Stefan Janecek uni software plus GmbH

Computational Knowledge meets Quantum Chemistry

Computational Knowledge

Density Functional Theory

Chemistry

Material Science (Steel production down to nanotechnology)

Ethane (C_2H_6)

$\psi(x_1, y_1, z_1, x_2, y_2, z_2, \ldots, x_{30}, y_{30}, z_{30})$

20 grid points per coordinate

30 electrons

needs 8 20⁹⁰ bytes

Ultimate storage medium (hypothetical): 1 byte per atom...

Volume to store 8 2090 bytes?

10⁹ Petabyte!

About 1.6 10³⁹ ly³ (yes, cubic light-years)

Density Functional Theory ("DFT") Approximation to the *ground state* of the system

Pierre C. Hohenberg

Walther Kohn (nobel laureate chemistry 1998)

Based on two theorems by Pierre C. Hohenberg and Walther Kohn (1964)

John A. Pople (nobel laureate chemistry 1998)

Hohenberg-Kohn 1: "The density is special"

Whole information on ground state is "in principle" contained in the density alone!

(existence theorem alert !)

Everything depends on the density alone! "Everything is a *functional* of the density"

 $E = E[\rho]$

Hohenberg-Kohn 2: "The energy is special"

The ground state density minimises the energy functional $E[\rho \neq \rho_0] \geq E[\rho_0] = E_0$

Existence theorem alert: we still *don't know* the exact energy functional

Minimize **approximations** to the energy functional (50 years of experience in finding good approximations)

Calculations: Demanding, but doable

CPU time ore hours)	Memory			
seconds	few megabytes			
5 core-h	few gigabytes			
Mio. core-h	few TB (?)			

Show me what you can do!

Example 1: Quantum Dots

Example 2: Nuclear Magnetic Resonance

Benzene Molecule

Calculation Input: • 6 Carbon • 6 Hydrogen rough structure

chem. structure

NMR spectrum

DFT and the Wolfram Language

Why Wolfram Language

Traditional languages: Fortran, C++ How do they compare? Rapid Development, framework that makes it easy to try out new ideas

Use it as a "computational knowledge tool" (more later ...)

This is a very rough, qualitative, anecdotal, largely inadequate comparison. It's a "user story", not a benchmark.

Only orders of magnitude count ! (i.e. a factor of 2 is not a big deal - a factor of 100 might be significant)

Disclaimer:

Efficiency: Runtime

Disclaimer: Very different Algorithms! (only orders of magnitude count)

Mathematica code roughly ~ C++ code

-+ Code	Mathematica			
4.1s	4.5s			
5h 35m	5h 55m			

Efficiency: Development

	Language	SLOC	person years	Features	Features
LiMeReC	Fortran	50,000	3-4 years	100%	2D+3D, FD, Pseudopotential
PEST	C++	20,000	1.5 years	80%	2D + 3D, FD, Magnetic Fields
Mathematica DFT	Wolfram	300 (DFT) + 860 (FEM)	70hrs	50%	2D+3D, FEM

DFT and Computable Knowledge

Chemical Space ("all possible compounds that can be produced by elements from the periodic table") is huge

no way to get empirical (experimental) data on all that

At least a subset of that can be made **computable** (from just the knowledge of the chemical structure)

Vision: Quantum Chemistry and Computational Knowledge

Wol	fra
benzene nuclear magnetic resonance s	hifts
🔤 🙆 🎟 🏠	
Using closest Wolfram Alpha interpretation:	nuclea
More interpretations: benzene	
Assuming "nuclear magnetic resonance" is a word	Use a

Thank You!

Questions?