies satisfaction of the constraints. But even
starting from a fixed line of cells, the question of whether a
given color will ever occur in the evolution of a 1D cellular
automaton is in general undecidable, as discussed in the
main text. And although it is somewhat more difficult to
show, this question remains undecidable even if one allows
any possible configuration of cells on the starting line. (There
are several different detailed formulations; the first explicit
proof of undecidability in a tiling problem was given by Hao
Wang in 1960; the version with no fixed cells by Robert
Berger in 1966 by setting up an elaborate emulation of a
register machine.) (See also page 943.) 

â Page 757 · Correspondence systems. Given a list of pairs 
with  the constraint to be satisfied is 

Thus for example  has
shortest solution . (One can have lists
instead of strings, replacing  by .)

Correspondence systems were introduced by Emil Post in
1945 to give simple examples of undecidability; he showed
that the so-called Post Correspondence Problem (PCP) of
satisfying their constraints is in general undecidable (see
below). With 2 string pairs PCP was shown to be decidable in
1981. It is known to be undecidable when 9 pairs are used,
but I strongly suspect that it is also undecidable with just 3
pairs. The undecidability of PCP has been used to establish
undecidability of many problems related to groups, context-
free languages, and other objects defined by relations (see
page 1141). Finding PCP solutions shorter than a given
length is known to be an NP-complete problem.

With  string pairs and  there
are  possible constraints (assuming no
strings of zero length), each being related to at most 
others by straightforward symmetries (or altogether  for
given ). The number of constraints which yield solutions of
specified lengths  for  and  are as follows
(the boxes at the end give the number of cases with no
solution): 

With , as  increases an exponentially decreasing
fraction of possible constraints have solutions; with  it
appears that a fraction more than 1/4 continue to do so.
With , it appears that if a solution exists, it must have
length  or less. With , the longest minimal solution
lengths for  are given above. (Allowing  yields no
greater lengths for these values of .) With , example
(l) yields a solution of length 112. The only possible longer

 case is , for which

n
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StringJoin Flatten
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any possible solution must be longer than 200. With ,
 has minimal solution

length 120 and  has
minimal solution length 132.

A given constraint can fail to have a solution either because
the colors of cells at some point cannot be made to match, or
because the two strings can never have the same finite length
(as in ). To know that a solution exists in a
particular case, it is sufficient just to exhibit it. To know that
no solution is possible of any length, one must in effect have
a proof.

In general, one condition for a solution to exist is that
integer numbers of pairs can yield strings of the same
length, so that given the length differences

 there is a vector  of
non-negative integers such that . If only one color of
element ever appears this is the complete condition for a
solution—and for  solutions exist if 
and are then of length at least

. With two colors of
elements additional conditions can be constructed involving
counting elements of each color, or various blocks of
elements.

The undecidability of PCP can be seen to follow from the
undecidability of the halting problem through the fact that
the question of whether a tag system of the kind on page 93
with initial sequence  ever reaches a halting state (where
none of its rules apply) is equivalent to the question of
whether there is a way to satisfy the PCP constraint

Any PCP constraint can also immediately be related to the
evolution of a multiway tag system of the kind discussed in
the note below. Assuming that the upper string is never
shorter than the lower one, the rules for the relevant tag
system are given simply by

In the case of example (e) the existence of a solution of
length 24 can then be seen to follow from the fact that

 contains .

This correspondence with tag systems can be used in practice
to search for PCP solutions, though it is usually most efficient
to run tag systems that correspond both to moving forward
and backward in the string, and to see whether their results
ever agree. (In most PCP systems, including all the examples

shown except (a) and (g), one string is always systematically
longer than the other.) The tag system approach is normally
limited by the number of intermediate strings that may need
to be kept.

The pictures below show which possible sequences of up to 6
blocks yield upper and lower strings that agree in each of the
PCP systems in the main text. As indicated in the first picture
for the case of two blocks, each possible successively longer
sequence corresponds to a rectangle in the picture (compare
page 594). When a sequence of blocks leads to upper and
lower strings that disagree, the rectangle is left white. If the
strings agree so far, then the rectangle is colored with a gray
that is darker if the strings are closer in length. Rectangles
that are black (as visible in cases (a) and (b)) correspond to
actual PCP solutions where the strings are the same length.
Note that in case (c) the presence of only one color in either
block means that strings will always agree so far. In cases (m)
through (s) there is ultimately no solution, but as the pictures
indicate, in these specific PCP systems there are always
strings that agree as far as they have gone—it is just that they
never end up the same length. 

As one example of how one proves that a PCP constraint
cannot be satisfied, consider case (s). From looking at the
structure of the individual pairs one can see that if there is a
solution it must begin with pair 1 or pair 3, and end with pair
1. But in fact it cannot begin with pair 1 because this would
mean that the upper string would have to start off being
longer, then at some point cross over to being shorter.
However, the only way that such a crossover can occur is by
pair 3 appearing with its upper  aligned with its second
lower . Yet starting with pair 1, the upper string is longer by
2 s, and the pairs are such that the length difference must
always remain even—preventing the crossover from
occurring. This means that any solution must begin with pair
3. But this pair must then be followed by another pair 3,
which leaves  sticking out on the bottom. So how can

n = 12
{{"AABAAB", "B"}, {"B", "A"}, {"A", "AB"}}

{{"A", "AABB"}, {"AAB", "B"}, {"B", "AA"}}

{{"A", "AA"}}

d = Map[StringLength, p, {2}]�.�{1, -1} v
v �.�d 2 0

r = 2 Apply[Times, d] < 0

Apply[Plus[##] /GCD[##] &, Abs[d]]

s

TSToPCP[{n_, rule_}, s_] :=
Map[Flatten[IntegerDigits[#, 2, 2]] &, Module[{f}, f [u_] :=

Flatten[Map[{1, #} &, 3 u]]; Join[Map[{f [Last[#]],
RotateLeft[f [First[#]]]} &, rule], {{f [s], {1}}}, Flatten[

Table[{{1, 2}, Append[RotateLeft[f [IntegerDigits[ j , 2,
i]]], 2]}, {i, 0, n - 1}, { j , 0, 2i - 1}], 1]]], {2}]

Apply[Append[#2, s___] ! Prepend[#1, s] &, p, {1}]

MWTSEvolve[rule, {{"B"}}, 22] {"B", "A"}
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this  be removed? The only way is to use the sequence
of pairs 2, 3, 3, 2—yet doing this will just produce another

 further on. And thus one concludes that there is no
way to satisfy these particular PCP constraints. 

One can generalize PCP to allow any number of colors, and
to require correspondence among any number of strings—
though it is fairly easy to translate any such generalization to
the 2-string 2-color case.

â Multiway tag systems. As an extension of ordinary
multiway systems one can generalize tag systems from page
93 to allow a list of strings at each step. Representing the
strings by lists, one can write rules in the form

so that the evolution is given by 

â Word problems. The question of whether a particular string
can be generated in a given multiway system is an example
of a so-called word problem. An original more specialized
version of this was posed by Max Dehn in 1911 for groups
and by Axel Thue in 1914 for semigroups. As discussed on
page 938 a finitely presented group or semigroup can be
viewed as a special case of a multiway system, in which the
rules of the multiway system are obtained from relations
between strings consisting of products of generators. The
word problem then asks if a given product of such generators
is equal to the identity element. Following work by Alan
Turing in the mid-1930s, it was shown in 1947 by Emil Post
from the undecidability of PCP that the word problem for
semigroups is in general undecidable. Andrei Markov gave a
specific example of this for a semigroup with 13 generators
and 33 relations, and by 1966 Gennadií Makanin had found
the simpler example

Using these relations as rules for a multiway system most
initial strings yield behavior that either dies out or becomes
repetitive. The shortest initial strings that give unbounded
growth are  and —though both of
these still eventually yield just exponentially increasing
numbers of distinct strings. In 1967 Yuri Matiyasevich
constructed a semigroup with 3 complicated relations that
has an undecidable word problem. It is not yet known
whether undecidability can occur in a semigroup with a
single relation. The word problem is known to be decidable
for commutative semigroups. 

The word problem for groups was shown to be undecidable
in the mid-1950s by Petr Novikov and William Boone. There

are however various classes of groups for which it is
decidable. Abelian groups are one example. Another are so-
called automatic groups, studied particularly in the 1980s, in
which equivalence of words can be recognized by a finite
automaton. (Such groups turn out to have definite
geometrical properties, and are associated with spaces of
negative curvature.) Even if a group ultimately has only a
finite number of distinct elements, its word problem (with
elements specified as products of generators) may still be
undecidable. Constructions of groups with undecidable
word problems have been based on setting up relations that
correspond to the rules in a universal Turing machine. With
the simplest such machine known in the past (see page 706)
one gets a group with 32 generators and 142 relations. But
with the universal Turing machine from page 707 one gets a
group with 14 generators and 52 relations. (In general 
generators and  relations are needed.) From the
results in this book it seems likely that there are still much
simpler examples—some of which could perhaps be found
by setting up groups to emulate rule 110. Note that groups
with just one relation were shown always to have decidable
word problems by Wilhelm Magnus in 1932.

For ordinary multiway (semi-Thue) systems, an example
with an undecidable word problem is known with 2 types of
elements and 5 very complicated rules—but I am quite
certain that much simpler examples are possible. (1-rule
multiway systems always have decidable word problems.) 

â Sequence equations. One can ask whether by replacing
variables by sequences one can satisfy so-called word or
string equations such as 

(with shortest solution ,
). Knowing about PCP and

Diophantine equations one might expect that in general this
would be undecidable. But in 1977 Gennadií Makanin gave a
complicated algorithm that solves the problem completely in
a finite number of steps (though in general triple exponential
in the length of the equation). 

â Fast algorithms. Most of the fast algorithms now known
seem to fall into a few general classes. The most common are
ones based on repetition or iteration, classic examples being
Euclid’s algorithm for  (page 915), Newton’s method for

 and the Gaussian elimination method for
. Starting in the 1960s it began to be realized that

fast algorithms could be based on nested or recursive
processes, and such algorithms became increasingly popular
in the 1980s. In most cases, the idea is recursively to divide
data into parts, then to do operations on these parts, and

BAAB

BAAB

{{1, 1, s___} ! {s, 1, 0}, {1, s___} ! {s, 1, 0, 1}}

MWTSEvolve[rule_, list_, t_] :=
Nest[Flatten[Map[ReplaceList[#, rule] &, #], 1] &, list, t]

{"CCBB" · "BBCC", "BCCCBB" · "CBBBCC", "ACCBB" · "BBA",
"ABCCCBB" · "CBBA", "BBCCBBBBCC" · "BBCCBBBBCCA"}

"BBBBABB" "BBBBBBA"

s k + 4
5 s k + 2

Flatten[{x, 0, x, 0, y}] 2 Flatten[{y, x, 0, y, 1, 0, 1, 0, 0}]

x = {1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0}

y = {1, 0, 1, 0, 0, 1, 0, 1, 0, 0}

GCD
FindRoot
LinearSolve
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finally reassemble the results. An example is the algorithm of
Anatolii Karatsuba from 1961 for finding products of -digit
numbers (with ) by operating on their digits in the
nested pattern of page 608 (see also page 1093) according to

Other examples include the fast Fourier transform (page
1074) and related algorithms for , the quicksort
algorithm for , and many algorithms in fields such as
computational geometry. Starting in the 1980s fast algorithms
based on randomized methods (see page 1192) have also
become popular. But particularly from the discoveries in this
book, it seems likely that the very fastest algorithms for many
kinds of problems will not in the end have the type of regular
structure that characterizes almost all algorithms currently
used.

â Sorting networks. Any list can be sorted using
 by doing a fixed sequence of

comparisons of pairs 

(Different comparisons often do not interfere and so can be
done in parallel.) The pictures below show a few sequences
of pair comparisons that sort lists of length . 

The top two (both with 120 comparisons) have a repetitive
structure and correspond to standard sorting algorithms:
transposition sort and insertion sort. (Quicksort does not use
a fixed sequence of comparisons.) The first one on the bottom
(with 63 comparisons) has a nested structure and uses the
method invented by Kenneth Batcher in 1964:

The second one on the bottom also uses 63 comparisons,
while the last one is the smallest known for : it uses 60
comparisons and was invented by Milton Green in 1969. For

 the smallest numbers of comparisons known to work

are . (In
general all lists will be sorted correctly if lists of just 0’s and
1’s are sorted correctly; allowing even just one of these 
cases to be wrong greatly reduces the number of comparisons
needed.) For  the Batcher method is known to give
minimal length sequences of comparisons (for  the total
numbers of minimal sequences that work are

). The Batcher method in general requires
about  comparisons; it is known that in principle

 are sufficient. Various structures such as de Bruijn
and Cayley graphs can be used as the basis for sorting
networks, though it is my guess that typically the smallest
networks for given  will have no obvious regularity. (See
also page 832.) 

â Page 758 · Computational complexity theory. Despite its
rather general name, computational complexity theory has
for the most part been concerned with the quite specific issue
of characterizing how the computational resources needed to
solve problems grow with input size. From knowing explicit
algorithms many problems can be assigned to such classes as:

äNC: can be solved in a number of steps that increases like a 
polynomial in the logarithm of the input size if processing 
is done in parallel on a number of arbitrarily connected 
processors that increases like a polynomial in the input 
size. (Examples include addition and multiplication.)

äP (polynomial time): can be solved (with one processor) in 
a number of steps that increases like a polynomial in the 
input size. (Examples include evaluating standard 
mathematical functions and simulating the evolution of 
cellular automata and Turing machines.)

äNP (non-deterministic polynomial time): solutions can be 
checked in polynomial time. (Examples include many 
problems based on constraints as well as simulating the 
evolution of multiway systems and finding initial 
conditions that lead to given behavior in a cellular 
automaton.)

äPSPACE (polynomial space): can be solved with an 
amount of memory that increases like a polynomial in the 
input size. (Examples include finding repetition periods in 
systems of limited size.)

Central to computational complexity theory are a collection
of hypotheses that imply that NC, P, NP and PSPACE form a
strict hierarchy. At each level there are many problems
known that are complete at that level in the sense that all
other problems at that level can be translated to instances of
that problem using only computations at a lower level. (Thus,
for example, all problems in NP can be translated to instances
of any given NP-complete problem using computations in P.)

n
n = 2s

First[f [IntegerDigits[x, 2, n], IntegerDigits[y, 2, n], n/2]]

f [x_, y_, n_] :=
If[n < 1, x y, g[Partition[x, n], Partition[y, n], n]]

g[{x1_, x0_}, {y1_, y0_}, n_] :=
With[{z1 = f [x1, y1, n/2], z0 = f [x0, y0, n/2]},

z1 22 n + ( f [x0 + x1, y0 + y1, n/2] - z1 - z0) 2n + z0]

ListConvolve
Sort

Fold[PairSort, list, pairs]

PairSort[a_, p : {_, _}] := Block[{t = a}, t0p1 = Sort[t0p1]; t]

n = 16

Flatten[Reverse[Flatten[With[{m = Ceiling[Log[2, n]] - 1},
Table[With[{d = If[ i 2 m, 2t , 2i+1 - 2t]}, Map[
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â History. Ideas of characterizing problems by growth rates in
the computational resources needed to solve them were
discussed in the 1950s, notably in the context of operation
counts for numerical calculations, sizes of circuits for
switching and other applications, and theoretical lengths of
proofs. In the 1960s such ideas were increasingly formalized,
particularly for execution times on Turing machines, and in
1965 the suggestion was made that one should consider
computations feasible if they take times that grow like
polynomials in their input size. NP completeness (see below)
was introduced by Stephen Cook in 1971 and Leonid Levin
around the same time. And over the course of the 1970s a
great many well-known problems were shown to be NP-
complete. A variety of additional classes of computations—
notably ones like NC with various kinds of parallelism, ones
based on circuits and ones based on algebraic operations—
were defined in the 1970s and 1980s, and many detailed
results about them were found. In the 1980s much work was
also done on the average difficulty of solving NP-complete
problems—both exactly and approximately (see page 985).
When computational complexity theory was at its height in
the early 1980s it was widely believed that if a problem could
be shown, for example, to be NP-complete then there was
little chance of being able to work with it in a practical
situation. But increasingly it became clear that general
asymptotic results are often quite irrelevant in typical
problems of reasonable size. And certainly pattern matching
with  in Mathematica, as well as polynomial manipulation
functions like , routinely deal with problems
that are formally NP-complete.

â Lower bounds. If one could prove for example that 
then one would immediately have lower bounds on all NP-
complete problems. But absent such a result most of the
general lower bounds known so far are based on fairly
straightforward information content arguments. One cannot
for example sort  objects in less than about  steps since one
must at least look at each object, and one cannot multiply two

-digit numbers in less than about  steps since one must at
least look at each digit. (As it happens the fastest known
algorithms for these problems require very close to  steps.)
And if the output from a computation can be of size  then
this will normally take at least  steps to generate. Subtleties
in defining how big the input to a computation really is can
lead to at least apparently exponential lower bounds. An
example is testing whether one can match all possible
sequences with a regular expression that involves -fold
repetitions. It is fairly clear that this cannot be done in less
than about  steps. But this seems exponentially large if  is
specified by its digit sequence in the original input regular

expression. Similar issues arise in the problem of determining
truth or falsity in Presburger arithmetic (see page 1152). 

Diagonalization arguments analogous to those on pages 1128
and 1162 show that in principle there must exist functions
that can be evaluated only by computations that exceed any
given bound. But actually finding examples of such functions
that can readily be described as having some useful purpose
has in the past seemed essentially impossible.

If one sufficiently restricts the form of the underlying system
then it sometimes becomes possible to establish meaningful
lower bounds. For example, with deterministic finite
automata (see page 957), there are sequences that can be
recognized, but only by having exponentially many states.
And with DNF Boolean expressions (see page 1096) functions
like  are known to require exponentially many terms,
even—as discovered in the 1980s—if any limited number of
levels are allowed (see page 1096).

â Algorithmic complexity theory. Ordinary computational
complexity theory asks about the resources needed to run
programs that perform a given computation. But algorithmic
complexity theory (compare page 1067) asks instead about
how large the programs themselves need to be. The results of
this book indicate however that even programs that are very
small—and thus have low algorithmic complexity—can
nevertheless perform all sorts of complex computations.

â Turing machines. The Turing machines used here in effect
have tapes that extend only to the left, and have no explicit
halt states. (They thus differ from the Turing machines which
Marvin Minsky and Daniel Bobrow studied in 1961 in the

,  case and concluded all had simple behavior.) One
can think of each Turing machine as computing a function

 of the number  given as its input. The function is total
(i.e. defined for all ) if the Turing machine always halts;
otherwise it is partial (and undefined for at least some ).
Turing machines can be numbered according to the scheme
on page 888. The number of steps before a machine with
given rule halts can be computed from (see page 888)

Of the 4096 Turing machines with , , 748 never halt,
3348 sometimes halt and 1683 always halt. (The most rarely
halting are ones like machine 3112 that halt only when

.) The number of distinct functions  that can be
computed by such machines is 351, of which 149 are total. 17
machines compute ; none compute ; 17 compute 
and do not halt when —an example being 2575. Most
machines compute functions that involve digit manipulations

__

GroebnerBasis

P % NP

n n

n n

n
2n

2n

s

s s

Xor

s = 2 k = 2

f [x] x
x

x

Module[{s = 1, a, i = 1, d}, a[_] = 0; MapIndexed[a[#2011] =
#1 &, Reverse[IntegerDigits[x, 2]]]; Do[{s, a[ i], d} =

{s, a[ i]} /. rule; i -= d; If[ i 2 0, Return[t]], {t, tmax}]]

s = 2 k = 2

x = 4 j - 1 f [x]

x + 1 x + 2 x - 1
x = 0
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without traditional interpretations as mathematical functions. It
is quite common to find machines that compute almost the
same function: 1507 and 1511 disagree (where 1507 halts) only
for . If  is the number of steps to compute  then
the number of distinct pairs  is 492, or 230 for total

. In 164  does not increase with the number of digits  in
, in 295 it increases linearly, in 27 quadratically, and in 6

exponentially. For total  the corresponding numbers are 84,
136, 7, 3; the 3 machines with exponential growth are 378
(example (f) on page 761), 1953 and 2289; all compute trivial
functions. Machine 1447 (example (e)) computes the function
which takes the digit sequence of  and replaces its first

 0’s by 1’s.

Among the 2,985,984 Turing machines with , , at
least 2,550,972 sometimes halt, and about 1,271,304 always
do. The number of distinct functions that can be computed is
about 36,392 (or 75,726 for  pairs). 8934 machines
compute  (by 25 different methods, including ones like
machine 164850 that take exponential steps), 14 compute

, and none compute . Those machines that take
times that grow precisely like  all tend to compute very
straightforward functions which can be computed much
faster by other machines. 

Among the 2,985,984 Turing machines with , , at
least 2,760,721 sometimes halt, and about 974,595 always halt.
The number of distinct functions that can be computed is
about 315,959 (or 457,508 for  pairs). (The fact that
there are far fewer distinct functions in the ,  case is a
consequence of equivalences between states but not colors.) 

Among the  Turing machines with ,  about 80%
at least sometimes halt, and about 16% always do. Still none
compute . And no Turing machine of any size can
directly compute a function like ,  or  that
involves manipulating all digits in . 

â Functions. The plots below show the values of the functions
 for  from 0 to 1023 computed by the Turing machines on

pages 761 and 763. Many of the plots use logarithmic scales.
Rarely are the values close to their absolute maximum . 

â Machine 1507. This machine shows in some ways the most
complicated behavior of any ,  Turing machine. As
suggested by picture (k) it fails to halt if and only if its
configuration at some step matches  (in
the alternative form of page 888). For any input  one can test
whether the machine will ever halt using

This test takes at most  recursive steps, even though the
original machine can take of order  steps to halt. Among

,  machines there are 314 machines that do the same
computation as 1507, but none any faster.

â Page 763 · Properties. The maximum numbers of steps
increase with input size according to:

(a) 

(b) (does not halt for )

(c) 

(d) 

(h) (see note below)

(i) (does not halt for various )

(j) (does not halt for various )

(k) (does not halt for )

(l) 

â Longest halting times. The pictures below show the largest
numbers of steps  that it takes any machine of a
particular type to halt when given successive inputs . For

,  the largest results for all inputs of sizes 0 to 4 are
, all obtained with machine 1447. For 

the largest results are , achieved for  with
machines 378 and 1351. For ,  the largest results
for successive sizes are  (often
achieved by machine 600720; see below) and for , 

 (often achieved by machine 840971).
Note the similarity to the busy beaver problem discussed on
page 889.

x > 35 t[x] f [x]
{f [x], t[x]}

f [x] t[x] n
x

f [x]

x
3 + IntegerExponent[x + 1, 2]

s = 3 k = 2

{f [x], t[x]}
x + 1

x + 2 x + 3
2n

s = 2 k = 3

{f [x], t[x]}
s = 3 k = 2

232 s = 4 k = 2

x + 3
x2 2 x Mod[x, 2]
x

f [x] x

t[x]

(b), (c), (d) ( f ), (g), (h) (k)

(a) (e) ( i), ( j)

(d) (h) ( l)

(c) (g) (k)

(b) ( f ) ( j)

(a) (e) ( i)

s = 2 k = 2

{( 0) ..., {1, 1}, 1, ___}
x

u[{Reverse[IntegerDigits[x, 2]], 0}]

u[ list_] := v[Split[Flatten[ list]]]

v[{a_, b_ : {}, c_ : {}, d_ : {}, e_ : {}, f_ : {}, g___}] :=
Which[a 2 {1} || First[a] 2 0, True, c 2 {}, False,

EvenQ[Length[b]], u[{a, 1 - b, c, d, e, f , g}],
EvenQ[Length[c]], u[{a, 1 - b, c, 1, Rest[d], e, f , g, 0}],
e 2 {} || Length[d] > Length[b] + Length[a] - 2,
True, EvenQ[Length[e]], u[{a, b, c, d, f , g}],
True, u[{a, 1 - b, c, 1 - d, e, 1, Rest[f], g, 0}]]

n/3
n2

s = 3 k = 2

14 2^Floor[n/2] - 11+ 2 Mod[n, 2]

x = 1

2n - 1

(7 (1+Mod[n, 2]) 4^Floor[n/2] + 2 Mod[n, 2] - 7)/3
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â Growth rates. Some Turing machine can always be found that
has halting times that grow at any specified rate. (See page 103
for a symbolic system with halting times that grow like

.) As discussed on page 1162, if the growth rate
is too high then it may not be possible to prove that the
machines halt using, say, the standard axioms of arithmetic. The
maximum halting times above increase faster than the halting
times for any specific Turing machine, and are therefore
ultimately not computable by any single Turing machine.

â Machine 600720. (Case (h) of page 763.) The maximum
halting times for the first few sizes  are

These occur for inputs  and
correspond to outputs (each themselves maximal for given )

Such maxima often seem to occur when the input  has the
form  (and so has digits ). The
output  in such cases is always  where 

One then finds that  has the form
 for some ,

suggesting a connection with the number theory systems of
page 122. The corresponding halting time  is

 with

For  it then turns out that  is extremely close to
, and  to , for

some integer . 

It is very difficult in general to find traditional formulas for
 and . But if  involves no

consecutive 0’s then for example  can be obtained from 

(The corresponding expression for  is more complicated.)
A few special cases are:

How the halting times behave for large  is not clear. It is
certainly possible that they could increase like

, or , although for  a
better fit for  is just , with outputs increasing like

.

â Page 766 · NP completeness. Among the hundreds of
problems known to be NP-complete are:

äCan a non-deterministic Turing machine reach a certain 
state in a given number of steps?

äCan a multiway system generate a certain string in a given 
number of steps?

ä Is there an assignment of truth values to variables that 
makes a given Boolean expression true? (Satisfiability; 
related to minimal Boolean expressions of page 1095.)

äWill a given sequence of pair comparisons correctly sort 
any list (see page 1142)?

äWill a given pattern of origami folds yield an object that 
can be made flat?

äDoes a network have any parts that match a given 
subnetwork (see page 1038)? 

ä Is there a path shorter than some given length that visits all 
of some set of points in the plane? (Travelling salesman; 
related to the network layout problem of page 1031.)

ä Is there a solution of a certain size to an integer linear 
programming problem?

ä Is there any  such that ? (See page 
1090.)

äDoes a matrix have a permanent of given value?

ä Is there a way to satisfy tiling constraints in a finite region? 
(See page 984.)

ä Is there a string of some limited length that solves a 
correspondence problem?

ä Is there an initial condition to a cellular automaton that 
yields particular behavior after a given number of steps?

(In cases where numbers are involved, it is usually crucial
that these be represented by base 2 digit sequences, and not,
say, in unary.) Many NP-complete problems at first seem
quite unrelated. But often their equivalence becomes clear
just by straightforward identification of terms. And so for
example the equivalence of satisfiability to problems about
networks can be seen by identifying variables and clauses in
Boolean expressions respectively with connections and nodes
in networks.

One can get an idea of the threshold of NP completeness by
looking at seemingly similar problems where one is
NP-complete but the other is in P. Examples include:

Nest[2# &, 0, n]

n
{5, 159, 161, 1021, 5419, 315391,

1978213883, 1978213885, 3018415453261}

{1, 2, 5, 10, 26, 34, 106, 213, 426}

n

2^{3, 23, 24, 63, 148, 1148, 91148, 91149, 3560523} - 1

x
(20 4s - 2)/3 {1, 1, 0, 1, 0, ?, 1, 0}

f [x] 2u - 1
u = Nest[( 13 + ( 6 # + 8) (5/2)^

IntegerExponent[6 # + 8, 2]) /6 &, 1, s + 1]

6 u + 8
Nest[If[EvenQ[#], 5 # /2, # + 21] &, 14, m] m

t[x]
Last[Nest[h, {8, 4 s + 24}, s]] - 1

h[{i_, j_}] := With[{e = IntegerExponent[3 i + 4, 2]}, {13/6 +
( i + 4/3) (5/2)e+1, ( ( 154+ 75 ( i + 4/3) (5/2)e)2 -

16321 - 7860 i - 900 i2 + 3360 e)/3780 + j}]

s > 3 f [x]
3560523 (5/2)r t[x] 18865098979373 (5/2)2 r

r

f [x] t[x] IntegerDigits[x, 2]
f [x]

2^ ( b[Join[{1, 1}, #], Length[#]] &)[IntegerDigits[x, 2]] - 1

a[{l_, _}, r_] := ( {l + ( 5 r - 3 #) /2, #} &)[Mod[r, 2]]

a[{l_, 0}, 0] := {l + 1, 0}

a[{l_, 1}, 0] :=
( {( 13 +# ( 5 /2)^ IntegerExponent[#, 2]) /6, 0} &)[6 l + 2]

b[ list_, i_] := First[Fold[a, {Apply[Plus, Drop[ list, -i]], 0},
Apply[Plus, Split[Take[ list, -i], #1 2 #2 9 0 &], 1]]]

t[x]

f [4 s] = 4 s + 3

f [4 s + 1] = 2 f [2 s] + 1

f [2s - 1] = 2(10 s+5+3 (-1)s)/4 - 1

n

NestList[#2 &, 2, n] 22n

x = ( 20 4s - 2)/3
n ¦ 200 22.6 n

221.3 n

x < a Mod[x2, b] 2 c
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äFinding a Hamiltonian circuit that visits once every 
connection in a given network is NP-complete, but finding 
an Euler circuit that visits once every node is in P.

äFinding the longest path between two nodes in a network 
is NP-complete, but finding the shortest path is in P.

äDetermining satisfiability for a Boolean expression with 3 
variables in each clause is NP-complete, but for one with 2 
variables is in P. (The latter is like a network with only 2 
connections at each node.)

ä Solving quadratic Diophantine equations  is 
NP-complete, but solving linear ones  is in P.

äFinding a minimum energy configuration for a 2D Ising 
spin glass in a magnetic field is NP-complete, but is in P if 
there is no magnetic field.

äFinding the permanent of a matrix is NP-complete, but 
finding its determinant is in P.

It is not known whether problems such as integer factoring or
equivalence of networks under relabelling of nodes (graph
isomorphism) are NP-complete. It is known that in principle
there exist NP problems that are not in P, yet are not
NP-complete. 

â Natural systems. Finding minimum energy configurations
is formally NP-complete in standard models of natural
systems such as folding protein and DNA molecules (see
page 1003), collections of charges on a sphere (compare page
987), and finite regions of spin glasses (see page 944). As
discussed on page 351, however, it seems likely that in nature
true minima are very rare, and that instead what is usually
seen are just the results of actual dynamical processes of
evolution.

In quantum field theory and to a lesser extent quantum
mechanics and celestial mechanics, approximation schemes
based on perturbation series seem to require computations
that grow very rapidly with order. But exactly what this
implies about the underlying physical processes is not
clear.

â P versus NP questions. Most programs that are explicitly
constructed to solve specific problems tend at some level to
have rather simple behavior—often just repetitive or nested,
so long as appropriate number representations are used. And
it is this that makes it realistic to estimate asymptotic growth
rates using traditional mathematics, and to determine
whether the programs operate in polynomial time. But as the
pictures on page 761 suggest, arbitrary computational
systems—even Turing machines with very simple rules—can
exhibit much more complicated behavior with no clear
asymptotic growth rate. And indeed the question of whether

the halting times for a system grow only like a power of input
size is in general undecidable. And if one tries to prove a
result about halting times using, say, standard axioms of
arithmetic or set theory, one may find that the result is
independent of those axioms. So this makes it far from clear
that the general  question has a definite answer within
standard axiom systems of mathematics. If one day someone
were to find a provably polynomial time algorithm that
solves an NP-complete problem then this would establish
that . But it could well be that the fastest programs for
NP-complete problems behave in ways that are too
complicated to prove much about using the standard axioms
of mathematics.

â Non-deterministic Turing machines. Generalizing rules
from page 888 by making each right-hand side a list of
possible outcomes, the list of configurations that can be
reached after  steps is given by

â Page 767 · Implementation. Given a non-deterministic
Turing machine with rules in the form above, the rules for a
cellular automaton which emulates it can be obtained from

â Page 768 · Satisfiability. Given variables , ,
 representing whether at step  a non-deterministic

Turing machine is in state , the tape square at position  has
color , and the head is at position , the following CNF
expression represents the assertion that a Turing machine
with  states and  possible colors follows the specified
rules and halts after at most  steps:

 

a x2 + b y 2 c
a x + b y 2 c

P = NP

P = NP

t

NTMEvolve[rule_, inits_, t_Integer] := Nest[
Union[Flatten[Map[NTMStep[rule, #] &, #], 1]] &, inits, t]

NTMStep[rule_List, {s_, a_, n_}] /; 1 < n < Length[a] :=
Apply[{#1, ReplacePart[a, #2, n], n+#3} &,

Replace[{s, a0n1}, rule], {1}]

NDTMToCA[tm_] := Flatten[{{_, h, _} ! h, {s, _c, _} ! e, {s,
_, _} ! s, {_, s, c[ i_]} ! s[ i], {_, s, x_} ! x, {a[_, _], _s, _} ! s,
{_, a[x_, y_], s[ i_]} ! a[x, y, i], {x_, _s, _} ! x, {_, _, s[ i_]} !
s[ i], Map[Table[With[{b = (#0Min[Length[#], z]1 &)[
{x, #} /. tm]}, If[Last[b] 2 -1, {{a[_], a[x, #, z], e} ! h, {a[
_], a[x, #, z], s} ! a[x, #, z], {a[_], a[x, #, z], _} ! a[b021],
{a[x, #, z], a[w_], _} ! a[b011, w], {_, a[w_], a[x, #, z]} !
a[w]}, {{a[_], a[x, #, z], _} ! a[b021], {a[x, #, z], a[w_],
_} ! a[w], {_, a[w_], a[x, #, z]} ! a[b011, w]}]], {x,

Max[Map[#01, 11 &, tm]]}, {z, Max[Map[Length[#021] &,
tm]]}] &, Union[Map[#01, 21 &, tm]]], {_, x_, _} ! x}]

²[t, s] °[t, x, a]
±[t, n] t

s x
a n

stot ktot
t

NDTMToCNF[rules_, {s_, a_, n_}, t_] :=
{Table[Apply[Or, Table[²[ i, j], { j , stot}]], {i, t - 1}],
Table[! ²[ i, j] || ! ²[ i, k], {i, 0, t - 1}, { j , stot}, {k, j + 1, stot}],
Table[Apply[Or, Table[±[ i, j], { j , n+ i, Max[0, n - i], -2}]],
{i, 0, t}], Table[!±[ i, j] || !±[ i, k], {i, 0, t}, { j , n+ i, Max[0,
n - i], -2}, {k, j + 2, n+ i}], Table[Apply[Or, Table[°[ i, j , k],
{k, 0, ktot - 1}]], {i, 0, t - 1}, { j , Max[1, n - i], n+ i}],

Table[! °[ i, j , k] || ! °[ i, j , m], {i, 0, t - 1}, { j , Max[1, n - i],
n+ i}, {k, 0, ktot - 1}, {m, k + 1, ktot - 1}], ²[0, s],
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â Density of difficult problems. There are arguments that in
an asymptotic sense most instances chosen at random of
problems like limited-size PCP or tiling will be difficult to
solve. In a problem like satisfiability, however, difficult
instances tend to occur only on the boundary between cases
where the density of black or white squares implies that there
is usually satisfaction or usually not satisfaction. If one looks
at simple instances of problems (say PCP with short strings)
then my experience is that many are easy to solve. But just as
some fraction of cellular automata with very simple rules
show immensely complex behavior, so similarly it seems that
some fraction of even simple instances of many NP-complete
problems also tend to be difficult to solve.

â Page 770 · Rule 30 inversion. The total numbers of
sequences for  from 1 to 15 not yielding stripes of heights 1
and 2 are respectively

The sideways evolution of rule 30 discussed on page 601
implies that if one fills cells from the left rather than the right
then some sequence of length  will always yield any
given stripe of height . 

If the evolution of rule 30 can be set up as on page 704 to
emulate any Boolean function then the problem considered
here is immediately equivalent to satisfiability. 

â Systems of limited size. In the system 
from page 255 the repetition period  can be
computed using Euclid’s algorithm in at most about

 steps. In the system  from
page 257, the repetition period 
probably cannot always be computed in any polynomial of

 steps, since otherwise  could also be
computed in about this number of steps. (But see note below.)
In a cellular automaton with  cells, the problem of finding
the repetition period is in general PSPACE-complete—as
follows from the possibility of universality in the underlying
cellular automaton. And even in a case like rule 30 I suspect
that the period cannot be found much faster than by tracing
nearly  steps of evolution. (I know of no way for example

to break the computation into parts that can be done in
parallel.) With sufficiently simple behavior, a cellular
automaton repetition period can readily be determined in
some power of  steps. But even with an additive rule
and nested behavior, the period depends on quantities like

, which probably take more like 
steps to evaluate. (But see note below.)

â Page 771 · Quantum computers. In an ordinary classical
setup one typically describes the state of something like a 2-
color cellular automaton with  cells just by giving a list of 
color values. But the standard formalism of quantum theory
(see page 1058) implies that for an analogous quantum
system—like a line of  quantum spins each either up or
down—one instead has to give a whole vector of probability
amplitudes for each of the  possible complete underlying
spin configurations. And these amplitudes  are assumed to
be complex numbers with a continuous range of possible
values, subject only to the conventional constraint of unit
total probability . The evolution of
such a quantum system can then formally be represented by
successive multiplication of the vector of amplitudes by
appropriate  unitary matrices. 

In a classical system like a cellular automaton with  cells a
probabilistic ensemble of states can similarly be described by
a vector of  probabilities —now satisfying

, and evolving by multiplication with
 matrices having a single  in each row. (If the system

is reversible—as in the quantum case—then the matrices are
invertible.) But even if one assumes that all  states in the
ensemble somehow manage to evolve in parallel, it is still
fairly clear that to do reliable computations takes essentially
as much effort as evolving single instances of the underlying
system. For even though the vector of probabilities can
formally give outcomes for  different initial conditions, any
specific individual outcome could have probability as small
as —and so would take  trials on average to detect. 

The idea of setting up quantum analogs of systems like
Turing machines and cellular automata began to be pursued
in the early 1980s by a number of people, including myself.
At first it was not clear what idealizations to make, but by the
late 1980s—especially through the work of David Deutsch—
the concept had emerged that a quantum computer should
be described in terms of a network of basic quantum gates.
The idea was to have say  quantum spins (each representing
a so-called qubit), then to do computations much like in the
reversible logic systems of page 1097 or the sorting networks
of page 1142 by applying some appropriate sequence of
elementary operations. It was found to be sufficient to do
operations on just one and two spins at a time, and in fact it

Cases[MapIndexed[°[Abs[n - First[#2]], First[#2], #1] &,
a], °[x_, _, _] /; x < t], Table[°[Abs[n - i], i, 0],
{i, Length[a] + 1, n+ t - 1}], Table[! °[ i, j , k] ||
If [EvenQ[n+ i - j], ±[ i, j], False] || °[ i + 1, j, k], {i, 0, t - 2},
{ j , Max[1, n - i], n+ i}, {k, 0, ktot - 1}], Table[Map[Function[
z, Outer[!±[ i, j] || ! ²[ i, z01, 11] || ! °[ i, j , z01, 21] || ## &,
Apply[Sequence, Map[If [ i < t - 1, {²[ i + 1, #011], ±[

i + 1, j - #031], °[ i + 1, j, #021]}, {±[ i + 1, j - #031]}] &,
z021]]]], rules], {i, 0, t - 1}, { j , n+ i, Max[1, n - i], -2}],

Apply[Or, Table[±[ i, 0], {i, n, t, 2}]]} /. List ! And

t

{1, 2, 2, 3, 3, 6, 6, 10, 16, 31, 52, 99, 165, 260}

{2, 5, 8, 14, 23, 40, 66, 111, 182,
316, 540, 921, 1530, 2543, 4122}
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was shown that any  unitary matrix can be
approximated arbitrarily closely by a suitable sequence of for
example underlying 2-spin 
operations (assuming values 0 and 1), together with 1-spin
arbitrary phase change operations. Such phase changes can
be produced by repeatedly applying a single irrational
rotation, and using the fact that  will eventually
for some  come close to any given phase (see page 903).
From the involvement of continuous numbers, one might at
first imagine that it should be possible to do fundamentally
more computations than can be done say in ordinary discrete
cellular automata. But all the evidence is that—just as
discussed on page 1128—this will not in fact be possible if
one makes the assumption that at some level discrete must be
used to set up the initial values of probability amplitudes.

From the fact that the basic evolution of an -spin quantum
system in effect involves superpositions of  spin
configurations one might however still imagine that in finite
computations exponential speedups should be possible. And
as a potential example, consider setting up a quantum
computer that evaluates a given Boolean function—with its
initial configurations of spins encoding possible inputs to the
function, and the final configuration of a particular spin
representing the output from the function. One might
imagine that with such a computer it would be easy to solve
the NP-complete problem of satisfiability from page 768: one
would just start off with a superposition in which all 
possible inputs have equal amplitude, then look at whether
the spin representing the output from the function has any
amplitude to be in a particular configuration. But in an actual
physical system one does not expect to be able to find values
of amplitudes directly. For according to the standard
formalism of quantum theory all amplitudes do is to
determine probabilities for particular outcomes of
measurements. And with the setup described, even if a
particular function is ultimately satisfiable the probability for
a single output spin to be measured say as up can be as little
as —requiring on average  trials to distinguish from ,
just as in the classical probabilistic case. 

With a more elaborate setup, however, it appears sometimes to
be possible to spread out quantum amplitudes so as to make
different outcomes correspond to much larger probability
differences. And indeed in 1994 Peter Shor found a way to do
this so as to get quantum computers at least formally to factor
integers of size  using resources only polynomial in . As
mentioned in the note above, it becomes straightforward to
factor  if one can get the values of .
But these correspond to periodicities in the list

. Given  spins one can imagine using

their  possible configurations to represent each element of
. But now if one sets up a superposition of all these

configurations, one can compute , then
essentially use  to find periodicities—all with a
polynomial number of quantum gates. And depending on

 the resulting amplitudes show fairly large
differences which can then be detected in the probabilities for
different outcomes of measurements. 

In the mid-1990s it was thought that quantum computers
might perhaps give polynomial solutions to all NP problems.
But in fact only a very few other examples were found—all
ultimately based on very much the same ideas as factoring.
And indeed it now seems decreasingly likely that quantum
computers will give polynomial solutions to NP-complete
problems. (Factoring is not known to be NP-complete.) 

And even in the case of factoring there are questions about
the idealizations used. It does appear that only modest
precision is needed for the initial amplitudes. And it seems
that perturbations from the environment can be overcome
using versions of error-correcting codes. But it remains
unclear just what might be needed actually to perform for
example the final measurements required.

Simple physical versions of individual quantum gates have
been built using particles localized for example in ion traps.
But even modestly larger setups have been possible only in
NMR and optical systems—which show formal similarities
to quantum systems (and for example exhibit interference)
but presumably do not have any unique quantum advantage.
(There are other approaches to quantum computation that
involve for example topology of 4D quantum fields. But it is
difficult to see just what idealizations are realistic for these.)

â Circuit complexity. Any function with a fixed size of input
can be computed by a circuit of the kind shown on page 619.
How the minimal size or depth of circuit needed grows with
input size then gives a measure of the difficulty of the
computation, with circuit depth growing roughly like number
of steps for a Turing machine. Note that much as on page 662
one can construct universal circuits that can be arranged by
appropriate choice of parts of their input to compute any
function of a given input size. (Compare page 703.)

â Page 771 · Finding outcomes. If one sets up a function to
compute the outcome after  steps of evolution from some
fixed initial condition—say a single black cell in a cellular
automaton—then the input to this function need contain only

 digits. But if the evolution is computationally
irreducible then to find its outcome will involve explicitly
following each of its  steps—thereby effectively finding
results for each of the  possible arrangements of
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digits corresponding to numbers less than . Note that the
computation that is involved is not necessarily in either NP
or PSPACE.

â P completeness. If one allows arbitrary initial conditions in a
cellular automaton with nearest-neighbor rules, then to
compute the color of a particular cell after  steps in general
requires specifying as input the colors of all  initial cells
up to distance  away (see page 960). And if one always does
computations using systems that have only nearest-neighbor
rules then just combining  bits of information can take
up to  steps—even if the bits are combined in a way that is
not computationally irreducible. So to avoid this one can
consider systems that are more like circuits in which any
element can get data from any other. And given  elements
operating in parallel one can consider the class NC studied
by Nicholas Pippenger in 1978 of computations that can be
done in a number of steps that is at most some power of

. Among such computations are , , ,
 and  for integers, as well as determining

outcomes in additive cellular automata (see page 609). But I
strongly suspect that computational irreducibility prevents
outcomes in systems like rule 30 and rule 110 from being
found by computations that are in NC—implying in effect
that allowing arbitrary connections does not help much in
computing the evolution of such systems. There is no way yet
known to establish this for certain, but just as with NP and P
one can consider showing that a computation is P-complete
with respect to transformations in NC. It turns out that
finding the outcome of evolution in any standard universal
Turing machine or cellular automaton is P-complete in this
sense, since the process of emulating any such system by any
other one is in NC. Results from the mid-1970s established
that finding the output from an arbitrary circuit with  or

 gates is P-complete, and this has made it possible to show
that finding the outcome of evolution in various systems not
yet known to be universal is P-complete. A notable example
due to Cristopher Moore from 1996 is the 3D majority cellular
automaton with rule  (see
page 927); another example is the Ising model cellular
automaton from page 982.

Implications for Mathematics and Its Foundations

â History. Babylonian and Egyptian mathematics emphasized
arithmetic and the idea of explicit calculation. But Greek
mathematics tended to focus on geometry, and increasingly
relied on getting results by formal deduction. For being
unable to draw geometrical figures with infinite accuracy this
seemed the only way to establish anything with certainty.

And when Euclid around 330 BC did his work on geometry
he started from 10 axioms (5 “common notions” and 5
“postulates”) and derived 465 theorems. Euclid’s work was
widely studied for more than two millennia and viewed as a
quintessential example of deductive thinking. But in
arithmetic and algebra—which in effect dealt mostly with
discrete entities—a largely calculational approach was still
used. In the 1600s and 1700s, however, the development of
calculus and notions of continuous functions made use of
more deductive methods. Often the basic concepts were
somewhat vague, and by the mid-1800s, as mathematics
became more elaborate and abstract, it became clear that to
get systematically correct results a more rigid formal
structure would be needed. 

The introduction of non-Euclidean geometry in the 1820s,
followed by various forms of abstract algebra in the mid-
1800s, and transfinite numbers in the 1880s, indicated that
mathematics could be done with abstract structures that had
no obvious connection to everyday intuition. Set theory and
predicate logic were proposed as ultimate foundations for all
of mathematics (see note below). But at the very end of the
1800s paradoxes were discovered in these approaches. And
there followed an increasing effort—notably by David
Hilbert—to show that everything in mathematics could
consistently be derived just by starting from axioms and then
using formal processes of proof.

Gödel’s Theorem showed in 1931 that at some level this
approach was flawed. But by the 1930s pure mathematics
had already firmly defined itself to be based on the notion of
doing proofs—and indeed for the most part continues to do
so even today (see page 859). In recent years, however, the
increasing use of explicit computation has made proof less
important, at least in most applications of mathematics. 

â Models of mathematics. Gottfried Leibniz’s notion in the
late 1600s of a “universal language” in which arguments in
mathematics and elsewhere could be checked with logic can
be viewed as an early idealization of mathematics. Starting in
1879 with his “formula language” (Begriffsschrift) Gottlob
Frege followed a somewhat similar direction, suggesting that
arithmetic and from there all of mathematics could be built
up from predicate logic, and later an analog of set theory. In
the 1890s Giuseppe Peano in his Formulario project organized
a large body of mathematics into an axiomatic framework
involving logic and set theory. Then starting in 1910 Alfred
Whitehead and Bertrand Russell in their Principia
Mathematica attempted to derive many areas of mathematics
from foundations of logic and set theory. And although its
methods were flawed and its notation obscure this work did
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much to establish the idea that mathematics could be built up
in a uniform way.

Starting in the late 1800s, particularly with the work of
Gottlob Frege and David Hilbert, there was increasing
interest in so-called metamathematics, and in trying to treat
mathematical proofs like other objects in mathematics. This
led in the 1920s and 1930s to the introduction of various
idealizations for mathematics—notably recursive functions,
combinators, lambda calculus, string rewriting systems and
Turing machines. All of these were ultimately shown to be
universal (see page 784) and thus in a sense capable of
reproducing any mathematical system. String rewriting
systems—as studied particularly by Emil Post—are close to
the multiway systems that I use in this section (see page 938).

Largely independent of mathematical logic the success of
abstract algebra led by the end of the 1800s to the notion that
any mathematical system could be represented in algebraic
terms—much as in the operator systems of this section.
Alfred Whitehead to some extent captured this in his 1898
Universal Algebra, but it was not until the 1930s that the
theory of structures emphasized commonality in the axioms
for different fields of mathematics—an idea taken further in
the 1940s by category theory (and later by topos theory). And
following the work of the Bourbaki group beginning at the
end of the 1930s it has become almost universally accepted
that structures together with set theory are the appropriate
framework for all of pure mathematics. 

But in fact the Mathematica language released in 1988 is now
finally a serious alternative. For while it emphasizes
calculation rather than proof its symbolic expressions and
transformation rules provide an extremely general way to
represent mathematical objects and operations—as for
example the notes to this book illustrate.

(See also page 1176.)

â Page 773 · Axiom systems. In the main text I argue that there
are many consequences of axiom systems that are quite
independent of their details. But in giving the specific axiom
systems that have been used in traditional mathematics one
needs to take account of all sorts of fairly complicated details.

As indicated by the tabs in the picture, there is a hierarchy to
axiom systems in traditional mathematics, with those for
basic and predicate logic, for example, being included in all
others. (Contrary to usual belief my results strongly suggest
however that the presence of logic is not in fact essential to
many overall properties of axiom systems.)

As discussed in the main text (see also page 1155) one can
think of axioms as giving rules for transforming symbolic

expressions—much like rules in Mathematica. And at a
fundamental level all that matters for such transformations
is the structure of expressions. So notation like  and

, while convenient for interpretation, could equally
well be replaced by more generic forms such as  or

 without affecting any of the actual operation of the
axioms.

My presentation of axiom systems generally follows the
conventions of standard mathematical literature. But by
making various details explicit I have been able to put all
axiom systems in forms that can be used almost directly in
Mathematica. Several steps are still necessary though to get
the actual rules corresponding to each axiom system. First,
the definitions at the top of page 774 must be used to expand
out various pieces of notation. In basic logic I use the notation

 to stand for the pair of rules  and . (Note
that  has the precedence of  not .) In predicate logic
the tab at the top specifies how to construct rules (which in
this case are often called rules of inference, as discussed on
page 1155).  is the modus ponens or detachment
rule (see page 1155).  is the generalization rule.

 is applied to the axioms given to get a list of
rules. Note that while  in basic logic is used in the
underlying construction of rules,  in predicate logic is just
an abstract operator with properties defined by the last two
axioms given.

As is typical in mathematical logic, there are some subtleties
associated with variables. In the axioms of basic logic literal
variables like  must be replaced with patterns like  that
can stand for any expression. A rule like 
can then immediately be applied to part of an expression
using . But to apply a rule like 
requires in effect choosing some new expression for  (see
page 1155). And one way to represent this process is just to
have the pattern  and then to say that any
actual rule that can be used must match this pattern. The
rules given in the tab for predicate logic work the same way.
Note, however, that in predicate logic the expressions that
appear on each side of any rule are required to be so-called
well-formed formulas (WFFs) consisting of variables (such
as ) and constants (such as  or ) inside any number of
layers of functions (such as , , or ) inside a layer of
predicates (such as  or ) inside any number of layers of
logical connectives (such as  or ) or quantifiers (such as

 or ). (This setup is reflected in the grammar of the
Mathematica language, where the operator precedences for
functions are higher than for predicates, which are in turn
higher than for quantifiers and logical connectives—thus
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yielding for example few parentheses in the presentation of
axiom systems here.) 

In basic logic any rule can be applied to any part of any
expression. But in predicate logic rules can be applied only
to whole expressions, always in effect using

. The axioms below (devised by
Matthew Szudzik as part of the development of this book)
set up basic logic in this way.

â Basic logic. The formal study of logic began in antiquity (see
page 1099), with verbal descriptions of many templates for
valid arguments—corresponding to theorems of logic—being
widely known by medieval times. Following ideas of abstract
algebra from the early 1800s, the work of George Boole
around 1847 introduced the notion of representing logic in a
purely symbolic and algebraic way. (Related notions had
been considered by Gottfried Leibniz in the 1680s.) Boole
identified  with  and  with , then noted that
theorems in logic could be stated as equations in which  is
roughly  and  is —and that such equations can
be manipulated by algebraic means. Boole’s work was
progressively clarified and simplified, notably by Ernst
Schröder, and by around 1900, explicit axiom systems for
Boolean algebra were being given. Often they included most
of the 14 highlighted theorems of page 817, but slight
simplifications led for example to the “standard version” of
page 773. (Note that the duality between  and  is no
longer explicit here.) The “Huntington version” of page 773
was given by Edward Huntington in 1933, along with

The “Robbins version” was suggested by Herbert Robbins
shortly thereafter, but only finally proved correct in 1996 by
William McCune using automated theorem proving (see
page 1157). The “Sheffer version” based on  (see page
1173) was given by Henry Sheffer in 1913. The shorter
version was devised by David Hillman as part of the
development of this book. The shortest version is discussed
on page 808. (See also page 1175.)

In the main text each axiom defines an equivalence between
expressions. The tradition in philosophy and mathematical
logic has more been to take axioms to be true statements from
which others can be deduced by the modus ponens inference
rule  (see page 1155). In 1879 Gottlob Frege

used his diagrammatic notation to set up a symbolic
representation for logic on the basis of the axioms

Charles Peirce did something similar at almost the same
time, and by 1900 this approach to so-called propositional or
sentential calculus was well established. (Alfred Whitehead
and Bertrand Russell used an axiom system based on  and

 in their original 1910 edition of Principia Mathematica.) In
1948 Jan Lukasiewicz found the single axiom version

equivalent for example to 

It turns out to be possible to convert any axiom system that
works with modus ponens (and supports the properties of )
into a so-called equational one that works with equivalences
between expressions by using 

An analog of modus ponens for  is , and
with this Jean Nicod found in 1917 the single axiom

which was highlighted in the 1925 edition of Principia
Mathematica. In 1931 Mordechaj Wajsberg found the slightly
simpler 

Such an axiom system can be converted to an equational one
using

but then involves 4 axioms.

The question of whether any particular statement in basic
logic is true or false is always formally decidable, although in
general it is NP-complete (see page 768).

â Predicate logic. Basic logic in effect concerns itself with
whole statements (or “propositions”) that are each either 
or . Predicate logic on the other hand takes into account
how such statements are built up from other constructs—like
those in mathematics. A simple statement in predicate logic
is , where  is “for all” and

 is “there exists” (defined in terms of  on page 774)—and
this particular statement can be proved  from the axioms.
In general statements in predicate logic can contain arbitrary
so-called predicates, say  or , that are each either

 or  for given  and . When predicate logic is used
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as part of other axiom systems, there are typically axioms
which define properties of the predicates. (In real algebra, for
example, the predicate  satisfies .) But in pure
predicate logic the predicates are not assumed to have any
particular properties.

Notions of quantifiers like  and  were already discussed
in antiquity, particularly in the context of syllogisms. The first
explicit formulation of predicate logic was given by Gottlob
Frege in 1879, and by the 1920s predicate logic had become
widely accepted as a basis for mathematical axiom systems.
(Predicate logic has sometimes also been used as a model for
general reasoning—and particularly in the 1980s was the
basis for several initiatives in artificial intelligence. But for
the most part it has turned out to be too rigid to capture
directly typical everyday reasoning processes.)

Monadic pure predicate logic—in which predicates always
take only a single argument—reduces in effect to basic logic
and is not universal. But as soon as there is even one arbitrary
predicate with two arguments the system becomes universal
(see page 784). And indeed this is the case even if one
considers only statements with quantifiers ´ µ ´. (The
system is also universal with one two-argument function or
two one-argument functions.)

In basic logic any statement that is true for all possible
assignments of truth values to variables can always be
proved from the axioms of basic logic. In 1930 Kurt Gödel
showed a similar result for pure predicate logic: that any
statement that is true for all possible explicit values of
variables and all possible forms of predicates can always be
proved from the axioms of predicate logic. (This is often
called Gödel’s Completeness Theorem, but is not related to
completeness of the kind I discuss on page 782 and elsewhere
in this section.)

In discussions of predicate logic there is often much said
about scoping of variables. A typical issue is that in, say,

,  and  are dummy variables whose
specific names are not supposed to be significant; yet the
names become significant if, say,  is replaced by . In
Mathematica most such issues are handled automatically. The
axioms for predicate logic given here follow the work of
Alfred Tarski in 1962 and use properties of  to minimize
issues of variable scoping.

(See also higher-order logics on page 1167.)

â Arithmetic. Most of the Peano axioms are straightforward
statements of elementary facts about arithmetic. The last
axiom is a schema (see page 1156) that states the principle of
mathematical induction: that if a statement is valid for ,
and its validity for  implies its validity for , then

it follows that the statement must be valid for all . Induction
was to some extent already used in antiquity—for example in
Euclid’s proof that there are always larger primes. It began to
be used in more generality in the 1600s. In effect it expresses
the idea that the integers form a single ordered sequence, and
it provides a basis for the notion of recursion.

In the early history of mathematics arithmetic with integers
did not seem to need formal axioms, for facts like

 appeared to be self-evident. But in 1861
Hermann Grassmann showed that such facts could be
deduced from more basic ones about successors and
induction. And in 1891 Giuseppe Peano gave essentially the
Peano axioms listed here (they were also given slightly less
formally by Richard Dedekind in 1888)—which have been
used unchanged ever since. (Note that in second-order
logic—and effectively set theory—  and  can be defined
just in terms of ; see page 1160. In addition, as noted by Julia
Robinson in 1948 it is possible to remove explicit mention of

 even in the ordinary Peano axioms, using the fact that if
 then . Axioms 3,

4 and 6 can then be replaced by ,
 and . See

also page 1163.) 

The proof of Gödel’s Theorem in 1931 (see page 1158)
demonstrated the universality of the Peano axioms. It was
shown by Raphael Robinson in 1950 that universality is also
achieved by the Robinson axioms for reduced arithmetic
(usually called Q) in which induction—which cannot be
reduced to a finite set of ordinary axioms (see page 1156)—is
replaced by a single weaker axiom. Statements like

 can no longer be proved in the resulting system
(see pages 800 and 1169). 

If any single one of the axioms given for reduced arithmetic is
removed, universality is lost. It is not clear however exactly
what minimal set of axioms is needed, for example, for the
existence of solutions to integer equations to be undecidable
(see page 787). (It is known, however, that essentially nothing
is lost even from full Peano arithmetic if for example one
drops axioms of logic such as .)

A form of arithmetic in which one allows induction but
removes multiplication was considered by Mojzesz
Presburger in 1929. It is not universal, although it makes
statements of size  potentially take as many as about 
steps to prove (though see page 1143).

The Peano axioms for arithmetic seem sufficient to support
most of the whole field of number theory. But if as I believe
there are fairly simple results that are unprovable from these
axioms it may in fact be necessary to extend the Peano
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axioms to make certain kinds of progress even in practical
number theory. (See also page 1166.)

â Algebraic axioms. Axioms like  can be
used in at least three ways. First, as equations which can be
manipulated—like the axioms of basic logic—to establish
whether expressions are equal. Second, as on page 773, as
statements to be added to the axioms of predicate logic to
yield results that hold for every possible system described by
the axioms (say every possible semigroup). And third, as
definitions of sets whose properties can be studied—and
compared—using set theory. High-school algebra typically
treats axioms as equations. More advanced algebra often uses
predicate logic, but implicitly uses set theory whenever it
addresses for example mappings between objects. Note that
as discussed on page 1159 how one uses algebraic axioms can
affect issues of universality and undecidability. (See also page
1169.) 

â Groups. Groups have been used implicitly in the context of
geometrical symmetries since antiquity. In the late 1700s
specific groups began to be studied explicitly, mainly in the
context of permutations of roots of polynomials, and notably
by Evariste Galois in 1831. General groups were defined by
Arthur Cayley around 1850 and their standard axioms
became established by the end of the 1800s. The alternate
axioms given in the main text are the shortest known. The
first for ordinary groups was found by Graham Higman and
Bernhard Neumann in 1952; the second by William McCune
(using automated theorem proving) in 1992. For
commutative (Abelian) groups the first alternate axioms
were found by Alfred Tarski in 1938; the second by William
McCune (using automated theorem proving) in 1992. In this
case it is known that no shorter axioms are possible. (See
page 806.) Note that in terms of the  operator ,

, and . Ordinary group
theory is universal; commutative group theory is not (see
page 1159).

â Semigroups. Despite their simpler definition, semigroups
have been much less studied than groups, and there have for
example been about 7 times fewer mathematical publications
about them (and another 7 times fewer about monoids).
Semigroups were defined by Jean-Armand de Séguier in
1904, and beginning in the late 1920s a variety of algebraic
results about them were found. Since the 1940s they have
showed up sporadically in various areas of mathematics—
notably in connection with evolution processes, finite
automata and category theory.

â Fields. With  being  and  being  rational, real and
complex numbers are all examples of fields. Ordinary

integers lack inverses under , but reduction modulo a
prime  gives a finite field. Since the 1700s many examples of
fields have arisen, particularly in algebra and number theory.
The general axioms for fields as given here emerged around
the end of the 1800s. Shorter versions can undoubtedly be
found. (See page 1168.) 

â Rings. The axioms given are for commutative rings. With 
being  and  being  the integers are an example. Several
examples of rings arose in the 1800s in number theory and
algebraic geometry. The study of rings as general algebraic
structures became popular in the 1920s. (Note that from the
axioms of ring theory one can only expect to prove results
that hold for any ring; to get most results in number theory,
for example, one needs to use the axioms of arithmetic, which
are intended to be specific to ordinary integers.) For non-
commutative rings the last axiom given is replaced by

. Non-commutative rings already
studied in the 1800s include quaternions and square
matrices. 

â Other algebraic systems. Of algebraic systems studied in
traditional mathematics the vast majority are special cases of
either groups, rings or fields. Probably the most common
other examples are those based on lattice theory. Standard
axioms for lattice theory are (  is usually called meet, and 
join)

Boolean algebra (basic logic) is a special case of lattice theory,
as is the theory of partially ordered sets (of which the causal
networks in Chapter 9 are an example). The shortest single
axiom currently known for lattice theory has  79
and involves 7 variables. But I suspect that in fact a 
less than about 20 is enough.

(See also page 1171.) 

â Real algebra. A notion of real numbers as measures of space
or quantity has existed since antiquity. The development of
basic algebra gave a formal way to represent operations on
such numbers. In the late 1800s there were efforts—notably
by Richard Dedekind and Georg Cantor—to set up a general
theory of real numbers relying only on basic concepts about
integers—and these efforts led to set theory. For purely
algebraic questions of the kind that might arise in high-
school algebra, however, one can use just the axioms given
here. These add to field theory several axioms for ordering,
as well as the axiom at the bottom expressing a basic form of
continuity (specifically that any polynomial which changes
sign must have a zero). With these axioms one can prove
results about real polynomials, but not about arbitrary
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mathematical functions, or integers. The axioms were shown
to be complete by Alfred Tarski in the 1930s. The proof was
based on setting up a procedure that could in principle
resolve any set of real polynomial equations or inequalities.
This is now in practice done by  and other functions
in Mathematica using methods of cylindrical algebraic
decomposition invented in the 1970s—which work roughly
by finding a succession of points of change using .
(Note that with  variables the number of steps needed can
increase like .) (See the note about real analysis below.)

â Geometry. Euclid gave axioms for basic geometry around
300 BC which were used with fairly little modification for
more than 2000 years. In the 1830s, however, it was realized
that the system would remain consistent even if the so-called
parallel postulate was modified to allow space to be curved.
Noting the vagueness of Euclid’s original axioms there was
then increasing interest in setting up more formal axiom
systems for geometry. The best-known system was given by
David Hilbert in 1899—and by describing geometrical
figures using algebraic equations he showed that it was as
consistent as the underlying axioms for numbers. 

The axioms given here are illustrated below. They were
developed by Alfred Tarski and others in the 1940s and
1950s. (Unlike Hilbert’s axioms they require only first-order
predicate logic.) The first six give basic properties of
betweenness of points and congruence of line segments. The
second- and third-to-last axioms specify that space has two
dimensions; they can be modified for other dimensions. The
last axiom is a schema that asserts the continuity of space.
(The system is not finitely axiomatizable.)

The axioms given can prove most of the results in an
elementary geometry textbook—indeed all results that are
about geometrical figures such as triangles and circles
specified by a fixed finite number of points, but which do not
involve concepts like area. The axioms are complete and
consistent—and thus not universal. They can however be
made universal if axioms from set theory are added. 

â Category theory. Developed in the 1940s as a way to
organize constructs in algebraic topology, category theory
works at the level of whole mathematical objects rather than
their elements. In the basic axioms given here the variables
represent morphisms that correspond to mappings between
objects. (Often morphisms are shown as arrows in diagrams,

and objects as nodes.) The axioms specify that when
morphisms are composed their domains and codomains
must have appropriately matching types. Some of the
methodology of category theory has become widely used in
mathematics, but until recently the basic theory itself was not
extensively studied—and its axiomatic status remains
unclear. Category theory can be viewed as a formalization of
operations on abstract data types in computer languages—
though unlike in Mathematica it normally requires that
functions take a single bundle of data as an argument. 

â Set theory. Basic notions of finite set theory have been used
since antiquity—though became widespread only after their
introduction into elementary mathematics education in the
1960s. Detailed ideas about infinite sets emerged in the
1880s through the work of Georg Cantor, who found it
useful in studying trigonometric series to define sets of
transfinite numbers of points. Several paradoxes associated
with infinite sets were quickly noted—a 1901 example due
to Bertrand Russell being to ask whether a set containing all
sets that do not contain themselves in fact contains itself. To
avoid such paradoxes Ernst Zermelo in 1908 suggested
formalizing set theory using the first seven axioms given in
the main text. (The axiom of infinity, for example, was
included to establish that an infinite set such as the integers
exists.) In 1922 Abraham Fraenkel noted that Zermelo’s
axioms did not support certain operations that seemed
appropriate in a theory of sets, leading to the addition of
Thoralf Skolem’s axiom of replacement, and to what is
usually called Zermelo-Fraenkel set theory (ZF). (The
replacement axiom formally makes the subset axiom
redundant.) The axiom of choice was first explicitly
formulated by Zermelo in 1904 to capture the idea that in a
set all elements can be ordered, so that the process of
transfinite induction is possible (see page 1160). The non-
constructive character of the axiom of choice has made it
always remain somewhat controversial. It has arisen in
many different guises and been useful in proving theorems
in many areas of mathematics, but it has seemingly peculiar
consequences such as the Banach-Tarski result that a solid
sphere can be divided into six pieces (each a non-
measurable set) that can be reassembled into a solid sphere
twice the size. (The nine axioms with the axiom of choice are
usually known as ZFC.) The axiom of regularity (or axiom
of foundation) formulated by John von Neumann in 1929
explicitly forbids sets which for example can be elements of
themselves. But while this axiom is convenient in
simplifying work in set theory it has not been found
generally useful in mathematics, and is normally considered
optional at best.
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A few additional axioms have also arisen as potentially
useful. Most notable is the Continuum Hypothesis discussed
on page 1127, which was proved independent of ZFC by Paul
Cohen in 1963. (See also page 1166.)

Note that by using more complicated axioms the only
construct beyond predicate logic needed to formulate set
theory is . As discussed on page 1176, however, one cannot
avoid axiom schemas in the formulation of set theory given
here. (The von Neumann-Bernays-Gödel formulation does
avoid these, but at the cost of introducing additional objects
more general than sets.)

(See also page 1160.)

â General topology. The axioms given define properties of
open sets of points in spaces—and in effect allow issues like
connectivity and continuity to be discussed in terms of set
theory without introducing any explicit distance function. 

â Real analysis. The axiom given is Dedekind’s axiom of
continuity, which expresses the connectedness of the set of
real numbers. Together with set theory it allows standard
results about calculus to be derived. But as well as ordinary
real numbers, these axioms allow non-standard analysis with
constructs such as explicit infinitesimals (see page 1172).

â Axiom systems for programs. (See pages 794 and 1168.)

â Page 775 · Implementation. Given the axioms in the form

the proof shown here can be represented by

and applied using

â Page 776 · Proof structures. The proof shown is in a sense
based on very low-level steps, each consisting of applying a
single axiom from the original axiom system. But in practical
mathematics it is usual for proofs to be built up in a more
hierarchical fashion using intermediate results or lemmas. In
the way I set things up lemmas can in effect be introduced as
new axioms which can be applied repeatedly during a proof.
And in the case shown here if one first proves the lemma 

and treats it as rule 6, then the main proof can be shortened:

When one just applies axioms from the original axiom system
one is in effect following a single line of steps. But when one
proves a lemma one is in effect on a separate branch, which
only merges with the main proof when one uses the lemma.
And if one has nested lemmas one can end up with a proof
that is in effect like a tree. (Repeated use of a single lemma
can also lead to cycles.) Allowing lemmas can in extreme
cases probably make proofs as much as exponentially shorter.
(Note that lemmas can also be used in multiway systems.)

In the way I have set things up one always gets from one step
in a proof to the next by taking an expression and applying
some transformation rule to it. But while this is familiar from
algebraic mathematics and from the operation of Mathematica
it is not the model of proofs that has traditionally been used
in mainstream mathematical logic. For there one tends to
think not so much about transforming expressions as about
taking collections of true statements (such as equations

), and using so-called rules of inference to deduce other
ones. Most often there are two basic rules of inference: modus
ponens or detachment which uses the logic result

 to deduce the statement  from statements 
and , and substitution, which takes statements  and 
and deduces , where  is a logical variable in  (see
page 1151). And with this approach axioms enter merely as
initial true statements, leaving rules of inference to generate
successive steps in proofs. And instead of being mainly linear
sequences of results, proofs instead become networks in
which pairs of results are always combined when modus
ponens is used. But it is still always in principle possible to
convert any proof to a purely sequential one—though
perhaps at the cost of having exponentially many more steps.

À

s[1] = ( a_ Ñ a_) Ñ ( a_ Ñ b_) ! a;
s[2, x_] := b_ ! ( b Ñ b) Ñ ( b Ñ x); s[3] =

a_ Ñ ( a_ Ñ b_) ! a Ñ ( b Ñ b); s[4] = a_ Ñ ( b_ Ñ b_) ! a Ñ ( a Ñ b);
s[5] = a_ Ñ ( a_ Ñ ( b_ Ñ c_)) ! b Ñ ( b Ñ ( a Ñ c));

{{s[2, b], {2}}, {s[4], {}}, {s[2, (b Ñ b) Ñ ( ( a Ñ a) Ñ ( b Ñ b))],
{2, 2}}, {s[1], {2, 2, 1}}, {s[2, b Ñ b], {2, 2, 2, 2, 2, 2}},

{s[5], {2, 2, 2}}, {s[2, b Ñ b], {2, 2, 2, 2, 2, 1}},
{s[1], {2, 2, 2, 2, 2}}, {s[3], {2, 2, 2}},
{s[1], {2, 2, 2, 2}}, {s[4], {2, 2, 2}}, {s[5], {}},
{s[2, a], {2, 2, 1}}, {s[1], {2, 2}}, {s[3], {}}, {s[1], {2}}}
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â Substitution strategies. With the setup I am using each step
in a proof involves transforming an expression like 
using an expression like . And for this to happen  or 
must match some part  of  or . The simplest way this can
be achieved is for  or  to reproduce  when its variables
are replaced by appropriate expressions. But in general one
can make replacements not only for variables in  and , but
also for ones in . And in practice this often makes many
more matches possible. Thus for example the axiom 
cannot be applied directly to . But after the
replacement ,  matches  with ,
yielding the new theorem . These kinds of
substitutions are used in the proof on page 810. One
approach to finding them is so-called paramodulation, which
was introduced around 1970 in the context of automated
theorem-proving systems, and has been used in many such
systems (see page 1157). (Such substitutions are not directly
relevant to Mathematica, since it transforms expressions
rather than theorems or equations. But when I built SMP in
1981, its semantic pattern matching mechanism did use
essentially such substitutions.) 

â One-way transformations. As formulated in the main text,
axioms define two-way transformations. One can also set up
axiom systems based on one-way transformations (as in
multiway systems). For basic logic, examples of this were
studied in the mid-1900s, and with the transformations
thought of as rules of inference they were sometimes known
as “axiomless formulations”.

â Axiom schemas. An axiom like  is a single well-
formed formula in the sense of page 1150. But sometimes one
needs infinite collections of such individual axioms, and in
the main text these are represented by axiom schemas given
as Mathematica patterns involving objects like . Such
schemas are taken to stand for all individual axioms that
match the patterns and are well-formed formulas. The
induction axiom in arithmetic is an example of a schema. (See
the note on finite axiomatizability on page 1176.) Note that as
mentioned on page 1150 all the axioms given for basic logic
should really be thought of as schemas. 

â Reducing axiom details. Traditional axiom systems have
many details not seen in the basic structure of multiway
systems. But in most cases these details can be avoided—and
in the end the universality of multiway systems implies that
they can always be made to emulate any axiom system.

Traditional axiom systems tend to be based on operator
systems (see page 801) involving general expressions, not just
strings. But any expression can always be written as a string
using something like Mathematica . (See also page

1169.) Traditional axiom systems also involve symbolic
variables, not just literal string elements. But by using
methods like those for combinators on page 1121 explicit
mention of variables can always be eliminated.

â Proofs in practice. At some level the purpose of a proof is to
establish that something is true. But in the practice of modern
mathematics proofs have taken on a broader role; indeed
they have become the primary framework for the vast
majority of mathematical thinking and discourse. And from
this perspective the kinds of proofs given on pages 810 and
811—or typically generated by automated theorem
proving—are quite unsatisfactory. For while they make it
easy at a formal level to check that certain statements are
true, they do little at a more conceptual level to illuminate
why this might be so. And indeed the kinds of proofs
normally considered most mathematically valuable are ones
that get built up in terms of concepts and constructs that are
somehow expected to be as generally applicable as possible.
But such proofs are inevitably difficult to study in a uniform
and systematic way (though see page 1176). And as I argue in
the main text, it is in fact only for the rather limited kinds of
mathematics that have historically been pursued that such
proofs can be expected to be sufficient. For in general proofs
can be arbitrarily long, and can be quite devoid of what
might be considered meaningful structure.

Among practical proofs that show signs of this (and whose
mathematical value is thus often considered controversial)
most have been done with aid of computers. Examples
include the Four-Color Theorem (coloring of maps), the
optimality of the Kepler packing (see page 986), the
completeness of the Robbins axiom system (see page 1151)
and the universality of rule 110 (see page 678). 

In the past it was sometimes claimed that using computers is
somehow fundamentally incompatible with developing
mathematical understanding. But particularly as the use of
Mathematica has become more widespread there has been
increasing recognition that computers can provide crucial
raw material for mathematical intuition—a point made
rather forcefully by the discoveries in this book. Less well
recognized is the fact that formulating mathematical ideas in
a Mathematica program is at least as effective a way to
produce clarity of thinking and understanding as
formulating a traditional proof.

â Page 778 · Properties. The second rule shown has the
property that black elements always appear before white, so
that strings can be specified just by the number of elements of
each color that they contain—making the rule one of the
sorted type discussed on page 937, based on the difference
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vector . The question of whether a
given string can be generated is then analogous to finding
whether there is a solution with certain positivity properties
to a set of linear Diophantine equations. 

â Page 781 · NAND tautologies. At each step every possible
transformation rule in the axioms is applied wherever it can.
New expressions are also created by replacing each possible
variable with , where  and  are new variables, and by
setting every possible pair of variables equal in turn. The
longest tautology at step  is 

whose  grows like . The distribution of sizes of
statements generated at each step is shown below.

Even with the same underlying axioms the tautologies are
generated in a somewhat different order if one uses a
different strategy—say one based on paramodulation (see
page 1156). Pages 818 and 1175 discuss the sequence of all
NAND theorems listed in order of increasing complexity.

â Proof searching. To find a proof of some statement  in a
multiway system one can always in principle just start from

, evolve the system until it first generates , then pick out
the sequence of strings on the path from  to . But doing
this will usually involve building up a vast network of
strings. And although at some level computational
irreducibility and NP completeness (see page 766) imply that
in general only a limited amount of this computational work
can be saved, there are in practice quite often important
optimizations that can be made. For finding a proof of 
is like searching for a path satisfying the constraint of going
from  to . And just like in the systems based on constraints
in Chapter 5 one can usually do at least somewhat better than
just to look at every possible path in turn.

For a start, in generating the network of paths one only ever
need keep a single path that leads to any particular string;
just like in many of my pictures of multiway systems one can
in effect always drop any duplicate strings that occur. One
might at first imagine that if  and  are both short strings
then one could also drop any very long strings that are
produced. But as we have seen, it is perfectly possible for
long intermediate strings to be needed to get from  to .
Still, it is often reasonable to weight things so that at least at
first one looks at paths that involve only shorter strings.

In the most direct approach, one takes a string and at each
step just applies the underlying rules or axioms of the

multiway system. But as soon as one knows that there is a
path from a string  to a string , one can also imagine
applying the rule  to any string—in effect like a lemma.
And one can choose which lemmas to try first by looking for
example at which involve the shortest or commonest strings.

It is often important to minimize the number of lemmas one
has to keep. Sometimes one can do this by reducing every
lemma—and possibly every string—to some at least partially
canonical form. One can also use the fact that in a multiway
system if  and  then . 

If one wants to get from  to  the most efficient thing is to
use properties of  to avoid taking wrong turns. But except
in systems with rather simple structure this is usually
difficult to achieve. Nevertheless, one can for example
always in effect work forwards from , and backwards from

, seeing whether there is any overlap in the sets of strings
one gets.

â Automated theorem proving. Since the 1950s a fair amount
of work has been done on trying to set up computer systems
that can prove theorems automatically. But unlike systems
such as Mathematica that emphasize explicit computation
none of these efforts have ever achieved widespread success
in mathematics. And indeed given my ideas in this section
this now seems not particularly surprising.

The first attempt at a general system for automated theorem
proving was the 1956 Logic Theory Machine of Allen Newell
and Herbert Simon—a program which tried to find proofs in
basic logic by applying chains of possible axioms. But while
the system was successful with a few simple theorems the
searches it had to do rapidly became far too slow. And as the
field of artificial intelligence developed over the next few years
it became widely believed that what would be needed was a
general system for imitating heuristics used in human
thinking. Some work was nevertheless still done on applying
results in mathematical logic to speed up the search process.
And in 1963 Alan Robinson suggested the idea of resolution
theorem proving, in which one constructs ,
then typically writes this in conjunctive normal form and
repeatedly applies rules like  to try to
reduce it to , thereby proving given  that 
is . But after early enthusiasm it became clear that this
approach could not be expected to make theorem proving
easy—a point emphasized by the discovery of NP
completeness in the early 1970s. Nevertheless, the approach
was used with some success, particularly in proving that
various mechanical and other engineering systems would
behave as intended—although by the mid-1980s such
verification was more often done by systematic Boolean
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function methods (see page 1097). In the 1970s simple versions
of the resolution method were incorporated into logic
programming languages such as Prolog, but little in the way of
mathematical theorem proving was done with them. A notable
system under development since the 1970s is the Boyer-Moore
theorem prover Nqthm, which uses resolution together with
methods related to induction to try to find proofs of statements
in a version of LISP. Another family of systems under
development at Argonne National Laboratory since the 1960s
are intended to find proofs in pure operator (equational)
systems (predicate logic with equations). Typical of this effort
was the Otter system started in the mid-1980s, which uses the
resolution method, together with a variety of ad hoc strategies
that are mostly versions of the general ones for multiway
systems in the previous note. The development of so-called
unfailing completion algorithms (see page 1037) in the late
1980s made possible much more systematic automated
theorem provers for pure operator systems—with a notable
example being the Waldmeister system developed around
1996 by Arnim Buch and Thomas Hillenbrand.

Ever since the 1970s I at various times investigated using
automated theorem-proving systems. But it always seemed
that extensive human input—typically from the creators of
the system—was needed to make such systems actually find
non-trivial proofs. In the late 1990s, however, I decided to try
the latest systems and was surprised to find that some of
them could routinely produce proofs hundreds of steps long
with little or no guidance. Almost any proof that was easy to
do by hand almost always seemed to come out automatically
in just a few steps. And the overall ability to do proofs—at
least in pure operator systems—seemed vastly to exceed that
of any human. But as page 810 illustrates, long proofs
produced in this way tend to be difficult to read—in large
part because they lack the higher-level constructs that are
typical in proofs created by humans. As I discuss on page
821, such lack of structure is in some respects inevitable. But
at least for specific kinds of theorems in specific areas of
mathematics it seems likely that more accessible proofs can
be created if each step is allowed to involve sophisticated
computations, say as done by Mathematica. 

â Proofs in Mathematica. Most of the individual built-in
functions of Mathematica I designed to be as predictable as
possible—applying transformations in definite ways and
using algorithms that are never of fundamentally unknown
difficulty. But as their names suggest  and 
were intended to be less predictable—and just to do what
they can and then return a result. And in many cases these
functions end up trying to prove theorems; so for example

 must in effect
prove a theorem to get the result .

â Page 781 · Truth and falsity. The notion that statements can
always be classified as either true or false has been a common
idealization in logic since antiquity. But in everyday
language, computer languages and mathematics there are
many ways in which this idealization can fail. An example is

, which cannot reasonably be considered either true
or false unless one knows what ,  and  are. Predicate logic
avoids this particular kind of case by implicitly assuming
that what is meant is a general statement about all values of
any variable—and avoids cases like the expression  by
requiring all statements to be well-formed formulas (see page
1150). In Mathematica functions like  and  are
set up always to yield  or —but just by looking at
the explicit structure of a symbolic expression. 

Note that although the notion of negation seems fairly
straightforward in everyday language it can be difficult to
implement in computational or mathematical settings. And
thus for example even though it may be possible to establish
by a finite computation that a particular system halts, it will
often be impossible to do the same for the negation of this
statement. The same basic issue arises in the intuitionistic
approach to mathematics, in which one assumes that any
object one handles must be found by a finite construction.
And in such cases one can set up an analog of logic in which
one no longer takes . 

It is also possible to assume a specific number  of truth
values, as on page 1175, or to use so-called modal logics.

(See also page 1167.)

â Page 782 · Gödel’s Theorem. What is normally known as
“Gödel’s Theorem” (or “Gödel’s First Incompleteness
Theorem”) is the centerpiece of the paper “On Undecidable
Propositions of Principia Mathematica and Related Systems”
published by Kurt Gödel in 1931. What the theorem shows is
that there are statements that can be formulated within the
standard axiom system for arithmetic but which cannot be
proved true or false within that system. Gödel’s paper does
this first for the statement “this statement is unprovable”,
and much of the paper is concerned with showing how such
a statement can be encoded within arithmetic. Gödel in effect
does this by first converting the statement to one about
recursive functions and then—by using tricks of number
theory such as the beta function of page 1120—to one purely
about arithmetic. (Gödel’s main achievement is sometimes
characterized as the “arithmetization of metamathematics”:
the discovery that concepts such as provability related to the

Simplify FullSimplify

FullSimplify[( a + b)/2 > Sqrt[a b], a > 0 && b > 0]
True

x + y 2 z
x y z

x + y

TrueQ IntegerQ
True False

¨ ¨ a Ð a

k > 2
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processes of mathematics can be represented purely as
statements in arithmetic.) (See page 784.)

Gödel originally based his theorem on Peano arithmetic (as
discussed in the context of Principia Mathematica), but
expected that it would in fact apply to any reasonable formal
system for mathematics—and in later years considered that
this had been established by thinking about Turing machines.
He suggested that his results could be avoided if some form
of transfinite hierarchy of formalisms could be used, and
appears to have thought that at some level humans and
mathematics do this (compare page 1167).

Gödel’s 1931 paper came as a great surprise, although the
issues it addressed were already widely discussed in the field
of mathematical logic. And while the paper is at a technical
level rather clear, it has never been easy for typical
mathematicians to read. Beginning in the late 1950s its results
began to be widely known outside of mathematics, and by
the late 1970s Gödel’s Theorem and various misstatements of
it were often assigned an almost mystical significance. Self-
reference was commonly seen as its central feature, and
connections with universality and computation were usually
missed. And with the belief that humans must somehow
have intrinsic access to all truths in mathematics, Gödel’s
Theorem has been used to argue for example that computers
can fundamentally never emulate human thinking.

The picture on page 786 can be viewed as a modern proof of
Gödel’s Theorem based on Diophantine equations.

In addition to what is usually called Gödel’s Theorem, Kurt
Gödel established a second incompleteness theorem: that the
statement that the axioms of arithmetic are consistent cannot
be proved by using those axioms (see page 1168). He also
established what is often called the Completeness Theorem
for predicate logic (see page 1152)—though here
“completeness” is used in a different sense.

â Page 783 · Properties. The first multiway system here
generates all strings that end in ; the third all strings that
end in . The second system generates all strings where the
second-to-last element is white, or the string ends with a run
of black elements delimited by white ones. 

â Page 783 · Essential incompleteness. If a consistent axiom
system is complete this means that any statement in the
system can be proved true or false using its axioms, and the
question of whether a statement is true can always be
decided by a finite procedure. If an axiom system is
incomplete then this means that there are statements that
cannot be proved true or false using its axioms—and which
must therefore be considered independent of those axioms.
But even given this it is still possible that a finite procedure

can exist which decides whether a given statement is true,
and indeed this happens in the theory of commutative
groups (see note below). But often an axiom system will not
only be incomplete, but will also be what is called essentially
incomplete. And what this means is that there is no finite set
of axioms that can consistently be added to make the system
complete. A consequence of this is that there can be no finite
procedure that always decides whether a given statement is
true—making the system what is known as essentially
undecidable. (When I use the term “undecidable” I normally
mean “essentially undecidable”. Early work on mathematical
logic sometimes referred to statements that are independent
as being undecidable.) 

One might think that adding rules to a system could never
reduce its computational sophistication. And this is correct if
with suitable input one can always avoid the new rules. But
often these rules will allow transformations that in effect
short-circuit any sophisticated computation. And in the
context of axiom systems, adding axioms can be thought of
as putting more constraints on a system—thus potentially in
effect forcing it to be simpler. The result of all this is that an
axiom system that is universal can stop being universal when
more axioms are added to it. And indeed this happens when
one goes from ordinary group theory to commutative group
theory, and from general field theory to real algebra.

â Page 784 · Predicate logic. The universality of predicate logic
with a single two-argument function follows immediately
from the result on page 1156 that it can be used to emulate
any two-way multiway system. 

â Page 784 · Algebraic axioms. How universality works with
algebraic axioms depends on how those axioms are being
used (compare page 1153). What is said in the main text here
assumes that they are being used as on page 773—with each
variable in effect standing for any object (compare page
1169), and with the axioms being added to predicate logic.
The first of these points means that one is concerned with
so-called pure group theory—and with finding results valid
for all possible groups. The second means that the
statements one considers need not just be of the form

, but can explicitly involve logic; an example is
Cayley’s theorem

With this setup, Alfred Tarski showed in 1946 that any
statement in Peano arithmetic can be encoded as a statement
in group theory—thus demonstrating that group theory is
universal, and that questions about it can be undecidable.
This then also immediately follows for semigroup theory
and monoid theory. It was shown for ring theory and field

?2?

a Þx 2 a Þy ¶ ( x 2 y ©µz a Þz 2 x) ©
a Þx 2 b Þx ¶ a 2 b © ( a Þb) Þx 2 a Þ ( b Þx)
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theory by Julia Robinson in 1949. But for commutative
group theory it is not the case, as shown by Wanda
Szmielew around 1950. And indeed there is a procedure
based on quantifier elimination for determining in a finite
number of steps whether any statement in commutative
group theory can be proved. (Commutative group theory is
thus a decidable theory. But as mentioned in the note above,
it is not complete—since for example it cannot establish the
theorem  which states that a group has just one
element. It is nevertheless not essentially incomplete—and
for example adding the axiom  makes it complete.)
Real algebra is also not universal (see page 1153), and the
same is for example true for finite fields—but not for
arbitrary fields.

As discussed on page 1141, word problems for systems such
as groups are undecidable. But to set up a word problem in
general formally requires going beyond predicate logic, and
including axioms from set theory. For a word problem relates
not, say, to groups in general, but to a particular group,
specified by relations between generators. Within predicate
logic one can give the relations as statements, but in effect
one cannot specify that no other relations hold. It turns out,
however, that undecidability for word problems occurs in
essentially the same places as universality for axioms with
predicate logic. Thus, for example, the word problem is
undecidable for groups and semigroups, but is decidable for
commutative groups.

One can also consider using algebraic axioms without
predicate logic—as in basic logic or in the operator systems of
page 801. And one can now ask whether there is then
universality. In the case of semigroup theory there is not. But
certainly systems of this type can be universal—since for
example they can be set up to emulate any multiway system.
And it seems likely that the axioms of ordinary group theory
are sufficient to achieve universality. 

â Page 784 · Set theory. Any integer  can be encoded as a set
using for example . And from this
a statement  in Peano arithmetic (with each variable
explicitly quantified) can be translated to a statement in set
theory by using

and then adding the statements below to provide
definitions (  is the set of non-negative integers,  is
an ordered triple, and  determines whether each triple in
a set  is of the form  specifying a single-
valued function).

This means that set theory can be used to prove any statement
that can be proved in Peano arithmetic. But it can also prove
other statements—such as Goodstein’s result (see note below),
and the consistency of arithmetic (see page 1168). An
important reason for this is that set theory allows not just
ordinary induction over sequences of integers but also
transfinite induction over arbitrary ordered sets (see below). 

â Page 786 · Universal Diophantine equation. The equation is
built up from ones whose solutions are set up to be integers
that satisfy particular relations. So for example the equation

 has solutions that are exactly those integers that
satisfy the relation . Similarly, assuming as in the
rest of this note that all variables are non-negative,

 has solutions that are exactly those integers that
satisfy , with  having some allowed value. From
various number-theoretical results many relations can readily
be encoded as integer equations:

where the last encoding uses the result on page 608. (Note
that any variable  can be forced to be non-negative by
including an equation , as on page 910.) 

Given an integer  for which  gives the cell
values for a cellular automaton, a single step of evolution
according say to rule 30 is given by

a 2 b

a 2 b

n
Nest[Union[#, {#}] &, {}, n]

s

Replace[s, {´a_ b_ ! ´a ( a À ã ¶ b),
µa_ b_ ! µa ( a À ã © b)}, {0, ¥}]

ã Éx, y, zÊ
äa

a Éx, y, f [x, y]Ê

a Ðã ¸ ´b ( (Ë À b © ´c (c À b ¶Ä{c, {c}} À b)) ¶ a ¾ b)

a Ð Ø�b ¸ a Ð Ä{b, {b}}
a Ð Éb, c, dÊ ¸ a Ð {{{{b, c}, {c}}, d}, {d}}

äa ¸ (´b ´c ´d (Éb, c, dÊ À a ¶´e (Éb, c, eÊ À a ¶ d Ð e)) ©

´b ´c ( (b À ã © c À ã) ¶µd (d À ã © Éb, c, dÊ À a)))

a Ð b + c ¸ ´d ( ( äd © ´e ´f ´g (ÉØ�e, f , gÊ À d ¶ Ée, f , Ø�gÊ À d) ©

´f ´g (ÉË, f , gÊ À d ¶ g Ð f )) ¶ Éb, c, aÊ À d)

a Ð b6c ¸ ´d ( ( äd © ´e ´f ´g (ÉØ�e, f , gÊ À d ¶ Ée, f , f + gÊ À d) ©

´f ´g (ÉË, f , gÊ À d ¶ g Ð Ë)) ¶ Éb, c, aÊ À d)

a2 + b2 2 0
a 2 0 © b 2 0
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(a 2 0 ª b 2 0)�a b 2 0

(a 2 0 © b 2 0)�a + b 2 0
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a 2 Mod[b, c]� ( b 2 a + c d © a < c)

a 2 Quotient[b, c]� ( b 2 a c + d © d < c)

a 2 Binomial[b, c]�With[{n = 2b + 1},
( n+ 1)b 2 nc ( a + d n) + e © e < nc © a < n]

a 2 b!�a 2 Quotient[cb, Binomial[c, b]]

a 2 GCD[b, c]� ( b c > 0 © a d 2 b © a e 2 c © a + c f 2 b g)

a 2 Floor[b/c]� ( a c + d 2 b © d < c)

PrimeQ[a]� (GCD[( a - 1)!, a] 2 1 © a > 1)

a 2 BitAnd[c, d] © b 2 BitOr[c, d]�
(s[c, a] © s[d, a] © s[b, c] © s[b, d] © a + b 2 c + d) /.

s[x_, y_] ! Mod[Binomial[x, y], 2] 2 1

a
a 2 w2 + x2 + y 2 + z 2

a IntegerDigits[a, 2]

BitXor[a, 2 BitOr[a, 2 a]]
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where (see page 871)

and  is assumed to be padded with 0’s at each end. The
corresponding form for rule 110 is

The final equation is then obtained from

where  through  have the meanings indicated in the main
text, and satisfy . Non-overlapping subsidiary variables
are introduced for  and , yielding a total of 79
variables.

Note that it is potentially somewhat easier to construct
Diophantine equations to emulate register machines—or
arithmetic systems from page 673—than to emulate cellular
automata, but exactly the same basic methods can be used. 

In the universal equation in the main text variables appear in
exponents. One can reduce such an exponential equation to a
pure polynomial equation by encoding powers using integer
equations. The simplest known way of doing this (see note
below) involves a degree 8 equation with 60 variables:

(This roughly uses the idea that solutions to Pell equations
grow exponentially, so that for example  has
solutions .) From this
representation of  the universal equation can be
converted to a purely polynomial equation with 2154
variables—which when expanded has 1683150 terms, total
degree 16 (average per term 6.8), maximum coefficient
17827424 and  16540206. 

Note that the existence of universal Diophantine equations
implies that any problem of mathematics—even, say, the
Riemann Hypothesis—can in principle be formulated as a
question about the existence of solutions to a Diophantine
equation. It also means that given any specific enumeration
of polynomials, there must be some universal polynomial 
which if fed the enumeration number of a polynomial ,

together with an encoding of the values of its variables, will
yield the corresponding value of  as a solution to . 

â Hilbert’s Tenth Problem. Beginning in antiquity various
procedures were developed for solving particular kinds of
Diophantine equations (see page 1164). In 1900, as one of his
list of 23 important mathematical problems, David Hilbert
posed the problem of finding a single finite procedure that
could systematically determine whether a solution exists to
any specified Diophantine equation. The original proof of
Gödel’s Theorem from 1931 in effect involves showing that
certain logical and other operations can be represented by
Diophantine equations—and in the end Gödel’s Theorem can
be viewed as saying that certain statements about
Diophantine equations are unprovable. The notion that there
might be universal Diophantine equations for which
Hilbert’s Tenth Problem would be fundamentally unsolvable
emerged in work by Martin Davis in 1953. And by 1961
Davis, Hilary Putnam and Julia Robinson had established
that there are exponential Diophantine equations that are
universal. Extending this to show that Hilbert’s original
problem about ordinary polynomial Diophantine equations
is unsolvable required proving that exponentiation can be
represented by a Diophantine equation, and this was finally
done by Yuri Matiyasevich in 1969 (see note above). 

By the mid-1970s, Matiyasevich had given a construction for
a universal Diophantine equation with 9 variables—though
with a degree of about . It had been known since the
1930s that any Diophantine equation can be reduced to one
with degree 4—and in 1980 James Jones showed that a
universal Diophantine equation with degree 4 could be
constructed with 58 variables. In 1979 Matiyasevich also
showed that universality could be achieved with an
exponential Diophantine equation with many terms, but
with only 3 variables. As discussed in the main text I believe
that vastly simpler Diophantine equations can also be
universal. It is even conceivable that a Diophantine equation
with 2 variables could be universal: with one variable
essentially being used to represent the program and input,
and the other the execution history of the program—with no
finite solution existing if the program does not halt. 

â Polynomial value sets. Closely related to issues of solving
Diophantine equations is the question of what set of positive
values a polynomial can achieve when fed all possible
positive integer values for its variables. A polynomial with a
single variable must always yield either be a finite set, or a
simple polynomial progression of values. But already the
sequence of values for  or even  seem
quite complicated. And for example from the fact that

 has solutions  it follows that
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the positive values of  are just
 (achieved when  is ).

This is the simplest polynomial giving , and
there are for example no polynomials with 2 variables, up to
4 terms, total degree less than 4, and integer coefficients
between -2 and +2, that give any of ,  or .
Nevertheless, from the representation for  in the note
above it has been shown that the positive values of a
particular polynomial with 26 variables, 891 terms and total
degree 97 are exactly the primes. (Polynomials with 42
variables and degree 5, and 10 variables and degree , are
also known to work, while it is known that one with 2
variables cannot.) And in general the existence of a universal
Diophantine equation implies that any set obtained by any
finite computation must correspond to the positive values of
some polynomial. The analog of doing a long computation to
find a result is having to go to large values of variables to find
a positive polynomial value. Note that one can imagine, say,
emulating the evolution of a cellular automaton by having
the th positive value of a polynomial represent the th step of
evolution. That universality can be achieved just in the
positive values of a polynomial is already remarkable. But I
suspect that in the end it will take only a surprisingly simple
polynomial, perhaps with just three variables and fairly low
degree. 

(See also page 1165.)

â Statements in Peano arithmetic. Examples include:

ä  is irrational:

äThere are infinitely many primes of the form :

äEvery even number (greater than 2) is the sum of two 
primes (Goldbach’s Conjecture; see page 135):

The last two statements have never been proved true or false,
and remain unsolved problems of number theory. The
picture shows spacings between  for which  is prime.

â Transfinite numbers. For most mathematical purposes it is
quite adequate just to have a single notion of infinity,
usually denoted . But as Georg Cantor began to emphasize
in the 1870s, it is possible to distinguish different levels of

infinity. Most of the details of this have not been widely
used in typical mathematics, but they can be helpful in
studying foundational issues. Cantor’s theory of ordinal
numbers is based on the idea that every integer must have a
successor. The next integer after all of the ordinary ones—
the first infinite integer—is given the name . In Cantor’s
theory  is still larger (though  is not), as are ,

 and . Any arithmetic expression involving 
specifies an ordinal number—and can be thought of as
corresponding to a set containing all integers up to that
number. The ordinary axioms of arithmetic do not apply, but
there are still fairly straightforward rules for manipulating
such expressions. In general there are many different
expressions that correspond to a given number, though
there is always a unique Cantor normal form—essentially a
finite sequence of digits giving coefficients of descending
powers of . However, not all infinite integers can be
represented in this way. The first one that cannot is , given
by the limit , or effectively  is the
smallest solution to . Subsequent solutions ( , ..., ,
..., , ...) define larger ordinals, and one can go on until one
reaches the limit , which is the first solution to .
Giving this ordinal a name, one can then go on again, until
eventually one reaches another limit. And it turns out that
in general one in effect has to introduce an infinite sequence
of names in order to be able to specify all transfinite
integers. (Naming a single largest or “absolutely infinite”
integer is never consistent, since one can always then talk
about its successor.) As Cantor noted, however, even this
only allows one to reach the lowest class of transfinite
numbers—in effect those corresponding to sets whose size
corresponds to the cardinal number . Yet as discussed on
page 1127, one can also consider larger cardinal numbers,
such as , considered in connection with the number of
real numbers, and so on. And at least for a while the
ordinary axioms of set theory can be used to study the sets
that arise.

â Growth rates. One can characterize most functions by their
ultimate rates of growth. In basic mathematics these might be

, , , ... or , , ..., or , , ..., or , , , ... To
go further one begins by defining an analog to the
Ackermann function of page 906:

 is then ,  is iterated power, and so on. Given
this one can now form the “diagonal” function 

and this has a higher growth rate than any of the  with
finite . This higher growth rate is indicated by the transfinite
index . And in direct analogy to the transfinite numbers
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discussed above one can then in principle form a hierarchy of
functions using operations like 

together with diagonalization at limit ordinals. In practice,
however, it gets more and more difficult to determine that the
functions defined in this way actually in a sense halt and
yield definite values—and indeed for  this can no longer
be proved using the ordinary axioms of arithmetic (see
below). Yet it is still possible to define functions with even
more rapid rates of growth. An example is the so-called busy
beaver function (see page 1144) that gives the maximum
number of steps that it takes for any Turing machine of size 
to halt when started from a blank tape. In general this
function must grow faster than any computable function, and
is not itself computable.

â Page 787 · Unprovable statements. After the appearance of
Gödel’s Theorem a variety of statements more or less directly
related to provability were shown to be unprovable in Peano
arithmetic and certain other axiom systems. Starting in the
1960s the so-called method of forcing allowed certain kinds
of statements in strong axiom systems—like the Continuum
Hypothesis in set theory (see page 1155)—to be shown to be
unprovable. Then in 1977 Jeffrey Paris and Leo Harrington
showed that a variant of Ramsey’s Theorem (see page
1068)—a statement that is much more directly
mathematical—is also unprovable in Peano arithmetic. The
approach they used was in essence based on thinking about
growth rates—and since the 1970s almost all new examples
of unprovability have been based on similar ideas. Probably
the simplest is a statement shown to be unprovable in Peano
arithmetic by Laurence Kirby and Jeff Paris in 1982: that
certain sequences  defined by Reuben Goodstein in 1944
are of limited length for all , where 

As in the pictures below,  is ,  is  and
 is .  increases quadratically for a

long time, with only element  finally being 0.
And the point is that in a sense  grows too
quickly for its finiteness to be provable in general in Peano
arithmetic.

The argument for this as usually presented involves rather
technical results from several fields. But the basic idea is

roughly just to set up a correspondence between elements of
 and possible proofs in Peano arithmetic—then to use the

fact that if one knew that  always terminated this would
establish the validity of all these proofs, which would in turn
prove the consistency of arithmetic—a result which is known
to be unprovable from within arithmetic. 

Every possible proof in Peano arithmetic can in principle be
encoded as an ordinary integer. But in the late 1930s Gerhard
Gentzen showed that if proofs are instead encoded as ordinal
numbers (see note above) then any proof can validly be
reduced to a preceding one just by operations in logic. To
cover all possible proofs, however, requires going up to the
ordinal . And from the unprovability of consistency one
can conclude that this must be impossible using the ordinary
operation of induction in Peano arithmetic. (Set theory,
however, allows transfinite induction—essentially induction
on arbitrary sets—letting one reach such ordinals and thus
prove the consistency of arithmetic.) In constructing  the
integer  is in effect treated like an ordinal number in Cantor
normal form, and a sequence of numbers that should precede
it are found. That this sequence terminates for all  is then
provable in set theory, but not Peano arithmetic—and in
effect  must grow like .) 

In general one can imagine characterizing the power of any
axiom system by giving a transfinite number  which
specifies the first function  (see note above) whose
termination cannot be proved in that axiom system (or
similarly how rapidly the first example of  must grow with

 to prevent  from being provable). But while it is
known that in Peano arithmetic , quite how to describe
the value of  for, say, set theory remains unknown. And in
general I suspect that there are a vast number of functions
with simple definitions whose termination cannot be proved
not just because they grow too quickly but instead for the
more fundamental reason that their behavior is in a sense too
complicated.

Whenever a general statement about a system like a Turing
machine or a cellular automaton is undecidable, at least some
instances of that statement encoded in an axiom system must
be unprovable. But normally these tend to be complicated
and not at all typical of what arise in ordinary mathematics.
(See page 1167.)

â Encodings of arithmetic. Statements in arithmetic are
normally written in terms of ,  and  (and logical
operations). But it turns out also to be possible to encode
such statements in terms of other basic operations. This was
for example done by Julia Robinson in 1949 with  (or )
and . And in the 1990s Ivan Korec and others

×[w+ s][n_] := Nest[×[w+ s - 1], 1, n]
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showed that it could be done just with
 with  or any product of

primes—and that it could not be done with  a prime or
prime power. These operations can be thought of as finding
elements in nested Pascal’s triangle patterns produced by -
color additive cellular automata. Korec showed that finding
elements in the nested pattern produced by the  cellular
automaton with rule 
(compare page 886) was also enough. 

â Page 788 · Infinity. See page 1162.

â Page 789 · Diophantine equations. If variables appear only
linearly, then it is possible to use  (see page 944)
to find all solutions to any system of Diophantine
equations—or to show that none exist. Particularly from the
work of Carl Friedrich Gauss around 1800 there emerged a
procedure to find solutions to any quadratic Diophantine
equation in two variables—in effect by reduction to the Pell
equation  (see page 944), and then computing

. The minimal solutions can be large;
the largest ones for successive coefficient sizes are given
below. (With size  coefficients it is for example known that
the solutions must always be less than .).

There is a fairly complete theory of homogeneous quadratic
Diophantine equations with three variables, and on the basis
of results from the early and mid-1900s a finite procedure
should in principle be able to handle quadratic Diophantine
equations with any number of variables. (The same is not
true of simultaneous quadratic Diophantine equations, and
indeed with a vector  of just a few variables, a system

 of such equations could quite possibly show
undecidability.) 

Ever since antiquity there have been an increasing number of
scattered results about Diophantine equations involving
higher powers. In 1909 Axel Thue showed that any equation
of the form , where  is a homogeneous
irreducible polynomial of degree at least 3 (such as

) can have only a finite number of integer
solutions. (He did this by formally factoring  into
terms , then looking at rational approximations to the
algebraic numbers .) In 1966 Alan Baker then proved an
explicit upper bound on such solutions, thereby establishing
that in principle they can be found by a finite search
procedure. (The proof is based on having bounds for how
close to zero  can be for independent

algebraic numbers .) His bound was roughly
—but later work in essence reduced this, and by

the 1990s practical algorithms were being developed. (Even
with a bound of , rational approximations to real
number results can quickly give the candidates that need to
be tested.) 

Starting in the late 1800s and continuing ever since a series of
progressively more sophisticated geometric and algebraic
views of Diophantine equations have developed. These have
led for example to the 1993 proof of Fermat’s Last Theorem
and to the 1983 Faltings theorem (Mordell conjecture) that the
topology of the algebraic surface formed by allowing variables
to take on complex values determines whether a Diophantine
equation has only a finite number of rational solutions—and
shows for example that this is the case for any equation of the
form  with . Extensive work has been done
since the early 1900s on so-called elliptic curve equations such
as  whose corresponding algebraic surface has a
single hole (genus 1). (A crucial feature is that given any two
rational solutions to such equations, a third can always be
found by a simple geometrical construction.) By the 1990s
explicit algorithms for such equations were being developed—
with bounds on solutions being found by Baker’s method (see
above). In the late 1990s similar methods were applied to
superelliptic (e.g. ) and hyperelliptic (e.g. )
equations involving higher powers, and it now at least
definitely seems possible to handle any two-variable cubic
Diophantine equation with a finite procedure. Knowing
whether Baker’s method can be made to work for any
particular class of equations involves, however, seeing
whether certain rather elaborate algebraic constructions can be
done—and this may perhaps in general be undecidable. Most
likely there are already equations of degree 4 where Baker’s
method cannot be used—perhaps ones like .
But in recent years there have begun to be results by other
methods about two-variable Diophantine equations, giving,
for example, general upper bounds on the number of possible
solutions. And although this has now led to the assumption
that all two-variable Diophantine equations will eventually be
resolved, based on the results of this book I would not be
surprised if in fact undecidability and universality appeared in
such equations—even perhaps at degree 4 with fairly small
coefficients.

The vast majority of work on Diophantine equations has
been for the case of two variables (or three for some
homogeneous equations). No clear analog of Baker’s method
is known beyond two variables, and my suspicion is that
with three variables undecidability and universality may
already be present even in cubic equations.

Mod[Binomial[a + b, a], k] k = 6
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As mentioned in the main text, proving that even simple
specific Diophantine equations have no solutions can be very
difficult. Obvious methods involve for example showing that
no solutions exist for real variables, or for variables reduced
modulo some . (For quadratic equations Hasse’s Principle
implies that if no solutions exist for any  then there are no
solutions for ordinary integers—but a cubic like

 is a counterexample.) If one can find a
bound on solutions—say by Baker’s method—then one can
also try to show that no values below this bound are actually
solutions. Over the history of number theory the
sophistication of equations for which proofs of no solutions
can be given has gradually increased—though even now it is
state of the art to show say that  is the only solution
to .

Just as for all sorts of other systems with complex behavior,
some idea of overall properties of Diophantine equations can
be found on the basis of an approximation of perfect
randomness. Writing equations in the form

 the distribution of values of  will in
general be complicated (see page 1161), but as a first
approximation one can try taking it to be purely random.
(Versions of this for large numbers of variables are validated
by the so-called circle method from the early 1900s.) If  has
total degree  then with  the values of  will range
up to about . But with  variables the number of different
cases sampled for  will be . The assumption of perfect
randomness then suggests that for , more and more
cases with  will be seen as  increases, so that the
equation will have an infinite number of solutions. For ,
on the other hand, it suggests that there will often be no
solutions, and that any solutions that exist will usually be
small. In the boundary case  it suggests that even for
arbitrarily large  an average of about one solution should
exist—suggesting that the smallest solution may be very
large, and presumably explaining the presence of so many
large solutions in the  and  examples in the
main text. Note that even though large solutions may be rare
when  they must always exist in at least some cases
whenever there is undecidability and universality in a class
of equations. (See also page 1161.)

If one wants to enumerate all possible Diophantine equations
there are many ways to do this, assigning different weights to
numbers of variables, and sizes of coefficients and of
exponents. But with several ways I have tried, it seems that of
the first few million equations, the vast majority have no
solutions—and this can in most cases be established by fairly
elementary methods that are presumably within Peano
arithmetic. When solutions do exist, most are fairly small. But

as one continues the enumeration there are increasingly a few
equations that seem more and more difficult to handle.

â Page 790 · Properties. (All variables are assumed positive.)

ä . There are  
solutions, the one with smallest  being 

. Linear 
equations like this were already studied in antiquity. 
(Compare page 915.)

ä . Writing  in terms of distinct factors as , 
 gives a solution if it yields integers—which 

happens when  and .

ä  (Pell equation). As discussed on page 944, 
whenever  is not a perfect square, there are always an 
infinite number of solutions given in terms of 

. Note that even when the smallest 
solution is not very large, subsequent solutions can rapidly 
get large. Thus for example when , the second 
solution is already . 

ä  (Mordell equation). First studied in the 1600s, a 
complete theory of this so-called elliptic curve equation 
was only developed in the late 1900s—using fairly 
sophisticated algebraic number theory. The picture below 
shows as a function of  the minimum  that solves the 
equation. For , the only solution is ; for 

, it is . The density of cases with 
solutions gradually thins out as  increases (for 

 there are 2468 such cases). There are always 
only a finite number of solutions (for  the 
maximum is 12, achieved for ).

ä . Also an elliptic curve equation. 

ä . For most values of  (including 
specifically ) the continuous version of this equation 
defines a surface of genus 3, so there are at most a finite 
number of integer solutions. (An equation of degree  
generically defines a surface of genus .) 
Note that  is equivalent to  by a 
simple substitution. 

ä . The second smallest solution to 
 is . As for the equations above, 

there are always at most a finite number of integer 
solutions.

ä . For the homogenous case  the 
complete solution was found by Leonhard Euler in 1756. 
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ä . No solutions exist when ; for 
 or  infinite families of solutions are known. 

Particularly in its less strict form  with , , 
 positive or negative the equation was mentioned in the 

1800s and again in the mid-1900s; computer searches for 
solutions were begun in the 1960s, and by the mid-1990s 
solutions such as  for 
the case  had been found. Any solution to the 
difficult case  must have 

. (Note that 
 always has solutions except when 

, as mentioned on page 135.) 

â Large solutions. A few other 2-variable equations with fairly
large smallest solutions are:

ä :  

ä : 

ä :  

The equation  is known to have smallest non-trivial
solution .

â Nearby powers. One can potentially find integer equations
with large solutions but small coefficients by looking say for
pairs of integer powers close in value. The pictures below
show what happens if one computes  and  for many 
and , sorts these values, then plots successive differences.
The differences are trivially zero when , . Often
they are large, but surprisingly small ones can sometimes
occur (despite various suggestions from the so-called ABC
conjecture). Thus, for example, 
is a perfect square, as found by Noam Elkies in 1998.
(Another example is .)

â Page 791 · Unsolved problems. Problems in number theory
that are simple to state (say in the notation of Peano
arithmetic) but that so far remain unsolved include:

ä Is there any odd number equal to the sum of its divisors? 
(Odd perfect number; 4th century BC) (See page 911.)

äAre there infinitely many primes that differ by 2? (Twin 
Prime Conjecture; 1700s?) (See page 909.)

ä Is there a cuboid in which all edges and all diagonals are of 
integer length? (Perfect cuboid; 1719)

ä Is there any even number which is not the sum of two 
primes? (Goldbach’s Conjecture; 1742) (See page 135.)

äAre there infinitely many primes of the form ? 
(Quadratic primes; 1840s?) (See page 1162.) 

äAre there infinitely many primes of the form ? 
(Fermat primes; 1844)

äAre there no solutions to  other than 
? (Catalan’s Conjecture; 1844)

äCan every integer not of the form  be written as 
? (See note above.) 

äHow few th powers need be added to get any given 
integer? (Waring’s Problem; 1770)

(See also Riemann Hypothesis on page 918.)

â Page 791 · Fermat’s Last Theorem. That  has no
integer solutions for  was suggested by Pierre Fermat
around 1665. Fermat proved this for  around 1660;
Leonhard Euler for  around 1750. It was proved for 
and  in the early 1800s. Then in 1847 Ernst Kummer
used ideas of factoring with algebraic integers to prove it for
all . Extensions of this method gradually allowed more
cases to be covered, and by the 1990s computers had
effectively given proofs for all  up to several million.
Meanwhile, many connections had been found between the
general case and other areas of mathematics—notably the
theory of elliptic curves. And finally around 1995, building
on extensive work in number theory, Andrew Wiles managed
to give a complete proof of the result. His proof is long and
complicated, and relies on sophisticated ideas from many
areas of mathematics. But while the statement of the proof
makes extensive use of concepts from areas like set theory, it
seems quite likely that in the end a version of it could be
given purely in terms of Peano arithmetic. (By the 1970s it
had for example been shown that many classic proofs with a
similar character in analytic number theory could at least in
principle be carried out purely in Peano arithmetic.) 

â Page 791 · More powerful axioms. If one looks for example
at progressively more complicated Diophantine equations
then one can expect that one will find examples where more
and more powerful axiom systems are needed to prove
statements about them. But my guess is that almost as soon
as one reaches cases that cannot be handled by Peano
arithmetic one will also reach cases that cannot be handled by
set theory or even by still more powerful axiom systems. 

Any statement that one can show is independent of the
Peano axioms and at least not inconsistent with them one can
potentially consider adding as a new axiom. Presumably it is
best to add axioms that allow the widest range of new
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statements to be proved. But I strongly suspect that the set of
statements that cannot be proved is somehow sufficiently
fragmented that adding a few new axioms will actually make
very little difference. 

In set theory (see page 1155) a whole sequence of new axioms
have historically been added to allow particular kinds of
statements to be proved. And for several decades additional
so-called large cardinal axioms have been discussed, that in
effect state that sets exist larger than any that can be reached
with the current axioms of set theory. (As discussed on page
816 any axiom system that is universal must in principle be
able to prove any statement that can be proved in any axiom
system—but not with the kinds of encodings normally
considered in mathematical logic.)

It is notable, however, that if one looks at classic theorems in
mathematics many can actually be derived from remarkably
weak axioms. And indeed the minimal axioms needed to
obtain most of mathematics as it is now practiced are
probably much weaker than those on pages 773 and 774.

(If one considers for example theorems about computational
issues such as whether Turing machines halt, then it becomes
inevitable that to cover more Turing machines one needs
more axioms—and to cover all possible machines one needs
an infinite set of axioms, that cannot even be generated by
any finite set of rules.) 

â Higher-order logics. In ordinary predicate—or so-called
first-order—logic the objects  that  and  range over
are variables of the kind used as arguments to functions (or
predicates) such as . To set up second-order logic,
however, one imagines also being able to use  and 
where  is a function (say the head of ). And then in
third-order logic one imagines using  and  where 
appears in . 

Early formulations of axiom systems for mathematics made
little distinction between first- and second-order logic. The
theory of types used in Principia Mathematica introduced
some distinction, and following the proof of Gödel’s
Completeness Theorem for first-order logic in 1930 (see page
1152) standard axiom systems for mathematics (as given on
pages 773 and 774) began to be reformulated in first-order
form, with set theory taking over many of the roles of second-
order logic.

In current mathematics, second-order logic is sometimes
used at the level of notation, but almost never in its full form
beyond. And in fact with any standard computational system
it can never be implemented in any explicit way. For even to
enumerate theorems in second-order logic is in general
impossible for a system like a Turing machine unless one

assumes that an oracle can be added. (Note however that this
is possible in Henkin versions of higher-order logic that
allow only limited function domains.) 

â Truth and incompleteness. In discussions of the foundations
of mathematics in the early 1900s it was normally assumed
that truth and provability were in a sense equivalent—so that
all true statements could in principle be reached by formal
processes of proof from fixed axioms (see page 782). Gödel’s
Theorem showed that there are statements that can never be
proved from given axioms. Yet often it seemed inevitable just
from the syntactic structure of statements (say as well-formed
formulas) that each of them must at some level be either true
or false. And this led to the widespread claim that Gödel’s
Theorem implies the existence of mathematical statements that
are true but unprovable—with their negations being false but
unprovable. Over the years this often came to be assigned a
kind of mystical significance, mainly because it was implicitly
assumed that somehow it must still ultimately be possible to
know whether any given statement is true or false. But the
Principle of Computational Equivalence implies that in fact
there are all sorts of statements that simply cannot be decided
by any computational process in our universe. So for example,
it must in some sense be either true or false that a given Turing
machine halts with given input—but according to the
Principle of Computational Equivalence there is no finite
procedure in our universe through which we can guarantee to
know which of these alternatives is correct.

In some cases statements can in effect have default truth
values—so that showing that they are unprovable
immediately implies, say, that they must be true. An example
in arithmetic is whether some integer equation has no solution.
For if there were a solution, then given the solution it would be
straightforward to give a proof that it is correct. So if it is
unprovable that there is no solution, then it follows that there
must in fact be no solution. And similarly, if it could be shown
for example that Goldbach’s Conjecture is unprovable then it
would follow that it must be true, for if it were false then there
would have to be a specific number which violates it, and this
could be proved. Not all statements in mathematics have this
kind of default truth value. And thus for example the
Continuum Hypothesis in set theory is unprovable but could
be either of true or false: it is just independent of the axioms of
set theory. In computational systems, showing that it is
unprovable that a given Turing machine halts with given input
immediately implies that in fact it must not halt. But showing
that it is unprovable whether a Turing machine halts with
every input (a  statement in the notation of page 1139) does
not immediately imply anything about whether this is in fact
true or false. 
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f f [x]
´g µg g
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â Page 793 · Generalization in mathematics. Systems that
have evolved from the basic notion of numbers provide a
characteristic example of the process of progressive
generalization in mathematics. The main such systems and
their dates of earliest known reasonably formalized use
have been (see also page 901): positive integers (before
10,000 BC), rationals (3000 BC), square roots (2000 BC), other
roots (1800 BC), all integers (600 AD, 1600s), decimals (950
AD), complex numbers (1500s, 1800s), polynomials (1591),
infinitesimals (1635), algebraic numbers (1744), quaternions
(1843), Grassmann algebra (1844), ideals (1844, 1871),
octonions (~1845), Boolean algebra (1847), fields (1850s,
1871), matrices (1858), associative algebras (1870), axiomatic
real numbers (1872), vectors (1881), transfinite ordinals
(1883), transfinite cardinals (1883), operator calculus (1880s),
Boolean algebras (1890), algebraic number fields (1893),
rings (1897), p-adic numbers (1897), non-Archimedean fields
(1899), q-numbers (1926), non-standard integers (1930s),
non-standard reals (hyperreals) (1960), interval arithmetic
(1968), fuzzy arithmetic (1970s), surreal numbers (1970s).
New systems have usually been introduced in connection
with extending the domains of particular existing
operations. But in almost all cases the systems are set up so
as to preserve as many theorems as possible—a notion that
was for example made explicit in the Principle of
Permanence discussed by George Peacock in 1830 and
extended by Hermann Hankel in 1869.

â Page 794 · Cellular automaton axioms. The first 4 axioms are
general to one-dimensional cellular automata. The next 8 are
specific to rule 110. The final 3 work whenever patterns are
embedded in a background of white cells. The universality of
rule 110 presumably implies that the axiom system given is
universal. (A complete proof would require handling various
issues about boundary conditions.) 

If the last 2 axioms are dropped any statement can readily be
proved true or false essentially just by running rule 110 for a
finite number of steps equal to the number of nested  plus

 in the statement. In practice, a large number of steps can
however be required. As an example the statement

asserts that a particular localized structure occurs in the
evolution of rule 110 from a single black cell. But page 38
shows that this happens for the first time after 2867 steps. (A
proof of this without lemmas would probably have to be of
length at least 32,910,300.)

The axioms as they are stated apply to any rule 110 evolution,
regardless of initial conditions. One can establish that the
statement at the bottom on the right cannot be proved either
true or false from the axioms by showing that it is true for
some initial conditions and false for others. Note from page
279 that the sequence  cannot occur in rule 110 evolution
except as an initial condition. So this means that the
statement is false if the initial condition is  and true if the
initial condition is .

â Practical programs. Any equivalence between programs in
a programming language can be thought of as a theorem.
Simple examples in Mathematica include:

One can set up axiom systems say by combining definitions
of programming languages with predicate logic (as done by
John McCarthy for LISP in 1963). And for programs whose
structure is simple enough it has sometimes been possible to
prove theorems useful for optimization or verification. But in
the vast majority of cases this has been essentially impossible
in practice. And I suspect that this is a reflection of
widespread fundamental unprovability. In setting up
programs with specific purposes there is inevitably some
computational reducibility (see page 828). But I suspect that
enough computational irreducibility usually remains to
make unprovability common when one asks about all
possible forms of behavior of the program. 

â Page 796 · Rules. The examples shown here (roughly in
order of increasing complexity) correspond respectively to
cases (a), (k), (b), (q), (p), (r), (o), (d) on page 798.

â Page 797 · Consistency. Any axiom system that is universal
can represent the statement that the system is consistent.
But normally such a statement cannot be proved true or
false within the system itself. And thus for example Kurt
Gödel showed this in 1931 for Peano arithmetic (in his so-
called second incompleteness theorem). In 1936, however,
Gerhard Gentzen showed that the axioms of set theory
imply the consistency of Peano arithmetic (see page 1160).
In practical mathematics set theory is always taken to be
consistent, but to set up a proof of this would require
axioms beyond set theory.

â Page 798 · Properties. For most of the rules shown, there
ultimately turn out to be quite easy characterizations of what
strings can be produced.

ä (a) At step , the only new string produced is the one 
containing  black elements.

á

É?Ê

� ��¶ (µa (µb � a³ (�³ (�³ (�³ (�³
(�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³

(�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³ (�³
(�³ (�³ (�³ (�³ (�³b)))))))))))))))))))))))))))))))))))))

First[Prepend[p, q]] === q

Join[Join[p, q], r] === Join[p, Join[q, r]]

Partition[Union[p], 1] === Split[Union[p]]

t
t
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ä (b) All strings of length  containing exactly one black cell 
are produced—after at most  steps.

ä (c) All strings containing even-length runs of white cells 
are produced.

ä (d) The set of strings produced is complicated. The last 
length 4 string produced is , after 16 steps; the last 
length 6 one is , after 26 steps. 

ä (e) All strings that begin with a black element are 
produced.

ä (f) All strings that end with a white element but contain at 
least one black element, or consist of all white elements 
ending with black, are produced. Strings of length  take  
steps to produce.

ä (g) The same strings as in (f) are produced, but now a 
string of length  with  black elements takes  
steps.

ä (h) All strings appear in which the first run of black 
elements is of length 1; a string of length  with  black 
elements appears after  steps.

ä (i) All strings containing an odd number of black elements 
are produced; a string of length  with  black cells occurs 
at step .

ä (j) All strings that end with a black element are produced.

ä (k) Above length 1, the strings produced are exactly those 
starting with a white element. Those of length  appear 
after at most  steps.

ä (l) The same strings as in (k) are produced, taking now at 
most  steps.

ä (m) All strings beginning with a black element are 
produced, after at most  steps.

ä (n) The set of strings produced is complicated, and seems 
to include many but not all that do not end with .

ä (o) All strings that do not end in  are produced.

ä (p) All strings are produced, except ones in which every 
element after the first is white.  takes 14 steps. 

ä (q) All strings are produced, with a string of length  with 
 white elements taking  steps.

ä (r) All strings are ultimately produced—which is 
inevitable after the lemmas  and  appear at 
steps 12 and 13. (See the first rule on page 778.)

â Page 800 · Non-standard arithmetic. Goodstein’s result from
page 1163 is true for all ordinary integers. But since it is
independent of the axioms of arithmetic there must be objects
that still satisfy the axioms but for which it is false. It turns out

however that any such objects must in effect be infinite. For
any set of objects that satisfy the axioms of arithmetic must
include all finite ordinary integers, since each of these can be
reached just by using  repeatedly. And the axioms then turn
out to imply that any additional objects must be larger than all
these integers—and must therefore be infinite. But for any
such truly infinite objects operations like  and  cannot be
computed by finite procedures, making it difficult to describe
such objects in an explicit way. Ever since the work of Thoralf
Skolem in 1933 non-standard models of arithmetic have been
discussed, particularly in the context of ultrafilters and
constructs like infinite trees. (See also page 1172.) 

â Page 800 · Reduced arithmetic. (See page 1152.) Statements
that can be proved with induction but are not provable only
with Robinson’s axioms are: ; ;

; ; ;
; ; .

â Page 800 · Generators and relations. In the axiom systems of
page 773, a single variable can stand for any element—much
like a Mathematica pattern object such as . In studying
specific instances of objects like groups one often represents
elements as products of constants or generators, and then for
example specifies the group by giving relations between
these products. In traditional mathematical notation such
relations normally look just like ordinary axioms, but in fact
the variables that appear in them are now assumed to be
literal objects—like  in Mathematica—that are generically
taken to be unequal. (Compare page 1159.)

â Page 801 · Comparison to multiway systems. Operator
systems are normally based on equations, while multiway
systems are based on one-way transformations. But for
multiway systems where each rule  is accompanied by
its reverse , and such pairs are represented say by

, an equivalent operator system can
immediately be obtained either from 

or from (compare page 1172)

where now objects like  and  are treated as constants—
essentially functions with zero arguments. With slightly more
effort multiway systems with ordinary one-way rules can
also be converted to operator systems. Converting from
operator systems to multiway systems is more difficult,
though ultimately always possible (see page 1156).

As discussed on page 898, one can set up operator evolution
systems similar to symbolic systems (see page 103) that have

n
2 n - 1

n n

n m n+m - 1

n m
n+m - 1

n m
n+m - 1

n
3 n - 3

2 n+ 1

3 n+ 1

n
m n+ 2 m

! !

Ø

+ 6

x 9 Øx x + y 2 y + x
x + ( y + z) 2 ( x + y) + z 0 + x 2 x µx (Øx + y 2 z ¶ y 9 z)
x 6y 2 y 6x x 6 ( y 6z) 2 ( x 6y)6z x 6 ( y + z) 2 x 6y + x 6z

x_

x

p ! q
q ! p

"AAB" · "BBAA"

Apply[Equal,
Map[Fold[#2[#1] &, x, Characters[#]] &, rules, {2}], {1}]

Append[Apply[Equal,
Map[( Fold[f , First[#], Rest[#]] &)[Characters[#]] &,

rules, {2}], {1}], f [f [a, b], c] 2 f [a, f [b, c]]]

"A" "B"
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essentially the same relationship to operator systems as
sequential substitution systems do to multiway systems. (See
also page 1172.)

â Page 802 · Operator systems. One can represent the possible
values of expressions like  by rule numbers
analogous to those used for cellular automata. Specifying an
operator  (taken in general to have  arguments with 
possible values) by giving the rule number  for ,
the rule number for an expression with variables  can be
obtained from

â Truth tables. The method of finding results in logic by
enumerating all possible combinations of truth values seems
to have been rediscovered many times since antiquity. It
began to appear regularly in the late 1800s, and became
widely known after its use by Emil Post and Ludwig
Wittgenstein in the early 1920s.

â Page 803 · Proofs of axiom systems. One way to prove that an
axiom system can reproduce all equivalences for a given
operator is to show that its axioms can be used to transform
any expression to and from a unique standard form. For then
one can start with an expression, convert it to standard form,
then convert back to any expression that is equivalent. We saw
on page 616 that in ordinary logic there is a unique DNF
representation in terms of ,  and  for any expression,
and in 1921 Emil Post used essentially this to give the first
proof that an axiom system like the first one on page 773 can
completely reproduce all theorems of logic. A standard form in
terms of  can be constructed essentially by direct
translation of DNF; other methods can be used for the various
other operators shown. (See also page 1175.)

Given a particular axiom system that one knows reproduces
all equivalences for a given operator one can tell whether a
new axiom system will also work by seeing whether it can be
used to derive the axioms in the original system. But often
the derivations needed may be very long—as on page 810.
And in fact in 1948 Samuel Linial and Emil Post showed that
in general the problem is undecidable. They did this in effect
by arguing (much as on page 1169) that any multiway system
can be emulated by an axiom system of the form on page 803,
then knowing that in general it is undecidable whether a
multiway system will ever reach some given result. (Note
that if an axiom system does manage to reproduce logic in
full then as indicated on page 814 its consequences can
always be derived by proofs of limited length, if nothing else
by using truth tables.)

Since before 1920 it has been known that one way to disprove
the validity of a particular axiom system is to show that with

 truth values it allows additional operators (see page
805). (Note that even if it works for all finite  this does not
establish its validity.) Another way to do this is to look for
invariants that should not be present—seeing if there are
features that differ between equivalent expressions, yet are
always left the same by transformations in the axiom system.
(Examples for logic are axiom systems which never change
the size of an expression, or which are of the form 
where  begins or ends with .) 

â Junctional calculus. Expressions are equivalent when
 is the same, and this canonical form

can be obtained from the axiom system of page 803 by
flattening using , sorting using ,
and removing repeats using . The operator can be
either  or  (8 or 14). With  there are 9 operators that
yield the same results:

With  there are 3944 such operators (see below). No single
axiom can reproduce all equivalences, since such an axiom
must of the form , yet  cannot contain variables
other than , and so cannot for example reproduce .

â Equivalential calculus. Expressions with variables  are
equivalent if they give the same results for

With  variables, there are thus  equivalence classes of
expressions (compared to  for ordinary logic). The
operator can be either  or  (6 or 9). With  there
are no operators that yield the same results; with 

 work (see
below). The shortest axiom system that works up to  is

. With modus ponens as the rule of inference, the
shortest single-axiom system that works is known to be

. Note that equivalential calculus
describes the smallest non-trivial group, and can be viewed
as an extremely minimal model of algebra. 

â Implicational calculus. With  the operator can be
either 2 or 11 ( ), with  , and
with  any of 16 possibilities. (Operators exist for any

.) No single axiom, at least with up to 7 operators and 4
variables, reproduces all equivalences. With modus ponens
as the rule of inference, the shortest single-axiom system
that works is known to be . Using
the method of page 1151 this can be converted to the
equational form

f [f [p, q], p]

f n k
u f [p, q, ?]

vars

With[{m = Length[vars]}, FromDigits[
Block[{f = Reverse[IntegerDigits[u, k, kn]]0FromDigits[

{##}, k] + 11 &}, Apply[Function[Evaluate[vars], expr],
Reverse[Array[IntegerDigits[# - 1, k, m] &, km]], {1}]], k]]

And Or Not

Nand

k > 2
k

{expr 2 a}
Flatten[expr] a

Union[Level[expr, {-1}]]

( aÆb)Æc 2 aÆ ( bÆc) aÆb 2 bÆa
aÆa 2 a

And Or k = 3

{13203, 15633, 15663, 16401,
17139, 18063, 19539, 19569, 19599}

k = 4

expr 2 a expr
a aÆb Ð bÆa

vars

Mod[Map[Count[expr, #, {-1}] &, vars], 2]

n 2n

22n

Xor Equal k = 3
k = 4

{458142180, 1310450865, 2984516430, 3836825115}

k = 2
{( aÆb)Æa Ð b}

{( aÆb)Æ ( ( cÆb)Æ ( aÆc))}

k = 2
Implies k = 3 {2694, 9337, 15980}

k = 4
k

{( ( aÆb)Æc)Æ ( ( cÆa)Æ ( d Æa))}

{( ( aÆb)Æc)Æ ( ( cÆa)Æ ( d Æa)) Ð d Æd,
( aÆa)Æb Ð b, ( aÆb)Æb Ð ( bÆa)Æa}
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from which the validity of the axiom system in the main text
can be established. 

â Page 803 · Operators on sets. There is always more than one
operator that yields a given collection of equivalences. So for
ordinary logic both  and  work. And with  any
of the 12 operators

also turn out to work. One can see why this happens by
considering the analogy between operations in logic and
operations on sets. As reflected in their traditional
notations—and emphasized by Venn diagrams—  ( ), 
( ) and  correspond directly to  ( ), 
( ) and . If one starts from the single-element
set  then applying ,  and 
one always gets either  or . And applying

 to these two elements gives
the same results and same equivalences as  applied to

 and . But if one uses instead  then starts
with  and  one gets any of  and in
general with  one gets any of the  elements in
the powerset 

But applying  to these
elements still always produces the same equivalences as with

. Yet now . And so one therefore has a
representation of Boolean algebra of size . For ordinary
logic based on  it turns out that there are no other finite
representations (though there are other infinite ones). But if
one works, say, with  then there are for example
representations of size 3 (see above). And the reason for this
is that with  the function 
corresponding to  only ever gets to the 3 elements

. Indeed, in general with operators ,
 and  one gets to  elements, while with operators
 and  one gets to  elements.

(One might think that one could force there only ever to be
two elements by adding an axiom like .
But all this actually does is to force there to be only two
objects analogous to  and .)

â Page 805 · Implementation. Given an axiom system in the
form  one can find rule
numbers for the operators  with  values for each
variable that are consistent with the axiom system by using

For  this involves checking nearly  or 4 billion cases,
though many of these can often be avoided, for example by
using analogs of the so-called Davis-Putnam rules. (In
searching for an axiom system for a given operator it is in
practice often convenient first to test whether each candidate
axiom holds for the operator one wants.) 

â Page 805 · Properties. There are  possible forms for
binary operators with  possible values for each argument.
There is always at least some operator that satisfies the
constraints of any given axiom system—though in a case
like  it has . Of the 274,499 axiom systems of the
form  where  involves  up to 6 times, 32,004
allow only operators , while 964 allow only . The
only cases of 2 or less operators that appear with  are

. (See
page 1174.)

â Page 806 · Algebraic systems. Operator systems can be
viewed as algebraic systems of the kind studied in
universal algebra (see page 1150). With a single two-
argument operator (such as ) what one has is in general
known as a groupoid (though this term means something
different in topology and category theory); with two such
operators a ringoid. Given a particular algebraic system, it
is sometimes possible—as we saw on page 773—to reduce
the number of operators it involves. But the number of
systems that have traditionally been studied in
mathematics and that are known to require only one
2-argument operator are fairly limited. In addition to basic
logic, semigroups and groups, there are essentially only the
rather obscure examples of semilattices, with axioms

, central groupoids,
with axioms , and squags (quasigroup
representations of Steiner triple systems), with axioms

 or equivalently
. (Ordinary quasigroups

are defined by  with ,  unique for
given , —so that their table is a Latin square; their
axioms can be set up with 3 operators as

.) 

Pages 773 and 774 indicate that most axiom systems in
mathematics involve operators with at most 2 arguments
(there are exceptions in geometry). (Constants such as  or 
can be viewed as 0-argument operators.) One can
nevertheless generalize say to polyadic groups, with
3-argument composition and analogs of associativity such as

Another example is the cellular automaton axiom system of
page 794; see also page 886. (A perhaps important

Nand Nor k = 4

{1116699, 169585339, 290790239, 459258879,
1090522958, 1309671358, 1430343258, 1515110058,
2184380593, 2575151445, 2863760025, 2986292093}

And © Or
ª Not Intersection Å Union
Ä Complement

{1} Union Intersection Complement
{} {1}

Complement[s, Intersection[a, b]]
a Ñ b

True False s = {1, 2}
{1} {2} {{}, {1}, {2}, {1, 2}}

s = Range[n] 2n

Distribute[Map[{{}, {#}} &, s], List, List, List, Join]

Complement[s, Intersection[a, b]]

a Ñ b k = 2n

2n

Nand

Implies

s = {1, 2} Union[Complement[s, a], b]
a ¶ b

{{1}, {2}, {1, 2}} Implies
And Or 2n - 1
Xor Equal 2^ ( 2 Floor[n/2])

a 2 b ª b 2 c ª c 2 a

True False

{f [a, f [a, a]] Ð a, f [a, b] Ð f [b, a]}
f [x, y] k

Module[{c, v}, c = Apply[Function,
{v = Union[Level[axioms, {-1}]], Apply[And, axioms]}];

Select[Range[0, kk2

- 1], With[{u = IntegerDigits[#, k, k2]},
Block[{f}, f [x_, y_] := u0-1 - k x - y1;
Array[c, Table[k, {Length[v]}], 0, And]]] &]]

k = 4 164

kk2

k

a Ð b k = 1
{? Ð a} ? Æ

{6, 9} {1, 7}
k = 2

{{}, {10}, {12}, {1, 7}, {3, 12}, {5, 10}, {6, 9}, {10, 12}}

Æ

{aÆ ( bÆc) Ð ( aÆb)Æc, aÆb Ð bÆa, aÆa Ð a}
{( bÆa)Æ ( aÆc) Ð b}

{aÆb Ð bÆa, aÆa Ð a, aÆ ( aÆb) Ð b}
{aÆ ( ( bÆ ( bÆ ( ( ( cÆc)Æd)Æc)))Æa) Ð d}

{aÆc Ð b, d Æa Ð b} c d
a b

{a 
aÆb Ð b, aÆb�Ö �b Ð a, aÆ ( a 
b) Ð b, ( a�Ö �b)Æb Ð a}

1 Ë

f [f [a, b, c], d, e] Ð f [a, f [b, c, d], e] Ð f [a, b, f [c, d, e]]
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generalization is to have expressions that are arbitrary
networks rather than just trees.) 

â Symbolic systems. By introducing constants (0-argument
operators) and interpreting  as function application one
can turn any symbolic system such as 
from page 103 into an algebraic system such as

. Doing this for the combinator system
from page 711 yields the so-called combinatory algebra

.

â Page 806 · Groups and semigroups. With  possible values
for each variable, the forms of operators allowed by axiom
systems for group theory and semigroup theory correspond
to multiplication tables for groups and semigroups with 
elements. Note that the first group that is not commutative
(Abelian) is the group  with  elements. The total
number of commutative groups with  elements is just 

(Relabelling of elements makes the number of possible
operator forms up to  times larger.) (See also pages 945,
1153 and 1173.)

â Forcing of operators. Given a particular set of forms for
operators one can ask whether an axiom system can be found
that will allow these but no others. As discussed in the note
on operators on sets on page 1171 some straightforwardly
equivalent forms will always be allowed. And unless one
limits the number of elements  it is in general undecidable
whether a given axiom system will allow no more than a
given set of forms. But even with fixed  it is also often not
possible to force a particular set of forms. And as an example
of this one can consider commutative group theory. The basic
axioms for this allow forms of operators corresponding to
multiplication tables for all possible commutative groups
(see note above). So to force particular forms of operators
would require setting up axioms satisfied only by specific
commutative groups. But it turns out that given the basic
axioms for commutative group theory any non-trivial set of
additional axioms can always be reduced to a single axiom of
the form  (where exponentiation is repeated
application of ). Yet even given a particular number of
elements , there can be several distinct groups satisfying

 for a given exponent . (The groups can be written as
products of cyclic ones whose orders correspond to the
possible factors of .) (Something similar is also known in
principle to be true for general groups, though the hierarchy
of axioms in this case is much more complicated.)

â Model theory. In model theory each form of operator that
satisfies the constraints of a given axiom system is called a

model of that axiom system. If there is only one inequivalent
model the axiom system is said to be categorical—a notion
discussed for example by Richard Dedekind in 1887. The
Löwenheim-Skolem theorem from 1915 implies that any
axiom system must always have a countable model. (For an
operator system such a model can have elements which are
simply equivalence classes of expressions equal according to
the axioms.) So this means that even if one tries to set up an
axiom system to describe an uncountable set—such as real
numbers—there will inevitably always be extra countable
models. Any axiom system that is incomplete must always
allow more than one model. The model intended when the
axiom system was originally set up is usually called the
standard model; others are called non-standard. In arithmetic
non-standard models are obscure, as discussed on page 1169.
In analysis, however, Abraham Robinson pointed out in 1960
that one can potentially have useful non-standard models, in
which there are explicit infinitesimals—much along the lines
suggested in the original work on calculus in the late 1600s.

â Pure equational logic. Proofs in operator systems always
rely on certain underlying rules about equality, such as the
equivalence of  and , and of  and

. And as Garrett Birkhoff showed in 1935, any
equivalence between expressions that holds for all possible
forms of operator must have a finite proof using just these
rules. (This is the analog of Gödel’s Completeness Theorem
from page 1152 for pure predicate logic.) But as soon as one
introduces actual axioms that constrain the operators this is
no longer true—and in general it can be undecidable whether
or not a particular equivalence holds.

â Multiway systems. One can use ideas from operator systems
to work out equivalences in multiway systems (compare page
1169). One can think of concatenation of strings as being an
operator, in terms of which a string like  can be written

. (The arguments to  should strictly be distinct
constants, but no equivalences are lost by allowing them to be
general variables.) Assuming that the rules for a multiway
system come in pairs , , like ,

, these can be written as statements about
operators, like . The basic properties of
concatenation then also imply that .
And this means that the possible forms for the operator 
correspond to possible semigroups. Given a particular such
semigroup satisfying axioms derived from a multiway system,
one can see whether the operator representations of particular
strings are equal—and if they are not, then it follows that the
strings can never be reached from each other through
evolution of the multiway system. (Such operator
representations are a rough analog for multiway systems of

Æ

−[x][y] ! x[x[y]]

(−Æa)Æb Ð aÆ ( aÆb)

{( (�Æa)Æb)Æc Ð ( aÆc)Æ ( bÆc), (�Æa)Æb Ð a}

k

k

S3 k = 6
k

Apply[Times,
Map[PartitionsP[Last[#]] &, FactorInteger[k]]]

k !

k

k

an 2 1
Æ

k
an 2 1 n

n

u 2 v v 2 u u 2 v
u 2 v /. a ! b

"ABB"
f [f [a, b], b] Æ

p ! q q ! p "AB" ! "AAA"
"AAA" ! "AB"

f [a, b] 2 f [f [a, a], a]
f [f [a, b], c] 2 f [a, f [b, c]]

Æ
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truth tables.) As an example, with the multiway system
 some possible forms of operators are shown

below. (In this case these are the commutative semigroups.
With , elements 6 out of the total of 8 possible semigroups
appear; with , 63 out of 113, and with , 1140 out of
3492—all as shown on page 805.) (See also page 952.)

Taking  to be each of these operators, one can work out a
representation for any given string like  by for
example constructing the expression  and
finding its value for each of the  possible pairs of values of

 and . Then for each successive operator, the sets of strings
where the arrays of values are the same are as shown below.

Ultimately the sets of strings equivalent under the multiway
system are exactly those containing particular numbers of
black and white elements. But as the pictures above suggest,
only some of the distinctions between sets of strings are ever
captured when any specific form for the operator is used.

Just as for operator systems, any bidirectional multiway
system will allow a certain set of operators. (When there are
multiple rules in the multiway system, tighter constraints are
obtained by combining them with .) And the pattern of
results for simple multiway systems is roughly similar to
those on page 805 for operator systems—although, for
example, the associativity of concatenation makes it
impossible for example to get the operators for  and
basic logic. 

â Page 806 · Logic in languages. Human languages always
seem to have single words for AND, OR and NOT. A few have
distinct words for OR and XOR: examples are Latin with vel
and aut and Finnish with vai and tai. NOR is somewhat rare,
though Dutch has noch and Old English ne. (Modern English
has only the compound form neither ... nor.) But remarkably
enough it appears that no ordinary language has a single
word for NAND. The reason is not clear. Most people seem to
find it difficult to think in terms of NAND (NAND is for
example not associative, but then neither is NOR). And NAND

on the face of it rarely seems useful in everyday situations.

But perhaps these are just reflections of the historical fact that
NAND has never been familiar from ordinary languages. 

Essentially all computer languages support AND, OR and
NOT as ways to combine logical statements; many support
AND, OR and XOR as bitwise operations. Circuit design
languages like Verilog and VHDL also support NAND, NOR

and XNOR. (NAND is the operation easiest to implement with
CMOS FETs—the transistors used in most current chips; it
was also implemented by pentode vacuum tubes.) Circuit
designers sometimes use the linguistic construct “p nand q”. 

The Laws of Form presented by George Spencer Brown in
1969 introduce a compact symbolic notation for NAND with
any number of arguments and in effect try to develop a way
of discussing NAND and reasoning directly in terms of it.
(The axioms normally used are essentially the Sheffer ones
from page 773.)

â Page 806 · Properties. Page 813 lists theorems satisfied by
each function.  are commutative
(orderless) so that , while 
are associative (flat), so that . (Compare
page 886.)

â Notations. Among those in current use are (highlighted
ones are supported directly in Mathematica):

The grouping of terms is normally inferred from precedence
of operators (typically ordered , , , , , , , ),
or explicitly indicated by parentheses, function brackets, or
sometimes nested underbars or dots. So-called Polish
notation given second-to-last above avoids all explicit
delimiters (see page 896). 

â Page 807 · Universal logical functions. The fact that
combinations of  or  are adequate to reproduce any
logical function was noted by Charles Peirce around 1880,
and became widely known after the work of Henry Sheffer in
1913. (See also page 1096.)  and  are the only 2-input
functions universal in this sense. (  can for example

"AB" · "BA"

k = 2
k = 3 k = 4

(a) (b) (c) (d) (e) ( f ) (g) (h) ( i)

Æ

"ABAA"
f [f [f [a, b], a], a]

k2

a b

… …

… … …

… … …

… … … …

…

… … …

… … … …

… … …

…

(i)

(h)

(g)

( f )

(e)

(d)

(c)

(b)

(a)

And

Nand

{0, 1, 6, 7, 8, 9, 14, 15}
aÆb Ð bÆa {0, 6, 8, 9, 10, 12, 14, 15}

aÆ ( bÆc) Ð ( aÆb)Æc

True T 1 � Û �

False F 0 � Ú �

Not[p] ¨ p p
_

~p pç -p ! p Ü p N p �(negation)

And[p, q] p © q p &�q p Þq p q p && q K p q �(conjunction)

Or[p, q] p ª q p + q p || q A p q �(disjunction)

Xor[p, q] p Ò q p«q p 
 q p è q J p q �( inequivalence)

Implies[p, q] p ¶ q p ß q p º q If [p, q] C p q �(material implication)

Equal[p, q] p Ð q p ¸ q p Ý q p · q p ~ q E p q �(material equivalence; 
xnor)

Nand[p, q] p Ñ q p Ï q p�Ü q (p�q) D p q �(Sheffer stroke; 
alternative denial)

Nor[p, q] p Ó q páq X p q �( joint denial)

2 ¨ Ñ © Ò Ó ª ¶

Nand Nor

Nand Nor
{Equal}
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reproduce only functions ,  only
functions , and  only
functions .) For 3-input functions,
corresponding to elementary cellular automaton rules, 56 of
the 256 possibilities turn out to be universal. Of these, 6 are
straightforward generalizations of  and . Other
universal functions include rules 1, 45 and 202
( ), but not 30, 60 or 110. For large  roughly 1/4
of all -input functions are universal. (See also page 1175.) 

â Page 808 · Searching for logic. For axiom systems of the form
 one finds: 

 allows the  operator 15552 for
which the NAND theorem  is not true.

 allows the  operator 95356335
for which even  is not true. Of the 100 cases that
remain when , the 25 inequivalent under renaming of
variables and reversing arguments of  are

Of these I was able in 2000—using automated theorem
proving—to show that the ones given as (g) and (h) in the
main text are indeed axiom systems for logic. (My proof
essentially as found by Waldmeister is given on page 810.) 

If one adds  to any of the other 23 axioms above
then in all cases the resulting axiom system can be shown to
reproduce logic. But from any of the 23 axioms on their own I
have never managed to derive . Indeed, it seems
difficult to derive much at all from them—though for
example I have found a fairly short proof of 
from .

It turns out that the first of the 25 axioms allows the 
operator  and so cannot be
logic. Axioms 3, 19 and 23 allow similar operators, leaving 19
systems as candidate axioms for logic.

It has been known since the 1940s that any axiom system for
logic must have at least one axiom that involves more than 2
variables. The results above now show that 3 variables
suffice. And adding more variables does not seem to help.
The smallest axiom systems with more than 3 variables that
work up to  are of the form .
All turn out also to work at , but fail at . And with 6
NANDs (as in (g) and (h)) no system of the form 
works even up to . 

For axiom systems of the form :

With 2 variables the inequivalent cases that remain are

but all of these allow the  operator

and so cannot correspond to basic logic. With 3 variables, all
32 cases with 6 NANDs are equivalent to ,
which is axiom system (f) in the main text. With 7 NANDs
there are 8 inequivalent cases:

and of these at least 5 and 6 can readily be proved to be
axioms for logic.

Any axiom system must consist of equivalences valid for the
operator it describes. But the fact that there are fairly few
short such equivalences for  (see page 818) implies that
there can be no axiom system for  with 6 or less NANDs
except the ones discussed above. 

â Two-operator logic. If one allows two operators then one
can get standard logic if one of these operators is forced to be

 and the other is forced to be ,  or —or in
fact any of operators 1, 2, 4, 7, 8, 11, 13, 14 from page 806.

A simple example that allows  and either  or  is the
Robbins axiom system from page 773. Given the first two
axioms (commutativity and associativity) it turns out that no
shorter third axiom will work in this case (though ones such as

 of the same size do work).

Much as in the single-operator case, to reproduce logic two pairs
of operators must be allowed for , none for , 12 for

, and so on. Among single axioms, the shortest that works
up to  is . The shortest that

{9, 10, 12, 15} {Implies}
{10, 11, 12, 13, 14, 15} {Equal, Implies}
{8, 9, 10, 11, 12, 13, 14, 15}

Nand Nor

If[a 2 1, b, c] n
n

{? Ð a}

2 variables 3 variables
number of Æ

total systems
allow Ñ

allow only Ñ etc. for k=2
allow only Ñ etc. for k<3
allow only Ñ etc. for k<4

2 3 4 5 6

4 16 80 448 2688
0 5 44 168 1532
0 0 2 12 76
0 0 0 0 0
0 0 0 0 0

2 3 4 5 6

54 405 3402 30618 288684
0 9 124 744 8764
0 0 12 84 868
0 0 8 16 296
0 0 0 0 100

{( ( bÆb)Æa)Æ ( aÆb) Ð a} k = 3
(pÆp)Æq Ð ( pÆq)Æq

{( ( ( bÆa)Æc)Æa)Æ ( aÆc) Ð a} k = 4
pÆq Ð qÆp

k = 4
Æ

{(b Æ (b Æ (aÆa))) Æ (aÆ (b Æc)),
(b Æ (b Æ (aÆa))) Æ (aÆ (cÆb)), (b Æ (b Æ (aÆb))) Æ (aÆ (b Æc)),
(b Æ (b Æ (aÆb))) Æ (aÆ (cÆb)), (b Æ (b Æ (aÆc))) Æ (aÆ (cÆb)),
(b Æ (b Æ (b Æa))) Æ (aÆ (b Æc)), (b Æ (b Æ (b Æa))) Æ (aÆ (cÆb)),
(b Æ (b Æ (cÆa))) Æ (aÆ (b Æc)), (b Æ ( (aÆb) Æb)) Æ (aÆ (b Æc)),
(b Æ ( (aÆb) Æb)) Æ (aÆ (cÆb)), (b Æ ( (aÆc) Æb)) Æ (aÆ (cÆb)),
((b Æc) Æa) Æ (b Æ (b Æ (aÆb))), ( (b Æc) Æa) Æ (b Æ (b Æ (aÆc))),
( (b Æc) Æa) Æ (b Æ ( (aÆa) Æb)), ((b Æc) Æa) Æ (b Æ ( (aÆb) Æb)),
((b Æc) Æa) Æ (b Æ ( (aÆc) Æb)), ((b Æc) Æa) Æ (b Æ ( (b Æa) Æb)),
((b Æc) Æa) Æ (b Æ ( (cÆa) Æb)), ((b Æc) Æa) Æ (cÆ (cÆ (aÆb))),
( (b Æc) Æa) Æ (cÆ (cÆ (aÆc))), ( (b Æc) Æa) Æ (cÆ ( (aÆa) Æc)),
((b Æc) Æa) Æ (cÆ ( (aÆb) Æc)), ((b Æc) Æa) Æ (cÆ ( (aÆc) Æc)),
((b Æc) Æa) Æ (cÆ ( (b Æa) Æc)), ((b Æc) Æa) Æ (cÆ ( (cÆa) Æc))}

aÆb Ð bÆa

pÆq Ð qÆp

(pÆp)Æ ( pÆq) Ð p
{( bÆ ( bÆ ( bÆa)))Æ ( aÆ ( bÆc)) Ð a}

k = 6
1885760537655023865453442036

k = 2 {( ( ( bÆc)Æd)Æa)Æ ( aÆd) Ð a}
k = 3 k = 4

{? Ð a}
k = 4

{? Ð a, aÆb Ð bÆa}

2 variables 3 variables
number of Æ

total systems
allow Ñ

allow only Ñ etc. for k=2
allow only Ñ etc. for k<3
allow only Ñ etc. for k<4

4 5 6 7 8

4 16 80 448 2688
0 5 44 168 1532
0 4 20 160 748
0 0 0 64 16
0 0 0 48 16

4 5 6 7 8

54 405 3402 30618 288684
0 9 124 744 8764
0 8 80 736 6248
0 0 32 416 2752
0 0 32 384 2368

{( aÆb)Æ ( aÆ ( bÆ ( aÆb))),
( aÆb)Æ ( aÆ ( bÆ ( bÆb))), ( aÆ ( bÆb))Æ ( aÆ ( bÆ ( bÆb)))}

k = 6
1885760537655125429738480884

(aÆb)Æ ( aÆ ( bÆc))

{(aÆa) Æ (b Æ (b Æ (aÆc))), (aÆb) Æ (aÆ (b Æ (aÆb))), (aÆb) Æ (aÆ (b Æ (aÆc))),
(aÆb) Æ (aÆ (b Æ (b Æb))), (aÆb) Æ (aÆ (b Æ (b Æc))),
(aÆb) Æ (aÆ (b Æ (cÆc))), (aÆb) Æ (aÆ (cÆ (aÆc))), (aÆb) Æ (aÆ (cÆ (cÆc)))}

Nand
Nand

Not And Or Implies

Not And Or

f [g[f [a, g[f [a, b]]]], g[g[b]]] Ð b

k = 2 k = 3
k = 4

k = 2 (¨ (¨ (¨ b ª a) ª ¨ ( a ª b))) Ð a
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works up to  is . It is
known, however, that at least 3 variables must appear in order
to reproduce logic, and an example of a single axiom with 4
variables that has been found recently to work is

.

â Page 808 · History. (See page 1151.) (c) was found by Henry
Sheffer in 1913; (e) by Carew Meredith in 1967. Until this
book, very little work appears to have been done on finding
short axioms for logic in terms of . Around 1949
Meredith found the axiom system

In 1967 George Spencer Brown found (see page 1173)

and in 1969 Meredith also gave the system 

â Page 812 · Theorem distributions. The picture below shows
which of the possible theorems from page 812 hold for each
of the numbered standard mathematical theories from page
805. The theorem close to the right-hand end valid in many
cases is . The lack of regularity in this
picture can be viewed as a sign that it is difficult to tell which
theorems hold, and thus in effect to do mathematics.  

â Page 814 · Multivalued logic. As noted by Jan Lukasiewicz
and Emil Post in the early 1920s, it is possible to generalize
ordinary logic to allow  values , say with
0 being , and 1 being . Standard operations in logic can
be generalized as , ,

, ,
,

. An alternative
generalization for  is .
The function  used in the main
text turns out to be universal for any . Axiom systems can be
set up for multivalued logic, but they are presumably more
complicated than for ordinary  logic. (Compare page 1171.)

The idea of intermediate truth values has been discussed
intermittently ever since antiquity. Often—as in the work of
George Boole in 1847—a continuum of values between 0 and
1 are taken to represent probabilities of events, and this is the
basis for the field of fuzzy logic popular since the 1980s.

â Page 814 · Proof lengths in logic. As discussed on page 1170
equivalence between expressions can always be proved by
transforming to and from canonical form. But with 

variables a DNF-type canonical form can be of size —and
can take up to at least  proof steps to reach. And indeed if
logic proofs could in general be done in a number of steps
that increases only like a polynomial in  this would mean
that the NP-complete problem of satisfiability could also be
solved in this number of steps, which seems very unlikely
(see page 768).

In practice it is usually extremely difficult to find the absolute
shortest proof of a given logic theorem—and the exact length
will depend on what axiom system is used, and what kinds
of steps are allowed. In fact, as mentioned on page 1155, if
one does not allow lemmas some proofs perhaps have to
become exponentially longer. The picture below shows in
each of the axiom systems from page 808 the lengths of the
shortest proofs found by a version of Waldmeister (see page
1158) for all 582 equivalences (see page 818) that involve two
variables and up to 3 NANDs on either side.

The longest of these are respectively
 and occur for theorems 

Note that for systems that do not already have it as an axiom,
most theorems use the lemma  which takes
respectively  steps to prove.

â Page 818 · NAND theorems. The total number of expressions
with  NANDs and  variables is: 
(see page 897). With  and  from 0 to 7 the number of
these  for all values of variables is

, with the first few distinct ones
being (see page 781)

k = 3 (¨ (¨ ( a ª b) ª ¨ b) ª ¨ (¨ a ª a)) Ð b

{(¨ (¨ ( c ª b) ª ¨ a) ª ¨ (¨ (¨ d ª d) ª ¨ a ª c)) Ð a}

Nand

{( aÆ ( bÆc))Æ ( aÆ ( bÆc)) Ð
( ( cÆa)Æa)Æ ( ( bÆa)Æa), ( aÆa)Æ ( bÆa) Ð a}

{( aÆa)Æ ( ( bÆb)Æb) Ð a,
aÆ ( bÆc) Ð ( ( ( cÆc)Æa)Æ ( ( bÆb)Æa))Æ ( ( ( cÆc)Æa)Æ ( ( bÆb)Æa))}

{aÆ ( bÆ ( aÆc)) Ð aÆ ( bÆ ( bÆc)), ( aÆa)Æ ( bÆa) Ð a, aÆb Ð bÆa}

( pÆp)Æp Ð pÆ ( pÆp)

k Range[0, 1, 1/ ( k - 1)]
False True

Not[a_] = 1 - a And[a_, b_] = Min[a, b]
Or[a_, b_] = Max[a, b] Xor[a_, b_] = Abs[a - b]
Equal[a_, b_] = 1 -Abs[a - b]
Implies[a_, b_] = 1 -UnitStep[a - b] ( a - b)

Not Not[a_] := Mod[( k - 1) a + 1, k] / ( k - 1)
Nand[a_, b_] := Not[And[a, b]]

k

k = 2

n

2n

2n

n

0

20

40

0 100 200 300 400 500

0

20

40

60

0 100 200 300 400 500

0
20
40

0 100 200 300 400 500

0

20

40

60

80

0 100 200 300 400 500

0

20

40

60

0 100 200 300 400 500

0

20

40

60

80

100

120
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0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500

0
20
40

0 100 200 300 400 500

(e)

(d)

(c)

(b)

(a)

(h)

(g)

( f )

{57, 94, 42, 57, 55, 53, 179, 157}

{( ( (aÑ a) Ñ b) Ñ b) Ð ( ( (aÑ b) Ñ a) Ñ a),
(aÑ (aÑ (aÑ a))) Ð (aÑ ( (aÑ b) Ñ b)), (( (aÑ a) Ñ a) Ñ a) Ð

( ( (aÑ a) Ñ b) Ñ a), (( (aÑ a) Ñ b) Ñ b) Ð ( ( (aÑ b) Ñ a) Ñ a),
(aÑ ( (b Ñ b) Ñ a)) Ð (b Ñ ( (aÑ a) Ñ b)), ((aÑ a) Ñ a) Ð ( (b Ñ b) Ñ b),
((aÑ a) Ñ a) Ð ( (b Ñ b) Ñ b), ((aÑ a) Ñ a) Ð ( (b Ñ b) Ñ b)}

( a Ñ b) Ð ( b Ñ a)
{6, 1, 8, 49, 8, 1, 119, 118}

n s Binomial[2 n, n] sn+1 / ( n+ 1)
s = 2 n

True
{0, 0, 4, 0, 80, 108, 2592, 7296}

{( p Ñ p) Ñ p, ( ( ( p Ñ p) Ñ p) Ñ p) Ñ p, ( ( ( p Ñ p) Ñ p) Ñ q) Ñ q}
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The number of unequal expressions obtained is
 (compare page 1096), with the first

few distinct ones being 

Most of the axioms from page 808 are too long to appear
early in the list of theorems. But those of system (d) appear at
positions  and those of (e) at .

(See also page 1096.)

â Page 819 · Finite axiomatizability. It is known that the axiom
systems (such as Peano arithmetic and set theory) given with
axiom schemas on pages 773 and 774 can be set up only with
an infinite number of individual axioms. But because such
axioms can be described by schemas they must all have
similar forms, so that even though the definition in the main
text suggests that each corresponds to an interesting theorem
these theorems are not in a sense independently interesting.
(Note that for example the theory of specifically finite groups
cannot be set up with a finite number even of schemas—or
with any finite procedure for checking whether a given
candidate axiom should be included.) 

â Page 820 · Empirical metamathematics. One can imagine a
network representing some field of mathematics, with nodes
corresponding to theorems and connections corresponding to
proofs, gradually getting filled in as the field develops.
Typical rough characterizations of mathematical results—
independent of their detailed history—might then end up
being something like the following:

ä lemma: short theorem appearing at an intermediate stage 
in a proof

ä corollary: theorem connected by a short proof to an 
existing theorem

ä easy theorem: theorem having a short proof

ädifficult theorem: theorem having a long proof

ä elegant theorem: theorem whose statement is short and 
somewhat unique

ä interesting theorem (see page 817): theorem that cannot 
readily be deduced from earlier theorems, but is well 
connected

äboring theorem: theorem for which there are many others 
very much like it

äuseful theorem: theorem that leads to many new ones 

äpowerful theorem: theorem that substantially reduces the 
lengths of proofs needed for many others

ä surprising theorem: theorem that appears in an otherwise 
sparse part of the network of theorems

ädeep theorem: theorem that connects components of the 
network of theorems that are otherwise far away

ä important theorem: theorem that allows a broad new area 
of the network to be reached.

The picture below shows the network of theorems associated
with Euclid’s Elements. Each stated theorem is represented by
a node connected to the theorems used in its stated proof.
(Only the shortest connection from each theorem is shown
explicitly.) The axioms (postulates and common notions) are
given in the first column on the left, and successive columns
then show theorems with progressively longer proofs.
(Explicit annotations giving theorems used in proofs were
apparently added to editions of Euclid only in the past few
centuries; the picture below extends the usual annotations in
a few cases.) The theorem with the longest proof is the one
that states that there are only five Platonic solids. 

â Speedups in other systems. Multiway systems are almost
unique in being able to be sped up just by adding “results”
already derived in the multiway system. In other systems,
there is no such direct way to insert such results into the rules
for the system.

â Character of mathematics. Since at least the early 1900s
several major schools of thought have existed:

äFormalism (e.g. David Hilbert): Mathematics studies formal 
rules that have no intrinsic meaning, but are relevant 
because of their applications or history. 

äPlatonism (e.g. Kurt Gödel): Mathematics involves trying 
to discover the properties of a world of ideal mathematical 
forms, of which we in effect perceive only shadows.

äLogicism (e.g. Gottlob Frege, Bertrand Russell): 
Mathematics is an elaborate application of logic, which is 
itself fundamental.

ä Intuitionism (e.g. Luitzen Brouwer): Mathematics is a 
precise way of handling ideas that are intuitive to the 
human mind.

The results in this book establish a new point of view
somewhere between all of these.

â Invention versus discovery in mathematics. One generally
considers things invented if they are created in a somewhat
arbitrary way, and discovered if they are identified by what

{2, 3, 3, 7, 10, 15, 12, 16}

{p, p Ñ p, p Ñ q, (p Ñ p) Ñ p, (p Ñ q) Ñ p, (p Ñ p) Ñ q}

{3, 15, 568} {855, 4}

0 5 10 15 20 25 30
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seems like a more inexorable process. The results of this
section thus strongly suggest that the basic directions taken
by mathematics as currently practiced should mostly be
considered invented, not discovered. The new kind of science
that I describe in this book, however, tends to suggest forms
of mathematics that involve discovery rather than invention.

â Ordering of constructs. One can deduce some kind of
ordering among standard mathematical constructs by seeing
how difficult they are to implement in various systems—such
as cellular automata, Turing machines and Diophantine
equations. My experience has usually been that addition is
easiest, followed by multiplication, powers, Fibonacci
numbers, perfect numbers and then primes. And perhaps
this is similar to the order in which these constructs appeared
in the early history of mathematics. (Compare page 640.) 

â Mathematics and the brain. A possible reason for some
constructs to be more common in mathematics is that they
are somehow easier for human brains to manipulate. Typical
human experience makes small positive integers and simple
shapes familiar—so that all human brains are at least well
adapted to such constructs. Yet of the limited set of people
exposed to higher mathematics, different ones often seem to
think in bizarrely different ways. Some think symbolically,
presumably applying linguistic capabilities to algebraic or
other representations. Some think more visually, using
mechanical experience or visual memory. Others seem to
think in terms of abstract patterns, perhaps sometimes with
implicit analogies to musical harmony. And still others—
including some of the purest mathematicians—seem to think
directly in terms of constraints, perhaps using some kind of
abstraction of everyday geometrical reasoning.

In the history of mathematics there are many concepts that
seem to have taken surprisingly long to emerge. And
sometimes these are ones that people still find hard to grasp.
But they often later seem quite simple and obvious—as with
many examples in this book. 

It is sometimes thought that people understand concepts in
mathematics most easily if they are presented in the order in
which they arose historically. But for example the basic
notion of programmability seems at some level quite easy
even for young children to grasp—even though historically it
appeared only recently.

In designing Mathematica one of my challenges was to use
constructs that are at least ultimately easy for people to
understand. Important criteria for this in my experience
include specifying processes directly rather than through
constraints, the explicitness in the representation of input
and output, and the existence of small, memorable,

examples. Typically it seems more difficult for people to
understand processes in which larger numbers of different
things happen in parallel. (Notably,  normally seems
more difficult to understand than .) Tree structures
such as Mathematica expressions are fairly easy to
understand. But I have never found a way to make general
networks similarly easy, and I am beginning to suspect that
they may be fundamentally difficult for brains to handle.

â Page 821 · Frameworks. Symbolic integration was in the
past done by a collection of ad hoc methods like substitution,
partial fractions, integration by parts, and parametric
differentiation. But in Mathematica  is now almost
completely systematic, being based on structure theorems for
finding general forms of integrals, and on general
representations in terms of  and other functions. (In
recognizing, for example, whether an expression involving a
parameter can have a pole undecidable questions can in
principle come up, but they seem rare in practice.) Proofs are
essentially always still done in an ad hoc way—with a few
minor frameworks like enumeration of cases, induction, and
proof by contradiction (reductio ad absurdum) occasionally
being used. (More detailed frameworks are used in specific
areas; an example are -  arguments in calculus.) But
although still almost unknown in mainstream mathematics,
methods from automated theorem proving (see page 1157)
are beginning to allow proofs of many statements that can be
formulated in terms of operator systems to be found in a
largely systematic way (e.g. page 810). (In the case of
Euclidean geometry—which is a complete axiom system—
algebraic methods have allowed complete systematization.)
In general, the more systematic the proofs in a particular area
become, the less relevant they will typically seem compared
to the theorems that they establish as true. 

Intelligence in the Universe

â Page 822 · Animism. Attributing abstract human qualities
such as intelligence to systems in nature is a central part of
the idea of animism, discussed on page 1195.

â Page 822 · The weather. Almost all the intricate variations
of atmospheric temperature, pressure, velocity and humidity
that define the weather we see are in the end determined by
fairly simple underlying rules for fluid behavior. (Details of
phase changes in water are also important, as are features of
topography, ocean currents, solar radiation levels and
presumably land use.) Our everyday personal attempts to
predict the weather tend to be based just on looking at local
conditions and then recalling what happened when we saw
these conditions before. But ever since the mid-1800s

FoldList
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Integrate

MeijerG
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synoptic weather maps of large areas have been available
that summarize conditions in terms of features like fronts
and cyclones. And predictions made by looking at simple
trends in these features tend at least in some situations to
work fairly well. Starting in the 1940s more systematic efforts
to predict weather were made by using computers to run
approximations to fluid equations. The approximations have
improved as larger computers have become available. But
even though millions of discrete samples are now used, each
one typically still represents something much larger then for
example a single cloud. Yet ever since the 1970s, the approach
has had at least some success in making predictions up to
several days in advance. But although there has been gradual
improvement it is usually assumed that—like in the Lorenz
equations—the phenomenon of chaos must make forecasts
that are based on even slightly different initial measurements
eventually diverge exponentially (see page 972). Almost
certainly this does indeed happen in at least some critical
situations. But it seems that over most of a typical weather
map there is no such sensitivity—so that in the end the
difficulties of weather prediction are probably much more a
result of computational irreducibility and of the sophisticated
kinds of computations that the Principle of Computational
Equivalence implies should often occur even in simple fluids. 

â Page 822 · Defining intelligence. The problem of defining
intelligence independent of specific education and culture
has been considered important for human intelligence testing
since the beginning of the 1900s. Charles Spearman
suggested in 1904 that there might be a general intelligence
factor (usually called g) associated with all intellectual tasks.
Its nature was never very clear, but it was thought that its
value could be inferred from performance on puzzles
involving numbers, words and pictures. By the 1980s,
however, there was increasing emphasis on the idea that
different types of human tasks require different types of
intelligence. But throughout the 1900s psychologists
occasionally tried to give general definitions of intelligence—
initially usually in terms of learning or problem-solving
capabilities; later more often in terms of adaptation to
complex environments. 

Particularly starting at the end of the 1800s there was great
interest in whether animals other than humans could be
considered intelligent. The most common general criterion
used was the ability to show behavior based on conceptual or
abstract thinking rather than just simple instincts. More
specific criteria also included ability to use tools, plan
actions, use language, solve logical problems and do
arithmetic. But by the mid-1900s it became increasingly clear
that it was very difficult to interpret actual observations—

and that unrecognized cues could for example often account
for the behavior seen.

When the field of artificial intelligence began in the mid-
1900s there was some discussion of appropriate definitions of
intelligence (see page 1099). Most focused on mathematical
or other problem solving, though some—such as the Turing
test—emphasized everyday conversation with humans. 

â Page 823 · Mimesis. The notion of inanimate analogs of
memory—such as impressions in wax—was discussed for
example by Plato in antiquity. 

â Page 823 · Defining life. Greek philosophers such as
Aristotle defined life by the presence of some form of soul,
and the idea that there must be a single unique feature
associated with life has always remained popular. In the
1800s the notion of a “life force” was discussed—and thought
to be associated perhaps with chemical properties of
protoplasm, and perhaps with electricity. The discovery from
the mid-1800s to the mid-1900s of all sorts of elaborate
chemical processes in living systems led biologists often to
view life as defined by its ability to maintain fixed overall
structure while achieving chemical functions such as
metabolism. When the Second Law of Thermodynamics was
formulated in the mid-1800s living systems were usually
explicitly excluded (see page 1021), and by the 1930s
physicists often considered local entropy decrease a defining
feature of life. Among geneticists and soon mathematicians
self-reproduction was usually viewed as the defining feature
of life, and following the discovery of the structure of DNA
in 1953 it came to be widely believed that the presence of self-
replicating elements must be fundamental to life. But the
recognition that just copying information is fairly easy led in
the 1960s to definitions of life based on the large amounts of
information encoded in its genetic material, and later to ones
based on the apparent difficulty of deriving this information
(see page 1069). And perhaps in part reacting to my
discoveries about cellular automata it became popular in the
1980s to mention adaptation and essential interdependence
of large numbers of different kinds of parts as further
necessary characteristics of life. Yet in the end every single
general definition that has been given both includes systems
that are not normally considered alive, and excludes ones
that are. (Self-reproduction, for example, suggests that flames
are alive, but mules are not.)

One of the features that defines life on Earth is the presence
of DNA, or at least RNA. But as one looks at smaller
molecules they become less specific to living systems. It is
sometimes thought significant that living systems perpetuate
the use of only one chirality of molecules, but actually this
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can quite easily be achieved by various forms of non-
chemical input without life. 

The Viking spacecraft that landed on Mars in the 1970s tried
specific tests for life on soil samples—essentially whether
gases were generated when nutrients were added, whether
this behavior changed if the samples were first heated, and
whether molecules common in terrestrial life were present.
The tests gave confusing results, presumably having to do
not with life, but rather with details of martian soil chemistry

â Origin of life. Fossil traces of living cells have been found
going back more than 3.8 billion years—to perhaps as little as
700 million years after the formation of the Earth. There were
presumably simpler forms of life that preceded the advent of
recognizable cells, and even if life arose more than once it is
unlikely that evidence of this would remain. (One sees many
branches in the fossil record—such as organisms with
dominant symmetries other than fivefold—but all seem to
have the same ancestry.) 

From antiquity until the 1700s it was widely believed that
smaller living organisms arise spontaneously in substances
like mud, and this was not finally disproved until the 1860s.
Controversy surrounding the theory of biological evolution
in the late 1800s dissuaded investigation of non-biological
origins for life, and at the end of the 1800s it was for example
suggested that life on Earth might have arisen from spores of
extraterrestrial origin. In the 1920s the idea developed that
electrical storms in the atmosphere of the early Earth could
lead to production of molecules seen in living systems—and
this was confirmed by the experiment of Stanley Miller and
Harold Urey in 1953. The molecules obtained were
nevertheless still fairly simple—and as it turns out most of
them have now also been found in interstellar space. Starting
in the 1960s suggestions were made for the chemical and
other roles of constituents of the crust as well as atmosphere.
Schemes for early forms of self-replication were invented
based on molecules such as RNA and on patterns in clay-like
materials. (The smallest known system that independently
replicates itself is a mycoplasma bacterium with about
580,000 base pairs and perhaps 470 genes. Viroids can be as
small as 10,000 atoms but require a host for replication.) In
the 1970s it then became popular to investigate complicated
cycles of chemical reactions that seemed analogous to ones
found in living systems. But with the advent of widespread
computer simulations in the 1980s it became clear that all
sorts of features normally associated with life were actually
rather easy to obtain. (See note above.) 

â Page 824 · Self-reproduction. That one can for example make
a mold that will produce copies of a shape has been known

since antiquity (see note above). The cybernetics movement
highlighted the question of what it takes for self-
reproduction to occur autonomously, and in 1952 John von
Neumann designed an elaborate 2D cellular automaton that
would automatically make a copy of its initial configuration
of cells (see page 876). In the course of the 1950s suggestions
of several increasingly simple mechanical systems capable of
self-reproduction were made—notably by Lionel Penrose.
The phenomenon in the main text was noticed around 1961
by Edward Fredkin (see page 877). But while it shows some
of the essence of self-reproduction, it lacks many of the more
elaborate features common in biological self-reproduction. In
the 1980s, however, such features were nevertheless
surprisingly often present in computer viruses and worms.
(See also page 1092.)

â Page 825 · Extraterrestrial life. Conditions thermally and
chemically similar to those on Earth have presumably existed
on other bodies in the solar system. Venus, Mars, Europa (a
moon of Jupiter) and Titan (a moon of Saturn) have for
example all probably had liquid water at some time. But
there is so far no evidence for life now or in the past on any of
these. Yet if life had arisen one might expect it to have
become widespread, since at least on Earth it has managed to
spread to many extremes of temperature, pressure and
chemical composition. On several occasions structures have
been found in extraterrestrial rocks that look somewhat like
small versions of microorganism fossils (most notably in 1996
in a meteorite from Mars discovered in Antarctica). But
almost certainly these structures have nothing to do with life,
and are instead formed by ordinary precipitation of minerals.
And although even up to the 1970s it was thought that life
might well be found on Mars, it now seems likely that there is
nothing quite like terrestrial life anywhere else in our solar
system. (Even if life is found elsewhere it might still have
originally come from Earth, say via meteorites, since
dormant forms such as spores can apparently survive for
long periods in space.)

Away from our solar system there is increasing evidence that
most stars have planets with a distribution of sizes—so
presumably conditions similar to Earth are fairly common.
But thus far it has not been possible to see—say in planetary
atmospheres—whether there are for example molecules
similar to ones characteristically found in life on Earth. 

â Forms of living systems. This book has shown that even
with underlying rules of some fixed type a vast range of
different forms can often be produced. And this makes it
reasonable to expect that with appropriate genetic programs
the chemical building blocks of life on Earth should in
principle allow a vast range of forms. But the comparative
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weakness of natural selection (see page 391) has meant that
only a limited set of such forms have actually been explored.
And from the experience of this book I suspect that what
others might even be nearby is effectively impossible to
foresee. The appearance in engineering of forms somewhat
like those in living systems should not be taken to imply that
other forms are fundamentally difficult to produce; instead I
suspect that it is more a reflection of the copying of living
systems for engineering purposes. The overall morphology
of living systems on Earth seems to be greatly affected by
their basically gelatinous character. So even systems based on
solids or gases would likely not be recognized by us as life. 

â Page 825 · History. Although Greek philosophers such as
Democritus believed that there must be an infinite number of
worlds all with inhabitants like us, the prevailing view in
antiquity—later supported by theological arguments—was
that the Earth is special, and the only abode of life. However,
with the development of Copernican ideas in the 1600s it
came to be widely though not universally believed, even in
theological circles, that other planets—as well as the Moon—
must have inhabitants like us. Many astronomers attributed
features they saw on the Moon to life if not intelligence, but
in the late 1800s, after it was found that the Moon has no
atmosphere, belief in life there began to wane. Starting in the
1870s, however, there began to be great interest in life on
Mars, and it was thought—perhaps following the emphasis
on terrestrial canal-building at the time—that a vast network
of canals on Mars had been observed. And although in 1911
the apparent building of new canals on Mars was still being
soberly reported by newspapers, there was by the 1920s
increasing skepticism. The idea that lichens might exist on
Mars and be responsible for seasonal changes in color
nevertheless became popular, especially after the discovery
of atmospheric carbon dioxide in 1947. Particularly in the
1920s there had been occasional claims of extraterrestrial
radio signals (see page 1188), but by the 1950s interest in
extraterrestrial intelligence had largely transferred to science
fiction (see page 1190). Starting in the late 1940s many
sightings were reported of UFOs believed to be alien
spacecraft, but by the 1960s these were increasingly
discredited. It had been known since the mid-1800s that
many other stars are much like the Sun, but it was not until
the 1950s that evidence of planets around other stars began to
accumulate. Following a certain amount of discussion in the
physics community in the 1950s, the first explicit search for
extraterrestrial intelligence with a radio telescope was done
in 1960 (see page 1189). In the 1960s landings of spacecraft on
the Moon confirmed the absence of life there—though
returning Apollo astronauts were still quarantined to guard

against possible lunar microbes. And despite substantial
expectations to the contrary, when spacecraft landed on Mars
in 1976 they found no evidence of life there. Some searches
for extraterrestrial signals have continued in the radio
astronomy community, but perhaps because of its association
with science fiction, the topic of extraterrestrial intelligence
has generally not been popular with professional scientists.
With the rise of amateur science on the web and the
availability of low-cost radio telescope components the late
1990s may however have seen a renewal of serious interest.

â Page 826 · Bird songs. Essentially all birds produce calls of
some kind, but complex songs are mainly produced by male
songbirds, usually in breeding season. Their general form is
inherited, but specifics are often learned through imitation
during a fixed period of infancy, leading birds in local areas
to have distinctive songs. The songs sometimes seem to be
associated with attracting mates, and sometimes with
defining territory—but often their function is unclear, even
when one bird seems to sing in response to another. (There
are claims, however, that parrots can learn to have
meaningful conversations with humans.) The syrinxes of
songbirds have two membranes, which can vibrate
independently, in a potentially complex way. A specific
region in bird brains appears to coordinate singing; the
region contains a few tens of thousands of nerve cells, and is
larger in species with more complex songs. 

Famous motifs from human music are heard in bird songs
probably more often than would be expected by chance. It
may be that some common neural mechanism makes the
motifs seem pleasing to both birds and humans. Or it could
be that humans find them pleasing because they are familiar
from bird songs. 

â Page 826 · Whale songs. Male whales can produce complex
songs lasting tens of minutes during breeding season. The
songs often include rhyme-like repeating elements. At a
given time all whales in a group typically sing almost the
same song, which gradually changes. The function of the
song is quite unclear. It has been claimed that its frequencies
are optimized for long-range transmission in the ocean, but
this appears not to be the case. In dolphins, it is known that
one dolphin can produce patterns of sound that are repeated
by a specific other dolphin.

â Page 826 · Animal communication. Most animals that live in
groups have the capability to produce at least a few specific
auditory, visual (e.g. gestures and displays), chemical (e.g.
pheromones) or other signals in response to particular
situations such as danger. Some animals have also been
found to produce much more complex and varied signals.



T H E  P R I N C I P L E  O F  C O M P U T A T I O N A L  E Q U I V A L E N C E N O T E S  F O R  C H A P T E R  1 2

1181

For example it was discovered in the 1980s that elephants can
generate elaborate patterns of sounds—but at frequencies
below human hearing. Animals such as octopuses and
particularly cuttlefish can show complex and changing
patterns of pigmentation. But despite a fair amount of
investigation it remains unclear whether these represent
more than just simple responses to the environment.

â Page 826 · Theories of communication. Over the course of
time the question of what the essential features of
communication are has been discussed from many different
angles. It appears to have always been a common view that
communication somehow involves transferring thoughts
from one mind to another. Even in antiquity it was
nevertheless recognized that all sorts of aspects of language
are purely matters of convention, so that shared conventions
are necessary for verbal communication to be possible. In the
1600s the philosophical idea that the only way to get
information with certainty is from the senses led to emphasis
on observable aspects of communication, and to the
conclusion that there is no way to tell whether an accurate
transfer of abstract thoughts has occurred between one mind
and another. In the late 1600s Gottfried Leibniz nevertheless
suggested that perhaps a universal language—modelled on
mathematics—could be created that would represent all
truths in an objective way accessible to any mind (compare
page 1149). But by the late 1800s philosophers like Charles
Peirce had developed the idea that communication must be
understood purely in terms of its observable features and
effects. Three levels of so-called semiotics were then
discussed. The first was syntax: the grammatical or other
structure of a sequence of verbal or other elements. The
second was semantics: the standardized meaning or
meanings of the sequence of elements. And the third was
pragmatics: the observable effect on those involved in the
communication. In the early 1900s, the logical positivism
movement suggested that perhaps a universal language or
formalism based on logic could be developed that would
allow at least scientific truths to be communicated in an
unambiguous way not affected by issues of pragmatics—and
that anything that could not be communicated like this was
somehow meaningless. But by the 1940s it came to be
believed—notably by Ludwig Wittgenstein—that ordinary
language, with its pragmatic context, could in the end
communicate fundamentally more than any formalized
logical system, albeit more ambiguously.

Ever since antiquity work has been done to formalize
grammatical and other rules of individual human languages. In
the early 1900s—notably with the work of Ferdinand de
Saussure—there began to be more emphasis on the general

question of how languages really operate, and the point was
made that the verbal elements or signs in a language should be
viewed as somehow intermediate between tangible entities like
sounds and abstract thoughts and concepts. The properties of
any given sign were recognized as arbitrary, but what was then
thought to be essential about a language is the structure of the
network of relations between signs—with the ultimate meaning
of any given sign inevitably depending on the meanings of
signs related to it (as later emphasized in deconstructionism). By
the 1950s anthropological studies of various languages—
notably by Benjamin Whorf—had encouraged the idea that
concepts that did not appear to fit in certain languages simply
could not enter the thinking of users of those languages.
Evidence to the contrary (notably about past and future among
Hopi speakers) eroded this strong form of the so-called Sapir-
Whorf hypothesis, so that by the 1970s it was generally believed
just that language can have an influence on thinking—a
phenomenon definitely seen with mathematical notation and
computer languages. Starting in the 1950s, especially with the
work of Noam Chomsky, there were claims of universal features
in human languages—independent of historical or cultural
context (see page 1103). But at least among linguists these are
generally assumed just to reflect common aspects of verbal
processing in the human brain, not features that must
necessarily appear in any conceivable language. (And it remains
unclear, for example, to what extent non-verbal forms of
communication such as music, gestures and visual ornament
show the same grammatical features as ordinary languages.)

The rise of communications technology in the early 1900s led
to work on quantitative theories of communication, and for
example in 1928 Ralph Hartley suggested that an objective
measure of the information content of a message with 
possible forms is . (Similar ideas arose around the
same time in statistics, and in fact there had already been
work on probabilistic models of written language by Andrei
Markov in the 1910s.) In 1948 Claude Shannon suggested
using a measure of information based on , and there
quickly developed the notion that this could be used to find
the fundamental redundancy of any sequence of data,
independent of its possible meaning (compare page 1071).
Human languages were found on this basis to have
substantial redundancy (see page 1086), and it has sometimes
been suggested that this is important to their operation—
allowing errors to be corrected and details of different users
to be ignored. (There are also obvious features which reduce
redundancy—for example that in most languages common
words tend to be short. One can also imagine models of the
historical development of languages which will tend to lead
to redundancy at the level of Shannon information.)

n
Log[n]

p Log[p]
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â Mathematical notation. While it is usually recognized that
ordinary human languages depend greatly on history and
context, it is sometimes believed that mathematical notation
is somehow more universal. But although it so happens that
essentially the same mathematical notation is in practice used
all around the world by speakers of every ordinary language,
I do not believe that it is in any way unique or inevitable, and
in fact I think it shows most of the same issues of dependence
on history and context as any ordinary language.

As a first example, consider the case of numbers. One can
always just use  copies of the same symbol to represent an
integer —and indeed this idea seems historically to have
arisen independently quite a few times. But as soon as one
tries to set up a more compact notation there inevitably seem
to be many possibilities. And so for example the Greek and
Roman number systems were quite different from current
Hindu-Arabic base-10 positional notation. Particularly from
working with computers it is often now assumed that base-2
positional notation is somehow the most natural and
fundamental. But as pages 560 and 916 show, there are many
other quite different ways to represent numbers, each with
different levels of convenience for different purposes. And it
is fairly easy to see how a different historical progression
might have ended up making another one of these seem the
most natural.

The idea of labelling entities in geometrical diagrams by
letters existed in Babylonian and Greek times. But perhaps
because until after the 1200s numbers were usually also
represented by letters, algebraic notation with letters for
variables did not arise until the late 1500s. The idea of having
notation for operators emerged in the early 1600s, and by the
end of the 1600s, notably with the work of Gottfried Leibniz,
essentially all the basic notation now used in algebra and
calculus had been established. Most of it was ultimately
based on shortenings and idealizations of ordinary language,
an important early motivation just being to avoid
dependence on particular ordinary languages. Notation for
mathematical logic began to emerge in the 1880s, notably
with the work of Giuseppe Peano, and by the 1930s it was
widely used as the basis for notation in pure mathematics.

In its basic structure of operators, operands, and so on,
mathematical notation has always been fairly systematic—
and is close to being a context-free language. (In many ways
it is like a simple idealization of ordinary language, with
operators being like verbs, operands nouns, and so on.) And
while traditional mathematical notation suffers from some
inconsistencies and ambiguities, it was possible in
developing Mathematica  to set up something
very close that can be interpreted uniquely in all cases.

Mathematical notation works well for things like ordinary
formulas that involve a comparatively small number of basic
operations. But there has been no direct generalization for
more general constructs and computations. And indeed my
goal in designing Mathematica was precisely to provide a
uniform notation for these (see page 852). Yet to make this
work I had to use names derived from ordinary language to
specify the primitives I defined. 

â Computer communication. Most protocols for exchanging
data between computers have in the end traditionally had
rather simple structures—with different pieces of
information usually being placed at fixed positions, or at
least being arranged in predefined sequences—or sometimes
being given in name-value pairs. A more general approach,
however, is to use tree-structured symbolic expressions of the
kind that form the basis for Mathematica—and now in essence
appear in XML. In the most general case one can imagine
directly exchanging a representation of a program, that is run
on the computer that receives it, and induces whatever effect
one wants. A simple example from 1984 is PostScript, which
can specify a picture by giving a program for constructing it;
a more sophisticated example from the late 1990s is client-
side Java. (Advanced forms of data compression can also be
thought of as working by sending simple programs.) But a
practical problem in exchanging arbitrary programs is the
difficulty of guarding against malicious elements like viruses.
And although at some level most communications between
present-day computers are very regular and structured, this
is often obscured by compression or encryption. 

When a program is sent between computers it is usually
encoded in a syntactically very straightforward way. But
computer languages intended for direct use by humans
almost always have more elaborate syntax that is a simple
idealization of ordinary human language (see page 1103).
There are in practice many similarities between different
computer languages. Yet except in very low-level languages
few of these are necessary consequences of features or
limitations of actual computers. And instead most of them
must be viewed just as the results of shared history—and the
need to fit in with human cognitive abilities.

â Meaning in programs. Many issues about meaning arise for
computer languages in more defined versions of the ways
they arise for ordinary languages. Input to a computer
language will immediately fail to be meaningful if it does not
conform to a certain definite syntax. Before the input can
have a chance of specifying meaningful action there are often
all sorts of issues about whether variables in it refer to entities
that can be considered to exist. And even if this is resolved,
one can still get something that is in effect nonsense and does

n
n

StandardForm
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not usefully run. In most traditional computer languages it is
usually the case that most programs chosen at random will
just crash if run, often as a result of trying to write to memory
outside the arrays they have allocated. In Mathematica, there
is almost no similar issue, and programs chosen at random
tend instead just to return unchanged. (Compare page 101.)

For the kinds of systems like cellular automata that I have
discussed in this book programs chosen at random do very
often produce some sort of non-trivial behavior. But as
discussed in the main text there is still an issue of when this
behavior can reasonably be considered meaningful. 

For some purposes a more direct analog of messages is not
programs or rules for systems like cellular automata but instead
initial conditions. And one might imagine that the very process
of running such initial conditions in a system with appropriate
underlying rules would somehow be what corresponds to their
meaning. But if one was just given a collection of initial
conditions without any underlying rules one would then need
to find out what underlying rules one was supposed to use in
order to determine their meaning. Yet the system will always do
something, whatever rules one uses. So then one is back to
defining criteria for what counts as meaningful behavior in
order to determine—by a kind of generalization of
cryptanalysis—what rules one is supposed to use. 

â Meaning and regularity. If one considers something to show
regularity one may or may not consider it meaningful. But if
one considers something random then usually one will also
consider it meaningless. For to say that something is
meaningful normally implies that one somehow comes to a
conclusion from it. And this typically implies that one can
find some summary of some aspect of it—and thus some
regularity. Yet there are still cases where things that are
presumably quite random are considered meaningful—
prices in financial markets being one example.

â Page 828 · Forms of artifacts. Much as in biological evolution,
once a particular engineering construct has been found to
work it normally continues to be used. Examples with
characteristic forms include (in rough order of their earliest
known use): arrowheads, boomerangs, saws, boxes, stairs,
fishhooks, wheels, arches, forks, balls, kites, lenses, springs,
catenaries, cogs, screws, chains, trusses, cams, linkages,
propellers, clocksprings, parabolic reflectors, airfoils,
corrugation, zippers, and geodesic domes. It is notable that not
even nested shapes are common, though they appear in cross-
sections of rope (see page 874), as well as in address decoder
trees on chips—and have recently been used in broadband
antennas. (Some self-similarity is also present in standard log-
periodic antennas.) When several distinct components are

involved, more complicated structures are not uncommon—as
in escapements, and many bearings and joints. More complex
shapes for single elements sometimes arise when an analog of
area maximization is desired—as with tire treads or fins in
devices such as heat exchangers. Quadratic residue sequences

 (see page 1081) are used to give profiles for
acoustic diffusers that operate uniformly over a range of
frequencies. Musical instruments can have fairly complicated
shapes maintained for historical reasons to considerable
precision. Some knots can also be thought of as objects with
complex forms. It is notable that elaborate types of mechanical
motion (and sometimes surprising phenomena in general) are
often first implemented in toys. Examples are early mechanical
automata and model airplanes, and modern executive toys
claiming to illustrate chaos theory through linkages, magnets
or fluid systems. Complex trajectories (compare page 972)
have sometimes been proposed or used for spacecraft. (See
also notes on ornamental art on page 872.)

â Page 828 · Recognizing artifacts. Various situations require
picking out artifacts automatically. One example is finding
buildings or machines from aerial reconnaissance images;
another is finding boat or airplane wreckage on an ocean
floor from sonar data. In both these cases the most common
approach is to look for straight edges. Outdoor security
systems also often need ways to distinguish animals and
wind-induced motion from intentional human activity—and
tend to have fairly simple procedures for doing this. 

To recognize a regular crystal as not being a carefully cut
artifact can take specific knowledge. The same can be true of
patterns produced by wind on sand or rocks. Lenticular
clouds are sometimes mistaken for UFOs on account of their
regular shape. The exact cuboid form of the monolith in the
movie 2001 was intended to suggest that it was an artifact. 

Recognizing artifacts can be a central—and controversial—
issue in prehistoric archeology. Sometimes human bones are
found nearby. And sometimes chemical analysis suggests
controlled fire—as with charcoal or baked clay. But to tell
whether for example a piece of rock was formed naturally or
was carefully made to be a stone tool can in general be very
difficult. And a large part of the way this has been done in
practice is just through comparison with known examples that
fit into an overall pattern of gradual historical change. In
recent decades there has been increasing emphasis on trying to
understand and reproduce the whole process of making and
using artifacts. And in the field of lithic analysis there are
beginning to be fairly systematic ways to recognize for
example the effects of the hundreds of orderly impacts needed
to make a typical flint arrowhead by knapping. (Sometimes it
is also possible to recognize microscopic features characteristic

Mod[Range[n]2, n]
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of particular kinds of use or wear—and it is conceivable that in
the future analysis of trillions of atomic-scale features could
reveal all sorts of details of the history of an object.)

To tell whether or not some arrangement of soil or rocks is an
artifact can be extremely difficult—and there are many
notorious cases of continuing controversy. Beyond looking
for similarities to known examples, a typical approach is just
to look for correlations with topographic or other features
that might reveal some possible purpose. 

â Artifacts in data. In fields like accounting and experimental
science it is usually a sign of fraud if primary data is being
created for a purpose, rather than merely being reported. If a
large amount of numerical data has been made up by a
person this can be detectable through statistical deviations
from expected randomness—particularly in structural details
such as frequency of digits. (So-called artifacts can also be the
unintentional result of details of methods used to obtain or
process data.)

In numerical computations effects are often called artifacts if
they are believed not to be genuine features of an underlying
mathematical system, but merely to reflect the computational
scheme used. Such effects are usually first noticed through
unexpected regularities in some detail of output. But in cases
like chaos theory it remains unclear to what extent complex
behavior seen in computations is an artifact (see page 920).

â Animal artifacts. Structures like mollusc shells, radiolarian
skeletons and to some extent coral are formed through
processes of growth like those discussed in Chapter 8.
Structures like spider webs, wasp nests, termite mounds, bird
nests and beaver dams rely on behavior determined by
animal brains. (Even spider webs end up looking quite
different if psychoactive drugs are administered to the
spider.) And much like human artifacts, many of these
structures tend to be distinguished by their comparative
geometrical simplicity. In a few cases—particularly with
insects—somewhat complicated forms are seen, but it seems
likely that these are actually produced by rather simple local
rules like those in aggregation systems (see page 1011). 

â Molecular biology. DNA sequences of organisms can be
thought of as artifacts created by biological evolution, and
current data suggests that they contain some long-range
correlations not present in typical random sequences. Most
likely, however, these have fairly simple origins, perhaps being
associated with iterative splicing of subsequences. And in the
few thousand proteins currently known, standard statistical
tests reveal no significant overall regularities in their
sequences of up to a few thousand amino acids. (Some of the
20 standard amino acids do however occur more frequently

than others.) Nevertheless, if one looks at overall shapes into
which these proteins fold, there is some evidence that the same
patterns of behavior are often seen. But probably such patterns
would also occur in purely random proteins—at least if their
folding happened in the same cellular apparatus. (See page
1003.) Note that the antibodies of the immune system are
much like short random proteins—whose range of shapes
must be sufficient to match any antigen. (See also page 1194.) 

â Messages in DNA. Science fiction has sometimes suggested
that an extraterrestrial source of life might have left some form
of message in the DNA sequences of all terrestrial organisms,
but to get evidence of this would seem to require extensive
other knowledge of the source. (See also page 1190.)

â Decompilers. Trying to reverse engineer source code in a
programming language like C from machine code output by
compilers involves in effect trying to deduce higher-level
purposes from lower-level computational steps. And
normally this can be done with any reliability only when the
machine code represents a fairly direct translation that has
not been extensively rearranged or optimized. 

â Page 828 · Complexity and theology. See page 861.

â Page 829 · Purpose in archeology. Ideas about the purpose
of archeological objects most often ultimately tend to come
from comparisons to similar-looking objects in use today. But
great differences in typical beliefs and ways of life can make
comparisons difficult. And certainly it is now very hard for
us to imagine just what range of purposes the first known
stone tools from 2.6 million years ago might have been put
to—or what purpose the arrays of dots or handprints in cave
paintings from 30,000 BC might have had. And even when it
comes to early buildings from perhaps 10,000 BC it is still
difficult to know just how they were used. Stone circles like
Stonehenge from perhaps 3000 BC presumably served some
community purpose, but beyond that little can convincingly
be said. Definite geographical or astronomical alignments
can be identified for many large prehistoric structures, but
whether these were actually intentional is almost never clear.
After the development of writing starting around 4000 BC,
purposes can often be deduced from inscriptions and other
written material. But still to work out for example the
purpose of the Antikythera device from around 100 BC is
very difficult, and depends on being able to trace a long
historical tradition of astronomical clocks and orreries.

â Dead languages. Particularly over the past century or so,
most of the known written human languages from every
point in history have successfully been decoded. But to do
this has essentially always required finding a case where
there is explicit overlap with a known language—say a
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Rosetta stone with the same text in multiple languages, or at
least words or proper names that are transliterated. As in
cryptanalysis, it is sometimes remarkable how small an
amount of text is needed to find a decoding scheme. But
usually what is done relies critically on the slowness with
which human languages change, and the comparatively
limited number of different basic ways in which they work.

â Teleology. There is a common tendency to project human
purposes onto natural objects and events—and this is for
example almost universally done by young children. Ancient
beliefs often held that things in nature are set up by a variety
of gods for a variety of purposes. By 400 BC, following ideas
of Anaxagoras, Socrates and Plato discussed the notion that
things in nature might in effect be optimally designed for
coherent purposes by a single mind. Around 350 BC Aristotle
claimed that a full explanation of anything should include its
purpose (or so-called final cause, or telos)—but said that for
systems in nature this is often just to make the final forms of
these systems (their so-called formal cause). The rise of
monotheistic religions led to the widespread belief that the
universe and everything in it was created for definite
purposes by a single god. But the development of
mathematical science in the 1600s—and its focus on
mechanisms (“efficient causes”)—led away from ascribing
explicit purposes to physical systems. In the mid-1700s David
Hume then claimed on philosophical grounds that we
fundamentally have no basis for ascribing purposes to any
kind of natural system—though in the 1790s Immanuel Kant
argued that even though we cannot know whether there
really are such purposes, it is still often necessary for us to
think in terms of them. And in fact the notion that systems in
biology are so complex that they must have been intelligently
designed for a purpose remained common. In the late 1800s
Darwinian evolution nevertheless suggested that no such
purposeful design was necessary—though in a sense it again
introduced a notion of purpose associated with optimization
of fitness. Ever since the 1700s economics had been discussed
in terms of purposeful activities of rational agents. In the
early 1900s there were however general attempts to develop
mechanistic explanations in the social sciences, but by the
mid-1900s purpose was again widely discussed, especially in
economics. And in fact, even in physics, a notion of purpose
had actually always been quite common. For whenever a
physical system satisfies any kind of implicit equation, this
defines a constraint that can be viewed as corresponding to
some kind of purpose. (See page 940.) That something like a
notion of purpose is being used has been more widely
recognized for variational principles like the Principle of
Least Action in mechanics from the mid-1700s. Results in the

late 1900s in astrophysics and cosmology seemed to suggest
that for us to exist our universe must satisfy all sorts of
constraints—and to avoid explaining this in terms of purpose
the Anthropic Principle was introduced (see page 1026).
What I do in this book goes significantly further than
traditional science in getting rid of notions of purpose from
investigations of nature. For I essentially always consider
systems that are based on explicit evolution rules rather than
implicit constraints. And in fact I argue that simple programs
constructed without known purposes are what one needs to
study to find the kinds of complex behavior we see.

â Possible purposes. As part of asking whether the rules for a
system are somehow minimal for a given purpose, one can
ask what properties the system has that could reasonably be
considered a purpose at all. In general one tends to talk of
purpose only when doing so allows one to give a simpler
description of some aspect of behavior than just describing
the behavior directly. But whether one can give a simple
description can depend greatly on the framework in which
one is operating. And so, for example, while the digits of 
have a simple description in terms of traditional
mathematics, the results in Chapter 4 suggest that outside of
this framework they normally do not. And what this means
is that if one saw a system that had the property of
generating the digits of  one would be unlikely to think that
this could represent a meaningful purpose—unless one
happened to be operating in traditional mathematics. And so
similarly, one would be unlikely to think that generating the
center column from rule 30 could represent any sort of
meaningful purpose—unless one was operating within the
framework that I have developed in this book. 

â Page 830 · Purposeful computation. See page 638.

â Page 832 · Doubling rules. Rule (a) is 

and takes  steps to yield  given input
. Rule (b) is

and takes  steps. Rule (c) is ,  rule 
and takes  steps. 

â Page 833 · Searching. No symmetric ,  rule yields
doubling. General rules can show subtle bugs; rule

 for example first fails at . The total
number of ,  rules that need to be searched can
easily be reduced from  to . Several different rules that
work can behave identically, since up to 6 of the 27 cases in
each rule are not sampled with the initial conditions used. In
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{{0, 2, _} ! 5, {5, 3, _} ! 5, {5, _, _} ! 1,
{_, 5, _} ! 1, {_, 2, _} ! 3, {_, 3, 2} ! 2, {_, 1, 2} ! 4,
{_, 4, _} ! 3, {4, 3, _} ! 4, {4, 0, _} ! 2, {_, x_, _} ! x}

2 n2 + n Table[1, {2 n}]
Append[Table[1, {n - 1}], 2]

{{_, 2, _} ! 3, {_, 1, 2} ! 2, {3, 0, _} ! 1,
{3, _, _} ! 3, {_, 3, _} ! 1, {_, x_, _} ! x}

3 n k = 3 r = 1 5407067979
3 n - 1

k = 3 r = 1

1340716537107 n = 24
k = 3 r = 1
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rules that work, between 8 and 19 cases lead to a change in
the color of a cell, with 14 cases being the most common. 

â Page 833 · Properties. The number of steps increases
irregularly but roughly quadratically with  in rule (a), and
roughly linearly in (d) and (e). Rule (b) in the end repeats
every 128 steps. The center of the complex pattern in both (d)
and (e) emulates  rule 90.

â Other functions. The first three pictures below show rules
that yield  (no  rules yield ,  or ), and the last
picture  (corresponding to doubling with initial
conditions analogous to page 639). 

â Page 834 · Minimal cellular automata for sequences. Given
any particular sequence of black and white cells one can look
for the simplest cellular automaton which generates that
sequence as its center column when evolving from a single
black cell (compare page 956). The pictures below show the
lowest-numbered cellular automaton rules that manage to
generate repetitive sequences containing black cells with
successively greater separations .

Elementary ( , ) cellular automata can be found only
up to separations . But ,  cellular automata can
be found for all separations up to 15, as well as 17, 19 and 23.
(Note that for example in the  case the lowest-
numbered rule exhibits a complex 350-step transient away
from the center column.) 

The pictures below show the lowest-numbered cellular
automata that generate respectively powers of two, squares
and the nested Thue-Morse sequence of page 83 (compare
rule 150). Of the 4 billion ,  cellular automata none
turn out to be able to produce for example sequences
corresponding to the cubes, powers of 3, Fibonacci numbers,
primes, digits of , or concatenation sequences.

If one looks not just at specific sequences, but instead at all 
possible sequences of length , one can ask how many cellular
automaton rules (say with , ) one has to go through in
order to generate every one of these. The pictures below show
on the left the last rules needed to generate any sequence of each
successive length—and on the right the form of the sequence (as
well as its continuation after length ). Since some different
rules generate the same sequences (see page 956) one needs to
go through somewhat more than  rules to get every sequence
of length . The sequences shown below can be thought of as
being in a sense the ones of each length that are the most
difficult to generate—or have the highest algorithmic
information content. (Note that the sequence  is the first
one that cannot be generated by any of the 256 elementary
cellular automata; the first sequence that cannot be generated by
any ,  cellular automata is probably of length 26.) 

â Other examples. Minimal systems achieving particular
purposes are shown on page 619 for Boolean functions
evaluated with NANDs, pages 759 and 889 for Turing
machines, page 1142 for sorting networks, and page 1035 for
firing squad synchronization. 

â Page 834 · Minimal theories. Particularly in fundamental
physics it has been found that the correct theory is often the
minimal one consistent with basic observations. Yet barring
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supernatural intervention, the laws of physics embodied in
such a theory presumably cannot be considered to have been
created for any particular purpose. (See page 1025.)

â Page 835 · Earth from space. Human activity has led to a few
large simple geometrical structures that are visually
noticeable from space. One is the almost-straight 30-mile
railroad causeway built in 1959 that divides halves of the
Great Salt Lake in Utah where the water is colored blue and
orange. Another is the almost-circular 12-mile-diameter
national park created in 1900 that encloses ungrazed
vegetation on the Egmont Volcano in New Zealand. On the
scale of a few miles, there is also rectilinear arrangement of
fields in the U.S. Midwest, as well as straight-line political
boundaries with different agriculture on each side. Large
geometrical patterns of logging were for example briefly
visible after snow in 1961 near Cochrane, Canada—as
captured by an early weather satellite. Perfectly straight
sections of roads (such as the 90-mile Balladonia-Caiguna
road in Australia), as well as the 4-mile-diameter perfectly
circular Fermilab accelerator ring are not so easy to see. The
Great Wall of China from 200 BC follows local topography
and so is not straight. 

Some of the most dramatic geometrical structures—such as the
dendritic fossil drainage pattern in south Yemen or the
bilaterally symmetric coral reefs around islands like Bora Bora—
are not artifacts. The same is true of fields of parallel sand dunes,
as well as of almost-circular structures such as the 40-mile-
diameter impact crater in Manicouagan, Canada (highlighted
by an annular lake) and the 30-mile-diameter Richat structure in
the Sahara desert of Mauritania. On the Moon, the 50-mile-
diameter crater Tycho is also almost circular—and has 1000-mile
almost-straight rays coming out from it. 

At night, lights of cities are obvious—notably hugging the
coast of the Mediterranean—as are fire plumes from oil rigs.
In addition, in some areas, sodium streetlamps make the light
almost monochromatic. But it would seem difficult to be sure
that these were artifacts without more information. In
western Kansas there is however a 200-mile square region
with light produced by a strikingly regular grid of towns—
many at the centers of square counties laid out around 1870
in connection with land grants for railroad development. In
addition, there is an isolated 1000-mile straight railroad built
in the late 1800s across Kazakhstan between Aktyubinsk and
Tashkent, with many towns visible at night along it. There are
also 500-mile straight railroads built around the same time
between Makat and Nukus, and Yaroslavl and Archangel. All
these railroads go through flat empty terrain that previously
had only a few nomadic inhabitants—and no settlements to
define a route. But in many ways such geometrical forms

seem vastly simpler to imagine producing than for example
the elaborate pattern of successive lightning strikes visible
especially in the tropics from space.

â Page 835 · Astronomical objects. Stars and planets tend to
be close to perfect spheres. Lagrange points and resonances
often lead to simple geometrical patterns of orbiting bodies.
(The orbits of most planets in our solar system are also close
to perfect circles; see page 973.) Regular spirograph-like
patterns can occur for example in planetary nebulas formed
by solar mass exploding stars. Unexplained phenomena that
could conceivably be at least in part artifacts include gamma
ray bursts and ultra high-energy cosmic rays. The local
positions of stars are generally assumed to be random. 88
constellations are usually named—quite a few presumably
already identified by the Babylonians and Sumerians around
2000 BC.

â Page 835 · Natural radio emissions. Each of the few million
lightning flashes that occur on the Earth each day produce
bursts of radio energy. At kilohertz frequencies reflection
from the ionosphere allows these signals to propagate up to
thousands of miles around the Earth, leading to continual
intermittent crackling and popping. Particularly at night
such signals can also travel within the ionosphere, but
different frequencies travel at different rates, leading to so-
called tweeks involving ringing or pinging. Signals can
sometimes travel through the magnetosphere along magnetic
field lines from one hemisphere to the other, yielding so-
called whistlers with frequencies that fall off in a highly
regular way with time. (Occasionally the signals can also
travel back and forth between hemispheres, giving more
complex results.) Radio emission can also occur when
charged particles from the Sun excite plasma waves in the
magnetosphere. And particularly at dawn or when an aurora
is present an elaborate chorus of different elements can be
produced—and heard directly on a VLF radio receiver. 

Sunspots and solar flares make the Sun the most intense
radio source in the solar system. Artificial radio signals from
the Earth come next. The interaction of the solar wind with
the magnetosphere of Jupiter produces radio emissions that
exhibit variations reminiscent of gusting.

Outside the solar system, gas clouds show radio emission at
discrete gigahertz frequencies from rotational transitions in
molecules and spin-flip transitions in hydrogen atoms. (The
narrowest lines come from natural masers and have widths
around 1 kHz.) The cosmic microwave background, and
processes such as thermal emission from dust, radiation from
electrons in ionized gases, and synchrotron radiation from
relativistic electrons in magnetic fields yield radio emissions
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with characteristic continuous frequency spectra. A total of
over a million radio sources inside and outside our galaxy
have now been catalogued, most with frequency spectra
apparently consistent with known natural phenomena.
Variations of source properties on timescales of months or
years are not uncommon; variations of signals on timescales
of tens of minutes can be introduced by propagation through
turbulence in the interstellar medium.

Most radio emission from outside the solar system shows
little apparent regularity. The almost perfectly repetitive
signals from pulsars are an exception. Pulsars appear to be
rapidly rotating neutron stars—perhaps 10 miles across—
whose magnetic fields trap charged particles that produce
radio emissions. When they first form after a supernova
pulsars have millisecond repetition rates, but over the course
of a few million years they slow to repetition rates of seconds
through a series of glitches, associated perhaps with cracking
in their solid crusts or perhaps with motion of quantized
vortices in their superfluid interiors. Individual pulses from
pulsars show some variability, presumably largely reflecting
details of plasma dynamics in their magnetospheres.

â Page 835 · Artificial radio signals. In current technology
radio signals are essentially always based on carriers of the
form  with frequencies . When radio was first
developed around 1900 information was normally encoded
using amplitude modulation (AM) . In the 1940s
it also became popular to use frequency modulation (FM)

, and in the 1970s pulse code modulation
(PCM) (pulse trains for ). All such
methods yield signals that remain roughly in the range of
frequencies  where  is the data rate in . But
in the late 1990s—particularly for the new generation of
cellular telephones—it began to be common to use spread
spectrum CDMA methods, in which many signals with the
same carrier frequency are combined. Each is roughly of the
form , where  is a pseudonoise
(PN) sequence generated by a linear feedback shift register
(LFSR) (see page 1084); the idea is that by using a different
PN sequence for each signal the corresponding  can be
recovered even if thousands are superimposed.

The radio spectrum from about 9 kHz to 300 GHz is divided
by national and international legislation into about 460 bands
designated for different purposes. And except when spread
spectrum methods are used, most bands are then divided into
between a few and a few thousand channels in which signals
with identical structures but different frequencies are sent.

If one steps through frequencies with an AM radio scanner,
one sometimes hears intelligible speech—from radio or TV

broadcasts, or two-way radio communication. But in many
frequency bands one hears instead either very regular or
seemingly quite random signals. (A few bands allocated for
example to distress signals or radio astronomy are normally
quiet.) The regular signals come from such sources as
navigation beacons, time standards, identification
transponders and radars. Most have characteristic almost
perfectly repetitive forms (radar pulses, for example,
typically have the chirped form )—and some
sound uncannily like pulsars. When there are seemingly
random signals some arise say from transmission of analog
video (though this typically has very rigid overall structure
associated with successive lines and frames), but most are
now associated with digital data. And when CDMA methods
are used there can be spreading over a significant range of
frequencies—with regularities being recognizable only if one
knows or can cryptanalyze LFSR sequences. 

In general to send many signals together one just needs to
associate each with a function  orthogonal to all other
functions  (see page 1072). Current electronics (with
analog elements such as phase-locked loops) make it easy to
handle functions , but other functions can yield better
data density and perhaps better signal propagation. And as
faster digital electronics makes it easier to implement these it
seems likely that it will become less and less common to have
simple carriers with definite frequencies. 

In addition, there is a continuing trend towards greater
spatial localization of signals—whether by using phased
arrays or by explicitly using technologies like fiber optics.

At present, the most intense overall artificial radio emission
from the Earth is probably the 50 or 60 Hz hum from power
lines. The most intense directed signals are probably from
radars (such as those used for ballistic missile detection) that
operate at a few hundred megahertz and put megawatts of
power into narrow beams. (Some such systems are however
being replaced by lower-power phased array systems.)

â Page 835 · SETI. First claims of extraterrestrial radio signals
were made by Nikola Tesla in 1899. More widely believed
claims were made by Guglielmo Marconi in 1922, and for
several years searches were done—notably by the U.S.
military—for signals presumed to be coming from Mars. But
it became increasingly accepted that in fact nothing beyond
natural radio emissions such as whistlers (see note above)
were actually being detected.

When galactic radio emission was first noticed by Karl
Jansky in 1931 it seemed too random to be of intelligent
origin. And when radio astronomy began to develop it
essentially ignored extraterrestrial intelligence. But in 1959
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Giuseppe Cocconi and Philip Morrison analyzed the
possibility of interstellar radio communication, and in 1960
Frank Drake used a radio telescope to look for explicit signals
from two nearby stars.

In 1965 a claim was made that there might be intensity
variations of intelligent origin in radio emission from the
quasar CTA-102—but this was quickly retracted. Then in
1967 when the first pulsar was discovered it was briefly
thought that perhaps its precise 1.33730113-second repetition
rate might be of intelligent origin.

Since the 1960s around a hundred different SETI (search for
extraterrestrial intelligence) experiments have been done.
Most use the same basic scheme: to look for signals that show
a narrow band of frequencies—say only 1 Hz wide—perhaps
changing in time. (The corresponding waveform is thus
required to be an almost perfect sinusoid.) Some concentrate
on specific nearby stars, while others look at the whole sky, or
test the stream of data from all observations at a particular
radio telescope, sometimes scanning for repetitive trains of
pulses rather than single frequencies. The best current
experiments could successfully detect radio emission at the
level now produced on Earth only from about 10 light years
away—or from about the nearest 10 stars. The detection
distance increases like the square root of the signal strength,
covering all  stars in our galaxy when the signal uses the
total power output of a star.

Most SETI has been done with specially built systems or with
existing radio telescopes. But starting in the mid-1990s it
became possible to use standard satellite receivers, and there
are now plans to set up a large array of these specifically for
SETI. In addition, it is now possible to use software instead of
hardware to implement SETI signal-processing algorithms—
both traditional ones and presumably much more general
ones that can for example pick out much weaker signals. 

Many SETI experiments look for signals in the so-called
“water hole” between the 1420 MHz frequency associated
with the 21 cm line of hydrogen and the 1720 MHz frequency
associated with hydroxyl (OH). But although there are now
practical constraints associated with the fact that on Earth
only a few frequency regions have been left clear for radio
astronomy I consider this to be a remarkable example of
reliance on details of human intellectual development.

Already in the early 1960s it was suggested that lasers
instead of radio could be used for interstellar
communication, and there have been various attempts to
detect interstellar optical pulses. Other suggested methods of
communication have included optical solitons, neutrinos and
as-yet-unknown faster-than-light quantum effects.

It is sometimes suggested that there must be fundamental
limits to detection of radio signals based on such issues as
collection areas, noise temperatures and signal degradation.
But even existing technology has provided a steady stream of
examples where limits like these have been overcome—most
often by the use of more sophisticated signal processing.

â Detection methods. Ways to identify computational origins
include looking for repeatability in apparently random
signals and comparing with output from large collections of
possible simple programs. At a practical level, the one-
dimensional character of data from radio signals makes it
difficult for us to apply our visual systems—which remain
our most powerful general-purpose analysis tools.

â Higher perception and analysis. See page 632.

â Page 837 · Messages to send. The idea of trying to send
messages to extraterrestrials has existed since at least the early
1800s. The proposed content and medium of the messages has
however steadily changed, usually reflecting what seemed to
be the most significant human achievements of the time—yet
often seeming quaint within just a few decades.

Starting in the 1820s various scientists (notably Carl Friedrich
Gauss) suggested signalling the Moon by using such schemes
as cutting clearings in a forest to illustrate the Pythagorean
theorem or reflecting sunlight from mirrors in different
countries placed so as to mimic an observed constellation of
stars. In the 1860s, with the rise of telegraphy, schemes for
sending flashes of light to Mars were discussed, and the idea
developed that mathematics should somehow be the basic
language used. In the 1890s radio signals were considered,
and were tried by Nikola Tesla in 1899. Discussion in the
1920s led to the idea of sending radio pulses that could be
assembled into a bitmap image, and some messages intended
for extraterrestrials were probably sent by radio enthusiasts.

There is a long history of attempts to formulate universal
languages (see page 1181). The Lincos language of Hans
Freudenthal from 1960 was specifically designed for
extraterrestrial communication. It was based on predicate
logic, and attempted to use this to build up first mathematics,
then science, then a general presentation of human affairs. 

When the Pioneer 10 spacecraft was launched in 1972 it
carried a physical plaque designed by Carl Sagan and others.
The plaque is surprisingly full of implicit assumptions based
on details of human intellectual development. For example, it
has line drawings of humans—whose interpretation
inevitably seems very specific to our visual system and
artistic culture. It also has a polar plot of the positions of 14
pulsars relative to the Sun, with the pulsars specified by
giving their periods as base 2 integers—but with trailing

1011
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zeros inserted to cover inadequate precision. Perhaps the
most peculiar element, however, is a diagram indicating the
21 cm transition in hydrogen—by showing two abstract
quantum mechanical spin configurations represented in a
way that seems completely specific to the particular details of
human mathematics and physics. In 1977 the Voyager
spacecraft carried phonograph records that included bitmap
images and samples of spoken languages and music.

In 1974 the bitmap image below was sent as a radio signal
from the Arecibo radio telescope. At the left-hand end is a
version of the pattern of digits from page 117—but distorted
so it has no obvious nested structure. There follow atomic
numbers for various elements, and bitvectors for components
of DNA. Next are idealized pictures of a DNA molecule, a
human, and the telescope. All these parts seem to depend
almost completely on detailed common conventions—and I
suspect that without all sorts of human context their meaning
would be essentially impossible to recognize. 

In all, remarkably few messages have been sent—perhaps in
part because of concerns that they might reveal us to
extraterrestrial predators (see page 1191). There has also been
a strong tendency to make messages hard even for humans to
understand—perhaps on the belief that they must then be
more scientific and more universal. 

The main text argues that it will be essentially impossible to
give definitive evidence of intelligence. Schemes that might
however get at least some distance include sending:

äwaveforms made of simple underlying elements;

ä long complicated sequences that repeat precisely; 

ä a diversity of kinds of sequences;

ä something complicated that satisfies simple constraints.

Examples of the latter include pattern-avoiding sequences
(see page 944), magic squares and other combinatorial
designs, specifications of large finite groups, and maximal
length linear feedback shift register sequences (see page
1084). Notably, the last of these are already being transmitted
by GPS satellites and CDMA communications systems. (If
cases could be found where the sequences as a whole were
forced not to have any obvious regularities, then pattern-
avoiding sequences might perhaps be good since they have
constraints that are locally fairly easy to recognize.)

Extrapolation of trends in human technology suggest that it
will become ever easier to detect weak signals that might be
assumed distorted beyond recognition or swamped by noise. 

â Page 838 · P versus NP. Given a constraint, it may be an NP-
complete problem to find out what object satisfies it. So it
may be difficult to generate the object from the constraint.
But if one allows oneself to generate the object in any way at
all, this may still be easy, even if . 

â Science fiction. Inhabitants of the Moon were described in
stories by Lucian around 150 AD and Johannes Kepler in
1634—and in both cases were closely modelled on terrestrial
organisms. Interest in fiction about extraterrestrials increased
greatly at the end of the 1800s—perhaps because by then few
parts of the Earth remained unexplored. And as science
fiction developed, accounts of the future sometimes treated
extraterrestrials as commonplace—and sometimes did not
mention them at all. Most often extraterrestrials have been
easy to recognize, being little more than simple combinations
of terrestrial animals (and occasionally plants)—though
fairly often with extra features like telepathy. Some stories
have nevertheless explored extraterrestrial intelligence based
for example on solids, gases or energy fields. An example is
Fred Hoyle’s 1957 The Black Cloud in which a large cloud of
hydrogen gas achieves intelligence by exchanging
electromagnetic signals between rocks whose surface
molecular configurations store memories. 

The most common fictional scenario for first contact with
extraterrestrials is the arrival of spacecraft—often induced by
us having passed a technology threshold such as radio,
nuclear explosions or faster-than-light travel. Other scenarios
sometimes considered include archeological discovery of
extraterrestrial artifacts and receipt of radio signals.

In the movie 2001 a black cuboid with side ratios 1:4:9
detected on the Moon through its anomalous magnetic
properties sends a radio pulse in response to sunlight. Later
there are also a few frames of flashing octahedra, presumably
intended to be extraterrestrial artifacts, or perhaps
extraterrestrials themselves.

In The Black Cloud intelligence is suggested by responsiveness
to radio stimuli. Communication is established—as often in
science fiction—by the intelligence interpreting material that
we supply, and then replying in the same format.

The movie Contact centers on a radio signal with several
traditional SETI ideas: it is transmitted at  MHz, and
involves a sequence of primes to draw attention, an
amplified TV signal from Earth and a description of a
machine to build.

P % NP

1420p
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The various Star Trek television series depict many
encounters with “new life and new civilizations”. Sometimes
intelligence is seen not associated with something that is
considered a lifeform.

Particularly in short stories various scenarios have been
explored where it is difficult ever to recognize intelligence.
These include one-of-a-kind beings that have nothing to
communicate with, as well as beings with inner intellectual
activity but no effect on the outside world. When there are
extraterrestrials substantially more advanced than humans
few efforts have been made to describe their motives and
purposes directly—and usually what is emphasized is just
their effects on humans. 

(See also page 1184.)

â Page 839 · Practical arguments. If extraterrestrials exist at all
an obvious question—notably asked by Enrico Fermi in the
1940s—is why we have not encountered them. For there
seems no fundamental reason that even spacecraft could not
colonize our entire galaxy within just a few million years.

Explanations suggested for apparent absence include:

äExtraterrestrials are visiting, but we do not detect them;

äExtraterrestrials have visited, but not in recorded history;

äExtraterrestrials choose to exist in other dimensions;

ä Interstellar travel is somehow infeasible;

äColonization is somehow ecologically limited;

äPhysical travel is not worth it; only signals are ever sent.

Explanations for apparent lack of radio signals include:

äBroadcasting is avoided for fear of conquest;

äThere are active efforts to prevent us being contaminated;

äExtraterrestrials have no interest in communicating;

äRadio is the wrong medium;

äThere are signals, but we do not understand them.

The so-called Drake equation gives a straightforward upper
bound on the number of cases of extraterrestrial intelligence
that could have arisen in our galaxy through the same basic
chain of circumstances as humans. The result is a product of:
rate of formation of suitable stars; fraction with planetary
systems; number of Earth-like planets per system; fraction
where life develops; fraction where intelligence develops;
fraction where technology develops; time communicating
civilizations survive. It now seems fairly certain that there are
at least hundreds of millions of Earth-like planets in our
galaxy. Biologists sometimes argue that intelligence is a rare
development—though in the Darwinian approach it certainly

has clear benefit. In addition, particularly in the Cold War
period, it was often said that technological civilizations
would quickly tend to destroy themselves, but now it seems
more likely that intelligence—once developed—will tend to
survive indefinitely, at least in machine form. 

It is obviously difficult to guess the possible motivations of
extraterrestrials, but one might expect that—just as with
humans—different extraterrestrials would tend to do
different things, so that at least some would choose to send
out signals if not spacecraft. Out of about 6 billion humans,
however, it is notable that only extremely few choose, say, to
explore life in the depths of the oceans—though perhaps this
is just because technology has not yet made it easy to do. In
human history a key motivator for exploration has been
trade. But trade requires that there be things of value to
exchange; yet it is not clear that with sufficiently advanced
technology there would be. For if the fundamental theory of
physics is known, then everything about what is possible in
our universe can in principle be worked out purely by a
computation. Often irreducible work will be required, which
one might imagine it would be worthwhile to trade. But as a
practical matter, it seems likely that there will be vastly more
room to do more extensive computations by using smaller
components than by trading and collaborating with even
millions of other civilizations. (It is notable that just a couple
of decades ago, it was usually assumed that extraterrestrials
would inevitably want to use large amounts of energy, and so
would eventually for example tap all the output of a star. But
seeing the increasing emphasis on information rather than
mechanical work in human affairs this now seems much less
clear.)

Extrapolating from our development, one might expect that
most extraterrestrials would be something like immortal
disembodied minds. And what such entities might do has to
some extent been considered in the context of the notion of
heaven in theology and art. And it is perhaps notable that
while such activities as music and thought are often
discussed, exploration essentially never is. 

â Physics as intelligence. From the point of view of traditional
thinking about intelligence in the universe it might seem like
an extremely bizarre possibility that perhaps intelligence
could exist at a very small scale, and in effect have spread
throughout the universe, building as an artifact everything
we see. But at least with a broad interpretation of intelligence
this is at some level exactly what the Principle of
Computational Equivalence suggests has actually happened.
For it implies that even at the smallest scales the laws of
physics will show the same computational sophistication that
we normally associate with intelligence. So in some sense this
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supports the theological notion that there might be a kind of
intelligence that permeates our universe. (See page 1195.)

Implications for Technology

â Covering technology. In writing this book I have tried to
achieve some level of completeness in covering the obvious
scientific implications of my ideas. But to cover technological
implications at anything like the same level would require at
least as long a book again. And in my experience many of the
intellectually most interesting aspects of technology emerge
only when one actually tries to build technology for real—
and they are often in a sense best captured by the technology
itself rather than by a book about it.

â Page 840 · Applications of randomness. Random drawing of
lots has been used throughout recorded history as an
unbiased way to distribute risks or rewards. Also common
have been games of chance (see page 968). Randomness is in
general a convenient way to allow local decisions to be made
while maintaining overall averages. In biological organisms
it is used in determining sex of offspring, as well as in
achieving uniform sampling, say in foraging for food.
(Especially in antiquity, all sorts of seemingly random
phenomena have been used as a basis for fortune telling.)

The notion of taking random samples as a basis for making
unbiased deductions has been common since the early 1900s,
notably in polling and market research. And in the past few
decades explicit randomization has become common as a
way of avoiding bias in cases such as clinical trials of drugs. 

In the late 1800s it was noted in recreational mathematics that
one could find the value of  by looking at randomly
dropped needles. In the early 1900s devices based on
randomness were built to illustrate statistics and probability
(see page 312), and were used for example to find the form of
the Student t-distribution. With the advent of digital
computers in the mid-1940s Monte Carlo methods (see page
968) were introduced, initially as a way to approximate
processes like neutron diffusion. (Similar ideas had been
used in 1901 by Kelvin to study the Boltzmann equation.)
Such methods became increasingly popular, especially for
simulating systems like telephone networks and particle
detectors that have many heterogeneous elements—as well
as in statistical physics. In the 1970s they also became widely
used for high-dimensional numerical integration, notably for
Feynman diagram evaluation in quantum electrodynamics.
But eventually it was realized that quasi-Monte Carlo
methods based on simple sequences could normally do
better than ones based on pure randomness (see page 1085). 

A convenient way to tell whether expressions are equal is to
evaluate them with random numerical values for variables.
(Care must be taken with branch cuts and bounding intervals
for inexact numbers.) In the late 1970s it was noted that by
evaluating  for several random
integers  one can with high probability quickly deduce

. (In the 1960s it had been noted that one can factor
polynomials by filling in random integers for variables and
factoring the resulting numbers.) And in the 1980s many
such randomized algorithms were invented, but by the mid-
1990s it was realized that most did not require any kind of
true randomness, and could readily be derandomized and
made more predictable. (See page 1085.)

There are all sorts of situations where in the absence of
anything better it is good to use randomness. Thus, for
example, many exploratory searches in this book were done
randomly. And in testing large hardware and software
systems random inputs are often used.

Randomness is a common way of avoiding pathological cases
and deadlocks. (It requires no communication between
components so is convenient in parallel systems.) Examples
include message routing in networks, retransmission times after
ethernet collisions, partitionings for sorting algorithms, and
avoiding getting stuck in minimization procedures like simulated
annealing. (See page 347.) As on page 333, it is common for
randomness to add robustness—as for example in cellular
automaton fluids, or in saccadic eye movements in biology.

In cryptography randomness is used to make messages look
typical of all possibilities (see page 598). It is also used in
roughly the same way in hashing (see page 622). Such
randomness must be repeatable. But for cryptographic keys it
should not be. And the same is true when one picks unique
IDs, say to keep track of repeat web transactions with a low
probability of collisions. Randomness is in effect also used in
a similar way in the shotgun method for DNA sequencing, as
well as in creating radar pulses that are difficult to forge. (In
biological organisms random diversity in faces and voices
may perhaps have developed for similar reasons.)

The unpredictability of randomness is often useful, say for
animals or military vehicles avoiding predators (see page
1105). Such unpredictability can also be used in simulating
human or natural processes, say for computer graphics,
videogames, or mock handwriting. Random patterns are
often used as a way to hide regularities—as in camouflage,
security envelopes, and many forms of texturing and
distressing. (See page 1077.)

In the past, randomness was usually viewed as a thing to be
avoided. But with the spread of computers and consumer

p

PowerMod[a, n - 1, n] 2 1
a

PrimeQ[n]



T H E  P R I N C I P L E  O F  C O M P U T A T I O N A L  E Q U I V A L E N C E N O T E S  F O R  C H A P T E R  1 2

1193

electronics that normally operate predictably, it has become
increasingly popular as an option. 

Microscopic randomness is implicitly used whenever there is
dissipation or friction in a system, and generally it adds
robustness to the behavior that occurs in systems. 

â Page 841 · Self-assembly. Given elements (such as pieces of
molecules) that fit together only when certain specified
constraints are satisfied it is fairly straightforward to force,
say, cellular automaton patterns to be generated, as on page
221. (Notable examples of such self-assembly occur for
instance in spherical viruses.) 

â Page 841 · Nanotechnology. Popular since the late 1980s,
especially through the work of Eric Drexler, nanotechnology
has mostly involved investigation of several approaches to
making essentially mechanical devices out of small numbers
of atoms. One approach extrapolates chip technology, and
studies placing atoms individually on solid surfaces using for
example scanning probe microscopy. Another extrapolates
chemical synthesis—particularly of fullerenes—and considers
large molecules made for example out of carbon atoms. And
another involves for example setting up fragments of DNA to
try to force particular patterns of self-assembly. Most likely it
will eventually be possible to have a single universal system
that can manufacture almost any rigid atomic-scale structure
on the basis of some kind of program. (Ribosomes in biological
cells already construct arbitrary proteins from DNA
sequences, but ordinary protein shapes are usually difficult to
predict.) Existing work has tended to concentrate on trying to
make rather elaborate components suitable for building
miniature versions of familiar machines. The discoveries in
this book imply however that there are much simpler
components that can also be used to set up systems that have
behavior with essentially any degree of sophistication. Such
systems can either have the kind of chemical and mechanical
character most often considered in nanotechnology, or can be
primarily electronic, for example along the lines of so-called
quantum-dot cellular automata. Over the next several decades
applications of nanotechnology will no doubt include much
higher-capacity computers, active materials of various kinds,
and cellular-scale biomedical devices. 

â Page 842 · Searching for technology. Many inventions are
made by pure ingenuity (sometimes aided by mathematical
calculation) or by mimicking processes that go on in nature.
But there are also cases where systematic searches are done.
Notable examples were the testing of thousands of materials
as candidate electric light bulb filaments by Thomas Edison
in 1879, and the testing of 606 substances for chemotherapy
by Paul Ehrlich in 1910. For at least fifty years it has now

been quite routine to test many hundreds or thousands of
substances in looking, say, for catalysts or drugs with
particular functions. (Other kinds of systematic searches
done include ones for metal alloys, cooking recipes and plant
hybrids.) Starting in the late 1980s the methods of
combinatorial chemistry (see note below) began to make it
possible to do biochemical tests on arrays of millions of
related substances. And by the late 1990s, similar ideas were
being used for example in materials science: in a typical case
an array of different combinations of substances is made by
successively spraying through an appropriate sequence of
masks, with some physical or chemical test then applied to
all the samples.

In the late 1950s maximal length shift register sequences
(page 1084) and some error-correcting codes (page 1101) were
found by systematic searches of possible polynomials. Most
subsequent codes, however, have been found by explicit
mathematical constructions. Optimal circuit blocks for
operations such as addition and sorting (see page 1142) have
occasionally been found by searches, but are more often
found by explicit construction, progressive improvement or
systematic logic minimization (see page 1097). In some
compilers searches are occasionally done for optimal
sequences of instructions to implement particular simple
functions. And in recent years—notably in the building of
Mathematica—optimal algorithms for operations such as
function evaluation and numerical integration have
sometimes been found through searches. In addition, my
1984 identification of rule 30 as a randomness generator was
the result of a small-scale systematic search. 

Particularly since the 1970s, many systematic methods have
been tried for optimizing engineering designs by computer.
Usually they are based on iterative improvement rather than
systematic search. Some rely on linear programming or
gradient descent. Others use methods such as simulated
annealing, neural networks and genetic algorithms. But as
discussed on page 342, except in very simple cases, the
results are usually far from any absolute optimum. (Plant and
animal breeding can be viewed as a simple form of
randomized search done since the dawn of civilization.)

â Page 843 · Methodology in this book. Much of what is
presented in this book comes from systematic enumeration of
all possible systems of particular types. However, sometimes
I have done large searches for systems (see e.g. page 112).
And especially in Chapter 11 I have occasionally explicitly
constructed systems that show particular features. 

â Chemistry. Chemical compounds are a little like cellular
automata and other kinds of programs. For even though
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the basic physical laws relevant to chemical compounds
have been known since the early 1900s, it remains
extremely difficult to predict the actual properties of a
given compound. And I suspect that the ultimate reason
for this—just as in the case of simple programs—is
computational irreducibility.

For a single molecule, the minimum energy configuration
can presumably always be found by a limited amount of
computational work—though potentially increasing rapidly
with the number of atoms. But if one allows progressively
more molecules computational irreducibility can make it
take progressively more computational work to see what
will happen. And much as in determining whether
constraints like those on page 213 can be satisfied for an
infinite region, it can take an infinite amount of
computational work to determine bulk properties of an
infinite collection of molecules. Thus in practice it has
typically been difficult to predict for example boiling and
particularly melting points (see note below). So this means
in the end that most of chemistry must be based on facts
determined experimentally about specific compounds that
happen to have been studied.

There are currently about 10 million compounds listed in
standard chemical databases. Of these, most were first
identified as extracts from biological or other natural
systems. In trying to discover compounds that might be
useful say as drugs the traditional approach was to search
large libraries of compounds, then to study variations on
those that seemed promising. But in the 1980s it began to be
popular to try so-called rational design in which molecules
were created that could at least to some extent specifically
be computed to have relevant shapes and chemical
functions. Then in the 1990s so-called combinatorial
chemistry became popular, in which—somewhat in
imitation of the immune system—large numbers of possible
compounds were created by successively adding at random
several different possible amino acids or other units. But
although it will presumably change in the future it remained
true in 2001 that half of all drugs in use are derived from
just 32 families of compounds.

Doing a synthesis of a chemical is much like constructing a
network by applying a specified sequence of
transformations. And just like for multiway systems it is
presumably in principle undecidable whether a given set of
possible transformations can ever be combined to yield a
particular chemical. Yet ever since the 1960s there have been
computer systems like LHASA that try to find synthesis
pathways automatically. But perhaps because they lack even
the analog of modern automated theorem-proving methods,

such systems have never in practice been extremely
successful.

â Interesting chemicals. The standard IUPAC system for
chemical nomenclature assigns a name to essentially any
possible compound. But even among hydrocarbons with
fairly few atoms not all have ever been considered interesting
enough to list in standard chemical databases. Thus for
example the following compares the total number of
conceivable alkanes (paraffins) to the number actually listed
in the 2001 standard Beilstein database: 

Any tree with up to 4 connections at each node can in
principle correspond to an alkane with chemical formula
CnH2n+2. The total number of such trees—studied since
1875—increases roughly like . If every node has
say 4 connections, then eventually one gets dendrimers that
cannot realistically be constructed in 3D. But long before
this happens one runs into many alkanes that presumably
exist, but apparently have never explicitly been studied.
The small unbranched ones (methane, ethane, propane,
butane, pentane, etc.) are all well known, but ones with
more complicated branching are decreasingly known. In
coal and petroleum a continuous range of alkanes occur.
Branched octanes are used to reduce knocking in car
engines. Biological systems contain many specific alkanes—
often quite large—that happen to be produced through
chemical pathways in biological cells. (The  and

 unbranched alkanes are for example known to serve
as ant pheromones.)

In general the main way large molecules have traditionally
ended up being considered chemically interesting is if they
occur in biological systems—or mimic ones that do. Since the
1980s, however, molecules such as the fullerenes that instead
have specific regular geometrical shapes have also begun to
be considered interesting. 

â Alkane properties. The picture on the facing page shows
melting points measured for alkanes. (Note that even when
alkanes are listed in chemical databases—as discussed
above—their melting points may not be given.) Unbranched
alkanes yield melting points that increase smoothly for 
even and for  odd. Highly symmetrical branched alkanes
tend to have high melting points, presumably because they
pack well in space. No reliable general method for
predicting melting points is however known (see note
above), and in fact for large  alkanes tend to form jellies
with no clear notion of melting.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
total 1 1 1 2 3 5 9 18 35 75 159 355 802 1858 4347 10359

listed 1 1 1 2 3 5 9 18 35 75 68 108 60 60 41 62

2.79n n-5/2

n = 11
n = 13

n
n

n
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Things appear somewhat simpler with boiling points, and as
noticed by Harry Wiener in 1947 (and increasingly discussed
since the 1970s) these tend to be well fit as being linearly
proportional to the so-called topological index given by the
sum of the smallest numbers of connections visited in getting
between all pairs of carbon atoms in an alkane molecule.

â Page 843 · Components for technology. The Principle of
Computational Equivalence suggests that a vast range of
systems in nature can all ultimately be used to make
computers. But it is remarkable to what extent even the
components of present-day computer systems involve
elements of nature originally studied for quite different
reasons. Examples include electricity, semiconductors (used
for chips), ferrites (used for magnetic storage), liquid crystals
(used for displays), piezoelectricity (used for microphones),
total internal reflection (used for optical fibers), stimulated
emission (used for lasers) and photoconductivity (used for
xerographic printing).

â Future technology. The purposes technology should serve
inevitably change as human civilization develops. But at least
in the immediate future many of these purposes will tend to
relate to the current character of our bodies and minds. For
certainly technology must interface with these. But
presumably as time progresses it will tend to become more
integrated, with systems that we have created eventually
being able to fit quite interchangeably into our usual
biological or mental setup. At first most such systems will
probably tend either to be based on standard engineering, or
to be quite direct emulations of human components that we
see. But particularly by using the ideas and methods of this
book I suspect that significant progressive enhancements will
be possible. And probably there will be many features that
are actually quite easy to take far beyond the originals. One
example is memory and the recall of history. Human memory
is in many ways quite impressive. Yet for ordinary physical
objects we are used to the idea that they remember little of
their history, for at a macroscopic level we tend to see only

the coarsest traces. But at a microscopic scale something like
the surface of a solid has in at least some form remarkably
detailed information about its history. And as technological
systems get smaller it should become possible to read and
manipulate this. And much as in the discussion at the end of
Chapter 10 the ability to interact at such a level will yield
quite different experiences, which in turn will tend to suggest
different purposes to pursue with technology. 

Historical Perspectives

â Page 844 · Human uniqueness. The idea that there is
something unique and special about humans has deep roots
in Judeo-Christian tradition—and despite some dilution
from science remains a standard tenet of Western thought
today. Eastern religions have however normally tended to
take a different view, and to consider humans as just one of
many elements that make up the universe as a whole. (See
note below.)

â Page 845 · Animism. Belief in animism remains strong in
perhaps several hundred million indigenous people around
the world. In its typical form, it involves not only explaining
natural phenomena by analogy to human behavior but also
assuming that they can be influenced as humans might be,
say by offerings or worship. (See also page 1177.)

Particularly since Edward Tylor in 1871 animism has often
been thought of as the earliest identifiable form of religion.
Polytheism is then assumed to arise when the idea of
localized spirits associated with individual natural objects is
generalized to the idea of gods associated with types of
objects or concepts (as for example in many Roman beliefs).
Following their rejection in favor of monotheism by
Judaism—and later Christianity and Islam—such ideas have
however tended to be considered primitive and pagan. In
Europe through the Middle Ages there nevertheless
remained widespread belief in animistic kinds of
explanations. And even today some Western superstitions
center on animism, as do rituals in countries like Japan.
Animism is also a key element of the New Age movement of
the 1960s, as well as of such ideas as the Gaia Hypothesis.

Particularly since the work of Jean Piaget in the 1940s, young
children are often said to go through a phase of animism, in
which they interact with complex objects much as if they
were alive and human.

â Page 845 · Universe as intelligent. Whether or not something
like thinking can be attributed to the universe has long been
discussed in philosophy and theology. Theism and the
standard Western religions generally attribute thinking to a
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person-like God who governs the universe but is separate
from it. Deism emphasizes that God can govern the universe
only according to natural laws—but whether or not this
involves thinking is unclear. Pantheism generally identifies the
universe and God. In its typical religious form in Eastern
metaphysics—as well as in philosophical idealism—the
contents of the universe are identified quite directly with the
thoughts of God. In scientific pantheism the abstract order of
the universe is identified with God (often termed “Nature’s
God” or “Spinoza’s God”), but whether this means that
thinking is involved in the operation of the universe is not
clear. (See also pages 822 and 1191.)

â Non-Western thinking. Some of my conclusions in this
book may seem to resonate with ideas of Eastern thinking.
For example, what I say about the fundamental similarity of
human thinking to other processes in nature may seem to fit
with Buddhism. And what I say about the irreducibility of
processes in nature to short formal rules may seem to fit with
Taoism. Like essentially all forms of science, however, what I
do in this book is done in a rational tradition—with limited
relation to the more mystical traditions of Eastern thinking. 

â Aphorisms. Particularly from ancient and more fragmentary
texts aphorisms have survived that may sometimes seem at
least vaguely related to this book. (An example from the pre-
Socratics is “everything is full of gods”.) But typically it is
impossible to see with any definiteness what such aphorisms
might really have been intended to mean.

â Postmodernism. Since the mid-1960s postmodernism has
argued that science must have fundamental limitations,
based on its general belief that any single abstract system
must somehow be as limited—and as arbitrary in its
conclusions—as the context in which it is set up. My work
supports the notion that—despite implicit assumptions made
especially in the physical sciences—context can in fact be
crucial to the choice of subject matter and interpretation of
results in science (see e.g. page 1105). But the Principle of
Computational Equivalence suggests at some level a
remarkable uniformity among systems, that allows all sorts
of general scientific statements to be made without
dependence on context. It so happens that some of these
statements then imply intrinsic general limitations on
science—but even the very fact that such statements can be
made is in a sense an example of successful generality in
science that goes against the conclusions of postmodernism.
(See also page 1131.)

â Microcosm. The notion that a human mind might somehow
be analogous to the whole universe was discussed by Plato
and others in antiquity, and known in the Middle Ages. But it

was normally assumed that this was something fairly unique
to the human mind—and nothing with the generality of the
Principle of Computational Equivalence was ever imagined.

â Human future. The Principle of Computational Equivalence
and the results of this book at first suggest a rather bleak view
of the end point of the development of technology. As I argued
in Chapter 10 computers will presumably be able to emulate
human thinking. And particularly using the methods of this
book one will be able to use progressively smaller physical
components as elements of computers. So before too long it
will no doubt be possible to implement all the processes of
thinking that go on in a single human—or even in billions of
humans—in a fairly small piece of material. Each piece of
human thinking will then correspond to some microscopic
pattern of changes in the atoms of the material. In the past one
might have assumed that these changes would somehow
show fundamental evidence of representing sophisticated
human thinking. But the Principle of Computational
Equivalence implies that many ordinary physical processes are
computationally just as sophisticated as human thinking. And
this means that the pattern of microscopic changes produced
by such processes can at some level be just as sophisticated as
those corresponding to human thinking. So given, say, an
ordinary piece of rock in which there is all sorts of complicated
electron motion this may in a fundamental sense be doing no
less than some system of the future constructed with
nanotechnology to implement operations of human thinking.
And while at first this might seem to suggest that the rich
history of biology, civilization and technology needed to reach
this point would somehow be wasted, what I believe instead is
that this just highlights the extent to which such history is
what is ultimately the defining feature of the human condition.

â Philosophical implications. The Principle of Computational
Equivalence has implications for many issues long discussed
in the field of philosophy. Most important are probably those
in epistemology (theory of knowledge). In the past, it has
usually been assumed that if we could only build up in our
minds an adequate model of the world, then we would
immediately know whatever we want about the world. But
the Principle of Computational Equivalence now implies that
even given a model it may be irreducibly difficult to work out
its consequences. In effect, computational irreducibility
introduces a new kind of limit to knowledge. And it implies
that one needs a criterion more sophisticated than immediate
predictability to assess a scientific theory—since when
computational irreducibility is present this will inevitably be
limited. In the past, it has sometimes been assumed that
truths that can be deduced purely by operations like those in
logic must somehow always be trivial. But computational
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irreducibility implies that in general they are not. Indeed it
implies that even once the basic laws are known there are still
an endless series of questions that are worth investigating in
science. It is often assumed that one cannot learn much about
the world just by studying purely formal systems—and that
one has to rely on empirical input. But the Principle of
Computational Equivalence implies that at some level there
are inevitably common features across both abstract and
natural systems. In ontology (theory of being) the Principle of
Computational Equivalence implies that special components
are vastly less necessary than might have been thought. For it
shows that all sorts of sophisticated characteristics can
emerge from the very same kinds of simple components. (My
discussion of fundamental physics in Chapter 9 also suggests
that no separate entities beyond simple rules are needed to
capture space, time or matter.) Arguments in several areas of
philosophy involve in effect considering fundamentally
different intelligences. But the Principle of Computational
Equivalence implies that in fact above a certain threshold

there is an ultimate equivalence between possible
intelligences. In addition, the Principle of Computational
Equivalence implies that all sorts of systems in nature and
elsewhere will inevitably exhibit features that in the past
have been considered unique to intelligence—and this has
consequences for the mind-body problem, the question of
free will, and recognition of other minds. It has often been
thought that traditional logic—and to some extent
mathematics—are somehow fundamentally special and
provide in a sense unique foundations. But the Principle of
Computational Equivalence implies that in fact there are a
huge range of other formal systems, equivalent in their
ultimate richness, but different in their details, and in the
questions to which they naturally lead. In philosophy of
science the Principle of Computational Equivalence forces a
new methodology based on formal experiments—that is
ultimately the foundation for the whole new kind of science
that I describe in this book. 




